
WebSphere® Application Server for Distributed Platforms, Version 6.1

Securing applications and their environment

���

Note

Before using this information, be sure to read the general information under “Notices” on page 1437.

Compilation date: May 23, 2006

© Copyright International Business Machines Corporation 2006. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

How to send your comments . xi

Chapter 1. Overview and new features for securing applications and their environment 1

What is new for security specialists . 1

Common Criteria (EAL4) support . 7

Federal Information Processing Standard support . 11

Identity management capabilities . 12

Security planning overview . 21

Chapter 2. How do I secure applications and their environments? 29

Chapter 3. Task overview: Securing resources . 31

Chapter 4. Setting up and enabling security . 33

Migrating, coexisting, and interoperating – Security considerations 33

Interoperating with previous product versions . 34

Interoperating with a C++ common object request broker architecture client 35

Migrating custom user registries . 37

Migrating trust association interceptors . 40

Migrating Common Object Request Broker Architecture programmatic login to Java Authentication

and Authorization Service (CORBA and JAAS) . 42

Migrating from the CustomLoginServlet class to servlet filters 45

Migrating Java 2 security policy . 45

Preparing for security at installation time . 48

Securing your environment before installation . 49

Securing your environment after installation . 49

Enabling security . 51

Administrative security . 54

Application security . 64

Java 2 security . 65

Enabling security for the realm . 75

Testing security after enabling it . 85

Chapter 5. Authenticating users . 87

Selecting a registry or repository . 87

User registries and repositories . 89

Configuring local operating system registries . 90

Configuring Lightweight Directory Access Protocol user registries 93

Configuring standalone custom registries . 111

Managing the realm in a federated repository configuration 115

Local operating system registries . 165

Standalone Lightweight Directory Access Protocol registries 169

Federated repositories . 171

Authentication mechanisms . 173

Portlet URL security . 175

Lightweight Third Party Authentication . 179

Trust associations . 180

Single sign-on . 184

Security attribute propagation . 191

Simple WebSphere authentication mechanism . 205

UserRegistry interface methods . 205

Authentication protocol for EJB security . 212

Supported authentication protocols . 215

© Copyright IBM Corp. 2006 iii

Common Secure Interoperability Version 2 features 216

Identity assertion . 216

Identity assertions with trust validation . 217

Message layer authentication . 218

Configuring the Lightweight Third Party Authentication mechanism 219

Authentication mechanisms and expiration . 220

Generating Lightweight Third Party Authentication keys 223

Exporting Lightweight Third Party Authentication keys 224

Importing Lightweight Third Party Authentication keys 224

Disabling automatic generation of Lightweight Third Party Authentication keys 225

Managing LTPA keys from multiple WebSphere Application Server cells 226

Activating Lightweight Third Party Authentication key versions 227

Integrating third-party HTTP reverse proxy servers . 227

Trust association settings . 228

Trust association interceptor collection . 228

Trust association interceptor settings . 228

Implementing single sign-on to minimize Web user authentications 229

Configuring single sign-on capability with SPNEGO TAI 232

Configuring single sign-on capability with Tivoli Access Manager or WebSEAL 253

Propagating security attributes among application servers 267

Configuring the authentication cache . 269

Security cache properties . 269

Configuring IIOP authentication . 270

Configuring Common Secure Interoperability Version 2 inbound authentication 270

Configuring Common Secure Interoperability Version 2 outbound authentication 275

Example: Common Secure Interoperability Version 2 scenarios 280

Configuring RMI over IIOP . 286

Configuring inbound transports . 287

Configuring outbound transports . 291

Performing identity mapping for authorization across servers in different realms 294

Common Secure Interoperability Version 2 and Security Authentication Service client configuration 308

Java Authentication and Authorization Service . 312

Java Authentication and Authorization Service authorization 313

Using the Java Authentication and Authorization Service programming model for Web

authentication . 315

Chapter 6. Authorizing access to resources . 319

Authorization technology . 319

Administrative roles and naming service authorization 320

Role-based authorization . 324

Administrative roles . 326

Enterprise bean component security . 329

Authorization providers . 329

Delegations . 341

Programmatic login . 343

Authorizing access to J2EE resources using Tivoli Access Manager 350

Using the default authorization provider . 350

Enabling an external JACC provider . 354

Authorizing access to administrative roles . 372

Administrative user roles settings and CORBA naming service user settings 372

Administrative group roles and CORBA naming service groups 374

Assigning users to naming roles . 376

Propagating administrative role changes to Tivoli Access Manager 376

The migrateEAR utility for Tivoli Access Manager 377

Chapter 7. Securing communications . 381

iv Securing applications and their environment

Secure communications using Secure Sockets Layer 381

Secure Sockets Layer configurations . 387

Keystore configurations . 393

Dynamic outbound selection of Secure Sockets Layer configurations 396

Central management of Secure Sockets Layer configurations 397

Secure Sockets Layer node, application server, and cluster isolation 398

Default self-signed certificate configuration . 402

Dynamic configuration updates . 411

Management scope configurations . 412

Certificate management using iKeyman . 413

Certificate management . 414

Creating a Secure Sockets Layer configuration . 417

SSL certificate and key management . 420

SSL configurations for selected scopes . 421

SSL configurations collection . 422

SSL configuration settings . 423

Creating a custom trust manager configuration . 424

Creating a custom key manager . 430

Associating a Secure Sockets Layer configuration dynamically with an outbound protocol and

remote secure endpoint . 435

Quality of protection (QoP) settings . 445

ssl.client.props client configuration file . 446

Creating a keystore configuration . 453

Changing a keystore password . 454

Configuring a hardware cryptographic keystore . 454

Managing keystore configurations remotely . 455

Key stores and certificates collection . 456

Key store settings . 456

Key managers collection . 458

Key managers settings . 458

Creating a self-signed certificate . 459

Replacing an existing self-signed certificate . 460

Creating a certificate authority request . 461

Certificate request settings . 462

Personal certificates collection . 462

Personal certificates settings . 463

Personal certificate requests collection . 466

Personal certificate requests settings . 466

Extract certificate request . 468

Receiving a certificate issued by a certificate authority 468

Replace a certificate . 471

Extracting a signer certificate from a personal certificate 471

Extract certificate . 472

Extract signer certificate . 472

Retrieving signers using the retrieveSigners utility at the client 473

Changing the signer auto-exchange prompt at the client 474

Importing a signer certificate from a truststore to a z/OS keyring 475

Exporting a signer certificate from WebSphere Application Server for z/OS to a truststore 476

Importing a signer certificate from a truststore to a z/OS keyring 477

Exporting a signer certificate from WebSphere Application Server for z/OS to a truststore 478

Retrieving signers from a remote SSL port . 479

Retrieve from port . 480

Adding a signer certificate to a keystore . 481

Add signer certificate . 481

Signer certificates collection . 482

Signer certificate settings . 482

Contents v

Exchanging signer certificates . 483

Key stores and certificates exchange signers . 483

Configuring certificate expiration monitoring . 484

Manage certificate expiration settings . 485

Notifications . 486

Notifications settings . 487

Key management for cryptographic uses . 488

Creating a key set configuration . 489

Active key history collection . 490

Add key alias reference settings . 491

Key sets collection . 491

Key sets settings . 492

Creating a key set group configuration . 493

Example: Retrieving the generated keys from a key set group 494

Example: Developing a key or key pair generation class for automated key generation 495

Key set groups collection . 498

Key set groups settings . 499

Chapter 8. Developing extensions to the WebSphere security infrastructure 501

Developing standalone custom registries . 501

Example: Standalone custom registries . 502

Result.java file . 502

UserRegistry.java files . 503

Implementing custom password encryption . 510

Developing applications that use programmatic security 510

Protecting system resources and APIs (Java 2 security) 511

Developing with programmatic security APIs for Web applications 533

Developing with programmatic APIs for EJB applications 537

Customizing Web application login . 541

Example: Form login . 542

Developing servlet filters for form login processing 544

Customizing application login with Java Authentication and Authorization Service 548

Developing programmatic logins with the Java Authentication and Authorization Service 548

Configuring programmatic logins for Java Authentication and Authorization Service 552

Customizing an application login to perform an identity assertion 571

Customization of a server-side Java Authentication and Authorization Service authentication and

login configuration . 573

Enabling identity assertion with trust validation . 592

Secure transports with JSSE and JCE programming interfaces 593

Configuring Federal Information Processing Standard Java Secure Socket Extension files 597

Implementing tokens for security attribute propagation 600

Implementing a custom propagation token . 600

Implementing a custom authorization token . 608

Implementing a custom single sign-on token . 616

Implementing a custom authentication token . 627

Propagating a custom Java serializable object . 635

Developing a custom interceptor for trust associations 639

Trust association interceptor support for Subject creation 642

Plug point for custom password encryption . 644

Enabling custom password encryption . 646

Chapter 9. Configuring security with scripting . 649

Enabling and disabling administrative security using scripting 650

Enabling and disabling Java 2 security using scripting 651

Enabling authentication in the file transfer service using scripting 651

Propagating security policy of installed applications to a JACC provider using wsadmin scripting 652

vi Securing applications and their environment

Configuring the JACC provider for Tivoli Access Manager using the wsadmin utility 654

Disabling embedded Tivoli Access Manager client using wsadmin 655

Creating an SSL configuration at the node scope using scripting 656

Creating self-signed certificates using scripting . 658

Automating SSL configurations using scripting . 659

Updating default key store passwords using scripting 662

Commands for the IdMgrConfig group of the AdminTask object 662

Commands for the IdMgrRepositoryConfig group of the AdminTask object 667

Commands for the IdMgrRealmConfig group of the AdminTask object 756

Commands for the WIMManagementCommands group of the AdminTask object 764

Commands for the KeyStoreCommands group of the AdminTask object 784

Commands for the SSLConfigCommands group of the AdminTask object 793

Commands for the DescriptivePropCommands group of the AdminTask object 806

Commands for the TrustManagerCommands group of the AdminTask object 809

Commands for the keyManagerCommands group of the AdminTask object 813

Commands for the SSLConfigGroupCommands group of the AdminTask object 817

Commands for the DynamicSSLConfigSelections group of the AdminTask object 822

Commands for the ManagementScopeCommands group of the AdminTask object 826

Commands for the WSCertExpMonitorCommands group of the AdminTask object 830

Commands for the KeySetGroupCommands group of the AdminTask object 836

Commands for the KeySetCommands group of the AdminTask object 842

Commands for the KeyReferenceCommands group of the AdminTask object 848

Commands for the securityEnablement group of the AdminTask object 852

Commands for the CertificateRequestCommands group of the AdminTask object 858

Commands for the SignerCertificateCommands group of the AdminTask object 862

Commands for the PersonalCertificateCommands group of the AdminTask object 868

Commands for the SPNEGO TAI group of the AdminTask object 878

Commands for the AuthorizationGroupCommands group of the AdminTask object 885

Commands for the ChannelFrameworkManagement group of the AdminTask object 899

Chapter 10. Web applications . 905

Securing Web applications using an assembly tool . 905

Security constraints . 907

Security settings . 907

Security role references . 908

Securing applications during assembly and deployment 909

Assigning users and groups to roles . 910

Updating and redeploying secured applications . 918

Deploying secured applications . 919

Chapter 11. SIP applications . 921

Securing SIP applications . 921

Configuring security for the SIP container . 921

Chapter 12. EJB applications . 925

Securing enterprise bean applications . 925

Configuring security for EJB 2.1 message-driven beans 927

Chapter 13. Client applications . 929

Accessing secure resources using SSL and applet clients 929

Applet client security requirements . 929

Chapter 14. Web services . 931

Configuring HTTP outbound transport level security with the administrative console 931

HTTP SSL Configuration collection . 931

Configuring HTTP outbound transport level security with an assembly tool 932

Contents vii

Configuring HTTP outbound transport-level security using Java properties 933

Transport level security . 933

HTTP basic authentication . 934

Configuring HTTP basic authentication with the administrative console 934

HTTP basic authentication collection . 935

Configuring HTTP basic authentication with an assembly tool 935

Configuring HTTP basic authentication programmatically 936

Configuring additional HTTP transport properties using the JVM custom property panel in the

administrative console . 936

Configuring additional HTTP transport properties with an assembly tool 937

Configuring additional HTTP transport properties using the wsadmin command-line tool 939

Provide HTTP endpoint URL information . 940

Specify endpoint URL prefixes for Web services . 940

Select default HTTP URL prefix . 940

Select custom HTTP URL prefix . 941 941

Publish WSDL zip files settings . 941

Securing Web services for Version 6 and later applications based on WS-Security 941

What is new for securing Web services . 946

Web services security enhancements . 960

High-level architecture for Web services security 964

Overview of platform configuration and default bindings 966

Security model mixture . 969

Security considerations for Web services . 970

Migrating Version 5.x applications with Web services security to Version 6.1 applications 972

Default implementations of the Web services security service provider programming interfaces 985

Default configuration . 988

Basic Security Profile compliance . 994

Configuring an application for Web services security with an assembly tool 995

Configuring trust anchors for the generator binding on the application level 1089

Configuring the collection certificate store for the generator binding on the application level 1093

Username token element . 1102

Nonce, a randomly generated token . 1103

Custom security token propagation . 1103

rrdSecurity.props file . 1104

Configuring the token generator on the application level 1104

Configuring the key locator for the generator binding on the application level 1121

Configuring the key information for the generator binding on the application level 1127

Configuring the signing information for the generator binding on the application level 1138

Configuring the encryption information for the generator binding on the application level 1152

Configuring trust anchors for the consumer binding on the application level 1163

Configuring the collection certificate store for the consumer binding on the application level 1165

Binary security token . 1166

Configuring token consumer on the application level 1167

Configuring the key locator for the consumer binding on the application level 1176

Configuring the key information for the consumer binding on the application level 1177

Configuring the signing information for the consumer binding on the application level 1179

Configuring the encryption information for the consumer binding on the application level 1184

Hardware cryptographic device support for Web Services Security 1186

Retrieving tokens from the JAAS Subject in a server application 1188

Retrieving tokens from the JAAS Subject in an application 1190

Configuring trust anchors on the server or cell level 1190

Configuring the collection certificate store for the server or cell-level bindings 1191

Distributed nonce caching . 1193

Configuring a nonce on the server or cell level . 1193

Configuring token generators on the server or cell level 1194

Configuring the key locator on the server or cell level 1204

viii Securing applications and their environment

Configuring the key information for the generator binding on the server or cell level 1206

Configuring the signing information for the generator binding on the server or cell level 1208

Configuring the encryption information for the generator binding on the server or cell level 1211

Configuring trusted ID evaluators on the server or cell level 1212

Configuring token consumers on the server or cell level 1216

Configuring the key information for the consumer binding on the server or cell level 1224

Configuring the signing information for the consumer binding on the server or cell level 1225

Configuring the encryption information for the consumer binding on the server or cell level 1227

Tuning Web services security for Version 6.1 applications 1229

Securing Web services for Version 5.x applications based on WS-Security 1230

Web services security specification—a chronology 1231

Web services security support . 1232

Web services security and Java 2 Platform, Enterprise Edition security relationship 1235

Web services security model in WebSphere Application Server 1237

Web services: Default bindings for the Web services security collection 1240

Usage scenario for propagating security tokens 1241

Web services security constraints . 1243

Overview of authentication methods . 1252

XML digital signature . 1255

Securing Web services for Version 5.x applications using XML digital signature 1259

XML encryption . 1310

Securing Web services for Version 5.x applications using XML encryption 1313

Securing Web services for Version 5.x applications using basicauth authentication 1332

Identity assertion . 1339

Securing Web services for Version 5.x applications using identity assertion authentication 1340

Securing Web services for version 5.x applications using signature authentication 1346

Overview of token types . 1351

Security token . 1357

Securing Web services for version 5.x applications using a pluggable token 1358

Tuning Web services security for Version 5.x applications 1369

Enabling security for WSIF . 1369

Security API for the UDDI Version 3 registry . 1370

Chapter 15. Data access resources . 1371

Security of lookups with component managed authentication 1371

Chapter 16. Messaging resources . 1373

Configuring authorization security for a Version 5 default messaging provider 1373

Authorization settings for Version 5 default JMS resources 1375

Securing WebSphere MQ messaging directories and log files 1377

Configuring security for EJB 2.1 message-driven beans 1378

Chapter 17. Mail, URLs, and other J2EE resources 1379

JavaMail security permissions best practices . 1379

Chapter 18. Learn about WebSphere programming extensions 1381

Scheduler . 1381

Securing scheduler tasks . 1381

Chapter 19. Tuning, hardening, and maintaining 1383

Tuning security configurations . 1383

Secure Sockets Layer performance tips . 1385

Tuning security . 1387

Hardening security configurations . 1388

Securing passwords in files . 1388

Encoding password in files . 1388

Contents ix

Enabling custom password encryption . 1391

Chapter 20. Troubleshooting security configurations 1393

Security components troubleshooting tips . 1393

Errors when trying to configure or enable security 1404

Errors after enabling security . 1406

Access problems after enabling security . 1411

Errors after configuring or enabling Secure Sockets Layer 1416

Errors configuring Secure Sockets Layer encrypted access 1418

Single sign-on configuration troubleshooting tips . 1420

Authorization provider troubleshooting tips . 1422

SPNEGO trust association interceptor (TAI) troubleshooting tips 1426

Problem: WebSphere Application Server and the Active Directory (AD) Domain Controller’s time

are not synchronized within 5 minutes . 1427

Problem: Getting exception: No factory available to create a name for mechanism 1.3.6.1.5.5.2 1427

Problem: Getting an exception . 1428

Problem: Single sign-on is not occurring. . 1428

Problem: Credential Delegation is not working . 1429

Problem: Unable to get SSO working using RC4-HMAC encryption. 1429

Problem: User receives the following message when accessing a protected URL through the

SPNEGO SSO . 1430

Problem: Even with JGSS tracing disabled, some KRB_DBG_KDC messages appear in the

SystemOut.log . 1430

Problem: HTTP Post parameters are lost during interaction with the SPNEGO TAI, when stepping

down to userid/password login. 1430

Appendix. Directory conventions . 1433

Notices . 1437

Trademarks and service marks . 1439

x Securing applications and their environment

How to send your comments

Your feedback is important in helping to provide the most accurate and highest quality information.

v To send comments on articles in the WebSphere Application Server Information Center

1. Display the article in your Web browser and scroll to the end of the article.

2. Click on the Feedback link at the bottom of the article, and a separate window containing an e-mail

form appears.

3. Fill out the e-mail form as instructed, and click on Submit feedback .

v To send comments on PDF books, you can e-mail your comments to: wasdoc@us.ibm.com or fax

them to 919-254-0206.

Be sure to include the document name and number, the WebSphere Application Server version you are

using, and, if applicable, the specific page, table, or figure number on which you are commenting.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information

in any way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2006 xi

xii Securing applications and their environment

Chapter 1. Overview and new features for securing

applications and their environment

Use the links provided in this topic to learn more about the security infrastructure.

“What is new for security specialists”

 This topic provides an overview of new and changed features in security.

Security

 This topic describes how IBM WebSphere Application Server provides security infrastructure and

mechanisms to protect sensitive Java 2 Platform, Enterprise Edition (J2EE) resources and

administrative resources and to address enterprise end-to-end security requirements on

authentication, resource access control, data integrity, confidentiality, privacy, and secure

interoperability.

“Security planning overview” on page 21

 Several communication links are provided from a browser on the Internet, through Web servers

and product servers, to the enterprise data at the back-end. This topic examines some typical

configurations and common security practices. WebSphere Application Server security is built on a

layered security architecture. This section also examines the security protection offered by each

security layer and common security practice for good quality of protection in end-to-end security.

Samples

 The Samples Gallery offers:

v Login - Form Login

The Form Login Sample demonstrates a very simple

example of how to use the login facilities for

WebSphere Application Server to implement and

configure login applications. The Sample uses the Java

2 Platform, Enterprise Edition (J2EE) form-based login

technology to customize the look and feel of the login

screens. It uses servlet filters to log the user

information and the date information. The Sample

finishes the session by using the form-based logout

function, an IBM extension to the J2EE specification.

v Login - JAAS Login

The JAAS Login Sample demonstrates how to use the

Java Authentication and Authorization Service (JAAS)

with WebSphere Application Server. The Sample uses

server-side login with JAAS to authenticate a real user

to the WebSphere security run time. Based upon a

successful login, the WebSphere security run time uses

the authenticated Subject to perform authorization

checks on a protected stateless session enterprise

bean. If the Sample runs successfully, it displays all the

principals and public credentials of the authenticated

user.

What is new for security specialists

This version contains many new and changed features for those who are responsible for securing

applications and the application serving environment.

© Copyright IBM Corp. 2006 1

New in Version 6.1! indicates new features or changes implemented at the Version 6.1 level. Unmarked items are

Version 6.0 improvements that apply also to Version 6.1, which should interest anyone migrating to Version 6.1 from

Version 5.x.

Deprecated and removed features describes features that are being replaced or removed in this or future

releases.

Ease of use

 Administrative security enabled out of box New in Version 6.1! Access to the administrative system

and its data is now protected by default. When creating a

profile, whether during or after installation, you will be

prompted whether to keep the default. The default is for

administrative security to be enabled with the file based

user repository as the user registry. The file based

repository is implemented using virtual member manager.

For information about this option, see “Managing the

realm in a federated repository configuration” on page

115.

Rest assured that if you are migrating from a prior product

version, the existing security configuration will be

preserved.

Simplified security configuration and administration New in Version 6.1!

v Simplified administrative console security panels

v New security wizard

v Security configuration reporting tool

Automatically generated server IDs New in Version 6.1! This version distinguishes between

the user identities for administrators who manage the

environment and server identities for authenticating server

to server communications. In most cases, server identities

are automatically generated and are not stored in a

repository. You can change the ID if you like.

You no longer need to specify a server user ID and

password during security configuration, unless using a

mixed cell environment. To maintain backwards

compatibility, you must specify the server user ID.

See “Local operating system settings” on page 92.

Simplified WebSphere® key and certificate management New in Version 6.1! Simplified WebSphere key and

certificate management has been added to:

v Allow you to use the key management tools from the

console

v Make it easier to configure Secure Sockets Layer (SSL)

attributes

v Manage Web server and plug-in certificates from the

console

v Use the TrustManager to automatically trust hosts or

signers

v Make it easier to refresh an expiring certificate

2 Securing applications and their environment

Federate various repositories, so you can manage them

as one

New in Version 6.1! Inclusion of virtual member manager

in this release provides a single model for managing

organizational entities. You can configure a realm that

consists of identities in the file-based repository that is

built into the system, in one or more external repositories,

or in both the built-in, file-based repository and in one or

more external repositories.

Currently most WebSphere Application Server applications

have their own models and components for managing

organizational entities, and they provide different levels of

security. Most applications are dependent on specific

types and brands of repositories, assume a specific

schema for the data in those repositories, and are not

able to use repositories with existing data. Virtual member

manager helps these applications by providing them a

common model, secure access to various brands and

types of repositories, and the ability to use repositories

with existing data. The single model includes a set of

organizational entity types and their properties, a

repository-independent application programming interface

(API) and a Service Provider Programming Interface (SPI)

for plugging in repositories. XPath is chosen as the search

language in the API and SPI.

For more information, see “Federated repositories” on

page 171.

Standards support and interoperability

 SPNEGO support for single sign-on authentication through

Windows desktop

New in Version 6.1! The Simple and Protected GSS-API

Negotiation Mechanism (SPNEGO) protocol allows flowing

Kerberos tokens from web browsers such as Mozilla

FireFox or Microsoft Internet Explorer. This enables

seamless single-sign-on experiences on Windows

desktops with web browsers that support SPNEGO.

See “Configuring SPNEGO TAI in WebSphere Application

Server” on page 236.

Interoperability with other vendors on WS-Security New in Version 6.1! The product now supports the WS-I

Basic Security Profile 1.0, which promotes interoperability

by addressing the most common problems encountered

from implementation experience to date.

See Web Services-Interoperability Basic Profile.

Common Criteria Assurance Level 4 security The product has been enhanced to provide Common

Criteria Assurance Level 4 security functionality, with full

certification available in 2005. Common Criteria is a

scheme for independent assessment, analysis, and testing

of IT products to a set of security requirements.

Certification gives customers the confidence that products

will be effective in delivering security functions such as

identification and authentication, user data protection,

audit, and cryptographic support. Customers gain

assurance that the security functions are correctly

implemented and will be effective in satisfying their

security objectives.

For more information, see “Common Criteria (EAL4)

support” on page 7.

Chapter 1. Overview and new features: Securing 3

Full FIPS compliance The product has been enhanced to support an

implementation of the Federal Information Processing

Standards (FIPS) 140-2 government standard. The IBM

Java Secure Sockets Extension (JSSE) FIPS 140-2

Cryptographic Module for multi-platforms is a scalable,

multipurpose Secure Sockets provider that supports cipher

suites via the Java 2 application programming interfaces

(APIs) for enhanced protection of sensitive data. It

enables the product and other IBM products to run in

FIPS mode and help fulfill end-to-end requirements for

use of FIPS-certified cryptographic module.

For more information, see “Federal Information Processing

Standard support” on page 11.

JCA 1.5 support WebSphere Application Server Version 6.0.x supports the

J2EE Connector architecture (JCA) Version 1.5

specification, which provides new features such as the

inbound resource adapter. For more information, see

J2EE Connector Architecture resource adapters.

From a security perspective, WebSphere Application

Server Version 6.0.x provides an enhanced custom

principal and credential mapping programming interface

and custom mapping properties at the resource reference

level. The custom Java Authentication and Authorization

Service (JAAS) login module, which was developed for

JCA principal and credential mapping for WebSphere

Application Server Version 5.x, is still supported.

Web services security A pluggable architecture increases the extensibility of Web

services security. The implementation includes many of

the features that are described in the Organization for the

Advancement of Structured Information Standards

(OASIS) Web Services Security Version 1 standard. As

part of this standard, WebSphere Application Server

supports custom, pluggable tokens that are used for

signing and encryption, pluggable signing and encryption

algorithms, pluggable key locators for locating a key that

is used for digital signature or encryption, signing or

encrypting elements in a SOAP message, and specifying

the order of the signing or encryption processes.

See “What is new for securing Web services” on page

946.

Messaging security For security changes pertaining to service integration,

search the information center for key word: cjr0420

When administrative security is enabled, the default

behavior is for a secure bus to use secure transport

protocols. To connect to a secure bus, a user must

explicitly be granted the bus connector role. The default

bootstrap endpoint is enhanced to use

BootstrapSecureMessaging rather than

BootstrapBasicMessaging.

For additional details, search the information center for

keyword: cjr0009

4 Securing applications and their environment

Web authentication improvements

 Separate Web authentication and authorization New in Version 6.1! Now, Web authentication can be

performed with or without Web authorization, and Web

client’s authenticated identity is available whether or not

Web authorization is required. An authenticated identity is

persisted both for protected and unprotected resources.

Without the separation of Web authentication and Web

authorization, a Web authenticated identity is not available

when Web authorization is not required, and programmatic

security can not work independently without container

declarative security.

Enhanced control over Web authentication behavior New in Version 6.1! WebSphere Application Server

provides enhanced control over the authentication

behavior for a Web client. Depending upon the option that

you select, WebSphere Application Server can retain the

authentication data for future use. Also, when you use

certificate authentication and authentication fails, you can

enable the Application Server to challenge the Web client

for a user ID and password.

For more information, see “Authentication mechanisms” on

page 173.

Portlet URL security New in Version 6.1! The product enables direct access to

portlet Uniform Resource Locators (URLs), just like

servlets. For security purposes, portlets are treated similar

to servlets. Most portlet security uses the underlying

servlet security mechanism. However, portlet security

information resides in the portlet.xml file, while the

servlet and JavaServer Pages files reside in the web.xml

file. Also, when you make access decisions for portlets,

the security information, if any, in the web.xml file is

combined with the security information in the portlet.xml

file. Portlet security must support both programmatic

security, that is isUserInRole, and declarative security

For more information, see “Portlet URL security” on page

175.

Web authentication using the Java Authentication and

Authorization Service programming model

WebSphere Application Server Version 6.0.x enables you

to use the Java Authentication and Authorization Service

(JAAS) programming model to perform Web authentication

in your application code. To use this function, you must

create your own JAAS login configuration by cloning the

WEB_INBOUND login configuration and define a

cookie=true login option. After a successful login using

your login configuration, the Web login session is tracked

by single sign-on (SSO) token cookies. This option

replaces the SSOAuthenticator interface, which was

deprecated in WebSphere Application Server Version 4.

For more information, see “Java Authentication and

Authorization Service authorization” on page 313.

Chapter 1. Overview and new features: Securing 5

Expanded capabilities

 Larger variety of administrative roles New in Version 6.1! Even more administrative roles are

defined to provide degrees of authority that are needed to

perform certain administrative functions from either the

Web-based administrative console or the system

management scripting interface. The newest roles are

Deployer and AdminSecurityManager, available through

administrative scripting (wsadmin).

For more information, see “Administrative roles” on page

326.

Fine grained administrative role authorization New in Version 6.1! In prior releases, users granted

administrative roles could administer all of the resource

instances under the cell. Now the product is more

fine-grained, meaning that access can be granted to each

user per resource instance.

For more information, see “Fine-grained administrative

security” on page 55.

Hardware cryptographic device support for Web services

security

New in Version 6.1! Web services security now supports

the use of cryptographic hardware devices in two different

ways. The hardware cryptographic device can be used to

accelerate the cryptographic operations. Also,

cryptographic keys can be stored on the hardware

cryptographic device and never leave the device.

See “Hardware cryptographic device support for Web

Services Security” on page 1186.

Custom password encryption A plug point for custom password encryption must be

created to encrypt and decrypt all passwords in

WebSphere Application Server that are currently encoded

or decoded using Base64-encoding. The implementation

class of this plug point has the responsibility for managing

keys, determining the encryption algorithm to use, and for

protecting the master secret.

For more information, see the Technote

http://www.ibm.com/support/docview.wss?rs=180
&uid=swg21210244.

Enhanced LDAP support In addition to support for multiple Lightweight Directory

Access Protocol (LDAP) directory services binding and

failover, you can dynamically update LDAP binding

information without first stopping and restarting application

servers.

For more information, see http://www-1.ibm.com/support/
docview.wss?rs=180&uid=swg21210243.

Programming interfaces for implementing identity assertion

with trust validation

If you want an application or system provider to perform

an identity assertion with trust validation, it can be

accomplished by use of the Java Authentication and

Authorization Service (JAAS) login framework, where trust

validation is performed in one login module and credential

creation in another. These two custom login modules are

used to create a JAAS login configuration that performs a

login to an identity assertion.

For more information, see “Identity assertions with trust

validation” on page 217.

6 Securing applications and their environment

http://www.ibm.com/support/docview.wss?rs=180&uid=swg21210244
http://www.ibm.com/support/docview.wss?rs=180&uid=swg21210244
http://www-1.ibm.com/support/docview.wss?rs=180&uid=swg21210243
http://www-1.ibm.com/support/docview.wss?rs=180&uid=swg21210243

Java 2 security manager WebSphere Application Server Version 6.0.x provides you

with greater control over the permissions granted to

applications for manipulating non-system threads. You can

permit applications to manipulate non-system threads

using the was.policy file. However, these thread control

permissions are disabled by default.

For more information, see “Configuring the was.policy file”

on page 520.

SSL channel framework The Secure Sockets Layer channel framework

incorporates the new IBMJSSE2 implementation and

separates the security function of Java Secure Sockets

Extension (JSSE) from the network communication

function.

See Transport chains.

Common Criteria (EAL4) support

The National Institute of Standards and Technology (NIST) has developed Common Criteria to ensure you

have a safe option for downloading software to use on your systems. Information held by IT products or

systems is a critical resource that enables organizations to succeed in their mission. Additionally,

individuals have a reasonable expectation that their personal information contained in IT products or

systems remain private, be available to them as needed, and not be subject to unauthorized modification.

IT products or systems should perform their functions while exercising proper control of the information to

ensure it is protected against hazards such as unwanted or unwarranted dissemination, alteration, or loss.

The term IT security is used to cover prevention and mitigation of these and similar hazards.

Many consumers of IT lack the knowledge, expertise or resources necessary to judge whether their

confidence in the security of their IT products or systems is appropriate, and they may not wish to rely

solely on the assertions of the developers. Consumers may therefore choose to increase their confidence

in the security measures of an IT product or system by ordering an analysis of its security (in other words,

a security evaluation).

To use WebSphere Application Server in the Common Criteria EAL4 evaluated configuration, obtain the

WebSphere Application Server EAL4 Guidance document available from http://www.ibm.com/support/
docview.wss?rs=180&uid=swg24011697. The document describes how to install and configure WebSphere

Application Server in the evaluated configuration and how to manage and deploy applications into the

evaluated configuration.

The Java 2, Enterprise Edition specification overview describes how to confirm the supported J2EE

specifications and their corresponding application programming interfaces (APIs). The following J2EE

specifications, as implemented by this product, require further explanation here, regarding their methods

that are relevant to security.

Interoperable Naming Service (INS)

 See Naming roles for the list of interface methods that are supported and are relevant to security.

Java Message Service (JMS)

The default messaging provider implements the JMS 1.1 specification (part of J2EE 1.4) and some

extensions described in the product documentation. Its security model effects the JMS API

developer. The following addendums apply to the JMS 1.1 specification when using the default

messaging provider. Methods not listed in the table have no security relevance.

 Class Method Messaging role

required

Behavior on security

exception

Notes

Chapter 1. Overview and new features: Securing 7

http://www.ibm.com/support/docview.wss?rs=180&uid=swg24011697
http://www.ibm.com/support/docview.wss?rs=180&uid=swg24011697

javax.jms.Session createProducer sender Throws

JMSSecurityException

wrapping

SINotAuthorizedException

3,4

javax.jms.Session createConsumer receiver Throws

JMSSecurityException

wrapping

SINotAuthorizedException

3,4

javax.jms.Session createDurableSubscriber receiver Throws

JMSSecurityException

wrapping

SINotAuthorizedException

1,3,4

javax.jms.Session createBrowser browser Throws

JMSSecurityException

wrapping

SINotAuthorizedException

3,4

javax.jms.Session createTemporaryQueue creator Throws

JMSSecurityException

wrapping

SINotAuthorizedException

3,4

javax.jms.Session createTemporaryTopic creator Throws

JMSSecurityException

wrapping

SINotAuthorizedException

3,4

javax.jms.Session unsubscribe Throws

JMSSecurityException

wrapping

SINotAuthorizedException

2,3,4

javax.jms.MessageProducer send sender Throws

JMSSecurityException

wrapping

SINotAuthorizedException

3,4

javax.jms.MessageConsumer receive receiver Throws JMSException

wrapping

SINotAuthorizedException

3,4

javax.jms.MessageConsumer receiveNoWait receiver Throws JMSException

wrapping

SINotAuthorizedException

3,4

javax.jms.QueueBrowser getEnumeration browser Throws

JMSSecurityException

wrapping

SINotAuthorizedException

3,4

javax.jms.ConnectionFactory createConnection connector Throws

JMSSecurityException

wrapping either

SINotAuthorizedException or

SIAuthenticationException

3,4

javax.jms.QueueSession createReceiver receiver Throws

JMSSecurityException

wrapping

SINotAuthorizedException

3,4

8 Securing applications and their environment

javax.jms.QueueSession createSender sender Throws

JMSSecurityException

wrapping

SINotAuthorizedException

3,4

javax.jms.QueueSession createBrowser browser Throws

JMSSecurityException

wrapping

SINotAuthorizedException

3,4

javax.jms.QueueSession createTemporaryQueue creator Throws

JMSSecurityException

wrapping

SINotAuthorizedException

3,4

javax.jms.QueueSender send sender Throws

JMSSecurityException

wrapping

SINotAuthorizedException

3,4

javax.jms.QueueConnectionFactory createQueueConnection connector Throws

JMSSecurityException

wrapping either

SINotAuthorizedException or

SIAuthenticationException

3,4

javax.jms.QueueRequestor constructor sender, receiver,

creator

Throws

JMSSecurityException

wrapping

SINotAuthorizedException

3,4

javax.jms.QueueRequestor request sender, receiver Throws

JMSSecurityException or

JMSException, both

wrapping

SINotAuthorizedException

3,4

javax.jms.TopicSession createSubscriber receiver Throws

JMSSecurityException

wrapping

SINotAuthorizedException

3,4

javax.jms.TopicSession createDurableSubscriber receiver Throws

JMSSecurityException

wrapping

SINotAuthorizedException

3,4

javax.jms.TopicSession createPublisher sender Throws

JMSSecurityException

wrapping

SINotAuthorizedException

3,4

javax.jms.TopicSession createTemporaryTopic creator Throws

JMSSecurityException

wrapping

SINotAuthorizedException

3,4

javax.jms.TopicPublisher publish sender Throws

JMSSecurityException

wrapping

SINotAuthorizedException

3,4

javax.jms.TopicConnectionFactory createTopicConnection connector Throws

JMSSecurityException

wrapping either

SINotAuthorizedException or

SIAuthenticationException

3,4

Chapter 1. Overview and new features: Securing 9

javax.jms.TopicRequestor constructor sender, receiver,

creator

Throws

JMSSecurityException

wrapping

SINotAuthorizedException

3,4

javax.jms.TopicRequestor request sender, receiver Throws

JMSSecurityException or

JMSException, both

wrapping

SINotAuthorizedException

3,4

1. When reconnecting to an existing subscription, must use same user ID as used when

subscription was created.

2. Must use the same user ID as used when subscription was created.

3. Wrapped exceptions can be retrieved via JMSException.getLinkedException().

4. The user ID that will be used for access control depends upon the environment from which the

method is invoked, according to the following table.

 Environment User ID used

Stand-alone client User ID specified on createConnection, otherwise null.

Application server v For container managed authentication: User ID in

container managed authentication alias specified in

application resource reference.

v For component managed authentication: User ID

specified on createConnection, otherwise user ID in

component managed authentication alias specified in

connection factory.

Application client, using local connection factory v For container managed authentication: User ID

specified on createConnection, otherwise user ID

specified in connection factory.

v For component managed authentication: User ID

specified on createConnection, otherwise null.

Application client, using server connection factory

(deprecated)

User ID specified on createConnection, otherwise null.

Universal Description Discovery & Integration (UDDI)

The WebSphere UDDI Registry supports the OASIS UDDI standard 3.0.2.

 Note that the WebSphere UDDI Registry supports the following UDDI APIs from the v 3.0.2

standard:

v v3 Inquiry API

v v3 Publication API

v v3 Security API

v v3 intra-node Custody Transfer API

v v3 HTTP GET services

v v1 and v2 Inquiry API

v v1 and v2 Publish API

The supported APIs require permissions, as described in TOPIC_NAME? of the WebSphere UDDI

Registry documentation.

 The WebSphere UDDI Registry does not support the following programming interfaces.

v inter-node Custody Transfer API

10 Securing applications and their environment

v Subscription API

v Replication API

v Subscription Listener API

v Value Set API

Federal Information Processing Standard support

Federal Information Processing Standards (FIPS) are standards and guidelines issued by the United

States National Institute of Standards and Technology (NIST) for federal government computer systems.

FIPS are developed when there are compelling federal government requirements for standards, such as

for security and interoperability, but acceptable industry standards or solutions do not exist. Government

agencies and financial institutions use these standards to ensure that the products conform to specified

security requirements. For more information on these standards, see the National Institute of Standards

and Technology.

WebSphere Application Server integrates cryptographic modules including Java Secure Socket Extension

(JSSE) and Java Cryptography Extension (JCE), which have undergone FIPS 140-2 certification. In the

WebSphere Application Server documentation, the IBM JSSE and JCE modules that have undergone

FIPS certification are referred to as IBMJSSEFIPS and IBMJCEFIPS.

To enable FIPS for WebSphere Application Server, see Configuring Federal Information Processing

Standard Java Secure Socket Extension files. When you enable FIPS, several components of the

Application Server are affected including the cipher suites, the cryptographic providers, the load balancer,

the caching proxy, the high availability manager, and the data replication service.

See “Secure transports with JSSE and JCE programming interfaces” on page 593 for more information on

the impact the Federal Information Processing Standard has on WebSphere Application Server.

You can use the following IBM products with WebSphere Application Server and maintain a FIPS level of

security compliance:

DB2 Version 8.2

The DB2 Universal Database uses FIPS 140-2 approved cryptographic providers.

Application Server Toolkit

The Application Server Toolkit uses FIPS 140-2 approved cryptographic providers.

IBM Tivoli Directory Server

The IBM Tivoli Directory Server provides the Use FIPS certified implementation option, which

enables the directory server to use the FIPS-certified encryption algorithms. For more information,

see ″Setting the level of encryption″ within the IBM Tivoli Directory Server Administration Guide.

WebSphere Application Server - Edge Component

The caching proxy contains a directive for enabling FIPS. For more information, see the Caching

Proxy Administration Guide at the following Web site:http://www-306.ibm.com/software/webservers/
appserv/doc/v602/ec/infocenter/index.html.

IBM WebSphere MQ

Windows

When cryptography is required in an SSL channel, WebSphere MQ uses a

cryptography package called IBM Crypto for C (ICC). On all the Windows and UNIX platforms that

are supported by WebSphere MQ Version 6.x, the ICC software passed the FIPS 140-2

Cryptomodule Validation Program of the National Institute of Standards and Technology.

You can find more information about the Federal Information processing Standards (FIPS) on the Support

Web site including recommended updates for WebSphere Application Server.

Chapter 1. Overview and new features: Securing 11

http://csrc.nist.gov/publications/fips/
http://csrc.nist.gov/publications/fips/
http://publib.boulder.ibm.com/tividd/td/IBMDS/IDSadmin52/en_US/HTML/admin_gd.htm#Header_185
http://www-306.ibm.com/software/webservers/appserv/doc/v602/ec/infocenter/index.html
http://www-306.ibm.com/software/webservers/appserv/doc/v602/ec/infocenter/index.html
http://www-306.ibm.com/software/websphere/support/
http://www-306.ibm.com/software/websphere/support/

Identity management capabilities

Today’s security infrastructure is identity driven. Secure business applications ask two key questions: who

are you, and what can you access? IBM offers a complete solution for identity management across the

enterprise. Learn about the identity management capabilities provided by WebSphere Application Server in

conjunction with other WebSphere products and Tivoli.

For an identity management primer, refer to the identity management white paper, Help improve security

and lower costs with repeatable identity management solutions. The paper describes the:

v Business landscape that makes identity management increasingly important

v Benefits of deploying an identity-driven infrastructure

v Basic functions to expect within an identity-driven infrastructure

v Known patterns into which business operations fall

v Tivoli software that provides solutions for addressing the patterns

WebSphere Application Server includes virtual member manager, for the primary purpose of providing out

of box security and an additional user registry option: the federated, file-based repository. See “Federated

repositories” on page 171 for details. Virtual member manager provides additional identity management

capabilities. So do many Tivoli products that extend and complement the solid base for identity

management now provided by the WebSphere platform.

As described later, the IBM portfolio supports the following identity management capabilities.

v Offer single sign on for your users’ convenience

v Control access to Web applications

v Administer identities

v Provision users

v Federate disparate sources of identity data

v Provide standard directory services to applications

v Use strong authentication

v Control and manage access to Web applications, Web services, and your Service Oriented Architecture (SOA)

v Ensure regulatory compliance

v Secure your business portal

v Provide instance based access control for business rules

v Secure work flows containing people interactions

v Secure integration with other business applications

v Government solutions

Products that work in conjunction with WebSphere Application Server to provide a full range of identity

management capabilities include, but are not limited to:

v Tivoli products for identity management

v WebSphere Process Server

v WebSphere Portal

Offer single sign on for your users’ convenience

 With WebSphere Application Server, Web users can authenticate once when accessing Web

resources across multiple application servers. Choices for securely negotiating and authenticating

HTTP requests for secured resources include trust association interceptor (TAI) that uses the

Simple and Protected GSS-API Negotiation Mechanism (SPNEGO), or using Tivoli Access

Manager WebSEAL or Tivoli Access Manager plug-in for Web servers as reverse proxy servers to

12 Securing applications and their environment

http://www.ibm.com/software/tivoli/resource-center/security/wp-idm.jsp
http://www.ibm.com/software/tivoli/resource-center/security/wp-idm.jsp
http://www.ibm.com/software/tivoli/solutions/identity-mgmt/
http://www.ibm.com/software/integration/wps/
http://www.ibm.com/software/genservers/portal/index.html

provide access management and single sign-on (SSO) capability. See “Implementing single

sign-on to minimize Web user authentications” on page 229 for details.

 Add Tivoli Access Manager for e-business to achieve Web SSO and secure session management

across e-communities, to securely extend your business processes to business partners and

business affiliates. You can enable a flexible SSO to Web-based applications that can span

multiple sites or domains with a range of SSO options, to help eliminate help-desk calls and other

security problems associated with multiple passwords. By integrating with other SSO providers

(such as Kerberos from a Microsoft domain logon, and client/server SSO solutions) Access

Manager goes beyond ’reduced sign-on’ to help implement a single authentication for the user

across all system interactions.

 Upgrade to Tivoli Federated Identity Manager to achieve standardized cross-domain SSO. The

product supports a number of SSO federated identity and Web Services security standards,

including Liberty Alliance specifications, SAML, WS-Federation, WS-Security and WS-Trust. This

enables the company or the provider to interoperate and get SSO benefits from partners who

implement any of these standards. Single Sign On (SSO) simplifies sign on for third-party users

who typically have a primary relationship with their home organization. A federated business model

enables a company to obtain trusted information about a third-party identity (such as customer,

supplier, or a client employee) from that user’s home organization without having to create, enroll,

or manage a new account.

 Reduce help-desk calls and other security problems associated with multiple passwords, using

Tivoli Access Manager for e-business. Achieve a flexible SSO to Web-based applications that can

span multiple sites or domains with a range of SSO options. By integrating with other SSO

providers (such as Kerberos from a Microsoft domain logon, and client/server SSO solutions)

Access Manager goes beyond ’reduced sign-on’ to help implement a single authentication for the

user across all system interactions.

 Enhance user experience and reduced help desk costs, with one less password to remember. Use

Tivoli Access Manager for e-business to achieve Microsoft desktop single sign on. Windows users

can be automatically authenticated to applications protected by Access Manager for e-business.

 Improve end-user experience through Single Sign On (SSO) implemented by Tivoli Federated

Identity Manager.

 Reduce administrative cost by delivering rapid enrollment and personalized access to end-users at

their convenience with integrated self-care. The Tivoli Access Manager for e-business

Self-Registration capability enables end-users to quickly self-enroll to the Enterprise Web

environment without requiring manual intervention or lengthy procedures.

Administer identities

 WebSphere Application Server provides fine-grained administration.

 Use these products in conjunction with WebSphere Application Server for additional capabilities.

 Achieve centralized administration of both access control and data protection policies across

mainframe and distributed servers withTivoli Access Manager for Business Integration. An

authorized administrator can perform Web-based administration remotely without visiting a system

or deploying a special administration client.

 Define and manage a centralized authentication, access, and audit policy for a broad range of

business initiatives with Tivoli Access Manager for e-business. Initiative include employee,

customer and partner portals, CRM systems, e-procurement, cross-company single sign-on (SSO)

projects, and outsourcing projects.

 Manage users and groups, including dynamic and nested groups. Achieve dynamic group support

with Tivoli Access Manager for e-business. An upper limit on static groups makes dynamic groups

the only option in some cases, while dynamic groups may be preferred in other environments.

Integrates with existing data management environments.

Chapter 1. Overview and new features: Securing 13

http://www.ibm.com/software/tivoli/products/access-mgr-e-bus/
http://www.ibm.com/software/tivoli/products/federated-identity-mgr/
http://www.ibm.com/software/tivoli/products/access-mgr-e-bus/
http://www.ibm.com/software/tivoli/products/access-mgr-e-bus/
http://www.ibm.com/software/tivoli/products/federated-identity-mgr/
http://www.ibm.com/software/tivoli/products/federated-identity-mgr/
http://www.ibm.com/software/tivoli/products/access-mgr-e-bus/
http://www.ibm.com/software/tivoli/products/access-mgr-bus-integration/
http://www.ibm.com/software/tivoli/products/access-mgr-e-bus/
http://www.ibm.com/software/tivoli/products/access-mgr-e-bus/

Use Tivoli Access Manager for e-business to achieve integrated security management for critical

WebSphere applications leveraging IMS, CICS and DB2 transactions on mainframe and

non-mainframe platforms.

 Reduce administrative cost by delivering rapid enrollment and personalized access to end-users at

their convenience with integrated self-care. The Tivoli Access Manager for e-business

Self-Registration capability enables end-users to quickly self-enroll to the Enterprise Web

environment without requiring manual intervention or lengthy procedures.

 Use the Web Portal Manager of Tivoli Access Manager for Operating Systems for easier,

graphically based management.

 Access Control Lists (ACLs) help you pro-actively prevent security breaches across your

enterprise, using Tivoli Access Manager for Operating Systems.

 Scale to tens of millions of entries, as well as groups of hundreds of thousands of members with

Tivoli Directory Server.

 Enhance directory security with the password strength features of Tivoli Directory Server. Enable

the pre-expiration of passwords, the definition of password rules, maintenance of password history

and failed attempt account in correlation with ACL protection.

 Manage organizations and entities. Lower overhead costs by automatically managing accounts,

credentials, and access rights throughout the user life cycle with workflow provided by Tivoli

Identity Manager.

 Reduce help-desk costs and ease the burden of daily administration on help-desk and IT staff with

the self-service interfaces of Tivoli Identity Manager. Enable users to perform password resets,

password synchronization, and modification to personal information without administrative

intervention.

 Use Tivoli Identity Manager to cut elapsed turn-on time for new accounts; improve productivity by

allowing end users to rapidly reset and synchronize their own passwords; and decrease errors by

automating user submission and approval requests.

 Take advantage of the various products’ APIs to integrate and customize your identity

management solution.

Provision users

 Use these products in conjunction with WebSphere Application Server for additional capabilities.

 Quickly connect users to appropriate resources while reducing administration workload, with Tivoli

Identity Manager. Embedded provisioning engine and universal integration tools automate the

implementation of administrative requests on the environment, and provide universal connectors

for extending the management model to support new and custom environments.

 Demonstrate enforcement of internal controls to auditors and eliminate orphan or over privileged

accounts. Use Tivoli Identity Manager closed loop user provisioning to detect and correct

discrepancies between approved account access and local privileges.

 Implement and modify provisioning policies more quickly and accurately. Use Tivoli Identity

Manager to simulate the impact of provisioning policy on user accounts before committing

changes.

 Centralize the definition of users and provisioning of user services with the centralized

administration of Tivoli Identity Manager. Role and rule-based delegated administration enables

grouping of users according to business needs and delegation of administrative privileges along

organizational and geographical boundaries.

 Tivoli Identity Manager provisioning is integrated with access and identity. Access to Web

applications and other applications can be determined by one user profile. The product interacts

directly with users and with two external types of systems: identity sources and access control

mechanisms. The identity systems deliver authoritative information about the users that need

14 Securing applications and their environment

http://www.ibm.com/software/tivoli/products/access-mgr-e-bus/
http://www.ibm.com/software/tivoli/products/access-mgr-e-bus/
http://www.ibm.com/software/tivoli/products/access-mgr-operating-sys/
http://www.ibm.com/software/tivoli/products/access-mgr-operating-sys/
http://www.ibm.com/software/tivoli/products/directory-server/
http://www.ibm.com/software/tivoli/products/directory-server/
http://www.ibm.com/software/tivoli/products/identity-mgr/
http://www.ibm.com/software/tivoli/products/identity-mgr/
http://www.ibm.com/software/tivoli/products/identity-mgr/
http://www.ibm.com/software/tivoli/products/identity-mgr/
http://www.ibm.com/software/tivoli/products/identity-mgr/
http://www.ibm.com/software/tivoli/products/identity-mgr/
http://www.ibm.com/software/tivoli/products/identity-mgr/
http://www.ibm.com/software/tivoli/products/identity-mgr/
http://www.ibm.com/software/tivoli/products/identity-mgr/
http://www.ibm.com/software/tivoli/products/identity-mgr/
http://www.ibm.com/software/tivoli/products/identity-mgr/

accounts. The provisioning system communicates directly with access control systems to create

accounts, supply user information and passwords and define the entitlements of the account.

 Pair Tivoli Identity Manager with WebSphere Process Server to achieve identity-based workflow.

Streamlined automated workflow can decrease errors and inconsistency in business processes.

Intelligent approval routing automates the submission and approval processes for access requests

and changes to user information.

Federate disparate sources of identity data

 Federated identity is a technology for brokering identities between companies or business units.

Federated identity management is the set of business agreements, technical agreements and

policy agreements that enable companies to partner to lower their overall identity management

costs and improve user experience. It leverages the concept of a portable identity - the idea that

your identity is not bound to a specific credential - to simplify the administration of users in a

federated business relationship. Federation simplifies integration because there is a common way

to share identities between companies and manage user sessions. Identity Federation services

within a Service Oriented Architecture (SOA) ensure that users have simplified access and single

sign on to the composite application environment.

 Use these products in conjunction with WebSphere Application Server for additional capabilities.

 Use Tivoli Access Manager for e-business to provide first-point-of-contact and session

management that typically are prerequisites to federation with IBM Tivoli Federated Identity

Manager.

 Connect to disparate data sources with Tivoli Directory Integrator as an enterprise directory.

 Ensure data availability and to maximize server response time, using Tivoli Directory Server to

achieve single-master multiple replication, multiple-master replication, cascaded, gateway and

partial replication.

 Simplify the administration and the lifecycle management of user identities and obtain a simple,

loosely-coupled model for managing identity and access to resources that span companies or

security domains with the open standards and specifications support of Tivoli Federated Identity

Manager, including Liberty, SAML, WS-Federation, WS-Security and WS-Trust. Works with

standards based, off-the-shelf products.

 Reduce administration and provisioning costs related to managing identities for third-party users,

with Tivoli Federated Identity Manager. Rather than having to enroll third-party users into a

company’s internal identity systems, federated identity management enables IT service providers

to offload the cost of user administration to their business partner companies. Because the

business partner company acts like an identity provider, the service provider does not have to take

on the burden of user administration costs such as user enrollment, account management,

password management, password reset, help desk, or customer care costs.

 Simplify integration with a common way to share identities between companies and manage user

sessions. Tivoli Federated Identity Manager facilitates ″straight through processing″ techniques

because the identity provider does not have to replicate or stage business processes on behalf of

a service provider. By employing Tivoli Access Manager for e-business (included with FIM), FIM is

able to provide integrated session management, significantly facilitating inter-company

transactions. With a federated identity model, identity providers have an opportunity to streamline

inter-company transactions, thereby reducing costs, and simplifying integration.

 Obtain great flexibility for synchronization, using Tivoli Directory Integrator.

 Simplify integration between your company and your partners’ Web sites and business

applications, including simplified session management with Tivoli Federated Identity Manager.

Chapter 1. Overview and new features: Securing 15

http://www.ibm.com/software/tivoli/products/identity-mgr/
http://URL
http://www.ibm.com/software/tivoli/products/access-mgr-e-bus/
http://www.ibm.com/software/tivoli/products/directory-integrator/
http://www.ibm.com/software/tivoli/products/directory-server/
http://www.ibm.com/software/tivoli/products/federated-identity-mgr/
http://www.ibm.com/software/tivoli/products/federated-identity-mgr/
http://www.ibm.com/software/tivoli/products/federated-identity-mgr/
http://www.ibm.com/software/tivoli/products/federated-identity-mgr/
http://www.ibm.com/software/tivoli/products/directory-integrator/
http://www.ibm.com/software/tivoli/products/federated-identity-mgr/

Provide standard directory services to applications

WebSphere Application Server supports a variety of registry and repository choices, including

Lightweight Directory Access Protocol (LDAP) directories. See “Selecting a registry or repository”

on page 87.

 Use these products in conjunction with WebSphere Application Server for additional capabilities.

 Obtain rapid time to value and save development costs with Tivoli Access Manager for Business

Integration for application-level data protection for WebSphere MQ-based applications. Implement

comprehensive security without writing complex security code, or modifying or recompiling existing

applications.

 Store credentials in Novell eDirectory withTivoli Access Manager for Business Integration.

 Achieve integration with over 70 ISV offerings , with Tivoli Access Manager for e-business.

Offerings including Siebel CRM, SAP, PeopleSoft and Portal solutions from WebSphere, Plumtree,

and others. Enterprises benefit from a common security model (authentication, access control,

Single Sign On and audit) across the e-business, ISV and legacy applications. This reduces costly

integrations and delivers rapid time to value in solution deployment because enterprises can

standardize on a single identity and access management platform.

 Deploy the security architecture of your choice due to the multiple directory support of Tivoli

Access Manager for e-business.

 Synchronize and exchange information between applications or directory sources with Tivoli

Directory Integrator.

 Manage data across a variety of repositories providing the consistent directory infrastructure

needed for a wide variety of applications, including security and provisioning, with Tivoli Directory

Integrator.

 Leverages existing investments in directory and identity repositories, platforms, and operating

systems with Tivoli Directory Integrator.

 Avoid the time-consuming design of schemata, which can slow the deployment of the LDAP

directory. Tivoli Directory Server provides comprehensive, extensible, and dynamically updatable

schema.

 Manage users and groups, including dynamic and nested groups. Achieve dynamic group support

with Tivoli Access Manager for e-business. An upper limit on static groups makes dynamic groups

the only option in some cases, while dynamic groups may be preferred in other environments.

Integrates with existing data management environments.

 Use Tivoli Access Manager for e-business to achieve integrated security management for critical

WebSphere applications leveraging IMS, CICS and DB2 transactions on mainframe and

non-mainframe platforms.

 Reduce administrative cost by delivering rapid enrollment and personalized access to end-users at

their convenience with integrated self-care. The Tivoli Access Manager for e-business

Self-Registration capability enables end-users to quickly self-enroll to the Enterprise Web

environment without requiring manual intervention or lengthy procedures.

Use strong authentication

 v With Tivoli Access Manager, WebSphere Application Server supports integration with smart

cards and tokens. See “Configuring single sign-on capability with Tivoli Access Manager or

WebSEAL” on page 253.

Control and manage access to Web applications, Web services, and Service Oriented Architecture

 WebSphere Application Server provides a solid base for protecting Web applications and Web

services in a Service Oriented Architecture. See “Securing Web services for Version 6 and later

applications based on WS-Security” on page 941.

 Use these products in conjunction with WebSphere Application Server for additional capabilities.

16 Securing applications and their environment

http://www.ibm.com/software/tivoli/products/access-mgr-bus-integration/
http://www.ibm.com/software/tivoli/products/access-mgr-bus-integration/
http://www.ibm.com/software/tivoli/products/access-mgr-bus-integration/
http://www.ibm.com/software/tivoli/products/access-mgr-e-bus/
http://www.ibm.com/software/tivoli/products/access-mgr-e-bus/
http://www.ibm.com/software/tivoli/products/access-mgr-e-bus/
http://www.ibm.com/software/tivoli/products/directory-integrator/
http://www.ibm.com/software/tivoli/products/directory-integrator/
http://www.ibm.com/software/tivoli/products/directory-integrator/
http://www.ibm.com/software/tivoli/products/directory-integrator/
http://www.ibm.com/software/tivoli/products/directory-integrator/
http://www.ibm.com/software/tivoli/products/directory-server/
http://www.ibm.com/software/tivoli/products/access-mgr-e-bus/
http://www.ibm.com/software/tivoli/products/access-mgr-e-bus/
http://www.ibm.com/software/tivoli/products/access-mgr-e-bus/

Web applications

 Leverage a common security policy model with Tivoli Access Manager for e-business to with the

Tivoli Access Manager.

 Achieve highly secure e-business with Tivoli Access Manager for e-business, which provides

flexible deployment that supports proxies, plug-ins, and agents.

 Enhance application and database security with Tivoli Access Manager for Operating Systems.

Restricts ability to switch user IDs. Prevents deliberate or accidental loss of application data,

tampering with log files, and prevents unauthorized assumption of application administrative IDs.

 Eliminate many user-access problems, while still using the standard UNIX authentication

mechanisms, with Tivoli Access Manager for Operating Systems. Login Policy Enforcement tracks

the UNIX login process and applies policies that prevent unauthorized access, such as the number

of permitted failed login attempts before the user is locked out.

 Ensure application speed and user experience are not impeded by access control decision speed

with the multi-threaded architecture enabled by Tivoli Access Manager for Operating Systems.

 Prevent password theft with Tivoli Access Manager for Operating Systems.

 Ensure security and consistent policy on your most sensitive systems with the centralized control

and local autonomy provided by Tivoli Identity Manager.

 Defend against the top security threat that enterprises face: misbehavior by internal users and

employees with Tivoli Access Manager for Operating Systems.

 Ramp up quickly to effective security with Tivoli Access Manager for Operating Systems. Fast

Track Policy Modules are pre-written, customizable, best-practice policies.

 Achieve centralized administration of security policy across the enterprise with Tivoli Access

Manager for Operating Systems.

 Create the authoritative data spaces needed to expose only trustworthy data to advanced software

applications such as Web services, with Tivoli Directory Integrator.

 Authorization services also help application developers use standard development tools such as

Eclipse or Rational by providing a standards-based API interfaces.

 Web services

 Integrates seamlessly with a wide variety of repositories and technologies and enables integration

with new and existing Web Services in the enterprise through the standards & Web Services

support of Tivoli Directory Integrator.

 Extend the reach of the directory to web services with Tivoli Directory Server. Expose the directory

and deliver it to web services through XML coding. An enterprise’s customers could, for example,

make changes to directory data such as phone numbers or street addresses themselves over the

Internet rather than calling in to customer service.

 Simplify administration of security in cross-enterprise business processes by delivering ″security as

services″ with Tivoli Federated Identity Manager.

 Simplify the administration and the lifecycle management of user identities and obtain a simple,

loosely-coupled model for managing identity and access to resources that span companies or

security domains with the open standards and specifications support of Tivoli Federated Identity

Manager, including Liberty, SAML, WS-Federation, WS-Security and WS-Trust.

 SOA

 SOA Management: Securing Web Services discusses the challenges of security in a Service

Oriented Architecture (SOA). The security environment is still disjointedly hard wired into

organizational silos segmented into network security, perimeter security, desktop security, server

security and application security. Point solutions solve a partial need but they don’t work in unison.

Chapter 1. Overview and new features: Securing 17

http://www.ibm.com/software/tivoli/products/access-mgr-e-bus/
http://www.ibm.com/software/tivoli/products/access-mgr-e-bus/
http://www.ibm.com/software/tivoli/products/access-mgr-operating-sys/
http://www.ibm.com/software/tivoli/products/access-mgr-operating-sys/
http://www.ibm.com/software/tivoli/products/access-mgr-operating-sys/
http://www.ibm.com/software/tivoli/products/access-mgr-operating-sys/
http://www.ibm.com/software/tivoli/products/identity-mgr/
http://www.ibm.com/software/tivoli/products/access-mgr-operating-sys/
http://www.ibm.com/software/tivoli/products/access-mgr-operating-sys/
http://www.ibm.com/software/tivoli/products/access-mgr-operating-sys/
http://www.ibm.com/software/tivoli/products/access-mgr-operating-sys/
http://www.ibm.com/software/tivoli/products/directory-integrator/
http://www.ibm.com/software/tivoli/products/directory-integrator/
http://www.ibm.com/software/tivoli/products/directory-server/
http://www.ibm.com/software/tivoli/products/federated-identity-mgr/
http://www.ibm.com/software/tivoli/products/federated-identity-mgr/
http://www.ibm.com/software/tivoli/products/federated-identity-mgr/
http://www-306.ibm.com/software/tivoli/features/soa/soa-mgmt/secure-web-serv.html

Hence, they can’t appreciably lower system risk, improve platform integrity, or mitigate the risk of

broadening access. SOA adoption introduces new and unforeseen challenges with security

integration, identity and security management.

v Multiple Application Platforms (WebSphere, Microsoft or SAP)

v Multiple Security Domains (internal, external, business unit silos, extranet)

v Multiple Security Credentials (Kerberos, SAML, WS-Security, RACF)

v Multiple Protocols (SOAP, HTTP/S, JMS, MQ)

v Lack of ″thread of identity″ across the services context

Composite Applications must deal with the challenges of independent security and identity silos.

The security solution needs to secure end user interactions as well service interactions (application

to application). Security management needs to provide unified customer views for the composite

application. The ″thread″ of user identity needs to be preserved end to end for auditing and

compliance purposes.

 Deliver policy-based integrated security management for SOA Web Services with Tivoli Federated

Identity Manager.

 Authorization services provided by Tivoli products in the Tivoli identity management solution

ensure that SOA components can apply consistent authorization policies for Web, HTTP, and Java

resources, Web Services, SOAP (WSDL resources), MQ (Queues and Queue Managers) and

even core infrastructure platforms such as UNIX and Linux Servers.

 Authorization services in an SOA is ensures that a common authorization abstraction model

enables application platforms such as WebSphere, MS .NET, BEA and SAP to apply fine-grained

authorization for these resource types.

 Tivoli Access Manager for e-business implements a centralized policy service for SOA elements

enabling business owners to delegate authorization decisions to a Policy server deployed in the

SOA environment.

 As SOA transactions originate across various channels and protocols it is important to have the

centralized session management service of Tivoli Access Manager for e-business to enable

various SOA components to have a ″common view″ of the current user session, for single sign on,

single sign off, auditing and reporting, and so on.

Ensure regulatory compliance

 Use these products in conjunction with WebSphere Application Server for additional capabilities.

 Demonstrate specific compliance with the defined security policy Tivoli Access Manager for

Business Integration by obtaining message-level audit function and audit record generation.

 Maintain confidentiality of message data and allow for verification of data integrity with Tivoli

Access Manager for Business Integration. Securing messages both while they are being

processed by WebSphere MQ and while they travel from system to system reduces exposure of

data from internal employees or vendors. It can be used as part of a HIPAA compliance solution.

 Obtain a central point for reporting on security events and sample reports withTivoli Access

Manager for e-business. An audit and reporting service collects audit data from multiple

enforcement points, as well as from other platforms and security applications.

 Achieve easier, extended auditing and reporting capabilities withTivoli Access Manager for

e-business . Audit records are written in standard XML format. An information-gathering tool allows

secure, centralized collection and reporting of audit, log, statistics, and such across the extended

enterprise.

18 Securing applications and their environment

http://www.ibm.com/software/tivoli/products/federated-identity-mgr/
http://www.ibm.com/software/tivoli/products/federated-identity-mgr/
http://www.ibm.com/software/tivoli/products/access-mgr-e-bus/
http://www.ibm.com/software/tivoli/products/access-mgr-e-bus/
http://www.ibm.com/software/tivoli/products/access-mgr-bus-integration/
http://www.ibm.com/software/tivoli/products/access-mgr-bus-integration/
http://www.ibm.com/software/tivoli/products/access-mgr-bus-integration/
http://www.ibm.com/software/tivoli/products/access-mgr-bus-integration/
http://www.ibm.com/software/tivoli/products/access-mgr-e-bus/
http://www.ibm.com/software/tivoli/products/access-mgr-e-bus/
http://www.ibm.com/software/tivoli/products/access-mgr-e-bus/
http://www.ibm.com/software/tivoli/products/access-mgr-e-bus/

Tivoli Access Manager for Operating Systems combines full-fledged intrusion prevention—host-
based firewall, application and platform protection, user tracking and controls—with robust auditing

and compliance checking.

 Obtain mainframe-class security and auditing in a lightweight, easy-to-use product with Tivoli

Access Manager for Operating Systems.

 Document compliance with government regulations, corporate policy and other security mandates

using the persistent universal auditing of Tivoli Access Manager for Operating Systems.

 Obtain extended auditing capabilities with Tivoli Access Manager for Operating Systems.

Configurable audit events can track sensitive access attempts, provide security-related information

on user activity, and can send events to a centralized event management console. Verify access

policy through secure logging of security events.

 Improve business compliance by helping to reduce security exposure with Tivoli Federated Identity

Manager.

 Address policy compliance needs, using Tivoli Identity Manager to produce centralized reports on

security policy, access rights, and audit events to quickly respond to internal audits and regulatory

mandates.

 Quickly produce reports for internal audits and ensuring regulatory compliance, with Tivoli Identity

Manager auditing and reporting mechanisms.

 Enforces privacy policies across your IT infrastructure with Tivoli Privacy Manager for e-business.

 Monitor access to personal information and generate detailed audit logs with Tivoli Privacy

Manager for e-business.

 Automatically generate reports detailing compliance to corporate policies with Tivoli Privacy

Manager for e-business.

 Help privacy officers, legal counsel and IT staff work together to build privacy rules that integrate

policy into practices, without knowledge of IT systems in order to author policies. This is provided

by Tivoli Privacy Manager for e-business.

 Update policies in the future with minimal impact to the environment, using Tivoli Privacy Manager

for e-business. Monitor and record users’ privacy preferences on a separate system from individual

applications. You can author one policy and deploy it everywhere there are monitored systems, as

a cost-effective alternative to modifying or rewriting existing applications in order to incorporate

preferences across applications.

 Comply with internal audits and regulatory reviews with Tivoli Privacy Manager for e-business. It

generates enterprise-wide reports showing policies deployed, enforcement locations and audit

trails that detail the management of personal information according to privacy policies.

 Control policies, storage locations, audit logs, preferences and consent across the enterprise with

Tivoli Privacy Manager for e-business.

 Rapidly develop and customize e-business monitors for applications, middleware data repositories

and other systems that persistently store privacy-sensitive information with Tivoli Privacy Manager

for e-business. Monitors for LDAP and Siebel 7 are included to allow monitoring, enforcement and

auditing for LDAP and Siebel 7 applications.

 Use Tivoli Security Compliance Manager to automate scans of servers and desktop systems,

which can help reduce the cost and time associated with manual security checks.

 Provide detailed reports to security officers and compliance auditors so they can take the

appropriate steps to make individual systems and departments compliant, with Tivoli Security

Compliance Manager.

 Improve business operations and increase efficiencies though automation and centralization with

Tivoli Security Compliance Manager.

Chapter 1. Overview and new features: Securing 19

http://www.ibm.com/software/tivoli/products/access-mgr-operating-sys/
http://www.ibm.com/software/tivoli/products/access-mgr-operating-sys/
http://www.ibm.com/software/tivoli/products/access-mgr-operating-sys/
http://www.ibm.com/software/tivoli/products/access-mgr-operating-sys/
http://www.ibm.com/software/tivoli/products/access-mgr-operating-sys/
http://www.ibm.com/software/tivoli/products/federated-identity-mgr/
http://www.ibm.com/software/tivoli/products/federated-identity-mgr/
http://www.ibm.com/software/tivoli/products/identity-mgr/
http://www.ibm.com/software/tivoli/products/identity-mgr/
http://www.ibm.com/software/tivoli/products/identity-mgr/
http://www.ibm.com/software/tivoli/products/privacy-mgr-e-bus/
http://www.ibm.com/software/tivoli/products/privacy-mgr-e-bus/
http://www.ibm.com/software/tivoli/products/privacy-mgr-e-bus/
http://www.ibm.com/software/tivoli/products/privacy-mgr-e-bus/
http://www.ibm.com/software/tivoli/products/privacy-mgr-e-bus/
http://www.ibm.com/software/tivoli/products/privacy-mgr-e-bus/
http://www.ibm.com/software/tivoli/products/privacy-mgr-e-bus/
http://www.ibm.com/software/tivoli/products/privacy-mgr-e-bus/
http://www.ibm.com/software/tivoli/products/privacy-mgr-e-bus/
http://www.ibm.com/software/tivoli/products/privacy-mgr-e-bus/
http://www.ibm.com/software/tivoli/products/privacy-mgr-e-bus/
http://www.ibm.com/software/tivoli/products/privacy-mgr-e-bus/
http://www.ibm.com/software/tivoli/products/security-compliance-mgr/
http://www.ibm.com/software/tivoli/products/security-compliance-mgr/
http://www.ibm.com/software/tivoli/products/security-compliance-mgr/
http://www.ibm.com/software/tivoli/products/security-compliance-mgr/

Mediate security policy violations and risks using Tivoli Security Compliance Manager in

conjunction with Tivoli automated security management tools.

 Automate compliance tasks, monitor correspondence, reduce human error, and tame compliance

costs with Tivoli Security Compliance Manager.

 Use Tivoli Security Compliance Manager to ensure consistent security audits across the

organization, reducing human error.

 Reduce the cost and time associated with manual security checks, using the automated scans of

server and desktop systems with Tivoli Security Compliance Manager.

 Identify software security vulnerabilities prior to costly damage being inflicted by security incidents,

using the security vulnerability scans of Tivoli Security Compliance Manager.

 Quickly produce reports for audits and ensuring regulatory compliance with the reporting

mechanisms of Tivoli Security Compliance Manager.

 Manage and secure your business environments from your existing hardware and operating

system platforms with Tivoli Access Manager for e-business.

Secure your business portal

 Use Portal in conjunction with WebSphere Application Server to satisfy customers, reduce service

costs, and enable customer profiles.

v Portal includes personalization features to be able to respond to end users based on identity

(and things derived from identity, such as group memberships and user profile attribute values)

and context using rules.

v Portal has its own access control for protecting Portal resources (pages and portlets) that are

not visible in a securable way in a URL. This access control is based on user identity and group

memberships.

v Portal has a basic user interface for user self-registration and self-care after creation. It also

features basic User and Group administration interfaces, not intended to replace the

management interfaces of the directory server, or to be as function-rich as TIM.

Provide instance based access control for business rules

 Use these products in conjunction with WebSphere Application Server for additional capabilities.

 Enact rules-enabled authorization checks with WebSphere Process Server. Its rules technology for

conditions enables administrators to create rules depending on the role of an invoker, for example.

Although it currently does not allow for checking on role and subject information specifically,

developers can use a workaround. A Java code snippet can be used to retrieve this information

and feed it into the rule condition.

 Dramatically improve both how quickly your applications are deployed and how quickly they adapt,

achieving rules based authorization with Tivoli Access Manager for e-business. Change

access-influencing policy parameters without having to rewrite and recompile applications.

 Reduce administrative costs with Tivoli Identity Manager. Role and rule-based delegated

administration enables grouping of users according to business needs and delegation of

administrative privileges along organizational and geographical boundaries.

 Streamlined automated workflow can decrease errors and inconsistency in business processes.

Tivoli Identity Manager automates the submission and approval processes for access requests and

changes to user information.

Secure work flows containing people interactions

 The staff resolution capabilities of WebSphere Process Choreographer, part of WebSphere

Process Server, provide role-based staff assignment and are compatible with various directory

services.

 v WebSphere Application Server Enterprise Process Choreographer: Staff Resolution Architecture

20 Securing applications and their environment

http://www.ibm.com/software/tivoli/products/security-compliance-mgr/
http://www.ibm.com/software/tivoli/products/security-compliance-mgr/
http://www.ibm.com/software/tivoli/products/security-compliance-mgr/
http://www.ibm.com/software/tivoli/products/security-compliance-mgr/
http://www.ibm.com/software/tivoli/products/security-compliance-mgr/
http://www.ibm.com/software/tivoli/products/security-compliance-mgr/
http://www.ibm.com/software/tivoli/products/access-mgr-e-bus/
http://URL
http://www.ibm.com/software/tivoli/products/access-mgr-e-bus/
http://www.ibm.com/software/tivoli/products/identity-mgr/
http://www.ibm.com/software/tivoli/products/identity-mgr/
http://www.ibm.com/developerworks/websphere/library/techarticles/wasid/WPC_StaffArch/WPC_StaffArch.html

v WebSphere Application Server Enterprise Process Choreographer: Displaying work items in the

Web client

v Working with WebSphere Business Integration Server Foundation Process Choreographer

Secure integration with other business applications

 Use these products in conjunction with WebSphere Application Server for additional capabilities.

 Leverage your J2EE investment and enable applications to be managed as part of a consistent,

policy-driven strategy with Tivoli Access Manager for e-business. The product supports J2EE, Java

2 and JAAS environments, with no plug-in required, no proprietary coding needed and no pre- or

post-compile necessary.

 Use Tivoli Federated Identity Manager to expand the business reach of service providers creating

revenue generating opportunities.

For information about Identity and Privacy Strategies Methodologies and Best Practices, see the related

information link below:

 Related information

 http://www.burtongroup.com/research_consulting/doc.aspx?cid=739

Security planning overview

When you access information on the Internet, you connect through Web servers and product servers to

the enterprise data at the back end. This section examines some typical configurations and common

security practices. WebSphere Application Server security is built on a layered security architecture as

shown in the following figure. This section also examines the security protection that is offered by each

security layer and common security practice for good quality of protection in end-to-end security. The

following figure illustrates the building blocks that comprise the operating environment for security within

WebSphere Application Server:

WebSphere Application Server resources

Access control

WebSphere Application Server security

Java security

Platform security

WebSphere security

J2EE security API

CORBA security (CSIv2)

Java 2 security

Java virtual machine (JVM) Version 5.0

Operating system security

- Naming

- User r egistry

- JMX m essage

beans

- HTML

- Servlet or JSP file

- Enterprise beans

- Web services

WebSphere security layers

Network security

The following information describes each of the components of WebSphere Application Server security,

Java security, and Platform security that are illustrated in the previous figure.

WebSphere Application Server security

Chapter 1. Overview and new features: Securing 21

http://www.ibm.com/developerworks/websphere/library/techarticles/wasid/WPC_WorkItems/WPC_WorkitemsInWebClient.html
http://www.ibm.com/developerworks/websphere/library/techarticles/wasid/WPC_WorkItems/WPC_WorkitemsInWebClient.html
http://www.ibm.com/developerworks/websphere/zones/was/wpc.html
http://www.ibm.com/software/tivoli/products/access-mgr-e-bus/
http://www.ibm.com/software/tivoli/products/federated-identity-mgr/
http://www.burtongroup.com/research_consulting/doc.aspx?cid=739

WebSphere security

WebSphere Application Server security enforces security policies and services in a unified

manner on access to Web resources, enterprise beans, and JMX administrative resources.

It consists of WebSphere Application Server security technologies and features to support

the needs of a secure enterprise environment.

Java security

Java 2 Platform, Enterprise Edition (J2EE) security application programming interface (API)

The security collaborator enforces Java 2 Platform, Enterprise Edition (J2EE)-based

security policies and supports J2EE security APIs.

CORBA security (CSIv2)

Any calls made among secure Object Request Brokers (ORB) are invoked over the

Common Security Interoperability Version 2 (CSIv2) security protocol that sets up the

security context and the necessary quality of protection. After the session is established,

the call is passed up to the enterprise bean layer.

V6.0.x

For backward compatibility, WebSphere Application Server supports the Secure

Authentication Service (SAS) security protocol, which was used in prior releases of

WebSphere Application Server and other IBM products.

Java 2 security

The Java 2 Security model offers fine-grained access control to system resources

including file system, system property, socket connection, threading, class loading, and so

on. Application code must explicitly grant the required permission to access a protected

resource.

Java Virtual Machine (JVM) 5.0

The JVM security model provides a layer of security above the operating system layer. For

example, JVM security protects the memory from unrestricted access, creates exceptions

when errors occur within a thread, and defines array types.

Platform security

Operating system security

 The security infrastructure of the underlying operating system provides certain security

services for WebSphere Application Server. These services include the file system security

support that secures sensitive files in the product installation for WebSphere Application

Server. The system administrator can configure the product to obtain authentication

information directly from the operating system user registry.

Network security

The Network Security layers provide transport level authentication and message integrity

and confidentiality. You can configure the communication between separate application

servers to use Secure Sockets Layer (SSL). Additionally, you can use IP Security and

Virtual Private Network (VPN) for added message protection.

Each product application server consists of a Web container, an Enterprise Java Beans (EJB) container,

and the administrative subsystem.

The administrative console is a special J2EE Web application that provides the interface for performing

administrative functions. WebSphere Application Server configuration data is stored in XML descriptor files,

which must be protected by operating system security. Passwords and other sensitive configuration data

can be modified using the administrative console. However, you must protect these passwords and

sensitive data. For more information, see “Encoding password in files” on page 1388.

22 Securing applications and their environment

The administrative console Web application has a setup data constraint that requires access to the

administrative console servlets and JavaServer Pages (JSP) files only through an SSL connection when

administrative security is enabled.

In WebSphere Application Server Version 6.0.x and earlier, the administrator console HTTPS port was

configured to use DummyServerKeyFile.jks and DummyServerTrustFile.jks with the default self- signed

certificate. The dummy certificates and keys must be replaced immediately after WebSphere Application

Server installation; the keys are common in all of the installation and are therefore insecure. WebSphere

Application Server Version 6.1 provides integrated certificate and key management, which generate distinct

private key and self-signed certificate with embedded server host name to enable host name verification.

WebSphere Application Server Version 6.1 also enables integration with external certificate (CA) authority

to use CA-issued certificates. The WebSphere Application Servers Version 6.1 installation process

provides an option to enable administrative security during installation. As a result, a WebSphere

Application Server process is secured immediately after installation.

Administrative security

V6.0.x

WebSphere Application Servers interact with each other through CSIv2 and Secure

Authentication Services (SAS) security protocols as well as the HTTP and HTTPS protocols.

Important: SAS is supported only between Version 6.0.x and previous version servers that have been

federated in a Version 6.1 cell.

You can configure these protocols to use Secure Sockets Layer (SSL) when you enable WebSphere

Application Serveradministrative security. The WebSphere Application Server administrative subsystem in

every server uses SOAP, Java Management Extensions (JMX) connectors and Remote Method Invocation

over the Internet Inter-ORB Protocol (RMI/IIOP) JMX connectors to pass administrative commands and

configuration data. When administrative security is disabled, the SOAP JMX connector uses the HTTP

protocol and the RMI/IIOP connector uses the TCP/IP protocol. When administrative security is enabled,

the SOAP JMX connector always uses the HTTPS protocol. When administrative security is enabled, you

can configure the RMI/IIOP JMX connector to either use SSL or to use TCP/IP. It is recommended that

you enable administrative security and enable SSL to protect the sensitive configuration data.

Security for J2EE resources

Security for J2EE resources is provided by the Web container and the EJB container. Each container

provides two kinds of security: declarative security and programmatic security.

In declarative security, an application security structure includes network message integrity and

confidentiality, authentication requirements, security roles, and access control. Access control is expressed

in a form that is external to the application. In particular, the deployment descriptor is the primary vehicle

for declarative security in the J2EE platform. WebSphere Application Server maintains J2EE security

policy, including information that is derived from the deployment descriptor and specified by deployers and

administrators in a set of XML descriptor files. At runtime, the container uses the security policy that is

defined in the XML descriptor files to enforce data constraints and access control.

When declarative security alone is not sufficient to express the security model of an application, you might

use programmatic security to make access decisions. When administrative security is enabled and

application server security is not disabled at the server level, J2EE applications security is enforced. When

the security policy is specified for a Web resource, the Web container performs access control when the

resource is requested by a Web client. The Web container challenges the Web client for authentication

data if none is present according to the specified authentication method, ensures that the data constraints

are met, and determines whether the authenticated user has the required security role. The Web security

collaborator enforces role-based access control by using an access manager implementation. An access

manager makes authorization decisions that are based on security policy derived from the deployment

Chapter 1. Overview and new features: Securing 23

descriptor. An authenticated user principal can access the requested servlet or JSP file if the user principal

has one of the required security roles. Servlets and JSP files can use the HttpServletRequest methods,

isUserInRole and getUserPrincipal.

When administrative security and application security are enabled, and the application server level

application security is not disabled, the EJB container enforces access control on EJB method invocation.

The authentication occurs regardless of whether method permission is defined for the specific EJB

method. The EJB security collaborator enforces role-based access control by using an access manager

implementation. An access manager makes authorization decisions that are based on security policy

derived from the deployment descriptor. An authenticated user principal can access the requested EJB

method if it has one of the required security roles. EJB code can use the EJBContext methods,

isCallerInRole and getCallerPrincipal. Use the J2EE role-based access control to protect valuable business

data from access by unauthorized users through the Internet and the intranet. Refer to “Securing Web

applications using an assembly tool” on page 905, and “Securing enterprise bean applications” on page

925.

Role-based security

WebSphere Application Server extends the security, role-based access control to administrative resources

including the JMX system management subsystem, user registries, and Java Naming and Directory

Interface (JNDI) name space. WebSphere administrative subsystem defines four administrative security

roles:

Monitor role

A monitor can view the configuration information and status but cannot make any changes.

Operator role

An operator can trigger run-time state changes, such as start an application server or stop an

application but cannot make configuration changes.

Configurator role

A configurator can modify the configuration information but cannot change the state of the runtime.

Administrator role

An operator as well as a configurator, which additionally can modify sensitive security configuration

and security policy such as setting server IDs and passwords, enable or disable administrative

security and Java 2 security, and map users and groups to the administrator role.

iscadmins

The iscadmins role has administrator privileges for managing users and groups from within the

administrative console only.

WebSphere Application Server defines two additional roles that are available when you use wsadmin

scripting only

Deployer

A deployer can perform both configuration actions and run-time operations on applications.

AdminSecurityManager

An administrative security manager can map users to administrative roles. Also, when fine grained

admin security is used, users granted this role can manage authorization groups.

A user with the configurator role can perform most administrative work including installing new applications

and application servers. Certain configuration tasks exist that a configurator does not have sufficient

authority to do when administrative security is enabled, including modifying a WebSphere Application

Server identity and password, Lightweight Third-Party Authentication (LTPA) password and keys, and

assigning users to administrative security roles. Those sensitive configuration tasks require the

administrative role because the server ID is mapped to the administrator role.

24 Securing applications and their environment

Enable WebSphere Application Server administrative security to protect administrative subsystem integrity.

Application server security can be selectively disabled if no sensitive information is available to protect. For

securing administrative security, refer to “Authorizing access to administrative roles” on page 372 and

“Assigning users and groups to roles” on page 910.

Java 2 security permissions

WebSphere Application Server uses the Java 2 security model to create a secure environment to run

application code. Java 2 security provides a fine-grained and policy-based access control to protect

system resources such as files, system properties, opening socket connections, loading libraries, and so

on. The J2EE Version 1.4 specification defines a typical set of Java 2 security permissions that Web and

EJB components expect to have. These permissions are shown in the following table.

 Table 1. J2EE security permissions set for Web components

Security Permission Target Action

java.lang.RuntimePermission loadLibrary

java.lang.RuntimePermission queuePrintJob

java.net.SocketPermission * connect

java.io.FilePermission * read, write

java.util.PropertyPermission * read

 Table 2. J2EE security permissions set for EJB components

Security Permission Target Action

java.lang.RuntimePermission queuePrintJob

java.net.SocketPermission * connect

java.util.PropertyPermission * read

The WebSphere Application Server Java 2 security default policies are based on the J2EE Version 1.4

specification. The specification grants Web components read and write file access permission to any file in

the file system, which might be too broad. The WebSphere Application Server default policy gives Web

components read and write permission to the subdirectory and the subtree where the Web module is

installed. The default Java 2 security policies for all Java virtual machines and WebSphere Application

Server processes are contained in the following policy files:

${java.home}/jre/lib/security/java.policy

This file is used as the default policy for the Java virtual machine (JVM).

${USER_INSTALL_ROOT}/properties/server.policy

This file is used as the default policy for all product server processes.

To simplify policy management, WebSphere Application Server policy is based on resource type rather

than code base (location). The following files are the default policy files for a WebSphere Application

Server subsystem. These policy files, which are an extension of the WebSphere Application Server

runtime, are referred to as Service Provider Programming Interfaces (SPI), and shared by multiple J2EE

applications:

profile_root/config/cells/cell_name/nodes/node_name/spi.policy

This file is used for embedded resources defined in the resources.xml file, such as the Java

Message Service (JMS), JavaMail, and JDBC drivers.

profile_root/config/cells/cell_name/nodes/node_name/library.policy

This file is used by the shared library that is defined by the WebSphere Application Server

administrative console.

Chapter 1. Overview and new features: Securing 25

profile_root/config/cells/cell_name/nodes/node_name/app.policy

This file is used as the default policy for J2EE applications.

In general, applications do not require more permissions to run than those recommended by the J2EE

specification to be portable among various application servers. However, some applications might require

more permissions. WebSphere Application Server supports the packaging of a was.policy file with each

application to grant extra permissions to that application.

Attention: Grant extra permissions to an application only after careful consideration because of the

potential of compromising the system integrity.

Loading libraries into WebSphere Application Server does allow applications to leave the Java sandbox.

WebSphere Application Server uses a permission filtering policy file to alert you when an application

installation fails because of additional permission requirements. For example, it is recommended that you

not give the java.lang.RuntimePermission exitVM permission to an application so that application code

cannot terminate WebSphere Application Server.

The filtering policy is defined by the filtermask in the profile_root/config/cells/cell_name/filter.policy file.

Moreover, WebSphere Application Server also performs run-time permission filtering that is based on the

run-time filtering policy to ensure that application code is not granted a permission that is considered

harmful to system integrity.

Therefore, many applications developed for prior releases of WebSphere Application Server might not be

Java 2 security ready. To quickly migrate those applications to the latest version of WebSphere Application

Server, you might temporarily give those applications the java.security.AllPermission permission in the

was.policy file. Test those applications to ensure that they run in an environment where Java 2 security is

active. For example, identify which extra permissions, if any, are required, and grant only those

permissions to a particular application. Not granting the AllPermission permission to applications can

reduce the risk of compromising system integrity. For more information on migrating applications, refer to

“Migrating Java 2 security policy” on page 45.

The WebSphere Application Server runtime uses Java 2 security to protect sensitive run-time functions.

Applications that are granted the AllPermission permission not only have access to sensitive system

resources, but also WebSphere Application Server run-time resources and can potentially cause damage

to both. In cases where an application can be trusted as safe, WebSphere Application Server does support

having Java 2 security disabled on a per application server basis. You can enforce Java 2 security by

default in the administrative console and clear the Java 2 security flag to disable it at the particular

application server.

When you specify the Enable administrative security and Use Java 2 security to restrict application

access to local resources options on the Secure administration, applications, and infrastructure panel of

the administrative console, the information and other sensitive configuration data, are stored in a set of

XML configuration files. Both role-based access control and Java 2 security permission-based access

control are employed to protect the integrity of the configuration data. The example uses configuration data

protection to illustrate how system integrity is maintained.

Attention: The Enable global security option in previous releases of WebSphere Application Server is

the same as the Enable administrative security option in Version 6.1. Also, the Enable Java

2 security option in previous releases is the same as the Use Java 2 security to restrict

application access to local resources option in Version 6.1.

v When Java 2 security is enforced, the application code cannot access the WebSphere Application

Server run-time classes that manage the configuration data unless the code is granted the required

WebSphere Application Server run-time permissions.

v When Java 2 security is enforced, application code cannot access the WebSphere Application Server

configuration XML files unless the code is granted the required file read and write permission.

26 Securing applications and their environment

v The JMX administrative subsystem provides SOAP over HTTP or HTTPS and a RMI/IIOP remote

interface to enable application programs to extract and to modify configuration files and data. When

administrative security is enabled, an application program can modify the WebSphere Application Server

configuration if the application program has presented valid authentication data and the security identity

has the required security roles.

v If a user can disable Java 2 security, the user can also modify the WebSphere Application Server

configuration, including the WebSphere Application Server security identity and authentication data with

other sensitive data. Only users with the administrator security role can disable Java 2 security.

v Because WebSphere Application Server security identity is given to the administrator role, only users

with the administrator role can disable administrative security, change server IDs and passwords, and

map users and groups to administrative roles, and so on.

Other Runtime resources

Other WebSphere Application Server run-time resources are protected by a similar mechanism, as

described previously. It is very important to enable WebSphere Application Server administrative security

and to use Java 2 security to restrict application access to local resources. J2EE Specification defines

several authentication methods for Web components: HTTP Basic Authentication, Form-Based

Authentication, and HTTPS Client Certificate Authentication. When you use client certificate login, it is

more convenient for the browser client if the Web resources have integral or confidential data constraint. If

a browser uses HTTP to access the Web resource, the Web container automatically redirects the browser

to the HTTPS port. The CSIv2 security protocol also supports client certificate authentication. You can also

use SSL client authentication to set up secure communication among a selected set of servers based on a

trust relationship.

If you start from the WebSphere Application Server plug-in at the Web server, you can configure SSL

mutual authentication between it and the WebSphere Application Server HTTPS server. When using a

certificate, you can restrict the WebSphere Application Server plug-in to communicate with only the

selected two WebSphere Application Servers as shown in the following figure. Note that you can use

self-signed certificates to reduce administration and cost.

Browser

In
te

rn
e
t

Demilitarized zone

(DMZ)
DB2 Version

8.2 Fix Pack 3

MQ

CICS

IBM Tivoli

Directory Server

(LDAP)

Intranet

Enterprise

information

systems

D
o
m

a
in

fi
re

w
a
ll

P
ro

to
c
o
l
fi
re

w
a
ll

WebSphere

Application

Server A

Web

server

WebSphere

Application

Server plug-in

Administrative

WebSphere

Application

Server C

Administrative

WebSphere

Application

Server D

Administrative

WebSphere

Application

Server B

Administrative

WebSphere

Application Server

administrative

console

Browse

E

W

Chapter 1. Overview and new features: Securing 27

For example, you want to restrict the HTTPS server in WebSphere Application Server A and in

WebSphere Application Server B to accept secure socket connections only from the WebSphere

Application Server plug-in W. To complete this task, you can generate three certificates using the

IKEYMAN and the certificate management utilities. Also, you can use certificate W and trust certificate A

and B. Configure the HTTPS server of WebSphere Application Server A to use certificate A and to trust

certificate W. Configure the HTTPS server of WebSphere Application Server B to use certificate B and to

trust certificate W. For more information on IKEYMAN, refer to .

The trust relationship that is depicted in the previous figure is shown in the following table.

 Server Key Trust

WebSphere Application Server plug-in W A, B

WebSphere Application Server A A W

WebSphere Application Server B B W

When WebSphere Application Server is configured to use Lightweight Directory Access Protocol (LDAP)

user registry, you also can configure SSL with mutual authentication between every application server and

the LDAP server with self-signed certificates so that a password is not visible when it is passed from

WebSphere Application Server to the LDAP server.

WebSphere Application Server does not provide a registry configuration or management utility. In addition,

it does not dictate the registry password policy. It is recommended that you use the password policy

recommended by your registry, including the password length and expiration period.

Before securing your WebSphere Application Server environment, determine which versions of WebSphere

Application Server you are using, review the WebSphere Application Server security architecture, and

review each of the following topics:

v “Authentication protocol for EJB security” on page 212

– “Supported authentication protocols” on page 215

– “Common Secure Interoperability Version 2 features” on page 216

– “Identity assertion” on page 216
v “Authentication mechanisms” on page 173

– “Lightweight Third Party Authentication” on page 179

– “Trust associations” on page 180

– “Single sign-on” on page 184
v “User registries and repositories” on page 89

– “Local operating system registries” on page 165

– “Standalone Lightweight Directory Access Protocol registries” on page 169
v “Java 2 security” on page 65

– “Java 2 security policy files” on page 69
v “Java Authentication and Authorization Service” on page 312

– “Programmatic login” on page 343
v J2EE connector security

v “Access control exception” on page 74

– “Role-based authorization” on page 324

– “Administrative roles and naming service authorization” on page 320

28 Securing applications and their environment

Chapter 2. How do I secure applications and their

environments?

Develop and deploy secure applications. These tasks involve securing your applications during

development (optional, programmatic security), assembly (declarative security), and after deploying them

on the application server.

Secure the application hosting environment. The counterpart of securing your applications before and

after deployment is to secure the server hosting environment into which the applications are deployed.

Legend for ″How do I?...″ links

 Detailed steps Show me Tell me Guide me Teach me

Refer to the detailed

steps and reference

Watch a brief

multimedia

demonstration

View the presentation

for an overview

Be led through the

console pages

Perform the tutorial

with sample code

Approximate time:

Varies

Approximate time: 3

to 5 minutes

Approximate time:

10 minutes+

Approximate time:

1/2 hour+

Approximate time: 1

hour+

© Copyright IBM Corp. 2006 29

30 Securing applications and their environment

Chapter 3. Task overview: Securing resources

WebSphere Application Server supports the Java 2 Platform, Enterprise Edition (J2EE) model for creating,

assembling, securing, and deploying applications. Applications are often created, assembled, and deployed

in different phases and by different teams.

You can secure resources in a J2EE environment by following the required high-level steps. Consult the

J2EE specifications for complete details.

v Set up and enable security. You must address several issues prior to authenticating users, authorizing

access to resources, securing applications, and securing communications. These security issues include

migration, interoperability, and installation. After installing WebSphere Application Server, you must

determine the proper level of security that is needed for your environment. For more information, see

Chapter 4, “Setting up and enabling security,” on page 33.

v Authenticate users. The process of authenticating users involves a user registry and an authentication

mechanism. Optionally, you can define trust between WebSphere Application Server and a proxy server,

configure single sign-on capability, and specify how to propagate security attributes between application

servers. For more information, see Chapter 5, “Authenticating users,” on page 87.

v Authorize access to resources. WebSphere Application Server provides many different methods for

authorizing accessing resources. For example, you can assign roles to users and configure a built-in or

external authorization provider. For more information, see Chapter 6, “Authorizing access to resources,”

on page 319.

v Secure communications. WebSphere Application Server provides several methods to secure

communication between a server and a client. For more information, see Chapter 7, “Securing

communications,” on page 381.

v Develop extensions to the WebSphere security infrastructure. WebSphere Application Server provides

various plug points so that you can extend the security infrastructure. For more information, see

Chapter 8, “Developing extensions to the WebSphere security infrastructure,” on page 501.

v Secure various types of WebSphere applications. See Securing WebSphere applications for tasks

involving developing, deploying, and administering secure applications, including Web applications, Web

services, and many other types. This section highlights the security concerns and tasks that are specific

to each type of application.

v Tune, harden, and maintain security configurations. After you have installed WebSphere Application

Server, there are several considerations for tuning, strengthening, and maintaining your security

configuration. For more information, see Chapter 19, “Tuning, hardening, and maintaining,” on page

1383.

v Troubleshoot security configurations. For more information, see Chapter 20, “Troubleshooting security

configurations,” on page 1393.

Your applications and production environment are secured.

See Security: Resources for learning for more information on the WebSphere Application Server security

architecture.

© Copyright IBM Corp. 2006 31

32 Securing applications and their environment

Chapter 4. Setting up and enabling security

You must address several issues prior to authenticating users, authorizing access to resources, securing

applications, and securing communications. These security issues include migration, interoperability, and

installation.

After installing WebSphere Application Server, you can determine the proper level of security that is

needed for your environment. By default, administrative security is enabled and provides the authentication

of users, the use of Secure Sockets Layer (SSL), and the choice of user account repository.

The following information is covered in this section:

v Determine if any migration and interoperability issues might affect your installation. For more

information, see “Migrating, coexisting, and interoperating – Security considerations.”

v Prepare your environment before and after installing WebSphere Application Server. For more

information, see “Preparing for security at installation time” on page 48.

v Enable security for all your application servers or for specific application servers in your realm.

For more information, see “Enabling security” on page 51.

After installing WebSphere Application Server and securing your environment, you must authenticate

users. For more information, see Chapter 5, “Authenticating users,” on page 87.

Migrating, coexisting, and interoperating – Security considerations

Use this topic to migrate the security configuration of previous WebSphere Application Server releases and

its applications to the new installation of WebSphere Application Server.

This information addresses the need to migrate your security configurations from a previous release of

IBM WebSphere Application Server to WebSphere Application Server Version 6.1 or later. Complete the

following steps to migrate your security configurations:

v If security is enabled in the previous release, obtain the administrative server ID and password of the

previous release. This information is needed in order to run certain migration jobs.

v You can optionally disable security in the previous release before migrating the installation. No logon is

required during the installation.

Use the First steps wizard to access and run the Migration wizard.

1. Start the First steps wizard by launching the firststeps.bat or the firststeps.sh file. The first steps

file is located in the following directory:

v

Linux

./app_server_root/profiles/profile_name/firststeps/firststeps.sh

v

Windows

app_server_root\profiles\profile_name\firststeps\firststeps.bat

2. On the First steps wizard panel, click Migration wizard.

3. Follow the instructions provided in the First steps wizard to complete the migration.

For more information on the Migration wizard, see Using the migration wizard to migrate product

configurations.

The security configuration of previous WebSphere Application Server releases and its applications are

migrated to the new installation of WebSphere Application Server Version 6.1.

If a custom user registry is used in the previous version, the migration process does not migrate the class

files that are used by the standalone custom registry in the previous app_server_root/classes directory.

Therefore, after migration, copy your custom user registry implementation classes to the

app_server_root/classes directory.

© Copyright IBM Corp. 2006 33

If you upgrade from WebSphere Application Server, Version 5.x to WebSphere Application Server, Version

6.1, the data that is associated with Version 5.x trust associations is not automatically migrated to Version

6.1. To migrate trust associations, see “Migrating trust association interceptors” on page 40.

Interoperating with previous product versions

IBM WebSphere Application Server inter-operates with the previous product versions. Use this topic to

configure this behavior.

1. Configure WebSphere Application Server Version 6.1 with the same distributed user registry (that is,

LDAP or Custom) that is configured with the previous version. Make sure that the same LDAP user

registry is shared by all of the product versions.

a. In the administrative console, select Security > Secure administration, applications, and

infrastructure.

b. Choose an available Realm definition and click Configure.

c. Enter a Primary administrative user name. This is the identity you use to login to the

administrative console or to wsadmin. When inter-operating with a previous release, you must use

the same server ID. In WebSphere Application Server Version 6.1, there are two choices for server

ID. For previous releases, specify a server ID and password. However, if you choose to use the

internal server ID, you must be able to override the generated value and to specify the server ID

from a previous release.

d. Click either Automatically generated server identity or Server identity that is stored in the

user repository .

e. If you select Automatically generated server identity, click Authentication mechanisms and

expiration to change the identity to the one used by the previous release you are inter-operating

with. Scroll down to the Cross-cell single sign-on section and enter the identity in Internal server

ID.

f. If you select Server identity that is stored in the user repository, enter the Server user id and

the associated Password.

g. Fill out the rest of the user registry settings and then click OK.

2. Configure the LTPA authentication mechanism. Automatic generation of the LTPA keys should be

disabled. If not, keys used by a previous release are lost. Export the current LTPA keys from

WebSphere Application Server Version 6.1 and import them into the previous release.

a. In the administrative console select Security > Secure administration, applications, and

infrastructure.

b. Click Authentication mechanisms and expiration.

c. Click the Key set groups link, then click the key set group that displays in the Key set groups

panel.

d. Clear the Automatically generate keys check box.

e. Click OK, then click Authentication mechanisms and expiration in the path at the top of the Key

set groups panel.

f. Scroll down to the Cross-cell single sign-on section, and enter a password to use for encrypting the

LTPA keys when adding them to the file.

g. Enter the password again to confirm the password.

h. Enter the Fully qualified key file name that contains the exported keys.

i. Click Export keys.

j. Follow the instructions provided in the previous release to import the exported LTPA keys into that

configuration.

3. If you are using the default SSL configuration, extract all of the signer certificates from the WebSphere

Application Server Version 6.1 common trust store. Otherwise, extract signers where necessary to

import them into the previous release.

a. In the administrative console, click Security > SSL certificate and key management.

34 Securing applications and their environment

b. Click Key stores and certificates.

c. Click NodeDefaultTrustStore.

d. Click Signer certificates.

e. Select one signer and click Extract.

f. Enter a unique path and filename for the signer (for example, c:\temp\signer1.arm).

g. Click OK. Repeat for all of the signers in the trust store.

h. Check other trust stores for other signers that might need to be shared with the other server.

Repeat steps e through h to extract the other signers.

4. Add the exported signers to DummyServerTrustFile.jks and DummyClientTrustFile.jks in the /etc

directory of the back-level product version. If the previous release is not using the dummy certificate,

the signer certificate(s) from the previous release must be extracted and added into the WebSphere

Application Server Version 6.1 release to enable SSL connectivity in both directions.

a. Open the key management utility, iKeyman, for that product version.

b. Start ikeyman.bat or ikeyman.sh from the ${USER_INSTALL_ROOT}/bin directory.

c. Select Key Database File > Open.

d. Open ${USER_INSTALL_ROOT}/etc/DummyServerTrustFile.jks.

e. Enter WebAS for the password.

f. Select Add and enter one of the files extracted in step 2. Continue until you have added all of the

signers.

g. Repeat steps c through f for the DummyClientTrustFile.jks file.

5. Verify that the application uses the correct Java Naming and Directory Interface (JNDI) name and

naming bootstrap port for performing a naming lookup.

6. Stop and restart all of the servers.

Interoperating with a C++ common object request broker architecture

client

WebSphere Application Server supports security in the CORBA C++ client to access-protected enterprise

beans. If configured, C++ CORBA clients can access protected enterprise bean methods using a client

certificate to achieve mutual authentication on WebSphere Application Server applications.

You can achieve interoperability of Security Authentication Service between the C++ Common Object

Request Broker Architecture (CORBA) client and WebSphere Application Server using Common Secure

Interoperability Version 2 (CSIv2) authentication protocol over Remote Method Invocation over the Internet

Inter-ORB Protocol (RMI-IIOP). The CSIv2 security service protocol has authentication, attribute and

transport layers. Among the three layers, transport authentication is conceptually simple, however,

cryptographically based transport authentication is the strongest. WebSphere Application Server has

implemented the transport authentication layer, so that C++ secure CORBA clients can use it effectively in

making CORBA clients and protected enterprise bean resources work together.

Security authentication from non-Java based C++ client to enterprise beans. WebSphere Application

Server supports security in the CORBA C++ client to access-protected enterprise beans. If configured,

C++ CORBA clients can access protected enterprise bean methods using a client certificate to achieve

mutual authentication on WebSphere Application Server applications.

To support the C++ CORBA client in accessing protected enterprise beans:

v Create an environment file for the client, such as current.env. Set the variables presented in the

following list in the file:

 C++ security setting Description

client_protocol_password Specifies the password for the user ID.

Chapter 4. Setting up and enabling security 35

C++ security setting Description

client_protocol_user Specifies the user ID to authenticate at the target server.

security_sslKeyring Specifies the name of the RACF keyring for the client to

use. The keyring must be defined under the user ID that

is issuing the command to run the client.

v Point to the environment file using the fully qualified path name through the WAS_CONFIG_FILE

environment variable. For example, in the test.sh test shell script, export:

/WebSphere/V6R0M0/DeploymentManager/profiles/default/config/cells

 /PLEX1Network/nodes/PLEX1Manager/servers/dmgr

Some of the environment file terms are explained below:

default

profile name

PLEX1Network

cell name

PLEX1Manager

node name

dmgr server name

To support the C++ CORBA client in accessing protected enterprise beans:

1. Obtain a valid certificate to represent the client and export its public key to the target enterprise bean

server.

A valid certificate is needed to represent the C++ client. Request a certificate from the certificate

authority (CA) or create a self-signed certificate for testing purposes.

Use the Key Management Utility from the Global Security Kit (GSKit) to extract the public key from the

personal certificate and save it in the .arm format.

2. Prepare a truststore file for WebSphere Application Server.

Add the extracted client public key in the .arm file from the client to the server key truststore file. The

server can now authenticate the client.

Note: This is done by invoking the Key Management Utility through ikeyman.bat or ikeyman.sh from

WebSphere Application Server installation.

3. Configure WebSphere Application Server to support Secure Sockets Layer (SSL) as the authentication

mechanism.

a. Start the administrative console.

b. Locate the application server that has the target enterprise bean deployed and configure it to use

SSL client certificate authentication.

If it is a base installation, complete the following steps:

1) Click Security > Secure administration, applications, and infrastructure. Under RMI/IIOP

security, click CSIv2 inbound authentication. Select Supported for the Basic authentication

and Client certificate authentication options. Leave the rest of the options as defaults.

2) Click Security > Secure administration, applications, and infrastructure. Under RMI/IIOP

security, click CSIv2 inbound transport and verify that the SSL-supported option is selected.

If it is a Network Deployment setting, complete the following steps:

1) Click Servers > Application Servers > server_name_where_the_EJB_resides.

2) Under Security, click Server security.

3) Select the RMI/IIOP security for this server overrides cell settings option.

4) Under Additional properties, click CSIv2 inbound authentication.

36 Securing applications and their environment

5) Select Supported for the Basic authentication and Client certificate authentication options.

Leave the rest of the options as defaults.

6) Click Servers > Application Servers > server_name_where_the_EJB_resides.

7) Under Security, click Server security.

8) Under Additional properties, click CSIv2 inbound transport.

9) Verify that the SSL-Supported option is selected.

c. Restart the application server.

The WebSphere Application Server is ready to take a C++ CORBA security client and a mutually

authenticated server and client by using SSL in the transport layer.

4. Configure the C++ CORBA client to use a certificate in performing the mutual authentication.

Client users are accustomed to using property files in their applications because they are helpful in

specifying configuration settings. The following list presents important C++ security settings:

 C++ security setting Description

com.ibm.CORBA.bootstrapHostName=ricebella.austin.ibm.com Specifies the target host name.

com.ibm.CORBA.securityEnabled=yes Enables security.

com.ibm.CSI.performTLClientAuthenticationSupported=yes Ensures client is supporting mutual authentication by

certificate

com.ibm.ssl.keyFile=C:/ricebella/etc/DummyKeyRingFile.KDB Specifies which key database file to use.

com.ibm.ssl.keyPassword=WebAS Specifies the password for opening the key database file.

WebSphere Application Server supports a utility called

PasswordEncode4cpp to encode the plain password.

com.ibm.CORBA.translationEnabled=1 Enables the valueType conversion.

To use the property files in running a C++ client, an environment variable WASPROPS, is used to

indicate where a property file or a list of property files exists.

For the complete set of C++ client properties, see the sample property file scclient.props, which is

shipped with the product located in the app_server_root/profiles/profile_name/etc directory.

Migrating custom user registries

If you built your own custom user registry, consider the migration items listed below. If you have a custom

user registry that was provided by a Security Solution Provider, you must contact that provider to ensure

that you have the correct version of their custom user registry to support WebSphere Application Server.

In WebSphere Application Server, in addition to the UserRegistry interface, the custom user registry

requires the Result object to handle user and group information. This file is already provided in the

package and you are expected to use it for the getUsers, getGroups, and the getUsersForGroup methods.

You cannot use other WebSphere Application Server components, for example, data sources, to initialize

the custom registry because other components, like the containers, are initialized after security and are not

available during the registry initialization. A custom registry implementation is a pure custom

implementation, independent of other WebSphere Application Server components.

The getCallerPrincipal enterprise bean method and the getUserPrincipal and getRemoteUser servlet

methods return the security name instead of the display name. For more information, see the API

documentation.

If the migration tool is used to migrate the WebSphere Application Server Version 5 configuration to

WebSphere Application Server Version 6.0.x and later, this migration does not change your existing code.

Because the WebSphere Application Server Version 5 custom registry works in WebSphere Application

Server Version 6.0.x and later without any changes to the implementation, except when using data

sources, you can use the Version 5-based custom registry after the migration without modifying the code.

Chapter 4. Setting up and enabling security 37

In WebSphere Application Server Version 6.0.x and later, a case-insensitive authorization can occur when

using an enabled custom user registry.

Setting this flag does not have any effect on the user names or passwords. Only the unique IDs that are

returned from the registry are changed to lower-case before comparing them with the information in the

authorization table, which is also converted to lowercase during runtime.

Before proceeding, look at the UserRegistry interface. See “Developing standalone custom registries” on

page 501 for a description of each of these methods in detail.

The following steps go through all the changes that are required to move your WebSphere Application

Server Version 4.x custom user registry that implemented the old

com.ibm.websphere.security.CustomRegistry interface to the com.ibm.websphere.security.UserRegistry

interface.

Note: The sample implementation file is used as an example when describing the following steps.

 1. Change your implementation to UserRegistry instead of CustomRegistry. Change:

public class FileRegistrySample implements CustomRegistry

to:

public class FileRegistrySample implements UserRegistry

 2. Create the java.rmi.RemoteException exception in the constructors:

public FileRegistrySample() throws java.rmi.RemoteException

 3. Change the mapCertificate method to take a certificate chain instead of a single certificate. Change

public String mapCertificate(X509Certificate cert)

to:

public String mapCertificate(X509Certificate[]cert)

Having a certificate chain gives you the flexibility to act on the chain instead of one certificate. If you

are interested only in the first certificate, take the first certificate in the chain before processing. In

WebSphere Application Server Version 6.0.x and later, the mapCertificate method is called to map the

user in a certificate to a valid user in the registry when certificates are used for authentication by the

Web or the Java clients.

 4. Remove the getUsers method.

 5. Change the signature of the getUsers(String) method to return a Result object and accept an

additional parameter (int). Change:

public List getUsers(String pattern)

to:

public Result getUsers(String pattern, int limit)

In your implementation, construct the Result object from the list of the users that is obtained from the

user registry (whose number is limited to the value of the limit parameter) and call the setHasMore

method on the Result object if the total number of users in the registry exceeds the limit value.

 6. Change the signature of the getUsersForGroup(String) method to return a Result object and accept

an additional parameter (int) and throw a new exception called NotImplementedException exception.

Change the following code:

public List getUsersForGroup(String groupName)

 throws CustomRegistryException,

 EntryNotFoundException {

to:

38 Securing applications and their environment

public Result getUsersForGroup(String groupSecurityName, int limit)

 throws NotImplementedException,

 EntryNotFoundException,

 CustomRegistryException {

In WebSphere Application Server Version 6.0.x and later, this method is not called directly by the

WebSphere Application Server security component. However, other components of WebSphere

Application Server, like the WebSphere Business Integration Server Foundation process

choreographer, use this method when staff assignments are modeled using groups. Because this

implementation is supported in WebSphere Application Server Version 6.0.x and later, it is

recommended that you change the implementation similar to the getUsers method as explained in

step 5.

 7. Remove the getUniqueUserIds(String) method.

 8. Remove the getGroups method.

 9. Change the signature of the getGroups(String) method to return a Result object and accept an

additional parameter (int). Change the following code:

public List getGroups(String pattern)

to:

public Result getGroups(String pattern, int limit)

In your implementation, construct the Result object from the list of the groups that is obtained from

the user registry whose number is limited to the value of the limit parameter. Call the setHasMore

method on the Result object if the total number of groups in the registry exceeds the limit value.

10. Add the createCredential method. This method is not called at this time, so return as null.

public com.ibm.websphere.security.cred.WSCredential

 createCredential(String userSecurityName)

 throws CustomRegistryException,

 NotImplementedException,

 EntryNotFoundException {

 return null;

 }

The first and second lines of the previous code example are split onto two lines for illustrative

purposes only.

11. To build the WebSphere Application Server Version 6.0.x and later implementation, make sure you

have the sas.jar and the wssec.jar files in your class path.

To set the files in your class path, use the following code as a sample and substitute your

environment values for the variables that are used in the example:

%install_root%/java/bin/javac -classpath %WAS_HOME%/lib/wssec.jar;

%WAS_HOME%/lib/sas.jar FileRegistrySample.java

Type the previous lines as one continuous line.

To build the WebSphere Application Server Version 5 custom registry (CustomRegistry) in WebSphere

Application Server Version 6.0.x and later, only the sas.jar file is required.

12. Copy the implementation classes to the product class path.

The %install_root%/lib/ext directory is the preferred location.

13. Use the administrative console to set up the custom registry.

Follow the instructions in “Configuring standalone custom registries” on page 111 to set up the

custom registry, including the Ignore case for authorization option. Make sure that you add the

WAS_UseDisplayName properties if required.

WebSphere Application Server Version 4.x based custom user registry that implemented the old

com.ibm.websphere.security.CustomRegistry interface is migrated to the

com.ibm.websphere.security.UserRegistry interface.

Chapter 4. Setting up and enabling security 39

If you are enabling security, see “Enabling security” on page 51 to complete the remaining steps. When

completed, save the configuration and restart all the servers. Try accessing some Java 2 Platform,

Enterprise Edition (J2EE) resources to verify that the custom registry migration is successful.

Migrating trust association interceptors

Use this topic to manually migrate trust associations.

Note: Data sources are not supported for use within a Trust Association Interceptor (TAI). Data sources

are intended for use within J2EE applications and designed to operate within the EJB and Web

containers. Trust Association Interceptors do not run within a container, and while data sources may

function in the TAI environment, they are untested and not guaranteed to function properly.

The following topics are addressed in this document:

v Changes to the product-provided trust association interceptors

v Migrating product-provided trust association interceptors

v Changes to the custom trust association interceptors

v Migrating custom trust association interceptors

Changes to the product-provided trust association interceptors

For the product-provided implementation for the WebSEAL server, a new optional

com.ibm.websphere.security.webseal.ignoreProxy property is added. If this property is set to true or yes,

the implementation does not check for the proxy host names and the proxy ports to match any of the host

names and ports that are listed in the com.ibm.websphere.security.webseal.hostnames and the

com.ibm.websphere.security.webseal.ports property respectively. For example, if the VIA header contains

the following information:

HTTP/1.1 Fred (Proxy), 1.1 Sam (Apache/1.1),

HTTP/1.1 webseal1:7002, 1.1 webseal2:7001

and the com.ibm.websphere.security.webseal.ignoreProxy property is set to true or yes, the host name

Fred, is not used when matching the host names. By default, this property is not set, which implies that

any proxy host names and ports that are expected in the VIA header are listed in the host names and the

ports properties to satisfy the isTargetInterceptor method.

The previous VIA header information was split onto two lines for illustrative purposes only.

For more information about the com.ibm.websphere.security.webseal.ignoreProxy property, see the article

in the information center on configuring single signon using trust association interceptor ++.

Migrating product-provided trust association interceptors

The properties that are located in the webseal.properties and trustedserver.properties files are not

migrated from previous versions of WebSphere Application Server. You must migrate the appropriate

properties to WebSphere Application Server Version 6.0.x using the trust association panels in the

administrative console. For more information, see Configuring trust association interceptors.

Changes to the custom trust association interceptors

If the custom interceptor extends the

com.ibm.websphere.security.WebSphereBaseTrustAssociationInterceptor property, implement the following

new method to initialize the interceptor:

public int init (java.util.Properties props);

40 Securing applications and their environment

WebSphere Application Server checks the return status before using the trust association implementation.

Zero (0) is the default value for indicating that the interceptor is successfully initialized.

However, if a previous implementation of the trust association interceptor returns a different error status,

you can either change your implementation to match the expectations or make one of the following

changes:

Method 1:

Add the com.ibm.websphere.security.trustassociation.initStatus property in the trust association

interceptor custom properties. Set the property to the value that indicates the interceptor is

successfully initialized. All of the other possible values imply failure. In case of failure, the

corresponding trust association interceptor is not used.

Method 2:

Add the com.ibm.websphere.security.trustassociation.ignoreInitStatus property in the trust

association interceptor custom properties. Set the value of this property to true, which tells

WebSphere Application Server to ignore the status of this method. If you add this property to the

custom properties, WebSphere Application Server does not check the return status, which is

similar to previous versions of WebSphere Application Server.

The public int init (java.util.Properties props method replaces the public int init (String propsFile) method.

The init(Properties) method accepts a java.util.Properties object, which contains the set of properties that

is required to initialize the interceptor. All of the properties set for an interceptor are sent to this method.

The interceptor can then use these properties to initialize itself. For example, in the product-provided

implementation for the WebSEAL server, this method reads the hosts and ports so that a request coming

in can be verified to come from trusted hosts and ports. A return value of Zero (0) implies that the

interceptor initialization is successful. Any other value implies that the initialization is not successful and

the interceptor is not used.

The init(String) method still works if you want to use it instead of implementing the init(Properties) method.

The only requirement is that you enter the file name containing the custom trust association properties

using the Custom Properties link of the interceptor in the administrative console or by using scripts. You

can enter the property using either of the following methods. The first method is used for backward

compatibility with previous versions of WebSphere Application Server.

Method 1:

The same property names used in the previous release are used to obtain the file name. The file

name is obtained by concatenating .config to the

com.ibm.websphere.security.trustassociation.types property value. If the myTAI.properties file is

located in the app_server_root/properties directory, set the following properties:

v com.ibm.websphere.security.trustassociation.types = myTAItype

v com.ibm.websphere.security.trustassociation.myTAItype.config = app_server_root/
properties/myTAI.properties

Method 2:

You can set the com.ibm.websphere.security.trustassociation.initPropsFile property in the trust

association custom properties to the location of the file. For example, set the following property:

com.ibm.websphere.security.trustassociation.initPropsFile=

app_server_root/properties/myTAI.properties

The previous line of code is split into two lines for illustrative purposes only. Type as one

continuous line.

However, it is highly recommended that your implementation be changed to implement the init(Properties)

method instead of relying on the init (String propsfile) method.

Migrating custom trust association interceptors

Chapter 4. Setting up and enabling security 41

The trust associations from previous versions of WebSphere Application Server are not automatically

migrated to WebSphere Application Server Version 6.0.x and later. You can manually migrate these trust

associations using the following steps:

1. Recompile the implementation file, if necessary.

For more information, refer to the ″Changes to the custom trust association interceptors″ section

previously discussed in this document.

To recompile the implementation file, type the following code:

%WAS_HOME%/java/bin/javac -classpath %WAS_HOME%/lib/wssec.jar;

%WAS_HOME%/lib/j2ee.jar your_implementation_file.java

The previous line of code is broken into two lines for illustrative purposes only. Type the code as one

continuous line.

2. Copy the custom trust association interceptor class files to a location in your product class path. Copy

these class files into the %WAS_HOME%/lib/ext directory.

3. Start WebSphere Application Server.

4. Enable security to use the trust association interceptor. The properties that are located in your custom

trust association properties file and in the trustedserver.properties file are not migrated from

previous versions of WebSphere Application Server. You must migrate the appropriate properties to

WebSphere Application Server Version 6.0.x and later using the trust association panels in the

administrative console.

For more information, see Configuring trust association interceptors.

Migrating Common Object Request Broker Architecture programmatic

login to Java Authentication and Authorization Service (CORBA and

JAAS)

Use this topic as an example of how to perform programmatic login using the CORBA-based

programmatic login APIs.

This document outlines the deprecated Common Object Request Broker Architecture (CORBA)

programmatic login APIs and the alternatives that are provided by JAAS. WebSphere Application Server

fully supports the Java Authentication and Authorization Service (JAAS) as programmatic login application

programming interfaces (API). Refer to the Securing applications and their environment PDF for more

details on JAAS support.

The following list includes the deprecated CORBA programmatic login APIs.

v ${user.install.root}/installedApps/sampleApp.ear/default_app.war/WEB-INF/classes/
LoginHelper.java.

v ${user.install.root}/installedApps/sampleApp.ear/default_app.war/WEB-INF/classes/
ServerSideAuthenticator.java.

v org.omg.SecurityLevel2.Credentials. This API is included with the product, but it is not recommended

that you use the API.

The APIs that are provided in WebSphere Application Server are a combination of standard JAAS APIs

and a product implementation of standard JAAS interfaces.

The following information is only a summary; refer to the JAAS documentation for your platform located at:

http://www.ibm.com/developerworks/java/jdk/security/ .

v Programmatic login APIs:

– javax.security.auth.login.LoginContext

– javax.security.auth.callback.CallbackHandler interface: The WebSphere Application Server product

provides the following implementation of the javax.security.auth.callback.CallbackHandler interface:

com.ibm.websphere.security.auth.callback.WSCallbackHandlerImpl

Provides a non-prompt CallbackHandler handler when the application pushes basic

42 Securing applications and their environment

http://www.ibm.com/developerworks/java/jdk/security/

authentication data (user ID, password, and security realm) or token data to product login

modules. This API is recommended for server-side login.

com.ibm.websphere.security.auth.callback.WSGUICallbackHandlerImpl

Provides a login prompt CallbackHandler handler to gather basic authentication data (user

ID, password, and security realm). This API is recommended for client-side login.

 If this API is used on the server side, the server is blocked for input.
– javax.security.auth.callback.Callback interface:

javax.security.auth.callback.NameCallback

Provided by JAAS to pass the user name to the LoginModules interface.

javax.security.auth.callback.PasswordCallback

Provided by JAAS to pass the password to the LoginModules interface.

com.ibm.websphere.security.auth.callback.WSCredTokenCallbackImpl

Provided by the product to perform a token-based login. With this API, an application can

pass a token-byte array to the LoginModules interface.
– javax.security.auth.spi.LoginModule interface

WebSphere Application Server provides a LoginModules implementation for client and server-side

login. Refer to the Securing applications and their environment PDF for details.
v javax.security.Subject:

com.ibm.websphere.security.auth.WSSubject

An extension provided by the product to invoke remote J2EE resources using the credentials in

the javax.security.Subject

com.ibm.websphere.security.cred.WSCredential

After a successful JAAS login with the WebSphere Application Server LoginModules interfaces,

a com.ibm.websphere.security.cred.WSCredential credential is created and stored in the

Subject.

com.ibm.websphere.security.auth.WSPrincipal

An authenticated principal that is created and stored in a Subject that is authenticated by the

WebSphere Application Server LoginModules interface.

1. Use the following as an example of how to perform programmatic login using the CORBA-based

programmatic login APIs: The CORBA-based programmatic login APIs are replaced by JAAS login.

Note: The LoginHelper application programming interface (API) that is used in the following example

is deprecated in WebSphere Application Server Version 6.1 and will be removed in a future

release. It is recommended that you use the JAAS programmatic login APIs that are shown in

the next step.
public class TestClient {

...

private void performLogin() {

// Get the ID and password of the user.

String userid = customGetUserid();

String password = customGetPassword();

// Create a new security context to hold authentication data.

LoginHelper loginHelper = new LoginHelper();

try {

// Provide the ID and password of the user for authentication.

org.omg.SecurityLevel2.Credentials credentials =

loginHelper.login(userid, password);

// Use the new credentials for all future invocations.

loginHelper.setInvocationCredentials(credentials);

// Retrieve the name of the user from the credentials

// so we can tell the user that login succeeded.

String username = loginHelper.getUserName(credentials);

System.out.println("Security context set for user: "+username);

} catch (org.omg.SecurityLevel2.LoginFailed e) {

// Handle the LoginFailed exception.

Chapter 4. Setting up and enabling security 43

}

}

...

}

2. Use the following example to migrate the CORBA-based programmatic login APIs to the JAAS

programmatic login APIs.

The following example assumes that the application code is granted for the required Java 2 security

permissions. For more information, see the Securing applications and their environment PDF and the

JAAS documentation located at http://www.ibm.com/developerworks/java/jdk/security/.

public class TestClient {

...

private void performLogin() {

// Create a new JAAS LoginContext.

javax.security.auth.login.LoginContext lc = null;

try {

// Use GUI prompt to gather the BasicAuth data.

lc = new javax.security.auth.login.LoginContext("WSLogin",

new com.ibm.websphere.security.auth.callback.WSGUICallbackHandlerImpl());

// create a LoginContext and specify a CallbackHandler implementation

// CallbackHandler implementation determine how authentication data is collected

// in this case, the authentication date is collected by login prompt

// and pass to the authentication mechanism implemented by the LoginModule.

} catch (javax.security.auth.login.LoginException e) {

System.err.println("ERROR: failed to instantiate a LoginContext and the exception: "

+ e.getMessage());

e.printStackTrace();

// may be javax.security.auth.AuthPermission "createLoginContext" is not granted

// to the application, or the JAAS Login Configuration is not defined.

}

if (lc != null)

try {

lc.login(); // perform login

javax.security.auth.Subject s = lc.getSubject();

// get the authenticated subject

// Invoke a J2EE resources using the authenticated subject

com.ibm.websphere.security.auth.WSSubject.doAs(s,

new java.security.PrivilegedAction() {

public Object run() {

try {

bankAccount.deposit(100.00); // where bankAccount is an protected EJB

} catch (Exception e) {

System.out.println("ERROR: error while accessing EJB resource, exception: "

+ e.getMessage());

e.printStackTrace();

}

return null;

}

}

);

// Retrieve the name of the principal from the Subject

// so we can tell the user that login succeeded,

// should only be one WSPrincipal.

java.util.Set ps =

s.getPrincipals(com.ibm.websphere.security.auth.WSPrincipal.class);

java.util.Iterator it = ps.iterator();

while (it.hasNext()) {

com.ibm.websphere.security.auth.WSPrincipal p =

(com.ibm.websphere.security.auth.WSPrincipal) it.next();

System.out.println("Principal: " + p.getName());

}

} catch (javax.security.auth.login.LoginException e) {

System.err.println("ERROR: login failed with exception: " + e.getMessage());

e.printStackTrace();

// login failed, might want to provide relogin logic

44 Securing applications and their environment

http://www.ibm.com/developerworks/java/jdk/security/

}

}

...

}

Migrating from the CustomLoginServlet class to servlet filters

Use this topic to allow migration in an application that uses form-based login and servlet filters without the

use of the CustomLoginServlet class.

The CustomLoginServlet class is deprecated in WebSphere Application Server Version 5. Those

applications using the CustomLoginServlet class to perform authentication now need to use form-based

login. Using the form-based login mechanism, you can control the look and feel of the login screen. In

form-based login, a login page is specified and displays when retrieving the user ID and password

information. You also can specify an error page that displays when authentication fails.

If login and error pages are not enough to implement the CustomLoginServlet class, use servlet filters.

Servlet filters can dynamically intercept requests and responses to transform or use the information that is

contained in the requests or responses. One or more servlet filters attach to a servlet or a group of

servlets. Servlet filters also can attach to JavaServer Pages (JSP) files and HTML pages. All the attached

servlet filters are called before invoking the servlet.

Both form-based login and servlet filters are supported by any Servlet 2.3 specification-compliant Web

container. A form login servlet performs the authentication and servlet filters can perform additional

authentication, auditing, or logging tasks.

To perform pre-login and post-login actions using servlet filters, configure these servlet filters for either

form login page or for /j_security_check URL. The j_security_check is posted by the form login page with

the j_username parameter that contains the user name and the j_password parameter that contains the

password. A servlet filter can use user name and password information to perform more authentication or

meet other special needs.

1. Develop a form login page and error page for the application.

Refer to the Securing applications and their environment PDF for details.

2. Configure the form login page and the error page for the application as described in .

Refer to the Securing applications and their environment PDF for details.

3. Develop servlet filters if additional processing is required before and after form login authentication.

Refer to the Securing applications and their environment PDF for details.

4. Configure the servlet filters that are developed in the previous step for either the form login page URL

or for the /j_security_check URL. Use an assembly tool or development tools like Rational Application

Developer to configure filters. After configuring the servlet filters, the web-xml file contains two stanzas.

The first stanza contains the servlet filter configuration, the servlet filter, and its implementation class.

The second stanza contains the filter mapping section and a mapping of the servlet filter to the URL.

For more information, see the Securing applications and their environment PDF.

This migration results in an application that uses form-based login and servlet filters without the use of the

CustomLoginServlet class.

The new application uses form-based login and servlet filters to replace the CustomLoginServlet class.

Servlet filters also are used to perform additional authentication, auditing, and logging.

Migrating Java 2 security policy

Use this topic for guidance pertaining to migrating Java 2 security policy.

Previous WebSphere Application Server releases

Chapter 4. Setting up and enabling security 45

WebSphere Application Server uses the Java 2 security manager in the server runtime to prevent

enterprise applications from calling the System.exit and the System.setSecurityManager methods. These

two Java application programming interfaces (API) have undesirable consequences if called by enterprise

applications. The System.exit API, for example, causes the Java virtual machine (application server

process) to exit prematurely, which is not a beneficial operation for an application server.

To support Java 2 security properly, all the server runtime must be marked as privileged (with

doPrivileged API calls inserted in the correct places), and identify the default permission sets or policy.

Application code is not privileged and subject to the permissions that are defined in the policy files. The

doPrivileged instrumentation is important and necessary to support Java 2 security. Without it, the

application code must be granted the permissions that are required by the server runtime. This situation is

due to the design and algorithm that is used by Java 2 security to enforce permission checks. Refer to the

Java 2 security check permission algorithm.

The following two permissions are enforced by the Java 2 security manager (hard coded) for WebSphere

Application Server:

v java.lang.RuntimePermission(exitVM)

v java.lang.RuntimePermission(setSecurityManager)

Application code is denied access to these permissions regardless of what is in the Java 2 security policy.

However, the server runtime is granted these permissions. All the other permission checks are not

enforced.

Only two permissions are supported:

v java.net.SocketPermission

v java.net.NetPermission

However, not all the product server runtime is properly marked as privileged. You must grant the

application code all the other permissions besides the two listed previously or the enterprise application

can potentially fail to run. This Java 2 security policy for enterprise applications is liberal.

What changed

Java 2 Security is fully supported in WebSphere Application Server, which means that all permissions are

enforced. The default Java 2 security policy for an enterprise application is the recommended permission

set defined by the Java 2 Platform, Enterprise Edition (J2EE) Version 1.4 specification. Refer to the

profile_root/config/cells/cell_name/nodes/node_name/app.policy file for the default Java 2 security

policy that is granted to enterprise applications. This policy is a much more stringent compared to previous

releases.

All policy is declarative. The product security manager honors all policy that is declared in the policy files.

There is an exception to this rule: enterprise applications are denied access to permissions that are

declared in the profile_root/config/cells/cell_name/filter.policy file.

Note: The default Java 2 security policy for enterprise applications is much more stringent and all the

permissions are enforced in WebSphere Application Server Version 6.0.x and later. The security

policy might fail because the application code does not have the necessary permissions granted

where system resources, such as file I/O, can be programmatically accessed and are now subject

to the permission checking.

In application code, do not use the setSecurityManager permission to set a security manager. When an

application uses the setSecurityManager permission, there is a conflict with the internal security manager

within WebSphere Application Server. If you must set a security manager in an application for RMI

purposes, you also must enable the Use Java 2 security to restrict application access to local

resources option on the Secure administration, applications, and infrastructure page within the

WebSphere Application Server administrative console. WebSphere Application Server then registers a

46 Securing applications and their environment

security manager. The application code can verify that this security manager is registered by using

System.getSecurityManager() application programming interface (API).

Migrating system properties

The following system properties are used in previous releases in relation to Java 2 security:

v java.security.policy. The absolute path of the policy file (action required). This system property

contains both system permissions (permissions granted to the Java virtual machine (JVM) and the

product server runtime) and enterprise application permissions. Migrate the Java 2 security policy of the

enterprise application to WebSphere Application Server Version 6.0.x. For Java 2 security policy

migration, see the steps for migrating Java 2 security policy.

v enableJava2Security. Used to enable Java 2 security enforcement (no action required). This system

property is deprecated; a flag in the WebSphere configuration application programming interface (API) is

used to control whether to enabled Java 2 security. Enable this option through the administrative

console.

v was.home. Expanded to the installation directory of WebSphere Application Server (action might be

required). This system property is deprecated; superseded by the ${user.install.root} and

${was.install.root} properties. If the directory contains instance-specific data then ${user.install.root} is

used; otherwise ${was.install.root} is used. Use these properties interchangeably for the WebSphere

Application Server or the Network Deployment environments. See the steps for migrating Java 2

security policy.

Migrating the Java 2 Security Policy

No easy way exists to migrate the Java policy file to WebSphere Application Server Version 6.0.x and later

automatically because of a mixture of system permissions and application permissions in the same policy

file. Manually copy the Java 2 security policy for enterprise applications to a was.policy or app.policy file.

However, migrating the Java 2 security policy to a was.policy file is preferable because symbols or

relative code base is used instead of an absolute code base. This process has many advantages. Grant

the permissions that are defined in the was.policy to the specific enterprise application only, while

permissions in the app.policy file apply to all the enterprise applications that run on the node where the

app.policy file belongs.

Refer to the Securing applications and their environment PDF for more details on policy management.

The following example illustrates the migration of a Java 2 security policy from a previous release. The

contents include the Java 2 security policy file for the app1.ear enterprise application and the system

permissions, which are permissions that are granted to the Java virtual machine (JVM) and the product

server runtime.

The default location for the Java 2 security policy file is profile_root/properties/java.policy. Default

permissions are omitted for clarity:

// For product Samples

 grant codeBase "file:${app_server_root}/installedApps/app1.ear/-" {

 permission java.security.SecurityPermission "printIdentity";

 permission java.io.FilePermission "${app_server_root}${/}temp${/}somefile.txt",

 "read";

 };

For clarity of illustration, all the permissions are migrated as the application level permissions in this

example. However, you can grant permissions at a more granular level at the component level (Web,

enterprise beans, connector or utility Java archive (JAR) component level) or you can grant permissions to

a particular component.

1. Ensure that Java 2 security is disabled on the application server.

2. Create a new was.policy file, if the file is not present, or update the was.policy file for migrated

applications in the configuration repository with the following contents:

Chapter 4. Setting up and enabling security 47

grant codeBase "file:${application}" {

 permission java.security.SecurityPermission "printIdentity";

 permission java.io.FilePermission "

 ${user.install.root}${/}temp${/}somefile.txt", "read";

 };

The third and fourth lines in the previous code sample are presented on two lines for illustrative

purposes only.

The was.policy file is located in the profile_root/config/cells/cell_name/applications/app.ear/
deployments/app/META-INF/ directory.

3. Use an assembly tool to attach the was.policy file to the enterprise archive (EAR) file.

You also can use an assembly tool to validate the contents of the was.policy file. For more

information, see the Securing applications and their environment PDF.

4. Validate that the enterprise application does not require additional permissions to the migrated Java 2

security permissions and the default permissions set declared in the ${user.install.root}/config/
cells/cell_name/nodes/node_name/app.policy file. This validation requires code review, code

inspection, application documentation review, and sandbox testing of migrated enterprise applications

with Java 2 security enabled in a preproduction environment. Refer to developer kit APIs protected by

Java 2 security for information about which APIs are protected by Java 2 security. If you use third-party

libraries, consult the vendor documentation for APIs that are protected by Java 2 security. Verify that

the application is granted all the required permissions, or it might fail to run when Java 2 security is

enabled.

5. Perform preproduction testing of the migrated enterprise application with Java 2 security enabled.

Enable trace for the WebSphere Application Server Java 2 security manager in a preproduction testing

environment with the following trace string: com.ibm.ws.security.core.SecurityManager=all=enabled.

This trace function can be helpful in debugging the AccessControlException exception that is created

when an application is not granted the required permission or some system code is not properly

marked as privileged. The trace dumps the stack trace and permissions that are granted to the classes

on the call stack when the exception is created.

For more information, see the Securing applications and their environment PDF.

Note: Because the Java 2 security policy is much more stringent compared with previous releases,

the administrator or deployer must review their enterprise applications to see if extra

permissions are required before enabling Java 2 security. If the enterprise applications are not

granted the required permissions, they fail to run.

Preparing for security at installation time

Complete the following tasks to implement security before, during, and after installing WebSphere

Application Server.

1. Secure your environment before installation. This step describes how to perform WebSphere

Application Server installation with proper authority on different platforms. For more information refer to

“Securing your environment before installation” on page 49.

2. Prepare the operating system for installation of WebSphere Application Server. This step describes

how to prepare the different operating systems for installation of WebSphere Application Server. For

more information, see Preparing the operating system for product installation.

3. Migrate security configurations from previous releases during installation, when you are prompted to do

so. This step describes how to migrate security configurations from a previous release of WebSphere

Application Server to WebSphere Application Server Version 6.1.

For more information, see Migrating product configurations.

4. Optional: You can create a profile during install time. If you elect to do so, administrative security is

enabled for that profile ″out of the box″ by default. A panel is displayed during profile creation time and

enabling administrative security is selected by default. If you elect to keep this as the default, you

48 Securing applications and their environment

must supply an administrative user ID and password. This user ID is created in a federated repository,

which is the default user registry when enabling administrative security at profile creation time.

5. Secure your environment after installation. This step provides information on how to protect password

information after you install WebSphere Application Server. For more information, see “Securing your

environment after installation.”

Securing your environment before installation

The following instructions explain how to perform a product installation with proper authority on UNIX

platforms, Linux platforms, Solaris operating environments, and Windows platforms. These instructions

apply when you plan to use the local operating system as your user registry.

UNIX platforms:

1. Log on as root and verify that the umask value is 022.

2. To verify that the umask value is 022, run the umask command.

3. To set up the umask value as 022, run the umask 022 command.

4. On Linux platforms or Solaris operating environments, make sure that the /etc directory contains a

shadow password file. The shadow password file is named shadow and is in the /etc directory. If the

shadow password file does not exist, an error occurs after enabling administrative security and

configuring the user registry as local operating system.

5. To create the shadow file, run the pwconv command (without any parameters). This command creates

an /etc/shadow file from the /etc/passwd file. After creating the shadow file, you can configure local

operating system security.

Windows platforms:

On Windows platforms, the logon user must be a member of the administrator group with the rights of Log

on as a service.

To add the rights to a user on a Windows platform:

1. Click Start > Programs > Administrative Tools > Local Security Policy (for domain configuration,

select Domain Security Policies, instead).

2. From the Local Security Settings Panel, click Local Policies > User Rights Assignment and add the

following rights to the user ID:

v Log on as a service

Securing your environment after installation

WebSphere Application Server depends on several configuration files that are created during installation.

These files contain password information and need protection. Although the files are protected to a limited

degree during installation, this basic level of protection is probably not sufficient for your site. Verify that

these files are protected in compliance with the policies of your site.

Note: A Kerberos keytab configuration file contains a list of keys that are analogous to user passwords. It

is important for hosts to protect their Kerberos keytab files by storing them on the local disk, which

makes them readable only by authorized users.

The files in the app_server_root/profiles/profile_name/config and app_server_root/profiles/
profile_name/properties , except for those in the following list, need protection. For example, give

permission to the user who logs onto the system for WebSphere Application Server primary administrative

tasks. Other users or groups, such as WebSphere Application Server console users and console groups

need permissions as well.

Chapter 4. Setting up and enabling security 49

The files in the app_server_root/profiles/profile_name/properties directory that should not be protected

are:

v TraceSettings.properties

v client.policy

v client_types.xml

v implfactory.properties

v sas.client.props

v sas.stdclient.properties

v sas.tools.properties

v soap.client.props

v wsadmin.properties

v wsjaas_client.conf

v sas.server.props

v server.policy

v ssl.client.props

v was.policy

v

Windows

Secure files on a Windows system:

1. Open the browser for a view of the files and directories on the machine.

2. Locate and right-click the file or the directory that you want to protect.

3. Click Properties.

4. Click the Security tab.

5. Remove the Everyone entry and any other user or group that you do not want to have access to the

file.

6. Add the users who can access the files with the proper permission.

v Secure files on UNIX systems. This procedure applies only to the ordinary UNIX file system. If your site

uses access-control lists, secure the files by using that mechanism. Any site-specific requirements can

affect the owner, group, and corresponding privileges; for example, on the AIX platform.

1. Go to the install_root directory and change the ownership of the directory configuration and

properties to the user who logs onto the system for WebSphere Application Server primary

administrative tasks. Run the following command: chown -R logon_name directory_name

Where:

– login_name is a specified user or group

– directory_name is the name of the directory that contains the files

It is recommended that you assign ownership of the files that contain password information to the

user who runs the application server. If more than one user runs the application server, provide

permission to the group in which the users are assigned in the user registry.

2. Set up the permission by running the following command: chmod -R 770 directory_name.

3. Go to the app_server_root/profiles/profile_name/properties directory and set the file

permissions. Set the access permissions for the following files as it pertains to your security

guidelines:

– TraceSettings.properties

– client.policy

– client_types.xml

– implfactory.properties

– sas.client.props

– sas.stdclient.properties

– sas.tools.properties

– soap.client.props

– wsadmin.properties

– wsjaas_client.conf

50 Securing applications and their environment

For example, you might issue the following command: chmod 770 file_name where file_name is the

name of the file listed previously in the install_root/profiles/profile_name/properties directory.

These files contain sensitive information such as passwords.

4. Create a group for WebSphere Application Server and put the users who perform full or partial

WebSphere Application Server administrative tasks in that group.

5. If you want to use WebSphere MQ as a Java Messaging Service (JMS) provider, restrict access to

the /var/mqm directories and log files used. Give write access to the user ID mqm or members of the

mqm user group only.

After securing your environment, only the users with permission can access the files. Failure to adequately

secure these files can lead to a breach of security in your WebSphere Application Server applications.

If failures occur that are caused by file accessing permissions, check the permission settings.

Enabling security

It is helpful to understand security from an infrastructure perspective so that you know the advantages of

different authentication mechanisms, user registries, authentication protocols, and so on. Picking the right

security components to meet your needs is a part of configuring security. The following sections help you

make these decisions.

Read the following article before continuing with the security configuration:

v “Administrative security” on page 54

v Security

After you understand the security components, you can proceed to configure security in WebSphere

Application Server.

Note: For WebSphere Application Server Version 6.1, administrative security is enabled by default

whenever a new profile is created, either during the initial install when you create a new profile or

during post-install when you use the profile creation tooling. You can decide not to enable

administrative security during profile creation time by instead enabling security post-profile creation

using the administrative console.

 1. Start the WebSphere Application Server administrative console.

If security is currently disabled, you are prompted for a user ID. Log in with any user ID. However, if

security is currently enabled, you are prompted for both a user ID and a password. Log in with a

predefined administrative user ID and password.

 2. Click Security > Secure administration, applications, and infrastructure. Use the Security

Configuration Wizard, which is now available in WebSphere Application Server, Version 6.1, or

configure security manually. The configuration order is not important. For more information on manual

configuration, see tsec_authusers.dita.

 3. Configure the user account repository. For more information, see “Selecting a registry or repository”

on page 87. On the Secure administration, applications, and infrastructure panel, you can configure

user account repositories such as federated repositories, local operating system, standalone

Lightweight Directory Access Protocol (LDAP) registry, and standalone custom registry.

Note: You can choose to specify either a server ID and password for interoperability or enable a

WebSphere Application Server 6.1 installation to automatically generate an internal server ID.

For more information about automatically generating server IDs, see “Local operating system

settings” on page 92.

One of the details common to all user registries or repositories is the Primary administrative user

name. This ID is a member of the chosen repository, but also has special privileges in WebSphere

Chapter 4. Setting up and enabling security 51

tsec_authusers.dita

Application Server. The privileges for this ID and the privileges that are associated with the

administrative role ID are the same. The Primary administrative user name can access all of the

protected administrative methods.

Windows

The ID must not be the same name as the machine name of your system because the

repository sometimes returns machine-specific information when querying a user of the same name.

In standalone LDAP registries, verify that the Primary administrative user name is a member of the

repository and not just the LDAP administrative role ID. The entry must be searchable.

The Primary administrative user name does not run WebSphere Application Server processes.

Rather, the process ID runs the WebSphere Application Server processes.

The process ID is determined by the way the process starts. For example, if you use a command line

to start processes, the user ID that is logged into the system is the process ID. If running as a

service, the user ID that is logged into the system is the user ID running the service. If you choose

the local operating system registry, the process ID requires special privileges to call the operating

system APIs. The process ID must have the following platform-specific privileges:

v

Windows

Act as Part of Operating System privileges

v Root privileges

 4. Select the Set as current option after you configure the user account repository. When you click

Apply and the Enable administrative security option is set, a verification occurs to see if an

administrative user ID has been configured and is present in the active user registry. The

administrative user ID can be specified at the active user registry panel or from the console users

link. If you do not configure an administrative ID for the active user registry, the validation fails.

 5. Optional: You can configure and change your External Authorization provider to either WebSphere

Authorization, SAF Authorization, or an external JACC provider. For more information, see and

“Enabling an external JACC provider” on page 354. To change the Authorization provider, click

Security > Secure Administration, applications, and infrastructure > External Authorization

providers.

 6. Configure the authentication mechanism.

Configure Lightweight Third-Party Authentication (LTPA), which is the default authentication

mechanism, on the Authentication mechanisms and expiration panel. LTPA credentials can be

forwarded to other machines. For security reasons, credential expire; however, you can configure the

expiration dates on the console. LTPA credentials enable browsers to visit different product servers,

which means you do not have to authenticate multiple times. For more information, see “Configuring

the Lightweight Third Party Authentication mechanism” on page 219

Note: You can configure Simple WebSphere Authentication Mechanism (SWAM) as your

authentication mechanism. However, SWAM is deprecated in WebSphere Application Server

Version 6.1 and will be removed in a future release. SWAM credentials are not forwardable to

other machines and for that reason do not expire. To use SWAM, select the Use SWAM-no

authenticated communication between servers option.

 7. Optional: Import and export the LTPA keys for cross-cell single Sign-on (SSO) between cells. For

more information, see the following articles:

v “Exporting Lightweight Third Party Authentication keys” on page 224.

v “Importing Lightweight Third Party Authentication keys” on page 224

 8. Configure the authentication protocol for special security requirements from Java clients, if needed.

You can configure Common Secure Interoperability Version 2 (CSIv2) through links on the Secure

administration, applications, and infrastructure panel. The Security Authentication Service (SAS)

protocol is provided for backwards compatibility with previous product releases, but is deprecated.

Links to the SAS protocol panels display on the Secure administration, applications, and infrastructure

panel if your environment contains servers that use previous versions of WebSphere Application

Server and support the SAS protocol. For details on configuring CSIv2 or SAS, see the article,

“Configuring RMI over IIOP” on page 286.

52 Securing applications and their environment

Important: SAS is supported only between Version 6.0.x and previous version servers that have

been federated in a Version 6.1 cell.

 Attention:

V6.0.x

IBM no longer ships or supports the Secure Authentication Service (SAS)

IIOP security protocol. It is recommended that you use the Common Secure Interoperability version 2

(CSIv2) protocol.

 9. Modify or a create a default Secure Sockets Layer (SSL) configuration. This action protects the

integrity of the messages sent across the Internet. The product provides a single location where you

can specify SSL configurations that the various WebSphere Application Server features that use SSL

can utilize, including the LDAP registry, Web container and the authentication protocol (CSIv2 and

SAS). For more information, see “Creating a Secure Sockets Layer configuration” on page 417. After

you modify a configuration or create a new configuration, specify it on the SSL configurations panel.

To get to the SSL configurations panel, complete the following steps:

a. Click Security > SSL certificate and key management.

b. Under Configuration settings, click Manage endpoint security configurations >

configuration_name.

c. Under Related items, click SSL configurations.

You can either edit the DefaultSSLConfig file or create a new SSL configuration with a new alias

name. If you create a new alias name for your new keystore and truststore files, change every

location that references the DefaultSSLConfig SSL configuration alias. The following list specifies the

locations of where the SSL configuration repertoire aliases are used in the WebSphere Application

Server configuration.

For any transports that use the new network input/output channel chains, including HTTP and Java

Message Service (JMS), you can modify the SSL configuration repertoire aliases in the following

locations for each server:

v Click Server > Application server > server_name. Under Communications, click Ports. Locate a

transport chain where SSL is enabled and click View associated transports. Click

transport_channel_name. Under Transport Channels, click SSL Inbound Channel (SSL_2).

For the Object Request Broker (ORB) SSL transports, you can modify the SSL configuration

repertoire aliases in the following locations. These configurations are for the server-level for

WebSphere Application Server and WebSphere Application Server Express and the cell level for

WebSphere Application Server Network Deployment.

v Click Security > Secure administration, applications, and infrastructure. Under RMI/IIOP

security, click CSIv2 inbound transport.

v Click Security > Secure administration, applications, and infrastructure. Under RMI/IIOP

security, click CSIv2 outbound transport.

v

V6.0.x

Click Security > Secure administration, applications, and infrastructure. Under

RMI/IIOP security, click SAS inbound transport

v

V6.0.x

Click Security > Secure administration, applications, and infrastructure. Under

RMI/IIOP security, click SAS outbound transport

For the SOAP Java Management Extensions (JMX) administrative transports, you can modify the

SSL configurations repertoire aliases by clicking Servers > Application servers > server_name.

Under Server infrastructure, click Administration > Administration services. Under Additional

properties, click JMX connectors > SOAPConnector. Under Additional properties, click Custom

properties. If you want to point the sslConfig property to a new alias, click New and type sslConfig in

the name field, and its value in the Value field.

For the Lightweight Directory Access Protocol (LDAP) SSL transport, you can modify the SSL

configuration repertoire aliases by clicking Security > Secure administration, applications, and

infrastructure. Under User account repository, click the Available realm definitions drop-down list,

and select Standalone LDAP registry.

Chapter 4. Setting up and enabling security 53

10. Click Security > Secure administration, applications, and infrastructure to configure the rest of

the security settings and enable security. For information about these settings, see “Secure

administration, applications, and infrastructure settings” on page 76.

11. Validate the completed security configuration by clicking OK or Apply. If problems occur, they display

at the top of the console page in red type.

12. If there are no validation problems, click Save to save the settings to a file that the server uses when

it restarts. Saving writes the settings to the configuration repository.

Important: If you do not click Apply or OK in the Secure administration, applications, and

infrastructure panel before you click Save, your changes are not written to the repository.

The server must be restarted for any changes to take effect when you start the

administrative console.

13. Start the WebSphere Application Server administrative console.

If security is currently disabled, log in with any user ID. If security is currently enabled, log in with a

predefined administrative ID and password. This ID is typically the server user ID that is specified

when you configured the user registry.

Administrative security

Administrative security determines whether security is used at all, the type of registry against which

authentication takes place, and other values, many of which act as defaults. Proper planning is required

because incorrectly enabling administrative security can lock you out of the administrative console or

cause the server to end abnormally.

Administrative security can be thought of as a ″big switch″ that activates a wide variety of security settings

for WebSphere Application Server. Values for these settings can be specified, but they will not take effect

until administrative security is activated. The settings include the authentication of users, the use of Secure

Sockets Layer (SSL), and the choice of user account repository. In particular, application security, including

authentication and role-based authorization, is not enforced unless administrative security is active.

Administrative security is enabled by default.

Administrative security represents the security configuration that is effective for the entire security domain.

A security domain consists of all of the servers that are configured with the same user registry realm

name. In some cases, the realm can be the machine name of a local operating system registry. In this

case, all of the application servers must reside on the same physical machine. In other cases, the realm

can be the machine name of a standalone Lightweight Directory Access Protocol (LDAP) registry.

The basic requirement for a security domain is that the access ID that is returned by the registry or

repository from one server within the security domain is the same access ID as that returned from the

registry or repository on any other server within the same security domain. The access ID is the unique

identification of a user and is used during authorization to determine if access is permitted to the resource.

The administrative security configuration applies to every server within the security domain.

Why turn on administrative security?

Turning on administrative security activates the settings that protect your server from unauthorized users.

Administrative security is enabled by default during the profile creation time. There might be some

environments where no security is needed such as a development system. On these systems you can

elect to disable administrative security. However, in most environments you should keep unauthorized

users from accessing the administrative console and your business applications. Administrative security

must be enabled to restrict access.

54 Securing applications and their environment

What does administrative security protect?

The configuration of administrative security for a security domain involves configuring the following

technologies:

v Authentication of HTTP clients

v Authentication of IIOP clients

v Administrative console security

v Naming security

v Use of SSL transports

v Role-based authorization checks of servlets, enterprise beans, and mbeans

v Propagation of identities (RunAs)

v The common user registry

v The authentication mechanism

v Other security information that defines the behavior of a security domain includes:

– The authentication protocol (Remote Method Invocation over the Internet Inter-ORB Protocol

(RMI/IIOP) security)

– Other miscellaneous attributes

Fine-grained administrative security

In releases prior to WebSphere Application Server version 6.1, users granted administrative roles could

administer all of the resource instances under the cell. WebSphere Application Server is now more

fine-grained, meaning that access can be granted to each user per resource instance.

For example, users can be granted configurator access to a specific instance of a resource only (an

application, an application server or a node). Users cannot access any other resources outside of the

resources assigned to them. The administrative roles are now per resource instance rather than to the

entire cell. However, there is a cell-wide authorization group for backward compatibility. Users assigned to

administrative roles in the cell-wide authorization group can still access all of the resources within the cell.

To achieve this instance-based security or fine-grained security, resources that require the same privileges

are placed in a group called the administrative authorization group or authorization group. Users can be

granted access to the authorization group by assigning to them the required administrative role.

Fine-grained administrative security can also be used in single-server environments. Various applications

in the single server can be grouped and placed in different authorization groups. Therefore, there are

different authorization constraints for different applications. Note that the server itself cannot be part of any

authorization group.

The AdminSecurityManager role is available for wsadmin users. When using wsadmin, users granted this

role can map users to administrative roles. Also, when fine grained admin security is used, users granted

this role can manage authorization groups. See “Administrative roles and naming service authorization” on

page 320 for detailed explanations of all administrative roles.

There are several administrative security commands that can be used to create authorization groups, map

resources to authorization groups, and to assign users to administrative roles within the authorization

groups. Following are some examples:

v Create a new authorization group:

$AdminTask createAuthorizationGroup {-authorizationGroupName authGroup1}

v Deleting an authorization group:

$AdminTask deleteAuthorizationGroup {-authorizationGroupName groupName}

v Add resources to an authorization group:

Chapter 4. Setting up and enabling security 55

$AdminTask addResourceToAuthorizationGroup

{-authorizationGroupName groupName -resourceName Application=app1}

v Remove resources from an authorization group:

$AdminTask removeResourceFromAuthorizationGroup

{-authorizationGroupName groupName -resourceName Application=app1}

v Add user IDs to roles in an authorization group:

$AdminTask mapUsersToAdminRole {-authorizationGroupName groupName

-roleName administrator -userids user1}

v Add group IDs to roles in an authorization group:

$AdminTask mapGroupsToAdminRole {-authorizationGroupName groupName

-roleName administrator -groupids group1}

v Remove user IDs from roles in an authorization group:

AdminTask removeUsersFromAdminRole {-authorizationGroupName

groupName -roleName administrator -userids user1}

v Remove group IDs from roles in an authorization group:

$AdminTask removeGroupsFromAdminRole {-authorizationGroupName

groupName -roleName administrator -groupids group1}

Resources that can be added to an authorization group

You can add only resource instances of the following types to an authorization group:

v Cell

v Node

v ServerCluster

v Server

v Application

v NodeGroup

If a resource instance is not one of the types listed above, its parent resource will be used.

A resource instance can only belong to one authorization group. However, there is a containment

relationship among resource instances. If a parent resource belongs to a different authorization group than

that of its child resource instance, the child resource instance implicitly will belong to multiple authorization

groups. You cannot add the same resource instance to more than one authorization group.

The following diagram shows the containment relationship among resource instances:

Cell

NodeGroup

Node ServerCluster Application AuthorizationGroup

Server

Contains

Contains Contains Contains

Contains

Contains Contains

The privileges required for actions on resource instances depend on two factors:

v The authorization group of the administrative resource instance. If a user is granted access to an

authorization group, all of the resource instances in that group will be included.

56 Securing applications and their environment

v The containment relationship of the resource instance. If a user is granted access to a parent resource

instance, all of the children resource instances will be included.

The privileges required to access various administrative resource instances are shown in the following

table:

 Resource Action Required roles

Server Start, stop, runtime operations Server-operator, node-operator,

cell-operator

Server New, delete Node-configurator, cell-configurator

Server Edit configuration Server-configurator, node-configurator,

cell-configurator

Server View configuration, runtime status Server-monitor, node-monitor, cell-monitor

Node Restart, stop, sync Node-operator, Cell-operator

Node Add, delete Cell-configurator

Node Edit configuration Node-configurator, cell-configurator

Node View configuration, runtime status Node-monitor, cell-monitor

Cluster Start, stop, runtime operations Cluster-operator, cell-operator

Cluster New, delete Cell-configurator

Cluster Edit configuration Cluster-configurator, cell-configurator

Cluster View configuration, runtime status Cluster-monitor, cell-monitor

Cluster member Start, stop, runtime operations Server-operator, cluster-operator,

node-operator, cell-operator

Cluster member New, delete Node-configurator, cell-configurator

Cluster member Edit configuration Server-configurator, cluster-configurator,

node-configurator, cell-configurator

Cluster member View configuration, runtime status Server-monitor, cluster-monitor,

node-monitor, cell-monitor

Application Start, stop, runtime operations Application-deployer, cell-operator

Application Install, uninstall Cell-configurator application-deployer

Application Edit configuration Application-deployer, cell-configurator

Application View configuration, runtime status Application-monitor, cell-monitor

Node, cluster Add, delete Cell-configurator

The server-operator role is the operator role of the authorization group to which the server instance is part

of. Similarly, the node-operator role is in the operator role of the authorization group to which the node

instance is part of.

Fine-grained administrative security is only available for wsadmin users. It is not available for

administrative console users. To log in to the administrative console, a user should be granted a monitor

role at the cell level at minimum. However, to login using wsadmin, a user should be granted a monitor

role for any authorization group.

If you log in to the administrative console as a cell-level administrator, operator, monitor or configurator,

you can perform all operations. However, if you want to use additional administrator roles (such as

deployer or AdminSecurityManager), or give users access only to specific authorization groups or

permissions to non-cell authorizations groups, you must use wsadmin.

Chapter 4. Setting up and enabling security 57

Fine-grained administrative security in heterogeneous and single-server

environments

Fine-grained administrative security can be used in heterogeneous or single-server environments with

some restrictions.

Fine-grained administrative security in a heterogeneous environment

Fine-grained administrative security in a heterogeneous environment has the following restrictions:

v Only nodes that are running WebSphere Application Server Version 6.1 can be part of an administrative

authorization group.

v Only servers that are running in a WebSphere Application Server Version 6.1 node can be part of an

administrative authorization group.

v Only applications that are targeted on servers running on WebSphere Application Server Version 6.1

can be part of an administrative authorization group.

v If a cluster spans nodes of multiple releases, it cannot be part of an administrative authorization group.

v If a cluster spans nodes of multiple releases, none of its members can be part of an administrative

authorization group.

v If an application is targeted on a cluster that spans multiple releases, that application cannot be part of

an administrative authorization group.

Fine-grained administrative security in a single-server environment

You can also use fine-grained administrative security in a single-server environment. Various applications

in the single server can be grouped and placed in different authorization groups. Therefore, different

authorization constraints might exist for different applications.

Life cycle of fine-grained administrative resource

An administrative resource that was once part of an authorization group continues to be part of that

authorization group until one of the following events occurs:

v The administrative resource is removed from the authorization group. In this instance, the administrative

resource belongs to the cell-level authorization group.

v The administrative resource is removed from the configuration. In this instance, the administrative

resource does not exist in the configuration, but still exists in the authorization group. Remove this

administrative resource from the authorization group.

After the administrative resource is removed from the authorization group, the administrative authorizer

runtime must be notified by using the AuthorizationManager refreshAll MBean method.

The refreshAll command must be invoked after AdminConfig.save() and sync nodes. For example:

JACL:

// get AuthorizationGroup Mbean

wsadmin> set agBean [$AdminControl queryNames

Type=AuthorizationGroupManager,process=dmgr,*]

JYTHON:

// get AuthorizationGroup Mbean

wsadmin> set agBean [$AdminControl queryNames

Type=AuthorizationGroupManager,process=dmgr,*]

Fine-grained administrative security scenarios

The following scenarios describe the use of fine-grained administrative security, particularly the new

deployment role.

58 Securing applications and their environment

Deployment role scenario 1

In the following scenario, there are four applications configured on server S1, as shown in the following

table. Each application must be isolated so that the administrator of one application cannot modify another

application. Assume that only user1 can manage application A1, user2 can manage applications A2 and

A3, and only user3 can manage application A4.

Note: It is not recommended to have an application in one group and its target server in another group.

However, that is not always possible. It is common to have many applications on one server. It is

still sometimes necessary to isolate the administration of applications running on the same server.

One example is an Application Service Provider (ASP), where a single application server can have

multiple vendor applications. In this instance the server administrator is responsible for installing all

of the vendor applications. Once applications are installed, each vendor can manage their own

application without interfering with other vendor’s applications.

 Application Server Node

A1 S1 N1

A2 S1 N1

A3 S1 N1

A4 S1 N1

We can configure authorization groups as shown in the diagram below:

G3
G1

A1

A4

G2
A3

A2

N1

s1 Cell

Deployer=user1

Deployer=user2

Deployer=user3

Administrator=root

Authorization Table

In the diagram, application A1 is in authorization group G1, applications A2 and A3 are in authorization

group G2, and application A4 is in authorization group G3.

A deployer role is assigned from authorization group G1 to user1, from authorization group G2 to user2,

and from authorization group G3 to user3.

Consequently, user1 can perform all of the operations on application A1, user2 on applications A2 and A3,

and user3 on application A4. Since all applications share the same server, we cannot put the same server

on all authorization groups. Only a cell-level administrator can install an application. After the installation of

an application is complete, the deployer of each application can modify their own. To start and stop the

Chapter 4. Setting up and enabling security 59

server, cell-level administrative authority is required. This type of scenario is useful in an ASP environment.

Deployment role scenario 2

In the following scenario, a group of applications require the same administrative roles to one server. In

this example, applications A1 and A2 are related applications, and can be administrated by one set of

administrators. They are running on the same server (S1). Applications A3 and A4 require a different set of

administrators, and are running on servers S2 and S3 respectively.

 Application Server Node

A1 S1 N1

A2 S1 N1

A3 S2 N2

A4 S3 N3

G3
G1

A1

A4

G2
A3

N1

s1

Cell

Deployer=user1

Deployer=user2

Deployer=user3

Administrator=root

Authorization Table

A2

s2

s3

N2

N3

Scenarios that can be applied directly in customer environments

Each developer must be able to modify the configuration for their server, and they must be able to install

their application onto that server. They also must be able to start and stop the server as well as the

application on the server.

Developers also must be able to configure the server so that they can debug any problems they run into.

They must have the ability to update or modify the application being developed. The administrative

authorization group for this developer includes at least one server and any applications that the developer

installs on that server.

60 Securing applications and their environment

G3
G1

A1

A3

G2
A2

N1

s1

Cell

Deployer=group1
Administrator=group1

Deployer=group2
Administrator=group2

Deployer=group3
Administrator=group3

Administrator=root

Authorization Table

s2

s3

N2

N3

In the following example, developers of authorization group G1 have a new application (A11). They can

install and target that new application only on servers within authorization group G1. Also, they can place

that new application in their authorization group (G1).

G3
G1

A1

A3

G2
A2

N1

s1

Cell

Deployer=group1
Administrator=group1

Deployer=group2
Administrator=group2

Deployer=group3
Administrator=group3

Administrator=root

Authorization Table

s2

s3

N2

N3

A11

ASP environment scenario

In this scenario, the customer is an ASP. They have their own customers to whom they provide application

serving function. They want to enable their customers to administer and monitor their applications, but not

to see or administer applications for different customers. In this example, however, the ASP has internal

staff administrators whose job it is to maintain the servers.

This internal ASP staff administrator might need to move an application from one server to another to

ensure that an application remains available. The internal ASP staff administrator should be able to stop

and start the servers and to change their configuration.

Chapter 4. Setting up and enabling security 61

In contrast, the ASP customer administrator should not be able to stop or start servers. However, the ASP

customer administrator should be able to update their applications running on those servers. The

administrative authorization group for the internal ASP administrator can be the whole cell or can include a

subset of servers, nodes, clusters and applications. The administrative authorization group for the

customer administrator only includes those applications that the customer has paid to have served by this

ASP.

The following diagram contains a scenario where two different customers have two different type of

applications, and can manage their own applications. However, the servers and nodes on which the

applications are running are isolated from their customers. The servers and nodes can only be maintained

by the internal administrators. In addition, the customers cannot target their applications on a different

server. This can only be performed by the internal administrator or internal deployers.

G

G1

A1

G2
A2

Cell

Administrator=internalAdministrator

Administrator=customer2
Deployer=internalDeployer, customer2

Administrator=root

Authorization Table

s1

N2N1

s2

targetted ontargetted on

Administrator=customer1
Deployer=internalDeployer, customer1

Regional organization scenario

In this scenario, the customer is a large global company. The company’s nodes and servers are organized

so as to provide application serving for different regions (or alternatively, different lines of business). They

want representatives from the different regional areas to be able to monitor and administer the nodes and

servers associated with that region. However, they do not want the regional administer to be able to effect

any node and server associated with a different region.

The administrative authorization group for each regional representative includes the nodes, servers,

clusters and applications associated with that region.

For example, consider a company that provides multiple services, such as a financial institution that

provides services like credit card accounts, brokerage accounts, banking accounts, or travel accounts.

Each of these services can be separate applications, and the administrator for each of these applications

must also be different. The following figure shows one way to configure such a system:

62 Securing applications and their environment

Server1

trade app

Server2

card app

Server3

travel app
node1

Server1

trade app

Server2

card app

Server3

travel app
node2

Server1

trade app

Server2

card app

Server3

travel app
node3

The following figure shows how the resources in such a system can be grouped to isolate administrators

from each other:

Cell

Deployer=tradeDeployer
Administrator=tradeAdministrator

Administrator=root

Authorization Table

N1

s2N2
N3

trade
application

G1

card
application

G2

travel
application

G3

s1

s3

Deployer= Deployer
Administrator= Administrator

card
card

Deployer= Deployer
Administrator= Administrator

travel
travel

Note that the nodes are not part of any authorization group. Therefore, a trade application administrator

cannot stop a server on any of the nodes, and is prevented from stopping a travel application.

The same system can be configured in another way as shown below:

Chapter 4. Setting up and enabling security 63

Server1

travel app
card app
trade app

node1
Server2

travel app
card app
trade app

Server3

travel app
card app
trade app

Server1

travel app
card app
trade app

node2
Server2

travel app
card app
trade app

Server3

travel app
card app
trade app

Server1

travel app
card app
trade app

node3
Server2

travel app
card app
trade app

Server3

travel app
card app
trade app

The following figure shows how the resources in such a system can be grouped to isolate administrators

from each other:

Cell

Deployer=tradeDeployer
Administrator=tradeAdministrator

Administrator=root

Authorization Table

N1

s2N2
N3

trade
application

G1

card
application

G2

travel
application

G3

s1

s3

Deployer= Deployer
Administrator= Administrator

card
card

Deployer= Deployer
Administrator= Administrator

travel
travel

Application security

Application security enables security for the applications in your environment. This type of security

provides application isolation and requirements for authenticating application users

In previous releases of WebSphere Application Server, when a user enabled global security, both

administrative and application security were enabled. In WebSphere Application Server Version 6.1, the

previous notion of global security is split into administrative security and application security, each of which

you can enable separately.

64 Securing applications and their environment

As a result of this split, WebSphere Application Server clients must know whether application security is

disabled at the target server. Administrative security is enabled, by default. Application security is disabled,

by default. To enable application security, you must enable administrative security. Application security is in

effect only when administrative security is enabled.

An Application Server Enablement Tag, which is specific to WebSphere Application Server, is imported into

the Interoperable Object Reference (IOR) to indicate if application security is disabled for the server where

the object lives. This tag is server-specific and enables clients to know when application security is

disabled at the target server of its request.

For Web resources, when application security is enabled, authentication is prompted for lookups on the

application server.

For enterprise bean resources, when application security is disabled, the client Common Secure

Interoperability version 2 (CSIv2) code ignores the CSIv2 security tags for objects that are unknown

system objects. When pure clients see that application security is disabled, these clients prompt for

naming lookups, but do not prompt for enterprise bean operations.

Java 2 security

Java 2 security provides a policy-based, fine-grain access control mechanism that increases overall

system integrity by checking for permissions before allowing access to certain protected system resources.

Java 2 security guards access to system resources such as file I/O, sockets, and properties. Java 2

Platform, Enterprise Edition (J2EE) security guards access to Web resources such as servlets, JavaServer

Pages (JSP) files and Enterprise JavaBeans (EJB) methods.

WebSphere Application Server security includes the following technologies:

v Java 2 Security Manager

v Java Authentication and Authorization Service (JAAS)

v Java 2 Connector authentication data entries

v

V6.0.x

Common Secure Interoperability Version 2 (CSIv2) or Security Authentication Service (SAS)

Important: SAS is supported only between Version 6.0.x and previous version servers that have been

federated in a Version 6.1 cell.

v J2EE role-based authorization

v Secure Sockets Layer (SSL) configuration

Because Java 2 security is relatively new, many existing or even new applications might not be prepared

for the very fine-grain access control programming model that Java 2 security is capable of enforcing.

Administrators need to understand the possible consequences of enabling Java 2 security if applications

are not prepared for Java 2 security. Java 2 security places some new requirements on application

developers and administrators.

Java 2 security for deployers and administrators

Although Java 2 security is supported, it is disabled by default. You can configure Java 2 security and

administrative security independently of one another. Disabling administrative security does not disable

Java 2 security automatically. You need to explicitly disable it.

If your applications, or third-party libraries are not ready, having Java 2 security enabled causes problems.

You can identify these problems as Java 2 security AccessControlExceptions in the system log or trace

files. If you are unsure about the Java 2 security readiness of your applications, disable Java 2 security

initially to get your application installed and verify that it is working properly.

Chapter 4. Setting up and enabling security 65

Implications exist if Java 2 security is enabled; deployers or administrators are required to make sure that

all the applications are granted the required permissions; otherwise, applications might fail to run. By

default, applications are granted the permissions that are recommended in the J2EE 1.4 Specification. For

the details of default permissions granted to applications in the product, refer to the following policy files:

v app_server_root/java/jre/lib/security/java.policy

v app_server_root/properties/server.policy

v profile_root/config/cells/cell_name/nodes/node_name/app.policy

The policy embodied by these policy files cannot be made more restrictive because the product might not

have the necessary Java 2 security doPrivileged APIs in place. The restrictive policy is the default policy.

You can grant additional permissions, but you cannot make the default more restrictive because

AccessControlExceptions exceptions are generated from within WebSphere Application Server. The

product does not support a more restrictive policy than the default that is defined in the policy files

previously mentioned.

Several policy files are used to define the security policy for the Java process. These policy files are static

(code base is defined in the policy file) and in the default policy format provided by the IBM Developer Kit,

Java Technology Edition. For enterprise application resources and utility libraries, WebSphere Application

Server provides dynamic policy support. The code base is dynamically calculated based on deployment

information and permissions are granted based on template policy files during runtime. Refer to the “Java

2 security policy files” on page 69 for more information.

Syntax errors in the policy files cause the application server process to fail, so edit these policy files

carefully.

If an application is not prepared for Java 2 security, if the application provider does not provide a

was.policy file as part of the application, or if the application provider does not communicate the expected

permissions the application is likely to cause Java 2 security access control exceptions at runtime. It might

not be obvious that an application is not prepared for Java 2 security. Several run-time debugging aids

help troubleshoot applications that might have access control exceptions. See the Java 2 security

debugging aids for more details. See “Handling applications that are not Java 2 security ready” on page 68

for information and strategies for dealing with such applications.

It is important to note when Java Security is enabled in the administrative security settings, the installed

security manager does not currently check modifyThread and modifyThreadGroup permissions for

non-system threads. Allowing Web and Enterprise JavaBeans (EJB) application code to create or modify a

thread can have a negative impact on other components of the container and can affect the capability of

the container to manage enterprise bean life cycles and transactions.

Java 2 security for application developers

Application developers must understand the permissions that are granted in the default WebSphere policy

and the permission requirements of the SDK APIs that their application calls to know whether additional

permissions are required. The Permissions in the Java 2 SDK reference in the resources section describes

which APIs require which permission.

Application providers can assume that applications have the permissions granted in the default policy

previously mentioned. Applications that access resources not covered by the default WebSphere policy are

required to grant the additional Java 2 security permissions to the application.

While it is possible to grant the application additional permissions in one of the other dynamic WebSphere

policy files or in one of the more traditional java.policy static policy files, the was.policy file, which is

embedded in the EAR file ensures the additional permissions are scoped to the exact application that

requires them. Scoping the permission beyond the application code that requires it can permit code that

normally does not have permission to access particular resources.

66 Securing applications and their environment

If an application component is being developed, like a library that might actually be included in more than

one .ear file, then the library developer needs to document the required Java 2 permissions that are

required by the application assembler. There is no was.policy file for library-type components. The

developer must communicate the required permissions through application programming interface (API)

documentation or some other external documentation.

If the component library is shared by multiple enterprise applications, the permissions can be granted to all

enterprise applications on the node in the app.policy file.

If the permission is only used internally by the component library and the application is never granted

access to resources that are protected by the permission, it might be necessary to mark the code as

privileged. Refer to the, AccessControlException, topic for more details. However, improperly inserting a

doPrivileged call might open up security holes. Understand the implication of doPrivileged call to make a

correct judgement.

The section on Dynamic policy files in “Java 2 security policy files” on page 69 describes how the

permissions in the was.policy files are granted at runtime.

Developing an application to use with Java 2 security might be a new skill and impose a security

awareness not previously required of application developers. Describing the Java 2 security model and the

implications on application development is beyond the scope of this section. The following URL can help

you get started: http://java.sun.com/j2se/1.5.0/docs/guide/security/index.html.

Debugging Aids

The WebSphere Application Server SYSOUT file and the com.ibm.websphere.java2secman.norethrow

property are the two primary aids for debugging.

The WebSphere System Log or Trace Files

The AccessControl exception that is logged in the system log or trace files contains the permission

violation that causes the exception, the exception call stack, and the permissions granted to each stack

frame. This information is usually enough to determine the missing permission and the code requiring the

permission.

The com.ibm.websphere.java2secman.norethrow property

When Java 2 security is enabled in WebSphere Application Server, the security manager component

creates a java.security.AccessControl exception when a permission violation occurs. This exception, if not

handled, often causes a run-time failure. This exception is also logged in the SYSOUT file.

However, when the Java virtual machine com.ibm.websphere.java2secman.norethrow property is set and

has a value of true, the security manager does not create the AccessControl exception. This information is

logged.

To set the com.ibm.websphere.java2secman.norethrow property for the server, go to the WebSphere

Application Server administrative console and click Servers > Application Servers > server_name. Under

Server infrastructure, click Java and Process Management > Process definition. Under Additional

properties, click Java Virtual Machine > Custom Properties > New. In the Name field, type

com.ibm.websphere.java2secman.norethrow. In the Value field, type true.

This property is intended for a sandbox or debug environment because it instructs the security manager

not to create the AccessControl exception. Java 2 security is not enforced. Do not use this property in a

production environment where a relaxed Java 2 security environment weakens the integrity that Java 2

security is intended to produce.

Chapter 4. Setting up and enabling security 67

http://java.sun.com/j2se/1.5.0/docs/guide/security/index.html

This property is valuable in a sandbox or test environment where the application can be thoroughly tested

and where the system log or trace files can be inspected for AccessControl exceptions. Because this

property does not create the AccessControl exception, it does not propagate the call stack and does not

cause a failure. Without this property, you have to find and fix AccessControl exceptions one at a time.

Handling applications that are not Java 2 security ready

If the increased system integrity that Java 2 security provides is important, then contact the application

provider to have the application support Java 2 security or at least communicate the required additional

permissions beyond the default WebSphere Application Server policy that must be granted.

The easiest way to deal with such applications is to disable Java 2 security in WebSphere Application

Server. The downside is that this solution applies to the entire system and the integrity of the system is not

as strong as it might be. Disabling Java 2 security might not be acceptable depending on the organization

security policies or risk tolerances.

Another approach is to leave Java 2 security enabled, but to grant either just enough additional

permissions or grant all permissions to just the problematic application. Granting permissions however,

might not be a trivial thing to do. If the application provider has not communicated the required

permissions in some way, no easy way exists to determine what the required permissions are and granting

all permissions might be the only choice. You minimize this risk by locating this application on a different

node, which might help isolate it from certain resources. Grant the java.security.AllPermission permission

in the was.policy file that is embedded in the application .ear file, for example:

grant codeBase "file:${application}" {

 permission java.security.AllPermission;

 };

The server.policy file

The server.policy file is located in the app_server_root/properties/ directory.

This policy defines the policy for the WebSphere Application Server classes. At present, all the server

processes on the same installation share the same server.policy file. However, you can configure this file

so that each server process can have a separate server.policy file. Define the policy file as the value of

the java.security.policy Java system properties . For details of how to define Java system properties, refer

to the Process definition section of the Manage application servers file.

The server.policy file is not a configuration file managed by the repository and the file replication service.

Changes to this file are local and do not get replicated to other machines. Use the server.policy file to

define Java 2 security policy for server resources. Use the app.policy file (per node) or the was.policy file

(per enterprise application) to define Java 2 security policy for enterprise application resources.

The java.policy file

The file represents the default permissions that are granted to all classes. The policy of this file applies to

all the processes launched by the Java Virtual Machine in the WebSphere Application Server.

The java.policy file is located in the app_server_root/java/jre/lib/security directory.

Troubleshooting

Symptom:

Error message CWSCJ0314E: Current Java 2 security policy reported a potential violation of Java 2 security

permission. Refer to Problem Determination Guide for further information.{0}Permission\:{1}Code\
:{2}{3}Stack Trace\:{4}Code Base Location\:{5} Current Java 2 security policy reported a potential violation

68 Securing applications and their environment

of Java 2 Security Permission. Refer to Problem Determination Guide for further information.{0}Permission\
:{1}Code\:{2}{3}Stack Trace\:{4}Code Base Location\:{5}

Problem:

The Java security manager checkPermission method reported a security exception on the subject

permission with debugging information. The reported information can be different with respect to the

system configuration. This report is enabled by either configuring a Reliability Availability Service Ability

(RAS) trace into debug mode or specifying a Java property.

See Enabling trace for information on how to configure RAS trace in debug mode.

Specify the following property in the JVM Settings panel from the administrative console:

java.security.debug. Valid values include:

access

Print all debug information including: required permission, code, stack, and code base location.

stack Print debug information including: required permission, code, and stack.

failure Print debug information including: required permission and code.

Recommended response:

The reported exception might be critical to the secure system. Turn on security trace to determine the

potential code that might have violated the security policy. After the violating code is determined, verify if

the attempted operation is permitted with respect to Java 2 security, by examining all applicable Java 2

security policy files and the application code.

If the application is running with Java Mail, this message might be benign. You can update the was.policy

file to grant the following permissions to the application:

permission java.io.FilePermission ″${user.home}${/}.mailcap″, ″read″;

permission java.io.FilePermission ″${user.home}${/}.mime.types″, ″read″;

permission java.io.FilePermission ″${java.home}${/}lib${/}mailcap″, ″read″;

permission java.io.FilePermission ″${java.home}${/}lib${/}mime.types″, ″read″;

Messages

 Message: CWSCJ0313E: Java 2 security manager debug message

flags are initialized\: TrDebug: {0}, Access: {1}, Stack: {2},

Failure: {3}

Problem: Configured values of the valid debug message flags for

security manager.

 Message: CWSCJ0307E: Unexpected exception is caught when trying

to determine the code base location. Exception: {0}

Problem: An unexpected exception is caught when the code base

location is determined.

Java 2 security policy files

The Java 2 Platform, Enterprise Edition (J2EE) Version 1.3 and later specifications have a well-defined

programming model of responsibilities between the container providers and the application code. Using

Java 2 security manager to help enforce this programming model is recommended. Certain operations are

not supported in the application code because such operations interfere with the behavior and operation of

the containers. The Java 2 security manager is used in the product to enforce responsibilities of the

container and the application code.

Chapter 4. Setting up and enabling security 69

This product provides support for policy file management. A number of policy files in the product are either

static or dynamic. Dynamic policy is a template of permissions for a particular type of resource. No relative

code base is defined in the dynamic policy template. The code base is dynamically calculated from the

deployment and run-time data.

Static policy files

 Policy file Location

java.policy app_server_root/java/jre/lib/security/java.policy. Default permissions are granted to all

classes. The policy of this file applies to all the processes launched by WebSphere Application

Server.

server.policy profile_root/properties/server.policy. Default permissions are granted to all the product

servers.

client.policy profile_root/properties/client.policy. Default permissions are granted for all of the product

client containers and applets on a node.

The static policy files are not managed by configuration and file replication services. Changes made in

these files are local and are not replicated to other nodes in the Network Deployment cell.

Dynamic policy files

 Policy file Location

spi.policy profile_root/config/cells/cell_name

/nodes/node_name/spi.policy

This template is for the Service Provider Interface (SPI) or the third-party resources that are

embedded in the product. Examples of SPI are the Java Message Service (JMS) in MQ

Series and Java database connectivity (JDBC) drivers. The code base for the embedded

resources are dynamically determined from the configuration (resources.xml file) and run-time

data, and permissions that are defined in the spi.policy files are automatically applied to

these resources and JAR files that are specified in the class path of a resource adapter. The

default permission of the spi.policy file is java.security.AllPermissions.

library.policy profile_root/config/cells/cell_name/nodes

/node_name/library.policy

This template is for the library (Java library classes). You can define a shared library to use in

multiple product applications. The default permission of the library.policy file is empty.

app.policy profile_root/config/cells/cell_name

/nodes/node_name/app.policy

The app.policy file defines the default permissions that are granted to all of the enterprise

applications running on node_name in cell_name.

was.policy profile_root/config/cells/cell_name

/applications/ear_file_name/deployments/

application_name/META-INF/was.policy

This template is for application-specific permissions. The was.policy file is embedded in the

enterprise archive (EAR) file.

ra.xml rar_file_name/META-INF/was.policy.RAR.

This file can have a permission specification that is defined in the ra.xml file. The ra.xml file

is embedded in the RAR file.

Grant entries that are specified in the app.policy and was.policy files must have a code base defined. If

grant entries are specified without a code base, the policy files are not loaded properly and the application

70 Securing applications and their environment

can fail. If the intent is to grant the permissions to all applications, use file:${application} as a code base in

the grant entry.

Syntax of the policy file

A policy file contains several policy entries. The following example depicts each policy entry format:

grant [codebase <Codebase>] {

permission <Permission>;

 permission <Permission>;

permission <Permission>;

};

<CodeBase>: A URL.

 For example, "file:${java.home}/lib/tools.jar"

 When [codebase <Codebase>] is not specified, listed

 permissions are applied to everything.

 If URL ends with a JAR file name, only the classes in the

 JAR file belong to the codebase.

 If URL ends with "/", only the class files in the specified

 directory belong to the codebase.

 If URL ends with "*", all JAR and class files in the specified

 directory belong to the codebase.

 If URL ends with "-", all JAR and class files in the specified

 directory and its subdirectories belong to the codebase.

<Permissions>: Consists from

 Permission Type : class name of the permission

 Target Name : name specifying the target

 Actions : actions allowed on target

 For example,

 java.io.FilePermission "/tmp/xxx", "read,write"

Refer to developer kit specifications for the details of each permission.

Syntax of dynamic policy

You can define permissions for specific types of resources in dynamic policy files for an enterprise

application. This action is achieved by using product-reserved symbols. The reserved symbol scope

depends on where it is defined. If you define the permissions in the app.policy file, the symbol applies to

all the resources on all of the enterprise applications that run on node_name. If you define the permissions

in the META-INF/was.policy file, the symbol applies only to the specific enterprise application. Valid

symbols for the code base are listed in the following table:

 Symbol Meaning

file:${application} Permissions apply to all the resources within the

application

file:${jars} Permissions apply to all the utility Java archive (JAR) files

within the application

file:${ejbComponent} Permissions apply to the Enterprise JavaBeans (EJB)

resources within the application

file:${webComponent} Permissions apply to the Web resources within the

application

file:${connectorComponent} Permissions apply to the connector resources within the

application

You can specify the module name for a granular setting, except for these entries that are specified by the

code base symbols. For example:

Chapter 4. Setting up and enabling security 71

grant codeBase "file:DefaultWebApplication.war" {

 permission java.security.SecurityPermission "printIdentity";

 };

grant codeBase "file:IncCMP11.jar" {

permission java.io.FilePermission

"${user.install.root}${/}bin${/}DefaultDB${/}-",

"read,write,delete";

};

The sixth and seventh lines in the previous code sample are one continuous line. You can use a relative

code base only in the META-INF/was.policy file. Several product-reserved symbols are defined to

associate the permission lists to a specific type of resources.

 Symbol Meaning

file:${application} Permissions apply to all the resources within the

application

file:${jars} Permissions apply to all the utility JAR files within the

application

file:${ejbComponent} Permissions apply to the enterprise beans resources

within the application

file:${webComponent} Permissions apply to the Web resources within the

application

file:${connectorComponent} Permissions apply to the connector resources both within

the application and in the standalone connector

resources.

Five embedded symbols are provided to specify the path and the name for the java.io.FilePermission

permission. These symbols enable flexible permission specification. The absolute file path is fixed after the

installation of the application.

 Symbol Meaning

${app.installed.path} Path where the application is installed

${was.module.path} Path where the module is installed

${current.cell.name} Current cell name

${current.node.name} Current node name

${current.server.name} Current server name

Attention: Do not use the ${was.module.path} in the ${application} entry.

Carefully determine where to add a new permission. An incorrectly specified permission causes an

AccessControlException exception. Because dynamic policy resolves the code base at runtime,

determining which policy file has a problem is difficult. Add a permission only to the necessary resources.

For example, use ${ejbcomponent}, and etc instead of ${application}, and update the was.policy file

instead of the app.policy file, if possible.

Static policy filtering

Limited static policy filtering support exists. If the app.policy file and the was.policy file have permissions

that are defined in the filter.policy file with thefilterMask keyword, the runtime removes the permissions

from the applications and an audit message is logged. However, if the permissions that are defined in the

app.policy and the was.policy files are compound permissions, for example, java.security.AllPermission,

the permission is not removed, but a warning message is written to the log file. The policy filtering only

supports Developer Kit permissions; the permissions package name begins with java or javax.

72 Securing applications and their environment

Run-time policy filtering support is provided to force stricter filtering. If the app.policy file and the

was.policy file have permissions that are defined in the filter.policy file with the runtimeFilterMask

keyword, the runtime removes the permissions from the applications no matter what permissions are

granted to the application. For example, even if a was.policy file has the java.security.AllPermission

permission granted to one of its modules, specified permissions such as the runtimeFilterMask permission

are removed from the granted permission during runtime.

If the Warn if applications are granted custom permissions option on the Secure administration,

applications, and infrastructure panel is enabled and if the app.policy file and the was.policy file contain

custom permissions (non-Developer Kit permissions, where the permissions package name begins with

java or javax), a warning message logs. The permission is not removed. If the AllPermission permission is

listed in the app.policy file and the was.policy file, a warning message logs.

Policy file editing

Using the policy tool that is provided by the Developer Kit (app_server_root/java/jre/bin/policytool), to

edit the previous policy files is recommended. For Network Deployment, extract the policy files from the

repository before editing. After the policy file is extracted, use the policy tool to edit the file. Check the

modified policy files into the repository and synchronize them with other nodes.

If syntax errors exist in the policy files, the enterprise application or the server process might fail to start.

Be cautious when editing these policy files. For example, if a policy has a trailing space in the policy

permission target name, the policy fails to parse the permission properly in the IBM Developer Kit, Java

Technology Edition Version 5. In the following example, note the space before the last quote: * \″*\″ ″

grant {

 permission javax.security.auth.PrivateCredentialPermission

 "javax.resource.spi.security.PasswordCredential * \"*\" ","read";

};

If the permission is in a policy file that is loaded by the IBM Developer Kit, Java Technology Edition policy

tool Version 5, the following message might display:

Errors have occurred while opening the policy configuration.

View the warning log for more information.

or the following message might display in a warning log:

Warning: Invalid argument(s) for constructor:

javax.security.auth.PrivateCredentialPermission.

To fix this problem, edit the permission and remove the trailing space. When the trailing space is removed,

the permission loads properly. The following code sample shows the corrected permission:

grant {

 permission javax.security.auth.PrivateCredentialPermission

 "javax.resource.spi.security.PasswordCredential * \"*\","read";

}

Troubleshooting

To debug the dynamic policy, choose one of three ways to generate the detail report of the

AccessControlException exception.

v Trace (Configured by RAS trace). Enables traces with the trace specification:

 Attention: The following command is one continuous line

com.ibm.ws.security.policy.*=all=enabled:

com.ibm.ws.security.core.SecurityManager=all=enabled

v Trace (Configured by property). Specifies a Java java.security.debug property. Valid values for the

java.security.debug property are as follows:

Chapter 4. Setting up and enabling security 73

– Access. Print all debug information including required permission, code, stack, and code base

location.

– Stack. Print debug information including, required permission, code, and stack.

– Failure. Print debug information including required permission and code.
v ffdc. Enable ffdc, modify the ffdcRun.properties file by changing Level=4 and LAE=true. Look for an

Access Violation keyword in the log file.

Access control exception

The Java 2 security behavior is specified by its security policy. The security policy is an access-control

matrix that specifies which system resources certain code bases can access and who must sign them. The

Java 2 security policy is declarative and it is enforced by the

java.security.AccessController.checkPermission method.

The following example depicts the algorithm for the java.security.AccessController.checkPermission

method. For the complete algorithm, refer to the Java 2 security check permission algorithm in Resources

for learning.

i = m;

while (i > 0) {

 if (caller i’s domain does not have the permission)

 throw AccessControlException;

 else if (caller i is marked as privileged)

 return;

 i = i - 1;

};

The algorithm requires that all the classes or callers on the call stack have the permissions when a

java.security.AccessController.checkPermission method is performed or the request is denied and a

java.security.AccessControlException exception is created. However, if the caller is marked as privileged

and the class (caller) is granted these permissions, the algorithm returns and does not traverse the entire

call stack. Subsequent classes (callers) do not need the required permission granted.

A java.security.AccessControlException exception is created when certain classes on the call stack are

missing the required permissions during a java.security.AccessController.checkPermission method. Two

possible resolutions to the java.security.AccessControlException exception are as follows:

v If the application is calling a Java 2 security-protected application programming interface (API), grant the

required permission to the application Java 2 security policy. If the application is not calling a Java 2

security-protected API directly, the required permission results from the side-effect of the third-party APIs

accessing Java 2 security-protected resources.

v If the application is granted the required permission, it gains more access than it needs. In this case, it

is likely that the third party code that accesses the Java 2 security-protected resource is not properly

marked as privileged.

Example call stack

This example of a call stack indicates where application code is using a third-party API utility library to

update the password. The following example is presented to illustrate the point. The decision of where to

mark the code as privileged is application-specific and is unique in every situation. This decision requires

great depth of domain knowledge and security expertise to make the correct judgement. A number of well

written publications and books are available on this topic. Referencing these materials for more detailed

information is recommended.

74 Securing applications and their environment

You can use the PasswordUtil utility to change the password of a user. The utility types in the old

password and the new password twice to ensure that the correct password is entered. If the old password

matches the one stored in the password file, the new password is stored and the password file updates.

Assume that none of the stack frame is marked as privileged. According to the

java.security.AccessController.checkPermission algorithm, the application fails unless all the classes on the

call stack are granted write permission to the password file. The client application does not have

permission to write to the password file directly and to update the password file at will.

However, if the PasswordUtil.updatePasswordFile method marks the code that accesses the password file

as privileged, then the check permission algorithm does not check for the required permission from

classes that call thePasswordUtil.updatePasswordFile method for the required permission as long as the

PasswordUtil class is granted the permission. The client application can successfully update a password

without granting the permission to write to the password file.

The ability to mark code privileged is very flexible and powerful. If this ability is used incorrectly, the overall

security of the system can be compromised and security holes can be exposed. Use the ability to mark

code privileged carefully.

Resolution to the java.security.AccessControlException exception

As described previously, you have two approaches to resolve a java.security.AccessControlException

exception. Judge these exceptions individually to decide which of the following resolutions is best:

1. Grant the missing permission to the application.

2. Mark some code as privileged, after considering the issues and risks.

Enabling security for the realm

Use this topic to enable IBM WebSphere Application Server security. You must enable administrative

security for all other security settings to function.

WebSphere Application Server uses cryptography to protect sensitive data and to ensure confidentiality

and integrity of communications between WebSphere Application Server and other components in the

network. Cryptography is also used by Web services security when certain security constraints are

configured for the Web Services application.

WebSphere Application Server uses Java Secure Sockets Extension (JSSE) and Java Cryptography

Extension (JCE) libraries in the Software Development Kit (SDK) to perform this cryptography. The SDK

provides strong but limited jurisdiction policy files. Unrestricted policy files provide the ability to perform full

strength cryptography and to improve performance.

AccessController.checkPermission()

SecurityManager..checkPermission()

SecurityManager..checkWrite()

java.io.FileOutputStream()

PasswordUtil.updatePasswordFile()

Client Code ...

PasswordUtil.getPassword()

System domain

Application domain

Utility library domain

Chapter 4. Setting up and enabling security 75

WebSphere Application Server provides a SDK 5 that contains strong, but limited jurisdiction policy files.

You can download the unrestricted policy files from the following Web site: IBM developer kit: Security

information. Complete the following steps to download and install the new policy files:

1. Click J2SE 5.0

2. Scroll down the page then click IBM SDK Policy files.

The Unrestricted JCE Policy files for SDK 5 Web site displays.

3. Click Sign in and provide your IBM.com ID and password.

4. Select Unrestricted JCE Policy files for SDK 5 and click Continue.

5. View the license and click I Agree to continue.

6. Click Download Now.

7. Extract the unlimited jurisdiction policy files that are packaged in the ZIP file. The ZIP file contains a

US_export_policy.jar file and a local_policy.jar file.

8. In your WebSphere Application Server installation, go to the $JAVA_HOME/jre/lib/security directory

and back up your US_export_policy.jar and local_policy.jar files.

9. Replace your US_export_policy.jar and local_policy.jar files with the two files that you

downloaded from the IBM.com Web site.

1. Enable security in the WebSphere Application Server. Make sure that all node agents within the cell

are active beforehand.

For more information, see “Enabling security” on page 51. It is important to click Security > Secure

administration, applications, and infrastructure. Select an available realm definition from the list,

and then click Set as current so that security is enabled upon a server restart.

Note: In previous releases of WebSphere Application Server, the Set as current option is known as

the Enable global security option.

2. Before restarting the server, log off the administrative console. You can log off by clicking Logout at

the top menu bar.

3. Stop the server by going to the command line in the WebSphere Application Server /bin directory and

issue a stopServer server_name command.

4. Restart the server in secure mode by issuing the command startServer server_name. Once the server

is secure, you cannot stop the server again without specifying an administrative user name and

password. To stop the server once security is enabled, issue the command, stopServer server_name

-username user_id -password password. Alternatively, you can edit the soap.client.props file in the

profile_root/properties directory, and edit the com.ibm.SOAP.loginUserid or

com.ibm.SOAP.loginPassword properties to contain these administrative IDs.

If you have any problems restarting the server, review the output logs in the profile_root/logs/
server_name directory. Check the Chapter 20, “Troubleshooting security configurations,” on page 1393

article for any common problems.

Secure administration, applications, and infrastructure settings

Use this page to configure administrative, application, and infrastructure security on a global level.

To view this administrative console page, click Security > Secure administration, applications, and

infrastructure.

Security has some performance impacts on your applications. The performance impacts can vary

depending upon the application workload characteristics. You must first determine that the needed level of

security is enabled for your applications, and then measure the impact of security on the performance of

your applications.

When security is configured, validate any changes to the user registry or authentication mechanism

panels. Click Apply to validate the user registry settings. An attempt is made to authenticate the server ID

76 Securing applications and their environment

http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html

or to validate the admin ID (if internalServerID is used) to the configured user registry. Validating the user

registry settings after enabling administrative security can avoid problems when you restart the server for

the first time.

Security configuration wizard:

Launches a wizard that enables you to configure the basic administrative and application security settings.

This process restricts administrative tasks and applications to authorized users.

 Using this wizard, you can configure application security, resource or Java 2 Connector (J2C) security, and

a user registry. You can configure an existing registry and enable administrative, application, and resource

security.

When you apply changes made by using the security configuration wizard, administrative security is turned

on by default.

Security configuration report:

Launches a security configuration report that displays the core security settings of the application server.

The report also displays the administrative users and groups and the CORBA naming roles.

 A current limitation to the report is that it does not display application level security information. The report

also does not display information on Java Message Service (JMS) security, bus security, or Web Services

security.

Enable administrative security:

Specifies whether to enable administrative security for this application server domain. Administrative

security requires users to authenticate before obtaining administrative control of the application server.

 For more information, see “Administrative roles” on page 326.

When enabling security, set the authentication mechanism configuration and specify a valid user ID and

password (or a valid admin ID when internalServerID feature is used) in the selected registry configuration.

Note: There is a difference between the user ID (which is normally called the admin ID), which identifies

administrators who manage the environment, and a server ID, which is used for server-to-server

communication. You do not need to enter a server ID and password when you are using the

internal server ID feature. However, optionally, you can specify a server ID and password. To

specify the server ID and password, complete the following steps:

1. Click Security > Secure administration, applications, and infrastructure.

2. Under User accounts repository, select the repository and click Configure.

3. Specify the server ID and password in the Server user identity section.

 Default: Enabled

Enable application security:

Enables application-level security unless the option is overwritten at the server level.

 Default: Disabled

Use Java 2 security to restrict application access to local resources:

Chapter 4. Setting up and enabling security 77

Specifies whether to enable or disable Java 2 security permission checking. By default, access to local

resources is not restricted. You can choose to disable Java 2 security, even when application security is

enabled.

 When the Use Java 2 security to restrict application access to local resources option is enabled and

if an application requires more Java 2 security permissions than are granted in the default policy, the

application might fail to run properly until the required permissions are granted in either the app.policy file

or the was.policy file of the application. AccessControl exceptions are generated by applications that do

not have all the required permissions. See “Java 2 security” on page 65 for more information about Java 2

security.

 Default: Disabled

Disabling security if you have server startup problems:

 If your server does not restart after you enable administrative security, you can disable security. Go to your

app_server_root/bin directory and run the wsadmin -conntype NONE command. At the wsadmin> prompt,

enter securityoff and then type exit to return to a command prompt. Restart the server with administrative

security disabled to check any incorrect settings through the administrative console.

Warn if applications are granted custom permissions:

Specifies that during application deployment and application start, the security runtime issues a warning if

applications are granted any custom permissions. Custom permissions are permissions that are defined by

the user applications, not Java API permissions. Java API permissions are permissions in the java.* and

javax.* packages.

 The application server provides support for policy file management. A number of policy files are available

in this product, some of them are static and some of them are dynamic. Dynamic policy is a template of

permissions for a particular type of resource. No code base is defined and no relative code base is used in

the dynamic policy template. The real code base is dynamically created from the configuration and

run-time data. The filter.policy file contains a list of permissions that you do not want an application to have

according to the J2EE 1.4 specification. For more information on permissions, see “Java 2 security policy

files” on page 69.

Important: You cannot enable this option without enabling the Use Java 2 security to restrict

application access to local resources option.

 Default: Disabled

Restrict access to resource authentication data:

Enable this option to restrict application access to sensitive Java Connector Architecture (JCA) mapping

authentication data.

 Consider enabling this option when both of the following conditions are true:

v Java 2 security is enforced.

v The application code is granted the accessRuntimeClasses WebSphereRuntimePermission permission

in the was.policy file found within the application enterprise archive (EAR) file. For example, the

application code is granted the permission when the following line is found in your was.policy file:

permission com.ibm.websphere.security.WebSphereRuntimePermission "accessRuntimeClasses";

The Restrict access to resource authentication data option adds fine-grained Java 2 security

permission checking to the default principal mapping of the WSPrincipalMappingLoginModule

78 Securing applications and their environment

implementation. You must grant explicit permission to Java 2 Platform, Enterprise Edition (J2EE)

applications that use the WSPrincipalMappingLoginModule implementation directly in the Java

Authentication and Authorization Service (JAAS) login when Use Java 2 security to restrict application

access to local resources and the Restrict access to resource authentication data options are

enabled.

 Default: Disabled

Current realm definition:

Specifies the current setting for the active user repository.

 This field is read-only.

Available realm definitions:

Specifies the available user account repositories.

Set as current:

Enables the user repository after it is configured.

 LDAP or a custom user registry is required when running as a UNIX non-root user or running in a

multi-node environment.

You can configure settings for one of the following user repositories:

Federated repositories

Specify this setting to manage profiles in multiple repositories under a single realm. The realm can

consist of identities in:

v The file-based repository that is built into the system

v One or more external repositories

v Both the built-in, file-based repository and in one or more external repositories

Note: Only a user with administrator privileges can view the federated repositories configuration.

Local operating system

 You cannot use localOS in multi-node or when running as non-root on a UNIX platform.

Standalone LDAP registry

 Specify this setting to use standalone LDAP registry settings when users and groups reside in an

external LDAP directory. When security is enabled and any of these properties change, go to the

Security > Secure administration, applications, and infrastructure panel and click Apply or

OK to validate the changes.

Note: Since multiple LDAP servers are supported, this setting does not imply one LDAP registry.

Standalone custom registry

Specify this setting to implement your own standalone custom registry that implements the

com.ibm.websphere.security.UserRegistry interface. When security is enabled and any of these

properties change, go to the Secure administration, applications, and infrastructure panel and click

Apply or OK to validate the changes.

 Default: Disabled

Chapter 4. Setting up and enabling security 79

Use domain-qualified user names:

Specifies that user names that are returned by methods are qualified with the security domain in which

they reside.

 Default: Disabled

Active protocol:

Specifies the active authentication protocol for Remote Method Invocation over the Internet Inter-ORB

Protocol (RMI IIOP) requests, when security is enabled.

 An Object Management Group (OMG) protocol called Common Secure Interoperability Version 2 (CSIv2)

supports increased vendor interoperability and additional features. If all of the servers in your security

domain are Version 5.x and later servers, specify CSI as your protocol.

V6.0.x

If some servers are Version 3.x or Version 4.x servers, specify CSI and SAS.

Important: SAS is supported only between Version 6.0.x and previous version servers that have been

federated in a Version 6.1 cell.

Note:

V6.0.x

This field displays only when a Version 6.0.x and earlier server is detected in your

environment.

 Default: BOTH

Range: CSI and SAS, CSI

Specify extent of protection wizard settings

Use this security wizard page to determine whether to enable application security and restrict access to

local resources. When you use the wizard, admin security is enabled by default.

To view this security wizard page, click Security > Secure administration, applications, and

infrastructure > Security configuration wizard.

Enable application security:

Enables application-level security unless the option is overwritten at the server level.

 Default: Disabled

Use Java 2 security to restrict application access to local resources:

Specifies whether to enable or disable Java 2 security permission checking. By default, access to local

resources is not restricted. You can choose to disable Java 2 security, even when application security is

enabled.

 When the Use Java 2 security to restrict application access to local resources option is enabled and

if an application requires more Java 2 security permissions than are granted in the default policy, the

application might fail to run properly until the required permissions are granted in either the app.policy file

or the was.policy file of the application. AccessControl exceptions are generated by applications that do

not have all the required permissions. See “Java 2 security” on page 65 for more information about Java 2

security.

80 Securing applications and their environment

Default: Disabled

Custom properties: Security

Use this page to understand the predefined custom properties that are related to security.

To view this administrative console page, click Security > Secure administration, applications, and

infrastructure > Custom properties. You can click New to add a new custom property and its associated

value.

com.ibm.CSI.rmiInboundLoginConfig:

This property specifies the Java Authentication and Authorization Service (JAAS) login configuration that is

used for Remote Method Invocation (RMI) requests that are received inbound.

 By knowing the login configuration, you can plug in a custom login module that can handle specific cases

for RMI logins.

 Default system.RMI_INBOUND

com.ibm.CSI.rmiOutboundLoginConfig:

This property specifies the JAAS login configuration that is used for RMI requests that are sent outbound.

 Primarily, this property prepares the propagated attributes in the Subject to be sent to the target server.

However, you can plug in a custom login module to perform outbound mapping.

 Default system.RMI_OUTBOUND

com.ibm.CSI.supportedTargetRealms:

This property enables credentials that are authenticated in the current realm to be sent to any realm that is

specified in the Trusted target realms field. The Trusted target realms field is available on the CSIv2

outbound authentication panel. This property enables those realms to perform inbound mapping of the

data from the current realm.

 It is not recommended that you send authentication information to an unknown realm. Thus, this provides

a way to specify that the alternate realms are trusted. To access the CSIv2 outbound authentication panel,

complete the following steps:

1. Click Security > Secure administration, applications, and infrastructure.

2. Under RMI/IIOP security, click CSIv2 outbound authentication.

com.ibm.audit.auditPolicy:

This property is used by the auditing service that was introduced as a technical preview in Version 6. The

auditing functionality is not available. Do not modify this property.

 Default REQUIRED

com.ibm.audit.auditQueueSize:

This property is used by the auditing service that was introduced as a technical preview in Version 6. The

auditing functionality is not available. Do not modify this property.

Chapter 4. Setting up and enabling security 81

Default 5000

com.ibm.audit.auditServiceEnabled:

This property is used by the auditing service that was introduced as a technical preview in Version 6. The

auditing functionality is not available. Do not modify this property.

 Default false

com.ibm.audit.auditSpecification:

This property is used by the auditing service that was introduced as a technical preview in Version 6. The

auditing functionality is not available. Do not modify this property.

 Default J2EE=AUTHN=failure=enabled:J2EE=AUTHZ=failure=enabled

com.ibm.security.useFIPS:

Specifies that Federal Information Processing Standard (FIPS) algorithms are used. The application server

uses the IBMJCEFIPS cryptographic provider instead of the IBMJCE cryptographic provider.

 Default false

com.ibm.websphere.security.audit.auditEventFactory:

This property is used by the auditing service that was introduced as a technical preview in Version 6. The

auditing functionality is not available. Do not modify this property.

 Default J2EE=com.ibm.ws.security.audit.defaultAuditEventFactoryImpl

com.ibm.ws.security.defaultLoginConfig:

This property is the JAAS login configuration that is used for logins that do not fall under the

WEB_INBOUND, RMI_OUTBOUND, or RMI_INBOUND login configuration categories.

 Internal authentication and protocols that do not have specific JAAS plug points call the system login

configuration that is referenced by com.ibm.ws.security.defaultLoginConfig configuration.

 Default system.DEFAULT

com.ibm.ws.security.ssoInteropModeEnabled:

This property determines whether to send LtpaToken2 and LtpaToken cookies in the response to a Web

request (interoperable).

 When this property value is false, the application server just sends the new LtpaToken2 cookie which is

stronger, but not interoperable with some other products and Application Server releases prior to Version

5.1.1. In most cases, the old LtpaToken cookie is not needed and you can set this property to false.

 Default true

com.ibm.ws.security.webChallengeIfCustomSubjectNotFound:

82 Securing applications and their environment

This property determines the behavior of a single sign-on LtpaToken2 login.

 When this property value is set to true, the token contains a custom cache key, and the custom Subject

cannot be found, the token is used to log in directly as the custom information needs to be gathered again.

A challenge occurs so that the user to login again. When this property value is set to false and the custom

Subject is not found, the LtpaToken2 is used to login and gather all of the registry attributes. However, the

token might not obtain any of the special attributes that downstream applications might expect.

 Default true

com.ibm.ws.security.webInboundLoginConfig:

This property is the JAAS login configuration that is used for Web requests that are received inbound.

 By knowing the login configuration, you can plug in a custom login module that can handle specific cases

for Web logins.

 Default system.WEB_INBOUND

com.ibm.ws.security.webInboundPropagationEnabled:

This property determines whether a received LtpaToken2 cookie should search for the propagated

attributes locally before searching the original login server that is specified in the token. After the

propagated attributes are received, the Subject is regenerated and the custom attributes are preserved.

 You can configure the distributed replication service (DRS) to send the propagated attributes to front-end

servers such that a local dynacache lookup can find the propagated attributes. Otherwise, an MBean

request is sent to the original login server to retrieve these attributes.

 Default true

com.ibm.wsspi.security.audit.auditServiceProvider:

This property is used by the auditing service that was introduced as a technical preview in Version 6. The

auditing functionality is not available. Do not modify this property.

 Default DEFAULT =

com.ibm.ws.security.audit.defaultAuditServiceProviderImpl

com.ibm.wsspi.security.ltpa.tokenFactory:

This property specifies the Lightweight Third Party Authentication (LTPA) token factories that can be used

to validate the LTPA tokens.

 Validation occurs in the order in which the token factories are specified because LTPA tokens do not have

object identifiers (OIDs) that specify the token type. The Application Server validates the tokens using each

token factory until validation is successful. The order that is specified for this property is the most likely

order of the received tokens. Specify multiple token factories by separating them with a pipe (|) without

spaces before or following the pipe.

 Default com.ibm.ws.security.ltpa.LTPATokenFactory |

com.ibm.ws.security.ltpa.LTPAToken2Factory |

com.ibm.ws.security.ltpa.AuthzPropTokenFactory

Chapter 4. Setting up and enabling security 83

com.ibm.wsspi.security.token.authenticationTokenFactory:

This property specifies the implementation that is used for an authentication token in the attribute

propagation framework. The property provides an old LTPA token implementation for use as the

authentication token.

 Default com.ibm.ws.security.ltpa.LTPATokenFactory

com.ibm.wsspi.security.token.authorizationTokenFactory:

This property specifies the implementation that is used for an authorization token. This token factory

encodes the authorization information.

 Default com.ibm.ws.security.ltpa.AuthzPropTokenFactory

com.ibm.wsspi.security.token.propagationTokenFactory:

This property specifies the implementation that is used for a propagation token. This token factory encodes

the propagation token information.

 The propagation token is on the thread of execution and is not associated with any specific user Subjects.

The token follows the invocation downstream wherever the process leads.

 Default com.ibm.ws.security.ltpa.AuthzPropTokenFactory

com.ibm.wsspi.security.token.singleSignonTokenFactory:

This property specifies the implementation that is used for a Single Sign-on (SSO) token. This

implementation is the cookie that is set when propagation is enabled regardless of the state of the

com.ibm.ws.security.ssoInteropModeEnabled property.

 By default, this implementation is the LtpaToken2 cookie.

 Default com.ibm.ws.security.ltpa.LTPAToken2Factory

security.enablePluggableAuthentication:

This property is no longer used. Instead, use WEB_INBOUND login configuration.

 Complete the following steps to modify the WEB_INBOUND login configuration:

1. Click Security > Secure administration, applications, and infrastructure.

2. Under Java Authentication and Authorization Service, click System logins.

 Default true

Security custom property collection

Use this page to view and manage arbitrary name-value pairs of data, where the name is a property key

and the value is a string value that can be used to set internal system configuration properties.

The administrative console contains several Custom Properties pages that work similarly. To view one of

these administrative pages, click a Custom Properties link.

Name:

84 Securing applications and their environment

Specifies the name (or key) for the property.

 Each property name must be unique. If the same name is used for multiple properties, the value specified

for the first property that has that name is used.

Do not start your property names with was. because this prefix is reserved for properties that are

predefined in the application server.

Value:

Specifies the value paired with the specified name.

Description:

Provides information about the name-value pair.

Security custom property settings

Use this page to configure arbitrary name-value pairs of data, where the name is a property key and the

value is a string value that can be used to set internal system configuration properties. Defining a new

property enables you to configure a setting beyond that which is available in the administrative console.

The administrative console contains several Custom property settings pages that work similarly. To view

one of these administrative pages, click Custom Properties > New.

Name:

Specifies the name (or key) for the property.

 Each property name must be unique. If the same name is used for multiple properties, the value specified

for the first property that has that name is used.

Do not start your property names with was. because this prefix is reserved for properties that are

predefined in WebSphere Application Server.

 Data type String

Value:

Specifies the value paired with the specified name.

 Data type String

Description:

Provides information about the name and value pair.

 Data type String

Testing security after enabling it

Basic tests are available that show whether the fundamental security components are working properly.

Use this task to validate your security configuration.

After configuring administrative security and restarting all of your servers in a secure mode, validate that

security is properly enabled.

Chapter 4. Setting up and enabling security 85

There are a few techniques that you can use to test the various security login types. For example, you can

test the Web-based BasicAuth login, Web-based form login, and the Java client BasicAuth login.

Basic tests are available that show whether the fundamental security components are working properly.

Complete the following steps to validate your security configuration:

1. After enabling security, verify that your system comes up in secure mode.

2. Test the Web-based BasicAuth with Snoop, by accessing the following URL: http://
hostname.domain:9080/snoop. A login panel is displayed. If a login panel does not display, then a

problem exists. If the panel appears, type in any valid user ID and password in your configured user

registry.

3. Test the Web-based form login by starting the administrative console: http://
hostname.domain:port_number/ibm/console. A form-based login page is displayed. If a login page does

not appear, try accessing the administrative console by typing https://myhost.domain:9043/ibm/
console.

Type in the administrative user ID and password that are used for configuring your user registry when

configuring security.

4. Test Test Java Client BasicAuth with dumpNameSpace.

Use the app_server_root/bin/dumpNameSpace.bat file. A login panel appears. If a login panel does not

appear, there is a problem. Type in any valid user ID and password in your configured user registry.

5. Test all of your applications in secure mode.

6. If all the tests pass, proceed with more rigorous testing of your secured applications. If you have any

problems, review the output logs in the WebSphere Application Server /logs/nodeagent or WebSphere

Application Server /logs/server_name directories, respectively. For more information on common

problems, see Chapter 20, “Troubleshooting security configurations,” on page 1393.

The results of these tests, if successful, indicate that security is fully enabled and working properly.

86 Securing applications and their environment

Chapter 5. Authenticating users

The process of authenticating users involves a user registry and an authentication mechanism. Optionally,

you can define trust between WebSphere Application Server and a proxy server, configure single sign-on

capability, and specify how to propagate security attributes between application servers.

The following security topics are covered in this section:

User registries

For information on local operating system, Lightweight Directory Access Protocol (LDAP), custom

user registries, and user repositories such as virtual member manager, see “User registries and

repositories” on page 89.

Authentication protocol for EJB security

For more information on the authentication protocols that are used for Enterprise JavaBeans (EJB)

security, see “Authentication protocol for EJB security” on page 212.

Trust associations

For more information on trust associations, see “Trust associations” on page 180.

Single sign-on

For more information on single sign-on, see “Single sign-on” on page 184.

Security attribute propagation

For more information on propagation tokens, authorization tokens, single sign-on tokens, and

authentication tokens, see “Security attribute propagation” on page 191.

The following information is covered in this section:

v Configure a user registry. For more information, see “Selecting a registry or repository.”

v Configure WebSEAL or a custom trust association interceptor. For more information see, “Integrating

third-party HTTP reverse proxy servers” on page 227.

v Configure single sign-on. For more information, see “Implementing single sign-on to minimize Web user

authentications” on page 229.

v Propagate security attributes. For more information, see “Propagating security attributes among

application servers” on page 267.

v Configure the authentication cache. For more information, see “Configuring the authentication cache” on

page 269.

After completing the configuring the authentication process, you must authorize access to resources. For

more information, see Chapter 6, “Authorizing access to resources,” on page 319.

Selecting a registry or repository

Information about users and groups reside in a user registry. In WebSphere Application Server, a user

registry authenticates a user and retrieves information about users and groups to perform security-related

functions, including authentication and authorization.

Note: During profile creation, either during installation or post-installation, administrative security is

enabled by default. You might decide not to enable security, but if the default is accepted, the

file-based federated user repository is configured as the active user registry. You can use a different

user registry before the profile is created.

Before configuring the user registry or repository, decide which user registry or repository to use. Though

different types of registries and repositories are supported, all of the processes in WebSphere Application

Server can use only one active registry.

© Copyright IBM Corp. 2006 87

Configuring the correct registry or repository is a prerequisite to assigning users and groups to roles for

applications. When a user registry or repository is not configured, the local operating system registry is

used by default. If your choice of user registry is not the local operating system registry, you need to first

configure the registry or repository, which is normally done as part of enabling security, restart the servers,

and then assign users and groups to roles for all your applications.

In addition to local operating system and LDAP registries, WebSphere Application Server also provides a

plug-in to support any registry by using the custom registry feature. The custom registry feature enables

you to configure any user registry that is not made available through the security configuration panels of

the WebSphere Application Server.

The UserRegistry interface is used to implement both the custom registry and the federated repository

options for the user account repository. The interface is very helpful in situations where the current user

and group information exists in some other formats, for example, a database, and cannot move to local

operating system or LDAP registries. In such a case, you can implement the UserRegistry interface so that

WebSphere Application Server can use the existing registry for all the security-related operations. The

process of implementing a custom registry is a software implementation effort and it is expected that the

implementation does not depend on other WebSphere Application Server resources, for example, data

sources, for its operation.

WebSphere Application Server supports the following types of user registries:

v Federated repository

v Local operating system

v Standalone Lightweight Directory Access Protocol (LDAP) registry

v Standalone custom registry

After the applications are assigned users and groups and you need to change the user registries, delete

all the users and groups, including any RunAs role, from the applications, and reassign them after

changing the registry through the administrative console or by using wsadmin scripting. The following

wsadmin command, which uses Jacl, removes all of the users and groups from any application:

$AdminApp deleteUserAndGroupEntries yourAppName

where yourAppName is the name of the application. Backing up the old application is advised before

performing this operation. However, if both of the following conditions are true, you might be able to switch

the registries without having to delete the users and groups information:

v All of the user and group names, including the password for the RunAs role users, in all of the

applications match in both user registries.

v The application bindings file does not contain the access IDs which are unique for each user registry

even for the same user or group name.

By default, an application does not contain access IDs in the bindings file. These IDs are generated when

the applications start. However, if you migrated an existing application from an earlier release, or if you

used the wsadmin script to add access IDs for the applications to improve performance, you have to

remove the existing user and group information and add the information after configuring the new user

registry.

For more information on updating access IDs, see updateAccess IDs in the AdminApp object for scripted

administration article.

Complete one of the following steps to configure your user registry:

v “Configuring local operating system registries” on page 90

v “Configuring Lightweight Directory Access Protocol user registries” on page 93

v “Configuring standalone custom registries” on page 111.

88 Securing applications and their environment

v “Managing the realm in a federated repository configuration” on page 115

1. If you are enabling security, make sure that you complete the remaining steps. Verify that the User

account repository on the Secure administration, applications, and infrastructure panel is set to the

appropriate registry or repository. As the final step, validate the user ID and the password by clicking

Apply on the Secure administration, applications, and infrastructure panel. Save, stop and start all

WebSphere Application Servers.

2. For any changes in user registry panels to be effective, you must validate the changes by clicking

Apply on the Secure administration, applications, and infrastructure panel. After validation, save the

configuration and stop and start all WebSphere Application Servers, including the cells, nodes and all

of the application servers. To avoid inconsistencies between the WebSphere Application Server

processes, make sure that any changes to the registry or repository are done when all of the

processes are running. If any of the processes are down, force synchronization to make sure that the

process can start later.

If the server or servers start without any problems, the setup is correct.

User registries and repositories

Information about users and groups reside within a registry or repository.

WebSphere Application Server provides implementations that support multiple types of registries and

repositories including the local operating system registry, a standalone Lightweight Directory Access

Protocol (LDAP) registry, a standalone custom registry, and federated repositories.

With WebSphere Application Server, a user registry or a repository, such as virtual member manager,

authenticates a user and retrieves information about users and groups to perform security-related functions

including authentication and authorization.

With WebSphere Application Server, a user registry or repository is used for:

v Authenticating a user using basic authentication, identity assertion, or client certificates

v Retrieving information about users and groups to perform security-related administrative functions, such

as mapping users and groups to security roles

Although WebSphere Application Server supports different types of user registries, only one user registry

can be active. This active registry is shared by all of the product server processes.

After configuring the registry or repository, you must specify it as the active repository. Through the

administration console, you can select an available realm definition for the registry or repository from the

User account repository section of the Secure administration, applications, and administration panel. After

selecting the registry or repository, first click Set as current, and then click Apply.

Note: WebSphere Application Server has implemented a user registry proxy by using the UserRegistry

interface. However, the return values are little different from the interface. For example,

getUniqueUserId returns the uniqueID with the realm name wrapped. You cannot use the return

value to pass to getUserSecurityName, as shown in the following example:

// Retrieves the default InitialContext for this server.

javax.naming.InitialContext ctx = new javax.naming.InitialContext();

// Retrieves the local UserRegistry object.

com.ibm.websphere.security.UserRegistry reg =

 (com.ibm.websphere.security.UserRegistry) ctx.lookup("UserRegistry");

// Retrieves the registry uniqueID based on the userName that is specified

 // in the NameCallback.

String uniqueid = reg.getUniqueUserId(userName);

// Strip the realm name and get real uniqueID

String uid = WSSecurityPropagationHelper.getUserFromUniqueID (uniqueID);

Chapter 5. Authenticating users 89

// Retrieves the security name from the user registry based on the uniqueID.

String securityName = reg.getUserSecurityName(uid);

Configuring local operating system registries

Use these steps to configure local operating system registries.

For security purposes, the WebSphere Application Server provides and supports the implementation for

Windows operating system registries, AIX, Solaris and multiple versions of Linux operating systems. The

respective operating system application programming interface (API) are called by the product processes

(servers) for authenticating a user and other security-related tasks (for example, getting user or group

information). Access to these APIs are restricted to users who have special privileges. These privileges

depend on the operating system and are described below.

In WebSphere Application Server Version 6.1, you can use an internally-generated server ID because the

Security WebSphere Common Configuration Model (WCCM) model contains a new tag, internalServerId.

You do not need to specify a server user ID and a password during security configuration except in a

mixed-cell environment. See “Administrative roles and naming service authorization” on page 320 for more

detailed information about the new internal server ID.

Windows

Consider the following issues:

v The server ID needs to be different from the Windows machine name where the product is installed. For

example, if the Windows machine name is vicky and the security server ID is vickyy, the Windows

system fails when getting the information (group information, for example) for user vicky.

v WebSphere Application Server dynamically determines whether the machine is a member of a Windows

system domain.

v WebSphere Application Server does not support Windows trusted domains.

v If a machine is a member of a Windows domain, both the domain user registry and the local user

registry of the machine participate in authentication and security role mapping.

v The domain user registry takes precedence over the local user registry of the machine and can have

undesirable implications if users with the same password exist in both user registries.

v The user that the product processes run under requires the Administrative and Act as part of the

operating system privileges to call the Windows operating system APIs that authenticate or collect user

and group information. The process needs special authority, which is given by these privileges. The user

in this example might not be the same as the security server ID (the requirement for which is a valid

user in the registry). This user logs into the machine (if using the command line to start the product

process) or the Log On User setting in the services panel if the product processes have started using

the services. If the machine is also part of a domain, this user is a part of the Domain Admin group in

the domain to call the operating system APIs in the domain in addition to having the Act as part of

operating system privilege in the local machine.

Consider the following points:

v

AIX

Solaris

The user that the product processes run under requires the root privilege. This

privilege is needed to call the operating system APIs to authenticate or to collect user and group

information. The process needs special authority, which is given by the root privilege. This user might

not be the same as the security server ID (the requirement is that it should be a valid user in the

registry). This user logs into the machine and is running the product processes.

v The user that enables administrative security must have the root privilege if you use the local operating

system registry. Otherwise, a failed validation error is displayed.

v

Linux

You might need to have the password shadow file in your system.

Important: The local operating system in not a valid user account repository when you have a mixed cell

environment that includes both z/OS platform and non-z/OS platform nodes.

The following steps are needed to perform this task initially when setting up security for the first time.

90 Securing applications and their environment

1. Click Security > Secure administration, applications, and infrastructure.

2. Under User account repository, select Local operating system and click Configure.

3. Enter a valid user name in the Primary administrative user name field. This value is the name of a

user with administrative privileges that is defined in the registry. This user name is used to access the

administrative console or used by wsadmin.

4. Click Apply.

5. Select either the Automatically generated server identity or Server identity that is stored in the

repository option. If you select the Server identity that is stored in the repository option, enter the

following information:

Server user ID or administrative user on a Version 6.0.x node

Specify the short name of the account that is chosen in the second step.

Server user password

Specify the password of the account that is chosen in the second step.

6. Click OK.

The administrative console does not validate the user ID and password when you click OK. Validation

is only done when you click OK or Apply in the Secure administration, applications, and infrastructure

panel. First, make sure that you select Local operating system as the available realm definition in the

User account repository section, and click Set as current. If security was already enabled and you had

changed either the user or the password information in this panel, make sure to go to the Secure

administration, applications, and infrastructure panel and click OK or Apply to validate your changes. If

your changes are not validated, the server might not start.

Important: Until you authorize other users to perform administrative functions, you can only access

the administrative console with the server user ID and password that you specified. For

more information, see “Authorizing access to administrative roles” on page 372.

For any changes in this panel to be effective, you need to save, stop, and start all the product servers,

including deployment managers, nodes and application servers. If the server comes up without any

problems, the setup is correct.

After completed these steps, you have configured WebSphere Application Server to use the local

operating system registry to identify authorized users.

Complete any remaining steps for enabling security. For more information, see “Enabling security” on page

51.

Configuring user ID for proper privileges

Use this page to configure a user ID for proper privileges or to log on as a service on the Windows

platform.

Windows

1. Click Start > Settings > Control Panel > Administrative Tools > Local Security Policy > Local

Policies > User Rights Assignments > Act as part of the operating system (or Log on as a

service). For a Windows domain controller, replace Local Security Policy with Domain Security

Policy in the first step.

Note: If the machine is a standalone machine and not a member of a domain, you must add a

machineName\userID, where the userID is the owner of the process, such as WebSphere

Application Server. If you run WebSphere Application Server as a service, you can log on with

localsystem as the service.

2. If the machine is a member of a domain, add domainName\userID, where the userID is the owner of

process (such as WebSphere Application Server). Start WebSphere Application Server as a service

with login ID domainName\userID. If WebSphere Application Server is already in service, go to the

Chapter 5. Authenticating users 91

service and right-click IBM WebSphere Application Server > properties >Logon to change the

logon ID and password to restart WebSphere Application Server.

3. Add the user name by clicking Add.

4. Restart the machine.

Note: In all of the previous configurations, the server can be run as a service using LocalSystem for the

Log On As entry. The LocalSystem entry has the required privileges and there is no need to give

special privileges to any user. However, because the LocalSystem entry has special privileges,

make sure that it is appropriate to use in your environment.

Local operating system settings

Use this page to configure local operating system registry settings.

To view this administrative console page, complete the following steps:

1. Click Security > Secure administration, applications, and infrastructure.

2. Under User account repository, click the Available realm definitions drop-down list, selectLocal

operating system.

3. Click Configure.

WebSphere Application Server Version 6.1 distinguishes between the user identities for administrators who

manage the environment and server identities for authenticating server to server communications. In most

cases, server identities are automatically generated and are not stored in a repository. However, if you are

adding a Version 5.0.x or 6.0.x node to a Version 6.1 cell, you must ensure that the Version 5.x or Version

6.0.x server identity and password are defined in the repository for this cell. Enter the server user identity

and password on this panel.

Primary administrative user name:

Specifies the name of a user with administrative privileges that is defined in your local operating system.

 The user name is used to log on to the administrative console when administrative security is enabled.

Automatically generated server identity:

Enables the application server to generate the server identity that is used for internal process

communication.

 You can change this server identity on the Authentication mechanisms and expiration panel. To access the

Authentication mechanisms and expiration panel, click Security > Secure administration, applications,

and infrastructure > Authentication mechanisms and expiration. Change the value of the Internal

server ID field.

 Default: Disabled

Server identity that is stored in the repository:

Specifies a user identity in the repository that is used for internal process communication.

 Default: Enabled

Server user ID or administrative user on a Version 6.0.x node:

Specifies the user ID that is used to run the application server for security purposes.

92 Securing applications and their environment

Password:

Specifies the password that corresponds to the server ID.

Local operating system wizard settings

Use this security wizard page to configure local operating system registry settings.

To view this security wizard page, complete the following steps:

1. Click Security > Secure administration, applications, and infrastructure > Security configuration

wizard.

2. Select your protection settings and click Next.

3. Select the Local operating system option and click Next.

Primary administrative user name:

Specifies the name of a user with administrative privileges that is defined in your local operating system.

 The user name is used to log on to the administrative console when administrative security is enabled.

Configuring Lightweight Directory Access Protocol user registries

To access a user registry using the Lightweight Directory Access Protocol (LDAP), you must know a valid

user name (ID) and password, the server host and port of the registry server, the base distinguished name

(DN) and, if necessary, the bind DN and the bind password. You can choose any valid user in the user

registry that is searchable. You can use any user ID that has the administrative role to log in.

In some LDAP servers, administrative users cannot be searched and thus cannot be used, for example,

when cn=root in Tivoli Access Manager. The user is referred to as a WebSphere Application Server

security server ID, server ID, or server user ID in the documentation. A server ID user has special

privileges when calling some protected internal methods.

Normally, the primary administrative user name is used to log into the administrative console if security is

enabled. By default, security is enabled after installation.

When security is enabled in the product, the primary administrative user name and password are

authenticated with the registry during the product startup. If authentication fails, the server does not start. It

is important to choose an ID and password that do not expire or change often. If the product server user

ID or password need to change in the registry, make sure that the changes are performed when all the

product servers are up and running. When changes are to be made in the registry, review the article on

“Standalone Lightweight Directory Access Protocol registries” on page 169 (LDAP) before beginning this

task.

 1. In the administrative console, click Security > Secure administration, applications, and

infrastructure.

 2. Under User account repository, click the Available realm definitions drop-down list, select

Standalone LDAP registry, and click Configure.

 3. Enter a valid user name in the Primary administrative user name field. You can either enter the

complete distinguished name (DN) of the user or the short name of the user, as defined by the user

filter in the Advanced LDAP settings panel. For example, enter the user ID for Netscape browsers.

This ID is the security server ID, which is only used for WebSphere Application Server security and is

not associated with the system process that runs the server. The server calls the local operating

system registry to authenticate and obtain privilege information about users by calling the native

application programming interfaces (API) in that particular registry.

 4. Optional: If you want to use the server ID that is stored in the repository, complete the following:

a. Select Automatically generated server identity to enable the application server to generate the

server identity that is used for internal process communication. You can change this server

Chapter 5. Authenticating users 93

identity on the Authentication mechanisms and expiration panel. To access the Authentication

mechanisms and expiration panel, click Security > Secure administration, applications, and

infrastructure > Authentication mechanisms and expiration. Change the value of the Internal

server ID field.

b. Alternatively, specify a user identity in the repository that is used for internal process

communication in the Server identity that is stored in the repository field.

c. Alternatively, specify the user ID that is used to run the application server for security purposes in

the Server user ID or administrative user on a Version 6.0.x node field.

 5. Select the type of LDAP server to use from the Type list. The type of LDAP server determines the

default filters that are used by WebSphere Application Server. These default filters change the Type

field to Custom, which indicates that custom filters are used. This action occurs after you click OK or

Apply in the Advanced LDAP settings panel. Choose the Custom type from the list and modify the

user and group filters to use other LDAP servers, if required.

IBM Tivoli Directory Server users can choose IBM Tivoli Directory Server as the directory type. Use

the IBM Tivoli Directory Server directory type for better performance. For a list of supported LDAP

servers, see the Supported hardware, software, and APIs Web site.

Attention: IBM SecureWay Directory Server has been renamed to IBM Tivoli Directory Server in

WebSphere Application Server version 6.1.

 6. Enter the fully qualified host name of the LDAP server in the Host field. You can enter either the IP

address or domain name system (DNS) name.

 7. Enter the LDAP server port number in the Port field. The host name and the port number represent

the realm for this LDAP server in the WebSphere Application Server cell. So, if servers in different

cells are communicating with each other using Lightweight Third Party Authentication (LTPA) tokens,

these realms must match exactly in all the cells.

The default value is 389. If multiple WebSphere Application Servers are installed and configured to

run in the same single sign-on domain, or if the WebSphere Application Server interoperates with a

previous version of the WebSphere Application Server, then it is important that the port number match

all configurations. For example, if the LDAP port is explicitly specified as 389 in a version 5.x

configuration, and a WebSphere Application Server at version 6.0.x is going to interoperate with the

version 5.x server, then verify that port 389 is specified explicitly for the version 6.0.x server.

 8. Enter the base distinguished name (DN) in the Base distinguished name field. The base DN

indicates the starting point for searches in this LDAP directory server. For example, for a user with a

DN of cn=John Doe, ou=Rochester, o=IBM, c=US, specify the base DN as any of the following options

assuming a suffix of c=us): ou=Rochester, o=IBM, c=us or o=IBM c=us or c=us. For authorization

purposes, this field is case sensitive by default. Match the case in your directory server. If a token is

received (for example, from another cell or Lotus Domino) the base DN in the server must match

exactly the base DN from the other cell or Domino. If case sensitivity is not a consideration for

authorization, enable the Ignore case for authorization option.

In WebSphere Application Server, the distinguished name is normalized according to the Lightweight

Directory Access Protocol (LDAP) specification. Normalization consists of removing spaces in the

base distinguished name before or after commas and equal symbols. An example of a

non-normalized base distinguished name is o = ibm, c = us or o=ibm, c=us. An example of a

normalized base distinguished name is o=ibm,c=us.

To interoperate between WebSphere Application Server Version 5 and later versions, you must enter

a normalized base distinguished name in the Base Distinguished Name field. In WebSphere

Application Server, Version 5.0.1 or later, the normalization occurs automatically during runtime.

This field is required for all LDAP directories except the Lotus Domino Directory. The Base

Distinguished Name field is optional for the Domino server.

 9. Optional: Enter the bind DN name in the Bind distinguished name field. The bind DN is required if

anonymous binds are not possible on the LDAP server to obtain user and group information. If the

94 Securing applications and their environment

http://www.ibm.com/support/docview.wss?rs=180&uid=swg27006921

LDAP server is set up to use anonymous binds, leave this field blank. If a name is not specified, the

application server binds anonymously. See the Base Distinguished Name field description for

examples of distinguished names.

10. Optional: Enter the password corresponding to the bind DN in the Bind password field.

11. Optional: Modify the Search time out value. This timeout value is the maximum amount of time that

the LDAP server waits to send a response to the product client before stopping the request. The

default is 120 seconds.

12. Ensure that the Reuse connection option is selected. This option specifies that the server should

reuse the LDAP connection. Clear this option only in rare situations where a router is used to send

requests to multiple LDAP servers and when the router does not support affinity. Leave this option

selected for all other situations.

13. Optional: Verify that the Ignore case for authorization option is enabled. When you enable this

option, the authorization check is case insensitive. Normally, an authorization check involves checking

the complete DN of a user, which is unique in the LDAP server and is case sensitive. However, when

you use either the IBM Directory Server or the Sun ONE (formerly iPlanet) Directory Server LDAP

servers, you must enable this option because the group information that is obtained from the LDAP

servers is not consistent in case. This inconsistency affects the authorization check only. Otherwise,

this field is optional and can be enabled when a case sensitive authorization check is required. For

example, you might select this option when you use certificates and the certificate contents do not

match the case of the entry in the LDAP server.

You can also enable the Ignore case for authorization option when you are using single sign-on

(SSO) between the product and Lotus Domino. The default is enabled.

14. Optional: Select the SSL enabled option if you want to use Secure Sockets Layer communications

with the LDAP server.

If you select the SSL enabled option, you can select either the Centrally managed or the Use

specific SSL alias option.

Centrally managed

Enables you to specify an SSL configuration for particular scope such as the cell, node,

server, or cluster in one location. To use the Centrally managed option, you must specify the

SSL configuration for the particular set of endpoints. The Manage endpoint security

configurations and trust zones panel displays all of the inbound and outbound endpoints that

use the SSL protocol. If you expand the Inbound or Outbound section of the panel and click

the name of a node, you can specify an SSL configuration that is used for every endpoint on

that node. For an LDAP registry, you can override the inherited SSL configuration by

specifying an SSL configuration for LDAP. To specify an SSL configuration for LDAP,

complete the following steps:

a. Click Security > SSL certificate and key management > Manage endpoint security

configurations and trust zones.

b. Expand Outbound > cell_name > Nodes > node_name > Servers > server_name >

LDAP.

Use specific SSL alias

Select the Use specific SSL alias option if you intend to select one of the SSL configurations

in the menu below the option.

 This configuration is used only when SSL is enabled for LDAP. The default is

DefaultSSLSettings. To modify or create a new SSL configuration, complete the following

steps:

a. Click Security > SSL certificate and key management.

b. Under Configuration settings, click Manage endpoint security configurations.

c. Select a Secure Sockets Layer (SSL) configuration_name for selected scopes, such as a

cell, node, server, or cluster.

d. Under Related items, click SSL configurations.

Chapter 5. Authenticating users 95

e. Click New.

15. Click OK and either Apply or Save until you return to the Secure administration, applications, and

infrastructure panel.

This set of steps is required to set up the LDAP user registry. This step is required as part of enabling

security in the WebSphere Application Server.

1. If you are enabling security, complete the remaining steps as specified in “Enabling security for the

realm” on page 75.

2. Save, stop, and restart all the product servers (deployment managers, nodes and Application Servers)

for changes in this panel to take effect. If the server comes up without any problems the setup is

correct.

Standalone LDAP registry settings

Use this page to configure Lightweight Directory Access Protocol (LDAP) settings when users and groups

reside in an external LDAP directory.

To view this administrative console page, complete the following steps:

1. Click Security > Secure administration, applications, and infrastructure.

2. Under User account repository, click the Available realm definitions drop-down list, selectStandalone

LDAP registry, and click Configure.

When security is enabled and any of these properties change, go to the Secure administration,

applications, and infrastructure panel and click Apply to validate the changes.

WebSphere Application Server Version 6.1 distinguishes between the user identities for administrators who

manage the environment and server identities for authenticating server to server communications. In most

cases, server identities are automatically generated and are not stored in a repository. However, if you are

adding a Version 5.0.x or 6.0.x node to a Version 6.1 cell, you must ensure that the Version 5.x or Version

6.0.x server identity and password are defined in the repository for this cell. Enter the server user identity

and password on this panel.

Primary administrative user name:

Specifies the name of a user with administrative privileges that is defined in your custom user registry.

 The user name is used to log onto the administrative console when administrative security is enabled.

Automatically generated server identity:

Enables the application server to generate the server identity that is used for internal process

communication.

 You can change this server identity on the Authentication mechanisms and expiration panel. To access the

Authentication mechanisms and expiration panel, click Security > Secure administration, applications,

and infrastructure > Authentication mechanisms and expiration. Change the value of the Internal

server ID field.

 Default: Disabled

Server identity that is stored in the repository:

Specifies a user identity in the repository that is used for internal process communication.

 Default: Enabled

96 Securing applications and their environment

Server user ID or administrative user on a Version 6.0.x node:

Specifies the user ID that is used to run the application server for security purposes.

Password:

Specifies the password that corresponds to the server ID.

Type of LDAP server:

Specifies the type of LDAP server to which you connect.

 IBM SecureWay Directory Server is not supported.

Host:

Specifies the host ID (IP address or domain name service (DNS) name) of the LDAP server.

Port:

Specifies the host port of the LDAP server.

 If multiple application servers are installed and configured to run in the same single sign-on domain or if

the application server interoperates with a previous version, it is important that the port number match all

configurations. For example, if the LDAP port is explicitly specified as 389 in a Version 4.0.x configuration,

and a WebSphere Application Server at Version 5 is going to interoperate with the Version 4.0.x server,

verify that port 389 is specified explicitly for the Version 5 server.

 Default: 389

Type: Integer

Base distinguished name (DN):

Specifies the base distinguished name (DN) of the directory service, which indicates the starting point for

LDAP searches of the directory service. In most cases, bind DN and bind password are needed. However,

when anonymous bind can satisfy all of the required functions, bind DN and bind password are not

needed.

 For example, for a user with a DN of cn=John Doe , ou=Rochester, o=IBM, c=US, specify the Base DN as

any of the following options: ou=Rochester, o=IBM, c=US or o=IBM c=US or c=US. For authorization purposes,

this field is case sensitive. This specification implies that if a token is received, for example, from another

cell or Lotus Domino, the base DN in the server must match the base DN from the other cell or Lotus

Domino server exactly. If case sensitivity is not a consideration for authorization, enable the Ignore case

for authorization option. This option is required for all Lightweight Directory Access Protocol (LDAP)

directories, except for the Lotus Domino Directory, IBM Tivoli Directory Server V6.0, and Novell eDirectory,

where this field is optional.

If you need to interoperate between the application server Version 5 and a Version 5.0.1 or later server,

you must enter a normalized base DN. A normalized base DN does not contain spaces before or after

commas and equal symbols. An example of a non-normalized base DN is o = ibm, c = us or o=ibm,

c=us. An example of a normalized base DN is o=ibm,c=us. In WebSphere Application Server, Version 5.0.1

or later, the normalization occurs automatically during runtime.

Bind distinguished name (DN):

Specifies the DN for the application server to use when binding to the directory service.

Chapter 5. Authenticating users 97

If no name is specified, the application server binds anonymously. See the Base distinguished name (DN)

field description for examples of distinguished names.

Bind password:

Specifies the password for the application server to use when binding to the directory service.

Search timeout:

Specifies the timeout value in seconds for an Lightweight Directory Access Protocol (LDAP) server to

respond before stopping a request.

 Default: 120

Reuse connection:

Specifies whether the server reuses the LDAP connection. Clear this option only in rare situations where a

router is used to distribute requests to multiple LDAP servers and when the router does not support

affinity.

 Default: Enabled

Range: Enabled or Disabled

Important: Disabling the Reuse connection option causes the application server to create a new LDAP

connection for every LDAP search request. This situation impacts system performance if your

environment requires extensive LDAP calls. This option is provided because the router is not

sending the request to the same LDAP server. The option is also used when the idle

connection timeout value or firewall timeout value between the application server and LDAP is

too small.

If you are using WebSphere Edge Server for LDAP failover, you must enable TCP resets with

the Edge server. A TCP reset causes the connection to immediately closed and a backup

server to failover. For more information, see ″Sending TCP resets when server is down″ at

http://www-3.ibm.com/software/webservers/appserv/doc/v50/ec/infocenter/edge/
LBguide.htm#HDRRESETSERVER and the Edge Server V2 - TCP Reset feature in PTF #2

described in: ftp://ftp.software.ibm.com/software/websphere/edgeserver/info/doc/v20/en/
updates.pdf.

Ignore case for authorization:

Specifies that a case insensitive authorization check is performed when using the default authorization.

 This option is required when IBM Tivoli Directory Server is selected as the LDAP directory server.

This option is required when Sun ONE Directory Server is selected as the LDAP directory server. For

more information, see ″Using specific directory servers as the LDAP server″ in the documentation.

This option is optional and can be enabled when a case-sensitive authorization check is required. For

example, use this option when the certificates and the certificate contents do not match the case that is

used for the entry in the LDAP server. You can enable the Ignore case for authorization option when

using single sign-on (SSO) between the application server and Lotus Domino.

 Default: Enabled

Range: Enabled or Disabled

98 Securing applications and their environment

http://www-3.ibm.com/software/webservers/appserv/doc/v50/ec/infocenter/edge/LBguide.htm#HDRRESETSERVER
http://www-3.ibm.com/software/webservers/appserv/doc/v50/ec/infocenter/edge/LBguide.htm#HDRRESETSERVER
ftp://ftp.software.ibm.com/software/websphere/edgeserver/info/doc/v20/en/updates.pdf
ftp://ftp.software.ibm.com/software/websphere/edgeserver/info/doc/v20/en/updates.pdf

SSL enabled:

Specifies whether secure socket communication is enabled to the Lightweight Directory Access Protocol

(LDAP) server.

 When enabled, the LDAP Secure Sockets Layer (SSL) settings are used, if specified.

Centrally managed:

Specifies that the selection of an SSL configuration is based upon the outbound topology view for the Java

Naming and Directory Interface (JNDI) platform.

 Centrally managed configurations support one location to maintain SSL configurations rather than

spreading them across the configuration documents.

 Default: Enabled

Use specific SSL alias:

Specifies the SSL configuration alias to use for LDAP outbound SSL communications.

 This option overrides the centrally managed configuration for the JNDI platform.

Standalone LDAP registry wizard settings

Use this security wizard page to provide the basic settings to connect the application server to an existing

Lightweight Directory Access Protocol (LDAP) registry.

To view this security wizard page, click Security > Secure administration, applications, and

infrastructure > Security configuration wizard. You can modify your LDAP registry configuration by

completing the following steps:

1. Click Security > Security administration, applications, and infrastructure.

2. Under User account repository, click the Available realm definitions drop-down list, selectStandalone

LDAP registry, and click Configure.

Primary administrative user name:

Specifies the name of a user with administrative privileges that is defined in your custom user registry.

 The user name is used to log onto the administrative console when administrative security is enabled.

Type of LDAP server:

Specifies the type of LDAP server to which you connect.

 IBM SecureWay Directory Server is not supported.

Host:

Specifies the host ID (IP address or domain name service (DNS) name) of the LDAP server.

Port:

Specifies the host port of the LDAP server.

Chapter 5. Authenticating users 99

If multiple application servers are installed and configured to run in the same single sign-on domain or if

the application server interoperates with a previous version, it is important that the port number match all

configurations. For example, if the LDAP port is explicitly specified as 389 in a Version 4.0.x configuration,

and a WebSphere Application Server at Version 5 is going to interoperate with the Version 4.0.x server,

verify that port 389 is specified explicitly for the Version 5 server.

 Default: 389

Type: Integer

Base distinguished name (DN):

Specifies the base distinguished name (DN) of the directory service, which indicates the starting point for

LDAP searches of the directory service. In most cases, bind DN and bind password are needed. However,

when anonymous bind can satisfy all of the required functions, bind DN and bind password are not

needed.

 For example, for a user with a DN of cn=John Doe , ou=Rochester, o=IBM, c=US, specify the Base DN as

any of the following options: ou=Rochester, o=IBM, c=US or o=IBM, c=US or c=US. For authorization purposes,

this field is case sensitive. This specification implies that if a token is received, for example, from another

cell or Lotus Domino, the base DN in the server must match the base DN from the other cell or Lotus

Domino server exactly.

If you need to interoperate between the application server Version 5 and a Version 5.0.1 or later server,

you must enter a normalized base DN. A normalized base DN does not contain spaces before or after

commas and equal symbols. An example of a non-normalized base DN is o = ibm, c = us or o=ibm,

c=us. An example of a normalized base DN is o=ibm,c=us. In WebSphere Application Server, Version 5.0.1

or later, the normalization occurs automatically during run time.

Bind distinguished name (DN):

Specifies the DN for the application server to use when binding to the directory service.

 If no name is specified, the application server binds anonymously. See the Base distinguished name (DN)

field description for examples of distinguished names.

Bind password:

Specifies the password for the application server to use when binding to the directory service.

Advanced Lightweight Directory Access Protocol user registry settings

Use this page to configure the advanced Lightweight Directory Access Protocol (LDAP) user registry

settings when users and groups reside in an external LDAP directory.

To view this administrative page, complete the following steps:

1. Click Security > Secure administration, applications, and infrastructure.

2. Under User account repository, click the Available realm definitions drop-down list, selectStandalone

LDAP registry, and click Configure.

3. Under Additional properties, click Advanced Lightweight Directory Access Protocol (LDAP) user

registry settings.

Default values for all the user and group related filters are already completed in the appropriate fields. You

can change these values depending on your requirements. These default values are based on the type of

LDAP server that is selected in the Standalone LDAP registry settings panel. If this type changes, for

example from Netscape to Secureway, the default filters automatically change. When the default filter

values change, the LDAP server type changes to Custom to indicate that custom filters are used. When

100 Securing applications and their environment

security is enabled and any of these properties change, go to the Secure administration, applications, and

infrastructure panel and click Apply or OK to validate the changes.

User filter:

Specifies the LDAP user filter that searches the user registry for users.

 This option is typically used for security role-to-user assignments and specifies the property by which to

look up users in the directory service. For example, to look up users based on their user IDs, specify

(&(uid=%v)(objectclass=inetOrgPerson)). For more information about this syntax, see the LDAP directory

service documentation.

 Data type: String

Group filter:

Specifies the LDAP group filter that searches the user registry for groups

 This option is typically used for security role-to-group assignments and specifies the property by which to

look up groups in the directory service. For more information about this syntax, see the LDAP directory

service documentation.

 Data type: String

User ID map:

Specifies the LDAP filter that maps the short name of a user to an LDAP entry.

 Specifies the piece of information that represents users when users display. For example, to display

entries of the object class = inetOrgPerson type by their IDs, specify inetOrgPerson:uid. This field takes

multiple objectclass:property pairs delimited by a semicolon (;).

 Data type: String

Group ID map:

Specifies the LDAP filter that maps the short name of a group to an LDAP entry.

 Specifies the piece of information that represents groups when groups display. For example, to display

groups by their names, specify *:cn. The asterisk (*) is a wildcard character that searches on any object

class in this case. This field takes multiple objectclass:property pairs, delimited by a semicolon (;).

 Data type: String

Group member ID map:

Specifies the LDAP filter that identifies user-to-group relationships.

 For directory types SecureWay, and Domino, this field takes multiple objectclass:property pairs, delimited

by a semicolon (;). In an objectclass:property pair, the object class value is the same object class that is

defined in the group filter, and the property is the member attribute. If the object class value does not

match the object class in the group filter, authorization might fail if groups are mapped to security roles.

For more information about this syntax, see your LDAP directory service documentation.

Chapter 5. Authenticating users 101

For IBM Directory Server, Sun ONE, and Active Directory, this field takes multiple group attribute:member

attribute pairs delimited by a semicolon (;). These pairs are used to find the group memberships of a

user by enumerating all the group attributes that are possessed by a given user. For example, attribute

pair memberof:member is used by Active Directory, and ibm-allGroup:member is used by IBM Directory

Server. This field also specifies which property of an object class stores the list of members belonging to

the group represented by the object class. For supported LDAP directory servers, see ″Supported directory

services″.

 Data type: String

Perform a nested group search:

Specifies a recursive nested group search.

 Select this option if the Lightweight Directory Access Protocol (LDAP) server does not support recursive

server-side group member searches and if recursive group member search is required. It is not

recommended that you select this option to locate recursive group memberships for LDAP servers.

Application server security leverages the recursive search functionality of the LDAP server to search a

user’s group memberships, including recursive group memberships. For example:

v IBM Directory Server is preconfigured by the application server security to recursively calculate a user’s

group memberships using the ibm-allGroup attribute.

v SunONE directory server is preconfigured to calculate nested group memberships using the nsRole

attribute.

 Data type: String

Certificate map mode:

Specifies whether to map X.509 certificates into an LDAP directory by EXACT_DN or

CERTIFICATE_FILTER. Specify CERTIFICATE_FILTER to use the specified certificate filter for the

mapping.

 Data type: String

Certificate filter:

Specifies the filter certificate mapping property for the LDAP filter. The filter is used to map attributes in the

client certificate to entries in the LDAP registry.

 If more than one LDAP entry matches the filter specification at runtime, authentication fails because the

result is an ambiguous match. The syntax or structure of this filter is:

(&(uid=${SubjectCN})(objectclass=inetOrgPerson)). The left side of the filter specification is an LDAP

attribute that depends on the schema that your LDAP server is configured to use. The right side of the

filter specification is one of the public attributes in your client certificate. The right side must begin with a

dollar sign ($) and open bracket ({) and end with a close bracket (}). You can use the following certificate

attribute values on the right side of the filter specification. The case of the strings is important:

v ${UniqueKey}

v ${PublicKey}

v ${Issuer}

v ${NotAfter}

v ${NotBefore}

v ${SerialNumber}

v ${SigAlgName}

v ${SigAlgOID}

102 Securing applications and their environment

v ${SigAlgParams}

v ${SubjectCN}

v ${Version}

 Data type: String

Configuring Lightweight Directory Access Protocol search filters

Use this topic to configure the LDAP search filters. These steps are required to modify existing user and

group filters for a particular LDAP directory type, and also to set up certificate filters to map certificates to

entries in the LDAP server.

WebSphere Application Server uses Lightweight Directory Access Protocol (LDAP) filters to search and

obtain information about users and groups from an LDAP directory server. A default set of filters is

provided for each LDAP server that the product supports. You can modify these filters to fit your LDAP

configuration. After the filters are modified and you click OK or Apply the directory type in the Standalone

LDAP registry panel changes to custom, which indicates that custom filters are used. Also, you can

develop filters to support any additional type of LDAP server. The effort to support additional LDAP

directories is optional and other LDAP directory types are not supported. Complete the following steps in

the administrative console.

 1. Click Security > Secure administration, applications, and infrastructure.

 2. Under User account repository, select Standalone LDAP registry and click Configure.

 3. Under Additional properties, click Advanced Lightweight Directory Access Protocol (LDAP) user

registry settings.

 4. Modify the user filter, if necessary. The user filter is used for searching the registry for users and is

typically used for the security role-to-user assignment. The filter is also used to authenticate a user

with the attribute that is specified in the filter. The filter specifies the property that is used to look up

users in the directory service.

In the following example, the property that is assigned to %v, which is the short name of the user,

must be a unique key. Two LDAP entries with the same object class cannot have the same short

name. To look up users based on their user IDs (uid) and to use the inetOrgPerson object class,

specify the following syntax:

(&(uid=%v)(objectclass=inetOrgPerson)

For more information about this syntax, see the “Using specific directory servers as the LDAP server”

on page 106 documentation.

 5. Modify the group filter, if necessary. The group filter is used in searching the registry for groups and is

typically used for the security role-to-group assignment. Also, the filter is used to specify the property

by which to look up groups in the directory service.

In the following example, the property that is assigned to %v, which is the short name of the group,

must be a unique key. Two LDAP entries with the same object class cannot have the same short

name. To look up groups based on their common names (CN) and to use either the groupOfNames

object class or the groupOfUniqueNames object class, specify the following syntax:

(&(cn=%v)(|(objectclass=groupOfNames)(objectclass=groupOfUniqueNames)))

For more information about this syntax, see the “Using specific directory servers as the LDAP server”

on page 106 documentation.

 6. Modify the user ID map, if necessary. This filter maps the short name of a user to an LDAP entry and

specifies the piece of information that represents users when these users are displayed with their

short names. For example, to display entries of object class = inetOrgPerson by their IDs, specify

inetOrgPerson:uid. This field takes multiple objectclass:property pairs, delimited by a semicolon (;).

To provide a consistent value for methods like the getCallerPrincipal method and the getUserPrincipal

method, the short name that is obtained by using this filter is used. For example, the CN=Bob Smith,

Chapter 5. Authenticating users 103

ou=austin.ibm.com, o=IBM, c=US user can log in using any attributes that are defined, for example,

e-mail address, social security number, and so on, but when these methods are called, the bob user

ID is returned no matter how the user logs in.

 7. Modify the group ID map filter, if necessary. This filter maps the short name of a group to an LDAP

entry and specifies the piece of information that represents groups when groups display. For example,

to display groups by their names, specify *:cn. The asterisk (*) is a wildcard character that searches

on any object class in this case. This field takes multiple objectclass:property pairs, delimited by a

semicolon (;).

 8. Modify the group member ID map filter, if necessary. This filter identifies user-to-group memberships.

For SecureWay, and Domino directory types, this field is used to query all the groups that match the

specified object classes to see if the user is contained in the specified attribute. For example, to get

all the users that belong to groups with the groupOfNames object class and the users that are

contained in the member attributes, specify groupOfNames:member. This syntax, which is a property of

an object class, stores the list of members that belong to the group that is represented by the object

class. This field takes multiple objectclass:property pairs that are delimited by a semicolon (;). For

more information about this syntax, see the “Using specific directory servers as the LDAP server” on

page 106.

For the IBM Tivoli Directory Server, Sun ONE, and Active Directory, this field is used to query all

users in a group with the information that is stored in the user object. For example, the

memberof:member filter (for Active Directory) is used to get the memberof attribute of the user object

to obtain all the groups to which the user belongs. The member attribute is used to get all the users

in a group that use the Group object. Using the User object to obtain the group information improves

performance.

 9. Select the Perform a nested group search option if your LDAP server does not support recursive

server-side searches.

10. Modify the Certificate map mode, if necessary. You can use the X.590 certificates for user

authentication when LDAP is selected as the registry. This field is used to indicate whether to map

the X.509 certificates into an LDAP directory user by EXACT_DN or CERTIFICATE_FILTER. If

EXACT_DN is selected, the DN in the certificate must exactly match the user entry in the LDAP

server, including case and spaces.

Select the Ignore case for authorization option on the Standalone LDAP registry settings to make

the authorization case insensitive. To access the Standalone LDAP registry settings panel, complete

the following steps:

a. Click Security > Secure administration, applications, and infrastructure.

b. Under User account repository, click the Available realm definitions drop-down list,

selectStandalone LDAP registry.

11. If you select CERTIFICATE_FILTER, specify the LDAP filter for mapping attributes in the client

certificate to entries in LDAP. If more than one LDAP entry matches the filter specification at run time,

authentication fails because an ambiguous match results. The syntax or structure of this filter is: LDAP

attribute=${Client certificate attribute} (for example, uid=${SubjectCN}).

The left side of the filter specification is an LDAP attribute that depends on the schema that your

LDAP server is configured to use. The right side of the filter specification is one of the public

attributes in your client certificate. Note that the right side must begin with a dollar sign ($), open

bracket ({), and end with a close bracket (}). Use the following certificate attribute values on the right

side of the filter specification. The case of the strings is important.

v ${UniqueKey}

v ${PublicKey}

v ${Issuer}

v ${NotAfter}

v ${NotBefore}

v ${SerialNumber}

v ${SigAlgName}

v ${SigAlgOID}

104 Securing applications and their environment

v ${SigAlgParams}

v ${SubjectDN}

v ${Version}

To enable this field, select CERTIFICATE_FILTER for the certificate mapping.

12. Click Apply.

When any LDAP user or group filter is modified in the Advanced LDAP Settings panel click Apply.

Clicking OK navigates you to the Standalone LDAP registry panel, which contains the previous LDAP

directory type, rather than the custom LDAP directory type. Clicking OK or Apply in the Standalone

LDAP registry panel saves the back-level LDAP directory type and the default filters of that directory.

This action overwrites any changes to the filters that you made. To avoid overwriting changes, you

can take either of the following actions:

v Click Apply in the Advanced Lightweight Directory Access Protocol (LDAP) user registry settings

panel. Click Security > Secure administration, applications, and infrastructure and change the

User account repository type to Standalone custom registry.

v Select Custom type from the Standalone LDAP registry panel. Click Apply and then change the

filters by clicking the Advanced Lightweight Directory Access Protocol (LDAP) user registry settings

panel. After you complete your changes, click Apply or OK.

The validation of the changes does not take place in this panel. Validation is done when you click OK

or Apply on the Secure administration, applications, and infrastructure panel. If you are in the

process of enabling security for the first time, complete the remaining steps and go to the Secure

administration, applications, and infrastructure panel. Select Standalone LDAP registry as the user

account repository. If security is already enabled and any information on this panel changes, go to the

Secure administration, applications, and infrastructure panel and click OK or Apply to validate your

changes. If your changes are not validated, the server might not start.

These steps result in the configuration of the LDAP search filters. These steps are required to modify

existing user and group filters for a particular LDAP directory type. The steps are also used to set up

certificate filters to map certificates to entries in the LDAP server.

1. Validate this setup by clicking OK or Apply on the Secure administration, applications, and

infrastructure panel.

2. Save, stop, and start all the product servers, including the cell, nodes and all of the application servers

for any changes in this panel to become effective.

3. After the server starts, go through all the security-related tasks (getting users, getting groups, and so

on) to verify that the changes to the filters function.

Updating LDAP binding information

Use this information to dynamically update security LDAP binding information by switching to a different

binding identity.

You can dynamically update Lightweight Directory Access Protocol (LDAP) binding information without first

stopping and restarting WebSphere Application Server by using the wsadmin tool.

The resetLdapBindInfo method in SecurityAdmin MBean is used to dynamically update LDAP binding

information at WebSphere Application Server security runtime, and it takes the bind distinguished name

(DN) and bind password parameters as input. The resetLdapBindInfo method validates the bind

information against the LDAP server. If validation passes, new binding information is stored in

security.xml, and a copy of the information is placed in WebSphere Application Server security runtime.

If the new binding information is null, null, the resetLdapBindInfo method first extracts LDAP binding

information, including bind DN, bind password, and target binding host from WebSphere Application Server

security configuration in security.xml. It then pushes the binding information to WebSphere Application

Server security runtime.

There are two ways to dynamically update WebSphere Application Server security LDAP binding

information using the SecurityAdmin MBean through wsadmin:

Chapter 5. Authenticating users 105

v “Switching to a different binding identity”

v “Switching to a failover LDAP host”

Switching to a different binding identity:

To dynamically update security LDAP binding information by switching to a different binding identity:

1. In the administrative console, click Security > Secure administration, applications, and

infrastructure.

2. Under User account repository, click the Available realm definitions drop-down list, selectStandalone

LDAP registry, and click Configure.

3. Create a new bind DN. It must have the same access authority as the current bind DN.

4. Run the SecurityAdmin MBean across all of the application server processes to validate the new

binding information, to save it to security.xml, and to push the new binding information to the runtime.

The following is a sample Jacl file for step 4:

proc LDAPReBind {args} {

 global AdminConfig AdminControl ldapBindDn ldapBindPassword

 set ldapBindDn [lindex $args 0]

 set ldapBindPassword [lindex $args 1]

 set secMBeans [$AdminControl queryNames type=SecurityAdmin,*]

 set plist [list $ldapBindDn $ldapBindPassword]

 foreach secMBean $secMBeans {

 set result [$AdminControl invoke $secMBean resetLdapBindInfo $plist]

 }

 }

Switching to a failover LDAP host:

To dynamically update security LDAP binding information by switching to a failover LDAP host:

1. In the administrative console, click Security > Secure administration, applications, and

infrastructure.

2. Under User account repository, select Standalone LDAP registry and click Configure.

3. Change the password for bind DN on one LDAP server (it can be the primary or the backup).

4. Update the new bind DN password to WebSphere Application security runtime by calling

resetLdapBindInfo with the bind DN and by using its new password as a parameter.

5. Use the new bind DN password for all of the other LDAP servers. The binding information is now

consistent across WebSphere Application Server and the LDAP servers.

Note: If you call resetLdapBindInfo with null, null as input parameters, WebSphere Application

Server security runtime completes the following steps:

a. Reads the bind DN, bind password, and target LDAP hosts from security.xml.

b. Refreshes the cached connection to the LDAP server.

If you configure security to use multiple LDAP servers, this MBean call forces WebSphere

Application Server security to reconnect to the first available LDAP host in the list. For example,

if three LDAP servers are configured in the order of L1, L2, and L3, the reconnection process

always starts with the L1 server.

Using specific directory servers as the LDAP server

This article provides important information about the directory servers that are supported as Lightweight

Directory Access Protocol (LDAP) servers in WebSphere Application Server.

Microsoft Active Directory forest is not supported in the user registry in this product.

For a list of supported LDAP servers, refer to the Supported hardware and software Web site.

106 Securing applications and their environment

http://www.ibm.com/support/docview.wss?rs=180&uid=swg27006921

It is expected that other LDAP servers follow the LDAP specification. Support is limited to these specific

directory servers only. You can use any other directory server by using the custom directory type in the list

and by filling in the filters that are required for that directory.

To improve performance for LDAP searches, the default filters for IBM Tivoli Directory Server, Sun ONE,

and Active Directory are defined such that when you search for a user, the result contains all the relevant

information about the user (user ID, groups, and so on). As a result, the product does not call the LDAP

server multiple times. This definition is possible only in these directory types, which support searches

where the complete user information is obtained.

If you use the IBM Directory Server, select the Ignore case for authorization option. This option is

required because when the group information is obtained from the user object attributes, the case is not

the same as when you get the group information directly. For the authorization to work in this case,

perform a case insensitive check and verify the requirement for the Ignore case for authorization option.

v Using IBM Tivoli Directory Server as the LDAP server

To use IBM Tivoli Directory Server, formerly IBM Directory Server, select IBM Tivoli Directory Server

as the directory type.

The difference between these two types is group membership lookup. It is recommended that you

choose the IBM Tivoli Directory Server for optimum performance during runtime. In the IBM Tivoli

Directory Server, the group membership is an operational attribute. With this attribute, a group

membership lookup is done by enumerating the ibm-allGroups attribute for the entry. All group

memberships, including the static groups, dynamic groups, and nested groups, can be returned with the

ibm-allGroups attribute.

WebSphere Application Server supports dynamic groups, nested groups, and static groups in IBM Tivoli

Directory Server using the ibm-allGroups attribute. To utilize this attribute in a security authorization

application, use a case-insensitive match so that attribute values returned by the ibm-allGroups attribute

are all in uppercase.

Important: It is recommended that you do not install IBM Tivoli Directory Server Version 6.0 on the

same machine that you install WebSphere Application Server Version 6.1. IBM Tivoli

Directory Server Version 6.0 includes WebSphere Application Server Express Version 5.1.1,

which the directory server uses for its administrative console. Install the Web Administration

tool Version 6.0 and WebSphere Application Server Express Version 5.1.1, which are both

bundled with IBM Tivoli Directory Server Version 6.0, on a different machine from

WebSphere Application Server Version 6.1. You cannot use WebSphere Application Server

Version 6.1 as the administrative console for IBM Tivoli Directory Server. If IBM Tivoli

Directory Server Version 6.0 and WebSphere Application Server Version 6.1 are installed on

the same machine, you might encounter port conflicts.

If you must install IBM Tivoli Directory Server Version 6.0 and WebSphere Application

Server Version 6.1 on the same machine, consider the following information:

– During the IBM Tivoli Directory Server installation process, you must select both the

Web Administration tool and WebSphere Application Server Express Version 5.1.1.

– Install WebSphere Application Server Version 6.1.

– When you install WebSphere Application Server Version 6.1, change the port number for

the application server.

– You might need to adjust the WebSphere Application Server environment variables on

WebSphere Application Server Version 6.1 for WAS_HOME and WAS_INSTALL_ROOT

(or APP_SERVER_ROOT for i5/OS). To change the variables using the administrative

console, click Environment > WebSphere Variables.

v Using a Lotus Domino Enterprise Server as the LDAP server

If you select the Lotus Domino Enterprise Server Version 6.5.4 or Version 7.0 and the attribute short

name is not defined in the schema, you can take either of the following actions:

Chapter 5. Authenticating users 107

– Change the schema to add the short name attribute.

– Change the user ID map filter to replace the short name with any other defined attribute (preferably

to UID). For example, change person:shortname to person:uid.

The userID map filter is changed to use the uid attribute instead of the shortname attribute as the

current version of Lotus Domino does not create the shortname attribute by default. If you want to use

the shortname attribute, define the attribute in the schema and change the userID map filter.

User ID Map : person:shortname

v Using Sun ONE Directory Server as the LDAP server

You can select Sun ONE Directory Server for your Sun ONE Directory Server system. In Sun ONE

Directory Server, the object class is the default groupOfUniqueName when you create a group. For

better performance, WebSphere Application Server uses the User object to locate the user group

membership from the nsRole attribute. Create the group from the role. If you want to use the

groupOfUniqueName attribute to search groups, specify your own filter setting. Roles unify entries.

Roles are designed to be more efficient and easier to use for applications. For example, an application

can locate the role of an entry by enumerating all the roles that are possessed by a given entry, rather

than selecting a group and browsing through the members list. When using roles, you can create a

group using a:

– Managed role

– Filtered role

– Nested role

All of these roles are computable by the nsRole attribute.

v Using Microsoft Active Directory server as the LDAP server

To use Microsoft Active Directory as the LDAP server for authentication with WebSphere Application

Server you must take specific steps. By default, Microsoft Active Directory does not permit anonymous

LDAP queries. To create LDAP queries or to browse the directory, an LDAP client must bind to the

LDAP server using the distinguished name (DN) of an account that belongs to the administrator group

of the Windows system. A group membership search in the Active Directory is done by enumerating the

memberof attribute for a given user entry, rather than browsing through the member list in each group. If

you change the default behavior to browse each group, you can change the Group Member ID Map

field from memberof:member to group:member.

The following steps describe how to set up Microsoft Active Directory as your LDAP server.

1. Determine the full distinguished name (DN) and password of an account in the administrators group.

For example, if the Active Directory administrator creates an account in the Users folder of the Active

Directory Users and Computers Windows control panel and the DNS domain is ibm.com, the resulting

DN has the following structure:

cn=<adminUsername>, cn=users, dc=ibm,

dc=com

2. Determine the short name and password of any account in the Microsoft Active Directory.

3. Use the WebSphere Application Server administrative console to set up the information that is needed

to use Microsoft Active Directory.

a. Click Security > Secure administration, applications, and infrastructure.

b. Under User account repository, select Standalone LDAP registry and click Configure.

c. Set up LDAP with Active Directory as the type of LDAP server. Based on the information that is

determined in the previous steps, you can specify the following values on the LDAP settings panel:

Primary administrative user name

Specify the name of a user with administrative privileges that is defined in the registry. This

user name is used to access the administrative console or used by wsadmin.

Type Specify Active Directory

108 Securing applications and their environment

Host Specify the domain name service (DNS) name of the machine that is running Microsoft

Active Directory.

Base distinguished name (DN)

Specify the domain components of the DN of the account that is chosen in the first step.

For example: dc=ibm, dc=com

Bind distinguished name (DN)

Specify the full distinguished name of the account that is chosen in the first step. For

example: cn=adminUsername, cn=users, dc=ibm, dc=com

Bind password

Specify the password of the account that is chosen in the first step.

d. Click OK and Save to save the changes to the master configuration.

4. Click Security > Secure administration, applications, and infrastructure.

5. Under User account repository, click the Available realm definitions drop-down list, selectStandalone

LDAP registry, and click Configure.

6. Select either the Automatically generated server identity or Server identity that is stored in the

repository option. If you select the Server identity that is stored in the repository option, enter the

following information:

Server user ID or administrative user on a Version 6.0.x node

Specify the short name of the account that is chosen in the second step.

Server user password

Specify the password of the account that is chosen in the second step.

7. Optional: Set ObjectCategory as the filter in the Group member ID map field to improve LDAP

performance.

a. Under Additional properties, click Advanced Lightweight Directory Access Protocol (LDAP)

user registry settings .

b. Add ;objectCategory:group to the end of the Group member ID map field.

8. Click OK and Save to save the changes to the master configuration.

9. Stop and restart the administrative server so that the changes take effect.

Locating a user’s group memberships in Lightweight Directory Access Protocol

WebSphere Application Server security can be configured to search group memberships directly or

indirectly. It can also be configured to search only a static group, or it can be configured to search static

groups, recursive or nested groups, and dynamic groups for some Lightweight Directory Access Protocol

(LDAP) servers.

v Evaluate group memberships from user object directly.

– Several popular LDAP servers enable user objects to contain information about the groups to which

they belong such as Microsoft Active Directory Server, or eDirectory. Some user group memberships

can be computable attributes from the user object such as IBM Directory Server or Sun ONE

directory server. In some LDAP servers, this attribute can be used to include a user’s dynamic group

memberships, nesting group memberships, and static group memberships to locate all the group

memberships from a single attribute.

– For example, in IBM Directory Server all group memberships including the static groups, dynamic

groups, and nested groups can be returned using the ibm-allGroups attribute. In Sun ONE, all roles,

including managed roles, filtered roles, and nested roles, are calculated using the nsRole attribute. If

an LDAP server has such an attribute in a User object to include dynamic groups, nested groups,

and static groups, WebSphere Application Server security can be configured to use this attribute to

support these groups.

v Evaluate group memberships from a Group object indirectly.

– Some LDAP servers enable only Group objects, such as the Lotus Domino LDAP server to contain

information about users. The LDAP server does not enable the User object to contain information

Chapter 5. Authenticating users 109

about groups. For this type of LDAP server, group membership searches are performed by locating

the user on the member list of groups. The member list evaluation is not currently used in the static

group membership search for WebSphere Application Server.

v Use the direct method for searching group memberships if your LDAP server has an attribute in the

User object to include group information. To use the direct method or the indirect method, enter the

appropriate value in the Group Member ID map field on the Advanced LDAP Settings panel using the

following methods.

– objectclass:attribute pairs for the indirect method

– attribute:attribute pairs for the direct method

v Use the sample entries of attribute:attribute pairs in Group member ID map fields. Note that the

groupMembership attribute lists all the static groups for which a user is a member. This attribute is NOT

updated whenever an object matches or does not match a dynamic group’s filter. Please refer to the

Novell eDirectory documentation for more information about the groupMembership attribute.

– ibm-allGroups:member for IBM Directory server

– nsRole:nsRole for Sun ONE directory, if groups are created with role inside Sun ONE

– memberOf:member in Microsoft Active Directory Server

– groupMembership:member for eDirectory

v Use the sample entries of objectClass:attribute pairs in the Group member ID map field.

– dominoGroup:member for Lotus Domino

– groupOfNames:member for eDirectory

While using the direct method, dynamic groups, recursive groups, and static groups can be returned as

multiple values of a single attribute. For example, in IBM Directory Server all group memberships,

including the static groups, dynamic groups, and nested groups, can be returned using the ibm-allGroups

attribute. In Sun ONE, all roles, including managed roles, filtered roles, and nested roles, are calculated

using the nsRole attribute. If an LDAP server can use the nsRole attribute, dynamic groups, nested

groups, and static groups are all supported by WebSphere Application Server.

Some LDAP servers do not have recursive computing functionality. For example, although Microsoft Active

Directory server has direct group search capability using the memberOf attribute, this attribute lists the

groups beneath, which the group is directly nested only and does not contain the recursive list of nested

predecessors. The Lotus Domino LDAP server only supports the indirect method to locate the group

memberships for a user. You cannot obtain recursive group memberships from a Domino server directly.

For LDAP servers without recursive searching capability, WebSphere Application Server security provides

a recursive function that is enabled by clicking Perform a Nested Group Search in the Advanced LDAP

user registry settings. Select this option only if your LDAP server does not provide recursive searches and

you want a recursive search.

Configuring dynamic and nested group support for the SunONE or iPlanet Directory Server:

Configure dynamic and nested groups to simplify WebSphere Application Server security management and

increase its effectiveness and flexibility.

 To use dynamic and nested groups with WebSphere Application Server security, you must be running

WebSphere Application Server Version 5.1.1 or later. Refer to “Dynamic and nested group support for the

SunONE or iPlanet Directory Server” on page 170 for more information on this topic.

1. In the administrative console for WebSphere Application Server, click Security > Secure

administration, applications, and infrastructure.

2. Under User account repository, click the Available realm definitions drop-down list, selectStandalone

LDAP registry, and click Configure.

3. Select SunONE for the type of LDAP server.

4. Select the Ignore case for authorization option.

110 Securing applications and their environment

5. Under Additional Properties, click Advanced Lightweight Directory Access Protocol (LDAP) user

registry settings.

6. Change the Group filter setting to &(cn=%v)(objectclass=ldapsubentry)).

7. Change the Group member ID map setting to nsRole:nsRole.

8. Click Apply or OK to validate the changes.

Configuring dynamic and nested group support for the IBM Tivoli Directory Server:

Configure dynamic and nested groups to simplify WebSphere Application Server security management and

increase its effectiveness and flexibility.

 When creating groups, ensure that nested and dynamic group memberships work correctly.

1. In the administrative console for WebSphere Application Server, click Security > Secure

administration, applications, and infrastructure.

2. Under User account repository, click Standalone LDAP registry, and click Configure.

3. Select IBM Tivoli Directory Server for the type of LDAP server.

4. Under Additional properties, click Advanced Lightweight Directory Access Protocol (LDAP) user

registry settings.

5. Change the Group filter value to (&(cn=
%v)(|(objectclass=groupOfNames)(objectclass=groupOfUniqueNames)(objectclass=groupOfURLs))).

6. Change the Group member ID map value to ibm-allGroups:member;ibm-allGroups:uniqueMember.

7. Click Apply or OK to validate the changes.

8. Verify that Auxiliary object class field on the Add an LDAP entry panel for your IBM Tivoli Directory

server has the appropriate value. When you create a nested group, the Auxiliary object class value is

ibm-nestedGroup. When you create a dynamic group, the Auxiliary object class value is

ibm-dynamicGroup.

Configuring standalone custom registries

Before you begin this task, implement and build the UserRegistry interface. For more information on

developing standalone custom registries refer to “Developing standalone custom registries” on page 501.

The following steps are required to configure standalone custom registries through the administrative

console.

 1. Click Security > Secure administration, applications, and infrastructure.

 2. Under User account repositories, select Standalone custom registry and click Configure.

 3. Enter a valid user name in the Primary administrative user name field. This ID is the security server

ID, which is only used for WebSphere Application Server security and is not associated with the

system process that runs the server. The server calls the local operating system registry to

authenticate and obtain privilege information about users by calling the native APIs in that particular

registry.

 4. Enter the complete location of the dot-separated class name that implements the

com.ibm.websphere.security.UserRegistry interface in the Custom registry class name field. For the

sample, this file name is com.ibm.websphere.security.FileRegistrySample.

The file exists in the WebSphere Application Server class path preferably in the app_server_root/lib/
ext directory.

 Attention: The sample provided is intended to familiarize you with this feature. Do not use this

sample in an actual production environment.

 5. Add your custom registry class name to the class path. It is recommended that you add the Java

Archive (JAR) file that contains your custom user registry implementation to the app_server_root/
classes directory.

Chapter 5. Authenticating users 111

6. Optional: Select the Ignore case for authorization option for the authorization to perform a case

insensitive check. Enabling this option is necessary only when your user registry is case insensitive

and does not provide a consistent case when queried for users and groups.

 7. Click Apply if you have any other additional properties to enter for the registry initialization.

 8. Optional: Enter additional properties to initialize your implementation.

a. Click Custom properties > New.

b. Enter the property name and value.

For the sample, enter the following two properties. It is assumed that the users.props file and the

groups.props file are in the customer_sample directory under the product installation directory.

You can place these properties in any directory that you choose and reference their locations

through custom properties. However, make sure that the directory has the appropriate access

permissions.

 Property name Property value

usersFile ${USER_INSTALL_ROOT}/customer_sample /users.props

groupsFile ${USER_INSTALL_ROOT}/customer_sample /groups.props

Samples of these two properties are available in users.props file and groups.props file.

The Description, Required, and Validation Expression fields are not used and can remain

blank.

WebSphere Application Server version 4-based custom user registry is migrated to the custom

user registry based on the com.ibm.websphere.security.UserRegistry interface.

c. Click Apply.

d. Repeat this step to add other additional properties.

 9. Click Security > Secure administration, applications, and infrastructure.

10. Under User account repository, click the Available realm definitions drop-down list,

selectStandalone custom registry, and click Configure.

11. Select either the Automatically generated server identity or Server identity that is stored in the

repository option. If you select the Server identity that is stored in the repository option, enter the

following information:

Server user ID or administrative user on a Version 6.0.x node

Specify the short name of the account that is chosen in the second step.

Server user password

Specify the password of the account that is chosen in the second step.

12. Click OK and complete the required steps to turn on security.

This set of steps is required to set up the standalone custom registry and to enable security in WebSphere

Application Server.

Note: The security component of WebSphere Application Server expands a selected list of variables when

enabling security. See Variable settings for more detail.

1. Complete the remaining steps, if you are enabling security.

2. Validate the user and password. Save and synchronize in the cell environment.

3. After security is turned on, save, stop, and start all the product servers, including cell, nodes, and all of

the application servers, for any changes to take effect. If the server comes up without any problems,

the setup is correct.

Standalone custom registry settings

Use this page to configure the standalone custom registry.

To view this administrative console page, complete the following steps:

112 Securing applications and their environment

1. Click Security > Secure administration, applications, and infrastructure.

2. Under User account repository, click the Available realm definitions drop-down list, selectStandalone

custom registry, and click Configure.

After the properties are set in this panel, click Apply. Under Additional Properties, click Custom

properties to include additional properties that the custom user registry requires.

Note: Custom properties might include information such as specifying lists of users or groups.

When security is enabled and any of these custom user registry settings change, go to the Secure

administration, applications, and infrastructure panel and click Apply to validate the changes.

WebSphere Application Server Version 6.1 distinguishes between the user identities for administrators who

manage the environment and server identities for authenticating server to server communications. In most

cases, server identities are automatically generated and are not stored in a repository. However, if you are

adding a Version 5.0.x or 6.0.x node to a Version 6.1 cell, you must ensure that the Version 5.x or Version

6.0.x server identity and password are defined in the repository for this cell. Enter the server user identity

and password on this panel.

Primary administrative user name:

Specifies the name of a user with administrative privileges that is defined in your custom user registry.

 The user name is used to log onto the administrative console when administrative security is enabled.

Automatically generated server identity:

Enables the application server to generate the server identity that is used for internal process

communication.

 You can change this server identity on the Authentication mechanisms and expiration panel. To access the

Authentication mechanisms and expiration panel, click Security > Secure administration, applications,

and infrastructure > Authentication mechanisms and expiration. Change the value of the Internal

server ID field.

 Default: Disabled

Server identity that is stored in the repository:

Specifies a user identity in the repository that is used for internal process communication.

 Default: Enabled

Server user ID or administrative user on a Version 6.0.x node:

Specifies the user ID that is used to run the application server for security purposes.

Password:

Specifies the password that corresponds to the server ID.

Custom registry class name:

Specifies a dot-separated class name that implements the com.ibm.websphere.security.UserRegistry

interface.

Chapter 5. Authenticating users 113

Put the custom registry class name in the class path. A suggested location is the %install_root%/lib/ext

directory.

 Data type: String

Default: com.ibm.websphere.security.FileRegistrySample

Ignore case for authorization:

Indicates that a case-insensitive authorization check is performed when you use the default authorization.

 Default: Disabled

Range: Enabled or Disabled

Standalone custom registry wizard settings

Use this page to provide the basic settings to connect the application server to an existing standalone

custom registry.

To view this security wizard page, complete the following steps:

1. Click Security > Secure administration, applications, and infrastructure > Security configuration

wizard.

2. Select your protection settings and click Next.

3. Select the Standalone custom registry option and click Next.

You can modify your standalone custom registry configuration by completing the following steps:

1. Click Security > Security administration, applications, and infrastructure.

2. Under User account repository, click the Available realm definitions drop-down list, selectStandalone

custom registry, and click Configure.

3. Enter additional properties to initialize your implementation

v Click Custom properties > New.

v Enter the property name and value. For the sample, enter the following two properties. It is assumed

that the users.props file and the groups.props file are in the customer_sample directory under the

product installation directory. You can place these properties in any directory that you choose and

reference their locations through Custom properties. However, make sure that the directory has the

appropriate access permissions.

 Property name Property value

usersFile ${USER_INSTALL_ROOT}/customer_sample /users.props

groupsFile ${USER_INSTALL_ROOT}/customer_sample /groups.props

Samples of these two properties are available in users.props file and groups.props file.

The Description, Required, and Validation Expression fields are not used and can remain blank.

WebSphere Application Server Version 4 based custom user registry is migrated to the custom user

registry based on the com.ibm.websphere.security.UserRegistry interface.

v Click Apply.

Primary administrative user name:

Specifies the name of a user with administrative privileges that is defined in your custom user registry.

 The user name is used to log onto the administrative console when administrative security is enabled.

Custom registry class name:

114 Securing applications and their environment

Specifies a dot-separated class name that implements the com.ibm.websphere.security.UserRegistry

interface.

 Put the custom registry class name in the class path. A suggested location is the %install_root%/lib/ext

directory.

 Data type: String

Default: com.ibm.websphere.security.FileRegistrySample

Ignore case for authorization:

Indicates that a case-insensitive authorization check is performed when you use the default authorization.

 Default: Disabled

Range: Enabled or Disabled

Managing the realm in a federated repository configuration

Follow this topic to manage the realm in a federated repository configuration.

The realm can consist of identities in:

v The file-based repository that is built into the system

v One or more external repositories

v Both the built-in, file-based repository and in one or more external repositories

Before you configure your realm, review Limitations of federated repositories.

1. Configure your realm by using one of the following topics. You might be configuring your realm for the

first time or changing an existing realm configuration.

v “Using a single built-in, file-based repository in a new configuration under Federated repositories” on

page 118

v “Changing a federated repository configuration to include a single built-in, file-based repository only”

on page 120

v “Configuring a single, Lightweight Directory Access Protocol repository in a new configuration under

Federated repositories” on page 121

v “Changing a federated repository configuration to include a single, Lightweight Directory Access

Protocol repository only” on page 122

v “Configuring multiple Lightweight Directory Access Protocol repositories in a federated repository

configuration” on page 123

v “Configuring a single built-in, file-based repository and one or more Lightweight Directory Access

Protocol repositories in a federated repository configuration” on page 124

2. Configure supported entity types using the steps described in “Configuring supported entity types in a

federated repository configuration” on page 147. You must configure supported entity types before you

can manage this account with Users and Groups. The Base entry for the default parent determines the

repository location where entities of the specified type are placed on a create operation.

3. Optional: Use one or more of the following tasks to extend the capabilities of storing data and

attributes in your realm:

a. Configure an entry mapping repository using the steps described in “Configuring an entry mapping

repository in a federated repository configuration” on page 144. An entry mapping repository is

used to store data for managing profiles on multiple repositories.

Chapter 5. Authenticating users 115

b. Configure a property extension repository using the steps described in “Configuring a property

extension repository in a federated repository configuration” on page 132. A property extension

repository is used to store attributes that cannot be stored in your Lightweight Directory Access

Protocol (LDAP) server.

a. Set up a database repository using wsadmin commands as described in “Setting up an entry

mapping repository, a property extension repository, or a database repository using wsadmin

commands” on page 136

4. Optional: Use one or more of the following advanced user tasks to extend the capabilities of LDAP

repositories in your realm:

v “Increasing the performance of the federated repository configuration” on page 151

v “Configuring Lightweight Directory Access Protocol entity types in a federated repository

configuration” on page 155

v “Configuring group attribute definition settings in a federated repository configuration” on page 158

5. Optional: Manage repositories that are configured in your system by following the steps described in

“Managing repositories in a federated repository configuration” on page 149.

6. Optional: Add an external repository into your realm by following the steps described in “Adding an

external repository in a federated repository configuration” on page 131.

1. After configuring the federated repositories, click Security > Secure administration, applications,

and infrastructure to return to the Secure administration, applications, and infrastructure panel. Verify

that Federated repositories is identified in the Current realm definition field. If Federated repositories is

not identified, select Federated repositories from the Available realm definitions field and click Set as

current. To verify the federated repositories configuration, click Apply on the Secure administration,

applications, and infrastructure panel. If Federated repositories is not identified in the Current realm

definition field, your federated repositories configuration is not used by WebSphere Application Server.

2. If you are enabling security, complete the remaining steps as specified in “Enabling security for the

realm” on page 75. As the final step, validate this setup by clicking Apply in the Secure administration,

applications, and infrastructure panel.

3. Save, stop, and restart all the product servers (deployment managers, nodes, and Application Servers)

for changes in this panel to take effect. If the server comes up without any problems, the setup is

correct.

Realm configuration settings

Use this page to manage the realm. The realm can consist of identities in the file-based repository that is

built into the system, in one or more external repositories, or in both the built-in, file-based repository and

one or more external repositories.

To view this administrative console page, complete the following steps:

1. In the administrative console, click Security > Secure administration, applications, and

infrastructure.

2. Under User account repository, select Federated repositories from the Available realm definitions field

and click Configure.

When you finish adding or updating your federated repository configuration, go to the Security > Secure

administration, applications, and infrastructure panel and click Apply to validate the changes.

A single built-in, file-based repository is built into the system and included in the realm by default.

You can configure one or more Lightweight Directory Access Protocol (LDAP) repositories to store

identities in the realm. Click Add base entry to realm to specify a repository configuration and a base

entry into the realm. You can configure multiple different base entries into the same repository.

Click Remove to remove selected repositories from the realm. Repository configurations and contents are

not destroyed. The following restrictions apply:

v The realm must always contain at least one base entry; therefore, you cannot remove every entry.

116 Securing applications and their environment

v If you plan to remove the built-in, file-based repository from the administrative realm, verify that at least

one user in another member repository is a console user with administrative rights. Otherwise, you must

disable security to regain access to the administrative console.

WebSphere Application Server Version 6.1 distinguishes between the user identities for administrators who

manage the environment and server identities for authenticating server to server communications. In most

cases, server identities are automatically generated and are not stored in a repository. However, if you are

adding a Version 5.0.x or 6.0.x node to a Version 6.1 cell, you must ensure that the Version 5.x or Version

6.0.x server identity and password are defined in the repository for this cell. Enter the server user identity

and password on this panel.

Ream name:

Specifies the name of the realm. You can change the realm name.

Primary administrative user name:

Specifies the name of the user with administrative privileges that is defined in the repository, for example,

adminUser.

Automatically generated server identity:

Enables the application server to generate the server identity that is used for internal process

communication.

 You can change this server identity on the Authentication mechanisms and expiration panel. To access the

Authentication mechanisms and expiration panel, click Security > Secure administration, applications,

and infrastructure > Authentication mechanisms and expiration. Change the value of the Internal

server ID field.

 Default: Disabled

Server identity that is stored in the repository:

Specifies a user identity in the repository that is used for internal process communication.

 Default: Enabled

Server user ID or administrative user on a Version 6.0.x node:

Specifies the user ID that is used to run the application server for security purposes.

Password:

Specifies the password that corresponds to the server ID.

Ignore case for authorization:

Specifies that a case-insensitive authorization check is performed.

 If case sensitivity is not a consideration for authorization, enable the Ignore case for authorization

option.

Base entry:

Chapter 5. Authenticating users 117

Specifies the base entry within the realm. This entry and its descendents are part of the realm.

Repository identifier:

Specifies a unique identifier for the repository. This identifier uniquely identifies the repository within the

cell.

Repository type:

Specifies the repository type, such as File or LDAP.

Using a single built-in, file-based repository in a new configuration under

Federated repositories

Follow this task to use a single built-in, file-based repository in a new configuration under Federated

repositories.

To use the default configuration under Federated repositories that includes a single built-in, file-based

repository only, you need to know the primary administrative user name of the user who manages

WebSphere Application Server resources and user accounts.

Restriction: Client certificate login is not supported in a realm that includes a single built-in, file-based

repository or a single built-in, file-based repository with other repositories.

1. In the administrative console, click Security > Secure administration, applications, and

infrastructure.

2. Under User account repository, select Federated repositories from the Available realm definitions field

and click Configure.

3. Leave the Realm name field value as defaultWIMFileBasedRealm.

4. Enter the name of the primary administrative user in the Primary administrative user name field, for

example, adminUser.

5. Leave the Ignore case for authorization option enabled.

6. Click OK.

7. Provide an administrative user password. This panel displays only when a built-in, file-based repository

is included in the realm. Otherwise, the panel does not display. If a built-in, file-based repository is

included, complete the following steps:

a. Supply a password for the administrative user in the Password field.

b. Confirm the password of the primary administrative user in the Confirm password field.

c. Click OK.

After completing these steps, your new configuration under Federated repositories includes a single

built-in, file-based repository only.

1. Before you can manage this account with Users and Groups, configure supported entity types as

described in “Configuring supported entity types in a federated repository configuration” on page 147.

2. After configuring the federated repositories, click Security > Secure administration, applications,

and infrastructure to return to the Secure administration, applications, and infrastructure panel. Verify

that Federated repositories is identified in the Current realm definition field. If Federated repositories is

not identified, select Federated repositories from the Available realm definitions field and click Set as

current. To verify the federated repositories configuration, click Apply on the Secure administration,

applications, and infrastructure panel. If Federated repositories is not identified in the Current realm

definition field, your federated repositories configuration is not used by WebSphere Application Server.

3. If you are enabling security, complete the remaining steps, as specified in “Enabling security for the

realm” on page 75. As the final step, validate this setup by clicking Apply in the Secure administration,

applications, and infrastructure panel.

118 Securing applications and their environment

4. Save, stop, and restart all the product servers (deployment managers, nodes, and Application Servers)

for changes in this panel to take effect. If the server comes up without any problems, the setup is

correct.

Administrative user password settings:

Use this page to set a password for the administrative user who manages the product resources and user

accounts.

 To view this administrative console page, complete the following steps:

1. In the administrative console, click Security > Secure administration, applications, and

infrastructure.

2. Under User account repository, select Federated repositories from the Available realm definitions field

and click Configure.

3. If your federated repository configuration includes a built-in, file-based repository, then the

Administrative user password panel displays when changes are applied.

When you finish adding or updating your federated repository configuration, go to the Security > Secure

administration, applications, and infrastructure panel and click Apply to validate the changes.

Password:

Specifies the password of the administrative user who manages the product resources and user accounts.

 Confirm password:

Confirms the password of the administrative user who manages the product resources and user accounts.

Federated repository wizard settings:

Use this security wizard page to complete the basic requirements to connect the application server to a

federated repository.

 To view this security wizard page, complete the following steps

1. Click Security > Secure administration, applications, and infrastructure > Security configuration

wizard.

2. Select your protection settings and click Next.

3. Select the Federated repositories option and click Next.

You can modify your federated repository configuration by completing the following steps:

1. Click Security > Security administration, applications, and infrastructure.

2. Under User account repository, select Federated repository and click Configure.

Note: This wizard is used for the initial configuration of a built-in, file-based repository. The user name

and password do not have to be in the federated repository because they will be created. If you

have previously configured federated repositories, do not use the Security configuration wizard to

modify your configuration. Instead, modify your configuration using the Federated repositories

selection under User account repository on the Secure administration, applications, and

infrastructure panel.

Primary administrative user name:

Specifies the name of the user with administrative privileges that is defined in the repository, for example,

adminUser.

Chapter 5. Authenticating users 119

Password:

Specifies the password of the administrative user who manages the product resources and user accounts.

 Confirm password:

Confirms the password of the administrative user who manages the product resources and user accounts.

Changing a federated repository configuration to include a single built-in,

file-based repository only

Follow this task to change your federated repository configuration to include a single built-in, file-based

repository only.

To change your federated repository configuration to include a single built-in, file-based repository only,

you need to know the primary administrative user name of the user who manages WebSphere Application

Server resources and user accounts.

Restriction: Client certificate login is not supported in a realm that includes a single built-in, file-based

repository or a single built-in, file-based repository with other repositories.

1. In the administrative console, click Security > Secure administration, applications, and

infrastructure.

2. Under User account repository, select Federated repositories from the Available realm definitions field

and click Configure.

3. Enter the name of the realm in the Realm name field. If the realm contains a single built-in, file-based

repository only, you must specify defaultWIMFileBasedRealm as the realm name.

4. Enter the name of the primary administrative user in the Primary administrative user name field, for

example, adminUser.

5. Enable the Ignore case for authorization option.

6. Click Use built-in repository if the built-in, file-based repository is not listed in the collection.

7. Select all repositories in the collection that are not of type File and click Remove.

8. Click OK.

9. Provide an administrative user password. This panel displays only when a built-in, file-based repository

is included in the realm. Otherwise, it does not display. If a built-in, file-based repository is included,

complete the following steps:

a. Supply a password for the primary administrative user in the Password field.

b. Confirm the password of the primary administrative user in the Confirm password field.

c. Click OK.

After completing these steps, your federated repository configuration, which includes a single built-in,

file-based repository only, is configured.

1. Before you can manage this account with Users and Groups, configure supported entity types as

described in “Configuring supported entity types in a federated repository configuration” on page 147.

2. After configuring the federated repositories, click Security > Secure administration, applications,

and infrastructure to return to the Secure administration, applications, and infrastructure panel. Verify

that Federated repositories is identified in the Current realm definition field. If Federated repositories is

not identified, select Federated repositories from the Available realm definitions field and click Set as

current. To verify the federated repositories configuration, click Apply on the Secure administration,

applications, and infrastructure panel. If Federated repositories is not identified in the Current realm

definition field, your federated repositories configuration is not used by WebSphere Application Server.

3. If you are enabling security, complete the remaining steps, as specified in “Enabling security for the

realm” on page 75. As the final step, validate this setup by clicking Apply in the Secure administration,

applications, and infrastructure panel.

120 Securing applications and their environment

4. Save, stop, and restart all the product servers (deployment managers, nodes, and Application Servers)

for changes in this panel to take effect. If the server comes up without any problems, the setup is

correct.

Configuring a single, Lightweight Directory Access Protocol repository in a new

configuration under Federated repositories

Follow this task to configure a single, Lightweight Directory Access Protocol (LDAP) repository in a new

configuration under Federated repositories.

To configure an LDAP repository in a new configuration under Federated repositories, you must know a

valid user name (ID), the user password, the server host and port and, if necessary, the bind distinguished

name (DN) and the bind password. You can choose any valid user in the repository that is searchable. In

some LDAP servers, administrative users are not searchable and cannot be used (for example, cn=root in

SecureWay). This user is referred to as the WebSphere Application Server administrative user name or

administrative ID in the documentation. Being an administrative ID means a user has special privileges

when calling some protected internal methods. Normally, this ID and password are used to log in to the

administrative console after you turn on security. You can use other users to log in, if those users are part

of the administrative roles.

1. In the administrative console, click Security > Secure administration, applications, and

infrastructure.

2. Under User account repository, select Federated repositories from the Available realm definitions field

and click Configure.

3. On the Federated repositories panel, complete the following steps:

a. Enter the name of the realm in the Realm name field. You can change the existing realm name.

b. Enter the name of the primary administrative user in the Primary administrative user name field, for

example, adminUser.

c. Optional: Select the Ignore case for authorization option. When you enable this option, the

authorization check is case-insensitive. Normally, an authorization check involves checking the

complete DN of a user, which is unique in the realm and is case-insensitive. Clear this option when

all of the member repositories in the realm are case-sensitive.

Restriction: Some repositories contain data that is case-sensitive only, and some repositories

contain data that is case-insensitive only. Do not include both case-sensitive and

case-insensitive repositories in the realm. For example, do not include case-sensitive

repositories in the realm with a built-in, file-based repository.

d. Click Add base entry to realm to add a base entry that uniquely identifies the external repository

in the realm. Then complete the steps in “Adding an external repository in a federated repository

configuration” on page 131.

4. On the Federated repositories panel, complete the following steps:

a. Select the built-in, file-based repository in the collection, and click Remove.

Restriction: Before you remove the built-in, file-based repository from the administrative realm,

verify that at least one user in another member repository is a console user with

administrative rights. Otherwise, you must disable security to regain access to the

administrative console.

b. Click OK.

After completing these steps, your new configuration under Federated repositories includes a single, LDAP

repository only.

1. Before you can manage this account with Users and Groups, configure supported entity types as

described in “Configuring supported entity types in a federated repository configuration” on page 147.

2. After configuring the federated repositories, click Security > Secure administration, applications,

and infrastructure to return to the Secure administration, applications, and infrastructure panel. Verify

that Federated repositories is identified in the Current realm definition field. If Federated repositories is

Chapter 5. Authenticating users 121

not identified, select Federated repositories from the Available realm definitions field and click Set as

current. To verify the federated repositories configuration, click Apply on the Secure administration,

applications, and infrastructure panel. If Federated repositories is not identified in the Current realm

definition field, your federated repositories configuration is not used by WebSphere Application Server.

3. If you are enabling security, complete the remaining steps as specified in “Enabling security for the

realm” on page 75. As the final step, validate this setup by clicking Apply in the Secure administration,

applications, and infrastructure panel.

4. Save, stop, and restart all the product servers (deployment managers, nodes and Application Servers)

for changes in this panel to take effect. If the server comes up without any problems, the setup is

correct.

Changing a federated repository configuration to include a single, Lightweight

Directory Access Protocol repository only

Follow this task to change your federated repository configuration to include a single, Lightweight Directory

Access Protocol repository (LDAP) repository only.

To configure an LDAP repository in a federated repository configuration, you must know a valid user name

(ID), the user password, the server host and port and, if necessary, the bind distinguished name (DN) and

the bind password. You can choose any valid user in the repository that is searchable. In some LDAP

servers, administrative users are not searchable and cannot be used (for example, cn=root in SecureWay).

This user is referred to as a WebSphere Application Server administrative user name or administrative ID

in the documentation. Being an administrative ID means a user has special privileges when calling some

protected internal methods. Normally, this ID and password are used to log into the administrative console

after you turn on security. You can use other users to log in if those users are part of the administrative

roles.

1. In the administrative console, click Security > Secure administration, applications, and

infrastructure.

2. Under User account repository, select Federated repositories from the Available realm definitions field

and click Configure.

3. Enter the name of the realm in the Realm name field. You can change the existing realm name.

4. Enter the name of the primary administrative user in the Primary administrative user name field, for

example, adminUser.

5. Optional: Select the Ignore case for authorization option. When you enable this option, the

authorization check is case-insensitive. Normally, an authorization check involves checking the

complete DN of a user, which is unique in the realm and is case-insensitive. Clear this option when all

of the member repositories in the realm are case-sensitive.

Restriction: Some repositories contain data that is case-sensitive only, and some repositories contain

data that is case-insensitive only. Do not include both case-sensitive and case-insensitive

repositories in the realm. For example, do not include case-sensitive repositories in the

realm with a built-in, file-based repository.

6. Optional: Click Add base entry to realm if the LDAP repository that you need is not contained in the

collection. Then complete the steps in “Adding an external repository in a federated repository

configuration” on page 131.

7. On the Federated repositories panel, complete the following steps:

a. Optional: Select the repositories in the collection that you do not need in the realm and click

Remove.

Restriction: The realm must always contain at least one base entry; therefore, you cannot remove

every entry.

b. Click OK.

After completing these steps, your federated repository configuration, which includes a single LDAP

repository only, is configured.

122 Securing applications and their environment

1. Before you can manage this account with Users and Groups, configure supported entity types as

described in “Configuring supported entity types in a federated repository configuration” on page 147.

2. After configuring the federated repositories, click Security > Secure administration, applications,

and infrastructure to return to the Secure administration, applications, and infrastructure panel. Verify

that Federated repositories is identified in the Current realm definition field. If Federated repositories is

not identified, select Federated repositories from the Available realm definitions field and click Set as

current. To verify the federated repositories configuration, click Apply on the Secure administration,

applications, and infrastructure panel. If Federated repositories is not identified in the Current realm

definition field, your federated repositories configuration is not used by WebSphere Application Server.

3. If you are enabling security, complete the remaining steps as specified in “Enabling security for the

realm” on page 75. As the final step, validate this setup by clicking Apply in the Secure administration,

applications, and infrastructure panel.

4. Save, stop, and restart all the product servers (deployment managers, nodes, and Application Servers)

for changes in this panel to take effect. If the server comes up without any problems, the setup is

correct.

Configuring multiple Lightweight Directory Access Protocol repositories in a

federated repository configuration

Follow this task to configure multiple Lightweight Directory Access Protocol (LDAP) repositories in a

federated repository configuration.

To configure an LDAP repository in a federated repository configuration, you must know a valid user name

(ID), the user password, the server host and port and, if necessary, the bind distinguished name (DN) and

the bind password. You can choose any valid user in the repository that is searchable. In some LDAP

servers, administrative users are not searchable and cannot be used (for example, cn=root in SecureWay).

This user is referred to as a WebSphere Application Server administrative user name or administrative ID

in the documentation. Being an administrative ID means a user has special privileges when calling some

protected internal methods. Normally, this ID and password are used to log into the administrative console

after you turn on security. You can use other users to log in if those users are part of the administrative

roles.

1. In the administrative console, click Security > Secure administration, applications, and

infrastructure.

2. Under User account repository, select Federated repositories from the Available realm definitions field

and click Configure.

3. Enter the name of the realm in the Realm name field. You can change the existing realm name.

4. Enter the name of the primary administrative user in the Primary administrative user name field, for

example, adminUser.

5. Optional: Select the Ignore case for authorization option. When you enable this option, the

authorization check is case-insensitive. Normally, an authorization check involves checking the

complete DN of a user, which is unique in the realm and is case-insensitive. Clear this option when all

of the member repositories in the realm are case-sensitive.

Restriction: Some repositories contain data that is case-sensitive only, and some repositories contain

data that is case-insensitive only. Do not include both case-sensitive and case-insensitive

repositories in the realm. For example, do not include case-sensitive repositories in the

realm with a built-in, file-based repository.

6. Optional: Click Add base entry to realm if the LDAP repository that you need is not listed in the

collection. Then complete the steps in “Adding an external repository in a federated repository

configuration” on page 131.

7. On the Federated repositories panel, complete the following steps:

a. Optional: Repeat step 6 if the LDAP repository that you need is not listed in the collection.

b. Optional: Select the repositories in the collection that you do not need in the realm and click

Remove. The following restrictions apply:

Chapter 5. Authenticating users 123

v The realm must always contain at least one base entry; therefore, you cannot remove every

entry.

v If you plan to remove the built-in, file-based repository from the administrative realm, verify that

at least one user in another member repository is a console user with administrative rights.

Otherwise, you must disable security to regain access to the administrative console.

c. Click OK.

After completing these steps, your federated repository configuration, which includes multiple LDAP

repositories, is configured.

1. Before you can manage this account with Users and Groups, configure supported entity types as

described in “Configuring supported entity types in a federated repository configuration” on page 147.

2. After configuring the federated repositories, click Security > Secure administration, applications,

and infrastructure to return to the Secure administration, applications, and infrastructure panel. Verify

that Federated repositories is identified in the Current realm definition field. If Federated repositories is

not identified, select Federated repositories from the Available realm definitions field and click Set as

current. To verify the federated repositories configuration, click Apply on the Secure administration,

applications, and infrastructure panel. If Federated repositories is not identified in the Current realm

definition field, your federated repositories configuration is not used by WebSphere Application Server.

3. If you are enabling security, complete the remaining steps as specified in “Enabling security for the

realm” on page 75. As the final step, validate this setup by clicking Apply in the Secure administration,

applications, and infrastructure panel.

4. Save, stop, and restart all the product servers (deployment managers, nodes, and Application Servers)

for changes in this panel to take effect. If the server comes up without any problems, the setup is

correct.

Configuring a single built-in, file-based repository and one or more Lightweight

Directory Access Protocol repositories in a federated repository configuration

Follow this task to configure a single built-in, file-based repository and multiple Lightweight Directory

Access Protocol (LDAP) repositories in a federated repository configuration.

To configure a built-in, file-based repository in a federated repository configuration, you must know the

primary administrative user name of the user who manages WebSphere Application Server resources and

user accounts.

To configure an LDAP repository in a federated repository configuration, you must know a valid user name

(ID), the user password, the server host and port and, if necessary, the bind distinguished name (DN) and

the bind password. You can choose any valid user in the repository that is searchable. In some LDAP

servers, administrative users are not searchable and cannot be used (for example, cn=root in SecureWay).

This user is referred to as a WebSphere Application Server administrative user name or administrative ID

in the documentation. Being an administrative ID means a user has special privileges when calling some

protected internal methods. Normally, this ID and password are used to log in to the administrative console

after you turn on security. You can use other users to log in if those users are part of the administrative

roles.

Restriction: Client certificate login is not supported in a realm that includes a single built-in, file-based

repository or a single built-in, file-based repository with other repositories.

1. In the administrative console, click Security > Secure administration, applications, and

infrastructure.

2. Under User account repository, select Federated repositories from the Available realm definitions field

and click Configure.

3. Enter the name of the realm in the Realm name field. You can change the existing realm name.

4. Enter the name of the primary administrative user in the Primary administrative user name field, for

example, adminUser.

124 Securing applications and their environment

Restriction: When you configure multiple repositories that includes a single built-in, file-based

repository, the primary administrative user name must exist in the file-based repository. If

the primary administrative user name does not exist in the file-based repository, then the

name is created in the file-based repository. The primary administrative user name

cannot exist in other repositories.

5. Select the Ignore case for authorization option.

 Attention: When the realm includes a built-in, file-based repository, you must enable the Ignore

case for authorization option.
When you enable this option, the authorization check is case-insensitive. Normally, an authorization

check involves checking the complete DN of a user, which is unique in the realm and is

case-insensitive. Clear this option when all of the member repositories in the realm are case-sensitive.

Restriction: Some repositories contain data that is case-sensitive only, and some repositories contain

data that is case-insensitive only. Do not include both case-sensitive and case-insensitive

repositories in the realm. For example, do not include case-sensitive repositories in the

realm with a built-in, file-based repository.

6. Optional: Click Add base entry to realm if the LDAP repository that you need is not contained in the

collection. Then complete the steps in “Adding an external repository in a federated repository

configuration” on page 131.

7. On the Federated repositories panel, complete the following steps:

a. Optional: Repeat step 6 if the LDAP repository that you need is not listed in the collection.

b. Click Use built-in repository if the built-in, file-based repository is not listed in the collection.

c. Optional: Select the repositories in the collection that you do not need in the realm and click

Remove.

Restriction: The realm must always contain at least one base entry; therefore, you cannot remove

every entry.

d. Click OK.

8. Provide an administrative user password. This panel displays only when a built-in, file-based repository

is included in the realm. Otherwise, the panel does not display. If a built-in, file-based repository is

included, complete the following steps:

a. Supply a password for the administrative user in the Password field.

b. Confirm the password of the primary administrative user in the Confirm password field.

c. Click OK.

After completing these steps, your federated repository configuration, which includes a single built-in,

file-based repository and one or more LDAP repositories, is configured.

1. Before you can manage this account with Users and Groups, configure supported entity types as

described in “Configuring supported entity types in a federated repository configuration” on page 147.

2. After configuring the federated repositories, click Security > Secure administration, applications,

and infrastructure to return to the Secure administration, applications, and infrastructure panel. Verify

that Federated repositories is identified in the Current realm definition field. If Federated repositories is

not identified, select Federated repositories from the Available realm definitions field and click Set as

current. To verify the federated repositories configuration, click Apply on the Secure administration,

applications, and infrastructure panel. If Federated repositories is not identified in the Current realm

definition field, your federated repositories configuration is not used by WebSphere Application Server.

3. If you are enabling security, complete the remaining steps as specified in “Enabling security for the

realm” on page 75. As the final step, validate this setup by clicking Apply in the Secure administration,

applications, and infrastructure panel.

4. Save, stop, and restart all the product servers (deployment managers, nodes, and Application Servers)

for changes in this panel to take effect. If the server comes up without any problems, the setup is

correct.

Chapter 5. Authenticating users 125

Configuring Lightweight Directory Access Protocol in a federated repository

configuration

Follow this topic to configure Lightweight Directory Access Protocol (LDAP) settings in a federated

repository configuration.

You have chosen among various ways to configure LDAP:

v “Configuring a single, Lightweight Directory Access Protocol repository in a new configuration under

Federated repositories” on page 121

v “Changing a federated repository configuration to include a single, Lightweight Directory Access Protocol

repository only” on page 122

v “Configuring multiple Lightweight Directory Access Protocol repositories in a federated repository

configuration” on page 123

v “Configuring a single built-in, file-based repository and one or more Lightweight Directory Access

Protocol repositories in a federated repository configuration” on page 124

v “Managing repositories in a federated repository configuration” on page 149

At this point, you are viewing the LDAP repository configuration page of the administrative console.

 1. Enter a unique identifier for the repository in the Repository identifier field. This identifier uniquely

identifies the repository within the cell, for example: LDAP1.

 2. Select the type of LDAP server that is used from the Directory type list. The type of LDAP server

determines the default filters that are used by WebSphere Application Server.

IBM Tivoli Directory Server users can choose either IBM Tivoli Directory Server or SecureWay as the

directory type. Use the IBM Tivoli Directory Server directory type for better performance. For a list of

supported LDAP servers, see “Using specific directory servers as the LDAP server” on page 106.

 3. Enter the fully qualified host name of the primary LDAP server in the Primary host name field. You

can enter either the IP address or the domain name system (DNS) name.

 4. Enter the server port of the LDAP directory in the Port field. The host name and the port number

represent the realm for this LDAP server in a mixed version nodes cell. If servers in different cells are

communicating with each other using Lightweight Third Party Authentication (LTPA) tokens, these

realms must match exactly in all the cells.

The default value is 389, which is not a Secure Sockets Layer (SSL) connection. Use port 636 for a

Secure Sockets Layer (SSL) connection. For some LDAP servers, you can specify a different port for

a non-SSL or SSL connection. If you do not know the port to use, contact your LDAP server

administrator.

If multiple WebSphere Application Servers are installed and configured to run in the same single

sign-on domain, or if WebSphere Application Server interoperates with a previous version of

WebSphere Application Server, then it is important that the port number match all configurations. For

example, if the LDAP port is explicitly specified as 389 in a Version 5.x or 6.0.x configuration, and

WebSphere Application Server at Version 6.1 is going to interoperate with the Version 5.x or 6.0.x

server, then verify that port 389 is specified explicitly for the Version 6.1 server.

 5. Optional: Enter the host name of the failover LDAP server in the Failover host name field. You can

specify a secondary directory server to be used in the event that your primary directory server

becomes unavailable. After switching to a secondary directory server, LDAP repository attempts to

reconnect to the primary directory server every 15 minutes.

 6. Optional: Enter the port of the failover LDAP server in the Port field and click Add. The default value

is 389, which is not a Secure Sockets Layer (SSL) connection. Use port 636 for a Secure Sockets

Layer (SSL) connection. For some LDAP servers, you can specify a different port for a non-SSL or

SSL connection. If you do not know the port to use, contact your LDAP server administrator.

 7. Optional: Select the type of referral. A referral is an entity that is used to redirect a client request to

another LDAP server. A referral contains the names and locations of other objects. It is sent by the

server to indicate that the information that the client requested can be found at another location,

possibly at another server or several servers. The default value is ignore.

126 Securing applications and their environment

ignore

Referrals are ignored.

follow Referrals are followed automatically.

 8. Optional: Enter the bind DN name in the Bind distinguished name field, for example, cn=root. The

bind DN is required if anonymous binds are not possible on the LDAP server to obtain user and

group information or for write operations. In most cases, bind DN and bind password are needed.

However, when anonymous bind can satisfy all of the required functions, bind DN and bind password

are not needed. If the LDAP server is set up to use anonymous binds, leave this field blank. If a

name is not specified, the application server binds anonymously.

 9. Optional: Enter the password that corresponds to the bind DN in the Bind password field.

10. Optional: Enter the property names to use to log into WebSphere Application Server in the Login

properties field. This field takes multiple login properties, delimited by a semicolon (;). For example,

uid;mail.

All login properties are searched during login. If multiple entries or no entries are found, an exception

is thrown. For example, if you specify the login properties as uid;mail and the login ID as Bob, the

search filter searches for uid=Bob or mail=Bob. When the search returns a single entry, then

authentication can proceed. Otherwise, an exception is thrown.

11. Optional: Select the certificate map mode in the Certificate mapping field. You can use the X.590

certificates for user authentication when LDAP is selected as the repository. The Certificate mapping

field is used to indicate whether to map the X.509 certificates into an LDAP directory user by

EXACT_DN or CERTIFICATE_FILTER. If EXACT_DN is selected, the DN in the certificate must

exactly match the user entry in the LDAP server, including case and spaces.

12. If you select CERTIFICATE_FILTER in the Certificate mapping field, specify the LDAP filter for

mapping attributes in the client certificate to entries in LDAP.

If more than one LDAP entry matches the filter specification at run time, authentication fails because

the result is an ambiguous match. The syntax or structure of this filter is:

LDAP attribute=${Client certificate attribute}

For example, uid=${SubjectCN}.

The left side of the filter specification is an LDAP attribute that depends on the schema that your

LDAP server is configured to use. The right side of the filter specification is one of the public

attributes in your client certificate. The right side must begin with a dollar sign ($) and open bracket

({) and end with a close bracket (}). You can use the following certificate attribute values on the right

side of the filter specification. The case of the strings is important:

v ${UniqueKey}

v ${PublicKey}

v ${PublicKey}

v ${Issuer}

v ${NotAfter}

v ${NotBefore}

v ${SerialNumber}

v ${SigAlgName}

v ${SigAlgOID}

v ${SigAlgParams}

v ${SubjectCN}

v ${Version}

13. Optional: Select the Require SSL communications option if you want to use Secure Sockets Layer

communications with the LDAP server.

If you select the Require SSL communications option, you can select either the Centrally

managed or Use specific SSL alias option.

Centrally managed

Enables you to specify an SSL configuration for a particular scope, such as the cell, node,

server, or cluster in one location. To use the Centrally managed option, you must specify the

Chapter 5. Authenticating users 127

SSL configuration for the particular set of endpoints. The Manage endpoint security

configurations and trust zones panel displays all of the inbound and outbound endpoints that

use the SSL protocol. If you expand the Inbound or Outbound section of the panel and click

the name of a node, you can specify an SSL configuration that is used for every endpoint on

that node. For an LDAP registry, you can override the inherited SSL configuration by

specifying an SSL configuration for LDAP. To specify an SSL configuration for LDAP,

complete the following steps:

a. Click Security > SSL certificate and key management > Manage endpoint security

configurations and trust zones.

b. Expand Outbound > cell_name > Nodes > node_name > Servers > server_name >

LDAP.

Use specific SSL alias

Select the Use specific SSL alias option if you intend to select one of the SSL configurations

in the menu that follows the option.

 This configuration is used only when SSL is enabled for LDAP. The default is

DefaultSSLSettings. To modify or create a new SSL configuration, complete the following

steps:

a. Click Security > SSL certificate and key management.

b. Under Configuration settings, click Manage endpoint security configurations and trust

zones > configuration_name.

c. Under Related items, click SSL configurations.

14. Click OK.

After completing these steps, your LDAP repository settings are configured.

Return to the appropriate task to complete the steps for your federated repository configuration:

v “Configuring a single, Lightweight Directory Access Protocol repository in a new configuration under

Federated repositories” on page 121

v “Changing a federated repository configuration to include a single, Lightweight Directory Access Protocol

repository only” on page 122

v “Configuring multiple Lightweight Directory Access Protocol repositories in a federated repository

configuration” on page 123

v “Configuring a single built-in, file-based repository and one or more Lightweight Directory Access

Protocol repositories in a federated repository configuration” on page 124

v “Managing repositories in a federated repository configuration” on page 149

Lightweight Directory Access Protocol repository configuration settings:

Use this page to configure secure access to a Lightweight Directory Access Protocol (LDAP) repository

with optional failover servers.

 To view this administrative console page, complete the following steps:

1. In the administrative console, click Security > Secure administration, applications, and

infrastructure.

2. Under User account repository, select Federated repositories from the Available realm definitions field

and click Configure.

3. Under Related items, click Manage repositories.

4. Click Add to specify a new external repository or select an external repository that is preconfigured.

When you finish adding or updating your federated repository configuration, go to the Security > Secure

administration, applications, and infrastructure panel and click Apply to validate the changes.

Repository identifier:

128 Securing applications and their environment

Specifies a unique identifier for the LDAP repository. This identifier uniquely identifies the repository within

the cell, for example: LDAP1.

Directory type:

Specifies the type of LDAP server to which you connect.

 Expand the drop-down list to display a list of LDAP directory types.

Primary host name:

Specifies the host name of the primary LDAP server. This host name is either an IP address or a domain

name service (DNS) name.

Port:

Specifies the LDAP server port.

 The default value is 389, which is not a Secure Sockets Layer (SSL) connection. Use port 636 for a

Secure Sockets Layer (SSL) connection. For some LDAP servers, you can specify a different port for a

non-SSL or SSL connection. If you do not know the port to use, contact your LDAP server administrator.

 Data type: Integer

Default: 389

Range: 389, which is not a Secure Sockets

Layer (SSL) connection

636, which is a Secure Sockets Layer

(SSL) connection

Failover host name:

Specifies the host name of the failover LDAP server.

 You can specify a secondary directory server to be used in the event that your primary directory server

becomes unavailable. After switching to a secondary directory server, the LDAP repository attempts to

reconnect to the primary directory server every 15 minutes.

Port:

Specifies the port of the failover LDAP server.

 The default value is 389, which is not a Secure Sockets Layer (SSL) connection. Use port 636 for a

Secure Sockets Layer (SSL) connection. For some LDAP servers, you can specify a different port for a

non-SSL or SSL connection. If you do not know the port to use, contact your LDAP server administrator.

 Data type: Integer

Range: 389, which is not a Secure Sockets

Layer (SSL) connection

636, which is a Secure Sockets Layer

(SSL) connection

Support referrals to other LDAP servers:

Specifies how referrals that are encountered by the LDAP server are handled.

 A referral is an entity that is used to redirect a client request to another LDAP server. A referral contains

the names and locations of other objects. It is sent by the server to indicate that the information that the

client requested can be found at another location, possibly at another server or several servers. The

default value is ignore.

Chapter 5. Authenticating users 129

Default: ignore

Range:

ignore Referrals are ignored.

follow Referrals are followed automatically.

Bind distinguished name:

Specifies the distinguished name (DN) for the application server to use when binding to the LDAP

repository.

 If no name is specified, the application server binds anonymously. In most cases, bind DN and bind

password are needed. However, when anonymous bind can satisfy all of the required functions, bind DN

and bind password are not needed.

Bind password:

Specifies the password for the application server to use when binding to the LDAP repository.

Login properties:

Specifies the property names to use to log into the application server.

 This field takes multiple login properties, delimited by a semicolon (;). For example, uid;mail. All login

properties are searched during login. If multiple entries or no entries are found, an exception is thrown. For

example, if you specify the login properties as uid;mail and the login ID as Bob, the search filter searches

for uid=Bob or mail=Bob. When the search returns a single entry, then authentication can proceed.

Otherwise, an exception is thrown.

Certificate mapping:

Specifies whether to map X.509 certificates into an LDAP directory by EXACT_DN or

CERTIFICATE_FILTER. Specify CERTIFICATE_FILTER to use the specified certificate filter for the

mapping.

Certificate filter:

Specifies the filter certificate mapping property for the LDAP filter. The filter is used to map attributes in the

client certificate to entries in the LDAP repository.

 If more than one LDAP entry matches the filter specification at run time, authentication fails because the

result is an ambiguous match. The syntax or structure of this filter is:

LDAP attribute=${Client certificate attribute}

For example, uid=${SubjectCN}.

The left side of the filter specification is an LDAP attribute that depends on the schema that your LDAP

server is configured to use. The right side of the filter specification is one of the public attributes in your

client certificate. The right side must begin with a dollar sign ($) and open bracket ({) and end with a close

bracket (}). You can use the following certificate attribute values on the right side of the filter specification.

The case of the strings is important:

v ${UniqueKey}

v ${PublicKey}

v ${PublicKey}

v ${Issuer}

130 Securing applications and their environment

v ${NotAfter}

v ${NotBefore}

v ${SerialNumber}

v ${SigAlgName}

v ${SigAlgOID}

v ${SigAlgParams}

v ${SubjectCN}

v ${Version}

Require SSL communications:

Specifies whether secure socket communication is enabled to the LDAP server.

 When enabled, the Secure Sockets Layer (SSL) settings for LDAP are used, if specified.

Centrally managed:

Specifies that the selection of an SSL configuration is based upon the outbound topology view for the Java

Naming and Directory Interface (JNDI) platform.

 Centrally managed configurations support one location to maintain SSL configurations, rather than

spreading them across the configuration documents.

 Default: Enabled

Range: Enabled or Disabled

Use specific SSL alias:

Specifies the SSL configuration alias to use for LDAP outbound SSL communications.

 This option overrides the centrally managed configuration for the JNDI platform.

Adding an external repository in a federated repository configuration

Follow this task to add an external repository into a federated repository configuration.

1. If the Lightweight Directory Access Protocol (LDAP) repository that you want to add to your federated

repository configuration is previously configured, select the corresponding Repository on the Repository

reference panel. To access the Repository reference panel, complete the following steps:

a. Click Security > Secure administration, applications, and infrastructure.

b. Under User account repository, select Federated repositories from the Available realm definitions

field and click Configure.

c. Click Add base entry to realm.

2. Enter a distinguished name for the realm base entry in the Distinguished name that uniquely

identifies... field. This base entry must uniquely identify the external repository in the realm. If multiple

repositories are included in the realm, use this field to define an additional distinguished name (DN)

that uniquely identifies this set of entries within the realm. For example, repositories LDAP1 and

LDAP2 might both use o=ibm,c=us as the base entry in the repository. Use the DN in this field to

uniquely identify this set of entries in the realm. For example: o=ibm,c=us for LDAP1 and o=ibm2,c=us

for LDAP2. The specified DN in this field maps to the LDAP DN of the base entry within the repository.

3. Enter the LDAP DN of the base entry within the repository in the Distinguished name of a base entry...

field. The base entry indicates the starting point for searches in this LDAP directory server. This entry

and its descendents are mapped to the subtree that is identified by this unique base name entry field.

For example, for a user with a DN of cn=John Doe, ou=Rochester, o=IBM, c=US, specify the LDAP

base entry as any of the following options:

ou=Rochester, o=IBM, c=us or o=IBM, c=us or c=us

Chapter 5. Authenticating users 131

In most cases, this LDAP DN is the same as the distinguished name for the realm base entry.

If this field is left blank, then the subtree defaults to the root of the LDAP repository. Consult your

LDAP administrator to determine if your LDAP repository provides support to search from the root, or

create users and groups under the root without defining a suffix beforehand.

In WebSphere Application Server, the distinguished name is normalized according to the LDAP

specification. Normalization consists of removing spaces in the base distinguished name before or after

commas and equal symbols. An example of a non-normalized base distinguished name is o = ibm, c =

us or o=ibm, c=us. An example of a normalized base distinguished name is o=ibm,c=us.

4. If the LDAP repository that you want to add to your realm is not previously configured, complete the

following steps:

a. Click Add Repository on the Repository reference panel to configure the LDAP repository. See

step 1 to access the Repository reference panel.

b. Configure LDAP on the LDAP configuration panel, as described in “Configuring Lightweight

Directory Access Protocol in a federated repository configuration” on page 126.

c. Select the new Repository on the Repository reference panel.

5. Click OK.

You have added a new or previously configured external repository into your federated repository

configuration.

1. Before you can manage this account with Users and Groups, configure supported entity types as

described in “Configuring supported entity types in a federated repository configuration” on page 147.

2. After configuring the federated repositories, click Security > Secure administration, applications,

and infrastructure to return to the Secure administration, applications, and infrastructure panel. Verify

that Federated repositories is identified in the Current realm definition field. If Federated repositories is

not identified, select Federated repositories from the Available realm definitions field and click Set as

current. To verify the federated repositories configuration, click Apply on the Secure administration,

applications, and infrastructure panel. If Federated repositories is not identified in the Current realm

definition field, your federated repositories configuration is not used by WebSphere Application Server.

3. If you are enabling security, complete the remaining steps as specified in “Enabling security for the

realm” on page 75. As the final step, validate this setup by clicking Apply in the Secure administration,

applications, and infrastructure panel.

4. Save, stop, and restart all the product servers (deployment managers, nodes and Application Servers)

for changes in this panel to take effect. If the server comes up without any problems, the setup is

correct.

Configuring a property extension repository in a federated repository

configuration

Follow this task to configure a property extension repository to store attributes that cannot be stored in

your Lightweight Directory Access Protocol (LDAP) server.

For security and business reasons, you might not want to not allow write operations to your repositories.

However, applications calling the federated repository configuration might need to store additional

properties for the entities. A federated repository configuration provides a property extension repository,

which is a database regardless of the type of main profile repositories, for a property-level join

configuration. For example, a company that uses an LDAP directory for its internal employees and a

database for external customers and business partners might not allow write access to its LDAP and its

database. The company can use the property extension repository in a federated repository configuration

to store additional properties for the people in those repositories, excluding the user ID. When an

application uses the federated repository configuration to retrieve an entry for a person, the federated

repository configuration transparently joins the properties of the person that is retrieved from either the

LDAP or the customer’s database with the properties of the person that is retrieved from the property

extension repository into a single logical person entry.

132 Securing applications and their environment

When you configure a property extension repository, you can supply a valid data source, a direct

connection configuration, or both. The system first tries to connect by way of the data source. If the data

source is not available, then the system uses the direct access configuration.

Restriction: You cannot configure a property extension repository in a mixed-version deployment

manager cell.

1. Configure the WebSphere Application Server data source. See “Configuring the WebSphere

Application Server data source” on page 143.

2. If you are adding new properties (including properties that are stored in the property extension

repository) to the schema, you must do the following before you create the property extension

repository.

a. Open or create the wimxmlextension.xml file under the <WAS61>\profiles\<propfile_name>\
config\cells\<cell_name>\wim\model directory.

 Attention: Make sure the editor is on the deployment manager node.

b. Add the schema definition of the new property. The following sample wimxmlextension.xml file

adds a new property called ibm-otherEmail to both the Person and PersonAccount entity types.

This new property type is ″String″ and it is multiple-valued.

<sdo:datagraph xmlns:sdo="commonj.sdo"

 xmlns:wim="http://www.ibm.com/websphere/wim">

 <wim:schema>

 <wim:propertySchema nsURI="http://www.ibm.com/websphere/wim"

 dataType="String"

 multiValued="true" propertyName="ibm-otherEmail">

 <wim:applicableEntityTypeNames>Person</wim:applicableEntityTypeNames>

 <wim:applicableEntityTypeNames>PersonAccount

 </wim:applicableEntityTypeNames>

 </wim:propertySchema>

</wim:schema>

</sdo:datagraph>

Available data types are defined in com.ibm.websphere.wim.SchemaConstants. For example:

/**

 * Instance Class: java.lang.String

 */

 String DATA_TYPE_STRING = "String";

 /**

 * Instance Class: int

 */

 String DATA_TYPE_INT = "Int";

 /**

 * Instance Class: java.lang.Object

 */

 String DATA_TYPE_DATE = "Date";

 /**

 * Instance Class: dobjava.lang.Object

 */

 String DATA_TYPE_ANY_SIMPLE_TYPE = "AnySimpleType";

 /**

 * Instance Class: java.lang.String

 */

 String DATA_TYPE_ANY_URI = "AnyURI";

 /**

 * Instance Class: java.lang.boolean

 */

 String DATA_TYPE_BOOLEAN = "Boolean";

 /**

 * Instance Class: long

 */

 String DATA_TYPE_LONG = "Long";

 /**

 * Instance Class: double

 */

Chapter 5. Authenticating users 133

String DATA_TYPE_DOUBLE = "Double";

 /**

 * Instance Class: short

 */

 String DATA_TYPE_SHORT = "Short";

c. Add the new property to the property extension repository. Before running the

setupIdMgrPropertyExtensionRepositoryTables command, add the new properties into

<WAS61>\profiles\<propfile_name>\config\cells\<cell_name>\wim\config\wimlaproperties.xml.

d. Follow the example inside this file to define the new property definitions. The schema file for

wimlaproperties.xml is wimdbproperty.xsd and is in the same directory. It can be used for

reference.

e. Run the setupIdMgrPropertyExtensionRepositoryTables command to create the property

extension repository and to add the new properties.

3. Set up the property extension repository using wsadmin by following the procedure discussed in

“Setting up an entry mapping repository, a property extension repository, or a database repository

using wsadmin commands” on page 136; ignore the ″Before you begin″ options.

4. Configure the property extension repository by completing the following steps:

a. In the administrative console, click Security > Secure administration, applications, and

infrastructure.

b. Under User account repository, select Federated repositories, and click Configure.

c. Click Property extension repository.

d. Supply the name of the data source in the Data source name field.

e. Select the type of database that is used for the property extension repository.

f. Supply the name of the Java database connectivity (JDBC) driver in the JDBC driver field.

Values include:

DB2 COM.ibm.db2.jdbc.app.DB2Driver

Oracle

oracle.jdbc.driver.OracleDriver

Informix

com.informix.jdbc.IfxDriver

Microsoft SQL Server

com.microsoft.jdbc.sqlserver.SQLServerDriver

Derby org.apache.derby.jdbc.EmbeddedDriver

DB2 for z/OS

com.ibm.db2.jcc.DB2Driver

DB2 for iSeries

com.ibm.db2.jdbc.app.DB2Driver

g. Supply the database URL that is used to access the property extension repository with JDBC in the

Database URL field. Use an alphanumeric text string that conforms to the standard JDBC URL

syntax.

Values include:

DB2 jdbc:db2:wim

Oracle

jdbc:oracle:thin:@<hostname>:1521:orcl

Derby jdbc:derby:c:\derby\wim

Microsoft SQL Server

jdbc:microsoft:sqlserver://<hostname>:1433;databaseName=wim;selectmethod=cursor;

134 Securing applications and their environment

Informix

jdbc:informix-sqli://<hostname>:1526/wim:INFORMIXSERVER=<IFXServerName>;

h. Supply the user name of the database administrator in the Database administrator user name field.

i. Supply the password of the database administrator in the Password field.

j. Specify the entity retrieval limit in the Entity retrieval limit field. The entity retrieval limit is the

maximum number of entities that the system can retrieve from the property extension repository

with a single database query. The default value is 200.

k. Click OK.

After completing these steps, your federated repository configuration, which includes a property extension

repository, is configured.

1. If you are enabling security, complete the remaining steps as specified in “Enabling security for the

realm” on page 75. As the final step, validate this setup by clicking Apply in the Secure administration,

applications, and infrastructure panel.

2. Save, stop, and restart all the product servers (deployment managers, nodes, and Application Servers)

for changes in this panel to take effect. If the server comes up without any problems, the setup is

correct.

Property extension repository settings:

Use this page to configure a property extension repository that is used to store attributes that cannot be

stored in existing repositories.

 To view this administrative console page, complete the following steps:

1. In the administrative console, click Security > Secure administration, applications, and

infrastructure.

2. Under User account repository, select Federated repositories from the Available realm definitions field

and click Configure.

3. Under Additional properties, click Property extension repository.

When you finish adding or updating your federated repository configuration, go to the Security > Secure

administration, applications, and infrastructure panel and click Apply to validate the changes.

Data source name:

Specifies the Java Naming and Directory Interface (JNDI) name of the data source that is used to access

the property extension repository.

 Default: jdbc/wimDS

Database type:

Specifies the type of database that is used for the property extension repository.

 Default: DB2

JDBC driver:

Specifies the Java Database Connectivity (JDBC) driver that is used to access the entry mapping

repository.

 Values include:

DB2 COM.ibm.db2.jdbc.app.DB2Driver

Chapter 5. Authenticating users 135

Oracle

oracle.jdbc.driver.OracleDriver

Informix

com.informix.jdbc.IfxDriver

Microsoft SQL Server

com.microsoft.jdbc.sqlserver.SQLServerDriver

Derby org.apache.derby.jdbc.EmbeddedDriver

DB2 for z/OS

com.ibm.db2.jcc.DB2Driver

DB2 for iSeries

com.ibm.db2.jdbc.app.DB2Driver

Database URL:

Specifies the Web address for the property extension repository.

 Values include:

DB2 jdbc:db2:wim

Oracle

jdbc:oracle:thin:@<hostname>:1521:orcl

Derby jdbc:derby:c:\derby\wim

Microsoft SQL Server

jdbc:microsoft:sqlserver://<hostname>:1433;databaseName=wim;selectmethod=cursor;

Informix

jdbc:informix-sqli://<hostname>:1526/wim:INFORMIXSERVER=<IFXServerName>;

Database administrator user name:

Specifies the user name of the database administrator that is used to access the property extension

repository.

Password:

Specifies the password that is used to enable the database administrator to access the property extension

repository.

Entity retrieval limit:

Specifies the maximum number of entities that the system can retrieve from the property extension

repository with a single database query.

 Data type: Integer

Default: 200

Setting up an entry mapping repository, a property extension repository, or a database repository

using wsadmin commands:

You can set up an entry mapping repository, a property extension repository, or a database repository

using wsadmin commands.

136 Securing applications and their environment

If you are setting up an entry mapping repository, begin with the steps described in “Configuring an entry

mapping repository in a federated repository configuration” on page 144.

If you are setting up a property extension repository, begin with the steps described in “Configuring a

property extension repository in a federated repository configuration” on page 132.

Three types of repositories are currently supported: DB2 repository, property extension repository, and

entry mapping repository. When a repository is created, use the appropriate wsadmin command to define

the database schema and to populate the database property definitions.

1. Create an empty entry mapping repository as shown in the following examples:

a. For DB2, open a DB2 command window or command center and enter the following:

db2 create database <name> using codeset UTF-8 territory US

b. Enter the following database tuning commands:

db2 update database configuration for <name> using applheapsz 1024

db2 update database configuration for <name> using stmtheap 4096

db2 update database configuration for <name> using app_ctl_heap_sz 2048

db2 update database configuration for <name> using locklist 1024

db2 update database configuration for <name> using indexrec RESTART

db2 update database configuration for <name> using logfilsiz 1000

db2 update database configuration for <name> using logprimary 12

db2 update database configuration for <name> using logsecond 10

db2 update database configuration for <name> using sortheap 2048

db2set DB2_RR_TO_RS=yes

c. Optional: For Informix databases using dbaccess, enter the following command:

CREATE DATABASE <name> WITH BUFFERED LOG

d. Optional: For Oracle databases, the database should already exist during Oracle installation (for

example, orcl).

2. Run the setupIdMgrDBTables command by doing the following:

a. Start WebSphere Application Server.

b. Open a command window and go to the <WAS>/Profiles/<PROFILE_NAME>bin directory.

c. Start wsadmin.

d. Type the necessary commands as described below.

The setupIdMgrDBTables command can be used to:

v Specify the arguments on the command line.

v Specify the arguments in a file.

For the commands below, the -file option enables you to specify a file in which some or all of the

parameters are specified. To use the -file argument on the command line, enter the full path to the file.

Parameters in the file must be specified in key=value pairs and each must be on its own line. If a

parameter is specified on both the command line and in the file, the value on the command line takes

precedence.

Note: If an argument is not properly specified on the command line or in the file, a message is returned

which states that the argument was not properly specified. This might mean that the argument was

not specified at all or was required for a given configuration but was not specified.

If the argument was not specified at all, check that the parameter is specified on the command line

or in the file, and that it is properly spelled and has matching case.

If the argument was required for a given configuration but was not specified, it is possible that a

value is not required solely by the command but is required for the type of database and

configuration you are setting.

Chapter 5. Authenticating users 137

For example, if you set the dn, wasAdminId, or wasAdminPassword parameters, you must also specify

the dbDriver parameter. Additionally, if the dn, wasAdminId or wasAdminPassword parameters are

specified, and the databaseType is not a Cloudscape 10 Version 1 database, then the dbAdminId

and dbAdminPassword parameters must also be specified.

The setupIdMgrDBTables command:

The setupIdMgrDBTables command sets up the database, which includes creating and populating the

tables in the database. Required arguments are prefixed by a double start (**). Arguments are

case-sensitive, both through the command line and the file.

Parameters:

**schemaLocation (String)

The location of the <WAS>/etc/wim/setup directory.

dbPropXML (String)

The location of database repository property definition XML file.

**databaseType (String)

The type of database. Supported databases are db2, oracle, informix, cloudscape, sqlserver,

db2zos, and db2iseries.

**dbURL (String)

The database URL for direct access mode. For example: jdbc:db2:wim.

dbDriver (String)

The name of the database driver. For example: COM.ibm.db2.jdbc.app.DB2Driver.

dbAdminId (String)

The database administrator ID for direct access mode. For example: db2admin.

Note: For a Cloudscape 10 Version 1 embedded database, dbAdminId is not required.

dbAdminPassword (String)

The password associated with the dbAdminId.

Note: For a Cloudscape 10 Version 1 embedded database, dbAdminPassword is not required.

dn (String)

The default organization uniqueName to replace. For example: o=yourco. If it is not set, o=Default

Organization is used.

wasAdminId (String)

The WebSphere Application Server admin user ID. The ID should be a short name, not a

uniqueName. For example: wasadmin. After creation, the uniqueName is uid=wasadmin,

<defaultOrg>.

wasAdminPassword (String)

The WebSphere Application Server admin user password. If wasAdminId is set, then this parameter

is mandatory.

saltLength (Integer)

The salt length of the randomly generated salt for password hashing.

encryptionKey (String)

The password encryption key. Set the password encryption key to match the encryption key in the

wimconfig.xml file for the repository. If the encryption key is not set, the default is used.

derbySystemHome (String)

The home location of the Cloudscape 10 Version 1 system if you are setting up a Cloudscape 10

Version 1 database.

138 Securing applications and their environment

reportSqlError (String)

Specifies whether to report SQL errors while setting up databases.

file (String)

The full path to a file containing the input parameters. Each input parameter must match a

corresponding parameter as it would be typed on the command line, and it must be placed in a

key=value pair. Each pair must be on a separate line.

The deleteIdMgrDBTables command:

The deleteIdMgrDBTables command deletes the tables in the database.

Parameters:

**schemaLocation (String)

The location of the <WAS>/etc/wim/setup directory.

**databaseType (String)

The type of database. Supported databases are db2, oracle, informix, cloudscape, sqlserver,

db2zos, and db2iseries.

**dbURL (String)

The database URL for direct access mode. For example: jdbc:db2:wim.

dbDriver (String)

The name of the database driver. For example: COM.ibm.db2.jdbc.app.DB2Driver.

dbAdminId (String)

The database administrator ID for direct access mode. For example: db2admin.

Note: For a Cloudscape 10 Version 1 embedded database, dbAdminId is not required.

dbAdminPassword (String)

The password associated with the dbAdminId.

Note: For a Cloudscape 10 Version 1 embedded database, dbAdminPassword is not required.

derbySystemHome (String)

The home location of the Cloudscape 10 Version 1 system if you are setting up a Cloudscape 10

Version 1 database.

reportSqlError (String)

Specifies whether to report SQL errors while setting up databases.

file (String)

The full path to a file containing the input parameters. Each input parameter must match a

corresponding parameter as it would be typed on the command line, and it must be placed in a

key=value pair. Each pair must be on a separate line.

The setupIdMgrPropertyExtensionRepositoryTables command:

The setupIdMgrPropertyExtensionRepositoryTables command sets up the property extension repository,

which includes creating and populating the tables in the database.

Parameters:

**schemaLocation (String)

The location of the <WAS>/etc/wim/setup directory.

laPropXML (String)

The location of the property extension repository definition XML file.

Chapter 5. Authenticating users 139

**databaseType (String)

The type of database. Supported databases are db2, oracle, informix, cloudscape, sqlserver,

db2zos, and db2iseries.

**dbURL (String)

The database URL for direct access mode. For example: jdbc:db2:wim.

dbAdminId (String)

The database administrator ID for direct access mode. For example: db2admin.

Note: For a Cloudscape 10 Version 1 embedded database, dbAdminId is not required.

dbAdminPassword (String)

The password associated with the dbAdminId.

Note: For a Cloudscape 10 Version 1 embedded database, dbAdminPassword is not required.

derbySystemHome (String)

The home location of the Cloudscape 10 Version 1 system if you are setting up a Cloudscape 10

Version 1 database.

reportSqlError (String)

Specifies whether to report SQL errors while setting up databases.

file (String)

The full path to a file containing the input parameters. Each input parameter must match a

corresponding parameter as it would be typed on the command line, and it must be placed in a

key=value pair. Each pair must be on a separate line.

The deleteIdMgrPropertyExtensionRepositoryTables command:

The deleteIdMgrPropertyExtensionRepositoryTables command deletes the tables in the property extension

database.

Parameters:

**schemaLocation (String)

The location of the <WAS>/etc/wim/setup directory.

**databaseType (String)

The type of database. Supported databases are db2, oracle, informix, cloudscape, sqlserver,

db2zos, and db2iseries.

**dbURL (String)

The database URL for direct access mode. For example: jdbc:db2:wim.

dbDriver (String)

The name of the database driver. For example: COM.ibm.db2.jdbc.app.DB2Driver.

dbAdminId (String)

The database administrator ID for direct access mode. For example: db2admin.

Note: For a Cloudscape 10 Version 1 embedded database, dbAdminId is not required.

dbAdminPassword (String)

The password associated with the dbAdminId.

Note: For a Cloudscape 10 Version 1 embedded database, dbAdminPassword is not required.

derbySystemHome (String)

The home location of the Cloudscape 10 Version 1 system if you are setting up a Cloudscape 10

Version 1 database.

140 Securing applications and their environment

reportSqlError (String)

Specifies whether to report SQL errors while setting up databases.

file (String)

The full path to a file containing the input parameters. Each input parameter must match a

corresponding parameter as it would be typed on the command line, and it must be placed in a

key=value pair. Each pair must be on a separate line.

The setupIdMgrEntryMappingRepositoryTables command:

The setupIdMgrEntryMappingRepositoryTables command sets up the entry mapping repository, which

includes creating and populating the tables of the repository.

Parameters:

**schemaLocation (String)

The location of the <WAS>/etc/wim/setup directory.

**databaseType (String)

The type of database. Supported databases are db2, oracle, informix, cloudscape, sqlserver,

db2zos, and db2iseries.

**dbURL (String)

The database URL for direct access mode. For example: jdbc:db2:wim.

dbDriver (String)

The name of the database driver. For example: COM.ibm.db2.jdbc.app.DB2Driver.

dbAdminId (String)

The database administrator ID for direct access mode. For example: db2admin.

Note: For a Cloudscape 10 Version 1 embedded database, dbAdminId is not required.

dbAdminPassword (String)

The password associated with the dbAdminId.

Note: For a Cloudscape 10 Version 1 embedded database, dbAdminPassword is not required.

derbySystemHome (String)

The home location of the Cloudscape 10 Version 1 system if you are setting up a Cloudscape 10

Version 1 database.

reportSqlError (String)

Specifies whether to report SQL errors while setting up databases.

file (String)

The full path to a file containing the input parameters. Each input parameter must match a

corresponding parameter as it would be typed on the command line, and it must be placed in a

key=value pair. Each pair must be on a separate line.

The deleteIdMgrEntryMappingRepositoryTables command:

The deleteIdMgrEntryMappingRepositoryTables command deletes the tables in the entry mapping

repository.

Parameters:

**schemaLocation (String)

The location of the <WAS>/etc/wim/setup directory.

Chapter 5. Authenticating users 141

**databaseType (String)

The type of database. Supported databases are db2, oracle, informix, cloudscape, sqlserver,

db2zos, and db2iseries.

**dbURL (String)

The database URL for direct access mode. For example: jdbc:db2:wim.

dbDriver (String)

The name of the database driver. For example: COM.ibm.db2.jdbc.app.DB2Driver.

dbAdminId (String)

The database administrator ID for direct access mode. For example: db2admin.

Note: For a Cloudscape 10 Version 1 embedded database, dbAdminId is not required.

dbAdminPassword (String)

The password associated with the dbAdminId.

Note: For a Cloudscape 10 Version 1 embedded database, dbAdminPassword is not required.

derbySystemHome (String)

The home location of the Cloudscape 10 Version 1 system if you are setting up a Cloudscape 10

Version 1 database.

reportSqlError (String)

Specifies whether to report SQL errors while setting up databases.

file (String)

The full path to a file containing the input parameters. Each input parameter must match a

corresponding parameter as it would be typed on the command line, and it must be placed in a

key=value pair. Each pair must be on a separate line.

Sample command line usage:

To set up a database using the command line, enter the following:

$AdminTask setupIdMgrDBTables {-schemaLocation "C:\WAS7\etc\wim\setup" -dbPropXML

"C:\WAS7\etc\wim\setup\wimdbproperties.xml" -databaseType db2

-dbURL jdbc:db2:wim -dbAdminId db2admin

-dbDriver COM.ibm.db2.jdbc.app.DB2Driver -dbAdminPassword db2adminPwd

-reportSqlError true}

To delete database tables using the command line, enter the following:

$AdminTask deleteIdMgrDBTables {-schemaLocation "C:\WAS7\etc\wim\setup"

-databaseType db2 -dbURL jdbc:db2:wim -dbAdminId db2admin

-dbDriver COM.ibm.db2.jdbc.app.DB2Driver -dbAdminPassword db2adminPwd

-reportSqlError true}

To set up a property extension repository using the command line, enter the following:

$AdminTask setupIdMgrPropertyExtensionRepositoryTables {-schemaLocation

"C:\WAS7\etc\wim\setup"

-laPropXML "C:\WAS7\etc\wim\setup\wimlaproperties.xml" -databaseType db2

-dbURL jdbc:db2:wim -dbAdminId db2admin -dbDriver COM.ibm.db2.jdbc.app.DB2Driver

-dbAdminPassword db2adminPwd -reportSqlError true}

To delete a property extension repository using the command line, enter the following:

$AdminTask deleteIdMgrPropertyExtensionRepositoryTables {-schemaLocation "C:\WAS7\etc\wim\setup "

-databaseType db2 -dbURL jdbc:db2:wim -dbAdminId db2admin -dbDriver

COM.ibm.db2.jdbc.app.DB2Driver -dbAdminPassword db2adminPwd -reportSqlError true}

To set up an entry mapping repository using the command line, enter the following:

142 Securing applications and their environment

$AdminTask setupIdMgrEntryMappingRepositoryTables {-schemaLocation "C:\WAS7\etc\wim\setup"

-databaseType db2 -dbURL jdbc:db2:wim -dbAdminId db2admin -dbDriver

COM.ibm.db2.jdbc.app.DB2Driver -dbAdminPassword db2adminPwd -reportSqlError true}

To delete an entry mapping repository using the command line, enter the following:

$AdminTask deleteIdMgrEntryMappingRepositoryTables {-schemaLocation "C:\WAS7\etc\wim\setup"

-databaseType db2 -dbURL jdbc:db2:wim -dbAdminId db2admin -dbDriver

COM.ibm.db2.jdbc.app.DB2Driver -dbAdminPassword db2adminPwd -reportSqlError true}

Sample CLI Usage using -file option:

To set up a database with the -file option using the example params.txt file below, enter the following:

$AdminTask setupIdMgrDBTables {–file C:\params.txt -dbPropXML

"C:\OverrideDBPropParam\wimdbproperties.xml"}

Params.txt

schemaLocation=C:\WAS7\etc\wim\setup

dbPropXML=C:\Program Files\IBM\WebSphere\AppServer\profiles\default

\config\cells\mycell\wim\config\wimdbproperties.xml

laPropXML=C:\Program Files\IBM\WebSphere\AppServer\profiles\default

\config\cells\mycell\wim\config\wimlaproperties.xml

databaseType=db2

dbURL=jdbc:db2:wim

dbDriver=COM.ibm.db2.jdbc.app.DB2Driver

reportSqlError=true

dn=o=db.com

dbAdminId=db2admin

dbAdminPassword=dbPassword

wasAdminId=wasadmin

wasAdminPassword=wasadmin1

To set up a database with the -file option using a file only, enter the following:

$AdminTask setupIdMgrDBTables {-file C:\params.txt}

Note: The use of a file only works if -file is the only parameter specified on the command line. If other

parameters are specified then the file is completely ignored, and only the parameters on the

command line are used to execute the command.

Configuring the WebSphere Application Server data source:

This section describes how to configure the data source service in WebSphere Application Server.

 1. Start the WebSphere Application Server administrative console.

 2. Click Security -> Secure administration, applications and infrastructure.

 3. On the Configuration panel, expand Java Authentication and Authorization Service and click J2C

authentication data.

 4. Click New and enter the Alias, User ID and Password.

 5. Click Ok.

 6. Click Resources -> JDBC -> JDBC Providers.

 7. In the Scope section, choose the Node level.

 8. Click New to create a new JDBC driver.

 9. Select the Database type, Provider type, Implementation type and Name.

10. Click Next and configure the database class path. Click Next.

11. On the Summary page, click Finish.

12. In the Additional properties section, click Data sources.

Chapter 5. Authenticating users 143

13. Click New to create a new data source. Enter the Data source name and the JNDI name, and choose

the authentication alias from the drop-down list in Component-managed authentication alias. The

JNDI name should match the datasourceName value set in wimconfig.xml. By default, it is

jdbc/wimDS.

Note: For Cloudscape 10 Version 1 embedded databases, leave the Component-managed

authentication alias field set to NONE.

14. Click Next.

15. Enter the Database name and deselect Use this data source in container managed persistence

(CMP). Click Next.

16. Under Component-managed authentication alias, select the authentication alias previously created.

Click Test Connection. The message should indicate that the connection is successful. Ignore any

warnings, and then click Next.

17. On the Summary page, click Finish.

18. Save the configurations, and restart WebSphere Application Server.

Configuring an entry mapping repository in a federated repository configuration

Follow this task to configure an entry mapping repository that is used to store data for managing profiles

on multiple repositories.

An entry-level join means that the federated repository configuration uses multiple repositories

simultaneously and recognizes the entries in the different repositories as entries representing distinct

entities. For example, a company might have a Lightweight Directory Access Protocol (LDAP) directory

that contains entries for its employees and a database that contains entries for business partners and

customers. By configuring an entry mapping repository, a federated repository configuration can use both

the LDAP and the database at the same time. The federated repository configuration hierarchy and

constraints for identifiers provide the aggregated namespace for both of those repositories and prevent

identifiers from colliding.

When you configure an entry mapping repository, you can supply a valid data source, a direct connection

configuration, or both. The system first tries to connect by way of the data source. If the data source is not

available, then the system uses the direct access configuration.

Restriction: You cannot configure an entry mapping repository in a mixed-version deployment manager

cell.

1. Configure the WebSphere Application Server data source. See “Configuring the WebSphere

Application Server data source” on page 143.

2. Set up the entry mapping repository using wsadmin. See “Setting up an entry mapping repository, a

property extension repository, or a database repository using wsadmin commands” on page 136.

3. Configure the entry mapping repository into the federated repository by doing the following:

a. In the administrative console, click Security > Secure administration, applications, and

infrastructure.

b. Under User account repository, select Federated repositories from the Available realm definitions

field and click Configure.

c. Click Entry mapping repository.

d. Supply the name of the data source in the Data source name field.

e. Select the type of database that is used for the property extension repository.

f. Supply the name of the Java database connectivity (JDBC) driver in the JDBC driver field.

Values include:

DB2 COM.ibm.db2.jdbc.app.DB2Driver

144 Securing applications and their environment

Oracle

oracle.jdbc.driver.OracleDriver

Informix

com.informix.jdbc.IfxDriver

Microsoft SQL Server

com.microsoft.jdbc.sqlserver.SQLServerDriver

Derby org.apache.derby.jdbc.EmbeddedDriver

DB2 for z/OS

com.ibm.db2.jcc.DB2Driver

DB2 for iSeries

com.ibm.db2.jdbc.app.DB2Driver

g. Supply the database URL that is used to access the property extension repository with JDBC in the

Database URL field. Use an alphanumeric text string that conforms to the standard JDBC URL

syntax.

Values include:

DB2 jdbc:db2:wim

Oracle

jdbc:oracle:thin:@<hostname>:1521:orcl

Derby jdbc:derby:c:\derby\wim

Microsoft SQL Server

jdbc:microsoft:sqlserver://<hostname>:1433;databaseName=wim;selectmethod=cursor;

Informix

jdbc:informix-sqli://<hostname>:1526/wim:INFORMIXSERVER=<IFXServerName>;

h. Supply the user name of the database administrator in the Database administrator user name field.

i. Supply the password of the database administrator in the Password field.

j. Click OK.

After completing these steps, your federated repository configuration, which includes an entry mapping

repository, is configured.

1. After configuring the federated repositories, click Security > Secure administration, applications,

and infrastructure to return to the Secure administration, applications, and infrastructure panel. Verify

that Federated repositories is identified in the Current realm definition field. If Federated repositories is

not identified, select Federated repositories from the Available realm definitions field and click Set as

current. To verify the federated repositories configuration, click Apply on the Secure administration,

applications, and infrastructure panel. If Federated repositories is not identified in the Current realm

definition field, your federated repositories configuration is not used by WebSphere Application Server.

2. If you are enabling security, complete the remaining steps as specified in “Enabling security for the

realm” on page 75. As the final step, validate this setup by clicking Apply in the Secure administration,

applications, and infrastructure panel.

3. Save, stop, and restart all the product servers (deployment managers, nodes, and Application Servers)

for changes in this panel to take effect. If the server comes up without any problems, the setup is

correct.

Entry mapping repository settings:

Use this page to configure an entry mapping repository that is used to store data for managing profiles on

multiple repositories.

 To view this administrative console page, complete the following steps:

Chapter 5. Authenticating users 145

1. In the administrative console, click Security > Secure administration, applications, and

infrastructure.

2. Under User account repository, select Federated repositories from the Available realm definitions field

and click Configure.

3. Under Additional properties, click Entry mapping repository.

When you finish adding or updating your federated repository configuration, go to the Security > Secure

administration, applications, and infrastructure panel and click Apply to validate the changes.

Data source name:

Specifies the Java Naming and Directory Interface (JNDI) name of the data source that is used to access

the entry mapping repository.

 Default: jdbc/wimDS

Database type:

Specifies the type of database that is used to access the entry mapping repository.

 Default: DB2

JDBC driver:

Specifies the Java Database Connectivity (JDBC) driver that is used to access the entry mapping

repository.

 Values include:

DB2 COM.ibm.db2.jdbc.app.DB2Driver

Oracle

oracle.jdbc.driver.OracleDriver

Informix

com.informix.jdbc.IfxDriver

Microsoft SQL Server

com.microsoft.jdbc.sqlserver.SQLServerDriver

Derby org.apache.derby.jdbc.EmbeddedDriver

DB2 for z/OS

com.ibm.db2.jcc.DB2Driver

DB2 for iSeries

com.ibm.db2.jdbc.app.DB2Driver

Database URL:

Specifies the Web address for the entry mapping repository.

 Values include:

DB2 jdbc:db2:wim

Oracle

jdbc:oracle:thin:@<hostname>:1521:orcl

Derby jdbc:derby:c:\derby\wim

146 Securing applications and their environment

Microsoft SQL Server

jdbc:microsoft:sqlserver://<hostname>:1433;databaseName=wim;selectmethod=cursor;

Informix

jdbc:informix-sqli://<hostname>:1526/wim:INFORMIXSERVER=<IFXServerName>;

Database administrator user name:

Specifies the user name of the database administrator that is used to access the entry mapping repository.

Password:

Specifies the password that is used to enable the database administrator to access the entry mapping

repository.

Configuring supported entity types in a federated repository configuration

Follow this task to configure supported entity types for user and group management.

You must configure the supported entity types before you can manage this account with Users and Groups

in the administrative console. The supported entity types are Group, OrgContainer, and PersonAccount. A

Group entity represents a simple collection of entities that might not have any relational context. An

OrgContainer entity represents an organization, such as a company or an enterprise, a subsidiary, or an

organizational unit, such as a division, a location, or a department. A PersonAccount entity represents a

human being. You cannot add or delete the supported entity types, because these types are predefined.

The Base entry for the default parent determines the repository location where entities of the specified

type are placed on write operations by user and group management.

Note: To manage users and groups, click Users and Groups in the console navigation tree. Click either

Manage Users or Manage Groups.

1. In the administrative console, click Security > Secure administration, applications, and

infrastructure.

2. Under User account repository, select Federated repositories from the Available realm definitions field

and click Configure.

3. Click Supported entity types to view a list of predefined entity types.

4. Click the name of a predefined entity type to change its configuration.

5. Supply the distinguished name of a base entry in the repository in the Base entry for the default parent

field. This entry determines the default location in the repository where entities of this type are placed

on write operations by user and group management.

6. Supply the relative distinguished name (RDN) properties for the specified entity type in the Relative

Distinguished Name properties field. Possible values are cn for Group, uid or cn for PersonAccount,

and o, ou, dc, and cn for OrgContainer. Delimit multiple properties for the OrgContainer entity with a

semicolon (;).

The following list outlines known requirements and limitations that apply to specific Lightweight

Directory Access Protocol (LDAP) servers:

Using Microsoft Active Directory as the LDAP server

v Unless you modify the LDAP schema to use uid, you must specify cn in the Relative

Distinguished Name (RDN) properties field for the PersonAccount entity type.

v Secure Sockets Layer communications must be enabled to create users with passwords. To

select the Require SSL communications option, see the topic “Configuring Lightweight

Directory Access Protocol in a federated repository configuration” on page 126.

v Typically the value of user is specified as the value in the Object classes field for the

PersonAccount entity type and the value of group is specified as the value in the Object

classes field for the Group entity type.

Chapter 5. Authenticating users 147

Using a Lotus Domino Enterprise Server as the LDAP server

v Typically, the value of cn is specified in the Relative Distinguished Name (RDN) properties

field for the PersonAccount entity type. The value of uid is also acceptable.

v Typically, both inetOrgPerson and dominoPerson are used as values in the Object classes

field for the PersonAccount entity type.

Using Sun ONE Directory Server as the LDAP server

v Typically, groupOfUniqueNames is specified as the value in the Object classes field for the

Group entity type.

7. Click OK.

After completing these steps, your federated repository configuration, which uses supported entity types, is

configured.

1. After configuring the federated repositories, click Security > Secure administration, applications,

and infrastructure to return to the Secure administration, applications, and infrastructure panel. Verify

that Federated repositories is identified in the Current realm definition field. If Federated repositories is

not identified, select Federated repositories from the Available realm definitions field and click Set as

current. To verify the federated repositories configuration, click Apply on the Secure administration,

applications, and infrastructure panel. If Federated repositories is not identified in the Current realm

definition field, your federated repositories configuration is not used by WebSphere Application Server.

2. If you are enabling security, complete the remaining steps as specified in “Enabling security for the

realm” on page 75. As the final step, validate this setup by clicking Apply in the Secure administration,

applications, and infrastructure panel.

3. Save, stop, and restart all the product servers (deployment managers, nodes, and Application Servers)

for changes in this panel to take effect. If the server comes up without any problems, the setup is

correct.

Supported entity types collection:

Use this page to list entity types that are supported by the member repositories or to select an entity type

to view or change its configuration properties.

 To view this administrative console page, complete the following steps:

1. In the administrative console, click Security > Secure administration, applications, and

infrastructure.

2. Under User account repository, select Federated repositories from the Available realm definitions field

and click Configure.

3. Under Additional properties, click Supported entity types.

You must configure the supported entity types before you can manage this account with Users and Groups

in the administrative console. The Base entry for the default parent determines the repository location

where entities of the specified type are placed on write operations by user and group management.

When you finish adding or updating your federated repository configuration, go to the Security > Secure

administration, applications, and infrastructure panel and click Apply to validate the changes.

 Related reference

 “Lightweight Directory Access Protocol entity types settings” on page 157
Use this page to configure Lightweight Directory Access Protocol (LDAP) entity types that are

supported by the member repositories.

Entity type:

Specifies the entity type name.

148 Securing applications and their environment

Base entry for the default parent:

Specifies the distinguished name of a base entry in the repository.

 This entry determines the default location in the repository where entities of this type are placed on write

operations by user and group management.

Relative Distinguished Name properties:

Specifies the relative distinguished name (RDN) properties for the specified entity type.

 Possible values are cn for Group, uid or cn for PersonAccount, and o, ou, dc, and cn for OrgContainer.

Delimit multiple properties for the OrgContainer entity with a semicolon (;).

Supported entity types settings:

Use this page to configure entity types that are supported by the member repositories.

 To view this administrative console page, complete the following steps:

1. In the administrative console, click Security > Secure administration, applications, and

infrastructure.

2. Under User account repository, select Federated repositories from the Available realm definitions field

and click Configure.

3. Under Additional properties, click Supported entity types.

4. Click the name of a configured entity type to view or change its configuration.

You must configure the supported entity types before you can manage this account with Users and Groups

in the administrative console. The Base entry for the default parent determines the repository location

where entities of the specified type are placed on write operations by user and group management.

When you finish adding or updating your federated repository configuration, go to the Security > Secure

administration, applications, and infrastructure panel and click Apply to validate the changes.

Entity type:

Specifies the name of the entity type.

Base entry for the default parent:

Specifies the distinguished name of a base entry in the repository.

 This entry determines the default location in the repository where entities of this type are placed on write

operations by user and group management.

Relative Distinguished Name properties:

Specifies the relative distinguished name (RDN) properties for the specified entity type.

 Possible values are cn for Group, uid or cn for PersonAccount, and o, ou, dc, and cn for OrgContainer.

Delimit multiple properties for the OrgContainer entity with a semicolon (;).

Managing repositories in a federated repository configuration

Follow this topic to manage repositories in a federated repository configuration.

1. In the administrative console, click Security > Secure administration, applications, and

infrastructure.

Chapter 5. Authenticating users 149

2. Under User account repository, select Federated repositories from the Available realm definitions field

and click Configure.

3. Under Related items, click Manage repositories. Repositories that are configured in the system are

listed in the collection panel. This list includes repositories that are configured using the federated

repository functionality as well as repositories that are created using wsadmin commands described in

the topic “Commands for the IdMgrRepositoryConfig group of the AdminTask object” on page 667.

4. Optional: Click Add to configure a new external repository. The Lightweight Directory Access Protocol

(LDAP) repository configuration settings are described in detail in “Configuring Lightweight Directory

Access Protocol in a federated repository configuration” on page 126.

Restriction: You cannot add a database repository using the administrative console. This repository

configuration is supported by using wsadmin commands only.

5. Optional: Click Delete to delete a repository that you specified previously using the administrative

console or wsadmin commands.

Restriction: You cannot delete the built-in, file-based repository from the collection panel.

6. Optional: Select one of the LDAP repository identifier entries to view or update an external repository

that is configured in the system previously. The steps to configure LDAP settings are described in

detail in “Configuring Lightweight Directory Access Protocol in a federated repository configuration” on

page 126.

Restriction: While database repositories that are configured in the system are listed in the collection

panel, you cannot update a database repository using the administrative console.

Updates to a database repository are supported by using wsadmin commands only.

7. Click OK.

After completing these steps, the collection panel under Managing repositories reflects a current list of

repositories that are configured in your system.

1. To add one or more external repositories that are listed on this collection panel into the realm, see

“Managing the realm in a federated repository configuration” on page 115.

2. After configuring the federated repositories, click Security > Secure administration, applications,

and infrastructure to return to the Secure administration, applications, and infrastructure panel. Verify

that Federated repositories is identified in the Current realm definition field. If Federated repositories is

not identified, select Federated repositories from the Available realm definitions field and click Set as

current. To verify the federated repositories configuration, click Apply on the Secure administration,

applications, and infrastructure panel. If Federated repositories is not identified in the Current realm

definition field, your federated repositories configuration is not used by WebSphere Application Server.

3. If you are enabling security, complete the remaining steps as specified in “Enabling security for the

realm” on page 75. As the final step, validate this setup by clicking Apply in the Secure administration,

applications, and infrastructure panel.

4. Save, stop, and restart all the product servers (deployment managers, nodes, and Application Servers)

for changes in this panel to take effect. If the server comes up without any problems, the setup is

correct.

Manage repositories collection:

Use this page to list repositories that are configured in the system or to select a repository to view or

change its configuration properties. You can add or delete external repositories.

 To view this administrative console page, complete the following steps:

1. In the administrative console, click Security > Secure administration, applications, and

infrastructure.

150 Securing applications and their environment

2. Under User account repository, select Federated repositories from the Available realm definitions field

and click Configure.

3. Under Related items, click Manage repositories.

When you finish adding or updating your federated repository configuration, go to the Security > Secure

administration, applications, and infrastructure panel and click Apply to validate the changes.

Repository identifier:

Specifies a unique identifier for the repository. This identifier uniquely identifies the repository within the

cell.

Repository type:

Specifies the repository type, such as File or LDAP.

Repository reference settings:

Use this page to configure a repository reference. A repository reference is a single repository that

contains a set of identity entries that are referenced by a base entry into the directory information tree.

 To view this administrative console page, complete the following steps:

1. In the administrative console, click Security > Secure administration, applications, and

infrastructure.

2. Under User account repository, select Federated repositories from the Available realm definitions field

and click Configure.

3. Click Add base entry to realm.

When you finish adding or updating your federated repository configuration, go to the Security > Secure

administration, applications, and infrastructure panel and click Apply to validate the changes.

Repository:

Specifies a unique identifier for the repository. This identifier uniquely identifies the repository within the

cell.

 Expand the drop-down list to display a list of previously defined repository identifiers.

Distinguished name that uniquely identifies this set of entries in the realm:

Specifies the distinguished name (DN) that uniquely identifies this set of entries in the realm.

 If multiple repositories are included in the realm, it is necessary to define an additional distinguished name

that uniquely identifies this set of entries within the realm.

Distinguished name of a base entry in this repository:

Specifies the Lightweight Directory Access Protocol (LDAP) distinguished name (DN) of the base entry

within the repository. The entry and its descendents are mapped to the subtree that is identified by the

unique base name entry field.

 If this field is left blank, then the subtree defaults to the root of the LDAP repository.

Increasing the performance of the federated repository configuration

Follow this page to manage the realm in a federated repository configuration.

Chapter 5. Authenticating users 151

The settings that are available on the Performance panel are independent options that pertain specifically

to the federated repositories functionality. These options do not affect your entire WebSphere Application

Server configuration.

 1. In the administrative console, click Security > Secure administration, applications, and

infrastructure.

 2. Under User account repository, select Federated repositories from the Available realm definitions

field and click Configure.

 3. Under Related items, click Manage repositories > repository_name.

 4. Under Additional properties, click Performance.

 5. Optional: Select the Limit search time option and enter the maximum number of milliseconds that

the Application Server can use to search through your Lightweight Directory Access Protocol (LDAP)

entries.

 6. Optional: Select the Limit search returns option and enter the maximum number of entries to return

that match the search criteria.

 7. Optional: Select the Use connection pooling option to specify whether the Application Server can

store separate connections to the LDAP server for reuse.

 8. Optional: Select the Enable context pool option to specify whether multiple applications can use the

same connection to the LDAP server. If you select the option, specify the initial, preferred, and

maximum number of entries that can use the same connection. The Enable context pool option can

be enabled either in conjunction with the Use connection pool option or separately. If this option is

disabled, a new connection is created for each context. You can also select the Context pool times

out option and specify the number of seconds after which the entries in the context pool expire.

 9. Optional: Select the Cache the attributes option and specify the maximum number of search

attribute entries. This option enables WebSphere Application Server to save the LDAP entries so that

it can search the entries locally rather than making multiple calls to the LDAP server. Click the Cache

times out option that is associated with the Cache the attributes option to specify the maximum

number of seconds that the Application Server can save these entries.

10. Optional: Select the Cache the search results option and specify the maximum number of search

result entries. This option enables WebSphere Application Server to save the results of a search

inquiry instead of making multiple calls to the LDAP server to search and retrieve the results of that

search. Click the Cache times out option that is associated with the Cache the search results

option to specify the maximum number of seconds that the Application Server can save the results.

These options are available to potentially increase the performance of your federated repositories

configuration. However, the any increase in performance is dependant upon your specific configuration.

Lightweight Directory Access Protocol performance settings:

Use this page to minimize impacts to performance by adding opened connections and contexts to

internally maintained pools and reusing them. Also minimize performance impacts by maintaining internal

caches of retrieved data.

 To view this administrative console page, complete the following steps:

1. In the administrative console, click Security > Secure administration, applications, and

infrastructure.

2. Under User account repository, select Federated repositories from the Available realm definitions field

and click Configure.

3. Under Related items, click Manage repositories.

4. Click Add to specify a new external repository or select an external repository that is preconfigured.

5. Under Additional properties, click Performance.

152 Securing applications and their environment

When you finish adding or updating your federated repository configuration, go to the Security > Secure

administration, applications, and infrastructure panel and click Apply to validate the changes.

Limit search time:

Specifies the timeout value in milliseconds for a Lightweight Directory Access Protocol (LDAP) server to

respond before stopping a request.

 Data type: Integer

Units: Milliseconds

Default: 0

Range: Equal to or greater than 0. A value of 0 specifies that no

search time limit exists.

Limit search returns:

Specifies the maximum number of entries that are returned in a search result.

 Data type: Integer

Units: Entries

Default: 0

Range: Equal to or greater than 0. A value of 0 specifies that no

search return limit exists.

Use connection pooling:

Specifies whether to utilize the connection pooling function, which is provided in the Software Development

Kit (SDK).

 Connection pooling is maintained by the Java run time. It is configured by system properties.

 Default: Disabled

Range: Enabled or Disabled

Enable context pool:

Specifies whether context pooling is enabled to the LDAP server. To improve performance, use the context

pool in combination with connection pooling.

 Default: Enabled

Range: Enabled or Disabled

Initial size:

Specifies the number of context instances in the pool when the pool is initially created by the LDAP

repository.

 Data type: Integer

Default: 1

Range: 1 to 50

Preferred size:

Chapter 5. Authenticating users 153

Specifies the preferred number of context instances that the context pool maintains. Both in-use and idle

context instances contribute to this number.

 Data type: Integer

Default: 3

Range: 0 to 100

Maximum size:

Specifies the maximum number of context instances that can be maintained concurrently by the context

pool. Both in-use and idle context instances contribute to this number.

 When the pool size reaches the maximum size, no new context instances can be created for a new

request. The new request is blocked until a context instance is released or removed. The request

periodically checks for context instances that are available in the pool. A request for a pooled context

instance uses an existing pooled and idle context instance or a newly created pooled context instance.

A maximum pool size of 0 indicates that the context pool can maintain an infinite number of context

instances.

 Data type: Integer

Default: 0

Context pool times out:

Specifies the number of seconds for the context pool to time out and remove idle context instances.

 A timeout value of 0 indicates that the context pool does not time out context instances.

 Data type: Integer

Default: 0

Cache the attributes:

Specifies whether to cache the attributes that are returned from the LDAP server.

 Default: Enabled

Range: Enabled or Disabled

Cache size:

Specifies the maximum size of the cache.

 Data type: Integer

Default: 4000

Range: Equal to or greater than 100

Cache times out:

Specifies the maximum number of seconds that the cached search results can stay in the cache.

 A timeout value of 0 indicates that the cached search results stay in the cache until update operations are

made.

154 Securing applications and their environment

Data type: Integer

Units: Seconds

Default: 1200

Range: Equal to or greater than 0

Cache the search results:

Specifies whether to cache the search results that are returned from the LDAP server.

 Default: Enabled

Range: Enabled or Disabled

Cache size:

Specifies the maximum size of the cache.

 Data type: Integer

Default: 2000

Range: Equal to or greater than 100

Cache times out:

Specifies the maximum number of seconds that the cached search results can stay in the cache.

 A timeout value of 0 indicates that the cached search results stay in the cache until update operations are

made.

 Data type: Integer

Units: Seconds

Default: 600

Range: Equal to or greater than 0

Configuring Lightweight Directory Access Protocol entity types in a federated

repository configuration

Follow this task to configure Lightweight Directory Access Protocol (LDAP) entity types in a federated

repository configuration.

1. In the administrative console, click Security > Secure administration, applications, and

infrastructure.

2. Under User account repository, select Federated repositories from the Available realm definitions field

and click Configure.

3. Under Related items, click Manage repositories.

4. Click Add to specify a new external repository or select an external repository that is preconfigured.

Note: If you click Add to specify a new external repository, you must first complete the required fields

and click Apply before you can proceed to the next step.

5. Under Additional properties, click LDAP entity types.

6. View the entity types that are supported by the member repositories, or select an entity type to view or

change its configuration properties.

7. Supply the object classes that are mapped to this entity type in the Object classes field. LDAP entries

that contain one or more of the object classes belong to this entity type.

Chapter 5. Authenticating users 155

8. Supply the search bases that are used to search this entity type. The search bases specified must be

subtrees of the base entry in the repository. For example, you can specify the following search bases,

where o=ibm,c=us is the base entry in the repository:

o=ibm,c=us or cn=users,o=ibm,c=us or ou=austin,o=ibm,c=us

In the preceding example, you cannot specify search bases c=us or o=ibm,c=uk.

Delimit multiple search bases with a semicolon (;). For example:

ou=austin,o=ibm,c=us;ou=raleigh,o=ibm,c=us

9. Supply the LDAP search filter that is used to search this entity type.

For example, use (objectclass=ePerson) to search for users or

(|(objectclass=groupOfNames)(objectclass=groupOfUniqueNames) to search for groups in an external

LDAP repository.

If a search filter is not specified, the object classes and the relative distinguished name (RDN)

properties are used to generate the search filter. For information on RDN properties, see “Configuring

supported entity types in a federated repository configuration” on page 147.

After completing these steps, LDAP entity types are configured for your LDAP repository.

1. After configuring the federated repositories, click Security > Secure administration, applications,

and infrastructure to return to the Secure administration, applications, and infrastructure panel. Verify

that Federated repositories is identified in the Current realm definition field. If Federated repositories is

not identified, select Federated repositories from the Available realm definitions field and click Set as

current. To verify the federated repositories configuration, click Apply on the Secure administration,

applications, and infrastructure panel. If Federated repositories is not identified in the Current realm

definition field, your federated repositories configuration is not used by WebSphere Application Server.

2. If you are enabling security, complete the remaining steps as specified in “Enabling security for the

realm” on page 75. As the final step, validate this setup by clicking Apply in the Secure administration,

applications, and infrastructure panel.

3. Save, stop, and restart all the product servers (deployment managers, nodes, and Application Servers)

for changes in this panel to take effect. If the server comes up without any problems, the setup is

correct.

Lightweight Directory Access Protocol entity types collection:

Use this page to list Lightweight Directory Access Protocol (LDAP) entity types that are supported by the

member repositories or to select an LDAP entity type to view or change its configuration properties.

 To view this administrative console page, complete the following steps:

1. In the administrative console, click Security > Secure administration, applications, and

infrastructure.

2. Under User account repository, select Federated repositories from the Available realm definitions field

and click Configure.

3. Under Related items, click Manage repositories.

4. Click Add to specify a new external repository or select an external repository that is preconfigured.

5. Under Additional properties, click LDAP entity types.

When you finish adding or updating your federated repository configuration, go to the Security > Secure

administration, applications, and infrastructure panel and click Apply to validate the changes.

Entity type:

Specifies the entity type name.

Object classes:

156 Securing applications and their environment

Specifies the object classes that are mapped to this entity type. LDAP entries that contain one or more of

the object classes belong to this entity type.

Lightweight Directory Access Protocol entity types settings:

Use this page to configure Lightweight Directory Access Protocol (LDAP) entity types that are supported

by the member repositories.

 To view this administrative console page, complete the following steps:

1. In the administrative console, click Security > Secure administration, applications, and

infrastructure.

2. Under User account repository, select Federated repositories from the Available realm definitions field

and click Configure.

3. Under Related items, click Manage repositories.

4. Click Add to specify a new external repository or select an external repository that is preconfigured.

5. Under Additional properties, click LDAP entity types.

6. Select an entity type to view or change its configuration properties.

When you finish adding or updating your federated repository configuration, go to the Security > Secure

administration, applications, and infrastructure panel and click Apply to validate the changes.

Entity type:

Specifies the entity type.

Object classes:

Specifies the object classes that are mapped to this entity type. LDAP entries that contain one or more of

the object classes belong to this entity type.

Search bases:

Specifies the search bases that are used to search this entity type.

 The search bases specified must be subtrees of the base entry in the repository. For example, you can

specify the following search bases, where o=ibm,c=us is the base entry in the repository:

o=ibm,c=us or cn=users,o=ibm,c=us or ou=austin,o=ibm,c=us

In the preceding example, you cannot specify search bases c=us or o=ibm,c=uk.

Delimit multiple search bases with a semicolon (;). For example:

ou=austin,o=ibm,c=us;ou=raleigh,o=ibm,c=us

Search filter:

Specifies the LDAP search filter that is used to search this entity type.

 For example, use (objectclass=ePerson) to search for users or

(|(objectclass=groupOfNames)(objectclass=groupOfUniqueNames) to search for groups in an external

LDAP repository.

If a search filter is not specified, the object classes and the relative distinguished name (RDN) properties

are used to generate the search filter.

Chapter 5. Authenticating users 157

Configuring group attribute definition settings in a federated repository

configuration

Follow this task to configure group definition settings in a federated repository configuration.

Because group attribute definition settings apply only to a Lightweight Directory Access Protocol (LDAP)

repository, you must first configure an LDAP repository. For more information, see “Managing repositories

in a federated repository configuration” on page 149.

1. In the administrative console, click Security > Secure administration, applications, and

infrastructure.

2. Under User account repository, select Federated repositories from the Available realm definitions field

and click Configure.

3. Under Related items, click Manage repositories.

4. Click Add to specify a new external repository or select an external repository that is preconfigured.

Note: If you click Add to specify a new external repository, you must first complete the required fields

and click Apply before you can proceed to the next step.

5. Under Additional properties, click Group attribute definition.

6. Supply the name of the group membership attribute in the Name of group membership attribute field.

Only one membership attribute can be defined for each LDAP repository.

Every LDAP entry should have this attribute to indicate the groups to which this entry belongs. For

example, memberOf is the name of the membership attribute that is used in Active Directory. The

group membership attribute contains values that reference groups to which this entry belongs. If UserA

belongs to GroupA, then the value of the memberOf attribute of UserA should contain the distinguished

name of GroupA.

If your LDAP server does not support the group membership attribute, then do not specify this

attribute. The LDAP repository can look up groups by searching the group member attributes, though

the performance might be slower.

7. Select the scope of the group membership attribute. The default value is Direct.

Direct The membership attribute contains direct groups only. Direct groups are the groups that

contain the member. For example, if Group1 contains Group2 and Group2 contains User1,

then Group2 is a direct group of User1, but Group1 is not a direct group of User1.

Nested

The membership attribute contains both direct groups and nested groups.

All The membership attribute contains direct groups, nested groups, and dynamic members.

After completing these steps, group attribute definition settings are configured for your LDAP repository.

1. After configuring the federated repositories, click Security > Secure administration, applications,

and infrastructure to return to the Secure administration, applications, and infrastructure panel. Verify

that Federated repositories is identified in the Current realm definition field. If Federated repositories is

not identified, select Federated repositories from the Available realm definitions field and click Set as

current. To verify the federated repositories configuration, click Apply on the Secure administration,

applications, and infrastructure panel. If Federated repositories is not identified in the Current realm

definition field, your federated repositories configuration is not used by WebSphere Application Server.

2. If you are enabling security, complete the remaining steps as specified in “Enabling security for the

realm” on page 75. As the final step, validate this setup by clicking Apply in the Secure administration,

applications, and infrastructure panel.

3. Save, stop, and restart all the product servers (deployment managers, nodes, and Application Servers)

for changes in this panel to take effect. If the server comes up without any problems, the setup is

correct.

Group attribute definition settings:

158 Securing applications and their environment

Use this page to specify the name of the group membership attribute. Every Lightweight Directory Access

Protocol (LDAP) entry includes this attribute to indicate the group to which this entry belongs.

 To view this administrative console page, complete the following steps:

1. In the administrative console, click Security > Secure administration, applications, and

infrastructure.

2. Under User account repository, select Federated repositories from the Available realm definitions field

and click Configure.

3. Under Related items, click Manage repositories.

4. Click Add to specify a new external repository or select an external repository that is preconfigured.

5. Under Additional properties, click Group attribute definition.

When you finish adding or updating your federated repository configuration, go to the Security > Secure

administration, applications, and infrastructure panel and click Apply to validate the changes.

Name of group membership attribute:

Specifies the name of the group membership attribute. Only one membership attribute can be defined for

each Lightweight Directory Access Protocol (LDAP) repository.

 Every LDAP entry should have this attribute to indicate the groups to which this entry belongs. For

example, memberOf is the name of the membership attribute that is used in Active Directory. The group

membership attribute contains values that reference groups to which this entry belongs. If UserA belongs

to GroupA, then the value of the memberOf attribute of UserA should contain the distinguished name of

GroupA.

If your LDAP server does not support the group membership attribute, then do not specify this attribute.

The LDAP repository can look up groups by searching the group member attributes, though the

performance might be slower.

Scope of group membership attribute:

Specifies the scope of the group membership attribute.

 Default: Direct

Range:

Direct The membership attribute contains direct groups

only. Direct groups are the groups that contain

the member. For example, if Group1 contains

Group2 and Group2 contains User1, then Group2

is a direct group of User1, but Group1 is not a

direct group of User1.

Nested The membership attribute contains both direct

groups and nested groups.

All The membership attribute contains direct groups,

nested groups, and dynamic members.

Configuring member attributes in a federated repository configuration

Follow this task to configure member attributes in a federated repository configuration.

Because member attributes apply only to a Lightweight Directory Access Protocol (LDAP) repository, you

must first configure an LDAP repository. For more information, see “Managing repositories in a federated

repository configuration” on page 149.

Chapter 5. Authenticating users 159

1. In the administrative console, click Security > Secure administration, applications, and

infrastructure.

 2. Under User account repository, select Federated repositories from the Available realm definitions

field and click Configure.

 3. Under Related items, click Manage repositories.

 4. Click Add to specify a new external repository or select an external repository that is preconfigured.

Note: If you click Add to specify a new external repository, you must first complete the required

fields and click Apply before you can proceed to the next step.

 5. Under Additional properties, click Group attribute definition.

 6. Under Additional properties, click Member attributes.

 7. Click New to specify a new member attribute or Delete to remove a preconfigured member attribute.

 8. Accept the default, or supply the name of the member attribute in the Name of member attribute field.

For example, member and uniqueMember are two commonly used names of member attributes.

The member attribute is used to store the values that reference members that the group contains. For

example, a group type with an object class groupOfNames has a member attribute named member;

group type with object class groupOfUniqueNames has a member attribute named uniqueMember. An

LDAP repository supports multiple group types if multiple member attributes and their associated

group object classes are specified.

 9. Supply the object class of the group that uses this member attribute in the Object class field. If this

field is not defined, this member attribute applies to all group object classes.

10. Select the scope of the member attribute. The default value is Direct.

Direct The member attribute contains direct members only. Direct members are members that are

directly contained by the group. For example, if Group1 contains Group2 and Group2

contains User1, then User1 is a direct member of Group2, but User1 is not a direct member

of Group1.

Nested

The member attribute contains both direct members and nested members.

All The member attribute contains direct members, nested members, and dynamic members.

After completing these steps, member attributes are configured for your LDAP repository.

1. After configuring the federated repositories, click Security > Secure administration, applications,

and infrastructure to return to the Secure administration, applications, and infrastructure panel. Verify

that Federated repositories is identified in the Current realm definition field. If Federated repositories is

not identified, select Federated repositories from the Available realm definitions field and click Set as

current. To verify the federated repositories configuration, click Apply on the Secure administration,

applications, and infrastructure panel. If Federated repositories is not identified in the Current realm

definition field, your federated repositories configuration is not used by WebSphere Application Server.

2. If you are enabling security, complete the remaining steps as specified in “Enabling security for the

realm” on page 75. As the final step, validate this setup by clicking Apply in the Secure administration,

applications, and infrastructure panel.

3. Save, stop, and restart all the product servers (deployment managers, nodes, and Application Servers)

for changes in this panel to take effect. If the server comes up without any problems, the setup is

correct.

Member attributes collection:

Use this page to list Lightweight Directory Access Protocol (LDAP) member attributes or to select a

member attribute to view or change its configuration properties.

 To view this administrative console page, complete the following steps:

160 Securing applications and their environment

1. In the administrative console, click Security > Secure administration, applications, and

infrastructure.

2. Under User account repository, select Federated repositories from the Available realm definitions field

and click Configure.

3. Under Related items, click Manage repositories.

4. Click Add to specify a new external repository or select an external repository that is preconfigured.

5. Under Additional properties, click Group attribute definition.

6. Under Additional properties, click Member attributes.

When you finish adding or updating your federated repository configuration, go to the Security > Secure

administration, applications, and infrastructure panel and click Apply to validate the changes.

Name:

Specifies the name of the member attribute in LDAP. For example, member and uniqueMember are two

commonly used names of member attributes.

 The member attribute is used to store the values that reference members that the group contains. For

example, a group type with an object class groupOfNames has a member attribute named member; group

type with object class groupOfUniqueNames has a member attribute named uniqueMember. An LDAP

repository supports multiple group types if multiple member attributes and their associated group object

classes are specified.

Scope:

Specifies the scope of the member attribute.

 Default: Direct

Range:

Direct The member attribute contains direct members

only. Direct members are members that are

directly contained by the group. For example, if

Group1 contains Group2 and Group2 contains

User1, then User1 is a direct member of Group2,

but User1 is not a direct member of Group1.

Nested The member attribute contains both direct

members and nested members.

All The member attribute contains direct members,

nested members, and dynamic members.

Object class:

Specifies the object class of the group that uses this member attribute. If this field is not defined, this

member attribute applies to all group object classes.

Member attributes settings:

Use this page to configure Lightweight Directory Access Protocol (LDAP) member attributes.

 To view this administrative console page, complete the following steps:

1. In the administrative console, click Security > Secure administration, applications, and

infrastructure.

2. Under User account repository, select Federated repositories from the Available realm definitions field

and click Configure.

Chapter 5. Authenticating users 161

3. Under Related items, click Manage repositories.

4. Click Add to specify a new external repository or select an external repository that is preconfigured.

5. Under Additional properties, click Group attribute definition.

6. Under Additional properties, click Member attributes.

7. Click New to specify a new member attribute.

When you finish adding or updating your federated repository configuration, go to the Security > Secure

administration, applications, and infrastructure panel and click Apply to validate the changes.

Name of member attribute:

Specifies the name of the member attribute in LDAP. For example, member and uniqueMember are two

commonly used names of member attributes.

 The member attribute is used to store the values that reference members that the group contains. For

example, a group type with an object class groupOfNames has a member attribute named member; group

type with object class groupOfUniqueNames has a member attribute named uniqueMember. An LDAP

repository supports multiple group types if multiple member attributes and their associated group object

classes are specified.

Object class:

Specifies the object class of the group that uses this member attribute. If this field is not defined, this

member attribute applies to all group object classes.

Scope:

Specifies the scope of the member attribute.

 Default: Direct

Range:

Direct The member attribute contains direct members

only. Direct members are members that are

directly contained by the group. For example, if

Group1 contains Group2 and Group2 contains

User1, then User1 is a direct member of Group2,

but User1 is not a direct member of Group1.

Nested The member attribute contains both direct

members and nested members.

All The member attribute contains direct members,

nested members, and dynamic members.

Configuring dynamic member attributes in a federated repository configuration

Follow this task to configure dynamic member attributes in a federated repository configuration.

Because dynamic member attributes apply only to a Lightweight Directory Access Protocol (LDAP)

repository, you must first configure an LDAP repository. For more information, see “Managing repositories

in a federated repository configuration” on page 149.

1. In the administrative console, click Security > Secure administration, applications, and

infrastructure.

2. Under User account repository, select Federated repositories from the Available realm definitions field

and click Configure.

3. Under Related items, click Manage repositories.

4. Click Add to specify a new external repository or select an external repository that is preconfigured.

162 Securing applications and their environment

Note: If you click Add to specify a new external repository, you must first complete the required fields

and click Apply before you can proceed to the next step.

5. Under Additional properties, click Group attribute definition.

6. Under Additional properties, click Dynamic member attributes.

7. Click New to specify a new dynamic member attribute or Delete to remove a preconfigured dynamic

member attribute.

8. Accept the default, or supply the name of the dynamic member attribute in the Name of dynamic

member attribute field. The name of the dynamic member attribute defines the filter for dynamic group

members in LDAP, for example, memberURL is the name of a commonly used dynamic member

attribute.

If both member and dynamic member attributes are specified for the same group type, this group type

is a hybrid group with both static and dynamic members.

A dynamic group defines its members differently than a static group. Instead of listing the members

individually, the dynamic group defines its members using an LDAP search. The filter for the search is

defined in a dynamic member attribute. For example, the dynamic group uses the structural objectclass

groupOfURLs, or auxiliary objectclass ibm-dynamicGroup, and the attribute memberURL, to define the

search using a simplified LDAP URL syntax:

ldap:///<base DN of search> ? ? <scope of search> ? <searchfilter>

The following is an example of the LDAP URL that defines all entries that are under o=Acme with the

objectclass=person:

ldap:///o=Acme,c=US??sub?objectclass=person

9. Supply the object class of the group that contains the dynamic member attribute in the Dynamic object

class field, for example, groupOfURLs. If this property is not defined, the dynamic member attribute

applies to all group object classes.

After completing these steps, dynamic member attributes are configured for your LDAP repository.

1. After configuring the federated repositories, click Security > Secure administration, applications,

and infrastructure to return to the Secure administration, applications, and infrastructure panel. Verify

that Federated repositories is identified in the Current realm definition field. If Federated repositories is

not identified, select Federated repositories from the Available realm definitions field and click Set as

current. To verify the federated repositories configuration, click Apply on the Secure administration,

applications, and infrastructure panel. If Federated repositories is not identified in the Current realm

definition field, your federated repositories configuration is not used by WebSphere Application Server.

2. If you are enabling security, complete the remaining steps as specified in “Enabling security for the

realm” on page 75. As the final step, validate this setup by clicking Apply in the Secure administration,

applications, and infrastructure panel.

3. Save, stop, and restart all the product servers (deployment managers, nodes, and Application Servers)

for changes in this panel to take effect. If the server comes up without any problems, the setup is

correct.

Dynamic member attributes collection:

Use this page to manage Lightweight Directory Access Protocol (LDAP) dynamic member attributes.

 To view this administrative console page, complete the following steps:

1. In the administrative console, click Security > Secure administration, applications, and

infrastructure.

2. Under User account repository, select Federated repositories from the Available realm definitions field

and click Configure.

3. Under Related items, click Manage repositories.

4. Click Add to specify a new external repository or select an external repository that is preconfigured.

5. Under Additional properties, click Group attribute definition.

Chapter 5. Authenticating users 163

6. Under Additional properties, click Dynamic member attributes.

When you finish adding or updating your federated repository configuration, go to the Security > Secure

administration, applications, and infrastructure panel and click Apply to validate the changes.

Name:

Specifies the name of the attribute that defines the filter for dynamic group members in LDAP. For

example, memberURL is the name of a commonly used dynamic member attribute.

 If both member and dynamic member attributes are specified for the same group type, this group type is a

hybrid group with both static and dynamic members.

A dynamic group defines its members differently than a static group. Instead of listing the members

individually, the dynamic group defines its members using an LDAP search. The filter for the search is

defined in a dynamic member attribute. For example, the dynamic group uses the structural objectclass

groupOfURLs, or auxiliary objectclass ibm-dynamicGroup, and the attribute memberURL, to define the

search using a simplified LDAP URL syntax:

ldap:///<base DN of search>??<scope of search>?<searchfilter>

The following is an example of the LDAP URL that defines all entries that are under o=Acme with the

objectclass=person:

ldap:///o=Acme,c=US??sub?objectclass=person

Object class:

Specifies the object class of the group that contains this dynamic member attribute, for example,

groupOfURLs. If this property is not defined, the dynamic member attribute applies to all group object

classes.

Dynamic member attributes settings:

Use this page to configure Lightweight Directory Access Protocol (LDAP) dynamic member attributes.

 To view this administrative console page, complete the following steps:

1. In the administrative console, click Security > Secure administration, applications, and

infrastructure.

2. Under User account repository, select Federated repositories from the Available realm definitions field

and click Configure.

3. Under Related items, click Manage repositories.

4. Click Add to specify a new external repository or select an external repository that is preconfigured.

5. Under Additional properties, click Group attribute definition.

6. Under Additional properties, click Dynamic member attributes.

7. Click New to specify a new dynamic member attribute.

When you finish adding or updating your federated repository configuration, go to the Security > Secure

administration, applications, and infrastructure panel and click Apply to validate the changes.

Name of dynamic member attribute:

Specifies the name of the attribute that defines the filter for dynamic group members in LDAP. For

example, memberURL is the name of a commonly used dynamic member attribute.

164 Securing applications and their environment

If both member and dynamic member attributes are specified for the same group type, this group type is a

hybrid group with both static and dynamic members.

A dynamic group defines its members differently than a static group. Instead of listing the members

individually, the dynamic group defines its members using an LDAP search. The filter for the search is

defined in a dynamic member attribute. For example, the dynamic group uses the structural objectclass

groupOfURLs, or auxiliary objectclass ibm-dynamicGroup, and the attribute memberURL, to define the

search using a simplified LDAP URL syntax:

ldap:///<base DN of search>??<scope of search>?<searchfilter>

The following is an example of the LDAP URL that defines all entries that are under o=Acme with the

objectclass=person:

ldap:///o=Acme,c=US??sub?objectclass=person

Dynamic object class:

Specifies the object class of the group that contains this dynamic member attribute, for example,

groupOfURLs. If this property is not defined, the dynamic member attribute applies to all group object

classes.

Local operating system registries

With the registry implementation for the local operating system, the WebSphere Application Server

authentication mechanism can use the user accounts database of the local operating system.

Lightweight Directory Access Protocol (LDAP) is a centralized registry. Most local operating system

registries are not centralized registries.

WebSphere Application Server provides implementations for the Windows local accounts registry and

domain registry, as well as implementations for the Linux, Solaris, and AIX user accounts registries.

Windows Active Directory is supported through the LDAP user registry implementation discussed later.

Note: For an Active Directory (domain controller), the three group scopes are Domain Local Group, Global

Group, and Universal Group. For an Active Directory (Domain Controller), the two group types are

Security and Distribution.

When a group is created, the default value is Global and the default type is Security. With Windows NT

domain registry support for Windows 2000 and 2003 domain controllers, WebSphere Application Server

only supports Global groups that are the Security type. It is recommended that you use the Active

Directory registry support rather than a Windows NT domain registry if you use Windows 2000 and 2003

domain controllers because the Active Directory supports all group scopes and types. The Active Directory

also supports a nested group that is not support by Windows NT domain registry. The Active Directory is a

centralized control registry.

WebSphere Application Server does not have to install the member of the domain because it can be

installed on any machine on any platform. Note that the Windows NT domain native call returns the

support group only without an error.

Do not use a local operating system registry in a WebSphere Application Server environment where

application servers are dispersed across more than one machine because each machine has its own user

registry.

The Windows domain registry and Network Information Services (NIS) are exceptions. Both the Windows

domain registry and Network Information Services (NIS) are centralized registries. The Windows domain

registry is supported by WebSphere Application Server; however, NIS is not supported.

Chapter 5. Authenticating users 165

As mentioned previously, the access IDs taken from the user registry are used during authorization

checks. Because these IDs are typically unique identifiers, they vary from machine to machine, even if the

exact users and passwords exist on each machine.

Web client certificate authentication is not currently supported when using the local operating system user

registry. However, Java client certificate authentication does function with a local operating user registry.

Java client certificate authentication maps the first attribute of the certificate domain name to the user ID in

the user registry.

Even though Java client certificates function correctly, the following error displays in the SystemOut.log file:

CWSCJ0337E: The mapCertificate method is not supported

The error is intended for Web client certificates; however, it also displays for Java client certificates. Ignore

this error for Java client certificates.

Required privileges

The user that is running the WebSphere Application Server process requires enough operating system

privilege to call the Windows systems application programming interface (API) for authenticating and

obtaining user and group information from the Windows operating system. This user logs into the machine,

or if running as a service, is the Log On As user. Depending on the machine and whether the machine is a

standalone machine or a machine that is part of a domain or is the domain controller, the access

requirements vary.

v For a standalone machine, the user:

– Is a member of the administrative group.

– Has the Act as part of the operating system privilege.

– Has the Log on as a service privilege, if the server is run as a service.
v For a machine that is a member of a domain, only a domain user can start the server process and:

– Is a member of the domain administrative groups in the domain controller.

– Has the Act as part of the operating system privilege in the Domain security policy on the domain

controller.

– Has the Act as part of the operating system privilege in the Local security policy on the local

machine.

– Has the Log on as a service privilege on the local machine, if the server is run as a service.

The user is a domain user and not a local user, which implies that when a machine is part of a

domain, only a domain user can start the server.
v For a domain controller machine, the user:

– Is a member of the domain administrative groups in the domain controller.

– Has the Act as part of the operating system privilege in the Domain security policy on the domain

controller.

– Has the Log on as a service privilege on the domain controller, if the server is run as a service.

If the user running the server does not have the required privilege, you might see one of the following

exception messages in the log files:

v A required privilege is not held by the client.

v Access is denied.

Domain and local user registries

When WebSphere Application Server is started, the security run-time initialization process dynamically

attempts to determine if the local machine is a member of a Windows domain. If the machine is part of a

domain then by default both the local registry users or groups and the domain registry users or groups can

be used for authentication and authorization purposes with the domain registry taking precedence. The list

166 Securing applications and their environment

of users and groups that is presented during the security role mapping includes users and groups from

both the local user registry and the domain user registry. The users and groups can be distinguished by

the associated host names.

WebSphere Application Server does not support trusted domains.

If the machine is not a member of a Windows system domain, the user registry local to that machine is

used.

Using both the domain user registry and the local operating system registry

When the machine that hosts the WebSphere Application Server process is a member of a domain, both

the local and the domain user registries are used by default. The following section describes more on this

topic and recommends some best practices to avoid unfavorable consequences.

Note: Although this section does not directly describe z/OS considerations, you should be aware that

overall security operations are affected by how well you set up these registries.

v Best practices

In general, if the local and the domain registries do not contain common users or groups, it is simpler to

administer and it eliminates unfavorable side effects. If possible, give users and groups access to

unique security roles, including the server ID and administrative roles. In this situation, select the users

and groups from either the local user registry or the domain user registry to map to the roles.

In cases where the same users or groups exist in both the local user registry and the domain user

registry, it is recommended that at least the server ID and the users and groups that are mapped to the

administrative roles be unique in the registries and exist only in the domain.

If a common set of users exists, set a different password to make sure that the appropriate user is

authenticated.

v How it works

When a machine is part of a domain, the domain user registry takes precedence over the local user

registry. For example, when a user logs into the system, the domain user registry tries to authenticate

the user first. If authentication fails, the local user registry is used. When a user or a group is mapped to

a role, the user and group information is first obtained from the domain user registry. In case of failure,

the local user registry is tried.

However, when a fully qualified user or a group name, one with an attached domain or host name, is

mapped to a role, only that user registry is used to get the information. Use the administrative console

or scripts to get the fully qualified user and group names, which is the recommended way to map users

and groups to roles.

Tip: A user, Bob, on one machine in the local OS user registry, for example, is not the same as the user

Bob on another machine in the domain user registry, for example, because the unique ID of Bob,

which is the security identifier [SID] in this case, is different in different user registries.

v Examples

The MyMachine machine is part of the MyDomain domain. The MyMachine machine contains the following

users and groups:

– MyMachine\user2

– MyMachine\user3

– MyMachine\group2

The MyDomain domain contains the following users and groups:

– MyDomain\user1

– MyDomain\user2

– MyDomain\group1

– MyDomain\group2

Here are some scenarios that assume the previous set of users and groups:

Chapter 5. Authenticating users 167

1. When user2 logs into the system, the domain user registry is used for authentication. If the

authentication fails because the password is different, for example, the local user registry is used.

2. If the MyMachine\user2 user is mapped to a role, only the user2 user in MyMachine machine has

access. Thus, if the user2 password is the same on both the local and the domain user registries,

the user2 user cannot access the resource because the user2 user is always authenticated using

the domain user registry. If both user registries have common users, it is recommended that you

have different passwords.

3. If the group2 group is mapped to a role, only the users who are members of the MyDomain\group2

group can access the resource because group2 information is first obtained from the domain user

registry.

4. If the MyMachine\group2 group is mapped to a role, only the users who are members of the

MyMachine\group2 group can access the resource. A specific group is mapped to the role

(MyMachine\group2 instead of just group2).

5. Use either the user3 user or the MyMachine\user3 user to map to a role because the user3 user is

unique as it exists in one user registry only.

Authorizing with the domain user registry first can cause problems if a user exists in both the domain

and local user registries with the same password. Role-based authorization can fail in this situation

because the user is first authenticated within the domain user registry. This authentication produces a

unique domain security ID that is used in WebSphere Application Server during the authorization check.

However, the local user registry is used for role assignment. The domain security ID does not match the

unique security ID that is associated with the role. To avoid this problem, map security roles to domain

users instead of local users.

Using either the local or the domain user registry. If you want to access users and groups from either

the local or the domain user registry, instead of both, set the com.ibm.websphere.registry.UseRegistry

property. This property can be set to either localor domain. When this property is set to local(case

insensitive) only the local user registry is used. When this property is set to domain, (case insensitive) only

the domain user registry is used.

Set this property by completing the following steps to access the Custom Properties panel in the

administrative console:

1. Click Security > Secure administration, applications, and infrastructure

2. Under User account repository, click the Available realm definitions drop-down list, select Local

operating system, and click Configure.

3. Under Additional properties, click Custom properties.

You can also use wsadmin to configure this property. When the property is set, the privilege requirement

for the user who is running the product process does not change. For example, if this property is set to

local, the user that is running the process requires the same privilege, as if the property was not set.

Using UNIX system user registries

When using UNIX system user registries, the process ID that runs the WebSphere Application Server

process needs the root authority to call the local operating system APIs for authentication and for obtaining

user or group information.

Note: In UNIX systems, only the local machine user registry is used. Network Information Service (NIS)

(Yellow Pages) is not supported.

Using Linux and Solaris system user registries Linux

Solaris

For WebSphere Application Server local operating system registry to work on the Linux and Solaris

platforms, a shadow password file must exist. The shadow password file is named shadow and is located in

the /etc directory. If the shadow password file does not exist, an error occurs after enabling administrative

security and configuring the registry as local operating system.

168 Securing applications and their environment

To create the shadow file, run the pwconv command (with no parameters). This command creates an

/etc/shadow file from the /etc/passwd file. After creating the shadow file, you can enable local operating

system security successfully.

Standalone Lightweight Directory Access Protocol registries

A Standalone Lightweight Directory Access Protocol (LDAP) registry performs authentication using an

LDAP binding.

WebSphere Application Server security provides and supports the implementation of most major LDAP

directory servers, which can act as the repository for user and group information. These LDAP servers are

called by the product processes for authenticating a user and other security-related tasks. For example,

the servers are used to retrieve user or group information. This support is provided by using different user

and group filters to obtain the user and group information. These filters have default values that you can

modify to fit your needs. The custom LDAP feature enables you to use any other LDAP server, which is

not in the product-supported list of LDAP servers, for its user registry by using the appropriate filters.

To use LDAP as the user registry, you need to know a administrative user name that is defined in the

registry, the server host and port, the base distinguished name (DN) and, if necessary, the bind DN and

the bind password. You can choose any valid user in the registry that is searchable and have

administrative privileges. In some LDAP servers, the administrative users are not searchable and cannot

be used, for example, cn=root in SecureWay. This user is referred to as WebSphere Application Server

security server ID, server ID, or server user ID in the documentation. Being a server ID means a user has

special privileges when calling some protected internal methods. Normally, this ID and password are used

to log into the administrative console after security is turned on. You can use other users to log in if those

users are part of the administrative roles.

When security is enabled in the product, the primary administrative user name and password are

authenticated with the registry during the product startup. If authentication fails, the server does not start. It

is important to choose an ID and password that do not expire or change often. If the product server user

ID or password need to change in the registry, make sure that the changes are performed when all the

product servers are up and running.

When the changes are done in the registry, use the steps that are described in “Configuring Lightweight

Directory Access Protocol user registries” on page 93. Change the ID, password, and other configuration

information, save, stop, and restart all the servers so that the new ID or password is used by the product.

If any problems occur starting the product when security is enabled, disable security before the server can

start up. To avoid these problems, make sure that any changes in this panel are validated in the Secure

administration, applications, and infrastructure panel. When the server is up, you can change the ID,

password, and other configuration information and then enable security.

You can use the custom Lightweight Directory Access Protocol (LDAP) feature to support any LDAP server

by setting up the correct configuration. However, support is not extended to these custom LDAP servers

because many configuration possibilities exist.

The users and groups and security role mapping information is used by the configured authorization

engine to perform access control decisions.

Dynamic groups and nested group support

Dynamic and nested groups simplify WebSphere Application Server security management and increase its

effectiveness and flexibility.

Dynamic groups contain a group name and membership criteria:

v The group membership information is as current as the information on the user object.

v There is no need to manually maintain members on the group object.

Chapter 5. Authenticating users 169

v Dynamic groups are designed so an application does not need a large amount of information from the

directory to find out if someone is a member of a group.

Nested groups enable the creation of hierarchical relationships that are used to define inherited group

membership. A nested group is defined as a child group entry whose distinguished name (DN) is

referenced by a parent group entry attribute.

You only need to assign a larger parent group if all nested groups share the same privilege. Assigning a

role to a single parent group simplifies the run-time authorization table.

Dynamic groups and nested group support for the IBM Tivoli Directory Server:

Dynamic and nested groups simplify WebSphere Application Server security management and increase its

effectiveness and flexibility.

 WebSphere Application Server supports all Lightweight Directory Access Protocol (LDAP) dynamic and

nested groups when using IBM Tivoli Directory Server. This function is enabled by default by taking

advantage of a new feature in IBM Tivoli Directory Server. IBM Tivoli Directory Server uses the

ibm-allGroups forward-reference group attribute that automatically calculates all the group memberships

including dynamic and recursive memberships for a user. Security directly locates a user group

membership from a user object rather than indirectly search all the groups to match group members.

For more information, see “Configuring dynamic and nested group support for the IBM Tivoli Directory

Server” on page 111.

Dynamic and nested group support for the SunONE or iPlanet Directory Server:

Dynamic and nested groups simplify WebSphere Application Server security management and increase its

effectiveness and flexibility.

 The SunONE or iPlanet Directory Server uses two grouping mechanisms:

Groups

Entries that name other entries as a list of members or as a filter for members.

Roles Entries that name other entries as a list of members or as a filter for members. Additional

functionality is provided by generating the nsrole attribute on each role member.

Three types of roles are available:

Filtered roles

Depends upon the attributes that are contained in each entry. Entries are members, if they match

a specified Lightweight Directory Access Protocol (LDAP) filter. This role is equivalent to a dynamic

group.

Nested roles

Creates roles that contain other roles. This role is equivalent to a nested group.

Managed roles

Explicitly assigns a role to member entries. This role is equivalent to a static group.

Refer to “Configuring dynamic and nested group support for the SunONE or iPlanet Directory Server” on

page 110 for more information.

Security failover among multiple LDAP servers

WebSphere Application Server security can be configured to attempt failovers between multiple

Lightweight Directory Access Protocol (LDAP) hosts.

170 Securing applications and their environment

If the current active LDAP server is unavailable, WebSphere Application Server security attempts a failover

to the first available LDAP host in the specified host list. The multiple LDAP servers can be replicas of the

same master LDAP server, or they can be any LDAP host with the same schema, which contain data that

is imported from the same LDAP Data Interchange Format (LDIF) file.

Whenever a failover occurs, WebSphere Application Server security always uses the first available LDAP

server in the specified host list. For example, if there are four LDAP servers configured in the order of L1,

L2, L3, and L4, L1 is treated as the primary LDAP server. The preference of connection is from L1 to L4.

If, for example, WebSphere Application Server security is currently connected to L4, and failover or

reconnection is necessary, WebSphere Application Server security first attempts to connect to L1, L2, and

then L3 in that order until the connection is successful.

The current LDAP host name is logged in message CWSCJ0419I in the WebSphere Application Server log

file, SystemOut.log. If you want to reconnect to the primary LDAP host, run the WebSphere Application

Server MBean method, resetLDAPBindInfo, with null,null as the input.

To configure LDAP failover among multiple LDAP hosts, you must use wsadmin or ConfigService to

include the backup LDAP host, which does not have a number limitation. The LDAP host that is displayed

in the administrative console is the primary LDAP host, and is the first item listed in the LDAP host list in

security.xml.

The WebSphere Application Server security realm name defaults to the primary LDAP host name that is

displayed in the administrative console. It includes a trailing colon and a port number (if one exists).

However, the custom property, com.ibm.websphere.security.ldap.logicRealm, can be added to override the

default security realm name. Use the logicRealm name to configure each cell to have its own LDAP host

for interoperability and backward compatibility, and to provide flexibility for adding or removing the LDAP

host dynamically. If migrating from a previous installation, the new logicRealm name does not take effect

until administrative security is enabled again. To be compatible with a previous release that does not

support logic realm, the logicRealm name has to be the same as that used by the previous installation (the

LDAP host name, including a trailing colon and port number).

The following example shows how to use wsadmin to add a backup LDAP host for failover:

proc LDAPAdd {args} {

 global AdminConfig AdminControl ldapServer ldapPort

 set ldapServer [lindex $args 0]

 set ldapPort [lindex $args 1]

 global ldapUserRegistryId

 if {[catch {$AdminConfig list LDAPUserRegistry} result]} {

 puts stdout "\$AdminConfig list LDAPUserRegistry caught an exception $result\n"

 return

 } else {

 if {$result != {}} {

 set ldapUserRegistryId [lindex $result 0]

 } else {

 return;

 }

 }

 set secMbean [$AdminControl queryNames type=SecurityAdmin,*]

 set Attrs2 [list [list hosts [list [list [list host $ldapServer]

 [list port $ldapPort]]]]]

 $AdminConfig modify $ldapUserRegistryId $Attrs2

 $AdminConfig save

}

Federated repositories

Federated repositories enable you to use multiple repositories with WebSphere Application Server. These

repositories, which can be file-based repositories, LDAP repositories, or a sub-tree of an LDAP repository,

are defined and theoretically combined under a single realm. All of the user repositories that are

configured under the federated repository functionality are invisible to WebSphere Application Server.

Chapter 5. Authenticating users 171

When you use the federated repositories functionality, all of the configured repositories, which you specify

as part of the federated repository configuration, become active. It is recommended that the user ID, and

the distinguished name (DN) for an LDAP repository, be unique in multiple user repositories that are

configured under the same federated repository configuration. For example, there might be three different

repositories that are configured for the federated repositories configuration: Repository A, Repository B,

and Repository C. When user1 logs in, the federated repository adapter searches each of the repositories

for all of the occurrences of that user. If multiple instances of that user are found in the combined

repositories, an error message displays.

In addition, the federated repositories functionality in WebSphere Application Server supports the logical

joining of entries across multiple user repositories when the Application Server searches and retrieves

entries from the repositories. For example, when an application calls for a sorted list of people whose age

is greater than twenty, WebSphere Application searches all of the repositories in the federated repositories

configuration. The results are combined and sorted before the Application Server returns the results to the

application.

Unlike the local operating system, standalone LDAP registry, or custom registry options, federated

repositories provide user and group management with read and write capabilities. When you configure

federated repositories, you can use one of the following methods to add, create, and delete users and

groups:

Important: If you configure multiple repositories under the federated repositories realm, you must also

configure supported entity types and specify a base entry for the default parent. The base

entry for the default parent determines the repository location where entities of the specified

type are placed on write operations by user and group management. See “Configuring

supported entity types in a federated repository configuration” on page 147 for details.

v Use the user management application programming interfaces (API). For more information, refer to

articles under ″Developing with virtual member manager″ in this information center.

v Use the administrative console. To manage users and groups within the administrative console, click

Users and Groups > Manage Users or Users and Groups > Manage Groups. For information on

user and group management, click the Help link that displays in the upper right corner of the window.

From the left navigation pane, click Users and Groups.

v Use the wsadmin commands. For more information, see “Commands for the

WIMManagementCommands group of the AdminTask object” on page 764.

If you do not configure the federated repositories functionality or do not enable federated repositories as

the active repository, you cannot use the user management capabilities that are associated with federated

repositories. You can configure an LDAP server as the active user registry and configure the same LDAP

server under federated repositories, but not select federated repositories as the active user repository.

With this scenario, authentication takes place using the LDAP server, and you can use the user

management functionality for the LDAP server that is available for federated repositories.

The following table compares the federated repository functionality that is available in WebSphere

Application Server Version 6.1 with the registry functionality that remains unchanged from previous

versions of the Application Server.

172 Securing applications and their environment

Table 3. Federated repositories versus user registry implementations

Federated repositories User registry

Supports multiple types of repositories such as file-based,

LDAP, database, and custom. In WebSphere Application

Server Version 6.1, file-based and LDAP repositories are

supported by the administrative console. However, the

federated repositories functionality does not support local

operating system implementations. For database and

custom repositories, you can use the wsadmin

command-line interface or the configuration application

programming interfaces (API).

Supports multiple types of registries such as the local

operating system, a standalone LDAP registry, and a

standalone custom registry.

Supports multiple repositories in a realm within a cell. Supports one registry only in a realm within a cell.

Provides read and write capabilities for the repositories

that are defined in the federated repository configuration.

Provides read only capability for the registries.

Provides account and password policy support as defined

by the registry type. However, this support is not provided

by the federated repository functionality.

Provides account and password policy support as defined

by the registry type.

Supports identity profiles. Does not support identity profiles.

Uses the custom UserRegistry implementation. Uses the custom UserRegistry implementation.

Authentication mechanisms

An authentication mechanism defines rules about security information, such as whether a credential is

forwardable to another Java process, and the format of how security information is stored in both

credentials and tokens.

Authentication is the process of establishing whether a client is who or what it claims to be in a particular

context. A client can be either an end user, a machine, or an application. An authentication mechanism in

WebSphere Application Server typically collaborates closely with a user registry. The user registry is the

user and groups account repository that the authentication mechanism consults with when performing

authentication. The authentication mechanism is responsible for creating a credential, which is an internal

product representation of a successfully authenticated client user. Not all credentials are created equally.

The abilities of the credential are determined by the configured authentication mechanism.

WebSphere Application Server provides two authentication mechanisms: Lightweight Third Party

Authentication (LTPA) and Simple WebSphere Authentication Mechanism (SWAM). You configure LTPA,

which is the default authentication mechanism, in the administrative console by clicking Security > Secure

administration, applications, and infrastructure > Authentication mechanisms and expiration.

SWAM is deprecated in Version 6.1. SWAM does not provide authenticated communication between

different servers. To use SWAM instead of LTPA, select the Use SWAM-no authenticated

communication between servers option on the Authentication mechanisms and expiration panel.

However, if you select the Use SWAM-no authenticated communication between servers option, the

other information on the Authentication mechanisms and expiration panel will be ignored.

Chapter 5. Authenticating users 173

Authentication process

The figure demonstrates the authentication process. Authentication is required for enterprise bean clients

and Web clients when they access protected resources. Enterprise bean clients, like a servlet or other

enterprise beans or a pure client, send the authentication information to a Web application server using

one of the following protocols:

V6.0.x

v Common Secure Interoperability Version 2 (CSIv2)

v Secure Authentication Service (SAS)

Important: SAS is supported only between Version 6.0.x and previous version servers that have been

federated in a Version 6.1 cell.

Web clients use the HTTP or HTTPS protocol to send the authentication information, as shown in the

previous figure.

The authentication information can be basic authentication (user ID and password), a credential token (in

the case of Lightweight Third Party Authentication (LTPA)), or a client certificate. The Web authentication is

performed by the Web Authentication module.

You can configure Web authentication for a Web client by using the administrative console. Click Security

> Secure administration and applications. Under Authentication, expand Web security and click

General settings. The following options exist for Web authentication:

Authenticate only when the URI is protected

Specifies that the Web client can retrieve an authenticated identity only when it accesses a

protected Uniform Resource Identifier (URI). WebSphere Application Server challenges the Web

client to provide authentication data when the Web client accesses a URI that is protected by a

J2EE role. This default option is also available in previous versions of WebSphere Application

Server.

Use available authentication data when an unprotected URI is accessed

Specifies that the Web client is authorized to call the getRemoteUser, isUserInRole, and

getUserPrincipal methods; retrieves an authenticated identity from either a protected or an

unprotected URI. Although the authentication data is not used when you access an unprotected

Authentication

module

WebSphere Application Server

(1)

(1)

(2)

(2)

CSIV2/SAS, TCP/IP,

SSL

Basic or

token credentials

HTTP or HTTPS

Basic, token, or

certificate

SWAM

module

LTPA

module

Login

module

Local

operating

system

Standalone

LDAP

registry

Standalone

custom

registry

Enterprise beans

authenticator

Web

authenticator

ORB

current

Java client

Web client

(6) (3)

(3)

(4)

(4)

Authorization

data

Received

credentials

(6)

Received

credentials

(5)

(5)

Credentials

Credentials

Authorization

data

Authentication

Federated

repositories

174 Securing applications and their environment

URI, the authentication data is retained for future use. This option is available when you select the

Authentication only when the URI is protected check box.

Authenticate when any URI is accessed

Specifies that the Web client must provide authentication data regardless of whether the URI is

protected.

Default to basic authentication when certificate authentication for the HTTPS client fails.

Specifies that WebSphere Application Server challenges the Web client for a user ID and

password when the required HTTPS client certificate authentication fails.

V6.0.x

The enterprise bean authentication is performed by the Enterprise JavaBean (EJB)

authentication module, which resides in the CSIv2 and SAS layer.

The authentication module is implemented using the Java Authentication and Authorization Service (JAAS)

login module. The Web authenticator and the EJB authenticator pass the authentication data to the login

module (2), which can use any of the following mechanisms to authenticate the data:

v LTPA

v Simple WebSphere Authentication Mechanism (SWAM)

Note: SWAM is deprecated in WebSphere Application Server Version 6.1 and will be removed in a

future release. LTPA is the default authentication mechanism.

The authentication module uses the registry that is configured on the system to perform the authentication

(4). Four types of registries are supported:

v Federated repositories

v Local operating system

v Standalone Lightweight Directory Access Protocol (LDAP) registry

v Standalone custom registry

External registry implementation following the registry interface that is specified by IBM can replace either

the local operating system or the LDAP registry.

The login module creates a JAAS subject after authentication and stores the credential that is derived from

the authentication data in the public credentials list of the subject. The credential is returned to the Web

authenticator or to the enterprise beans authenticator (5).

The Web authenticator and the enterprise beans authenticator store the received credentials in the Object

Request Broker (ORB) current for the authorization service to use in performing further access control

checks. If the credentials are forwardable, they are sent to other application servers.

Portlet URL security

WebSphere Application Server enables direct access to portlet Uniform Resource Locators (URLs), just

like servlets. This section describes security considerations when accessing portlets using URLs.

For security purposes, portlets are treated similar to servlets. Most portlet security uses the underlying

servlet security mechanism. However, portlet security information resides in the portlet.xml file, while the

servlet and JavaServer Pages files reside in the web.xml file. Also, when you make access decisions for

portlets, the security information, if any, in the web.xml file is combined with the security information in the

portlet.xml file.

Portlet security must support both programmatic security, that is isUserInRole, and declarative security.

The programmatic security is exactly the same as for servlets. However, for portlets, the isUserInRole

method uses the information from the security-role-ref element in portlet.xml. The other two methods

Chapter 5. Authenticating users 175

used by programmatic security, getRemoteUser and getUserPrincipal, behave the same way as they do

when accessing a servlet. Both of these methods return the authenticated user information accessing the

portlet.

The declarative security aspect of the portlets is defined by the security-constraint information in the

portlet.xml file. This is similar to the security-constraint information used for the servlets in the web.xml

file with the following differences:

v The auth-constraint element, which lists the names of the roles that can access the resources, does not

exist in the portlet.xml file. The portlet.xml file contains only the user-data-constraint element, which

indicates what type of transport layer security (HTTP or HTTPS) is required to access the portlet.

v The security-constraint information in the portlet.xml file contains the portlet-collection element, while

the web.xml file contains the web-resource-collection element. The portlet-collection element contains

only a list of simple portlet names, while the web-resource-collection contains the url-patterns as well as

the HTTP methods that need protection.

The portlet container does not deal with the user authentication directly. For example, it does not prompt

you to collect the credential information. The portlet container must, instead, use the underlying servlet

container for the user authentication mechanism. As a result, there is no auth-constraint element in the

security-constraint information in the portlet.xml file.

In WebSphere Application Server, when a portlet is accessed using a URL, the user authentication is

processed based on the security-constraint information for that portlet in the web.xml file. This implies that

to authenticate a user for a portlet, the web.xml file must contain the security-constraint information for that

portlet with the relevant auth-constraints contained in it. If a corresponding auth-constraint for the portlet

does not exist in the web.xml file, it indicates that the portlet is not required to have authentication. In this

case, unauthenticated access is permitted just like a URL pattern for a servlet that does not contain any

auth-constraints in the web.xml file. An auth-constraint for a portlet can be specified directly by using the

portlet name in the url-pattern element, or indirectly by a url-pattern that implies the portlet.

Note: You cannot have a servlet or JSP with the same name as a portlet for WebSphere Application

Server security to work with portlet.

The following examples demonstrate how the security-constraint information contained in the portlet.xml

and web.xml files in a portlet application are used to make security decisions for portlets. The

security-role-ref element, which is used for isUserInRole calls, is not discussed here because it is used the

same way for servlets.

In the examples below (unless otherwise noted), there are four portlets (MyPortlet1, MyPortlet2,

MyPortlet3, MyPortlet4) defined in portlet.xml. The portlets are secured by combining the information, if

any, in the web.xml file when they are accessed directly through URLs.

All of the examples show the contents of the web.xml and portlet.xml files. Use the correct tools when

creating these deployment descriptor files as you normally would when assembling a portlet application.

Example 1: The web.xml file does not contain any security-constraint data

In the following example, the security-constraint information is contained in portlet.xml:

<security-constraint id="SecurityConstraint_1">

 <web-resource-collection id="WebResourceCollection_1">

 <web-resource-name>Protected Area</web-resource-name>

 <url-pattern>/*</url-pattern>

 </web-resource-collection>

 <auth-constraint id="AuthConstraint_1">

 <role-name>Manager</role-name>

 </auth-constraint>

 </security-constraint>

176 Securing applications and their environment

In this example, when you access anything under MyPortlet1 and MyPortlet3, and these portlets are

accessed using the unsecured HTTP protocol, you are redirected through the secure HTTPS protocol. The

transport-guarantee is set to use secure connections. For MyPortlet2 and MyPortlet4, unsecured (HTTP)

access is permitted because the transport-guarantee is not set. There is no corresponding

security-constraint information for all four portlets in the web.xml file. Therefore, all of the portlets can be

accessed without any user authentication and role authorization. The only security involved in this instance

is the transport-layer security using Secure Sockets Layer (SSL) for MyPortlet1 and MyPortlet3.

The following table lists the security constraints that are applicable to the individual portlets.

 URL Transport Protection User Authentication Role Based Authorization

/MyPortlet1/* HTTPS None None

/MyPortlet2/* None None None

/MyPortlet3/* HTTPS None None

/MyPortlet4/* None None None

Example 2: The web.xml file contains portlet specific security-constraint data

In the following example, the security-constraint information that corresponds to the portlet is contained in

web.xml. The portlet.xml file is the same as that shown in the previous example.

<security-constraint id="SecurityConstraint_1">

 <web-resource-collection id="WebResourceCollection_1">

 <web-resource-name>Protected Area</web-resource-name>

 <url-pattern>/MyPortlet1/*</url-pattern>

 <url-pattern>/MyPortlet2/*</url-pattern>

 </web-resource-collection>

 <auth-constraint id="AuthConstraint_1">

 <role-name>Employee</role-name>

 </auth-constraint>

</security-constraint>

The security-constraint information contained in the web.xml file in this example indicates that the user

authentication must be performed when accessing anything under the MyPortlet1 and MyPortlet2 portlets.

When you attempt to access these portlets directly using URLs, and there is no authentication information

available, you are prompted to enter their credentials. After you are authenticated, the authorization check

is performed to see if you are listed in the Employee role. The user/group to role mapping is assigned

during the portlet application deployment. In the web.xml file listed above, note the following:

v Because the web.xml file uses url-pattern, the portlet names have been modified slightly. MyPortlet1 is

now /MyPortlet1/*, which indicates that everything under the MyPortlet1 URL is protected. This matches

the information in the portlet.xml file because the security runtime code converts the portlet-name

element in the portlet.xml file to url-pattern (for example, MyPortlet1 to /MyPortlet1/*), even for the

transport-guarantee.

v The http-method element in the web.xml file is not used in the example because all HTTP methods must

be protected.

The following table lists the new security constraints that are applicable to the individual portlets.

 URL Transport Protection User Authentication Role Based Authorization

MyPortlet1/* HTTPS Yes Yes (Employee)

MyPortlet2/* None Yes Yes (Employee)

MyPortlet3/* HTTPS None None

MyPortlet4/* None None None

Chapter 5. Authenticating users 177

Example 3: The web.xml file contains generic security-constraint data implying all portlets.

In the following example, the security-constraint information is contained in the web.xml file that

corresponds to the portlet. The portlet.xml file is the same as that shown in the first example.

<security-constraint id="SecurityConstraint_1">

 <web-resource-collection id="WebResourceCollection_1">

 <web-resource-name>Protected Area</web-resource-name>

 <url-pattern>/*</url-pattern>

 </web-resource-collection>

 <auth-constraint id="AuthConstraint_1">

 <role-name>Manager</role-name>

 </auth-constraint>

 </security-constraint>

In this example, /* implies that all resources that do not contain their own explicit security-constraints

should be protected by the Manager role as per the URL pattern matching rules. Because the portlet.xml

file contains explicit security-constraint information for MyPortlet1 and MyPortlet3, these two portlets are

not protected by the Manager role, only by the HTTPS transport. Because the portlet.xml file cannot

contain the auth-constraint information, any portlets that contain security-contraints in it are rendered

unprotected when an implying URL (/* for example) is listed in the web.xml file because of the URL

matching rules.

In the case above, both MyPortlet1 and MyPortlet3 can be accessed without user authentication. However,

because MyPortlet2 and MyPortlet4 do not have security-constraints in the portlet.xml file, the /* pattern

is used to match these portlets and are protected by the Manager role, which requires user authentication.

The following table lists the new security constraints that are applicable to the individual portlets with this

setup.

 URL Transport Protection User Authentication Role Based Authorization

MyPortlet1/* HTTPS None None

MyPortlet2/* None Yes Yes (Manager)

MyPortlet3/* HTTPS None None

MyPortlet4/* None Yes Yes (Manager)

If in the example above, if you must also protect a portlet contained in the portlet.xml file (for example,

MyPortlet1), the web.xml file should contain an explicit security-constraint entry in addition to /* as shown

in the following example:

<security-constraint id="SecurityConstraint_1">

 <web-resource-collection id="WebResourceCollection_1">

 <web-resource-name>Protected Area</web-resource-name>

 <url-pattern>/*</url-pattern>

 </web-resource-collection>

 <auth-constraint id="AuthConstraint_1">

 <role-name>Manager</role-name>

 </auth-constraint>

 </security-constraint>

 <security-constraint id="SecurityConstraint_2">

 <web-resource-collection id="WebResourceCollection_2">

 <web-resource-name>Protection for MyPortlet1</web-resource-name>

 <url-pattern>/MyPortlet1/*</url-pattern>

 </web-resource-collection>

 <auth-constraint id="AuthConstraint_1">

 <role-name>Manager</role-name>

 </auth-constraint>

 </security-constraint>

178 Securing applications and their environment

In this case, MyPortlet1 is protected by the Manager role and requires authentication. The data-constraint

of CONFIDENTIAL is also applied to it because the information in the web.xml file and the portlet.xml file

are combined. Because MyPortlet3 is not explicitly listed in the web.xml file, it is still not protected by the

Manager role and does not require user authentication.

The following table shows the effect of this change.

 URL Transport Protection User Authentication Role Based Authorization

MyPortlet1/* HTTPS Yes Yes (Manager)

MyPortlet2/* None Yes Yes (Manager)

MyPortlet3/* HTTPS None None

MyPortlet4/* None Yes Yes (Manager)

Lightweight Third Party Authentication

Lightweight Third Party Authentication (LTPA) is intended for distributed, multiple application server and

machine environments. LTPA supports forwardable credentials and single sign-on (SSO). LTPA can

support security in a distributed environment through cryptography. This support permits LTPA to encrypt,

digitally sign, and securely transmit authentication-related data, and later decrypt and verify the signature.

Application servers distributed in multiple nodes and cells can securely communicate using the LTPA

protocol. It also provides the single sign-on (SSO) feature wherein a user is required to authenticate only

once in a domain name system (DNS) domain and can access resources in other WebSphere Application

Server cells without getting prompted. The realm names on each system in the DNS domain are case

sensitive and must match identically.

Windows

For local OS, the realm name is the domain name, if a domain is in use or the realm name is

the machine name.

The realm name is the same as the host name.

For the Lightweight Directory Access Protocol (LDAP), the realm name is the host:port value of the LDAP

server.

The LTPA protocol uses cryptographic keys to encrypt and decrypt user data that passes between the

servers. These keys must be shared between the different cells for the resources in one cell to access

resources in other cells, assuming that all the cells involved use the same LDAP or custom registry.

When using LTPA, a token is created with the user information and an expiration time and is signed by the

keys. The LTPA token is time sensitive. All product servers that participate in a protection domain must

have their time, date, and time zone synchronized. If not, LTPA tokens appear prematurely expired and

cause authentication or validation failures.

This token passes to other servers, in the same cell or in a different cell through cookies, for Web

resources when SSO is enabled, or through the authentication protocol layer for enterprise beans.

If the receiving servers share the same keys as the originating server, the token can be decrypted to

obtain the user information, which then is validated to make sure that it has not expired and that the user

information in the token is valid in its registry. On successful validation, the resources in the receiving

servers are accessible after the authorization check.

All of the WebSphere Application Server processes in a cell (deployment manager, nodes, application

servers) share the same set of keys. If key sharing is required between different cells, export them from

Chapter 5. Authenticating users 179

one cell and import them to the other. For security purposes, the exported keys are encrypted with a

user-defined password. This same password is needed when importing the keys into another cell.

WebSphere Application Server supports the LTPA and the Simple WebSphere Authentication Mechanism

(SWAM) protocols.

Note: SWAM is deprecated in WebSphere Application Server Version 6.1 and will be removed in a future

release.

When security is enabled during profile creation time, LTPA is configured by default.

LTPA requires that the configured user registry be a centrally shared repository such as LDAP or a

Windows domain-type registry so that users and groups are the same, regardless of the machine.

The following table summarizes the authentication mechanism capabilities and user registries with which

LTPA can work.

 Forwardable

credentials

SSO Local OS user

registry

LDAP user

registry

Custom user

registry

SWAM No No Yes Yes Yes

LTPA Yes Yes Yes Yes Yes

Lightweight Third Party Authentication key sets and key set groups

Key set groups contain lists of key sets and Lightweight Third Party Authentication (LTPA) key generation

schedules. Each key set contains key references to keys in key stores. To generate keys automatically,

each key set must be a member of a key set group.

The keys for some key configurations must be generated together. The LTPA key pair is referenced in one

key set while the secret or private key is in a separate key set. When the key set group is created, the two

key sets are added as members of the key set group. Key set group settings determine whether the keys

for both key sets are generated together automatically or manually.

The key set group contains the following attributes:

v Member key sets

v Choice of either manual or automatic key generation in the member key sets

v Schedule for automatically generating keys

Trust associations

Trust association enables the integration of IBM WebSphere Application Server security and third-party

security servers. More specifically, a reverse proxy server can act as a front-end authentication server

while the product applies its own authorization policy onto the resulting credentials that are passed by the

proxy server.

Demand for such an integrated configuration has become more compelling, especially when a single

product cannot meet all of the customer needs or when migration is not a viable solution. This article

provides a conceptual background behind the approach.

In this setup, WebSphere Application Server is used as a back-end server to further exploit its fine-grained

access control. The reverse proxy server passes the HTTP request to WebSphere Application Server that

includes the credentials of the authenticated user. WebSphere Application Server then uses these

credentials to authorize the request.

180 Securing applications and their environment

Trust association model

The idea that WebSphere Application Server can support trust association implies that the product

application security recognizes and processes HTTP requests that are received from a reverse proxy

server. WebSphere Application Server and the proxy server engage in a contract in which the product

gives its full trust to the proxy server and the proxy server applies its authentication policies on every Web

request that is dispatched to WebSphere Application Server. This trust is validated by the interceptors that

reside in the product environment for every request received. The method of validation is agreed upon by

the proxy server and the interceptor.

Running in trust association mode does not prohibit WebSphere Application Server from accepting

requests that did not pass through the proxy server. In this case, no interceptor is needed for validating

trust. It is possible, however, to configure WebSphere Application Server to strictly require that all HTTP

requests go through a reverse proxy server. In this case, all requests that do not come from a proxy server

are immediately denied by WebSphere Application Server.

WebSphere Application Server supports the following trust association interceptor (TAI) interfaces:

com.ibm.ws.security.web.WebSealTrustAssociationInterceptor

This Tivoli TAI interceptor that implements the WebSphere Application Server TAI interface is

provided to support WebSEAL Version 4.1. If you plan to use WebSEAL 5.1 or a later version of

WebSEAL, it is recommended that you migrate to use the new

com.ibm.ws.security.web.TAMTrustAssociationInterceptorPlus interceptor; which implements the

new com.ibm.wsspi.security.tai.TrustAssociationInterceptor interface.

com.ibm.ws.security.web.TAMTrustAssociationInterceptorPlus

This TAI interceptor implementation that implements the new WebSphere Application Server

interface supports WebSphere Application Server Version 5.1.1 and later. The interface supports

WebSEAL Version 5.1 and later, but does not support WebSEAL Version 4.1. For an explanation

of security attribute propagation, see “Security attribute propagation” on page 191

IBM WebSphere Application Server: WebSEAL Integration

The integration of WebSEAL and WebSphere Application Server security is achieved by placing the

WebSEAL server at the front-end as a reverse proxy server. From a WebSEAL management perspective,

Trust association model

User ID and password in basic authentication data

Trusted server ID and password in data

and user ID in the HTTP request header

basic authentication

Web application server

Requested

resource

HTTP

request

Web

client

Reverse

proxy

server

Modified

HTTP

request

Requested

resource

(4)

(1)

(6)

(2)

(5)

(3)

User ID

User ID

or Subject

if trust is valid

(using the old TAI interface)

(using the version 5.1.1

TAI++ interface)

Credentials

Modified HTTP

HTTP Request:

Modified HTTP Request:

Trust

association

interceptor

User

request

Web

authenticator

Chapter 5. Authenticating users 181

a junction is created with WebSEAL on one end, and the product Web server on the other end. A junction

is a logical connection that is created to establish a path from the WebSEAL server to another server.

In this setup, a request for Web resources that are stored in a protected domain of the product is

submitted to the WebSEAL server where it is authenticated against the WebSEAL security realm. If the

requesting user has access to the junction, the request is transmitted to the WebSphere Application Server

HTTP server through the junction, and then to the application server.

Meanwhile, WebSphere Application Server validates every request that comes through the junction to

ensure that the source is a trusted party. This process is referenced as validating the trust and it is

performed by a WebSEAL product-designated interceptor. If the validation is successful, WebSphere

Application Server authorizes the request by checking whether the client user has the required

permissions to access the Web resource. If so, the Web resource is delivered to the WebSEAL server

through the Web server, which then gives the resource to the client user.

WebSEAL server

The policy director delegates all of the Web requests to its Web component, the WebSEAL server. One of

the major functions of the server is to perform authentication of the requesting user. The WebSEAL server

consults a Lightweight Directory Access Protocol (LDAP) directory. It can also map the original user ID to

another user ID, such as when global single sign-on (GSO) is used.

For successful authentication, the server plays the role of a client to WebSphere Application Server when

channeling the request. The server needs its own user ID and password to identify itself to WebSphere

Application Server. This identity must be valid in the security realm of WebSphere Application Server. The

WebSEAL server replaces the basic authentication information in the HTTP request with its own user ID

and password. In addition, WebSphere Application Server must determine the credentials of the requesting

client so that the application server has an identity to use as a basis for its authorization decisions. This

information is transmitted through the HTTP request by creating a header called iv-creds, with the Tivoli

Access Manager user credentials as its value.

HTTP server

The junction that is created in the WebSEAL server must get to the HTTP server that serves as the

product front end. However, the HTTP server is shielded from knowing that trust association is used. As

HitCount

servlet

HitCountBean

Servlet engine

Enterprise beans

container

WebSEAL

trust

Security

collaborator

Security

application

Authorization

and delegation

Product

resources

Trust

validation

Requested

resource

HTTP

request with

credentials

Web server

Web server and

WebSphere Application Server

Web server

plug-in

Web server

resource

Requested

resource

HTTP

request

Web

client
WebSEAL

182 Securing applications and their environment

far as it is concerned, the WebSEAL product is just another HTTP client, and as part of its normal

routines, it sends the HTTP request to the product. The only requirement on the HTTP server is a Secure

Sockets Layer (SSL) configuration using server authentication only. This requirement protects the requests

that flow within the junction.

Web collaborator

When trust association is enabled, the Web collaborator manages the interceptors that are configured in

the system. The Web collaborator loads and initializes these interceptors when you restart your servers.

When a request is passed to WebSphere Application Server by the Web server, the Web collaborator

eventually receives the request for a security check. Two actions must take place:

1. The request must be authenticated.

2. The request must be authorized.

The Web authenticator is called to authenticate the request by passing the HTTP request. If successful, a

good credential record is returned by the authenticator, which the Web collaborator uses to base its

authorization for the requested resource. If the authorization succeeds, the Web collaborator indicates to

WebSphere Application Server that the security check has succeeded and that the requested resource can

be served.

Web authenticator

The Web authenticator is asked by the Web collaborator to authenticate a given HTTP request. Knowing

that trust association is enabled, the task of the Web authenticator is to find the appropriate trust

association interceptor to direct the request for processing. The Web authenticator queries every available

interceptor. If no target interceptor is found, the Web authenticator processes the request as though trust

association is not enabled.

For an HTTP request sent by the WebSEAL server, the WebSEAL trust association interceptor replies with

a positive response to the Web authenticator. Subsequently, the interceptor is asked to validate its trust

HTTP

request

HTTP

request
HTTP

server

WebSphere Application Server

WebSEAL

WebSEAL

trust association

interceptor

HTTP request

HTTP

request

Authorization

policy

HitCount

servlet

HitCountBean

Servlet engine

Enterprise beans

container

Web

collaborator

Web

authenticator

Chapter 5. Authenticating users 183

association with the WebSEAL server and retrieve the Subject, using the new trust association interceptor

(TAI) interface, or user ID, using the old TAI interface, of the original user client.

Note: The new Trust Association Interceptor (TAI) interface,

com.ibm.wsspi.security.tai.TrustAssociationInterceptor, supports several new features and is

different from the existing com.ibm.websphere.security.TrustAssociationInterceptor interface.

WebSphere Application Server Version 4 through WebSphere Application Server Version 5.x

support the com.ibm.websphere.security.TrustAssociationInterceptor.java interface. WebSphere

Application Server Version 6.0.x and later supports the

com.ibm.wsspi.security.tai.TrustAssociationInterceptor interface.

Trust association interceptor interface

The intent of the trust association interceptor interface is to have reverse proxy security servers (RPSS)

exist as the exposed entry points to perform authentication and coarse-grained authorization, while

WebSphere Application Server enforces further fine-grained access control. Trust associations improve

security by reducing the scope and risk of exposure.

In a typical e-business infrastructure, the distributed environment of a company consists of Web

application servers, Web servers, existing systems, and one or more RPSS, such as the Tivoli WebSEAL

product. Such reverse proxy servers, front-end security servers, or security plug-ins registered within Web

servers, guard the HTTP access requests to the Web servers and the Web application servers. While

protecting access to the Uniform Resource Identifiers (URIs), these RPSS perform authentication,

coarse-grained authorization, and request routing to the target application server.

Using the trust association interceptor feature

The following points further describe the benefits of the trust association interceptor (TAI) feature:

v RPSS can authenticate WebSphere Application Server users up front and send credential information

about the authenticated user to the product so that the product can trust the RPSS to perform

authentication and not prompt the end user for authentication data later. The strength of the trust

relationship between RPSS and the product is based on the criteria of trust association that is particular

to RPSS and enforced through the TAI implementation. This level of trust might need relaxing based on

the environment. Be aware of the vulnerabilities in cases where the RPSS is not trusted, based on a

security technology.

v The end user credentials most likely are sent in a special format as part of the Hypertext Transfer

Protocol (HTTP) headers as in the case of RPSS authentication. The credentials can be a special

header or a cookie. The data that passes is implementation specific, and the TAI feature considers this

fact and accommodates the idea. The TAI implementation works with the credential data and returns a

Subject, using the new TAI interface, or a user ID, using the old TAI interface that represents the end

user. WebSphere Application Server uses the information to enforce security policies.

Single sign-on

With single sign-on (SSO) support, Web users can authenticate once when accessing both WebSphere

Application Server resources, such as HTML, JavaServer Pages (JSP) files, servlets, enterprise beans,

and Lotus Domino resources, such as documents in a Domino database, or accessing resources in

multiple WebSphere Application Server domains.

Application servers distributed in multiple nodes and cells can securely communicate using the Lightweight

Third Party Authentication (LTPA) protocol. LTPA is intended for distributed, multiple application server and

machine environments. LTPA can support security in a distributed environment through cryptography. This

support permits LTPA to encrypt, digitally sign, and securely transmit authentication-related data, and later

decrypt and verify the signature.

184 Securing applications and their environment

LTPA also provides the SSO feature wherein a user is required to authenticate only once in a domain

name system (DNS) domain and can access resources in other WebSphere Application Server cells

without getting prompted. Web users can authenticate once to a WebSphere Application Server or to a

Domino server. This authentication is accomplished by configuring WebSphere Application Servers and the

Domino servers to share authentication information.

Without logging in again, Web users can access other WebSphere Application Servers or Domino servers

in the same DNS domain that are enabled for SSO. You can enable SSO among WebSphere Application

Servers by configuring SSO for WebSphere Application Server. To enable SSO between WebSphere

Application Servers and Domino servers, you must configure SSO for both WebSphere Application Server

and for Domino.

Prerequisites and conditions

To take advantage of support for SSO between WebSphere Application Servers or between WebSphere

Application Server and a Domino server, applications must meet the following prerequisites and conditions:

v Verify that all servers are configured as part of the same DNS domain. The realm names on each

system in the DNS domain are case sensitive and must match identically. For example, if the DNS

domain is specified as mycompany.com, then SSO is effective with any Domino server or WebSphere

Application Server on a host that is part of the mycompany.com domain, for example, a.mycompany.com

and b.mycompany.com.

v Verify that all servers share the same registry.

This registry can be either a supported Lightweight Directory Access Protocol (LDAP) directory server

or, if SSO is configured between two WebSphere Application Servers, a standalone custom

registry.Domino servers do not support standalone custom registries, but you can use a

Domino-supported registry as a standalone custom registry within WebSphere Application Server.

You can use a Domino directory that is configured for LDAP access or other LDAP directories for the

registry. The LDAP directory product must have WebSphere Application Server support. Supported

products include both Domino and LDAP servers, such as IBM Tivoli Directory Server. Regardless of

the choice to use an LDAP or a standalone custom registry, the SSO configuration is the same. The

difference is in the configuration of the registry.

v Define all users in a single LDAP directory. Using LDAP referrals to connect more than one directory

together is not supported. Using multiple Domino directory assistance documents to access multiple

directories also is not supported.

v Enable HTTP cookies in browsers because the authentication information that is generated by the

server is transported to the browser in a cookie. The cookie is used to propagate the authentication

information for the user to other servers, exempting the user from entering the authentication

information for every request to a different server.

v For a Domino server:

– Domino Release 6.5.4 for iSeries and other platforms are supported.

– A Lotus Notes client Release 5.0.5 or later is required for configuring the Domino server for SSO.

– You can share authentication information across multiple Domino domains.
v For WebSphere Application Server:

– WebSphere Application Server Version 3.5 or later for all platforms are supported.

– You can use any HTTP Web server that is supported by WebSphere Application Server.

– You can share authentication information across multiple product administrative domains.

– Basic authentication (user ID and password) using the basic and form-login mechanisms is

supported.

– By default, WebSphere Application Server does a case-sensitive comparison for authorization. This

comparison implies that a user who is authenticated by Domino matches the entry exactly (including

the base distinguished name) in the WebSphere Application Server authorization table. If case

sensitivity is not considered for the authorization, enable the Ignore Case property in the LDAP user

registry settings.

Chapter 5. Authenticating users 185

Single sign-on for HTTP requests using SPNEGO

WebSphere Application Server provides a trust association interceptor (TAI) that uses the Simple and

Protected GSS-API Negotiation Mechanism (SPNEGO) to securely negotiate and authenticate HTTP

requests for secured resources in WebSphere Application Server.

SPNEGO is a standard specification defined in The Simple and Protected GSS-API Negotiation

Mechanism (IETF RFC 2478).

When WebSphere Application Server administrative security is enabled, the SPNEGO TAI is initialized.

While processing inbound HTTP requests, the Web authenticator component interacts with the SPNEGO

TAI, which is defined and enabled in the security configuration repository. One interceptor is selected and

is responsible for authenticating access to the secured resource that is identified in the HTTP request.

Important: The use of TAIs is an optional feature. If no TAI is selected, the authentication process

continues normally.

HTTP users log in and authenticate only once at their desktop and are subsequently authenticated

(internally) with WebSphere Application Server. The SPNEGO TAI is invisible to the end-user of

WebSphere applications. The SPNEGO TAI is only visible to the Web administrator who is responsible for

ensuring a proper configuration, capacity, and maintenance of the Web environment.

In addition to WebSphere Application Server security runtime services, some external components are

required to completely enable operation of the SPNEGO TAI. The external components include:

v Microsoft’s Windows 2000 or Windows 2003 Servers with Active Directory domain and associated

Kerberos Key Distribution Center (KDC).

v A client application, for example, a browser or .NET client, that supports the SPNEGO authentication

mechanism, as defined in IETF RFC 2478. Microsoft Internet Explorer Version 5.5 or later and Mozilla

Firefox Version 1.0 are browser examples. Any browser needs to be configured to use the SPNEGO

mechanism. For more information on performing this configuration, see “Configuring SPNEGO TAI in

WebSphere Application Server” on page 236

The authentication of HTTP requests is triggered by the requestor (the client-side), which generates a

SPNEGO token. WebSphere Application Server receives this token and validates trust between the

requester and WebSphere Application Server. Specifically, the SPNEGO TAI decodes and retrieves the

requester’s identity from the SPNEGO token. The identity is used to establish a secure context between

the requester and the application server.

Remember: The SPNEGO TAI is a server-side solution in WebSphere Application Server. Client-side

applications are responsible for generating the SPNEGO token for use by the SPNEGO TAI.

The requester’s identity in WebSphere Application Server security registry must be identical

to that identity the SPNEGO TAI retrieves. An identical match does occur when Microsoft

Windows Active Directory server is the Lightweight Directory Access Protocol (LDAP) server

that is used in WebSphere Application Server. A custom login module is available as a

plug-in to support custom mapping of the identity from the Active Directory to the WebSphere

Application Server security registry. See “Mapping user Ids from client to server for

SPNEGO” on page 249 for details on using this custom login module.
WebSphere Application Server validates the identity against its security registry and, if the validation is

successful, produces a Lightweight Third Party Authentication (LTPA) security token and places and

returns a cookie to the requester in the HTTP response. Subsequent HTTP requests from this same

requester to access additional secured resources in WebSphere Application Server use the LTPA security

token previously created, to avoid repeated login challenges.

The challenge-response handshake process is illustrated in the following graphic:

186 Securing applications and their environment

ftp://ftp.isi.edu/in-notes/rfc2478.txt
ftp://ftp.isi.edu/in-notes/rfc2478.txt

The SPNEGO TAI can be enabled for all or for selected WebSphere Application Servers in a WebSphere

Application Server cell configuration. Also, the behavior of each SPNEGO TAI instance is controlled by

custom configuration properties that are used to identify, for example, the criteria used to filter HTTP

requests, such as the host name and security realm name used to construct the Kerberos Service

Principal Name (SPN). For more information regarding establishing and setting the SPNEGO TAI custom

configuration properties, see the following topics:

v Setting up the Kerberos configuration properties. See “Kerberos configuration requirements for

SPNEGO TAI” on page 189.

v Setting or adjusting the SPNEGO TAI custom attributes. See SPNEGO TAI custom configuration

attributes.

v Adjusting the SPNEGO TAI filter settings. See Filtering HTTP requests for SPNEGO TAI

v Using the custom login module to map the identity from the Active Directory to the WebSphere

Application Server registry. See Mapping user Ids from client to server for SPNEGO.

v Setting the major and additional Java virtual machine (JVM) attributes. See SPNEGO TAI JVM

configuration attributes

The Web administrator has access to the following SPNEGO TAI security components and associated

configuration data, as illustrated in the following graphic.

Active Directory Kerberos KDC
WebSphere

Registry

SPNEGO TAI
WebSphere

Application Server
Browser/.NET Client

Client
Machine

Server Machine

8. Get userid from SPNEGO token
9. Validate user with Registry
10. Create LTPA Token

1. HTTP/Post/Get/Web-Service

2. HTTP 401 Authenticate/Negotiate

7. HTTP/Post/Get/Web-Service + Authorization SPNEGO Token

11. HTTP 200, Content, LTPA Token

Windows 2000/3
Server

3. Request Ticket Granting Ticket (AS_REQ)
4. Get Ticket Granting Ticket (AS_REP)
5. Request Service Ticket (TGS_REQ)
6. Get Service Ticket (TGS_REP)

Figure 1. HTTP request processing, WebSphere Application Server - SPNEGO TAI

Chapter 5. Authenticating users 187

v The Web authentication module and the Lightweight Third Party Authentication (LTPA) mechanism

provide the plug-in runtime framework for trust association interceptors. See “Configuring the

Lightweight Third Party Authentication mechanism” on page 219 for more detail is configuring the LTPA

mechanism for use with the SPNEGO TAI.

v The Java Generic Security Service (JGSS) provider is included in the Java SDK (jre/lib/
ibmjgssprovider.jar) and used to obtain the Kerberos security context and credentials that are used

for authentication. IBM JGSS 1.0 is a Java Generic Security Service Application Programming Interface

(GSSAPI) framework with Kerberos V5 as the underlying default security mechanism. GSSAPI is a

standardized abstract interface under which can be plugged different security mechanisms based on

private-key, public-key and other security technologies. GSSAPI shields secure applications from the

complexities and peculiarities of the different underlying security mechanisms. GSSAPI provides identity

and message origin authentication, message integrity, and message confidentiality. For more

information, see JGSS

v The Kerberos configuration properties (krb5.conf or krb5.ini) and Kerberos encryption keys (stored in

a Kerberos keytab file) are used to establish secure mutual authentication.

The Kerberos key table manager (Ktab), which is part of JGSS, allows you to manage the principal

names and service keys stored in a local Kerberos keytab file. Principal name and key pairs listed in the

Kerberos keytab file allow services running on a host to authenticate themselves to the Kerberos Key

Distribution Center (KDC). Before a server can use Kerberos, a Kerberos keytab file must be initialized

on the host that runs the server.

“Kerberos configuration requirements for SPNEGO TAI” on page 189 highlights the Kerberos

configuration requirements for the SPNEGO TAI as well as the use of Ktab.

v The SPNEGO provider supplies the implementation of the SPNEGO authentication mechanism, located

at /$WAS_HOME/java/jre/lib/ext/ibmspnego.jar.

v The custom configuration properties control the runtime behavior of the SPNEGO TAI. Configuration

operations are performed with the administrative console or scripting facilities. Refer to “SPNEGO TAI

custom configuration attributes” on page 236 for more information about these custom configuration

properties.

v Java virtual machine (JVM) system properties control diagnostic trace information for problem

determination of the JGSS security provider and use of the property reload feature.“SPNEGO TAI JVM

configuration attributes” on page 247 describes these JVM configuration attributes

The benefits of having WebSphere Application Server use the SPNEGO TAI include:

v An integrated single sign-on environment with Microsoft Windows 2000 or 2003 Servers using Active

Directory domain is established.

v The cost of administering a large number of ids and passwords is reduced.

v A secure and mutually authenticated transmission of security credentials from the Web browser or .NET

clients is established.

v Interoperability with Web services and .NET applications that use SPNEGO authentication at the

transport level is achieved.

Web
Authentication

module

SPNEGO
Trust

Association
Interceptor

JGSS and
SPNEGO
security

providers

Kerberos
configuration

(krb5.conf) and
keytab

file
Kerberos

SPNEGO TAI
configuration

properties

JVM
System

properties

Figure 2. SPNEGO TAI security and configuration elements

188 Securing applications and their environment

http://www-128.ibm.com/developerworks/java/jdk/security/142/secguides/jgssDocs/users_guide.jgss.ibm.html

Using the SPNEGO TAI in your WebSphere Application Server environment requires planning then

implementation. See “Configuring single sign-on capability with SPNEGO TAI” on page 232 for the steps to

take in planning for SPNEGO TAI. Implementing the use of the SPNEGO TAI is divided into the following

areas responsibility:

End user

The end user must configure the Web browser or .NET application to issue HTTP requests that

are processed by the SPNEGO TAI.

Web administrator

The Web administrator is responsible for configuring the SPNEGO TAI of WebSphere Application

Server to respond to HTTP requests of the client.

WebSphere Application Server administrator

The WebSphere Application Server administrator is responsible for configuring WebSphere

Application Server and the SPNEGO TAI for optimum installation performance.

See “Configuring WebSphere Application Server environment to use SPNEGO” on page 233 for an

explanation of the tasks required to use the SPNEGO TAI and the responsible party associated with each

task.

Kerberos configuration requirements for SPNEGO TAI

Kerberos configuration settings, the Kerberos key distribution center (KDC) name, and realm settings for

the Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) trust association interceptor (TAI)

are provided in the Kerberos configuration file or through java.security.krb5.kdc and

java.security.krb5.realm system property files.

The Web administrator creates the Kerberos configuration file with the appropriate settings that allow

HTTP requests to be processed by the SPNEGO TAI. See “Creating the Kerberos configuration file for use

with the SPNEGO TAI” on page 235 for more information.

The Web administrator can provide the same Kerberos configuration system properties in separate files:

java.security.krb5.kdc and java.security.krb5.realm.. See Kerberos Requirements for information on

how this is accomplished.

The Kerberos key table manager command (Ktab) allows the Web administrator to manage the principal

names and service keys stored in a local Kerberos keytab file. Kerberos service principal (SPN) name and

keys listed in the Kerberos keytab file allow services running on the host to authenticate themselves to the

KDC. Before SPNEGO TAI can use Kerberos, the WebSphere Application Server administrator must setup

a Kerberos keytab file on the host running WebSphere Application Server.

Important: It is very important to protect the keytab files, making them readable only by the authorized

WebSphere users.

Important: Any updates to the Kerberos keytab file using Ktab do not affect the Kerberos database. If you

change the keys in the Kerberos keytab file, you must also make the corresponding changes

to the Kerberos database.
Below is an example of how Ktab is used on a LINUX platform to add new principal names to the

Kerberos keytab file.

[root@wssecjibe bin]# ./java com.ibm.security.krb5.internal.tools.Ktab -a

HTTP/wssecjibe.austin.ibm.com@WSSEC.AUSTIN.IBM.COM ot56prod -k /etc/krb5.keytab

Done!

Service key for principal HTTP/wssecjibe.austin.ibm.com@WSSEC.AUSTIN.IBM.COM saved

[root@wssecjibe bin]# ./java com.ibm.security.krb5.internal.tools.Ktab

1 entries in keytab, name: /etc/krb5.keytab

 KVNO Principal

 ---- ---------

 1 HTTP/wssecjibe.austin.ibm.com@WSSEC.AUSTIN.IBM.COM

Chapter 5. Authenticating users 189

http://w3.hursley.ibm.com/java/docs/jdk5.0/guide/security/jgss/tutorials/KerberosReq.html

[root@wssecjibe bin]# ls /etc/krb5.*

/etc/krb5.conf /etc/krb5.ini.orig /etc/krb5.keytab.good

/etc/krb5.conf.orig /etc/krb5.keytab

[root@wssecjibe bin]# ./java com.ibm.security.krb5.internal.tools.Ktab -a

HTTP/wssecredhat.austin.ibm.com@WSSEC.AUSTIN.IBM.COM ot56prod -k /etc/krb5.keytab

Done!

Service key for principal HTTP/wssecredhat.austin.ibm.com@WSSEC.AUSTIN.IBM.COM

saved

[root@wssecjibe bin]# ./java com.ibm.security.krb5.internal.tools.Ktab

2 entries in keytab, name: /etc/krb5.keytab

 KVNO Principal

 ---- ---------

 1 HTTP/wssecjibe.austin.ibm.com@WSSEC.AUSTIN.IBM.COM

 1 HTTP/wssecredhat.austin.ibm.com@WSSEC.AUSTIN.IBM.COM

Tip: On WebSphere Application Server, Ktab is located at:

<install root>/java/jre/bin

Global single sign-on principal mapping

You can use the Java Authorization Contract for Containers (JACC) provider for Tivoli Access Manager to

manage authentication to enterprise information systems (EIS) such as databases, transaction processing

systems, and message queue systems that are located within the WebSphere Application Server security

domain. Such authentication is achieved using the global single sign-on (GSO) principal mapper Java

Authentication and Authorization Service (JAAS) login module for Java 2 Platform, Enterprise Edition

(J2EE) Connector Architecture resources.

With GSO principal mapping, a special-purpose JAAS login module inserts a credential into the subject

header. This credential is used by the resource adapter to authenticate to the EIS. The JAAS login module

used is configured on a per-connection factory basis. The default principal mapping module retrieves the

user name and password information from XML configuration files. The JACC provider for Tivoli Access

Manager bypasses the credential that is stored in the Extensible Markup Language (XML) configuration

files and uses the Tivoli Access Manager global sign-on (GSO) database instead to provide the

authentication information for the EIS security domain.

WebSphere Application Server provides a default principal mapping module that associates user credential

information with EIS resources. The default mapping module is defined in the WebSphere Application

Server administrative console on the Application login panel. To access the panel, click Security > Secure

administration, applications, and infrastructure. Under Java Authentication and Authorization Service,

click Application logins. The mapping module name is DefaultPrincipalMapping.

The EIS security domain user ID and password are defined under each connection factory by an

authDataAlias attribute. The authDataAlias attribute does not contain the user name and password; this

attribute contains an alias that refers to a user name and password pair that is defined elsewhere.

The Tivoli Access Manager principal mapping module uses the authDataAlias attribute to determine the

GSO resource name and the user name that is required to perform the lookup on the Tivoli Access

Manager GSO database. The Tivoli Access Manager Policy Server retrieves the GSO data from the user

registry.

Tivoli Access Manager stores authentication information on the Tivoli Access Manager GSO database

against a resource and user name pair.

GSO principal mapping architecture

190 Securing applications and their environment

Security attribute propagation

With Security attribute propagation, WebSphere Application Server can transport security attributes

(authenticated Subject contents and security context information) from one server to another in your

configuration. WebSphere Application Server might obtain these security attributes from either an

enterprise user registry, which queries static attributes, or a custom login module, which can query static or

dynamic attributes. Dynamic security attributes, which are custom in nature, might include the

authentication strength that is used for the connection, the identity of the original caller, the location of the

original caller, the IP address of the original caller, and so on.

Security attribute propagation provides propagation services using Java serialization for any objects that

are contained in the Subject. However, Java code must be able to serialize and deserialize these objects.

The Java programming language specifies the rules for how Java code can serialize an object. Because

problems can occur when dealing with different platforms and versions of software, WebSphere Application

Server also offers a token framework that enables custom serialization functionality. The token framework

has other benefits that include the ability to identify the uniqueness of the token. This uniqueness

determines how the Subject gets cached and the purpose of the token. The token framework defines four

marker token interfaces that enable the WebSphere Application Server runtime to determine how to

propagate the token.

Important: Any custom tokens that are used in this framework are not used by WebSphere Application

Server for authorization or authentication. The framework serves as a way to notify

WebSphere Application Server that you want these tokens propagated in a particular way.

WebSphere Application Server handles the propagation details, but does not handle

serialization or deserialization of custom tokens. Serialization and deserialization of these

custom tokens are carried out by the implementation and handled by a custom login module.

WebSphere Application Server

User

Application

Java 2 Connector (J2C)

Tivoli Access
Manager principal
mapping module

Resource
adapter

User name
and password

authDataAlias

User name
and password

GSO
resource

name

user user name
password

User name
and password

GSO resource
name and
user name

Security.xml

LDAP
global single signon (GSO)

database

Tivoli Access
Manager

Policy Server

Enterprise
information

system

Chapter 5. Authenticating users 191

With WebSphere Application Server Version 6.0 and later, a custom Java Authorization

Contract for Container (JACC) provider can be configured to enforce access control for Java 2

Platform, Enterprise Edition (J2EE) applications. A custom JACC provider can explore the

custom security attributes in the caller JAAS subject in making access control decisions.

When a request is being authenticated, a determination is made by the login modules whether this request

is an initial login or a propagation login. An initial login is the process of authenticating the user

information, typically a user ID and password, and then calling the application programming interfaces

(APIs) for the remote user registry to look up secure attributes that represent the user access rights. A

propagation login is the process of validating the user information, typically a Lightweight Third Party

Authentication (LTPA) token, and then deserializing a series of tokens that constitute both custom objects

and token framework objects known to WebSphere Application Server.

The following marker tokens are introduced in the framework:

Authorization token

The authorization token contains most of the authorization-related security attributes that are

propagated. The default authorization token is used by the WebSphere Application Server

authorization engine to make Java 2 Platform, Enterprise Edition (J2EE) authorization decisions.

Service providers can use custom authorization token implementations to isolate their data in a

different token, perform custom serialization and de-serialization, and make custom authorization

decisions using the information in their token at the appropriate time. For information on how to

use and implement this token type, see “Default propagation token” on page 195 and

“Implementing a custom propagation token” on page 600.

Single sign-on (SSO) token

A custom SingleSignonToken token that is added to the Subject is automatically added to the

response as an HTTP cookie and contains the attributes sent back to Web browsers. The token

interface getName method with the getVersion method defines the cookie name. WebSphere

Application Server defines a default SingleSignonToken token with the LtpaToken name and

Version 2. The cookie name added is LtpaToken2. Do not add sensitive information, confidential

information, or unencrypted data to the response cookie.

 It is also recommended that any time that you use cookies, use the Secure Sockets Layer (SSL)

protocol to protect the request. Using an SSO token, Web users can authenticate once when

accessing Web resources across multiple WebSphere Application Servers. A custom SSO token

extends this functionality by adding custom processing to the single sign-on scenario. For more

information on SSO tokens, see “Implementing single sign-on to minimize Web user

authentications” on page 229. For information on how to use and implement this token type, see

“Default single sign-on token” on page 203 and “Implementing a custom single sign-on token” on

page 616.

Propagation token

The propagation token is not associated with the authenticated user so it is not stored in the

Subject. Instead, the propagation token is stored on the thread and follows the invocation

wherever it goes. When a request is sent outbound to another server, the propagation tokens on

that thread are sent with the request and the tokens are run by the target server. The attributes

that are stored on the thread are propagated regardless of the Java 2 Platform, Enterprise Edition

(J2EE) RunAs user switches.

 The default propagation token monitors and logs all user switches and host switches. You can add

additional information to the default propagation token using the WSSecurityHelper application

programming interfaces (APIs). To retrieve and set custom implementations of a propagation

token, you can use the WSSecurityPropagationHelper class. For information on how to use and

implement this token type, see “Default propagation token” on page 195 and “Implementing a

custom propagation token” on page 600.

Authentication token

The authentication token flows to downstream servers and contains the identity of the user. This

192 Securing applications and their environment

token type serves the same function as the Lightweight Third Party Authentication (LTPA) token in

previous versions. Although this token type is typically reserved for internal WebSphere Application

Server purposes, you can add this token to the Subject and the token is propagated using the

getBytes method of the token interface.

 A custom authentication token is used solely for the purpose of the service provider that adds it to

the Subject. WebSphere Application Server does not use it for authentication purposes because a

default authentication token exists that is used for WebSphere Application Server authentication.

This token type is available for the service provider to identify how the custom data uses the token

to perform custom authentication decisions. For information on how to use and implement this

token type, see “Default authentication token” on page 204 and “Implementing a custom

authentication token” on page 627.

Horizontal propagation versus downstream propagation

In WebSphere Application Server, both horizontal propagation, which uses single sign-on for Web

requests, and downstream propagation, which uses Remote Method Invocation over the Internet

Inter-ORB Protocol (RMI/IIOP) to access enterprise beans, are available.

Horizontal propagation

In horizontal propagation, security attributes are propagated among front-end servers. The serialized

security attributes, which are the Subject contents and the propagation tokens, can contain both static and

dynamic attributes. The single sign-on (SSO) token stores additional system-specific information that is

needed for horizontal propagation. The information contained in the SSO token tells the receiving server

where the originating server is located and how to communicate with that server. Additionally, the SSO

token also contains the key to look up the serialized attributes. To enable horizontal propagation, you must

configure the single sign-on token and the Web inbound security attribute propagation features. You can

configure both of these features using the administrative console.

When front-end servers are configured and in the same distributed replication service (DRS) replication

domain, the application server automatically propagates the serialized information to all of the servers

within the same domain. In figure 1, application 1 is deployed on server 1 and server 2, and both servers

are members of the same DRS replication domain. If a request originates from application 1 on server 1

and then gets redirected to application 1 on server 2, the original login attributes are found on server 2

without additional remote requests.

However, if the request originates from application 1 on either server 1 or server 2, but the request is

redirected to application 2 on either server 1 or server 2, the serialized information is not found in the DRS

cache because the servers are not configured in the same replication domain. As a result, a remote Java

Management Extensions (JMX) request is sent back to the originating server that hosts application 1 to

obtain the serialized information so that original login information is available to the application. By getting

the serialized information using a single JMX remote call back to the originating server, the following

benefits are realized:

v You gain the function of retrieving login information from the original server.

v You do not need to perform any remote user registry calls because the application server can

regenerate the Subject from the serialized information. Without this ability, the application server might

make five to six separate remote calls.

Figure 1

Chapter 5. Authenticating users 193

Initial HTTP

authentication

Later HTTP request

with single signon

Data Replication Service

(DRS)

attribute replication

Application 1 in server 1

Application 1 in server 2

Application 2 in server 3

Application 3 in server 5

Application 2 in server 4

Data Replication Service

(DRS)

attribute replication

Java Management Extensions (JMX)

request for subject

The subject is kept in the

Common Secure Interoperability Version 2 (CSIv2) session

The Subject is requested from original server

because it is not found in DynaCache

The Subject is replicated

using DynaCache in this cluster.

No return to the original cluster

The Subject and propagation attributes

are sent using RMI/IIOP

1. User authenticates to server 1.

2. Server 1 makes an RMI request to server 5.

3. User accesses another Web application on server 3.

Security

cache

DynaCache

DynaCache

Security

cache

DynaCache

DynaCache

CSIv2 session

cache

Performance implications for horizontal propagation

The performance implications of either the DRS or JMX remote call depends upon your environment. THE

DRS or JMX remote call is used for obtaining the original login attributes. Horizontal propagation reduces

many of the remote user registry calls in cases where these calls cause the most performance problems

for an application. However, the de-serialization of these objects also might cause performance

degradation, but this degradation might be less than the remote user registry calls. It is recommended that

you test your environment with horizontal propagation enabled and disabled. In cases where you must use

horizontal propagation for preserving original login attributes, test whether DRS or JMX provides better

performance in your environment. Typically, it is recommended that you configure DRS both for failover

and performance reasons. However, because DRS propagates the information to all of the servers in the

same replication domain (whether the servers are accessed or not), there might be a performance

degradation if too many servers are in the same replication domain. In this case, either reduce the number

of servers in the replication domain or do not configure the servers in a DRS replication domain. The later

suggestion causes a JMX remote call to retrieve the attributes, when needed, which might be quicker

overall.

Downstream propagation

In downstream propagation, a Subject is generated at the Web front-end server, either by a propagation

login or a user registry login. WebSphere Application Server propagates the security information

downstream for enterprise bean invocations when both Remote Method Invocation (RMI) outbound and

inbound propagation are enabled.

Benefits of propagating security attributes

The security attribute propagation feature of WebSphere Application Server has the following benefits:

v Enables WebSphere Application Server to use the security attribute information for authentication and

authorization purposes. The propagation of security attributes can eliminate the need for user registry

194 Securing applications and their environment

calls at each remote hop along an invocation. Previous versions of WebSphere Application Server

propagated only the user name of the authenticated user, but ignored other security attribute information

that needed to be regenerated downstream using remote user registry calls. To accentuate the benefits

of this new functionality, consider the following example:

In previous releases, you might use a reverse proxy server (RPSS), such as WebSEAL, to authenticate

the user, gather group information, and gather other security attributes. As stated previously,

WebSphere Application Server accepted the identity of the authenticated user, but disregarded the

additional security attribute information. To create a Java Authentication and Authorization Service

(JAAS) Subject containing the needed WSCredential and WSPrincipal objects, WebSphere Application

Server made 5 to 6 calls to the user registry. The WSCredential object contains various security

information that is required to authorize a J2EE resource. The WSPrincipal object contains the realm

name and the user that represents the principal for the Subject.

In the current release of the Application Server, information that is obtained from the reverse proxy

server can be used by WebSphere Application Server and propagated downstream to other server

resources without additional calls to the user registry. The retaining of the security attribute information

enables you to protect server resources properly by making appropriate authorization and trust-based

decisions User switches that occur because of J2EE RunAs configurations do not cause the application

server to lose the original caller information. This information is stored in the PropagationToken located

on the running thread.

v Enables third-party providers to plug in custom tokens. The token interface contains a getBytes method

that enables the token implementation to define custom serialization, encryption methods, or both.

v Provides the ability to have multiple tokens of the same type within a Subject created by different

providers. WebSphere Application Server can handle multiple tokens for the same purpose. For

example, you might have multiple authorization tokens in the Subject and each token might have

distinct authorization attributes that are generated by different providers.

v Provides the ability to have a unique ID for each token type that is used to formulate a more unique

subject identifier than just the user name in cases where dynamic attributes might change the context of

a user login. The token type has a getUniqueId() method that is used for returning a unique string for

caching purposes. For example, you might need to propagate a location ID, which indicates the location

from which the user logs into the system. This location ID can be generated during the original login

using either an reverse proxy server or the WEB_INBOUND login configuration and added to the

Subject prior to serialization. Other attributes might be added to the Subject as well and use a unique

ID. All of the unique IDs must be considered for the uniqueness of the entire Subject. WebSphere

Application Server has the ability to specify what is unique about the information in the Subject, which

might affect how the user accesses the Subject later.

Default propagation token

A default propagation token is located on the running thread for applications and the security infrastructure

to use. WebSphere Application Server propagates this default propagation token downstream and the

token stays on the thread where the invocation lands at each hop.

The data is available from within the container of any resource where the propagation token lands.

Remember that you must enable the propagation feature at each server where a request is sent for

propagation to work. Make sure that you enable security attribute propagation for all of the cells in your

environment where you want propagation

There is a WSSecurityHelper class that has application programming interfaces (APIs) for accessing the

PropagationToken attributes. This topic documents the usage scenarios and includes examples. A close

relationship exists between the propagation token and the work area feature. The main difference between

these features is that after you add attributes to the propagation token, you cannot change the attributes.

You cannot change these attributes so that the security runtime can add auditable information and have

that information remain there for the life of the invocation. Any time that you add an attribute to a specific

key, an ArrayList object is stored to hold that attribute. Any new attribute that is added with the same key

Chapter 5. Authenticating users 195

is added to the ArrayList object. When you call getAttributes, the ArrayList object is converted to a String

array and the order is preserved. The first element in the String array is the first attribute added for that

specific key.

In the default propagation token, a change flag is kept that logs any data changes to the token. These

changes are tracked to enable WebSphere Application Server to know when to send the authentication

information downstream again so that the downstream server has those changes. Normally, Common

Secure Interoperability Version 2 (CSIv2) maintains a session between servers for an authenticated client.

If the propagation token changes, a new session is generated and subsequently a new authentication

occurs. Frequent changes to the propagation token during a method cause frequent downstream calls. If

you change the token prior to making many downstream calls or you change the token between each

downstream call, you might impact security performance.

Getting the server list from the default propagation token

Every time the propagation token is propagated and used to create the authenticated Subject, either

horizontally or downstream, the name of the receiving application server is logged into the propagation

token. The format of the host is ″Cell:Node:Server″, which provides you access to the cell name, node

name, and server name of each application server that receives the invocation. The following code

provides you with this list of names and can be called from a Java 2 Platform, Enterprise Edition (J2EE)

application:

 String[] server_list = null;

 // If security is disabled on this application server, do not bother checking

 if (com.ibm.websphere.security.WSSecurityHelper.isServerSecurityEnabled())

 {

 try

 {

 // Gets the server_list string array

 server_list = com.ibm.websphere.security.WSSecurityHelper.getServerList();

 }

 catch (Exception e)

 {

 // Performs normal exception handling for your application

 }

 if (server_list != null)

 {

 // print out each server in the list, server_list[0] is the first server

 for (int i=0; i<server_list.length; i++)

 {

 System.out.println(″Server[″ + i + ″] = ″ + server_list[i]);

 }

 }

 }

The format of each server in the list is: cell:node_name:server_name. The output, for example, is:

myManager:node1:server1

Getting the caller list from the default propagation token

A default propagation token is generated any time an authenticated user is set on the running thread or

anyone tries to add attributes to the propagation token. Whenever an authenticated user is set on the

thread, the user is logged in the default propagation token. At times, the same user might be logged in

196 Securing applications and their environment

multiple times if the RunAs user is different from the caller. The following list provides the rules that are

used to determine if a user that is added to the thread gets logged into the propagation token:

v The current Subject must be authenticated. For example, an unauthenticated Subject is not logged.

v The current authenticated Subject is logged if a Subject is not previously logged.

v The current authenticated Subject is logged if the last authenticated Subject that is logged does not

contain the same user.

v The current authenticated Subject is logged on each unique application server that is involved in the

propagation process.

The following code sample shows how to use the getCallerList API:

 String[] caller_list = null;

 // If security is disabled on this application server, do not check the caller list

 if (com.ibm.websphere.security.WSSecurityHelper.isServerSecurityEnabled())

 {

 try

 {

 // Gets the caller_list string array

 caller_list = com.ibm.websphere.security.WSSecurityHelper.getCallerList();

 }

 catch (Exception e)

 {

 // Performs normal exception handling for your application

 }

 if (caller_list != null)

 {

 // Prints out each caller in the list, caller_list[0] is the first caller

 for (int i=0; i<caller_list.length;i++)

 {

 System.out.println(″Caller[″ + i + ″] = ″ + caller_list[i]);

 }

 }

 }

The format of each caller in the list is: cell:node_name:server_name:realm:port_number/securityName. The

output, for example, is: myManager:node1:server1:ldap.austin.ibm.com:389/jsmith.

Getting the first caller from the default propagation token

Whenever you want to know which authenticated caller started the request, you can call the getFirstCaller

method and the caller list is parsed. However, this method returns the security name of the caller only. If

you need to know more than the security name, call the getCallerList method and retrieve the first entry in

the String array. This entry provides all the caller information. The following code sample retrieves the

security name of the first authenticated caller using the getFirstCaller API:

 String first_caller = null;

 // If security is disabled on this application server, do not bother checking

 if (com.ibm.websphere.security.WSSecurityHelper.isServerSecurityEnabled())

 {

 try

 {

 // Gets the first caller

Chapter 5. Authenticating users 197

first_caller = com.ibm.websphere.security.WSSecurityHelper.getFirstCaller();

 // Prints out the caller name

 System.out.println(″First caller: ″ + first_caller);

 }

 catch (Exception e)

 {

 // Performs normal exception handling for your application

 }

 }

The output, for example, is: jsmith.

Getting the first application server name from the default propagation token

Whenever you want to know what the first application server is for this request, call the getFirstServer

method directly. The following code sample retrieves the name of the first application server using the

getFirstServer API:

 String first_server = null;

 // If security is disabled on this application server, do not bother checking

 if (com.ibm.websphere.security.WSSecurityHelper.isServerSecurityEnabled())

 {

 try

 {

 // Gets the first server

 first_server = com.ibm.websphere.security.WSSecurityHelper.getFirstServer();

 // Prints out the server name

 System.out.println(″First server: ″ + first_server);

 }

 catch (Exception e)

 {

 // Performs normal exception handling for your application

 }

 }

The output, for example, is: myManager:node1:server1.

Adding custom attributes to the default propagation token

You can add custom attributes to the default propagation token for application usage. This token follows

the request downstream so that the attributes are available when needed. When you use the default

propagation token to add attributes, you must understand the following issues:

v Adding information to the propagation token affects CSIv2 session caching. Add information sparingly

between remote requests.

v After you add information with a specific key, the information cannot be removed.

v You can add as many values to a specific key as you need. However, all of the values must be

available from a returned String array in the order that they were added.

v The propagation token is available only on servers where propagation and security are enabled.

v The Java 2 Security javax.security.auth.AuthPermission wssecurity.addPropagationAttribute attribute is

needed to add attributes to the default propagation token.

198 Securing applications and their environment

v An application cannot use keys that begin with either com.ibm.websphere.security or

com.ibm.wsspi.security. These prefixes are reserved for system usage.

The following code sample shows how to use the addPropagationAttribute API:

 // If security is disabled on this application server,

 // do not check the status of server security

 if (com.ibm.websphere.security.WSSecurityHelper.isServerSecurityEnabled())

 {

 try

 {

 // Specifies the key and values

 String key = ″mykey″;

 String value1 = ″value1″;

 String value2 = ″value2″;

 // Sets key, value1

 com.ibm.websphere.security.WSSecurityHelper.

 addPropagationAttribute (key, value1);

 // Sets key, value2

 String[] previous_values = com.ibm.websphere.security.WSSecurityHelper.

 addPropagationAttribute (key, value2);

 // Note: previous_values should contain value1

 }

 catch (Exception e)

 {

 // Performs normal exception handling for your application

 }

 }

See “Getting custom attributes from the default propagation token” to retrieve attributes using the

getPropagationAttributes application programming interface (API).

Getting custom attributes from the default propagation token

Custom attributes are added to the default propagation token using the addPropagationAttribute API.

Retrieve these attributes using the getPropagationAttributes API. This token follows the request

downstream so the attributes are available when needed. When you use the default propagation token to

retrieve attributes, you must understand the following issues:

v The propagation token is available only on servers where propagation and security are enabled.

v The Java 2 Security javax.security.auth.AuthPermission ″wssecurity.getPropagationAttributes″

permission is needed to retrieve attributes from the default propagation token.

The following code sample shows how to use the getPropagationAttributes API:

 // If security is disabled on this application server, do not bother checking

 if (com.ibm.websphere.security.WSSecurityHelper.isServerSecurityEnabled())

 {

 try

 {

 String key = ″mykey″;

 String[] values = null;

Chapter 5. Authenticating users 199

// Sets key, value1

 values = com.ibm.websphere.security.WSSecurityHelper.

 getPropagationAttributes (key);

 // Prints the values

 for (int i=0; i<values.length; i++)

 {

 System.out.println(″Value[″ + i + ″] = ″ + values[i]);

 }

 }

 catch (Exception e)

 {

 // Performs normal exception handling for your application

 }

 }

The output, for example, is:

Value[0] = value1

Value[1] = value2

See Adding custom attributes to the default PropagationToken to add attributes using the

addPropagationAttributes API.

Changing the token factory that is associated with the default propagation token

When WebSphere Application Server generates a default propagation token, the Application Server utilizes

the TokenFactory class that is specified using the com.ibm.wsspi.security.token.propagationTokenFactory

property. To modify this property using the administrative console, complete the following steps:

1. Click Security > Secure administration, applications, and infrastructure.

2. Under Additional properties, click Custom properties.

The default token factory that is specified for this property is called

com.ibm.ws.security.ltpa.AuthzPropTokenFactory. This token factory encodes the data in the propagation

token and does not encrypt the data. Because the propagation token typically flows over CSIv2 using

Secure Sockets Layer (SSL), encrypting the token is not required. However, if you need additional security

for the propagation token, you can associate a different token factory implementation with this property to

get encryption. For example, if you choose to associate the com.ibm.ws.security.ltpa.LTPAToken2Factory

token factory with this property, the token is AES encrypted. However, you need to weigh the performance

impacts against your security needs. Adding sensitive information to the propagation token is a good

reason to change the token factory implementation to something that encrypts rather than just encodes.

If you want to perform your own signing and encryption of the default propagation token, you must

implement the following classes:

v com.ibm.wsspi.security.ltpa.Token

v com.ibm.wsspi.security.ltpa.TokenFactory

Your token factory implementation instantiates and validates your token implementation. You can choose

to use the Lightweight Third Party Authentication (LTPA) keys and have them pass into the initialize

method of the token factory, or you can use your own keys. If you use your own keys, they must be the

same everywhere to validate the tokens that are generated using those keys. See the API documentation,

available through a link on the front page of the information center, for more information on implementing

your own custom token factory. To associate your token factory with the default propagation token, using

the administrative console, complete the following steps:

1. Click Security > Secure administration, applications, and infrastructure.

200 Securing applications and their environment

2. Under Additional properties, click Custom properties.

3. Locate the com.ibm.wsspi.security.token.propagationTokenFactory property and verify that the value of

this property matches your custom token factory implementation.

4. Verify that your implementation classes are put into the app_server_root/classes directory so that the

WebSphere Application Server class loader can load the classes.

5. Verify that your implementation classes are located in the ${USER_INSTALL_ROOT}/classes directory

so that the WebSphere Application Server class loader can load the classes.

 Related tasks

 “Propagating security attributes among application servers” on page 267
Use the security attribute propagation feature of WebSphere Application Server to send security

attribute information regarding the original login to other servers using a token. This topic will help to

configure WebSphere Application Server to propagate security attributes to other servers.

Default authorization token

This topic explains how WebSphere Application Server uses the default authorization token. Consider

using the default authorization token when you are looking for a place to add string attributes that get

propagated downstream.

However, make sure that the attributes you add to the authorization token are specific to the user that is

associated with the authenticated Subject. If they are not specific to a user, the attributes probably belong

in the propagation token, which is also propagated with the request. For more information on the

propagation token, see “Default propagation token” on page 195. To add attributes into the authorization

token, you must plug in a custom login module into the various system login modules that are configured.

Any login module configuration that has the

com.ibm.ws.security.server.lm.wsMapDefaultInboundLoginModule implementation configured can receive

propagated information and can generate propagation information that can be sent outbound to another

server.

If propagated attributes are not presented to the login configuration during an initial login, a default

authorization token is created in the wsMapDefaultInboundLoginModule login module after the login occurs

in the ltpaLoginModule login module. You can obtain a reference to the default authorization token from

the login method using the sharedState hashmap. You must plug in the custom login module after the

wsMapDefaultInboundLoginModule implementation for WebSphere Application Server to see the default

authorization token.

For more information on the Java Authentication and Authorization Service (JAAS) programming model,

see Security: Resources for learning.

Important: Whenever you plug a custom login module into the WebSphere Application Server login

infrastructure, you must ensure that the code is trusted. When you add the login module into

the app_server_root/classes directory, it has Java 2 Security AllPermissions permissions. It is

recommended that you add your login module and other infrastructure classes into a private

directory. However, if you use a private directory, modify the $(WAS_INSTALL_ROOT)/
properties/server.policy file so that the private directory, Java archive (JAR) file, or both

have the permissions that are needed to run the application programming interfaces (API) that

are called from the login module. Because the login module might run after the application

code on the call stack, you might consider adding a doPrivileged code block so that you do

not need to add additional permissions to your applications.

The following sample code shows you how to obtain a reference to the default authorization token from

the login method, how to add attributes to the token, and how to read from the existing attributes that are

used for authorization.

public customLoginModule()

{

 public void initialize(Subject subject, CallbackHandler callbackHandler,

Chapter 5. Authenticating users 201

Map sharedState, Map options)

 {

 // (For more information on initialization, see

 //

“Custom login module development for a system login configuration” on page 579.) // Get a reference to

the sharedState map that is passed in during initialization. _sharedState = sharedState; } public boolean

login() throws LoginException { // (For more information on what to do during login, see // “Custom login

module development for a system login configuration” on page 579.) // Look for the default

AuthorizationToken in the shared state defaultAuthzToken =

(com.ibm.wsspi.security.token.AuthorizationToken) sharedState.get

(com.ibm.wsspi.security.auth.callback.Constants.WSAUTHZTOKEN_KEY); // Might not always have one of

these generated. It depends on the login // configuration setup. if (defaultAuthzToken != null) { try { // Add a

custom attribute defaultAuthzToken.addAttribute(″key1″, ″value1″); // Determine all of the attributes and

values that exist in the token. java.util.Enumeration listOfAttributes = defaultAuthorizationToken.

getAttributeNames(); while (listOfAttributes.hasMoreElements()) { String key = (String)

listOfAttributes.nextElement(); String[] values = (String[]) defaultAuthorizationToken.getAttributes (key); for

(int i=0; i<values.length; i++) { System.out.println (″Key: ″ + key + ″, Value[″ + i + ″]: ″ + values[i]); } } //

Read the existing uniqueID attribute. String[] uniqueID = defaultAuthzToken.getAttributes

(com.ibm.wsspi.security.token.AttributeNameConstants. WSCREDENTIAL_UNIQUEID); // Getthe uniqueID

from the String[] String unique_id = (uniqueID != null && uniqueID[0] != null) ? uniqueID[0] : ″″; // Read the

existing expiration attribute. String[] expiration = defaultAuthzToken.getAttributes

(com.ibm.wsspi.security.token.AttributeNameConstants. WSCREDENTIAL_EXPIRATION); // An example of

getting a long expiration value from the string array. long expire_time = 0; if (expiration != null &&

expiration[0] != null) expire_time = Long.parseLong(expiration[0]); // Read the existing display name

attribute. String[] securityName = defaultAuthzToken.getAttributes

(com.ibm.wsspi.security.token.AttributeNameConstants. WSCREDENTIAL_SECURITYNAME); // Get the

display name from the String[] String display_name = (securityName != null && securityName[0] != null) ?

securityName[0] : ″″; // Read the existing long securityName attribute. String[] longSecurityName =

defaultAuthzToken.getAttributes (com.ibm.wsspi.security.token.AttributeNameConstants.

WSCREDENTIAL_LONGSECURITYNAME); // Get the long security name from the String[] String

long_security_name = (longSecurityName != null && longSecurityName[0] != null) ? longSecurityName[0] :

″″; // Read the existing group attribute. String[] groupList = defaultAuthzToken.getAttributes

(com.ibm.wsspi.security.token.AttributeNameConstants. WSCREDENTIAL_GROUPS); // Get the groups

from the String[] ArrayList groups = new ArrayList(); if (groupList != null) { for (int i=0; i<groupList.length;

i++) { System.out.println (″group[″ + i + ″] = ″ + groupList[i]); groups.add(groupList[i]); } } } catch (Exception

e) { throw new WSLoginFailedException (e.getMessage(), e); } } } public boolean commit() throws

LoginException { // (For more information on what to do during commit, see // “Custom login module

development for a system login configuration” on page 579.) } private java.util.Map _sharedState = null;

private com.ibm.wsspi.security.token.AuthorizationToken defaultAuthzToken = null; }

Changing the token factory that is associated with the default authorization token

When WebSphere Application Server generates a default authorization token, the application server

utilizes the TokenFactory class that is specified using the

com.ibm.wsspi.security.token.authorizationTokenFactory property. To modify this property using the

administrative console, complete the following steps:

1. Click Security > Secure administration, applications, and infrastructure.

2. Under Additional properties, click Custom properties.

The com.ibm.ws.security.ltpa.AuthzPropTokenFactory token factory is the default. This token factory

encodes the data, but does not encrypt the data in the authorization token. Because the authorization

token typically flows over Common Secure Interoperability Version 2 (CSIv2) using Secure Sockets Layer

(SSL), encrypting the token is not necessary. However, if you need additional security for the authorization

token, you can associate a different token factory implementation with this property to get encryption. For

example, if you associate the com.ibm.ws.security.ltpa.LTPAToken2Factory token factory with this property,

202 Securing applications and their environment

the token uses Advanced Encryption Standard (AES) encryption. However, you need to weigh the

performance impacts against your security needs. Adding sensitive information to the authorization token is

one reason to change the token factory implementation to something that encrypts rather than just

encodes.

If you want to perform your own signing and encryption of the default authorization token, you must

implement the following classes:

v com.ibm.wsspi.security.ltpa.Token

v com.ibm.wsspi.security.ltpa.TokenFactory

Your token factory implementation instantiates and validates your token implementation. You can use the

Lightweight Third Party Authentication (LTPA) keys that are passed into the initialize method of the token

factory or you can use your own keys. If you use your own keys, they must be the same everywhere to

validate the tokens that are generated using those keys. See the API documentation, that is available

through a link on the front page of the information center, for more information on implementing your own

custom token factory. To associate your token factory with the default authorization token, using the

administrative console, complete the following steps:

1. Click Security > Secure administration, applications, and infrastructure.

2. Under Additional properties, click Custom properties.

3. Locate the com.ibm.wsspi.security.token.authorizationTokenFactory property and verify that the value of

this property matches your custom token factory implementation.

4. Verify that your implementation classes are put into the app_server_root/classes directory so that the

WebSphere Application Server class loader can load the classes.

5. Verify that your implementation classes are put into the ${USER_INSTALL_ROOT}/classes directory so

that the WebSphere Application Server class loader can load the classes.

Default single sign-on token

Do not use the default single sign-on token in service provider code. This default token is used by the

WebSphere Application Server run-time code only.

Size limitations exist for this token when it is added as an HTTP cookie. If you need to create an HTTP

cookie using this token framework, you can implement a custom single sign-on token. To implement a

custom single sign-on token see “Implementing a custom single sign-on token” on page 616 for more

information.

Changing the token factory that is associated with the default single sign-on token

When the default single sign-on token is generated, the application server utilizes the TokenFactory class

that is specified using the com.ibm.wsspi.security.token.singleSignonTokenFactory property. To modify this

property using the administrative console, complete the following steps:

1. Click Security > Secure administration, applications, and infrastructure.

2. Under Additional properties, click Custom properties.

The com.ibm.ws.security.ltpa.LTPAToken2Factory token factory is the default that is specified for this

property. This token factory creates a single sign-on (SSO) token called LtpaToken2, which WebSphere

Application Server uses for propagation. This token factory uses the AES/CBC/PKCS5Padding cipher. If

you change this token factory, you lose the interoperability with any servers running a version of

WebSphere Application Server prior to version 5.1.1 that use the default token factory. Only servers

running WebSphere Application Server Version 5.1.1 or later with propagation enabled are aware of the

LtpaToken2 cookie. If all of your application servers use WebSphere Application Server Version 5.1.1 or

later and all of your servers use your new token factory this awareness is not a problem.

If you need to perform your own signing and encryption of the default single sign-on token, you must

implement the following classes:

v com.ibm.wsspi.security.ltpa.Token

Chapter 5. Authenticating users 203

v com.ibm.wsspi.security.ltpa.TokenFactory

Your token factory implementation instantiates (createToken) and validates (validateTokenBytes) your

token implementation. You can use the Lightweight Third-Party Authentication (LTPA) keys passed into the

initialize method of the token factory or you can use your own keys. If you use your own keys, they must

be the same everywhere to validate the tokens that are generated using those keys. See the API

documentation, available through a link on the front page of the information center, for more information on

implementing your own custom token factory. To associate your token factory with the default single

sign-on token using the administrative console, complete the following steps:

1. Click Security > Secure administration, applications, and infrastructure.

2. Under Additional properties, click Custom properties.

3. Locate the com.ibm.wsspi.security.token.singleSignonTokenFactory property and verify that the value of

this property matches your custom TokenFactory implementation.

4. Verify that your implementation classes are put into the app_server_root/classes directory so that the

WebSphere Application Server class loader can load the classes.

5. Verify that your implementation classes are located in the ${USER_INSTALL_ROOT}/classes directory

so that the WebSphere Application Server class loader can load the classes.

 Related tasks

 “Propagating security attributes among application servers” on page 267
Use the security attribute propagation feature of WebSphere Application Server to send security

attribute information regarding the original login to other servers using a token. This topic will help to

configure WebSphere Application Server to propagate security attributes to other servers.

 “Implementing a custom single sign-on token” on page 616
You can create your own single sign-on token implementation. The single sign-on token implementation

is set in the login Subject and added to the HTTP response as an HTTP cookie.

Default authentication token

Do not use the default authentication token in service provider code. This default token is used by the

WebSphere Application Server run-time code only and is authentication mechanism specific.

Any modifications to this token by service provider code can potentially cause interoperability problems. If

you need to create an authentication token for custom usage, see “Implementing a custom authentication

token” on page 627 for more information.

Changing the token factory that is associated with the default authentication token

When WebSphere Application Server generates a default authentication token, the application server

utilizes the TokenFactory class that is specified using the

com.ibm.wsspi.security.token.authenticationTokenFactory property. To modify this property using the

administrative console, complete the following steps:

1. Click Security > Secure administration, applications, and infrastructure.

2. Under Additional properties, click Custom properties.

The com.ibm.ws.security.ltpa.LTPATokenFactory token factory is the default for this property. The

LTPATokenFactory token factory uses the DESede/ECB/PKCS5Padding cipher. This token factory creates

an interoperable Lightweight Third Party Authentication (LTPA) token. If you change this token factory, you

lose the interoperability with any servers running a version of WebSphere Application Server prior to

Version 5.1.1 and any other servers that do not support the new token factory implementation. However, if

all of your application servers use WebSphere Application Server Version 5.1.1 or later and all of your

servers use your new token factory, this interoperability is not a problem.

If you associate the com.ibm.ws.security.ltpa.LTPAToken2Factory token factory with the

com.ibm.wsspi.security.token.authenticationTokenFactory property, the token is Advanced Encryption

204 Securing applications and their environment

Standard (AES) encrypted. However, you need to weigh the performance against your security needs. You

might add additional attributes to the authentication token in the Subject during a login that are available

downstream.

If you need to perform your own signing and encryption of the default authentication token, you must

implement the following classes:

v com.ibm.wsspi.security.ltpa.Token

v com.ibm.wsspi.security.ltpa.TokenFactory

Your token factory implementation instantiates (createToken) and validates (validateTokenBytes) your

token implementation. You can use the LTPA keys that are passed into the initialize method of the token

factory or you can use your own keys. If you use your own keys, they must be the same everywhere to

validate the tokens that are generated using those keys. See the API documentation, available through a

link on the front page of the information center, for more information on implementing your own custom

token factory. To associate your token factory with the default authentication token using the administrative

console, complete the following steps:

1. Click Security > Secure administration, applications, and infrastructure.

2. Under Additional properties, click Custom properties.

3. Locate the com.ibm.wsspi.security.token.authenticationTokenFactory property and verify that the value

of this property matches your custom token factory implementation.

4. Verify that your implementation classes are put into the install_dir/classes directory so that the

WebSphere Application Server class loader can load the classes.

Simple WebSphere authentication mechanism

The Simple WebSphere authentication mechanism (SWAM) is intended for simple, non-distributed, single

application server runtime environments.

Note: SWAM is deprecated in WebSphere Application Server Version 6.1 and will be removed in a future

release.

The single application server restriction is due to the fact that SWAM does not support forwardable

credentials. If a servlet or enterprise bean in application server process 1, invokes a remote method on an

enterprise bean living in another application server process 2, the identity of the caller identity in process 1

is not transmitted to server process 2. What is transmitted is an unauthenticated credential, which,

depending on the security permissions configured on the EJB methods, can cause authorization failures.

Because SWAM is intended for a single application server process, single sign-on (SSO) is not supported.

The SWAM authentication mechanism is suitable for simple environments, software development

environments, or other environments that do not require a distributed security solution.

UserRegistry interface methods

Implementing this interface enables WebSphere Application Server security to use custom registries. This

capability extends the java.rmi file. With a remote registry, you can complete this process remotely.

Implementation of this interface must provide implementations for:

v initialize(java.util.Properties)

v checkPassword(String,String)

v mapCertificate(X509Certificate[])

v getRealm

v getUsers(String,int)

v getUserDisplayName(String)

v getUniqueUserId(String)

v getUserSecurityName(String)

Chapter 5. Authenticating users 205

#rsecusers/initialize
#rsecusers/checkpw
#rsecusers/mapcert
#rsecusers/getrealm
#rsecusers/getusers
#rsecusers/getuserdis
#rsecusers/getuserid
#rsecusers/getusersec

v isValidUser(String)

v getGroups(String,int)

v getGroupDisplayName(String)

v getUniqueGroupId(String)

v getUniqueGroupIds(String)

v getGroupSecurityName(String)

v isValidGroup(String)

v getGroupsForUser(String)

v getUsersForGroup(String,int)

v createCredential(String)

public void initialize(java.util.Properties props)

 throws CustomRegistryException,

 RemoteException;

This method is called to initialize the UserRegistry method. All the properties that are defined in the

Custom User Registry panel propagate to this method.

For the FileRegistrySample.java sample file, the initialize method retrieves the names of the registry files

that contain the user and group information.

This method is called during server bringup to initialize the registry. This method is also called when

validation is performed by the administrative console, when security is on. This method remains the same

as in Version 4.x.

public String checkPassword(String userSecurityName, String password)

 throws PasswordCheckFailedException,

 CustomRegistryException,

 RemoteException;

The checkPassword method is called to authenticate users when they log in using a name or user ID and

a password. This method returns a string which, in most cases, is the user security name. A credential is

created for the user for authorization purposes. This user name is also returned for the getCallerPrincipal

enterprise bean call and the servlet calls the getUserPrincipal and getRemoteUser methods. See the

getUserDisplayName method for more information if you have display names in your registry. In some

situations, if you return a user other than the one who is logged in, you must verify that the user is valid in

the registry.

For the FileRegistrySample.java sample file, the mapCertificate method gets the distinguished name

(DN) from the certificate chain and makes sure it is a valid user in the registry before returning the user.

For the sample, the checkPassword method checks the name and password combination in the user

registry and, if they match, the method returns the user being authenticated.

This method is called for various scenarios, for example, by the administrative console to validate the user

information after the user registry is initialized. This method is also called when you access protected

resources in the product for authenticating the user and before proceeding with the authorization. This

method is the same as in Version 4.x.

public String mapCertificate(X509Certificate[] cert)

 throws CertificateMapNotSupportedException,

 CertificateMapFailedException,

 CustomRegistryException,

 RemoteException;

The mapCertificate method is called to obtain a user name from an X.509 certificate chain that is supplied

by the browser. The complete certificate chain is passed to this method and the implementation can

206 Securing applications and their environment

#rsecusers/isvalid
#rsecusers/getgroups
#rsecusers/getgroupdis
#rsecusers/getgroupid
#rsecusers/getgroupids
#rsecusers/getgroupsec
#rsecusers/isvalidgroup
#rsecusers/getgroupsuser
#rsecusers/getusersgroup
#rsecusers/createcred

validate the chain if needed and get the user information. A credential is created for this user for

authorization purposes. If browser certificates are not supported in your configuration, you can create the

CertificateMapNotSupportedException exception. The consequence of not supporting certificates is

authentication failure if the challenge type is certificates, even if valid certificates are in the browser.

This method is called when certificates are provided for authentication. For Web applications, when the

authentication constraints are set to CLIENT-CERT in the web.xml file of the application, this method is

called to map a certificate to a valid user in the registry. For Java clients, this method is called to map the

client certificates in the transport layer, when using transport layer authentication. When the identity

assertion token, using the CSIv2 authentication protocol, is set to contain certificates, this method is called

to map the certificates to a valid user.

In WebSphere Application Server Version 4.x, the input parameter is the X509Certificate certificate. In

WebSphere Application Server Version 5.x and later, this parameter changes to accept an array of

X509Certificate certificates such as a certificate chain. In Version 4.x, this parameter is called for Web

applications only, but in version 5.x and later, you can call this method for both Web and Java clients.

public String getRealm()

 throws CustomRegistryException,

 RemoteException;

The getRealm method is called to get the name of the security realm. The name of the realm identifies the

security domain for which the registry authenticates users. If this method returns a null value, a

customRealm default name is used.

For the FileRegistrySample.java sample file, the getRealm method returns the customRealm string. One

of the calls to this method occurs when the user registry information is validated. This method is the same

method as in Version 4.x.

public Result getUsers(String pattern, int limit)

 throws CustomRegistryException,

 RemoteException;

The getUsers method returns the list of users from the registry. The names of users depend on the pattern

parameter. The number of users are limited by the limit parameter. In a registry that has many users,

getting all the users is not practical. So the limit parameter is introduced to limit the number of users

retrieved from the registry. A limit of zero (0) indicates to return all the users that match the pattern and

might cause problems for large registries. Use this limit with care.

The custom registry implementations are expected to support at least the wildcard search (*). For

example, a pattern of asterisk (*) returns all the users and a pattern of (b*) returns the users starting with

b.

The return parameter is an object with a com.ibm.websphere.security.Result type . This object contains

two attributes, a java.util.List and a java.lang.boolean attribute. The list contains the users that are returned

and the Boolean flag indicates if more users are available in the user registry for the search pattern. This

Boolean flag is used to indicate to the client whether more users are available in the registry.

In the FileRegistrySample.java sample file, the getUsers method retrieves the required number of users

from the user registry and sets them as a list in the Result object. To find out if more users are presented

than requested, the sample gets one more user than requested and if it finds the additional user, it sets

the Boolean flag to true. For pattern matching, the match method in the RegExpSample class is used,

which supports wildcard characters such as the asterisk (*) and the question mark (?).

Chapter 5. Authenticating users 207

This method is called by the administrative console to add users to roles in the various map-users-to-roles

panels. The administrative console uses the Boolean set in the Result object to indicate that more entries

matching the pattern are available in the user registry.

In WebSphere Application Server Version 4.x, this method specifies to take only the pattern parameter.

The return is a list. In WebSphere Application Server Version 5.x or later, this method is changed to take

one additional parameter, the limit. Ideally, your implementation changes to take the limit value and limits

the users that are returned. The return is changed to return a Result object, which consists of the list and

a flag that indicates if more entries exist. When the list returns, use the Result.setList(List) method to set

the list in the Result object. If more entries exist than requested in the limit parameter, set the Boolean

attribute to true in the result object, using the Result.setHasMore method. The default for the Boolean

attribute in the result object is false.

public String getUserDisplayName(String userSecurityName)

 throws EntryNotFoundException,

 CustomRegistryException,

 RemoteException;

The getUserDisplayName method returns a display name for a user, if one exists. The display name is an

optional string that describes the user that you can set in some registries. This descriptive name is for the

user and does not have to be unique in the registry.

For example in Windows systems, you can display the full name of the user.

If you do not need display names in your registry, return null or an empty string for this method.

If display names existed for any user in WebSphere Application Server Version 4.x, these names were

useful for the Enterprise JavaBean (EJB) method call getCallerPrincipal and the servlet calls

getUserPrincipal and getRemoteUser. If the display names are not the same as the security name for any

user, the display names are returned for the previously mentioned enterprise beans and servlet methods.

Returning display names for these methods might become problematic in some situations because the

display names might not be unique in the user registry. Avoid this problem by changing the default

behavior to return the user security name instead of the user display name in this version of the product.

For more information on how to set properties for the custom registry, see the section on Setting

Properties for Custom Registries.

In the FileRegistrySample.java sample file, this method returns the display name of the user whose

name matches the user name that is provided. If the display name does not exist, this method returns an

empty string.

This method can be called by the product to present the display names in the administrative console, or by

using the command line and the wsadmin tool. Use this method for display purposes only. This method is

the same as in Version 4.x.

public String getUniqueUserId(String userSecurityName)

 throws EntryNotFoundException,

 CustomRegistryException,

 RemoteException;

This method returns the unique ID of the user, given the security name.

In the FileRegistrySample.java sample file, this method returns the uniqueUserId value of the user whose

name matches the supplied name. This method is called when forming a credential for a user and also

when creating the authorization table for the application.

208 Securing applications and their environment

public String getUserSecurityName(String uniqueUserId)

 throws EntryNotFoundException,

 CustomRegistryException,

 RemoteException;

This method returns the security name of a user given the unique ID. In the FileRegistrySample.java

sample file, this method returns the security name of the user whose unique ID matches the supplied ID.

This method is called to make sure a valid user exists for a given uniqueUserId. This method is called to

get the security name of the user when the uniqueUserId is obtained from a token.

public boolean isValidUser(String userSecurityName)

 throws CustomRegistryException,

 RemoteException;

This method indicates whether the given user is a valid user in the registry.

In the FileRegistrySample.java sample file, this method returns true if the user is found in the registry,

otherwise this method returns false. This method is primarily called in situations where knowing if the user

exists in the directory prevents problems later. For example, in the mapCertificate call, when the name is

obtained from the certificate if the user is not found as a valid user in the user registry, you can avoid

trying to create the credential for the user.

 public Result getGroups(String pattern, int limit)

 throws CustomRegistryException,

 RemoteException;

The getGroups method returns the list of groups from the user registry. The names of groups depend on

the pattern parameter. The number of groups is limited by the limit parameter. In a registry that has many

groups, getting all the groups is not practical. So, the limit parameter is introduced to limit the number of

groups retrieved from the user registry. A limit of zero (0) implies to return all the groups that match the

pattern and can cause problems for large user registries. Use this limit with care. The custom registry

implementations are expected to support at least the wildcard search (*). For example, a pattern of

asterisk (*) returns all the users and a pattern of (b*) returns the users starting with b.

The return parameter is an object of the com.ibm.websphere.security.Result type. This object contains the

java.util.List and java.lang.boolean attributes. The list contains the groups that are returned and the

Boolean flag indicates whether more groups are available in the user registry for the pattern searched.

This Boolean flag is used to indicate to the client if more groups are available in the registry.

In the FileRegistrySample.java sample file, the getUsers method retrieves the required number of groups

from the user registry and sets them as a list in the Result object. To find out if more groups are presented

than requested, the sample gets one more user than requested and if it finds the additional user, it sets

the Boolean flag to true. For pattern matching, the match method in the RegExpSample class is used,

which supports the asterisk (*) and question mark (?) characters.

This method is called by the administrative console to add groups to roles in the various

map-groups-to-roles panels. The administrative console uses the boolean set in the Result object to

indicate that more entries matching the pattern are available in the user registry.

In WebSphere Application Server Version 4, this method is used to take the pattern parameter only and

returns a list. In WebSphere Application Server Version 5.x or later, this method is changed to take the

limit parameter. Change to take the limit value and limit the users that are returned. The return is changed

to return a Result object, which consists of the list and a flag that indicates whether more entries exist.

Use the Result.setList(List) method to set the list in the Result object. If more entries exist than requested

Chapter 5. Authenticating users 209

in the limit parameter, set the Boolean attribute to true in the Result object using the Result.setHasMore

method. The default for the Boolean attribute in the Result object is false.

public String getGroupDisplayName(String groupSecurityName)

 throws EntryNotFoundException,

 CustomRegistryException,

 RemoteException;

The getGroupDisplayName method returns a display name for a group if one exists. The display name is

an optional string that describes the group that you can set in some user registries. This name is a

descriptive name for the group and does not have to be unique in the registry. If you do not need to have

display names for groups in your registry, return null or an empty string for this method.

In the FileRegistrySample.java sample file, this method returns the display name of the group whose

name matches the group name that is provided. If the display name does not exist, this method returns an

empty string.

The product can call this method to present the display names in the administrative console or through the

command line using the wsadmin tool. This method is used for display purposes only.

public String getUniqueGroupId(String groupSecurityName)

 throws EntryNotFoundException,

 CustomRegistryException,

 RemoteException;

This method returns the unique ID of the group that is given the security name.

In the FileRegistrySample.java sample file, this method returns the unique ID of the group whose name

matches the supplied name. This method is called when creating the authorization table for the

application.

public List getUniqueGroupIds(String uniqueUserId)

 throws EntryNotFoundException,

 CustomRegistryException,

 RemoteException;

This method returns the unique IDs of all the groups to which a user belongs.

In the FileRegistrySample.java sample file, this method returns the unique ID of all the groups that

contain this uniqueUserID ID. This method is called when creating the credential for the user. As part of

creating the credential, all the groupUniqueIds IDsin which the user belongs are collected and put in the

credential for authorization purposes when groups are given access to a resource.

public String getGroupSecurityName(String uniqueGroupId)

 throws EntryNotFoundException,

 CustomRegistryException,

 RemoteException;

This method returns the security name of a group given its unique ID.

In the FileRegistrySample.java sample file, this method returns the security name of the group whose

unique ID matches the supplied ID. This method verifies that a valid group exists for a given

uniqueGroupId ID.

210 Securing applications and their environment

public boolean isValidGroup(String groupSecurityName)

 throws CustomRegistryException,

 RemoteException;

This method indicates if the given group is a valid group in the registry.

In the FileRegistrySample.java sample file, this method returns true if the group is found in the registry,

otherwise the method returns false. This method can be used in situations where knowing whether the

group exists in the directory might prevent problems later.

public List getGroupsForUser(String userSecurityName)

 throws EntryNotFoundException,

 CustomRegistryException,

 RemoteException;

This method returns all the groups to which a user belongs whose name matches the supplied name. This

method is similar to the getUniqueGroupIds method with the exception that the security names are used

instead of the unique IDs.

In the FileRegistrySample.java sample file, this method returns all the group security names that contain

the userSecurityName name.

This method is called by the administrative console or the scripting tool to verify that the users entered for

the RunAs roles are already part of that role in the users and groups-to-role mapping. This check is

required to ensure that a user cannot be added to a RunAs role unless that user is assigned to the role in

the users and groups-to-role mapping either directly or indirectly through a group that contains this user.

Because a group in which the user belongs can be part of the role in the users and groups-to-role

mapping, this method is called to check if any of the groups that this user belongs to mapped to that role.

public Result getUsersForGroup(String groupSecurityName, int limit)

 throws NotImplementedException,

 EntryNotFoundException,

 CustomRegistryException,

 RemoteException;

This method retrieves users from the specified group. The number of users returned is limited by the limit

parameter. A limit of zero (0) indicates to return all of the users in that group. This method is not directly

called by the WebSphere Application Server security component. However, this method can be called by

other components. In rare situations, if you are working with a user registry where getting all the users

from any of your groups is not practical, you can create the NotImplementedException exception for the

particular groups. In this case, verify that if the process choreographer is installed the staff assignments

are not modeled using these particular groups. If no concern exists about returning the users from groups

in the user registry, it is recommended that you do not create the NotImplemented exception when

implementing this method.

The return parameter is an object with a com.ibm.websphere.security.Result type. This object contains the

java.util.List and java.lang.boolean attributes. The list contains the users that are returned and the Boolean

flag, which indicates whether more users are available in the user registry for the search pattern. This

Boolean flag indicates to the client whether users are available in the user registry.

In the example, this method gets one user more than the requested number of users for a group, if the

limit parameter is not set to zero (0). If the method succeeds in getting one more user, the Boolean flag is

set to true.

In WebSphere Application Server Version 4, this getUsers method is mandatory for the product. For

WebSphere Application Server Version 5.x or later, this method can create the NotImplementedException

Chapter 5. Authenticating users 211

exception in situations where it is not practical to get the requested set of users. However, create this

exception in rare situations when as other components can be affected. In Version 4, this method accepts

only the pattern parameter and returns a list. In Version 5, this method accepts the limit parameter.

Change your implementation to take the limit value and limit the users that are returned. The return

changes to return a Result object, which consists of the list and a flag that indicates whether more entries

exist. When the list is returned, use the Result.setList(List) method to set the list in the Result object. If

more entries than requested are in the limit parameter, set the Boolean attribute to true in the Result

object using Result.setHasMore method. The default for the Boolean attribute in the Result object is false.

Attention: The first two lines of the following code sample are split for illustrative purposes only.

 public com.ibm.websphere.security.cred.WSCredential

 createCredential(String userSecurityName)

 throws NotImplementedException,

 EntryNotFoundException,

 CustomRegistryException,

 RemoteException;

In this release the WebSphere Application Server, the createCredential method is not called. You can

return null. In the example, a null value is returned.

Authentication protocol for EJB security

WebSphere Application Server Version 6.1 servers support the CSIv2 authentication protocol only. SAS is

only supported between Version 6.0.x and earlier version servers that have been federated in a Version

6.1 cell. The option to select between SAS, CSIv2, or both is only available in the administration console

when a Version 6.0.x or earlier release has been federated in a Version 6.1 cell.

V6.0.x

SAS is the authentication protocol used by all previous releases of WebSphere Application

Server and is maintained for backwards compatibility. The Object Management Group (OMG) has defined

the authentication protocol called CSIv2 so that vendors can interoperate securely. CSIv2 is implemented

in WebSphere Application Server with more features than SAS and is considered the strategic protocol.

Important: SAS is supported only between Version 6.0.x and previous version servers that have been

federated in a Version 6.1 cell.

Invoking Enterprise Java Beans (EJB) methods in a secure WebSphere Application Server environment

requires an authentication protocol to determine the level of security and the type of authentication that

occur between any given client and server for each request. It is the job of the authentication protocol

during a method invocation to merge the server authentication requirements that are determined by the

object Interoperable Object Reference (IOR) with the client authentication requirements that are

determined by the client configuration and come up with an authentication policy specific to that client and

server pair.

The authentication policy makes the following decisions, among others, which are all based on the client

and server configurations:

v What kind of connection can you make to this server--Secure Sockets Layer (SSL) or TCP/IP?

v If SSL is chosen, how strong is the encryption of the data?

v If SSL is chosen, do you authenticate the client using client certificates?

v Do you authenticate the client with a user ID and password? Does an existing credential exist?

v Do you assert the client identity to downstream servers?

v Given the configuration of the client and server, can a secure request proceed?

212 Securing applications and their environment

V6.0.x You can configure both protocols (SAS and CSIv2) to work simultaneously. If a server supports

both protocols, it exports an IOR containing tagged components describing the configuration for SAS and

CSIv2. If a client supports both protocols, it reads tagged components for both CSIv2 and SAS. If the

client supports both and the server supports both, CSIv2 is used. However, if the server supports SAS (for

example, it is a previous WebSphere Application Server release) and the client supports both, the client

chooses SAS for this request because the SAS protocol is what both have in common.

V6.0.x

Choose a protocol by specifying the com.ibm.CSI.protocol property on the client side and

configuring through the administrative console on the server side. More details are included in the SAS

and CSIv2 properties articles.

Common Secure Interoperability Specification, Version 2

V6.0.x

The Common Secure Interoperability Specification, Version 2 (CSIv2) defines the Security

Attribute Service (SAS) that enables interoperable authentication, delegation, and privileges. The CSIv2

SAS and SAS protocols are entirely different. The CSIv2 SAS is a subcomponent of CSIv2 that supports

SSL and interoperability with the EJB Specification, Version 2.1.

Security Attribute Service

V6.0.x

The Common Secure Interoperability Specification, Version 2 Security Attribute Service (CSIv2

SAS) protocol is designed to exchange its protocol elements in the service context of a General Inter-ORB

Protocol (GIOP) request and reply messages that are communicated over a connection-based transport.

The protocol is intended for use in environments where transport layer security, such as that available

through Secure Sockets Layer (SSL) and Transport Layer Security (TLS), is used to provide message

protection (that is, integrity and or confidentiality) and server-to-client authentication. The protocol provides

client authentication, delegation, and privilege functionality that might be applied to overcome

corresponding deficiencies in an underlying transport. The CSIv2 SAS protocol facilitates interoperability by

serving as the higher-level protocol under which secure transports can be unified.

Connection and request interceptors

The authentication protocols that are used by WebSphere Application Server are add-on Interoperable

Inter-ORB Protocol (IIOP) services. IIOP is a request-and-reply communications protocol that is used to

send messages between two Object Request Brokers (ORBs). For each request made by a client ORB to

a server ORB, an associated reply is made by the server ORB back to the client ORB. Prior to any

request flowing, a connection between the client ORB and the server ORB must be established over the

TCP/IP transport (SSL is a secure version of TCP/IP). The client ORB invokes the authentication protocol

client connection interceptor, which is used to read the tagged components in the IOR of the object that is

located on the server. As mentioned previously, the authentication policy is established here for the

request. Given the authentication policy (a coalescing of the server configuration with the client

configuration), the strength of the connection is returned to the ORB. The ORB makes the appropriate

connection, usually over SSL.

After the connection is established, the client ORB invokes the authentication protocol client request

interceptor, which is used to send security information other than what is established by the transport. The

security information includes the user ID and password token that are authenticated by the server, an

authentication mechanism-specific token that is validated by the server, or an identity assertion token.

Identity assertion is a way for one server to trust another server without the need to re-authenticate or

re-validate the originating client. However, some work is required for the server to trust the upstream

server. This additional security information is sent with the message in a service context. A service context

has a registered identifier so that the server ORB can identify which protocol is sending the information.

Chapter 5. Authenticating users 213

V6.0.x The fact that a service context contains a unique identity is another way for WebSphere

Application Server to support both SAS and CSIv2 simultaneously because both protocols have different

service context IDs. After the client request interceptor finishes adding the service context to the message,

the message is sent to the server ORB.

V6.0.x

When the message is received by the server ORB, the ORB invokes the authentication

protocol server request interceptor. This interceptor looks for the service context ID known by the protocol.

When both SAS and CSIv2 are supported by a server, two different server request interceptors are

invoked and both interceptors look for different service context IDs.

However, only one finds a service context for any given request. When the server request interceptor finds

a service context, it reads the information in the service context. A method is invoked to the security server

to authenticate or validate client identity. The security server either rejects the information or returns a

credential. A credential contains additional information about the client that is retrieved from the user

registry so that authorization can make the appropriate decision. Authorization is the process of

determining if the user can invoke the request based on the roles that are applied to the method and the

roles given to the user.

If a service context is not found by the CSIv2 server request interceptor, the interceptor process looks at

the transport connection to see if a client certificate chain is sent. This process is done when SSL client

authentication is configured between the client and server.

If a client certificate chain is found, the distinguished name (DN) is extracted from the certificate and is

used to map to an identity in the user registry. If the user registry is Lightweight Directory Access Protocol

(LDAP), the search filters defined in the LDAP registry configuration determine how the certificate maps to

an entry in the registry. If the user registry is local OS, the first attribute of the distinguished name (DN)

maps to the user ID of the registry. This attribute is typically the common name.

If the certificate does not map, no credential is created and the request is rejected. When valid security

information is not presented, the method request is rejected and a NO_PERMISSION exception is sent

back with the reply. However, when no security information is presented, an unauthenticated credential is

created for the request and the authorization engine determines if the method gets invoked. For an

unauthenticated credential to invoke an Enterprise JavaBean (EJB) method, either no security roles are

defined for the method or a special Everyone role is defined for the method.

When the method invocation is completed in the EJB container, the server request interceptor is invoked

again to complete server authentication and a new reply service context is created to inform the client

request interceptor of the outcome. This process is typically for making the request stateful. When a

stateful request is made, only the first request between a client and server requires that security

information is sent. All subsequent method requests need to send a unique context ID only so that the

server can look up the credential that is stored in a session table. The context ID is unique within the

connection between a client and server.

Finally, the method request cycle is completed by the client request interceptor receiving a reply from the

server with a reply service context providing information so that the client-side stateful context ID can be

confirmed and reused.

Specifying a stateful client is done through the property com.ibm.CSI.performStateful (true/false).

Specifying a stateful server is done through the administrative console configuration.

214 Securing applications and their environment

Authentication policy for each request

The authentication policy of a given request determines the security protection between a client and a

server. A client or server authentication protocol configuration can describe required features, supported

features, and non-supported features. When a client requires a feature, it can talk only to servers that

either require or support that feature. When a server requires a feature, it can talk only to clients that

either require or support that feature. When a client supports a feature, it can talk to a server that supports

or requires that feature, but can also talk to servers that do not support the feature. When a server

supports a feature, it can talk to a client that supports or requires the feature, but can also talk to clients

that do not support the feature or chose not to support the feature.

For example, for a client to support client certificate authentication, some setup is required to either

generate a self-signed certificate or to get one from a certificate authority (CA). Some clients might not

need to complete these actions, therefore, you can configure this feature as not supported. By making this

decision, the client cannot communicate with a secure server that requires client certificate authentication.

Instead, this client can choose to use the user ID and password as the method of authenticating itself to

the server.

Typically, supporting a feature is the most common way of configuring features. It is also the most

successful during runtime because it is more forgiving than requiring a feature. Knowing how secure

servers are configured in your domain, you can choose the right combination for the client to ensure

successful method invocations and still get the most security. If you know that all of your servers support

both client certificate and user ID and password authentication for the client, you might want to require one

and not support the other. If both the user ID and password and the client certificate are supported on the

client and server, both are performed, but user ID and password take precedence at the server. This

action is based on the CSIv2 specification requirements.

Supported authentication protocols

Use this page to reference information regarding supported authentication protocols.

Authentication protocol flow

Step 1:

Client ORB calls the connection

interceptor to create the connection.

Step 5:

Client ORB calls the request interceptor

so that the client can clean up and set

the session status as good or bad.

Client request

interceptor -

receive_reply()

Client connection

interceptor

Client request

interceptor -

send_request()

Server request

interceptor -

receive_request()

Server request

interceptor -

send_reply()

Step 3:

Server ORB calls the request interceptor

to receive the security information,

authenticate, and set the received credential.

Step 4:

Server ORB calls the request interceptor

so that security can send information

back to the client with the reply.

Step 2:

Client ORB calls the request

interceptor to get client security

information.

Client ORB Server ORB

Invocation

credential:

user: peter

pass: beans

1

2

Request

Service context

Service context

3

Received

credential:

security

token

45
Reply

User: peter,

Password: beans

foo.getCoffee()

Coffee

Stateful request

valid

Transport connectionfoo.getCoffee() Server enterprise
beans Foo

. Authentication protocol flow

Chapter 5. Authenticating users 215

V6.0.x Beginning with WebSphere Application Server Version 6.1, the WebSphere Application Server

Version 6.1 servers only support the Common Secure Interoperability Version 2 (CSIv2) authentication

protocol. Secure Authentication Service (SAS) is only supported between Version 6.0.x and previous

version servers that have been federated in a Version 6.1 cell. The option to select between SAS, CSIv2,

or both will only be made available in the administration console when a Version 6.0.x or previous release

has been federated in a Version 6.1 cell.

V6.0.x

In future releases, IBM will no longer ship or support the Secure Authentication Service (SAS)

IIOP security protocol. It is recommended that you use the Common Secure Interoperability version 2

(CSIv2) protocol.

V6.0.x

You can configure both protocols to work simultaneously between Version 6.0.x and previous

version servers that have been federated in a Version 6.1 cell. If a server supports both protocols, it

exports an interoperable object reference (IOR) that contains tagged components describing the

configuration for SAS and CSIv2. If a client supports both protocols, it reads tagged components for both

CSIv2 and SAS. If the client and server support both protocols, CSIv2 is used. However, if the server

supports SAS (for example, the server is a previous WebSphere Application Server release) and the client

supports both protocols, the client chooses SAS for this request.

Choose a protocol using the com.ibm.CSI.protocol property on the client side and configure this protocol

through the administrative console on the server side.

Common Secure Interoperability Version 2 features

The following Common Secure Interoperability Version 2 (CSIv2) features are available in IBM WebSphere

Application Server: Secure Sockets Layer (SSL) client certificate authentication, message layer

authentication, identity assertion, and security attribute propagation.

v Identity Assertion.

Supports a downstream server in accepting the client identity that is established on an upstream server,

without having to authenticate again. The downstream server trusts the upstream server.

v Message Layer Authentication.

Authenticates credential information and sends that information across the network so that a receiving

server can interpret it.

v Security attribute propagation

Supports the use of the authorization token to propagate serialized Subject contents and

PropagationToken contents with the request. You can propagate these objects using a pure client or a

server login that adds custom objects to the Subject. Propagating security attributes prevents

downstream logins from having to make user registry calls to look up these attributes.

Propagating security attributes is also useful when the security attributes contain information that is only

available at the time of authentication. This information cannot be located using the user registry on

downstream servers.

Identity assertion

Identity assertion is the invocation credential that is asserted to the downstream server.

When a client authenticates to a server, the received credential is set. When the authorization engine

checks the credential to determine whether access is permitted, it also sets the invocation credential so

that if the Enterprise JavaBeans (EJB) method calls another EJB method that is located on other servers,

the invocation credential can be the identity used to invoke the downstream method. Depending on the

RunAs mode for the enterprise beans, the invocation credential is set as the originating client identity, the

server identity, or a specified different identity. Regardless of the identity that is set, when identity assertion

is enabled, it is the invocation credential that is asserted to the downstream server.

216 Securing applications and their environment

The invocation credential identity is sent to the downstream server in an identity token. In addition, the

sending server identity, including the password or token, is sent in the client authentication token when

basic authentication is enabled. The sending server identity is sent through a Secure Sockets Layer (SSL)

client certification authentication when client certificate authentication is enabled. Basic authentication

takes precedence over client certificate authentication.

Both identity tokens are needed by the receiving server to accept the asserted identity. The receiving

server completes the following actions to accept the asserted identity:

v The server determines whether the sending server identity, sent with a basic authentication token or

with an SSL client certificate, is on the trusted principal list of the receiving server. The server

determines whether the sending server can send an identity token to the receiving server.

v After it is determined that the sending server is on the trusted list, the server authenticates the sending

server to verify its identity.

v The server is authenticated by comparing the user ID and password from the sending server to the

receiving server. If the credentials of the sending server are authenticated and on the trusted principal

list, then the server proceeds to evaluate the identity token.

Evaluation of the identity token consists of the following four identity formats that exist in an identity token:

v Principal name

v Distinguished name

v Certificate chain

v Anonymous identity

The product servers that receive authentication information typically support all four identity types. The

sending server decides which one is chosen, based on how the original client authenticated. The existing

type depends on how the client originally authenticates to the sending server. For example, if the client

uses Secure Sockets Layer (SSL) client authentication to authenticate to the sending server, then the

identity token sent to the downstream server contains the certificate chain. With this information, the

receiving server can perform its own certificate chain mapping and interoperability is increased with other

vendors and platforms.

After the identity format is understood and parsed, the identity maps to a credential. For an ITTPrincipal

identity token, this identity maps one-to-one with the user ID fields.

For an ITTDistinguishedName identity token, the mapping depends on the user registry. For Lightweight

Directory Access Protocol (LDAP), the configured search filter determines how the mapping occurs. For

LocalOS, the first attribute of the distinguished name (DN), which is typically the same as the common

name, maps to the user ID of the registry.

Some user registry methods are called to gather additional credential information that is used by

authorization. In a stateful server, this action completes once for the sending server and the receiving

server pair where the identity tokens are the same. Subsequent requests are made through a session ID.

Identity assertion is only available using the Common Secure Interoperability Version 2 (CSIv2) protocol.

Identity assertions with trust validation

If you want an application or system provider to perform an identity assertion with trust validation, it can be

accomplished by use of the Java Authentication and Authorization Service (JAAS) login framework, where

trust validation is performed in one login module and credential creation in another. These two custom

login modules are used to create a JAAS login configuration that performs a login to an identity assertion.

Two custom login module are required:

v A user-implemented trust association login module. This login module performs whatever trust

verification the user requires. When trust is verified, the trust verification status and the login identity

must be placed in a map in the share state of the login module to enable the credential creation login

Chapter 5. Authenticating users 217

module to use that information. The map must be stored in the

com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule.state property. State maps

contain the following information:

– com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule.trusted – set to true, if

trusted, and false, if not trusted.

– com.ibm.wsspi.security.common.auth.module.IdenityAssertionLoginModule.principal – contains the

principal of the identity.

– com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule.certificates – contains the

certificate of the identity

v The com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule module performs the

credential creation. It requires that the trust state information be in the login context’s shared state. This

login module is protected by the Java 2 security runtime permissions for the following:

– com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule.initialize

– com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule.login

IdentityAssertionLoginModule searches for the trust information in the shared state property,

com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule.state. This is a map that

contains the trust status and the identity used to login. The map includes the following:

v com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule.trusted – if set to true it is

trusted, false if not trusted.

v com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule.principal – if a principal is

used, it contains the principal of the identity necessary to login.

v com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule.certificates – if a certificate is

used, it contains an array of a certificate chain that includes the identity necessary to login.

A WSLoginFailedException is returned if the state, trust, or identity information is missing. The login

module then performs a login of the identity. The subject now contains the new identity.

Message layer authentication

Defines the credential information and sends that information across the network so that a receiving server

can interpret it.

When you send authentication information across the network using a token the transmission is

considered message layer authentication because the data is sent with the message inside a service

context.

A pure Java client uses basic authentication, Generic Security Services Username Password (GSSUP), as

the authentication mechanism to establish client identity.

However, a servlet can use either basic authentication (GSSUP) or the authentication mechanism of the

server, Lightweight Third Party Authentication (LTPA), to send security information in the message layer.

Use LTPA by authenticating or by mapping the basic authentication credentials to the security mechanism

of the server.

The security token that is contained in a token-based credential is authentication mechanism-specific. The

way that the token is interpreted is only known by the authentication mechanism. Therefore, each

authentication mechanism has an object ID (OID) representing it. The OID and the client token are sent to

the server, so that the server knows which mechanism to use when reading and validating the token. The

following list contains the OIDs for each mechanism:

BasicAuth (GSSUP): oid:2.23.130.1.1.1

LTPA: oid:1.3.18.0.2.30.2

SWAM: No OID because it is not forwardable

218 Securing applications and their environment

Note: SWAM is deprecated in WebSphere Application Server Version 6.1 and will be removed in a future

release.

On the server, the authentication mechanisms can interpret the token and create a credential, or they can

authenticate basic authentication data from the client, and create a credential. Either way, the created

credential is the received credential that the authorization check uses to determine if the user has access

to invoke the method. You can specify the authentication mechanism by using the following property on

the client side:

v com.ibm.CORBA.authenticationTarget

Basic authentication is currently the only valid value. You can configure the server through the

administrative console.

Note: When perform basic authentication is enabled, if the client is not similarly configured (and does

not pass a credential such as a user ID and password), the server object request broker (ORB)

does not.

Configuring authentication retries

Situations occur where you want a prompt to display again if you entered your user ID and password

incorrectly or you want a method to retry when a particular error occurs back at the client. If you can

correct the error by information at the client side, the system automatically performs a retry without the

client seeing the failure, if the system is configured appropriately.

Some of these errors include:

v Entering a user ID and password that are not valid

v Having an expired credential on the server

v Failing to find the stateful session on the server

By default, authentication retries are enabled and perform three retries before returning the error to the

client. Use the com.ibm.CORBA.authenticationRetryEnabled property (True or False) to enable or disable

authentication retries. Use the com.ibm.CORBA.authenticationRetryCount property to specify the number

of retry attempts.

Immediate validating of a basic authentication login

In WebSphere Application Server Version 6.x, a behavior is defined during request_login for a BasicAuth

login. In releases prior to Version 5, a BasicAuth login takes the user ID and password entered through the

loginSource method and creates a BasicAuth credential. If either the user ID or the password is not valid,

the client program does not find out until the first method request is attempted. When the user ID or

password is specified during a prompt or programmatic login, the user ID and password are authenticated

by default with the security server, with a True or False returned as the result. If False, an

org.omg.SecurityLevel2.LoginFailed exception is returned to the client indicating that the user ID and

password are not valid. If True, then the BasicAuth credential is returned to the caller of the request_login.

To disable this feature on the pure client, specify com.ibm.CORBA.validateBasicAuth=false. By default, this

feature is set to True. On the server side, specify this property in the security dynamic properties.

Configuring the Lightweight Third Party Authentication mechanism

You must configure Lightweight Third Party Authentication (LTPA) when you set up security for the first

time. LTPA is the default authentication mechanism for WebSphere Application Server.

1. Open the administrative console.

Type http://fully_qualified_host_name:port_number/ibm/console to access the administrative

console in a Web browser.

Port 9060 is the default port number for accessing the administrative console. During installation,

however, you might have specified a different port number. Use the appropriate port number.

Chapter 5. Authenticating users 219

2. Click Security > Secure administration, applications, and infrastructure > Authentication

mechanisms and expiration.

3. Select the appropriate group from the Key set group field that contains your public, private, and

shared LTPA keys. These keys are used to encrypt and decrypt data that is sent between servers. You

can access these key set group configurations using the Key set group link. In the Key set group

configuration, you can indicate whether to automatically generate new keys and when to generate

them.

4. Enter a positive integer value in the Authentication cache timeout field. This timeout value refers to

how long an LTPA token is valid in minutes. The token contains this expiration time so that any server

that receives the token can verify that the token is valid before proceeding further. When the token

expires, the user must log in again. An optimal value for this field depends on your configuration.

However, the default value is 10 minutes.

5. Enter a positive integer in the Timeout value for forwarded credentials between servers field. This

value refers to how long the server credentials from another server are valid before they expire. The

default value is 120 minutes. The value in the Timeout value for forwarded credentials between

servers field must be greater than the value in the Authentication cache timeout field.

6. Click Apply or OK. The LTPA configuration is now set. Do not generate the LTPA keys in this step

because they are automatically generated later. Proceed with the rest of the steps that are required to

enable security, and start with single sign-on (SSO), if it is required.

7. Complete the information in the Security > Secure administration, applications, and infrastructure panel

and click OK. The LTPA keys are generated automatically the first time. Do not generate the keys

manually.

The previous steps configured LTPA.

After configuring LTPA, you can also complete the following tasks:

1. Generate key files. For more information, see “Generating Lightweight Third Party Authentication keys”

on page 223.

2. Export key files. For more information, see “Exporting Lightweight Third Party Authentication keys” on

page 224.

3. Import key files. For more information, see “Importing Lightweight Third Party Authentication keys” on

page 224.

4. Manage LPTA keys from multiple cells. For more information, see tsec_sslmanagelptakeys.dita.

5. If you are enabling security, you can also enable single sign-on (SSO). See:

v “Configuring single sign-on capability with Tivoli Access Manager or WebSEAL” on page 253
6. If you generated a new set of keys or imported a new set of keys, verify that the keys are saved to the

master configuration by clicking Save at the top of the panel. Because LTPA authentication uses

time-sensitive tokens, verify that the time, date, and time zone are synchronized among all of the

product servers that are participating in the protected domain. Changes to the time, date, and time

zone are done independently from WebSphere Application Server. If the clock skew is too high

between servers, the LTPA token seems prematurely expired and causes authentication or validation

failures.

Authentication mechanisms and expiration

Use this page to specify the shared keys and configure the authentication mechanism that is used to

exchange information between servers. You can also use this page to specify the amount of time that the

authentication information remains valid and specify the single sign-on configuration.

To view this administrative console page, complete the following steps:

1. Click Security > Secure administration, applications, and infrastructure.

2. Under Authentication, click Authentication mechanisms and expiration.

After you configure the properties on this page, complete the following steps:

220 Securing applications and their environment

tsec_sslmanagelptakeys.dita

1. Click Security > Secure administration, applications, and infrastructure.

2. Verify that the appropriate registry is configured.

3. Click Apply. When security is enabled and any of these properties change, return to the Secure

administration, applications, and infrastructure panel and click Apply to validate the changes.

Key set group

Specifies groups of public, private, and shared keys. These key groups enable the application server to

manage multiple sets of Lightweight Third Party Authentication (LTPA) keys.

Generate Keys

Specifies whether to generate a new set of LTPA keys in the configured keystore, and to update the

runtime with the new keys. By default, LTPA keys are regenerated on a schedule every 90 days,

configurable to the day of the week.

Each new set of LTPA keys is stored in the keystore associated with the key set group. A maximum

number of keys (or even one) can be configured. However, it is recommended to have at least two keys;

the old keys can be used for validation while the new keys are being distributed.

This step is not necessary during security enablement. A default set of keys is created during the first

server startup. If any nodes are down during a key generation event, the nodes should be synchronized

with the Deployment Manager before restart.

Authentication cache timeout

Specifies the time period in minutes at which an LTPA token expires. Verify that this time period is less

than the value for the Timeout value for forwarded credentials between servers field.

If the application server infrastructure security is enabled, the security cache timeout can influence

performance. The timeout setting specifies how often to refresh the security-related caches. Security

information pertaining to beans, permissions, and credentials is cached. When the cache timeout expires,

all cached information not accessed within the timeout period is purged from the cache. Subsequent

requests for the information result in a database lookup. Sometimes, acquiring the information requires

invoking a Lightweight Directory Access Protocol (LDAP)-bind or native authentication. Both invocations

are relatively costly operations for performance. Determine the best trade off for the application, by looking

at usage patterns and security needs for the site.

The default security cache timeout value is 10 minutes. If you have a small number of users, it should be

set higher than that, or if a large number of users, it should be set lower.

The LTPA timeout value should not be set lower than the security cache timeout. It is also recommended

that the LTPA timeout value should be set higher than the orb request timeout value. However, there is no

relation between the security cache timeout value and the orb request timeout value.

In a 20-minute performance test, setting the cache timeout so that a timeout does not occur yields a 40%

performance improvement.

 Data type Integer

Units Minutes and seconds

Default 10 minutes

Range: Greater than 30 seconds

Timeout value for forwarded credentials between servers

Specifies the period of time after which forwarded credentials expire.

Chapter 5. Authenticating users 221

Specify a value for this field that is greater than the authentication cache timeout value.

 Default 120 minutes

Password

Enter a password which will be used to encrypt and decrypt the LTPA keys from the SSO properties file.

During import, this password should match the password used to export the keys at another LTPA server

(for example, another application server Cell, Lotus Domino Server, and so on). During export, remember

this password in order to provide it during the import operation.

After the keys are generated or imported, they are used to encrypt and decrypt the LTPA token. Whenever

the password is changed, a new set of LTPA keys are automatically generated when you click OK or

Apply. The new set of keys is used after the configuration changes are saved.

 Data type String

Confirm password

Specifies the confirmed password that is used to encrypt and decrypt the LTPA keys.

Use this password when importing these keys into other application server administrative domain

configurations and when configuring SSO for a Lotus Domino server.

 Data type String

Fully qualified key file name

Specifies the name of the file that is used when importing or exporting keys.

Enter a fully qualified key file name, and click Import Keys or Export Keys.

 Data type String

Internal server ID

Specifies the server ID that is used for interprocess communication between servers. The server ID is

protected with an LTPA token when sent remotely. You can edit the internal server ID to make it identical

to server IDs across multiple application server administrative domains (cells). By default this ID is the cell

name.

This internal server ID should only be used in a Version 6.1 or higher environment. For mixed-version

Cells, you should convert to using a server user ID and server password for interoperability.

To switch back to the server user ID and password for interoperability, complete the following steps:

1. Click Security > Secure administration, applications, and infrastructure.

2. Under User account repository, click the Available realm definitions drop-down list, select a user

registry, and click Configure.

3. Select the Server identity that is stored in the repository option and type a valid registry ID and

password.

 Data type String

Import Keys

Specifies whether the server imports new LTPA keys.

222 Securing applications and their environment

To support single sign-on (SSO) in the application server product across multiple application server

domains (cells), share the LTPA keys and the password among the domains. You can use the Import

Keys option to import the LTPA keys from other domains. The LTPA keys are exported from one of the

cells to a file. To import a new set of LTPA keys, complete the following steps:

1. Enter the appropriate password in the Password and Confirm password fields.

2. Click OK and click Save.

3. Enter the directory location where the LTPA keys are located in the Fully qualified key file name field

prior to clicking Import keys.

4. Do not click OK or Apply, but save the settings.

Export Keys

Specifies whether the server exports LTPA keys.

To support single sign-on (SSO) in the WebSphere product across multiple application server domains

(cells), share the LTPA keys and the password among the domains. Use the Export Keys option to export

the LTPA keys to other domains.

To export the LTPA keys, make sure that the system is running with security enabled and is using LTPA.

Enter the file name in the Fully qualified key file name field and click Export Keys. The encrypted keys

are stored in the specified file.

Use SWAM-no authenticated communication between servers

Specifies the Simple WebSphere Authentication Mechanism (SWAM). Unauthenticated credentials are

forwarded between servers. When a caller process invokes a remote method, its identity is not verified.

Depending upon the security permissions for the EJB methods, authentication failures might occur.

SWAM is a deprecated feature and will be removed in a future release. It is recommend that you use

LTPA for authenticated communication between servers.

Generating Lightweight Third Party Authentication keys

WebSphere Application Server generates Lightweight Third Party Authentication (LTPA) keys automatically

during the first server startup. You can generate additional keys as you need them in the Authentication

mechanisms and expiration panel.

At runtime, the default key sets are NodeLTPASecret and NodeLTPAKeyPair. The default key group is

NodeLTPAKeySetGroup. After generation, keys are stored in the default key store NodeLTPAKeys.

Complete the following steps to generate new LTPA keys in the administrative console.

1. Access the administrative console.

Type http://fully_qualified_host_name:port_number/ibm/console to access the administrative

console in a Web browser.

2. Verify that all the WebSphere Application Server processes are running, including the cell, nodes, and

application servers.

Important: If any of the servers are down at the time of key generation and then restarted later, these

servers might contain old keys. Copy the new set of keys to these servers to restart them

after you generate them.

3. Click Security > Secure administration, applications, and infrastructure > Authentication

mechanisms and expiration.

4. Click Generate keys to generate a new set of LTPA keys in the local keystore and update the runtime

with the new keys. By default, LTPA keys are regenerated on a schedule every 90 days, configurable

Chapter 5. Authenticating users 223

to the day of the week. Each new set of LTPA keys is stored in the keystore that is associated with the

key set group. The same password that is already stored in the configuration is used when you

generate new keys.

Tip: This step is not necessary when you enable security because, by default, a set of keys is created

during the first server startup. However, the keystore should have at least two keys: the old keys

can be used for validation while the new keys are being distributed. If any nodes are down during

a key generation event, the nodes should be synchronized with the Deployment Manager before

restarting the server.

5. Restart the server for the changes to become active.

After WebSphere Application Server generates and saves a new set of keys, the generated keys are not

used in the configuration until WebSphere Application Server is restarted. Token generation uses the keys

that were last imported. To view the latest key version, see “Activating Lightweight Third Party

Authentication key versions” on page 227.

Exporting Lightweight Third Party Authentication keys

To support single sign-on (SSO) in WebSphere Application Server across multiple WebSphere Application

Server domains or cells, you must share the Lightweight Third Party Authentication (LTPA) keys and the

password among the domains.

Make sure that the time in the domains is similar so that you do not mistakenly interpret the tokens as

expired between the cells.

Complete the following steps in the administrative console to export key files for LTPA so that they can be

shared across domains:

1. Type http://server_name:port_number/ibm/console in a Web browser to access the administrative

console.

2. Click Security > Secure administration, applications, and infrastructure > Authentication

mechanisms and expiration.

3. In the Password and Confirm password fields, enter the password that is used to encrypt the LTPA

keys. Remember the password so that you can use it later when the keys are imported into the other

cell.

4. In the Fully qualified key file name field, specify the fully qualified path to the location where you want

the exported LTPA keys to reside. You must have write permission to this file.

5. Click Export keys to export the keys to the location that you specified in the Fully qualified key file

name field.

6. Specify the Internal server ID that is used for interprocess communication between servers. The

server ID is protected with an LTPA token when sent remotely. You can edit the internal server ID to

make it identical to server IDs across multiple application server administrative domains (cells). By

default this ID is the cell name.

7. Click OK and Save.

You can share LTPA keys and passwords among domains on WebSphere Application Server.

After exporting the keys from one cell, you must import those keys into the other cell. For more

information, see “Importing Lightweight Third Party Authentication keys”

Importing Lightweight Third Party Authentication keys

To support single sign-on (SSO) in WebSphere Application Server across multiple WebSphere Application

Server domains or cells, you must share the LTPA keys and the password among the domains. You can

import LTPA keys from other domains and export keys to other domains.

224 Securing applications and their environment

After you export LTPA keys from one cell, you must import these keys into another cell. To import keys,

you must know the password for the exported key file to access the LTPA keys. Verify that key files are

exported from one of the cells into a file.

Complete the following steps in the administrative console to import key files for LTPA.

1. Access the administrative console for the cell that will receive the imported keys by typing

http://server_name:port_number/ibm/console in a Web browser.

2. Click Security > Secure administration, applications, and infrastructure > Authentication

mechanisms and expiration.

3. In the Password and Confirm password fields, enter the password that is used to decrypt the LTPA

keys . This password must match the password that was used in the cell from which you are importing

the keys.

4. In the Fully qualified key file name field, specify the fully qualified path to the location where the

signer keys reside. You must have write permission to this file.

5. Click Import keys to import the keys to the location that you specified in the Fully qualified key file

name field.

6. Click OK and Save to save the changes to the master configuration. It is important to save the new set

of keys to match the new password so that no problems are encountered when starting the servers

later.

After a new set of keys is generated and saved, the generated keys are not used in the configuration until

WebSphere Application Server is restarted.

Important: After you enter the password in the Password and Confirm password fields and click Save,

the password is not redisplayed on the administrative console panel.

Disabling automatic generation of Lightweight Third Party

Authentication keys

You can disable the automatic generation of new Lightweight Third Party Authentication (LTPA) keys for

key sets that are members of a key set group. Automatic generation creates new keys on a schedule that

you specify when you configure a key set group, which manages one or more key sets. WebSphere

Application Server uses key set groups to automatically generate cryptographic keys or multiple

synchronized key sets.

You must know the name of the key set group and the management scope where the key set group is

defined.

The default key set group that is created to manage LTPA keys is NodeLTPAKeySetGroup.

LTPA keys are used to encrypt the LTPA token. You might want to disable the auto-generation of these

keys so that you can generate them on a schedule. The following steps are needed to complete this task

in the administrative console.

1. Click Security > SSL certificate and key management > Manage endpoint security

configurations.

2. Expand the tree to the inbound or outbound management scope that contains the key set group, and

then click the scope link.

3. Under Related Items, click Key Set Groups.

4. Click the key set group that you want to disable.

5. Clear the Automatically generate keys option.

6. Click OK and Save to save the changes to the master configuration.

7. Start the server again for the changes to become active.

Chapter 5. Authenticating users 225

You have disabled the automatic generation of LTPA keys for the key sets in the key set group.

Tip: You can generate keys manually at any time by completing the following steps:

1. Open the key set group collection.

2. Select the check box beside the key set group.

3. Click Generate keys.

Managing LTPA keys from multiple WebSphere Application Server cells

You can specify the shared keys and configure the authentication mechanism that is used to exchange

information between servers to import and export LTPA keys across multiple WebSphere Application

Server cells.

You must be sure that the exported key file for the multiple cells is accessible on the host where

WebSphere Application Server is running. Also, you must know the password that was used when the

keys were exported.

At runtime, the default key sets are NodeLTPASecret and NodeLTPAKeyPair. The default key group is

NodeLTPAKeySetGroup. After generation, keys are stored in the default key store NodeLTPAKeys.

Complete the following steps to manage LTPA keys using the administrative console.

1. Access the administrative console.

Type http://fully_qualified_host_name:port_number/ibm/console to access the administrative

console in a Web browser.

2. Verify that all of the WebSphere Application Server processes are running, including cells, nodes, and

all of the application servers. If any of the servers are down at the time of key generation and then

brought back up later, these servers might contain old keys. Copy the new set of keys to these

servers, then bring them back up.

3. Click Security > Secure administration, applications, and infrastructure > Authentication

mechanisms and expiration.

4. Type the password for the LTPA keys in the Password field. Enter a password that is used to encrypt

and decrypt the LTPA keys from the single sign-on (SSO) properties file. During import, this password

should match the password that is used to export the keys at another LTPA server. During export,

remember this password in order to provide it during the import operation.

5. Type the password again in the Confirm password field.

6. Select from among the following options:

v To support SSO in the WebSphere product across multiple application server domains (cells), you

can share the LTPA keys and the password among the domains. Before exporting, make sure that

security is enabled and using LTPA on the system that is running. For more information, see

“Exporting Lightweight Third Party Authentication keys” on page 224.

v To support SSO in the application server product across multiple application server domains (cells),

you can share the LTPA keys and the password among the domains. For more information, see

“Importing Lightweight Third Party Authentication keys” on page 224.

v To import LTPA keys for the current cell if they were previously exported, see “Importing Lightweight

Third Party Authentication keys” on page 224.

7. Start the server again for any changes you make to become active.

The shared LTPA keys are now available for WebSphere Application Server to use for secure connections.

After the keys are generated or imported, they are used to encrypt and decrypt the LTPA token. To view

the latest key version, see “Activating Lightweight Third Party Authentication key versions” on page 227.

226 Securing applications and their environment

Activating Lightweight Third Party Authentication key versions

Key sets manage Lightweight Third Party Authentication (LTPA) keys in a key store that is based on a key

alias prefix. A key alias prefix is automatically generated when you generate a new key and store it in a

key store. Key stores can contain multiple versions of keys for any given key alias prefix. You can specify

a maximum number of active keys in the key set configuration.

You must know the name of the key set group and the management scope where the key set group is

defined.

The default key set group that is created to manage LTPA keys is NodeLTPAKeySetGroup.

Complete the following steps in the administrative console.

LTPA keys are used to encrypt the LTPA token. You might want to set a specific number of active keys that

WebSphere Application Server returns when the server queries for keys for a particular key set. The

following steps are needed to complete this task in the administrative console.

1. Click Security > SSL certificate and key management > Manage endpoint security

configurations.

2. Expand the tree to the inbound or outbound management scope that contains the key set group, and

then click the scope link.

3. Under Related Items, click Key Sets.

4. Click the key set that you want to modify.

5. In the Maximum number of keys referenced field, type a numerical value for the maximum number

of keys that you want to activate.

6. Click OK and Save to save the changes to the master configuration.

7. Start the server again for the changes to become active. WebSphere Application Server activates only

the number of recent keys that you specified.

The Maximum number of keys referenced value determines how many active keys are returned when

the server queries for keys for the selected key set.

You can click Active key history in the Key set panel to display the keys that are active for this key set.

Integrating third-party HTTP reverse proxy servers

These steps are required to use either a WebSEAL trust association interceptor or your own trust

association interceptor with a reverse proxy security server.

WebSphere Application Server enables you to use multiple trust association interceptors. The Application

Server uses the first interceptor that can handle the request.

1. Access the administrative console.

Type http://fully_qualified_host_name:port_number/ibm/console in a Web browser.

Port 9060 is the default port number for accessing the administrative console. During installation,

however, you might have specified a different port number. Use the appropriate port number.

2. Click Security > Secure administration, applications, and infrastructure.

3. Under Web security, click Trust association.

4. Select the Enable trust association option.

5. Under Additional properties, click Interceptors. The default value appears.

6. Verify that the appropriate trust association interceptors are listed. If you need to use a WebSEAL trust

association interceptor, see “Configuring single sign-on using the trust association interceptor” on page

260 or “Configuring single sign-on using trust association interceptor ++” on page 262. If you are not

using WebSEAL and need to use a different interceptor, complete the following steps:

Chapter 5. Authenticating users 227

a. Select both the com.ibm.ws.security.web.WebSealTrustAssociationInterceptor and the

com.ibm.ws.security.web.TAMTrustAssociationInterceptorPlus class name and click Delete.

b. Click New and specify a trust association interceptor.

Enables trust association.

1. If you are enabling security, make sure that you complete the remaining steps for enabling security.

2. Save, stop and restart all of the product servers (deployment managers, nodes and Application

Servers) for the changes to take effect.

Trust association settings

Use this page to enable trust association, which integrates application server security and third-party

security servers. More specifically, a reverse proxy server can act as a front-end authentication server

while the product applies its own authorization policy onto the resulting credentials passed by the proxy

server.

To view this administrative console page, complete the following steps:

1. Click Security > Secure administration, applications, and infrastructure.

2. Under Authentication, expand Web security and click Trust association.

When security is enabled and any of these properties change, go to the Secure administration,

applications, and infrastructure panel and click Apply to validate the changes.

Enable trust association

Specifies whether trust association is enabled.

 Data type: Boolean

Default: Disable

Range: Enable or Disable

Trust association interceptor collection

Use this page to specify trust information for reverse security proxy servers.

To view this administrative console page, complete the following steps:

1. Click Security > Secure administration, applications, and infrastructure.

2. Under Authentication, expand Web security and click Trust association.

3. Under Additional Properties, click Interceptors.

When security is enabled and any of these properties are changed, go to the Secure administration,

applications, and infrastructure panel and click Apply to validate the changes.

Interceptor class name

Specifies the trust association interceptor class name.

Data type

String

Default

com.ibm.ws.security.web.WebSealTrustAssociationInterceptor

Trust association interceptor settings

Use this page to specify trust information for reverse security proxy servers.

To view this administrative console page, complete the following steps:

228 Securing applications and their environment

1. Click Security > Secure administration, applications, and infrastructure.

2. Under Authentication, expand Web security and click Trust association.

3. Under Additional Properties, click Interceptors > New.

When security is enabled and any of these properties are changed, go to the Secure administration,

applications, and infrastructure panel and click Apply to validate the changes.

Interceptor class name

Specifies the trust association interceptor class name.

Data type

String

Default

com.ibm.ws.security.web.WebSealTrustAssociationInterceptor

Implementing single sign-on to minimize Web user authentications

With single sign-on (SSO) support, Web users can authenticate once when accessing Web resources

across multiple WebSphere Application Servers. Form login mechanisms for Web applications require that

SSO is enabled. Use this topic to configure single sign-on for the first time.

SSO is supported only when Lightweight Third Party Authentication (LTPA) is the authentication

mechanism.

When SSO is enabled, a cookie is created containing the LTPA token and inserted into the HTTP

response. When the user accesses other Web resources in any other WebSphere Application Server

process in the same domain name service (DNS) domain, the cookie is sent in the request. The LTPA

token is then extracted from the cookie and validated. If the request is between different cells of

WebSphere Application Servers, you must share the LTPA keys and the user registry between the cells for

SSO to work. The realm names on each system in the SSO domain are case sensitive and must match

identically.

Windows

For local OS, the realm name is the domain name if a domain is in use. If a domain is not

used, the realm name is the machine name.

Linux

The realm name is the same as the host name.

For the Lightweight Directory Access Protocol (LDAP) the realm name is the host:port realm name of the

LDAP server. The LTPA authentication mechanism requires that you enable SSO if any of the Web

applications have form login as the authentication method.

Because single sign-on is a subset of LTPA, it is recommended that you read “Lightweight Third Party

Authentication” on page 179 for more information.

When you enable security attribute propagation, the following cookies are added to the response:

LtpaToken

LtpaToken is used for inter-operating with previous releases of WebSphere Application Server.

This token contains the authentication identity attribute only.

LtpaToken2

LtpaToken2 contains stronger encryption and enables you to add multiple attributes to the token.

This token contains the authentication identity and additional information such as the attributes that

are used for contacting the original login server and the unique cache key for looking up the

Subject when considering more than just the identity in determining uniqueness.

Chapter 5. Authenticating users 229

For more information, see “Security attribute propagation” on page 191.

Note: LtpaToken is generated for releases prior to WebSphere Application Server Version 5.1.1.

LtpaToken2 is generated for WebSphere Application Server Version 5.1.1 and beyond.

 Token type Purpose How to specify

LtpaToken only This token type is used for the same

SSO behavior existing in WebSphere

Application Server Version 5.1 and

previous releases. Also, this token

type is interoperable with those

previous releases.

Disable the Web inbound security

attribute propagation option, which

is located in the SSO configuration

panel in the administrative console.

To access this panel, complete the

following steps:

1. Click Security > Secure

administration, applications,

and infrastructure.

2. Under Web security, click Single

sign-on (SSO).

LtpaToken2 only This token type is used for Web

inbound security attribute propagation

and uses the AES, CBC, PKCS5

padding encryption strength (128-bit

key size). However, this token type is

not interoperable with releases prior

to WebSphere Application Server

Version 5.1.1. The token type

supports multiple attributes that are

specified in the token, mostly

containing information to contact the

original login server.

Enable the Web inbound security

attribute propagation option in the

SSO configuration panel within the

administrative console. Disable the

Interoperability mode option in the

SSO configuration panel within the

administrative console. To access this

panel, complete the following steps:

1. Click Security > Secure

administration, applications,

and infrastructure.

2. Under Web security, click Single

sign-on (SSO).

LtpaToken and LtpaToken2 These tokens together support both

of the previous two options. The

token types are interoperable with

releases prior to WebSphere

Application Server Version 5.1.1

because LtpaToken is present. The

security attribute propagation function

is enabled because the LtpaToken2 is

present.

Enable the Web inbound security

attribute propagation option in the

SSO configuration panel within the

administrative console. Enable the

Interoperability mode option in the

SSO configuration panel within the

administrative console. To access this

panel, complete the following steps:

1. Click Security > Secure

administration, applications,

and infrastructure.

2. Under Web security, click Single

sign-on (SSO).

The following steps are required to configure SSO for the first time.

1. Open the administrative console.

Type http://localhost:port_number/ibm/console to access the administrative console in a Web

browser.

Port 9060 is the default port number for accessing the administrative console. During installation,

however, you might have specified a different port number. Use the appropriate port number.

2. Click Security > Secure administration, applications, and infrastructure.

3. Under Web security, click Single sign-on (SSO).

4. Click the Enabled option if SSO is disabled. After you click the Enabled option, make sure that you

complete the remaining steps to enable security.

230 Securing applications and their environment

5. Click Requires SSL if all of the requests are expected to use HTTPS.

6. Enter the fully qualified domain names in the Domain name field where SSO is effective. If you specify

domain names, they must be fully qualified. If the domain name is not fully qualified, WebSphere

Application Server does not set a domain name value for the LtpaToken cookie and SSO is valid only

for the server that created the cookie.

When you specify multiple domains, you can use the following delimiters: a semicolon (;), a space (),

a comma (,), or a pipe (|). WebSphere Application Server searches the specified domains in order from

left to right. Each domain is compared with the host name of the HTTP request until the first match is

located. For example, if you specify ibm.com; austin.ibm.com and a match is found in the ibm.com

domain first, WebSphere Application server does not continue to search for a match in the

austin.ibm.com domain. However, if a match is not found in either the ibm.com or austin.ibm.com

domains, then WebSphere Application Server does not set a domain for the LtpaToken cookie.

You can configure the Domain name field using any of the following values:

 Domain name value type Example Purpose

Blank The domain is not set. This causes the

browser to set the domain to the

request host name. The sign-on is

valid on that single host only.

Single domain name austin.ibm.com If the request is to a host within the

configured domain, the sign-on is valid

for all hosts within that domain.

Otherwise, it is valid on the request

host name only.

UseDomainFromURL UseDomainFromURL If the request is to a host within the

configured domain, the sign-on is valid

for all hosts within that domain.

Otherwise, it is valid on the request

host name only.

Multiple domain names austin.ibm.com;raleigh.ibm.com The sign-on is valid for all hosts within

the domain of the request host name.

Multiple domain names and

UseDomainFromURL

v austin.ibm.com;raleigh.ibm.com;

UseDomainFromURL

The sign-on is valid for all hosts within

the domain of the request host name.

If you specify the UseDomainFromURL, WebSphere Application Server sets the SSO domain name

value to the domain of the host that makes the request. For example, if an HTTP request comes from

server1.raleigh.ibm.com, WebSphere Application Server sets the SSO domain name value to

raleigh.ibm.com .

Tip: The value, UseDomainFromURL, is case insensitive. You can type usedomainfromurl to use this

value.

For more information, see “Single sign-on settings” on page 253.

7. Optional: Enable the Interoperability mode option if you want to support SSO connections in

WebSphere Application Server version 5.1.1 or later to interoperate with previous versions of the

application server. This option sets the old-style LtpaToken token into the response so it can be sent to

other servers that work only with this token type. However, this option applies only when the Web

inbound security attribute propagation option is enabled. In this case, both the LtpaToken and

LtpaToken2 tokens are added to the response. Otherwise, only the LtpaToken2 token is added to the

response. If the Web inbound security attribute propagation option is disabled, then only the

LtpaToken token is added to the response.

8. Optional: Enable the Web inbound security attribute propagation option if you want information

added during the login at a specific front-end server to propagate to other front-end servers. The SSO

token does not contain any sensitive attributes, but does understand where the original login server

exists in cases where it needs to contact that server to retrieve serialized information. It also contains

Chapter 5. Authenticating users 231

the cache look-up value for finding the serialized information in DynaCache, if both front-end servers

are configured in the same DRS replication domain. For more information, see “Security attribute

propagation” on page 191.

Important: If the following statements are true, it is recommended that you disable the Web inbound

security attribute propagation option for performance reasons:

v You do not have any specific information added to the Subject during a login that

cannot be obtained at a different front-end server.

v You did not add custom attributes to the PropagationToken token using

WSSecurityHelper application programming interfaces (APIs).

If you find that you are missing custom information in the Subject, re-enable the Web

inbound security attribute propagation option to see if the information is propagated

successfully to other front-end application servers. If you disable SSO, but use a trust

association interceptor instead, you might still need to enable the Web inbound security

attribute propagation option if you want to retrieve the same Subject generated at

different front-end servers.

9. Click OK.

For the changes to take effect, save, stop, and restart all the product servers.

Configuring single sign-on capability with SPNEGO TAI

WebSphere Application Server provides a trust association interceptor (TAI) that uses the Simple and

Protected GSS-API Negotiation Mechanism (SPNEGO) to securely negotiate and authenticate HTTP

requests for secured resources in WebSphere Application Server. To deploy and use the SPNEGO TAI you

need to examine your installation and decide on how best to configure the SPNEGO TAI.

Lightweight Third Party Authentication (LTPA) is the default authentication mechanism for WebSphere

Application Server. However, you may need to configure LTPA prior to configuring the SPNEGO TAI. LTPA

is the required authentication mechanism for all trust association interceptors. You can configure LTPA by

clicking Security > Secure administration, applications, and infrastructure > Authentication

mechanisms and expiration.

Note: Enabling Web security single sign-on (SSO) is optional when you configure the SPNEGO TAI. For

more information, see “Implementing single sign-on to minimize Web user authentications” on page

229.

Answer the following questions to establish how the SPNEGO TAI is deployed.

1. What is your criteria for intercepting HTTP requests?

v You must decide if the SPNEGO TAI deployment will use the HTTPHeaderFilter class as the default.

If you do use this class, then you must specify the exact filter properties for this class. The default

behavior of the SPNEGO TAI is to use the com.ibm.ws.spnego.HTTPHeaderFilter class to intercept

all requests.

v If you do not use the sample com.ibm.ws.spnego.HTTPHeaderFilter class, then you must define a

new class that implements the com.ibm.wsspi.security.spnego.SpnegoTAIFilter interface.

v You can decide to further control what HTTP requests are intercepted using the Service Provider

Programming Interface (SPI), “Filtering HTTP requests for SPNEGO TAI” on page 250

See “SPNEGO TAI custom configuration attributes” on page 236 for descriptions of

v com.ibm.ws.security.spnego.SPN<id>.filterClass

v com.ibm.ws.security.spnego.SPN<id>.filter

2. Is user Id mapping to be used? If not, why not? WebSphere Application Server enables you to define

or develop a custom login module to map user IDs. See “Mapping user Ids from client to server for

SPNEGO” on page 249 for more detail about performing this mapping.

232 Securing applications and their environment

You must decide, before deploying the TAI, whether or not to use this custom login module to perform

the SPNEGO TAI identity mapping

3. What type of encryption is to be used to process the SPNEGO tokens? Microsoft Windows Active

Directory supports two different Kerberos encryption types: RC4-HMAC and DES-CBC-MD5. The IBM

Java Generic Security Service (JGSS) library (and SPNEGO library) support both of these encryption

types.

Restriction: RC4-HMAC encryption is only supported with a Windows 2003 Server key distribution

center (KDC). RC4-HMAC encryption is not supported when using a Windows 2000

Server as a Kerberos KDC.

4. How will you handle credential delegation? Kerberos supports the delegation of credentials. A server

that receives Kerberos credentials from a client can impersonate that client to other servers by using

delegated credentials. Since SPNEGO TAI tokens are a wrapping of a Kerberos credential, a server

that receives Kerberos credentials within an SPNEGO token can use those Kerberos credentials to

impersonate the original user. That server can interact using SPNEGO over HTTP as a SPNEGO

client to other SPNEGO servers by composing an appropriate HTTP Authorization header.

5. Will the SPNEGO TAI be deployed in a single or multiple domain name service (DNS) domain

environment?

Web browsers running on Windows are sensitive to DNS domains. They only send a SPNEGO token

when the target host name identifies a host name defined in the DNS domain of the client machine.

You can use HTTP redirection to support this configuration with the creation of a pseudo Kerberos

service principal name (SPN) in each DNS domain. All SPNs that WebSphere Application Server

supports must have their secret keys available in Kerberos keytab files. To enable single sign-on

across multiple DNS domains, a separate Kerberos keytab file is generated for each SPN per domain.

These individual Kerberos keytab files must be merged before they can be used by WebSphere

Application Server.

6. How frequently will application servers reload the SPNEGO TAI properties The SPNEGO TAI has an

optional property reload feature that allows the reloading of the TAI properties without restarting the

Java virtual machine (JVM). This reload feature is controlled by the system properties

com.ibm.ws.security.spnego.propertyReloadFile and

com.ibm.ws.security.spnego.propertyReloadTimeout. These properties taken together enable the

SPNEGO TAI internal properties to be reloaded from a file on the file system after a certain time

period. If the com.ibm.ws.security.spnego.propertyReloadTimeout attribute is set to a valid integer

value, and the com.ibm.ws.security.spnego.propertyReloadFile attribute points to a file on the file

system, then each JVM reloads the SPNEGO TAI properties from the file after the timeout period

expires. Also, the SPNEGO TAI properties are reloaded only if the date on the file has changed. If

these reload properties are not set, then the SPNEGO TAI properties are only loaded once, at JVM

initialization, from the SPNEGO TAI custom properties that are defined in WebSphere Application

Server configuration data. See “SPNEGO TAI JVM configuration attributes” on page 247 for more

information about these reload properties.

The Windows Active Directory (Web) administrator, the WebSphere Application Server administrator, and

the application team review and answer these questions to determine the best deployment and

configuration settings for the SPNEGO TAI.

Configuring WebSphere Application Server environment to use SPNEGO

The objective of the Web administrator is to configure and administer the Simple and Protected GSS-API

Negotiation Mechanism (SPNEGO) trust association interceptor (TAI) in WebSphere Application Server to

provide users who successfully authenticated in a Microsoft Active Directory domain with a single sign-on

capability. The administrator specifies additional criteria that selects what Web transactions to authenticate

in the single sign-on environment.

Verify that the Web browser is configured to use the SPNEGO authentication mechanism. “Configuring the

Web browser to use SPNEGO” on page 252 describes what the user needs to do to configure the Web

browser.

Chapter 5. Authenticating users 233

The Web administrator configures and enables the SPNEGO TAI. The process to configure and enable the

SPNEGO TAI operation in WebSphere Application Server requires some tasks that use tools not supplied

by WebSphere Application Server. Refer to those appropriate documents that describe these tasks and

tools. These documents are supplied by the appropriate supplier.

1. Create a user account in the Microsoft Active Directory.

2. Map the user account to the Kerberos service principal name (SPN). This user account represents the

WebSphere Application Server as being a Kerberize’d service with the Kerberos key distribution center

(KDC). Use the setspn tool to establish WebSphere Application Server as the user. This user account

is not the account name of the user. More information about the setspn tool can be found here,

Windows 2003 Technical Reference (setspn command)

3. Create the Kerberos keytab file and make it available to WebSphere Application Server. Use the

ktpass tool to create the Kerberos keytab file (krb5.keytab). Windows 2003 Technical Reference

(Kerberos keytab file and ktpass command) provides more information on creating the Kerberos keytab

file.

4. Configure and enable the application server and the associated SPNEGO TAI using the administrative

console or using the wsadmin command to perform command tasks. See “Configuring SPNEGO TAI in

WebSphere Application Server” on page 236.

5. Select Lightweight Third-Party Authentication (LTPA) as the authentication mechanism. See

“Configuring the Lightweight Third Party Authentication mechanism” on page 219.

6. Enable the SPNEGO TAI in each application server in which it is defined.

7. Install the Kerberos keytab file (krb5.keytab).

8. Update the associated Kerberos configuration (krb5.conf).

9. Configure JVM properties and enable SPNEGO TAI. See “Configuring JVM properties and enabling

SPNEGO TAI in WebSphere Application Server” on page 246.

WebSphere Application Server is configured to use the SPNEGO TAI.

Configuring the Kerberos configuration properties:

The Kerberos configuration properties, or krb5.ini and krb5.conf files, must be configured on every

WebSphere Application Server instance in a cell in order to use the Simple and Protected GSS-API

Negotiation Mechanism (SPNEGO) trust association interceptor (TAI) for WebSphere Application Server.

 A configuration file for a Kerberos configuration on a UNIX platform follows:

[libdefaults]

 default_realm = WSSEC.AUSTIN.IBM.COM

 default_keytab_name = FILE:/etc/krb5.keytab

 default_tkt_enctypes = des-cbc-md5

 default_tgs_enctypes = des-cbc-md5

[realms]

 WSSEC.AUSTIN.IBM.COM = {

 kdc = axel.austin.ibm.com:88

 default_domain = austin.ibm.com

 admin_server = axel.austin.ibm.com

 default domain = austin.ibm.com

 }

[domain_realm]

 .austin.ibm.com = WSSEC.AUSTIN.IBM.COM

In the above example, the Kerberos key distribution center (KDC) is axel.austin.ibm.com:88. The

Kerberos keytab file is located at: FILE:/etc/krb5.keytab. The Kerberos realm name is

WSSEC.AUSTIN.IBM.COM, which is also the Microsoft domain controller. After you update your Kerberos

configuration properties for your particular system deployment, your Kerberos configuration is ready for

use with the SPNEGO TAI.

The Kerberos configuration is configured for use with the SPNEGO TAI.

234 Securing applications and their environment

http://www.microsoft.com/technet/prodtechnol/windowsserver2003/library/TechRef/b3a029a1-7ff0-4f6f-87d2-f2e70294a576.mspx
http://www.microsoft.com/technet/prodtechnol/windowsserver2003/library/TechRef/64042138-9a5a-4981-84e9-d576a8db0d05.mspx
http://www.microsoft.com/technet/prodtechnol/windowsserver2003/library/TechRef/64042138-9a5a-4981-84e9-d576a8db0d05.mspx

Creating the Kerberos configuration file for use with the SPNEGO TAI:

You use the wsadmin utility to create the Kerberos keytab configuration file for use with the Simple and

Protected GSS-API Negotiation Mechanism (SPNEGO) trust association interceptor (TAI) for WebSphere

Application Server.

 Note: A Kerberos keytab configuration file contains a list of keys that are analogous to user passwords. It

is important for hosts to protect their Kerberos keytab files by storing them on the local disk. The

krb5.conf file permission must be 644, which means that you can read and write the file; however,

members of the group that the file belongs to, and all others can only read the file.

Note: A Kerberos keytab configuration file contains a list of keys that are analogous to user passwords. It

is important for hosts to protect their Kerberos keytab files by storing them on the local disk. The

krb5.conf file permission must be 644, which means that you can read and write the file; however,

members of the group that the file belongs to, and all others can only read the file. The user ID that

runs adjunt, control, and servants must have read access to the krb5.conf and krb5.keytab files.

Use the wsadmin utility to configure the SPNEGO TAI for WebSphere Application Server:

1. Start WebSphere Application Server.

2. Start the command-line utility by running the wsadmin command from the app_server_root/bin

directory.

3. At the wsadmin prompt, enter the following command:

$AdminTask createKrbConfigFile

You can use the following parameters with this command:

 Option Description

<krbPath> This parameter is required. It provides the fully qualified

file system location of the Kerberos configuration (krb5.ini

or krb5.conf) file.

<realm> This parameter is required. It provides the Kerberos realm

name. The value of this attribute is used by the SPNEGO

TAI to form the Kerberos service principal name for each

of the hosts specified with the property

com.ibm.ws.security.spnego.SPN<id>.hostName.

<kdcHost> This parameter is required. It provides the host name of

the Kerberos Key Distribution Center (KDC).

<kdcPort> This parameter is optional. It provides the port number of

the KDC. The default value, if not specified, is 88.

<dns> This parameter is required. It provides the default domain

name service (DNS) that is used to produce a fully

qualified host name.

<keytabPath> This parameter is required. It provides the file system

location of the Kerberos keytab file.

<encryption> This parameter is optional. It identifies the list of

supported encryption types, separated by a space. The

specified value is used for the default_tkt_enctypes and

default_tgs_enctypes. The default encryption types, if not

specified, are des-cbc-md5 and rc4-hmac.

In the following example, the wsadmin command creates the krb5.ini file in the c:\winnt directory.

The default Kerberos keytab file is also in c:\winnt. The actual Kerberos realm name is

WSSEC.AUSTIN.IBM.COM and the KDC host name is host1.austin.ibm.com.

Chapter 5. Authenticating users 235

wsadmin>$AdminTask createKrbConfigFile {-krbPath

c:\winnt\krb5.ini -realm WSSEC.AUSTIN.IBM.COM -kdcHost host1.austin.ibm.com

 -dns austin.ibm.com -keytabPath c:\winnt\krb5.keytab}

The Kerberos keytab configuration file is created for use with the SPNEGO TAI.

Note: The default Kerberos krb5.ini file on Windows is /winnt/krb5.ini and on a distributed

environment is /etc/krb5. If you specify another location path, then you must also specify the

java.security.krb5.conf JVM property.

For example, if your krb5.conf file is specified at /opt/IBM/WebSphere/profiles/AppServer/etc/
krb5.conf, then you need to specify -Djava.security.krb5.con=/opt/IBM/WebSphere/profiles/
AppServer/etc/krb5.conf.

Configuring SPNEGO TAI in WebSphere Application Server:

Performing this task helps you, as Web administrator, to ensure that WebSphere Application Server is

properly configured to enable the operation of the Simple and Protected GSS-API Negotiation (SPNEGO)

trust association interceptor (TAI).

 You need to know how to use the WebSphere Application Server administrative console to manage the

security configuration and have the proper authority to modify the security configuration of the application

server.

Note: It is recommended that you use wsadmin to manage the SPNEGO TAI properties.

Complete the following steps to enable the operation of the SPNEGO TAI.

1. Log on to the WebSphere Application Server administrative console.

2. Click Security > Secure administration, applications, and infrastructure.

3. Expand Web security and click Trust association.

4. Under the General Properties heading, select the Enable trust association check box, then click

Interceptors.

5. Select the SPNEGO TAI in the list of interceptors, then click Custom properties.

6. Click New and then fill in the Name and Value fields. Click OK. Repeat this step for each custom

property that you want to apply to the SPNEGO TAI.

7. After you finish defining your custom properties, click Save to store the updated SPNEGO TAI

configuration.

Your SPNEGO TAI configuration is now configured for WebSphere Application Server. You must ensure

that:

v A user account is created in the Microsoft Active Directory and mapped to a Kerberos principal name.

v A Kerberos keytab file (krb5.keytab) is created and made available to the WebSphere Application

Server. The Kerberos keytab file contains keys WebSphere Application Server uses to authenticate the

user in the Microsoft Active Directory and the Kerberos account.

SPNEGO TAI custom configuration attributes:

The Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) trust association interceptor (TAI)

custom configuration attributes control different operational aspects of the SPNEGO TAI. You can specify

different attribute values for each application server.

 Each of the attributes defined in the following table is specified in the Custom Properties panel for the

SPNEGO TAI using the administrative console facility. For convenience, you can optionally place these

attributes in a properties file. In this case, the SPNEGO TAI loads the configuration attributes from the file

236 Securing applications and their environment

instead of the Custom Properties panel definition. Refer to com.ibm.ws.security.spnego.propertyReloadFile

property as defined in “SPNEGO TAI JVM configuration attributes” on page 247.

To assign unique attribute names that identify each possible SPN, an SPN<id> is embedded in the

attribute name and used to group the attributes that are associated with each SPN. The SPN<id> s are

numbered sequentially for each attribute group.

 Table 4.

Attribute Name Required Default Value

com.ibm.ws.security.spnego.SPN<id>.hostName Yes None

com.ibm.ws.security.spnego.SPN<id>.filterClass No See the description that

follows.

com.ibm.ws.security.spnego.SPN<id>.filter No See the description that

follows.

com.ibm.ws.security.spnego.SPN<id>.enableCredDelegate No false

com.ibm.ws.security.spnego.SPN<id>.spnegoNotSupportedPage No See the description that

follows.

com.ibm.ws.security.spnego.SPN<id>.NTLMTokenReceivedPage No See the description that

follows.

com.ibm.ws.security.spnego.SPN<id>.trimUserName No true

com.ibm.ws.security.spnego.SPN<id>.hostName

This attribute is required. It specifies the hostname in the SPN used by the SPNEGO TAI to establish

a Kerberos secure context.

Note: The hostname is the long form of hostname. For example, myHostName.austin.ibm.com.
The Kerberos SPN is a string of the form HTTP/hostname@realm. The complete SPN is used with the

Java Generic Security Service (JGSS) by the SPNEGO provider to obtain the security credential and

security context that are used in the authentication process.

com.ibm.ws.security.spnego.SPN<id>.filterClass

This attribute is optional. It specifies the name of the Java class that is used by the SPNEGO TAI to

select which HTTP requests are subject to SPNEGO authentication. If no class is specified, the default

com.ibm.ws.security.spnego.HTTPHeaderFilter implementation class is used. The Java class that is

specified must implement the com.ibm.wsspi.security.spnego.SpnegoFilter interface. A default

implementation of this interface is provided. Specify the

com.ibm.ws.security.spnego.HTTPHeaderFilter class to use the default implementation. This class

uses the selection rules specified with the com.ibm.ws.security.spnego.SPN<id>.filter property.

com.ibm.ws.security.spnego.SPN<id>.filter

This attribute is optional. It defines the filtering criteria that is used by the specified class with the

previous attribute. It defines arbitrary criteria that is meaningful to the implementation class used. The

com.ibm.ws.security.spnego.HTTPHeaderFilter default implementation class uses this attribute to

define a list of selection rules that represent conditions that are matched against the HTTP request

headers to determine whether or not the HTTP request is selected for SPNEGO authentication.

 Each condition is specified with a key-value pair, separated from each other by a semicolon. The

conditions are evaluated from left to right, as they display in the specified attribute. If all conditions are

met, the HTTP request is selected for SPNEGO authentication.

 The key and value in the key-value pair are separated by an operator that defines which condition is

checked. The key identifies an HTTP request header to extract from the request and its value is

compared with the value that is specified in the key-value pair according to the operator specification.

If the header that is identified by the key is not present in the HTTP request, the condition is treated as

not being met.

Chapter 5. Authenticating users 237

Any of the standard HTTP request headers can be used as the key in the key-value pairs. Refer to the

HTTP specification for the list of valid headers. In addition, two keys are defined to extract information

from the request, also useful as a selection criterion, which is not available through standard HTTP

request headers. The remote-address key is used as a pseudo header to retrieve the remote TCP/IP

address of the client application that sent the HTTP request. The request-URL key is used as a

pseudo header to retrieve the URL that is used by the client application to make the request. The

interceptor uses the result of the getRequestURL operation in the javax.servlet.http.HttpServletRequest

interface to construct the Web address. If a query string is present, the result of the getQueryString

operation in the same interface is also used. In this case, the complete URL is constructed as follows:

String url = request.getRequestURL() + ‘?’ + request.getQueryString();

The following operators and conditions are defined:

 Table 5. Filter conditions and operations

Condition Operator Example

Match exactly = =

Arguments are compared as

equal.

host=host.my.company.com

Match partially (includes) %=

Arguments are compared with a

partial match being valid.

user-agent%=IE 6

Match partially (includes one of

many)

^=

Arguments are compared with a

partial match being valid for one

of many arguments specified.

request-url^=webApp1|webApp2|webApp3

Does not match !=

Arguments are compared as not

equal.

request-url!=noSPNEGO

Greater than >

Arguments are compared

lexogaphically as greater than.

remote-address>192.168.255.130

Less than <

Arguments are compared

lexographically as less than.

remote-address<192.168.255.135

com.ibm.ws.security.spnego.SPN<id>.enableCredDelegate

This attribute is optional. It indicates whether or not the Kerberos SPNEGO delegated credentials are

stored by the SPNEGO TAI. This attribute enables the capability for an application to retrieve the

stored credentials and propagate them to other applications downstream for additional SPNEGO

authentication.

 This attribute requires use of the advanced Kerberos credential delegation feature and requires

development of custom logic by the application developer. The developer must interact directly with the

Kerberos Ticket Granting Service (TGS) to obtain a Ticket Granting Ticket (TGT) using the delegated

Kerberos credentials on behalf of the end-user who originated the request. The developer must also

construct the appropriate Kerberos SPNEGO token and include it in the HTTP request to continue the

downstream SPNEGO authentication process, including handling additional SPNEGO

challenge-response exchange, if necessary.

com.ibm.ws.security.spnego.SPN<id>.spnegoNotSupportedPage

This attribute is optional. It specifies the Web address of a resource that contains the content that the

238 Securing applications and their environment

SPNEGO TAI includes in the HTTP response that the (browser) client application displays if it does not

support SPNEGO authentication. It can specify a Web (http://) or a file (file://) resource. If this attribute

is not specified or the interceptor cannot find the specified resource, the following content is used:

<html><head><title>SPNEGO authentication is not supported</title></head>

<body>SPNEGO authentication is not supported on this client</body></html>;

com.ibm.ws.security.spnego.SPN<id>.NTLMTokenReceivedPage

This attribute is optional. It specifies the Web address of a resource that contains the content that the

SPNEGO TAI includes in the HTTP response that the (browser) client application displays when the

SPNEGO token is received by the interceptor when the challenge-response handshake contains a NT

LAN Manager (NTLM) token instead of the expected SPNEGO token. It can specify a Web (http://) or

a file (file://) resource. If this attribute is not specified or the interceptor cannot find the specified

resource, the following content is used:

<html><head><title>An NTLM Token was received.</title></head>

<body>Your browser configuration is correct, but you have not logged into a supported

Microsoft(R) Windows(R) Domain.

<p>Please login to the application using the normal login page.</html>

com.ibm.ws.security.spnego.SPN<id>.trimUserName

This attribute is optional. It specifies whether (true) or not (false) the SPNEGO TAI is to remove the

suffix of the principal user name, starting from the ″@″ that precedes the Kerberos realm name. If this

attribute is set to true, the suffix of the principal user name is removed. If this attribute is set to false,

the suffix of the principal name is retained. The default value used is true. For example,

 When com.ibm.ws.security.spnego.SPN<id>.trimUserName = true

bobsmith@myKerberosRealm becomes bobsmith

When com.ibm.ws.security.spnego.SPN<id>.trimUserName = false

bobsmith@myKerberosRealm remains bobsmith@myKerberosRealm

Note: The following commands tasks can be used to operate on these SPNEGO TAI attributes:

v “Adding SPNEGO TAI properties using the wsadmin utility” on page 240

v “Deleting SPNEGO TAI properties using the wsadmin utility” on page 244

v “Modifying SPNEGO TAI properties using the wsadmin utility” on page 242

v “Displaying SPNEGO TAI properties using the wsadmin utility” on page 245

 Related concepts

 “Single sign-on for HTTP requests using SPNEGO” on page 186
WebSphere Application Server provides a trust association interceptor (TAI) that uses the Simple and

Protected GSS-API Negotiation Mechanism (SPNEGO) to securely negotiate and authenticate HTTP

requests for secured resources in WebSphere Application Server.

 Related tasks

 “Adding SPNEGO TAI properties using the wsadmin utility” on page 240
You use the wsadmin utility to add properties for the Simple and Protected GSS-API Negotiation

Mechanism (SPNEGO) trust association interceptor (TAI) in the security configuration for WebSphere

Application Server.

 “Deleting SPNEGO TAI properties using the wsadmin utility” on page 244
You use the wsadmin utility to delete properties in the configuration of the Simple and Protected

GSS-API Negotiation Mechanism (SPNEGO) trust association interceptor (TAI) for WebSphere

Application Server.

 “Modifying SPNEGO TAI properties using the wsadmin utility” on page 242
You use the wsadmin utility to modify the properties in the configuration of the Simple and Protected

GSS-API Negotiation Mechanism (SPNEGO) trust association interceptor (TAI) for WebSphere

Application Server.

Chapter 5. Authenticating users 239

“Displaying SPNEGO TAI properties using the wsadmin utility” on page 245
You use the wsadmin utility to display the properties in the configuration of the Simple and Protected

GSS-API Negotiation Mechanism (SPNEGO) trust association interceptor (TAI) for WebSphere

Application Server.

 “Mapping user Ids from client to server for SPNEGO” on page 249
You can use a system programming interface to customize the behavior of the Simple and Protected

GSS-API Negotiation Mechanism (SPNEGO) trust association interceptor (TAI) by implementing

arbitrary mappings of the end-user’s identity, which is retrieved from Microsoft Active Directory to the

identity that is used in the WebSphere Application Server security registry.

Adding SPNEGO TAI properties using the wsadmin utility:

You use the wsadmin utility to add properties for the Simple and Protected GSS-API Negotiation

Mechanism (SPNEGO) trust association interceptor (TAI) in the security configuration for WebSphere

Application Server.

 Use the wsadmin utility to configure the SPNEGO TAI for WebSphere Application Server:

1. Start WebSphere Application Server.

2. Start the command-line utility by running the wsadmin command from the app_server_root/bin

directory.

3. At the wsadmin prompt, enter the following command:

$AdminTask addSpnegoTAIProperties

You can use the following parameters with this command:

 Option Description

<spnId> This is the SPN identifier for the group of custom

properties that are to be defined with this command. If

you do not specify this parameter, an unused SPN

identifier is assigned.

<host> It specifies the host name portion in the SPN used by the

SPNEGO TAI to establish a Kerberos secure context.

This parameter is required.

<filter> This attribute is optional. It defines the filtering criteria

used by the class specified with the above attribute. If no

filter is specified, all HTTP requests are subject to

SPNEGO authentication.

<filterClass> This attribute is optional. It specifies the name of the Java

class used by the SPNEGO TAI to select which HTTP

requests will be subject to SPNEGO authentication. If no

filter class is specified, the default filter class,

com.ibm.ws.security.spnego.HTTPHeaderFilter, is used.

240 Securing applications and their environment

Option Description

<noSpnegoPage> This attribute is optional. It specifies the URL of a

resource that contains the content the SPNEGO TAI will

include in the HTTP response to be displayed by the

(browser) client application if it does not support

SPNEGO authentication.

If you do not specify the noSpnegoPage attribute then the

default is used:

"<html><head><title>SPNEGO

authentication is not supported.

</title></head>" +

"<body>SPNEGO authentication is

not supported on this client.

</body></html>";

<ntlmTokenPage> This attribute is optional. It specifies the URL of a

resource that contains the content the SPNEGO TAI will

include in the HTTP response to be displayed by the

(browser) client application when the SPNEGO token

received by the interceptor after the challenge-response

handshake contains a NT LAN manager (NTLM) token

instead of the expected SPNEGO token.

If you do not specify the ntlmTokenPage attribute then the

default is used:

"<html><head><title>An NTLM

Token was received.</title></head>"

+ "<body>Your browser configuration

is correct, but you have not

logged into a supported Windows

Domain."

+ "<p>Please login to the application

using the normal login page.</html>";

<trimUserName> This parameter is optional. It specifies whether (true) or

not (false) the SPNEGO TAI is to remove the suffix of

the principal user name, starting from the ″@″ that

precedes the Kerberos realm name. If this attribute is set

to true, the suffix of the principal user name is removed.

If this attribute is set to false, the suffix of the principal

name is retained. The default value used is true.

SPNEGO TAI properties have been added for this WebSphere Application Server.

Example 1

The following example configures the SPNEGO TAI to intercept HTTP request that contain IE 6 in the

user agent request header. The SPNEGO TAI uses the SPN of HTTP/
myhost.ibm.com@<default_realm> to authenticate the request originator.

$AdminTask addSpnegoTAIProperties -host myhost.ibm.com -filter user-agent%=IE 6

Example 2

 The following is an example of adding SPNEGOTAIProperties for SPN1 to use the default filterClass

and to intercept all requests for the host, central01.austin.ibm.com.

wsadmin>$AdminTask addSpnegoTAIProperties -interactive

Add SPNEGO TAI properties

Add SPNEGO TAI configuration properties.

*Host name in Service Principal Name (host): central01.austin.ibm.com

Service Principal Name identifier (spnId): 1

Chapter 5. Authenticating users 241

HTTP header filter rule (filter):

Name of class used to filter HTTP requests (filterClass):

SPNEGO not supported browser response (noSpnegoPage):

NTLM Token received browser response (ntlmTokenPage):

Trim User Name browser response (trimUserName):

Add SPNEGO TAI properties

F (Finish)

C (Cancel)

Select [F, C]: [F] f

WASX7278I: Generated command line: $AdminTask addSpnegoTAIProperties {-host central01.austin.ibm.com}

com.ibm.ws.security.spnego.SPN1.hostName=central01.austin.ibm.com

wsadmin>

Modifying SPNEGO TAI properties using the wsadmin utility:

You use the wsadmin utility to modify the properties in the configuration of the Simple and Protected

GSS-API Negotiation Mechanism (SPNEGO) trust association interceptor (TAI) for WebSphere Application

Server.

 You use the wsadmin utility to configure the SPNEGO TAI for WebSphere Application Server:

1. Start WebSphere Application Server.

2. Start the command-line utility by running the wsadmin command from the app_server_root/bin

directory.

3. At the wsadmin prompt, enter the following command:

$AdminTask modifySpnegoTAIProperties

You can use the following parameters with this command:

 Option Description

<spnId> The SPN identifier for the group of custom properties that

are to be defined with this command. You must specify

this parameter.

<host> This parameter is optional. It specifies the host name

portion in the SPN used by the SPNEGO TAI to establish

a Kerberos secure context.

<filter> This parameter is optional. It defines the filtering criteria

used by the class specified with the above attribute.

<filterClass> This parameter is optional. It specifies the name of the

Java class used by the SPNEGO TAI to select which

HTTP requests will be subject to SPNEGO authentication.

If no class is specified, all HTTP requests will be subject

to SPNEGO authentication.

242 Securing applications and their environment

Option Description

<noSpnegoPage> This parameter is optional. It specifies the URL of a

resource that contains the content the SPNEGO TAI will

include in the HTTP response to be displayed by the

(browser) client application if it does not support

SPNEGO authentication.

If you do not specify the noSpnegoPage attribute then the

default is used:

"<html><head><title>SPNEGO

authentication is not supported.

</title></head>" +

"<body>SPNEGO authentication is

not supported on this client.

</body></html>";

<ntlmTokenPage> This parameter is optional. It specifies the URL of a

resource that contains the content the SPNEGO TAI will

include in the HTTP response to be displayed by the

(browser) client application when the SPNEGO token

received by the interceptor after the challenge-response

handshake contains a NT LAN manager (NTLM) token

instead of the expected SPNEGO token.

If you do not specify the ntlmTokenPage attribute then the

default is used:

"<html><head><title>An NTLM Token

was received.</title></head>"

+ "<body>Your browser configuration

is correct, but you have not

logged into a supported Windows

Domain."

+ "<p>Please login to the application

using the normal login page.</html>";

<trimUserName> This parameter is optional. It specifies whether (true) or

not (false) the SPNEGO TAI is to remove the suffix of

the principal user name, starting from the ″@″ that

precedes the Kerberos realm name. If this attribute is set

to true, the suffix of the principal user name is removed.

If this attribute is set to false, the suffix of the principal

name is retained. The default value used is true.

SPNEGO TAI properties are modified for this WebSphere Application Server.

Example 1

The following example configures the SPNEGO TAI to intercept HTTP request that contain IE 6 in the

user agent request header. The SPNEGO TAI uses the SPN of HTTP/
myhost.ibm.com@<default_realm> to authenticate the request originator. Then the example modifies

the value of the filter custom property that was defined and changes it from user-agent%=IE 6 to

host==myhost.company.com.

$AdminTask addSpnegoTAIProperties -host myhost.ibm.com -filter user-agent%=IE 6

$AdminTask modifySpnegoTAIProperties -spnId 1 -filter host==myhost.company.com

Example 2

This is an example of modifying the SPNEGO TAI for SPN1 properties to add a filter for host

central01.austin.ibm.com.

Chapter 5. Authenticating users 243

wsadmin>$AdminTask modifySpnegoTAIProperties -interactive

Modify SPNEGO TAI properties

Modify SPNEGO TAI configuration properties

*Service Principal Name identifier (spnId): 1

Host name in Service Principal Name (host): central01.austin.ibm.com

HTTP header filter rule (filter): request-url!=noSPNEGO;request-url%=snoop

Name of class used to filter HTTP requests (filterClass):

SPNEGO not supported browser response (noSpnegoPage):

NTLM Token received browser response (ntlmTokenPage):

Trim User Name browser response (trimUserName):

Modify SPNEGO TAI properties

F (Finish)

C (Cancel)

Select [F, C]: [F] f

WASX7278I: Generated command line: $AdminTask modifySpnegoTAIProperties {-spnId

1 -host w2003secdev.austin.ibm.com -filter request-url!=noSPNEGO;request-url%=sn

oop}

com.ibm.ws.security.spnego.SPN1.filter=request-url!=noSPNEGO;request-url%=snoop

com.ibm.ws.security.spnego.SPN1.hostName=central01.austin.ibm.com

wsadmin>

Deleting SPNEGO TAI properties using the wsadmin utility:

You use the wsadmin utility to delete properties in the configuration of the Simple and Protected GSS-API

Negotiation Mechanism (SPNEGO) trust association interceptor (TAI) for WebSphere Application Server.

 You use the wsadmin utility to configure the SPNEGO TAI for WebSphere Application Server:

1. Start WebSphere Application Server.

2. Start the command-line utility by running the wsadmin command from the app_server_root/bin

directory.

3. At the wsadmin prompt, enter the following command:

$AdminTask deleteSpnegoTAIProperties

You can use the following parameters with this command:

 Option Description

<spnId> This is an optional parameter. The SPN identifier for the

group of custom properties that are to be deleted with this

command. If you do not specify this parameter, all

SPNEGO TAI custom properties are deleted.

SPNEGO TAI properties are deleted for this WebSphere Application Server.

Example 1

The following example deletes all the SPNEGO TAI properties for SPN2

wsadmin>$AdminTask deleteSpnegoTAIProperties {-spnId 2}

Example 2

The following example deletes all SPNEGO TAI properties

244 Securing applications and their environment

wsadmin>$AdminTask deleteSpnegoTAIProperties

com.ibm.ws.security.spnego.SPN1.filter=request-url!=noSPNEGO;request-url%=snoop

com.ibm.ws.security.spnego.SPN1.hostName=central01.austin.ibm.com

com.ibm.ws.security.spnego.SPN2.hostName=wssecpd.austin.ibm.com

wsadmin>

Displaying SPNEGO TAI properties using the wsadmin utility:

You use the wsadmin utility to display the properties in the configuration of the Simple and Protected

GSS-API Negotiation Mechanism (SPNEGO) trust association interceptor (TAI) for WebSphere Application

Server.

 You use the wsadmin utility to configure the SPNEGO TAI for WebSphere Application Server:

1. Start WebSphere Application Server.

2. Start the command-line utility by running the wsadmin command from the app_server_root/bin

directory.

3. At the wsadmin prompt, enter the following command:

$AdminTask showSpnegoTAIProperties

You can use the following parameters with this command:

 Option Description

<spnId> This is an optional parameter. The service principal name

(SPN) identifier for the group of custom properties that

are to be displayed with this command. If you do not

specify this parameter, all SPNEGO TAI custom

properties are displayed.

SPNEGO TAI properties are displayed for this WebSphere Application Server.

Example 1

The following example displays all SPNEGO TAI properties.

wsadmin>$AdminTask showSpnegoTAIProperties

com.ibm.ws.security.spnego.SPN1.filter=request-url!=noSPNEGO;request-url%=snoop

com.ibm.ws.security.spnego.SPN1.hostName=central01.austin.ibm.com

com.ibm.ws.security.spnego.SPN2.hostName=wssecpd.austin.ibm.com

wsadmin>

Example 2

The following example displays SPNEGO TAI properties for SPN1 and host, central01.austin.ibm.com.

wsadmin>$AdminTask showSpnegoTAIProperties -interactive

Show SPNEGO TAI configuration properties.

Display SPNEGO TAI configuration properties.

Service Principal Name identifier (spnId): 1

Show SPNEGO TAI configuration properties.

F (Finish)

C (Cancel)

Select [F, C]: [F]

WASX7278I: Generated command line: $AdminTask showSpnegoTAIProperties {-spnId 1}

Chapter 5. Authenticating users 245

com.ibm.ws.security.spnego.SPN1.filter=request-url!=noSPNEGO;request-url%=snoop

com.ibm.ws.security.spnego.SPN1.hostName=central01.austin.ibm.com

com.ibm.ws.security.spnego.SPN1.trimUserName=true

wsadmin>

Configuring JVM properties and enabling SPNEGO TAI in WebSphere Application Server:

Performing this task helps you, as Web administrator, to ensure that WebSphere Application Server is

configured to enable the operation of the Simple and Protected GSS-API Negotiation mechanism

(SPNEGO) trust association interceptor (TAI) with the required Java virtual machine (JVM) property.

 You need to know how to use the WebSphere Application Server administrative console to manage the

security configuration and have the proper authority to modify the security configuration of the application

server.

Complete the following steps to enable the operation of the SPNEGO TAI by setting the JVM required

property.

1. Log on to WebSphere Application Server administrative console.

2. Click Servers > Application servers.

3. Select the appropriate servers and click Java and process management > Process Definition.

4. Click Java virtual machine. In the Generic JVM arguments field, type

-Dcom.ibm.ws.security.spnego.isEnabled=true.

5. Click Apply > OK to save the configuration

The application server is configured and ready to provide a single sign-on environment for end users who

have successfully authenticated in a Microsoft Active Directory domain. You must restart each application

server that is configured for SPNEGO Web authentication.

Enabling the SPNEGO TAI using scripting:

You use the wsadmin utility to enable the Simple and Protected GSS-API Negotiation Mechanism

(SPNEGO) trust association interceptor (TAI) for WebSphere Application Server.

 Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

Perform the following steps to enable the SPNEGO TAI:

1. Identify the server and assign it to the server1 variable:

v Using Jacl:

set server1 [$AdminConfig getid /Cell:mycell/Node:mynode/Server:server1/]

v Using Jython:

server1 = AdminConfig.getid("Cell:mycell/Node:mynode/Server:server1/")

print server1

Example output:

server1(cells/mycell/nodes/mynode|servers/seerver1|server.xml#Server_1)

2. Identify the Java virtual machine (JVM) belonging to this server and assign it to the jvm variable:

v Using Jacl:

set jvm [$AdminConfig list JavaVirutalMachine $server1]

v Using Jython:

jvm = AdminConfig.list(’JavaVirutalMachine’,server1’)

Example output:

246 Securing applications and their environment

(cells/mycell/nodes/mynode/servers/server1:server.xml#JavaVirtualMachine_1)

(cells/mycell/nodes/mynode/servers/server1:server.xml#JavaVirtualMachine_2)

3. Identify the controller JVM of the server:

v Using Jacl:

set cjvm [lindex $jvm 0]

Using Jython:

get line separator

import java

lineSeparator = java.lang.System.getProperty(’line.separator’)

arrayJVMs = jvm.split(lineSeparator)

cjvm = arrayJVMs[0]

4. Modify the generic JVM arguments to enable SPNEGO TAI:

v Using Jacl:

$AdminConfig modify $cjvm { {genericJvmArguments "-Dcom.ibm.ws.security.spnego.isEnabled=true"} }

v Using Jython:

AdminConfig.modify(cjvm, [[’genericJvmArguments’, "-Dcom.ibm.ws.security.spnego.isEnabled=true"]])

5. Save the configuration changes. See the Saving configuration changes with the wsadmin tool article

for more information.

6. In a network deployment environment only, synchronize the node. See the Synchronizing nodes with

the wsadmin tool article for more information.

SPNEGO TAI JVM configuration attributes:

Java virtual machine (JVM) attributes control the operation of the Simple and Protected GSS-API

Negotiation Mechanism (SPNEGO) trust association interceptor (TAI).

 The following JVM attributes control operation of the SPNEGO TAI. Different attribute values can be

specified for each application server.

 Table 6. JVM configuration attributes

Attribute Name Required

Value

Type

Default

Value Recommended Value

com.ibm.ws.security.spnego.isEnabled No Boolean False True

com.ibm.ws.security.spnego.propertyReloadFile No String None For Windows

C:\temp\TAI.props

For UNIX

/tmp/TestTAI.Properties

com.ibm.ws.security.spnego.propertyReloadTimeout No Integer None 120

com.ibm.ws.security.spnego.isEnabled

Use this attribute to enable or disable operation of the SPNEGO TAI in a given application server.

When set to false, the SPNEGO TAI is disabled and not used by the Web authentication module for

authenticating any Web requests. When set to true, the SPNEGO TAI is enabled and used by the

Web authentication module for authenticating any Web requests.

com.ibm.ws.security.spnego.propertyReloadFile

Use this attribute to identify the file that contains configuration properties for the SPNEGO TAI, when it

is not convenient to stop and restart the application server. The properties contained in this file can be

reloaded to configure the SPNEGO TAI.

Important: the properties that are defined in the specified file override any properties defined using

the administrative console.

Chapter 5. Authenticating users 247

A sample of this reload file follows:

Template properties files for SPNEGO TAI

Where possible defaults have been provided.

#---

Hostname

#---

#com.ibm.ws.spnego.SPN1.HostName=wsecurity.austin.ibm.com

#---

(Optional) SpnegoNotSupportedPage

#---

#com.ibm.ws.spnego.SPN1.SpnegoNotSupportedPage=

#---

(Optional) NTLMTokenReceivedPage

#---

#com.ibm.ws.spnego.SPN1.NTLMTokenReceivedPage=

#---

(Optional) FilterClass

#---

#com.ibm.ws.spnego.SPN1.FilterClass=com.ibm.ws.spnego.HTTPHeaderFilter

#---

(Optional) Filter

#---

#com.ibm.ws.spnego.SPN1.Filter=

Important: If com.ibm.ws.security.spnego.propertyReloadFile attribute is set, but the

com.ibm.ws.security.spnego.propertyReloadTimeout attribute is not, then the SPNEGO TAI

is not initialized.

com.ibm.ws.security.spnego.propertyReloadTimeout

Use this attribute to specify a time interval in seconds that elapses after which the SPNEGO TAI

reloads the configuration properties. Also, the SPNEGO TAI reloads the configuration properties if the

file that is identified by the com.ibm.ws.security.spnego.propertyReloadFile attribute changed since the

last time the configuration attributes were retrieved. This time interval in seconds must be specified as

a positive integer.

Important:

v If the com.ibm.ws.security.spnego.propertyReloadFile attribute and the

com.ibm.ws.security.spnego.propertyReloadTimeout attribute are not set, then the SPNEGO

TAI properties are only loaded once from the SPNEGO TAI custom properties defined in the

WebSphere Application Server configuration data. This one time loading occurs when the

JVM is initialized.

v If com.ibm.ws.security.spnego.propertyReloadTimeout attribute is set, but the

com.ibm.ws.security.spnego.propertyReloadFile attribute is not, then the SPNEGO TAI is

not initialized.

The following examples show how to enable operation of the SPNEGO TAI by setting the

com.ibm.ws.security.spnego.isEnabled JVM property to true using the scripting that is available in

WebSphere Application Server for AdminConfig commands.

Using JACL:

248 Securing applications and their environment

set server [$AdminConfig getid /Cell:mycell/Node:mynode/Server:myserver]

set jvm [$AdminConfig list JavaVirtualMachine $server]

$AdminConfig modify $jvm {{genericJvmArguments "-Dcom.ibm.ws.security.spnego.isEnabled =true"}}

$AdminConfig save

Using Jython:

server = AdminConfig.getid(‘/Cell:mycell/Node:mynode/Server:myserver’)

 jvm = AdminConfig.list(‘JavaVirtualMachine’, server)

 AdminConfig.modify(jvm, [[‘genericJvmArguments’, “Dcom.ibm.ws.security.spnego.isEnabled =true”]])

AdminConfig.save()

Remember: You can also use the wsadmin command for the AdminConfig scripting object to interactively

set the com.ibm.ws.security.spnego.isEnabled attribute. See “Enabling the SPNEGO TAI

using scripting” on page 246 for more information.

The following attributes are not used directly by the SPNEGO TAI; however, they affect the operation of

the core security runtime and can also be used for problem determination.

 Table 7. JVM configuration attributes

Attribute Name Required Value Type Default Value Recommended Value

java.security.properties No String None

com.ibm.security.jgss.debug No String None ″off″ or ″all″

com.ibm.security.krb5.Krb5Debug No String None ″off″ or ″all″

javax.security.auth.useSubjectCredsOnly Yes Boolean True False

java.security.properties

This property is optional. It can be used when different application servers in a cell have different

security requirements and it is not convenient to modify the global java.security file for the entire cell.

In such situations, the java.security.properties attribute is used to specify the location of the

java.security file used by the JVM for each application server.

com.ibm.security.jgss.debug

This attribute is optional. It can be used to collect diagnostic trace information for problem

determination in the Java Generic Security Service (JGSS) application programmer interface (API)

implementation. The value can be set to all or off to enable or disable tracing, respectively. See Java

Generic Security Service User’s Guide for specific JGSS API information.

com.ibm.security.krb5.Krb5Debug

This attribute is optional. It can be used to collect additional diagnostic trace information for problem

determination in the JGSS implementation. The value can be set to all or off to enable or disable

tracing, respectively.

javax.security.auth.useSubjectCredsOnly

JGSS includes an optional Java Authentication and Authorization Service (JAAS) login facility that

saves Principal credentials and secret keys in the Subject of the application’s JAAS login context.

JGSS retrieves credentials and secret keys from the Subject by default. This feature can be disabled

by setting the Java property javax.security.auth.useSubjectCredsOnly to false.

Attention: The SPNEGO TAI does not use the optional JAAS login module. The

javax.security.auth.useSubjectCredsOnly property must be set to false.

Mapping user Ids from client to server for SPNEGO:

You can use a system programming interface to customize the behavior of the Simple and Protected

GSS-API Negotiation Mechanism (SPNEGO) trust association interceptor (TAI) by implementing arbitrary

mappings of the end-user’s identity, which is retrieved from Microsoft Active Directory to the identity that is

used in the WebSphere Application Server security registry.

Chapter 5. Authenticating users 249

http://dwmaster.raleigh.ibm.com/dwcontent/developerworks/java/jdk/security/142/secguides/jgssDocs/users_guide.jgss.ibm.html
http://dwmaster.raleigh.ibm.com/dwcontent/developerworks/java/jdk/security/142/secguides/jgssDocs/users_guide.jgss.ibm.html

You need to perform some administrative tasks in the WebSphere Application Server environment to use

SPNEGO TAI and to ensure that the requester’s identity matches the identity in the WebSphere

Application Server user registry.

In the simplest deployment of the SPNEGO TAI, it is assumed that the requester’s identity in the

WebSphere Application Server user registry is identical to the identity retrieved. This is the case when

Microsoft Windows Active Directory server is the lightweight directory access protocol (LDAP) server used

in WebSphere Application Server. This is default behavior of the SPNEGO TAI.

You do not need to use this simple deployment of the SPNEGO TAI. WebSphere Application Server can

use a different registry, such as a local OS, LDAP, or custom registry instead of the Microsoft Active

Directory. If WebSphere Application Server uses a different registry than the Microsoft Active Directory,

then a mapping from the Microsoft Windows user Id to a WebSphere Application Server user Id is

necessary.

1. Configure the Web browser to use SPNEGO.

2. Configure Java virtual machine (JVM) properties and custom SPNEGO TAI properties.

3. Enable the SPNEGO TAI.

4. Use the custom login module to perform any custom mapping of user Ids from the user registry to the

user registry of WebSphere Application Server. The custom login module is a plug-in mechanism that

is defined for authenticating incoming and outgoing requests in WebSphere Application Server. The

custom login module is inserted before the ltpaLoginModule and maps the name in the

com.ibm.wsspi.security.tai.TAIResult (which was returned to the Web authenticator) to the

corresponding name in the user registry. The ltpaLoginModule then uses the mapped identity to create

a WSCredential.

The custom login module can also supply the full set of security attributes in the

javax.security.auth.Subject in the com.ibm.wsspi.security.tai.TAIResult to fully assert the mapped

identity. When the identity is fully asserted, the wsMapDefaultInboundLoginModule maps those security

attributes to a WSCredential.

Using the custom login module, Microsoft Active Directory identities are mapped to the WebSphere

Application Server’s security registry.

Filtering HTTP requests for SPNEGO TAI:

You can use a system programming interface to customize the behavior of the Simple and Protected

GSS-API Negotiation Mechanism (SPNEGO) trust association interceptor (TAI) by specifying whether or

not a particular HTTP request should be intercepted.

 Before you begin, you need to fully understand the deployment of the SPNEGO TAI in your installation.

Verify the configuration of your SPNEGO TAI. The deployment of the SPNEGO TAI can vary from a single

WebSphere Application Server system on which a single application is running to a large multinode

WebSphere Application Server Network Deployment (ND) cell, with dozens of application servers, hosting

many applications. Every SPNEGO TAI is installed at the cell level. You must be aware of your particular

SPNEGO TAI configuration.

The default behavior of the SPNEGO TAI is to not intercept HTTP requests. This default behavior ensures

that the SPNEGO TAI can be installed into an existing cell, configured for a single application server and

not change any other application servers in the cell. Other WebSphere Application Servers can run exactly

as before within a given configuration.

Then decide whether or not to use the sample SPN<id>.filter class and determine the exact filter

properties to use.

250 Securing applications and their environment

Note: The default behavior of the SPNEGO TAI is to use the com.ibm.ws.security.spnego.SPN<id>.filter

class and intercept all requests.

If the default behavior is not appropriate, you can use a customer provided class, or extend or modify the

sample class as required. The system programmer interface, com.ibm.ws.security.spnego.SpnegoFilter

allows you to implement a custom filter to determine whether or not to intercept a particular HTTP request.

With the default implementation, you can set filter rules for coarse as well as fine-grained criteria in

selecting which HTTP requests to intercept.

1. Set the com.ibm.ws.security.spnego.isEnabled Java virtual machine (JVM) custom property to true to

enable the SPNEGO TAI on any JVM.

2. Identify when the SPNEGO TAI intercepts a given request. A set of filter properties is provided, but you

must determine what is appropriate and modify the com.ibm.ws.security.spnego.SPN<id>.filter class

accordingly.

Your SPNEGO TAI is set to filter HTTP requests when it is operating.

Kerberos configuration requirements for SPNEGO TAI:

Kerberos configuration settings, the Kerberos key distribution center (KDC) name, and realm settings for

the Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) trust association interceptor (TAI)

are provided in the Kerberos configuration file or through java.security.krb5.kdc and

java.security.krb5.realm system property files.

 The Web administrator creates the Kerberos configuration file with the appropriate settings that allow

HTTP requests to be processed by the SPNEGO TAI. See “Creating the Kerberos configuration file for use

with the SPNEGO TAI” on page 235 for more information.

The Web administrator can provide the same Kerberos configuration system properties in separate files:

java.security.krb5.kdc and java.security.krb5.realm.. See Kerberos Requirements for information on

how this is accomplished.

The Kerberos key table manager command (Ktab) allows the Web administrator to manage the principal

names and service keys stored in a local Kerberos keytab file. Kerberos service principal (SPN) name and

keys listed in the Kerberos keytab file allow services running on the host to authenticate themselves to the

KDC. Before SPNEGO TAI can use Kerberos, the WebSphere Application Server administrator must setup

a Kerberos keytab file on the host running WebSphere Application Server.

Important: It is very important to protect the keytab files, making them readable only by the authorized

WebSphere users.

Important: Any updates to the Kerberos keytab file using Ktab do not affect the Kerberos database. If you

change the keys in the Kerberos keytab file, you must also make the corresponding changes

to the Kerberos database.
Below is an example of how Ktab is used on a LINUX platform to add new principal names to the

Kerberos keytab file.

[root@wssecjibe bin]# ./java com.ibm.security.krb5.internal.tools.Ktab -a

HTTP/wssecjibe.austin.ibm.com@WSSEC.AUSTIN.IBM.COM ot56prod -k /etc/krb5.keytab

Done!

Service key for principal HTTP/wssecjibe.austin.ibm.com@WSSEC.AUSTIN.IBM.COM saved

[root@wssecjibe bin]# ./java com.ibm.security.krb5.internal.tools.Ktab

1 entries in keytab, name: /etc/krb5.keytab

 KVNO Principal

 ---- ---------

 1 HTTP/wssecjibe.austin.ibm.com@WSSEC.AUSTIN.IBM.COM

[root@wssecjibe bin]# ls /etc/krb5.*

/etc/krb5.conf /etc/krb5.ini.orig /etc/krb5.keytab.good

/etc/krb5.conf.orig /etc/krb5.keytab

[root@wssecjibe bin]# ./java com.ibm.security.krb5.internal.tools.Ktab -a

Chapter 5. Authenticating users 251

http://w3.hursley.ibm.com/java/docs/jdk5.0/guide/security/jgss/tutorials/KerberosReq.html

HTTP/wssecredhat.austin.ibm.com@WSSEC.AUSTIN.IBM.COM ot56prod -k /etc/krb5.keytab

Done!

Service key for principal HTTP/wssecredhat.austin.ibm.com@WSSEC.AUSTIN.IBM.COM

saved

[root@wssecjibe bin]# ./java com.ibm.security.krb5.internal.tools.Ktab

2 entries in keytab, name: /etc/krb5.keytab

 KVNO Principal

 ---- ---------

 1 HTTP/wssecjibe.austin.ibm.com@WSSEC.AUSTIN.IBM.COM

 1 HTTP/wssecredhat.austin.ibm.com@WSSEC.AUSTIN.IBM.COM

Tip: On WebSphere Application Server, Ktab is located at:

<install root>/java/jre/bin

Configuring the Web browser to use SPNEGO

You can configure your browser to utilize the Simple and Protected GSS-API Negotiation (SPNEGO)

mechanism. Authentication of your browser requests are processed by the SPNEGO trust association

interceptor (TAI) in the WebSphere Application Server.

You need to know how to display and set options in the Microsoft Internet Explorer browser or any other

browser (such as Firefox). You must have a browser installed that supports SPNEGO authentication.

Complete the following steps to ensure that your Microsoft Internet Explorer browser is enabled to perform

SPNEGO authentication.

1. At the desktop, log in to the windows active directory domain.

2. Activate Internet Explorer.

3. In the Internet Explorer window, click Tools > Internet Options > Security tab.

4. Select the Local intranet icon and click Sites.

5. In the Local intranet window, ensure that the ″check box″ to include all local (intranet) not listed in

other zones is selected, then click Advanced .

6. In the Local intranet window, fill in the Add this Web site to the zone field with the Web address of the

host name so that the single sign-on (SSO) can be enabled to the list Web sites shown in the Web

sites field. Your site information technology staff provides this information. Click OK to complete this

step and close the Local intranet window.

7. On the Internet Options window, click the Advanced tab and scroll to Security settings. Ensure that

the Enable Integrated Windows Authentication (requires restart) box is selected.

8. Click OK. Restart your Microsoft Internet Explorer to activate this configuration.

Complete the following steps to ensure that your Firefox browser is enabled to perform SPNEGO

authentication.

1. At the desktop, log in to the windows active directory domain.

2. Activate Firefox.

3. At the address field, type about:config.

4. In the Filter, type network.n

5. If the deployed SPNEGO solution is using the advanced Kerberos feature of Credential Delegation

double click on network.negotiate-auth.delegation-uris. This preference lists the sites for which the

browser may delegate user authorization to the server.

6. Enter a comma delimited list of trusted domains or URLs.

7. Click OK. The configuration appears as updated.

8. Restart your Firefox browser to activate this configuration.

252 Securing applications and their environment

Your Internet browser is properly configured for SPNEGO authentication. You can use applications that are

deployed in WebSphere Application Server that use secured resources without being repeatedly requested

for an ID and password.

Configuring single sign-on capability with Tivoli Access Manager or

WebSEAL

Either Tivoli Access Manager WebSEAL or Tivoli Access Manager plug-in for Web servers can be used as

reverse proxy servers to provide access management and single sign-on (SSO) capability to WebSphere

Application Server resources. With such an architecture, either WebSEAL or the plug-in authenticates

users and forwards the collected credentials to WebSphere Application Server in the form of an IV Header.

Two types of single sign-on are available, the TAI interface and the TAI++ interface, so named as both use

WebSphere Application Server trust association interceptors (TAI). With the TAI, the end-user name is

extracted from the HTTP header and forwarded to embedded Tivoli Access Manager where the end-user

name is used to construct the client credential information and authorize the user. With the TAI++, all of

the user credential information is available in the HTTP header and not just the user name. The TAI++ is

the more efficient of the two solutions because a Lightweight Directory Access Protocol (LDAP) call is not

required. TAI functionality is retained for backwards compatibility.

Complete the following tasks to enable single sign-on to WebSphere Application Server using either

WebSEAL or the plug-in for Web servers. These tasks assume that embedded Tivoli Access Manager is

configured for use.

1. Create a trusted user account for Tivoli Access Manager in the shared Lightweight Directory Access

Protocol (LDAP) user registry. For more information, see “Creating a trusted user account in Tivoli

Access Manager” on page 259.

2. Configure either WebSEAL or the Tivoli Access Manager plug-in for Web servers to work with

WebSphere Application Server. For more information, see either of the following articles:

v “Configuring WebSEAL for use with WebSphere Application Server” on page 259

v “Configuring Tivoli Access Manager plug-in for Web servers for use with WebSphere Application

Server” on page 260

3. Configure single sign-on using either the TAI or TAI++ interface. For more information, see either of the

following articles:

v “Configuring single sign-on using the trust association interceptor” on page 260

v “Configuring single sign-on using trust association interceptor ++” on page 262

Single sign-on settings

Use this page to set the configuration values for single sign-on (SSO).

To view this administrative console page, complete the following steps:

1. Click Security > Secure administration, applications, and infrastructure.

2. Under Authentication, click Web security > Single sign-on (SSO).

Enabled:

Specifies that the single sign-on function is enabled.

 Web applications that use J2EE FormLogin style login pages, such as the administrative console, require

single sign-on (SSO) enablement. Only disable SSO for certain advanced configurations where LTPA

SSO-type cookies are not required.

 Data type: Boolean

Default: Enabled

Range: Enabled or Disabled

Chapter 5. Authenticating users 253

Requires SSL:

Specifies that the single sign-on function is enabled only when requests are made over HTTPS Secure

Sockets Layer (SSL) connections.

 Data type: Boolean

Default: Disable

Range: Enable or Disable

Domain name:

Specifies the domain name (.ibm.com, for example) for all single sign-on hosts.

 The application server uses all the information after the first period, from left to right, for the domain

names. If this field is not defined, the Web browser defaults the domain name to the host name where the

Web application is running. Also, single sign-on is then restricted to the application server host name and

does not work with other application server host names in the domain.

You can specify multiple domains separated by a semicolon (;), a space (), a comma (,), or a pipe (|).

Each domain is compared with the host name of the HTTP request until the first match is located. For

example, if you specify ibm.com;austin.ibm.com and a match is found in the ibm.com domain first, the

application server does not match the austin.ibm.com domain. However, if a match is not found in either

ibm.com or austin.ibm.com, then the application server does not set a domain for the LtpaToken cookie.

If you specify the UseDomainFromURL value, the application server sets the SSO domain name value to the

domain of the host that is used in the Web address. For example, if an HTTP request comes from

server1.raleigh.ibm.com, the application server sets the SSO domain name value to raleigh.ibm.com.

Tip: The UseDomainFromURL value is case insensitive. You can type usedomainfromurl to use this value.

 Data type: String

Interoperability mode:

Specifies that an interoperable cookie is sent to the browser to support back-level servers.

 In WebSphere Application Server, Version 6 and later, a new cookie format is needed by the security

attribute propagation functionality. When the interoperability mode flag is enabled, the server can send a

maximum of two single sign-on (SSO) cookies back to the browser. In some cases, the server just sends

the interoperable SSO cookie.

Web inbound security attribute propagation:

When Web inbound security attribution propagation is enabled, security attributes are propagated to

front-end application servers. When this option is disabled, the single sign-on (SSO) token is used to log in

and recreate the Subject from the user registry.

 If the application server is a member of a cluster and the cluster is configured with a distributed replication

service (DRS) domain, then propagation occurs. If DRS is not configured, then the SSO token contains the

originating server information. With this information, the receiving server can contact the originating server

using an MBean call to get the original serialized security attributes.

254 Securing applications and their environment

com.tivoli.pd.jcfg.PDJrteCfg utility for Tivoli Access Manager single sign-on

The com.tivoli.pd.jcfg.PDJrteCfg utility configures the Java Runtime Environment component for Tivoli

Access Manager. This component enables WebSphere Application Server to use Tivoli Access Manager

security.

Purpose

Syntax

java com.tivoli.pd.jcfg.PDJrteCfg -action {config | unconfig} -cfgfiles_path

configuration_file_path -host policy_server_host jre_path]

Parameters

-action {config|unconfig}

Specifies the action to be performed. Actions include:

config Use to configure the Access Manager Java Runtime Environment component.

unconfig

Use to reconfigure the Access Manager Java Runtime Environment component.

-host policy_server_host

Specifies the policy server host name.

 Valid values for policy_server_host include any valid IP host name.

 Examples include:

host = libra

host = libra.dallas.ibm.com

Comments

This command copies Tivoli Access Manager Java libraries to a library extensions directory that exists for

a Java runtime that has already been installed on the system.

You can install more than one Java Runtime Environment (JRE) on a given machine. The pdjrtecfg

command can be used to configure the Tivoli Access Manager Java Runtime Environment component

independently for each of the JRE configurations.

${JAVA_HOME}/bin/java

-Dfile.encoding=ISO8859-1 \

-Dws.output.encoding=CP1047 \

-Xnoargsconversion \

-Dpd.home=${WAS_HOME}/java/jre/PolicyDirector \

-cp ${WAS_HOME}/java/jre/lib/ext/PD.jar \

 com.tivoli.pd.jcfg.PDJrteCfg \

-action config \

 -cfgfiles_path ${WAS_HOME}/java/jre \

 -host gary.us.ibm.com \

com.tivoli.pd.jcfg.SvrSslCfg utility for Tivoli Access Manager single sign-on

The utility is used to configure and remove the configuration information associated with WebSphere

Application Server and the Tivoli Access Manager server.

Purpose

Chapter 5. Authenticating users 255

Syntax

java com.tivoli.pd.jcfg.SvrSslCfg

-action {config | unconfig} -admin_id admin_user_ID

-admin_pwd admin_password -appsvr_id application_server_name

-appsvr_pwd application_server_password -mode{local|remote}

-host host_name_of_application_server

-policysvr policy_server_name:port:rank [,...]

-authzsvr authorization_server_name:port:rank [,...]

-cfg_file fully_qualified_name_of_configuration_file

-domain Tivoli_Acccess_Manager_domain

-key_file fully_qualified_name_of_keystore_file

-cfg_action {create|replace}

Parameters

-action {config | unconfig}

Specifies the configuration action that is performed by the script. The following options apply:

-action config

Configuring a server creates user and server information in the user registry and creates local

configuration and key store files on the application server. Use the -action unconfig option to

reverse this operation.

 If this action is specified, the following options are required: -admin_id, -admin_pwd,

-appsvr_id, -port, -mode, -policysvr, -authzsvr, and -key_file.

-action unconfig

Reconfigures an application server to complete the following actions:

v Remove the user and server information from the user registry

v Delete the local key store file

v Remove information for this application from the configuration file without deleting the file

The reconfiguration operation fails only if the caller is unauthorized or the policy server cannot

be contacted.

 This action can succeed when a configuration file does not exist. When the configuration file

does not exist, it is created and used as a temporary file to hold configuration information

during the operation, and then the file is deleted completely.

 If this action is specified, the following options are required: -admin_id, -admin_pwd,

-appsvr_id, and -policysvr.

-admin_id admin_user_ID

Specifies the Tivoli Access Manager administrator name. If this option is not specified, sec_master is

the default.

 A valid administrative ID is an alphanumeric, case-sensitive string. String values are expected to be

characters that are part of the local code set. You cannot use a space in the administrative ID.

 For example, for U.S. English the valid characters are the letters a-Z, the numbers 0-9, a period (.), an

underscore (_), a plus sign (+), a hyphen (-), an at sign (@), an ampersand (&), and an asterisk (*).

The minimum and maximum lengths of the administrative ID, if there are limits, are imposed by the

underlying registry.

-admin_password admin_password

 Specifies the password of the Tivoli Access Manager administrator user that is associated with the

-admin_id parameter. The password restrictions depend upon the password policy for your Tivoli

Access Manager configuration.

-appsvr_id application_server_name

Specifies the name of the application server. The name is combined with the host name to create

256 Securing applications and their environment

unique names for Tivoli Access Manager objects created for your application. The following names are

reserved for Tivoli Access Manager applications: ivacld, secmgrd, ivnet, and ivweb.

-appsvr_pwd application_server_password

Specifies the password of the application server. This option is required. A password is created by the

system and the configuration file is updated with the password created by the system.

 If this option is not specified, the server password will be read from standard input.

-authzsvr authorization_server_name

Specifies the name of the Tivoli Access Manager authorization server with which the application server

communicates. The server is specified by fully qualified host name, the SSL port number, and the

rank. The default SSL port number is 7136. For example: myauth.mycompany.com:7136:1. You can

specify multiple servers if the entries are separated by a comma (,).

-cfg_action {create | replace}

Specifies the action to take when creating the configuration and key files. Valid values are create or

replace. Use the create option to initially create the configuration and keystore files. Use the replace

option if these files already exist. If you use the create option and the configuration or keystore files

already exist, an exception is created.

 Options are as follows:

create Specifies to create the configuration and key store files during server configuration.

Configuration fails if either of these files already exists.

replace

Specifies to replace the configuration and key store files during server configuration.

Configuration deletes any existing files and replaces them with new ones.

-cfg_file fully_qualified_name_of_configuration_file

Specifies the configuration file path and name.

 A file name should be an absolute file name (fully qualified file name) to be valid.

-domain Tivoli_Access_Manager_domain

Specifies the Tivoli Access Manager domain name to which the administrator is authenticated. This

domain must exist and an the administrator ID and password must be valid for this domain. The

application server is specified in this domain.

 If not specified, the local domain that was specified during Tivoli Access Manager runtime configuration

will be used. The local domain value will be retrieved from the configuration file.

 A valid domain name is an alphanumeric, case-sensitive string. String values are expected to be

characters that are part of the local code set. You cannot use a space in the domain name.

 For example, for U.S. English the valid characters for domain names are the letters a-Z, the numbers

0-9, a period (.), an underscore (_), a plus sign (+), a hyphen (-), an at sign (@), an ampersand (&),

and an asterisk (*). The minimum and maximum lengths of the domain name, if there are limits, are

imposed by the underlying registry.

-host host_name_of_application_server

Specifies the TCP host name used by the Tivoli Access Manager policy server to contact this server.

This name is saved in the configuration file using the azn-app-host key.

 The default is the local host name returned by the operating system. Valid values for host_name

include any valid IP host name.

 Examples:

host = libra

host = libra.dallas.ibm.com

Chapter 5. Authenticating users 257

-key_file fully_qualified_name_of_keystore_file

Specifies the directory that is to contain the key files for the server. A valid directory name is

determined by the operating system. Use a fully qualified file name that contains the application server

certificate and key file.

 Make sure that server user (for example, ivmgr) or all users have permission to access the .kdb file

and the folder that contains the .kdb file.

 This option is required.

-mode server_mode

Specifies the mode in which the application operates. This value must be either local or remote.

-policysvr policy_server_name

Specifies the name of the policy server.

Comments

After the successful configuration of a Tivoli Access Manager Java application server, SvrSslCfg creates a

user account and server entries representing the Java application server in the Tivoli Access Manager user

registry. In addition, SvrSslCfg creates a configuration file and a Java key store file, which securely stores

a client certificate, locally on the application server. This client certificate permits callers to make

authenticated use of Tivoli Access Manager services. Conversely, reconfiguration removes the user and

server entries from the user registry and cleans up the local configuration and keystore files.

The contents of an existing configuration file can be modified by using the SvrSslCfg utility. The

configuration file and the key store file must already exist when calling SvrSslCfg with all options other

than -action config or -action unconfig.

The following options are parsed and processed into the configuration file, but are otherwise ignored in this

version of Tivoli Access Manager:

The host name is used to build a unique name (identity) for the application. The pdadmin user list

command displays the application identity name in the following format:

server_name/host_name

Note that the pdadmin server list command displays the server name in a slightly different format:

server_name-host_name

CLASSPATH=${WAS_HOME}/java/jre/lib/ext/PD.jar:${WAS_CLASSPATH}

java \

-cp ${CLASSPATH} \

-Dpd.cfg.home= ${WAS_HOME}/java/jre \

-Dfile.encoding=ISO8859-1 \

-Dws.output.encoding=CP1047 \

-Xnoargsconversion \

 com.tivoli.pd.jcfg.SvrSslCfg \

-action config \

-admin_id sec_master \

-admin_pwd $TAM_PASSWORD \

-appsvr_id $APPSVR_ID \

-policysvr ${TAM_HOST}:7135:1 \

-port 7135 \

-authzsvr ${TAM_HOST}:7136:1 \

-mode remote \

258 Securing applications and their environment

-cfg_file ${CFG_FILE} \

-key_file ${KEY_FILE} \

-cfg_action create

Creating a trusted user account in Tivoli Access Manager

Tivoli Access Manager trust association interceptors require the creation of a trusted user account in the

shared LDAP user registry.

This account includes the ID and password that WebSEAL uses to identify itself to WebSphere Application

Server. To prevent potential vulnerabilities, do not use the sec_master ID as the trusted user account and

ensure that the password you use is unique and generated randomly. Use the trusted user account should

for the TAI or TAI++ only.

1. Use either the Tivoli Access Manager pdadmin command-line utility or Web Portal Manager to create

the trusted user. For example, from the pdadmin command line.

2. Reference the code listed below as an example for creating a trusted user account.

3. Reference the following additional resources for more information:

a. “Configuring WebSEAL for use with WebSphere Application Server”

b. “Configuring Tivoli Access Manager plug-in for Web servers for use with WebSphere Application

Server” on page 260

pdadmin> user create webseal_userid webseal_userid_DN firstname

 surname password

pdadmin> user modify webseal_userid account-valid yes

Configuring WebSEAL for use with WebSphere Application Server

Use this topic to set the SSO password in WebSEAL for single sign-on to WebSphere Application Server.

A junction must be created between WebSEAL and WebSphere Application Server. This junction carries

the iv-credentials (for TAI++) or iv-user (for TAI) and the HTTP basic authentication headers with the

request. You can configure WebSEAL to pass the end user identity in other ways, the iv-credentials header

is the only one supported by the TAI++ and the iv-user is the only one supported by TAI.

We recommend that communications over the junction use Secure Sockets Layer (SSL) for increased

security. Setting up SSL across this junction requires that you configure the HTTP Server used by

WebSphere Application Server, and WebSphere Application Server itself, to accept inbound SSL traffic and

route it correctly to WebSphere Application Server. This activity requires importing the necessary signing

certificates into the WebSEAL certificate keystore, and possibly also the HTTP Server certificate keystore.

Create the junction between WebSEAL and WebSphere Application Server using the -c iv_creds option

for TAI++ and -c iv_user for TAI. Enter either of the following commands as one line using the variables

that are appropriate for your environment:

TAI++

server task webseald-server create -t ssl -b supply -c iv_creds

 -h host_name -p websphere_app_port_number junction_name

TAI

server task webseald-server create -t ssl -b supply -c iv_user

 -h host_name -p websphere_app_port_number junction_name

Notes:

1. If warning messages are displayed about the incorrect setup of certificates and key databases,

delete the junction, correct problems with the key databases, and recreate the junction.

2. The junction can be created as -t tcp or -t ssl, depending on your requirements.

Chapter 5. Authenticating users 259

For single sign-on (SSO) to WebSphere Application Server the SS) password must be set in WebSEAL.

To set the password, complete the following steps:

1. Edit the WebSEAL configuration file webseal_install_directory/etc/webseald-default.conf Set the

following parameter: basicauth-dummy-passwd=webseal_userid_passwd

where webseal_userid_passwd is the SSO password for the trusted user account set in “Creating a

trusted user account in Tivoli Access Manager” on page 259.

2. Restart WebSEAL.

For more details and options about how to configure junctions between WebSEAL and WebSphere

Application Server, including other options for specifying the WebSEAL server identity, refer to the Tivoli

Access Manager WebSEAL Administration Guide as well as to the documentation for the HTTP Server

you are using with your WebSphere Application Server. Tivoli Access Manager documentation is available

at http://publib.boulder.ibm.com/tividd/td/tdprodlist.html.

Configuring Tivoli Access Manager plug-in for Web servers for use with

WebSphere Application Server

Tivoli Access Manager plug-in for Web servers can be used as a security gateway for your protected

WebSphere Application Server resources.

With such an arrangement the plug-in authorizes all user requests before passing the credentials of the

authorized user to WebSphere Application Server in the form of an iv-creds header. Trust between the

plug-in and WebSphere Application Server is established through use of basic authentication headers

containing the single sign-on (SSO) user password.

1. The Tivoli Access Manager plug-in for Web servers configuration shows IV headers configured for

post-authorization processing, and basic authentication that is configured as the authentication

mechanism and for post-authorization processing, as shown in the example below.

2. After a request is authorized, the basic authentication header is removed from the request

(strip-hdr=always) and a new one is added (add-hdr=supply).

3. Included in this new header is the password that is set when the SSO user is created in “Creating a

trusted user account in Tivoli Access Manager” on page 259.

4. Specify this password in the supply-password parameter and is passed in the newly created header.

This basic authentication header enables trust between WebSphere Application Server and the plug-in.

5. An iv-creds header is also added (generate=iv-creds), which contains the credential information of the

user passed onto WebSphere Application Server. Session cookies are used to maintain session state.

[common-modules]

authentication = BA

session = session-cookie

post-authzn = BA

post-authzn = iv-headers

[iv-headers]

accept = all

generate = iv-creds

[BA]

strip-hdr = always

add-hdr = supply

supply-password = sso_user_password

“Configuring single sign-on using the trust association interceptor” or “Configuring single sign-on using trust

association interceptor ++” on page 262

Configuring single sign-on using the trust association interceptor

This task is performed to enable single sign-on using the trust association interceptor. These steps involve

setting up trust association and creating the interceptor properties.

260 Securing applications and their environment

http://publib.boulder.ibm.com/tividd/td/tdprodlist.html

The following steps are required when setting up security for the first time. Ensure that Lightweight Third

Party Authentication (LTPA) is the active authentication mechanism:

1. From the WebSphere Application Server console click Security > Global security.

2. Ensure that the Active authentication mechanism field is set to Lightweight Third Party

Authentication (LTPA). If not, set it and save your changes.

Lightweight Third Party Authentication (LTPA) is the default authentication mechanism for WebSphere

Application Server. You can configure LTPA prior to configuring single sign-on (SSO) by clicking Security >

Secure administration, applications, and infrastructure > Authentication mechanisms and

expiration. Although you can use Simple WebSphere Authentication Mechanism (SWAM) by selecting the

Use SWAM-no authenticated communication between servers option on the Authentication

mechanisms and expiration panel, single sign-on (SSO) requires LTPA as the configured authentication

mechanism.

 1. From the administrative console for WebSphere Application Server, click Security > Secure

administration, applications, and infrastructure.

 2. Under Web security, click Trust association.

 3. Select the Enable trust association option.

 4. Under Additional properties, click the Interceptors link.

 5. Click com.ibm.ws.security.web.WebSealTrustAssociationInterceptor to use the WebSEAL

interceptor. This interceptor is the default.

 6. Under Additional properties, click Custom Properties.

 7. Click New to enter the property name and value pairs. Ensure the following parameters are set:

 Table 8. Trust association interceptor properties

Option Description

com.ibm.websphere.security.

trustassociation.types

Ensure that webseal is listed.

com.ibm.websphere.security.

webseal.loginId

The WebSEAL trusted user as created in “Creating a trusted user account in

Tivoli Access Manager” on page 259 The format of the username is the short

name representation. This property is mandatory. If the property is not set in the

WebSphere Application Server, TAI initialization fails.

com.ibm.websphere.security.

webseal.id

The iv-user header, which is com.ibm.websphere.security.webseal.id=iv-user

com.ibm.websphere.security.

webseal.hostnames

Do not set this property if using Tivoli Access Manager plug-in for Web servers.

The host names (case sensitive) are trusted and expected in the request header.

For example: com.ibm.websphere.security.webseal.hostnames=host1

This includes the proxy host names unless the

com.ibm.websphere.security.webseal.ignoreProxy is set to true. Obtain a list of

servers using the server list pdadmin command.

com.ibm.websphere.security.

webseal.ports

Do not set this property if using Tivoli Access Manager Plug-in for Web Servers.

The corresponding port number of the host names that are expected are in the

request header. This includes the proxy ports unless the

com.ibm.websphere.security.webseal.ignoreProxy is set to true. For example:

com.ibm.websphere.security.webseal.ports=80,443

com.ibm.websphere.security.

webseal.ignoreProxy

An optional property that if set to true or yes ignores the proxy host names and

ports in the IV header. By default this property is set to false.

 8. Click OK.

 9. Save the configuration and log out.

10. Restart WebSphere Application Server.

Chapter 5. Authenticating users 261

Configuring single sign-on using trust association interceptor ++

Perform this task to enable single sign-on using trust association interceptor ++. The steps involve setting

up trust association and creating the interceptor properties.

Lightweight Third Party Authentication (LTPA) is the default authentication mechanism for WebSphere

Application Server. However, you may need to configure LTPA prior to configuring the

TAMTrustAssociationInterceptorPlus. LTPA is the required authentication mechanism for all trust

association interceptors. You can configure LTPA by clicking Security > Secure administration,

applications, and infrastructure > Authentication mechanisms and expiration.

Note: Enabling Web security single sign-on (SSO) is optional when you configure the

TAMTrustAssociationInterceptorPlus. For more information, see “Implementing single sign-on to

minimize Web user authentications” on page 229.

Although you can use Simple WebSphere Authentication Mechanism (SWAM) by selecting the Use

SWAM-no authenticated communication between servers option on the Authentication mechanisms

and expiration panel, single sign-on (SSO) requires LTPA as the configured authentication mechanism.

 1. From the administrative console for WebSphere Application Server, click Security > Secure

administration, applications, and infrastructure.

 2. Under Web security, click Trust association.

 3. Click Enable Trust Association.

 4. Click Interceptors.

 5. Click com.ibm.ws.security.web.TAMTrustAssociationInterceptorPlus to use the WebSEAL

interceptor. This interceptor is the default.

 6. Click Custom Properties.

 7. Click New to enter the property name and value pairs. Verify that the following parameters are set:

 Table 9. Custom properties

Option Description

com.ibm.websphere.security.

webseal.checkViaHeader

You can configure TAI so that the via header can be ignored when validating trust

for a request. Set this property to false if none of the hosts in the via header

need to be trusted. When set to false you do not need to set the trusted host

names and host ports properties. The only mandatory property to check when via

header is false is com.ibm.websphere.security.webseal.loginId.

The default value of the check via header property is false. When using Tivoli

Access Manager plug-in for Web servers, set this property to false.

Note: The via header is part of the standard HTTP header that records the

server names the request that passed through.

com.ibm.websphere.security.

webseal.loginId

The WebSEAL trusted user as created in “Creating a trusted user account in

Tivoli Access Manager” on page 259 The format of the username is the short

name representation. This property is mandatory. If it is not set in WebSphere

Application Server, the TAI initialization fails.

com.ibm.websphere.security.

webseal.id

A comma-separated list of headers that exists in the request. If all of the

configured headers do not exist in the request, trust cannot be established. The

default value for the ID property is iv-creds. Any other values set in WebSphere

Application Server are added to the list along with iv-creds, separated by

commas.

com.ibm.websphere.security.

webseal.hostnames

Do not set this property if using Tivoli Access Manager Plug-in for Web Servers.

The property specifies the host names (case sensitive) that are trusted and

expected in the request header. Requests arriving from un-listed hosts might not

be trusted. If the checkViaHeader property is not set or is set to false then the

trusted host names property has no influence. If the checkViaHeader property is

set to true, and the trusted host names property is not set, TAI initialization fails.

262 Securing applications and their environment

Table 9. Custom properties (continued)

Option Description

com.ibm.websphere.security.

webseal.ports

Do not set this property if using Tivoli Access Manager plug-in for Web servers.

This property is a comma-separated list of trusted host ports. Requests that

arrive from unlisted ports might not be trusted. If the checkViaHeader property is

not set, or is set to false this property has no influence. If the checkViaHeader

property is set to true, and the trusted host ports property is not set in

WebSphere Application Server, the TAI initialization fails.

com.ibm.websphere.security.

webseal.viaDepth

A positive integer that specifies the number of source hosts in the via header to

check for trust. By default, every host in the via header is checked, and if any

host is not trusted, trust cannot be established. The via depth property is used

when only some of the hosts in the via header have to be trusted. The setting

indicates the number of hosts that are required to be trusted.

As an example, consider the following header:

Via: HTTP/1.1 webseal1:7002, 1.1 webseal2:7001

If the viaDepth property is not set, is set to 2 or is set to 0, and a request with the

previous via header is received then both webseal1:7002 and webseal2:7001

need to be trusted. The following configuration applies:

com.ibm.websphere.security.webseal.hostnames = webseal1,webseal2

com.ibm.websphere.security.webseal.ports = 7002,7001

If the via depth property is set to 1, and the previous request is received, then

only the last host in the via header needs to be trusted. The following

configuration applies:

com.ibm.websphere.security.webseal.hostnames = webseal2

com.ibm.websphere.security.webseal.ports = 7001

The viaDepth property is set to 0 by default, which means all of the hosts in the

via header are checked for trust.

com.ibm.websphere.security.

webseal.ssoPwdExpiry

After trust is established for a request, the single sign-on user password is

cached, eliminating the need to have the TAI re-authenticate the single sign-on

user with Tivoli Access Manager for every request. You can modify the cache

timeout period by setting the single sign-on password expiry property to the

required time in seconds. If the password expiry property is set to 0, the cached

password never expires. The default value for the password expiry property is

600.

com.ibm.websphere.security.

webseal.ignoreProxy

This property can be used to tell the TAI to ignore proxies as trusted hosts. If set

to true the comments field of the hosts entry in the via header is checked to

determine if a host is a proxy. Remember that not all proxies insert comments in

the via header indicating that they are proxies. The default value of the

ignoreProxy property is false. If the checkViaHeader property is set to false then

the ignoreProxy property has no influence in establishing trust.

com.ibm.websphere.security.

webseal.configURL

For the TAI to establish trust for a request, it requires that the SvrSslCfg run for

the Java Virtual Machine on the Application Server and result in the creation of a

properties file. If this properties file is not at the default URL, which is

file://java.home/PdPerm.properties, the correct URL of the properties file must

be set in the configuration URL property. If this property is not set, and the

SvrSslCfg-generated properties file is not in the default location, the TAI

initialization fails. The default value for the config URL property is

file://${WAS_INSTALL_ROOT}/java/jre/PdPerm.properties.

 8. Click OK.

 9. Save the configuration and log out.

10. Restart WebSphere Application Server.

Chapter 5. Authenticating users 263

Configuring global sign-on principal mapping

You can create a new application login that uses the Tivoli Access Manager GSO database to store the

login credentials.

 1. Click Security > Secure administration, applications, and infrastructure.

 2. Under Authentication, click Java Authentication and Authorization Service > Application logins.

 3. Click New to create a new Java Authentication and Authorization Service (JAAS) login configuration.

 4. Enter the alias name of the new application login. Click Apply.

 5. Under Additional properties, click JAAS login modules to define the JAAS Login Modules.

 6. Click New and enter the following information:

Module class name: com.tivoli.pdwas.gso.AMPrincipalMapper

Use Login Module Proxy: enable

Authentication strategy: REQUIRED

 7. Click Apply

 8. Under Additional Properties section, click Custom Properties to define login module-specific values

that are passed directly to the underlying login modules.

 9. Click New.

The Tivoli Access Manager principal mapping module uses the authDataAlias configuration string to

retrieve the correct user name and password from the security configuration.

The authDataAlias attribute that is passed to the module is configured for the J2C connection factory.

Because the authDataAlias attribute is an arbitrary string that is entered at configuration time, the

following scenarios are possible:

v The authDataAlias attribute contains both the global sign-on (GSO) resource name and the user

name. The format of this string is ″Resource/User″.

v The authDataAlias attribute contains the GSO Resource name only. The user name is determined

by using the Subject of the current session.

The scenario to use is determined by a JAAS configuration option, as shown here:

 Name: com.tivoli.pd.as.gso.AliasContainsUserName

 Value: True, if the alias contains the user name; false, if the user name must be retrieved from the

security context

When entering authDataAlias attributes through the WebSphere Application Server administrative

console, the node name is automatically pre-pended to the alias. The JAAS configuration entry

determines whether this node name is removed or included as part of the resource name, as shown

here:

 Name: com.tivoli.pd.as.gso.AliasContainsNodeName

 Value: True, if the alias contains the node name

Note: If the PdPerm.properties configuration file is not located in the JAVA_HOME/PdPerm.properties

default location, then you also need to add the following property:

 Name: com.tivoli.pd.as.gso.AMCfgURL

 Value: file:///path to PdPerm.properties

Enter each new parameter using the following scenario information as a guide, then click Apply.

Scenario 1

Auth Data Alias - BackendEIS/eisUser

Resource - BackEndEIS

User - eisUser

Principal Mapping Parameters

 Name Value

264 Securing applications and their environment

delegate com.tivoli.pdwas.gso.AMPrincipalMapper

com.tivoli.pd.as.gso.AliasContainsUserName true

com.tivoli.pd.as.gso.AliasContainsNodeName false

com.tivoli.pd.as.gso.AMLoggingURL file:///jlog_props_path

debug false

Scenario 2

Auth Data Alias - BackendEIS

Resource - BackEndEIS

User - Currently authenticated WebSphere Application Server user

Principal Mapping Parameters

 Name Value

delegate com.tivoli.pdwas.gso.AMPrincipalMapper

com.tivoli.pd.as.gso.AliasContainsUserName false

com.tivoli.pd.as.gso.AliasContainsNodeName false

com.tivoli.pd.as.gso.AMLoggingURL file:///jlog_props_path

debug false

Scenario 3

Auth Data Alias - nodename/BackendEIS/eisUser

Resource - BackEndEIS

User - eisUser

Principal Mapping Parameters

 Name Value

delegate com.tivoli.pdwas.gso.AMPrincipalMapper

com.tivoli.pd.as.gso.AliasContainsUserName true

com.tivoli.pd.as.gso.AliasContainsNodeName true

com.tivoli.pd.as.gso.AMLoggingURL file:///jlog_props_path

debug false

Scenario 4

Auth Data Alias - nodename/BackendEIS/eisUser

Resource - nodename/BackEndEIS (notice that node name is not removed)

User - eisUser

Principal Mapping Parameters

 Name Value

delegate com.tivoli.pdwas.gso.AMPrincipalMapper

com.tivoli.pd.as.gso.AliasContainsUserName true

com.tivoli.pd.as.gso.AliasContainsNodeName false

com.tivoli.pd.as.gso.AMLoggingURL file:///jlog_props_path

debug false

Chapter 5. Authenticating users 265

Scenario 5

Auth Data Alias - BackendEIS/eisUser

Resource - BackEndEIS

User - eisUser

Principal Mapping Parameters

 Name Value

delegate com.tivoli.pdwas.gso.AMPrincipalMapper

com.tivoli.pd.as.gso.AliasContainsUserName false

com.tivoli.pd.as.gso.AliasContainsNodeName true

com.tivoli.pd.as.gso.AMLoggingURL file:///jlog_props_path

debug false

Scenario 6

Auth Data Alias - nodename/BackendEIS/eisUser

Resource - nodename/BackendEIS/eisUser

 (notice that the resource is the same as Auth Data Alias).

User - Currently authenticated WebSphere Application Server user

Principal Mapping Parameters

 Name Value

delegate com.tivoli.pdwas.gso.AMPrincipalMapper

com.tivoli.pd.as.gso.AliasContainsUserName false

com.tivoli.pd.as.gso.AliasContainsNodeName false

com.tivoli.pd.as.gso.AMLoggingURL file:///jlog_props_path

debug false

10. Create the Java 2 Connector (J2C) authentication aliases. The user name and password that are

assigned to these alias entries are irrelevant because Tivoli Access Manager is responsible for

providing user names and passwords. However, the user name and password that are assigned to

the J2C authentication aliases need to exist so that they can be selected for the J2C connection

factory in the administrative console.

To create the J2C authentication aliases, from the WebSphere Application Server administrative

console, click Security >Secure administration, applications, and infrastructure. Under

Authentication, click Java Authentication and Authorization Service > J2C authentication data,

and then click New for each new entry. Refer to the previous table for scenario inputs.

The connection factories for each resource adapter that need to use the GSO database must be

configured to use the Tivoli Access Manager Principal mapping module:

a. From the WebSphere Application Server administrative console, click Applications > Enterprise

Applications > application_name > Resourcer references. Note that J2C connection factories

must be already configured for the selected application. To configure a new J2C connection

factory, see tdat_confconfac.dita.

b. Under Additional properties, click Resource Adapter.

The resource adapter can be standalone and does not need to be packaged with the application.

The resource adapter is configured from Resources > Resource Adapters for standalone

scenarios.

c. Under Additional properties, click J2C Connection Factories.

d. Click New and enter the connection factory properties.

e. When finished, click Apply > Save.

266 Securing applications and their environment

tdat_confconfac.dita

Attention:

Custom mapping configuration for the connection factory is deprecated in WebSphere Application

Server Version 6. To configure the GSO credential mapping, use the Map Resource References to

Resources panel on the administrative console. For more information, see J2EE connector security.

Propagating security attributes among application servers

Use the security attribute propagation feature of WebSphere Application Server to send security attribute

information regarding the original login to other servers using a token. This topic will help to configure

WebSphere Application Server to propagate security attributes to other servers.

To fully enable security attribute propagation, you must configure the single sign-on (SSO), Common

Secure Interoperability Version 2 (CSIv2) inbound, and CSIv2 outbound panels in the WebSphere

Application Server administrative console. You can enable just the portions of security attribute propagation

relevant to your configuration. For example, you can enable Web propagation, which is propagation

amongst front-end application servers, using either the push technique (DynaCache) or the pull technique

(remote method to originating server).

You also can choose whether to enable Remote Method Invocation (RMI) outbound and inbound

propagation, which is commonly called downstream propagation. Typically both types of propagation are

enabled for any given cell. In some cases, you might want to choose a different option for a specific

application server using the server security panel within the specific application server settings.

To access the server security panel in the administrative console, click Servers > Application Servers >

server_name. Under Security, click Server security.

Complete the following steps to configure WebSphere Application Server for security attribute propagation:

 1. Access the WebSphere Application Server administrative console by typing http://
server_name:port_number/ibm/console. The administrative console address might differ if you have

previously changed the port number.

 2. Click Security > Secure administration, applications, and infrastructure.

 3. Under Web security, click Single sign-on (SSO).

 4. Optional: Select the Interoperability Mode option if you need to interoperate with servers that do

not support security attribute propagation. Servers that do not support security attribute propagation

receive the Lightweight Third Party Authentication (LTPA) token and the Propagation token, but ignore

the security attribute information that they do not understand.

 5. Select the Web inbound security attribute propagation option. The Web inbound security attribute

propagation option enables horizontal propagation, which allows the receiving SSO token to retrieve

the login information from the original login server. If you do not enable this option, downstream

propagation can occur if you enable the Security Attribute Propagation option on both the CSIv2

Inbound authentication and CSIv2 outbound authentication panels.

Typically, you enable the Web inbound security attribute propagation option if you need to gather

dynamic security attributes set at the original login server that cannot be regenerated at the new

front-end server. These attributes include any custom attributes that might be set in the

PropagationToken token using the com.ibm.websphere.security.WSSecurityHelper application

programming interfaces (APIs). You must determine whether enabling this option improves or

degrades the performance of your system. While the option prevents some remote user registry calls,

the deserialization and decryption of some tokens might impact performance. In some cases

propagation is faster, especially if your user registry is the bottleneck of your topology. It is

recommended that you measure the performance of your environment both using and not using this

option. When you test the performance, it is recommended that you test in the operating environment

of the typical production environment with the typical number of unique users accessing the system

simultaneously.

Chapter 5. Authenticating users 267

6. Click Security > Secure administration, applications, and infrastructure. Under RMI/IIOP security,

click CSIv2 inbound authentication. The Login configuration field specifies RMI_INBOUND as the

system login configuration that is used for inbound requests. To add custom Java Authentication and

Authorization Service (JAAS) login modules, complete the following steps:

a. Click Security > Secure administration, applications, and infrastructure. Under Java

Authentication and Authorization Service, click System logins. A list of the system login

configurations is displayed. WebSphere Application Server provides the following pre-configured

system login configurations: DEFAULT, LTPA, LTPA_WEB, RMI_INBOUND, RMI_OUTBOUND,

SWAM, WEB_INBOUND, wssecurity.IDAssertion, and wssecurity.Signature. Do not delete these

predefined configurations.

Note: SWAM is deprecated in WebSphere Application Server Version 6.1 and will be removed in

a future release.

b. Click the name of the login configuration that you want to modify.

c. Under Additional Properties, click JAAS Login Modules. The JAAS Login Modules panel is

displayed, which lists all of the login modules that are processed in the login configuration. Do not

delete the required JAAS login modules. Instead, you can add custom login modules before or

after the required login modules. If you add custom login modules, do not begin their names with

com.ibm.ws.security.server.

You can specify the order in which the login modules are processed by clicking Set Order.

 7. Select the Security attribute propagation option on the CSIv2 inbound authentication panel. When

you select Security Attribute Propagation, the server advertises to other application servers that it

can receive propagated security attributes from another server in the same realm over the Common

Secure Interoperability version 2 (CSIv2) protocol.

 8. Click Security > Secure administration, applications, and infrastructure. Under RMI/IIOP security,

click CSIv2 Outbound authentication. The CSIv2 outbound authentication panel is displayed. The

Login configuration field specifies RMI_OUTBOUND as the JAAS login configuration that is used for

outbound configuration. You cannot change this login configuration. Instead, you can customize this

login configuration by completing the substeps that are listed previously for CSIv2 Inbound

authentication.

 9. Optional: Verify that the Security Attribute Propagation option is selected if you want to enable

outbound Subject and security context token propagation for the Remote Method Invocation (RMI)

protocol. When you select this option, WebSphere Application Server serializes the Subject contents

and the PropagationToken contents. After the contents are serialized, the server uses the CSIv2

protocol to send the Subject and PropagationToken token to the target servers that support security

attribute propagation. If the receiving server does not support security attribute tokens, WebSphere

Application Server sends the Lightweight Third Party Authentication (LTPA) token only.

Important: WebSphere Application Server propagates only the objects within the Subject that it can

serialize. The server propagates custom objects on a best-effort basis.

When Security Attribute Propagation is enabled, WebSphere Application Server adds marker

tokens to the Subject to enable the target server to add additional attributes during the inbound login.

During the commit phase of the login, the marker tokens and the Subject are marked as read-only

and cannot be modified thereafter.

10. Optional: Select the Custom Outbound Mapping option if you clear the Security Attribute

Propagation option and you want to use the RMI_OUTBOUND login configuration. If neither the

Custom Outbound Mapping option nor the Security Attribute Propagation option is selected,

WebSphere Application Server does not call the RMI_OUTBOUND login configuration. If you need to

plug in a credential mapping login module, you must select the Custom Outbound Mapping option.

11. Optional: Specify trusted target realm names in the Trusted Target Realms field. By specifying

these realm names, information can be sent to servers that reside outside the realm of the sending

server to support inbound mapping that is at these downstream servers. To perform outbound

mapping to a realm different from the current realm, you must specify the realm in this field so that

268 Securing applications and their environment

you can get to this point without having the request rejected because of a realm mismatch. If you

need WebSphere Application Server to propagate security attributes to another realm when a request

is sent, you must specify the realm name in the Trusted Target Realms field. Otherwise, the security

attributes are not propagated to the unspecified realm. You can add multiple target realms by adding

a pipe (|) delimiter between each entry.

12. Optional: Enable propagation for a pure client. For a pure client to propagate attributes added to the

invocation Subject, you must add the following property to the sas.client.props file:

com.ibm.CSI.rmiOutboundPropagationEnabled=true

Note: The sas.client.props file is located at <WAS-HOME>/profiles/<ProfileName>/properties>.

After completing these steps, you have configured WebSphere Application Server to propagate security

attributes to other servers.

If you need to disable security attribute propagation, determine whether you need to disable it for either

the server level or the cell level.

Attention: Changes to the server-level settings override the cell settings.

To disable security attribute propagation on the server level, complete the following steps:

1. Click Server > Application Servers > server_name.

2. Under Security, click Server security.

3. Select the RMI/IIOP security for this server overrides cell settings option.

4. Disable security attribute propagation for inbound requests by clicking CSI inbound authentication

under Additional Properties and clearing the Security attribute propagation option.

5. Disable security attribute propagation for outbound requests by clicking CSI outbound authentication

under Additional Properties and clearing the Security attribute propagation option.

To disable security attribute propagation on the cell level, undo each of the steps that you completed to

enable security attribute propagation in this task.

Configuring the authentication cache

The security authentication cache affects the frequency of rehashing and the distribution of the hash

algorithms.

To configure the authentication cache properties, complete the following steps:

1. Click Servers > Application Servers > server_name .

2. Under Server infrastructure, click Java and Process Management > Process definition.

3. Under Additional properties, click Java Virtual Machine > Custom Properties.

4. Click New to specify a new custom property.

For information on the supported authentication cache properties, see “Security cache properties.”

Security cache properties

The following Java virtual machine (JVM) security cache custom properties determine whether the

authentication cache is enabled or disabled. If the authentication cache is enabled, as recommended,

these custom properties specify the initial size of the primary and secondary hash table caches, which

affect the frequency of rehashing and the distribution of the hash algorithms.

Important: The com.ibm.websphere.security.util.tokenCacheSize and

com.ibm.websphere.security.util.LTPAValidationCacheSize properties were replaced with the

com.ibm.websphere.security.util.authCacheSize property.

Chapter 5. Authenticating users 269

You can specify these system properties by completing the following steps:

1. Click Servers > Application servers > server_name.

2. Click Java and Process Management > Process Definition.

3. Under Additional properties, click Java Virtual Machine.

4. Specify the property name and its value in the Generic JVM arguments field. You can specify multiple

property name and value pairs delimited by a space.

WebSphere Application Server includes the following security cache custom properties:

com.ibm.websphere.security.util.authCacheEnabled

Specifies whether to disable the authentication cache. It is recommended that you leave the

authentication cache enabled for performance reasons. However, you can disable the

authentication cache for debug or measurement purposes.

 Default: True

com.ibm.websphere.security.util.authCacheSize

Specifies the initial size of the primary and secondary hash table caches. A higher number of

available hash values might decrease the occurrence of hash collisions. A hash collision results in

a linear search for the hash bucket, which might decrease the retrieval time. If several entries

compose a hash table cache, you create a table with a larger capacity that supports more efficient

hash entries instead of allowing automatic rehashing determine the growth of the table. Rehashing

causes every entry to move each time.

 Default: 200

Type: Integer

Configuring IIOP authentication

WebSphere Application Server enables you to specify Internet Inter-ORB Protocol (IIOP) authentication for

both inbound and outbound authentication requests. For inbound requests, you can specify the type of

accepted authentication, such as basic authentication. For outbound requests, you can specify properties

such as type of authentication, identity assertion or login configurations that are used for requests to

downstream servers.

The following topics are covered in this section:

v Configuring Common Secure Interoperability Version 2 inbound authentication

v Configuring Common Secure Interoperability Version 2 outbound authentication

Configuring Common Secure Interoperability Version 2 inbound

authentication

Inbound authentication refers to the configuration that determines the type of accepted authentication for

inbound requests. This authentication is advertised in the interoperable object reference (IOR) that the

client retrieves from the name server.

1. Start the administrative console.

2. Click Security > Secure administration, applications, and infrastructure.

3. Under RMI/IIOP security, click CSIv2 inbound authentication.

4. Consider the following layers of security:

v Identity assertion (attribute layer).

When selected, this server accepts identity tokens from upstream servers. If the server receives an

identity token, the identity is taken from an originating client. For example, the identity is in the same

form that the originating client presented to the first server. An upstream server sends the identity of

270 Securing applications and their environment

the originating client. The format of the identity can be either a principal name, a distinguished

name, or a certificate chain. In some cases, the identity is anonymous. It is important to trust the

upstream server that sends the identity token because the identity authenticates on this server. Trust

of the upstream server is established either using Secure Sockets Layer (SSL) client certificate

authentication or basic authentication. You must select one of the two layers of authentication in

both inbound and outbound authentication when you choose identity assertion.

The server ID is sent in the client authentication token with the identity token. The server ID is

checked against the trusted server ID list. If the server ID is on the trusted server list, the server ID

is authenticated. If the server ID is valid, the identity token is put into a credential and used for

authorization of the request.

For more information, refer to Identity assertion.

v User ID and password (message layer).

This type of authentication is the most typical. The user ID and password or authenticated token is

sent from a pure client or from an upstream server. However, the upstream server cannot be a z/OS

server because z/OS does not support a user ID or password from a server acting as a client. When

a user ID and password are received at the server, they are authenticated with the user registry.

Usually, a token is sent from an upstream server and a user ID and password are sent from a client,

including a servlet. When a token is received at the server level, the token is validated to determine

whether tampering has occurred or whether it is expired.

For more information, refer to User ID and password.

v Secure Sockets Layer client certificate authentication (transport layer).

The SSL client certificate is used to authenticate instead of using user ID and Password. If a server

delegates an identity to a downstream server, the identity comes from either the message layer (a

client authentication token) or the attribute layer (an identity token), and not from the transport layer

through the client certificate authentication.

A client has an SSL client certificate that is stored in the keystore file of the client configuration.

When SSL client authentication is enabled on this server, the server requests that the client send

the SSL client certificate when the connection is established. The certificate chain is available on the

socket whenever a request is sent to the server. The server request interceptor gets the certificate

chain from the socket and maps this certificate chain to a user in the user registry. This type of

authentication is optimal for communicating directly from a client to a server. However, when you

have to go downstream, the identity typically flows over the message layer or through identity

assertion.

5. Consider the following points when deciding what type of authentication to accept:

v A server can receive multiple layers simultaneously, so an order of precedence rule decides which

identity to use. The identity assertion layer has the highest priority, the message layer follows, and

the transport layer has the lowest priority. The SSL client certificate authentication is used when it is

the only layer provided. If the message layer and the transport layer are provided, the message

layer is used to establish the identity for authorization. The identity assertion layer is used to

establish precedence when provided.

v Does this server usually receive requests from a client, from a server, or both? If the server always

receives requests from a client, identity assertion is not needed. You can choose either the message

layer, the transport layer, or both. You also can decide when authentication is required or just

supported. To select a layer as required, the sending client must supply this layer, or the request is

rejected. However, if the layer is only supported, the layer might not be supplied.

v What kind of client identity is supplied? If the client identity is client certificates authentication and

you want the certificate chain to flow downstream so that it maps to the downstream server user

registries, identity assertion is the appropriate choice. Identity assertion preserves the format of the

originating client. If the originating client authenticated with a user ID and password, a principal

identity is sent. If authentication is done with a certificate, the certificate chain is sent.

In some cases, if the client authenticated with a token and a Lightweight Directory Access Protocol

(LDAP) server is the user registry, then a distinguished name (DN) is sent.

Chapter 5. Authenticating users 271

6. Configure a trusted server list. When identity assertion is selected for inbound requests, insert a

pipe-separated (|) list of server administrator IDs to which this server can support identity token

submission. For backwards compatibility, you can still use a comma-delimited list. However, if the

server ID is a distinguished name (DN), then you must use a pipe-delimited (|) list because a comma

delimiter does not work. If you choose to support any server sending an identity token, you can enter

an asterisk (*) in this field. This action is called presumed trust. In this case, use SSL client certificate

authentication between servers to establish the trust.

7. Configure session management. You can choose either stateful or stateless security. Performance is

optimum when choosing stateful sessions. The first method request between a client and server is

authenticated. All subsequent requests (or until the credential token expires) reuse the session

information, including the credential. A client sends a context ID for subsequent requests. The context

ID is scoped to the connection for uniqueness.

When you finish configuring this panel, you have configured most of the information that a client gathers

when determining what to send to this server. A client or server outbound configuration with this server

inbound configuration, determines the security that is applied. When you know what clients send, the

configuration is simple. However, if you have a diverse set of clients with differing security requirements,

your server considers various layers of authentication.

For a J2EE application server, the authentication choice is usually either identity assertion or message

layer because you want the identity of the originating client delegated downstream. You cannot easily

delegate a client certificate using an SSL connection. It is acceptable to enable the transport layer

because additional server security, as the additional client certificate portion of the SSL handshake, adds

some overhead to the overall SSL connection establishment.

After you determine which type of authentication data this server might receive, you can determine what to

select for outbound security. For more information, see Configuring Common Secure Interoperability

Version 2 outbound authentication.

Common Secure Interoperability inbound authentication settings

Use this page to specify the features that a server supports for a client accessing its resources.

To view this administrative console page, complete the following steps:

1. Click Security > Secure administration, applications, and infrastructure.

2. Under Authentication, click RMI/IIOP security > CSIv2 inbound authentication.

You can also view this administrative console page on the server page by completing the following steps:

1. Click Servers > Application servers > server_name.

2. Under Security, click Server security.

3. Under Additional properties, click CSIv2 inbound authentication.

Use common secure interoperability (CSI) inbound authentication settings for configuring the type of

authentication information that is contained in an incoming request or transport.

Authentication features include three layers of authentication that you can use simultaneously:

v Transport layer. The transport layer, which is the lowest layer, might contain a Secure Sockets Layer

(SSL) client certificate as the identity.

v Message layer. The message layer might contain a user ID and password or an authenticated token

with an expiration.

v Attribute layer. The attribute layer might contain an identity token, which is an identity from an

upstream server that already is authenticated. The identity layer has the highest priority, followed by the

message layer, and then the transport layer. If a client sends all three, only the identity layer is used.

The only way to use the SSL client certificate as the identity is if it is the only information that is

272 Securing applications and their environment

presented during the request. The client picks up the interoperable object reference (IOR) from the

namespace and reads the values from the tagged component to determine what the server needs for

security.

Basic authentication:

Specifies that basic authentication occurs over the message layer.

 Basic authentication occurs in the message layer. This type of authentication typically involves sending a

user ID and a password from the client to the server for authentication.

This authentication also involves delegating a credential token from an already authenticated credential,

provided the credential type is forwardable, for example, Lightweight Third Party Authentication (LTPA).

If you click Basic Authentication and LTPA is the configured authentication protocol, user name,

password, and LTPA tokens are accepted.

The following options are available for Basic Authentication:

Never This option indicates that this server cannot accept user ID and password authentication.

Supported

This option indicates that a client communicating with this server can specify a user ID and

password. However, a method might be invoked without this type of authentication. For example,

an anonymous or client certificate might be used instead.

Required

This option indicates that clients communicating with this server must specify a user ID and

password for any method request.

Basic authentication takes precedence over client certificate authentication, if both are performed.

Client certificate authentication:

Specifies that authentication occurs when the initial connection is made between the client and the server

during a method request.

 In the transport layer, Secure Sockets Layer (SSL) client certificate authentication occurs. In the message

layer, basic authentication (user ID and password) is performed. Client certificate authentication typically

performs better than message layer authentication, but requires some additional setup. These additional

steps involve verifying that the server trusts the signer certificate of each client to which it is connected. If

the client uses a certificate authority (CA) to create its personal certificate, you only need the CA root

certificate in the server signer section of the SSL trust file.

When the certificate is authenticated to a Lightweight Directory Access Protocol (LDAP) user registry, the

distinguished name (DN) is mapped based on the filter that is specified when configuring LDAP. When the

certificate is authenticated to a local OS user registry, the first attribute of the distinguished name (DN) in

the certificate, which is typically the common name, is mapped to the user ID in the registry.

The identity from client certificates is used only if no other layer of authentication is presented to the

server.

Never This option indicates that clients cannot attempt Secure Sockets Layer (SSL) client certificate

authentication with this server.

Supported

This option indicates that clients connecting to this server can authenticate using SSL client

certificates. However, the server can invoke a method without this type of authentication. For

example, anonymous or basic authentication can be used instead.

Chapter 5. Authenticating users 273

Required

This option indicates that clients connecting to this server must authenticate using SSL client

certificates before invoking the method.

Trusted identities:

 Specifies a pipe-separated (|) list of trusted server administrator user IDs, which are trusted to perform

identity assertion to this server. For example, serverid1|serverid2|serverid3. The application server

supports the comma (,) character as the list delimiter for backwards compatibility. The application server

checks the comma character when the pipe character (|) fails to find a valid trusted server ID.

Use this list to decide whether a server is trusted. Even if the server is on the list, the sending server must

still authenticate with the receiving server to accept the identity token of the sending server.

 Data type String

Stateful sessions:

Select this option to enable stateful sessions, which are used mostly for performance improvements.

 The first contact between a client and server must fully authenticate. However, all subsequent contacts

with valid sessions reuse the security information. The client passes a context ID to the server, and the ID

is used to look up the session. The context ID is scoped to the connection, which guarantees uniqueness.

Whenever the security session is not valid and the authentication retry is enabled, which is the default, the

client-side security interceptor invalidates the client-side session and submits the request again without

user awareness. This situation might occur if the session does not exist on the server (the server failed

and resumed operation). When this value is disabled, every method invocation must authenticate again.

 Data type String

Login configuration:

Specifies the type of system login configuration to use for inbound authentication.

 You can add custom login modules by clicking Security > Secure administration, applications, and

infrastructure. Under Authentication, click Java Authentication and Authorization Service > System

logins.

Security attribute propagation:

Select this option to support security attribute propagation during login requests. When you select this

option, the application server retains additional information about the login request, such as the

authentication strength used, and retains the identity and location of the request originator.

 Verify that you are using Lightweight Third Party Authentication (LTPA) as your authentication mechanism.

LTPA is the only authentication mechanism supported when you enable the security attribute propagation

feature.

To configure LTPA, click Security > Secure administration, applications, and infrastructure. Under

Authentication, click Authentication mechanisms and expiration.

If you do not select this option, the application server does not accept any additional login information to

propagate to downstream servers.

274 Securing applications and their environment

Configuring Common Secure Interoperability Version 2 outbound

authentication

The following choices are available when configuring the Common Secure Interoperability Version 2

(CSIv2) Outbound Authentication panel.

Outbound authentication refers to the configuration that determines the type of authentication that is

performed for outbound requests to downstream servers. Several layers or methods of authentication can

occur. The downstream server inbound authentication configuration must support at least one choice made

in this server outbound authentication configuration. If nothing is supported, the request might go outbound

as unauthenticated. This situation does not create a security problem because the authorization runtime is

responsible for preventing access to protected resources. However, if you choose to prevent an

unauthenticated credential from going outbound, you might want to designate one of the authentication

layers as required, rather than supported. If a downstream server does not support authentication, then

when authentication is required, the method request fails to go outbound.

The following choices are available in the Common Secure Interoperability Version 2 (CSIv2) Outbound

Authentication panel. Remember that you are not required to complete these steps in the displayed order.

Rather, these steps are provided to help you understand your choices for configuring outbound

authentication.

v Select Identity Assertion (attribute layer). When selected, this server sends an identity token to a

downstream server if the downstream server supports identity assertion. When an originating client

authenticates to this server, the authentication information supplied is preserved in the outbound identity

token. If the client authenticating to this server uses client certificate authentication, then the identity

token format is a certificate chain, containing the exact client certificate chain from the inbound socket.

The same scenario is true for other mechanisms of authentication. Read theIdentity Assertion topic for

more information.

v Select User ID and Password (message layer). This type of authentication is the most typical. The user

ID and password (if BasicAuth credential) or authenticated token (if authenticated credential) are sent

outbound to the downstream server if the downstream server supports message layer authentication in

the inbound authentication panel. Refer to the Message Layer Authentication article for more

information.

v Select SSL Client certificate authentication (transport layer). The main reason to enable outbound

Secure Sockets Layer (SSL) client authentication from one server to a downstream server is to create a

trusted environment between those servers. For delegating client credentials, use one of the two layers

mentioned previously. However, you might want to create SSL personal certificates for all the servers in

your domain, and only trust those servers in your SSL truststore file. No other servers or clients can

connect to the servers in your domain, except at the tiers where you want them. This process can

protect your enterprise bean servers from access by anything other than your servlet servers.

Configuring session management

You can choose either stateful or stateless security. Performance is optimum when choosing stateful

sessions. The first method request between this server and the downstream server is authenticated. All

subsequent requests reuse the session information, including the credential. A unique session entry is

defined as the combination of a unique client authentication token and an identity token, scoped to the

connection.

When you finish configuring this panel, you configured the information that this server uses to make

decisions about the type of authentication to perform with downstream servers. If the downstream server is

configured not to support the outbound configuration of the server, the following exception likely occurs:

Exception received: org.omg.CORBA.INITIALIZE:

CWWSA1477W: SECURITY CLIENT/SERVER CONFIG MISMATCH: The client security

configuration (sas.client.props or outbound settings in GUI) does not

support the server security configuration for the following reasons:

ERROR 1: CWWSA0607E: The client requires SSL Confidentiality but the server

does not support it.

Chapter 5. Authenticating users 275

ERROR 2: CWWSA0610E: The server requires SSL Integrity but the client does

not support it.

ERROR 3: CWWSA0612E: The client requires client (e.g., userid/password or token),

but the server does not support it.

minor code: 0 completed: No

 at com.ibm.ISecurityLocalObjectBaseL13Impl.SecurityConnectionInterceptor.

getConnectionKey(SecurityConnectionInterceptor.java:1770)

 at com.ibm.ws.orbimpl.transport.WSTransport.getConnection(Unknown Source)

 at com.ibm.rmi.iiop.TransportManager.get(TransportManager.java:79)

 at com.ibm.rmi.iiop.GIOPImpl.locate(GIOPImpl.java:167)

 at com.ibm.CORBA.iiop.ClientDelegate._createRequest(ClientDelegate.java:2088)

 at com.ibm.CORBA.iiop.ClientDelegate.createRequest(ClientDelegate.java:1264)

 at com.ibm.CORBA.iiop.ClientDelegate.createRequest(ClientDelegate.java:1177)

 at com.ibm.CORBA.iiop.ClientDelegate.request(ClientDelegate.java:1726)

 at org.omg.CORBA.portable.ObjectImpl._request(ObjectImpl.java:245)

 at com.ibm.WsnOptimizedNaming._NamingContextStub.get_compatibility_level

(Unknown Source)

 at com.ibm.websphere.naming.DumpNameSpace.getIdlLevel(DumpNameSpace.java:300)

 at com.ibm.websphere.naming.DumpNameSpace.getStartingContext

(DumpNameSpace.java:329)

 at com.ibm.websphere.naming.DumpNameSpace.main(DumpNameSpace.java:268)

 at java.lang.reflect.Method.invoke(Native Method)

 at com.ibm.ws.bootstrap.WSLauncher.main(WSLauncher.java:163)

The reasons for the mismatch are explained in the exception. You can make the corrections when you

configure the outbound configuration for this server, or when you configure the inbound configuration of the

downstream server. If multiple reasons exist for a failure, the reasons are explained as message text in the

exception.

Typically, the outbound authentication configuration is for an upstream server to communicate with a

downstream server. Most likely, the upstream server is a servlet server and the downstream server is an

Enterprise JavaBeans (EJB) server. On a servlet server, the client authentication that is performed to

access the servlet can be one of many different types of authentication, including client certificate and

basic authentication. When receiving basic authentication data, whether through a prompt login or a

form-based login, the basic authentication information is typically authenticated to from a credential of the

mechanism type that is supported by the server, such as the Lightweight Third Party Authentication

(LTPA). When LTPA is the mechanism, a forwardable token exists in the credential. Choose the message

layer (BasicAuth) authentication to propagate the client credentials. If the credential is created using a

certificate login and you want to preserve sending the certificate downstream, you might decide to go

outbound with identity assertion.

Save the configuration and restart the server for the changes to take effect.

Common Secure Interoperability Version 2 outbound authentication settings

Use this page to specify the features that a server supports when acting as a client to another downstream

server.

To view this administrative console page, complete the following steps:

1. Click Security > Secure administration, applications, and infrastructure.

2. Under Authentication, click RMI/IIOP security > CSIv2 outbound authentication.

You also can view this administrative console page by completing the following steps:

1. Click Servers > Application Servers > server_name.

2. Under Security, click Server security.

3. Click CSIv2 outbound authentication.

Authentication features include the following layers of authentication that you can use simultaneously:

276 Securing applications and their environment

Transport layer

The transport layer, the lowest layer, might contain a Secure Sockets Layer (SSL) client certificate

as the identity.

Message layer

The message layer might contain a user ID and password or authenticated token.

Attribute layer

The attribute layer might contain an identity token, which is an identity from an upstream server

that is already authenticated. The attribute layer has the highest priority, followed by the message

layer and then the transport layer. If this server sends all three - the attribute layer, the message

layer, and the transport layer - only the attribute layer is used by the downstream server. The only

way to use the SSL client certificate as the identity is if it is the only information presented during

the outbound request.

Basic authentication:

Specifies whether to send a user ID and a password from the client to the server for authentication.

 This type of authentication occurs over the message layer. Basic authentication also involves delegating a

credential token from an already authenticated credential, provided the credential type is forwardable (for

example, Lightweight Third Party Authentication (LTPA)). Basic authentication refers to any authentication

over the message layer and indicates user ID and password as well as token-based authentication.

The following options are available:

Never This option indicates that this server does not send user ID and password authentication

information to downstream servers. By selecting never, requests to downstream servers that

require basic authentication fail.

Supported

This option indicates that this server can specify a user ID and password to authenticate with

downstream servers. However, a method might be invoked without this type of authentication. For

example, the server can use anonymous or client certificate instead.

Required

This option indicates that this server must specify a user ID and password to authenticate with

downstream servers for any method request. This server cannot initiate requests with servers that

do not support or require basic authentication for inbound requests.

Client certificate authentication:

Specifies whether a client certificate from the configured keystore is used to authenticate to the server

when the SSL connection is made between this server and a downstream server, provided that the

downstream server supports client certificate authentication.

 Typically, client certificate authentication has a higher performance than message layer authentication, but

requires some additional setup. These additional steps include verifying that this server has a personal

certificate and that the downstream server has the signer certificate of this server.

If you select client certificate authentication, the following options are available:

Never This option indicates that this server does not attempt Secure Sockets Layer (SSL) client

certificate authentication with downstream servers.

Supported

This option indicates that this server can use SSL client certificates to authenticate to downstream

servers. However, a method can be invoked without this type of authentication. For example, the

server can use anonymous or basic authentication instead.

Chapter 5. Authenticating users 277

Required

This option indicates that this server must use SSL client certificates to authenticate to

downstream servers.

Identity assertion:

Specifies whether to assert identities from one server to another during a downstream enterprise bean

invocation.

 The identity asserted is the invocation credential that is determined by the RunAs mode for the enterprise

bean. If the RunAs mode is Client, the identity is the client identity. If the RunAs mode is System, the

identity is the server identity. If the RunAs mode is Specified, the identity is the identity specified. The

receiving server receives the identity in an identity token and also receives the sending server identity in a

client authentication token. The receiving server validates the identity of the sending server to ensure a

trusted identity.

When specifying identity assertion on the CSIv2 authentication outbound panel, you must also select basic

authentication as supported or required on the CSIv2 authentication inbound panel. The server identity can

then be submitted with the identity token, so that the receiving server can trust the sending server. Without

specifying basic authentication as supported or required, trust is not established and the identity assertion

fails.

Use server trusted identity

Specifies the server identity that the application server uses to establish trust with the target

server. The server identity can be sent using one of the following methods:

v A server ID and password when the server password is specified in the registry configuration.

v A server ID in a Lightweight Third Party Authentication (LTPA) token when the internal server ID

is used.

For interoperability with application servers other than WebSphere Application Server, use of the

following methods:

v Configure the server ID and password in the registry.

v Select the Specify an alternative trusted identity option and specify the trusted identity and

password so that an interoperable Generic Security Services Username Password (GSSUP)

token is sent instead of an LTPA token.

Specify an alternative trusted identity

 Specifies an alternative user as the trusted identity that is sent to the target servers instead of

sending the server identity. This option is recommended for identity assertion. The identity is

automatically trusted when it is sent within the same cell and does not need to be in the trusted

identities list within the same cell. However, this identity must be in the registry of the target

servers in an external cell and the user ID must be on the trusted identities list or the identity is

rejected during trust evaluation.

Trusted identity

Specifies the trusted identity that is sent from the sending server to the receiving server.

 If you specify an identity in this field, it can be selected on the panel for your configured

user account repository. If you do not specify an identity, a Lightweight Third Party

Authentication (LTPA) token is sent between the servers.

Password

Specifies the password that is associated with the trusted identity.

Confirm password

Confirms the password that is associated with the trusted identity.

Stateful sessions:

278 Securing applications and their environment

Specifies whether to reuse security information during authentication. This option is usually used to

increase performance.

 The first contact between a client and server must fully authenticate. However, all subsequent contacts

with valid sessions reuse the security information. The client passes a context ID to the server, and that ID

is used to look up the session. The context ID is scoped to the connection, which guarantees uniqueness.

When the security session is not valid and if authentication retry is enabled, which is the default, the

client-side security interceptor invalidates the client-side session and resubmits the request transparently.

For example, if the session does not exist on the server; the server fails and resumes operation.

When this value is disabled, every method invocation must authenticate again.

Login configuration:

Specifies the type of system login configuration that is used for outbound authentication.

 You can add custom login modules before or after this login module by completing the following steps:

1. Click Security > Secure administration, applications, and infrastructure.

2. Under Authentication, click Java Authentication and Authorization Service > System logins > New.

Custom outbound mapping:

Enables the use of custom Remote Method Invocation (RMI) outbound login modules.

 The custom login module maps or performs other functions before the predefined RMI outbound call.

To declare a custom outbound mapping, complete the following steps:

1. Click Security > Secure administration, applications, and infrastructure.

2. Under Authentication, click Java Authentication and Authorization Service > System logins > New.

Security attribute propagation:

Enables the application server to propagate the Subject and the security content token to other application

servers using the Remote Method Invocation (RMI) protocol.

 Verify that you are using Lightweight Third Party Authentication (LTPA) as your authentication mechanism.

LTPA is the only authentication mechanism that is supported when you enable the security attribute

propagation feature. To configure LTPA, complete the following steps:

1. Click Security > Secure administration, applications, and infrastructure.

2. Under Authentication, click Authentication mechanisms and expiration.

By default, the Security attribute propagation option is enabled and outbound login configuration is

invoked. If you clear this option, the application server does not propagate any additional login information

to downstream servers. If you select the Use SWAM-no authenticated communication between servers

option on the Authentication mechanisms and expiration panel, the security attribute propagation feature is

not supported.

Note: SWAM is deprecated in the application server Version 6.1 and will be removed in a future release.

Trusted target realms:

Specifies a list of trusted target realms, separated by a pipe character (|), that differ from the current

realm.

Chapter 5. Authenticating users 279

Prior to WebSphere Application Server, Version 5.1.1, if the current realm does not match the target realm,

the authentication request is not sent outbound to other application servers.

Example: Common Secure Interoperability Version 2 scenarios

The articles included in this section provide specific scenarios demonstrating how to configure Common

Secure Interoperability Version 2 (CSIv2).

Scenario 1: Basic authentication and identity assertion

This example presents a pure Java client, C, that accesses a secure enterprise bean on server, S1,

through user bob. The following steps take you through the configuration of C, S1, and S2.

The enterprise bean code on S1 accesses another enterprise bean on server, S2. This configuration uses

identity assertion to propagate the identity of bob to the downstream server, S2. S2 trusts that bob already

is authenticated by S1 because it trusts S1. To gain this trust, the identity of S1 also flows to S2

simultaneously and S2 validates the identity by checking the trustedPrincipalList list to verify that it is a

valid server principal. S2 also authenticates S1. The following steps take you through the configuration of

C, S1, and S2.

Configuring client, C

Client C requires message layer authentication with a Secure Sockets Layer (SSL) transport. To

accomplish this task:

1. Point the client to the sas.client.props file.

Use the com.ibm.CORBA.ConfigURL=file:/C:/was/properties/sas.client.props property. All further

configuration involves setting properties within this file.

2. Enable SSL.

In this case, SSL is supported but not required:

com.ibm.CSI.performTransportAssocSSLTLSSupported=true,

com.ibm.CSI.performTransportAssocSSLTLSRequired=false

3. Enable client authentication at the message layer.

In this case, client authentication is supported but not required:

com.ibm.CSI.performClientAuthenticationRequired=false,

com.ibm.CSI.performClientAuthenticationSupported=true

4. Use all of the remaining defaults in the sas.client.props file.

server1/passwordbob/password

Java client Enterprise beans

Invocation credentials: bob

Message layerMessage layer

Transport layer Transport layer

Identity assertion layer

SSLSSL

bob

C S1 S2

Received credentials: bob

Enterprise beans

280 Securing applications and their environment

Configuring server, S1

In the administrative console, server S1 is configured for incoming requests to support message-layer

client authentication and incoming connections to support SSL without client certificate authentication.

Server S1 is configured for outgoing requests to support identity assertion.

1. Configure S1 for incoming connections.

a. Disable identity assertion.

b. Enable user ID and password authentication.

c. Enable SSL.

d. Disable SSL client certificate authentication.

2. Configure S1 for outgoing connections.

a. Enable identity assertion.

b. Disable user ID and password authentication.

c. Enable SSL.

d. Disable SSL client certificate authentication.

Configuring server, S2

In the administrative console, server S2 is configured for incoming requests to support identity assertion

and to accept SSL connections. Complete the following steps to configure incoming connections.

Configuration for outgoing requests and connections are not relevant for this scenario.

1. Enable identity assertion.

2. Disable user ID and password authentication.

3. Enable SSL.

4. Disable SSL client authentication.

Scenario 2: Basic authentication, identity assertion, and client certificates

This scenario is the same as Scenario 1, except for the interaction from client C2 to server S2. Therefore,

the configuration of Scenario 1 still is valid, but you have to modify server S2 slightly and add a

configuration for client C2. The configuration is not modified for C1 or S1.

Chapter 5. Authenticating users 281

Configuring client C2

Client C2 requires transport layer authentication (Secure Sockets Layer (SSL) client certificates). To

configure transport layer authentication:

1. Point the client to the sas.client.props file.

Use the com.ibm.CORBA.ConfigURL=file:/C:/was/properties/sas.client.props property. All further

configuration involves setting properties within this file.

2. Enable SSL.

In this case, SSL is supported but not required:

com.ibm.CSI.performTransportAssocSSLTLSSupported=true,

com.ibm.CSI.performTransportAssocSSLTLSRequired=false

3. Disable client authentication at the message layer.

com.ibm.CSI.performClientAuthenticationRequired=false,

com.ibm.CSI.performClientAuthenticationSupported=false

4. Enable client authentication at the transport layer where it is supported, but not required:

com.ibm.CSI.performTLClientAuthenticationRequired=false,

com.ibm.CSI.performTLClientAuthenticationSupported=true

Configuring server, S2

In the administrative console, server S2 is configured for incoming requests to SSL client authentication

and identity assertion. Configuration for outgoing requests is not relevant for this scenario.

1. Enable identity assertion.

server1/passwordbob/password

Java client Enterprise beans

Invocation credentials: bob

Message layerMessage layer

Transport layer Transport layer

Identity assertion layer

SSLSSL

bob

C S1 S2

Received credentials: bob

Enterprise beans

Transport layer

SSL: cn=bob, o=ibm, c=us

C S1

282 Securing applications and their environment

2. Disable user ID and password authentication.

3. Enable SSL.

4. Enable SSL client authentication.

You can mix and match these configuration options. However, a precedence exists as to which

authentication features become the identity in the received credential:

1. Identity assertion

2. Message-layer client authentication (basic authentication or token)

3. Transport-layer client authentication (SSL certificates)

Scenario 3: Client certificate authentication and RunAs system

This example presents a pure Java client, C, accessing a secure enterprise bean on S1.

C authenticates to S1 using Secure Sockets Layer (SSL) client certificates. S1 maps the common name of

the distinguished name (DN) in the certificate to a user in the local registry. The user in this case is bob.

The enterprise bean code on S1 accesses another enterprise bean on S2. Because the RunAs mode is

system, the invocation credential is set as server1 for any outbound requests.

Configuring C

C requires transport layer authentication (SSL client certificates):

1. Point the client to the sas.client.props file.

Use the com.ibm.CORBA.ConfigURL=file:/C:/was/properties/sas.client.props property. All further

configuration involves setting properties within this file.

2. Enable SSL.

In this case, SSL is supported but not required:

com.ibm.CSI.performTransportAssocSSLTLSSupported=true,

com.ibm.CSI.performTransportAssocSSLTLSRequired=false

3. Disable client authentication at the message

layer:com.ibm.CSI.performClientAuthenticationRequired=false,

com.ibm.CSI.performClientAuthenticationSupported=false

4. Enable client authentication at the transport layer. It is supported, but not required:

com.ibm.CSI.performTLClientAuthenticationRequired=false,

com.ibm.CSI.performTLClientAuthenticationSupported=true

server1/password

Java client Enterprise beans

Invocation credentials: bob

RunAs system

Message layer

Transport layer Transport layer

SSLSSL: cn=bob, o=ibm, c=us

C S1 S2

Received credentials: server1

Enterprise beans

Chapter 5. Authenticating users 283

Configuring S1

In the administrative console, S1 is configured for incoming connections to support SSL with client

certificate authentication. The S1 server is configured for outgoing requests to support message layer

client authentication.

1. Configure S1 for incoming connections:

a. Disable identity assertion.

b. Disable user ID and password authentication.

c. Enable SSL.

d. Enable SSL client certificate authentication.

2. Configure S1 for outgoing connections:

a. Disable identity assertion.

b. Disable user ID and password authentication.

c. Enable SSL.

d. Enable SSL client certificate authentication.

Configuring S2

In the administrative console, the S2 server is configured for incoming requests to support message layer

authentication over SSL. Configuration for outgoing requests is not relevant for this scenario.

1. Disable identity assertion.

2. Enable user ID and password authentication.

3. Enable SSL.

4. Disable SSL client authentication.

Scenario 4: TCP/IP transport using a virtual private network

This scenario illustrates the ability to choose TCP/IP as the transport when it is appropriate. In some

cases, when two servers are on the same virtual private network (VPN), it can be appropriate to select

TCP/IP as the transport for performance reasons because the VPN already encrypts the message.

284 Securing applications and their environment

Configuring C

C requires message layer authentication with an Secure Sockets Layer (SSL) transport:

1. Point the client to the sas.client.props file.

Use the com.ibm.CORBA.ConfigURL=file:/C:/was/properties/sas.client.props property. All further

configuration involves setting properties within this file.

2. Enable SSL. In this case, SSL is supported but not required:

com.ibm.CSI.performTransportAssocSSLTLSSupported=true,

com.ibm.CSI.performTransportAssocSSLTLSRequired=false

3. Enable client authentication at the message layer. In this case, client authentication is supported but

not required: com.ibm.CSI.performClientAuthenticationRequired=false,

com.ibm.CSI.performClientAuthenticationSupported=true

4. Use the remaining defaults in the sas.client.props file.

Configuring the S1 server

In the administrative console, the S1 server is configured for incoming requests to support message-layer

client authentication and incoming connections to support SSL without client certificate authentication. The

S1 server is configured for outgoing requests to support identity assertion.

1. Configure S1 for incoming connections:

a. Disable identity assertion.

b. Enable user ID and password authentication.

c. Enable SSL.

tom/password
token

Java client Enterprise

beans

Virtual Private Network

Invocation

credentials: tom

Received

credentials: tom

Message layer
Message layer

Transport layer

TCP/IP

C S1 S2

Transport layer

SSL

Enterprise

beans

Chapter 5. Authenticating users 285

d. Disable SSL client certificate authentication.

2. Configure S1 for outgoing connections:

a. Disable identity assertion.

b. Enable user ID and password authentication.

c. Disable SSL.

It is possible to enable SSL for inbound connections and disable SSL for outbound connections. The same

is true in reverse.

Configuring the S2 server

In the administrative console, the S2 server is configured for incoming requests to support identity

assertion and to accept SSL connections. Configuration for outgoing requests and connections are not

relevant for this scenario.

1. Disable identity assertion.

2. Enable user ID and password authentication.

3. Disable SSL.

Configuring RMI over IIOP

Complete the following steps to configure Common Secure Interoperability Version 2 (CSIV2) and Security

Authentication Service (SAS).

Important: SAS is supported only between Version 6.0.x and previous version servers that have been

federated in a Version 6.1 cell.

1. Determine how to configure security inbound and outbound at each point in your infrastructure.

For example, you might have a Java client communicating with an Enterprise JavaBeans (EJB)

application server, which in turn communicates to a downstream EJB application server.

The Java client utilizes the sas.client.props file to configure outbound security. Pure clients must

configure outbound security only.

The upstream EJB application server configures inbound security to handle the correct type of

authentication from the Java client. The upstream EJB application server utilizes the outbound security

configuration when going to the downstream EJB application server.

This type of authentication might be different than what you expect from the Java client into the

upstream EJB application server. Security might be tighter between the pure client and the first EJB

server, depending on your infrastructure. The downstream EJB server utilizes the inbound security

configuration to accept requests from the upstream EJB server. These two servers require similar

configuration options as well. If the downstream EJB application server communicates to other

downstream servers, the outbound security might require a special configuration.

2. Specify the type of authentication.

By default, authentication by a user ID and password is performed.

Both Java client certificate authentication and identity assertion are disabled by default. If you want this

type of authentication performed at every tier, use the CSIv2 authentication protocol configuration as is.

However, if you have any special requirements where some servers authenticate differently from other

servers, consider how to configure CSIv2 to its best advantage.

3. Configure clients and servers.

Configuring a pure Java client is done through the sas.client.props file, where properties are

modified.

Configuring servers is always done from the administrative console or scripting, either from the security

navigation for cell-level configurations or from the server security of the application server for

286 Securing applications and their environment

server-level configurations. If you want some servers to authenticate differently from others, modify

some of the server-level configurations. When you modify the server-level configurations, you are

overriding the cell-level configurations.

Configuring inbound transports

By using this configuration, you can configure a different transport for inbound security versus outbound

security.

V6.0.x

Inbound transports refer to the types of listener ports and their attributes that are opened to

receive requests for this server. Both Common Secure Interoperability Specification, Version 2 (CSIv2) and

Secure Authentication Service (SAS) have the ability to configure the transport.

Important: SAS is supported only between Version 6.0.x and previous version servers that have been

federated in a Version 6.1 cell.

However, the following differences between the two protocols exist: V6.0.x

v CSIv2 is much more flexible than SAS, which requires Secure Sockets Layer (SSL); CSIv2 does not

require SSL.

v SAS does not support SSL client certificate authentication, while CSIv2 does.

v CSIv2 can require SSL connections, while SAS only supports SSL connections.

v SAS always has two listener ports open: TCP/IP and SSL.

v CSIv2 can have as few as one listener port and as many as three listener ports. You can open one port

for just TCP/IP or when SSL is required. You can open two ports when SSL is supported, and open

three ports when SSL and SSL client certificate authentication is supported.

Complete the following steps to configure the Inbound transport panels in the administrative console:

1. Click Security > Secure administration, applications, and infrastructure.

2. Under RMI/IIOP security, click CSIv2 inbound transport to select the type of transport and the SSL

settings. By selecting the type of transport, as noted previously, you choose which listener ports you

want to open. In addition, you disable the SSL client certificate authentication feature if you choose

TCP/IP as the transport.

3. Select the SSL settings that correspond to an SSL transport. You can define these settings by

accessing the SSL configurations panel. For more information, see tsec_sslconfiguration.dita.

4. Click Apply in the CSIv2 inbound transport panel.

5. Consider fixing the listener ports that you configured.

You complete this action in a different panel, but think about this action now. Most endpoints are

managed at a single location, which is why they do not display in the Inbound transport panels.

Managing end points at a single location helps you decrease the number of conflicts in your

configuration when you assign the endpoints. The location for SSL end points is at each server. The

following port names are defined in the End points panel and are used for Object Request Broker

(ORB) security:

v CSIV2_SSL_MUTUALAUTH_LISTENER_ADDRESS - CSIv2 Client Authentication SSL Port

v CSIV2_SSL_SERVERAUTH_LISTENER_ADDRESS - CSIv2 SSL Port

v

V6.0.x

SAS_SSL_SERVERAUTH_LISTENER_ADDRESS - SAS SSL Port

v ORB_LISTENER_PORT - TCP/IP Port

For an application server, click Servers > Application servers > server_name. Under

Communications, click Ports. The Ports panel is displayed for the specified server.

The Object Request Broker (ORB) on WebSphere Application Server uses a listener port for Remote

Method Invocation over the Internet Inter-ORB Protocol (RMI/IIOP) communications, and is statically

specified using configuration dialogs or during migration. If you are working with a firewall, you must

Chapter 5. Authenticating users 287

tsec_sslconfiguration.dita

specify a static port for the ORB listener and open that port on the firewall so that communication can

pass through the specified port. The endPoint property for setting the ORB listener port is:

ORB_LISTENER_ADDRESS.

Complete the following steps using the administrative console to specify the

ORB_LISTENER_ADDRESS port or ports.

a. Click Servers > Application Servers > server_name. Under Communications, click Ports > New.

b. Select ORB_LISTENER_ADDRESS from the Port name field in the Configuration panel.

c. Enter the IP address, the fully qualified Domain Name System (DNS) host name, or the DNS host

name by itself in the Host field. For example, if the host name is myhost, the fully qualified DNS

name can be myhost.myco.com and the IP address can be 155.123.88.201.

d. Enter the port number in the Port field. The port number specifies the port for which the service is

configured to accept client requests. The port value is used with the host name. Using the previous

example, the port number might be 9000.

6. Click Security > Secure administration, applications, and infrastructure. Under RMI/IIOP security,

click CSIv2 inbound transport to select the SSL settings that are used for inbound requests from

CSIv2 clients. Remember that the CSIv2 protocol is used to inter-operate with previous releases.

When configuring the keystore and truststore files in the SSL configuration, these files need the right

information for inter-operating with previous releases of WebSphere Application Server. For example, a

previous release has a different truststore file than the Version 6 release. If you use the Version 6

keystore file, add the signer to the truststore file of the previous release for those clients connecting to

this server.

The inbound transport configuration is complete. With this configuration, you can configure a different

transport for inbound security versus outbound security. For example, if the application server is the first

server that is used by users, the security configuration might be more secure. When requests go to

back-end enterprise bean servers, you might lessen the security for performance reasons when you go

outbound. With this flexibility you can design the right transport infrastructure to meet your needs.

When you finish configuring security, perform the following steps to save, synchronize, and restart the

servers:

1. Click Save in the administrative console to save any modifications to the configuration.

2. Stop and restart all servers, when synchronized.

Common Secure Interoperability Version 2 transport inbound settings

Use this page to specify which listener ports to open and which Secure Sockets Layer (SSL) settings to

use. These specifications determine which transport a client or upstream server uses to communicate with

this server for incoming requests.

To view this administrative console page, complete the following steps:

1. Click Security > Secure administration, applications, and infrastructure.

2. Under Authentication, click RMI/IIOP security > CSIv2 inbound transport.

Transport:

Specifies whether client processes connect to the server using one of its connected transports.

 You can choose to use either Secure Sockets Layer (SSL), TCP/IP or both as the inbound transport that a

server supports. If you specify TCP/IP, the server only supports TCP/IP and cannot accept SSL

connections. If you specify SSL-supported, this server can support either TCP/IP or SSL connections. If

you specify SSL-required, then any server communicating with this one must use SSL.

If you specify SSL-supported or SSL-required, decide which set of SSL configuration settings you want to

use for the inbound configuration. This decision determines which key file and trust file are used for

inbound connections to this server.

288 Securing applications and their environment

TCP/IP

If you select TCP/IP, then the server opens a TCP/IP listener port only and all inbound requests

do not have SSL protection.

SSL-required

If you select SSL-required, then the server opens an SSL listener port only and all inbound

requests are received using SSL.

Important:

V6.0.x

If you set the active authentication protocol to CSI and SAS, then the

server opens a TCP/IP listener port for the Secure Authentication Service (SAS)

protocol regardless of this setting.

V6.0.x

Only an SSL listener port is opened, and all requests come through SSL connections. If

you choose SSL-required, you must also choose CSI as the active authentication protocol. If you

choose CSI and SAS, SAS requires an open TCP/IP socket for some special requests.

Important: SAS is supported only between Version 6.0.x and previous version servers that have

been federated in a Version 6.1 cell.

SSL-supported

If you select SSL-supported, then the server opens both a TCP/IP and an SSL listener port and

most inbound requests are received using SSL.

V6.0.x

By default, SSL ports for Common Secure Interoperability Version 2 (CSIv2) and Security

Authentication Service (SAS) are dynamically generated. In cases where you need to fix the SSL ports on

application servers, click Servers > Application Servers > server_name. Under Additional properties,

click Endpoint listeners.

Provide a fixed port number for the following ports. A zero port number indicates that a dynamic

assignment is made at runtime.

CSIV2_SSL_MUTUALAUTH_LISTENER_ADDRESS

CSIV2_SSL_SERVERAUTH_LISTENER_ADDRESS

SAS_SSL_SERVERAUTH_LISTENER_ADDRESS

 Default: SSL-Supported

Range: TCP/IP, SSL Required, SSL-Supported

SSL settings:

Specifies a list of predefined SSL settings to choose from for inbound connections.

Note:

V6.0.x

This option is available for non-z/OS platform servers when there is a version 6.0.x

server in your environment. However, if your environment contains only Version 6.1 servers, this

option does not apply.

These settings are configured at the SSL Repertoire panel. To access the SSL Repertoire panel, complete

the following steps:

1. Clicking Security > SSL certificate and key management.

2. Under configuration settings, click Manage endpoint security configurations and trust zones.

3. Expand Inbound and click inbound_configuration.

4. Under Related items, click SSL configurations.

Chapter 5. Authenticating users 289

Data type: String

Default: DefaultSSLSettings

DefaultIIOPSSL

Range: Any SSL settings configured in the SSL Configuration

Repertoire

Centrally managed:

Specifies that the selection of an SSL configuration is based upon the outbound topology view for the Java

Naming and Directory Interface (JNDI) platform.

 Centrally managed configurations support one location to maintain SSL configurations rather than

spreading them across the configuration documents.

 Default: Enabled

Use specific SSL alias:

Specifies the SSL configuration alias to use for LDAP outbound SSL communications.

 This option overrides the centrally managed configuration for the JNDI platform.

z/OS SSL settings:

Specifies a list of predefined Secure Sockets Layer (SSL) settings for inbound connections. Configure

these settings on the SSL panel by clicking Secure communications on the administrative console.

Secure Authentication Service inbound transport settings

Use this page to specify transport settings for connections that are accepted by this server using the

Secure Authentication Service (SAS) authentication protocol. The SAS protocol is used to communicate

securely to enterprise beans with previous releases of the application server.

To view this administrative console page, complete the following steps:

1. Click Security > Secure administration, applications, and infrastructure.

2. Under Authentication, expand RMI/IIOP security and click SAS inbound transport.

Attention:

V6.0.x

The panel associated with this article displays only when you have a Version 6.0.x

server in your environment. SAS is supported only between Version 6.0.x and previous version

servers that have been federated in a Version 6.1 cell.

SSL Settings:

Specifies a list of predefined SSL settings to choose from for inbound connections.

 These settings are configured on the Secure Sockets Layer (SSL) configuration panel. To access the SSL

configuration panel, complete the following steps:

1. Click Security > SSL certificate and key management > Manage endpoint security configurations

and trust zones.

2. Expand Inbound > configuration_name.

3. Under Related Items, click SSL configurations.

 Data type: String

Default: DefaultSSLSettings

290 Securing applications and their environment

Configuring outbound transports

By using this configuration, you can configure a different transport for inbound security versus outbound

security.

Outbound transports refers to the transport that is used to connect to a downstream server. When you

configure the outbound transport, consider the transports that the downstream servers support. If you are

considering Secure Sockets Layer (SSL), also consider including the signers of the downstream servers in

this server truststore file for the handshake to succeed.

When you select an SSL configuration, that configuration points to keystore and truststore files that contain

the necessary signers.

If you configured client certificate authentication for this server by completing the following steps, then the

downstream servers contain the signer certificate belonging to the server personal certificate:

1. Click Security > Secure administration, applications, and infrastructure.

2. Under RMI/IIOP security, click CSIv2 outbound authentication

Complete the following steps to configure the outbound transport panels.

1. Select the type of transport and the SSL settings by clicking Security > Secure administration,

applications, and infrastructure. Under RMI/IIOP security, click CSIv2 outbound transport. By

selecting the type of transport, you choose the transport to use when connecting to downstream

servers. The downstream servers support the transport that you choose. If you choose

SSL-Supported, the transport that is used is negotiated during the connection. If both the client and

server support SSL, always select the SSL-Supported option unless the request is considered a

special request that does not require SSL, such as if an object request broker (ORB) is a request.

2. Select the SSL required option if you want to use Secure Sockets Layer communications with the

outbound transport.

If you select the SSL required option, you can select either the Centrally managed or Use specific

SSL alias option.

Centrally managed

Enables you to specify an SSL configuration for particular scope such as the cell, node, server,

or cluster in one location. To use the Centrally managed option, you must specify the SSL

configuration for the particular set of endpoints. The Manage endpoint security configurations

and trust zones panel displays all of the inbound and outbound endpoints that use the SSL

protocol. If you expand the Inbound or Outbound section of the panel and click the name of a

node, you can specify an SSL configuration that is used for every endpoint on that node. For

an outbound transport, you can override the inherited SSL configuration by specifying an SSL

configuration for a particular endpoint. To specify an SSL configuration for an outbound

transport, click Security > SSL certificate and key management > Manage endpoint

security configurations and trust zones and expand Outbound.

Use specific SSL alias

Select the Use specific SSL alias option if you intend to select one of the SSL configurations

in the menu below the option.

 This configuration is used only when SSL is enabled for LDAP. The default is

DefaultSSLSettings. To modify or create a new SSL configuration, complete the steps

described in “Creating a Secure Sockets Layer configuration” on page 417.

3.

V6.0.x

Select the SSL that are settings used for outbound requests to downstream Secure

Authentication Service (SAS) servers. Click Security > Secure administration, applications, and

infrastructure. Under RMI/IIOP security, click SAS outbound transport. Remember that the SAS

protocol allows interoperability with previous releases. When configuring the keystore and truststore

Chapter 5. Authenticating users 291

files in the SSL configuration, these files have the correct information for inter-operating with previous

releases of WebSphere Application Server. For example, a previous release has a different personal

certificate than the Version 6.x release. If you use the keystore file from the Version 6.x release, you

must add the signer to the truststore file of the previous release. Also, you must extract the signer for

the Version 6.x release and import that signer into the truststore file of the previous release.

Important: SAS is supported only between Version 6.0.x and previous version servers that have been

federated in a Version 6.1 cell.

The outbound transport configuration is complete. With this configuration, you can configure a different

transport for inbound security versus outbound security. For example, if the application server is the first

server used by end users, the security configuration might be more secure. When requests go to back-end

enterprise beans servers, you might consider less security for performance reasons when you go

outbound. With this flexibility you can design a transport infrastructure that meets your needs.

When you finish configuring security, perform the following steps to save, synchronize, and restart the

servers.

v Click Save in the administrative console to save any modifications to the configuration.

v Stop and restart all servers, after synchronization.

Common Secure Interoperability Version 2 outbound transport settings

Use this page to specify which transports and Secure Sockets Layer (SSL) settings this server uses when

communicating with downstream servers for outbound requests.

To view this administrative console page, complete the following steps:

1. Click Security > Secure administration, applications, and infrastructure.

2. Under Authentication, click RMI/IIOP security > CSIv2 outbound transport.

You also can view this administrative console by completing the following steps:

1. Click Servers > Application servers > server_name.

2. Under Security, click Server security.

3. Under Additional properties, click CSIv2 outbound transport.

Transport:

Specifies whether the client processes connect to the server using one of the server-connected transports.

 You can choose to use either SSL, TCP/IP, or Both as the outbound transport that a server supports. If

you specify TCP/IP, the server supports only TCP/IP and cannot initiate SSL connections with downstream

servers. If you specify SSL-supported, this server can initiate either TCP/IP or SSL connections. If you

specify SSL-required, this server must use SSL to initiate connections to downstream servers. When you

do specify SSL, decide which set of SSL configuration settings you want to use for the outbound

configuration.

This decision determines which keyfile and trustfile to use for outbound connections to downstream

servers.

Consider the following options:

TCP/IP

If you select this option, the server opens TCP/IP connections with downstream servers only.

SSL-required

If you select this option, the server opens SSL connections with downstream servers.

292 Securing applications and their environment

SSL-supported

If you select this option, the server opens SSL connections with any downstream server that

supports them and opens TCP/IP connections with any downstream servers that do not support

SSL.

 Default: SSL-supported

Range: TCP/IP, SSL-required, SSL-supported

SSL settings:

Specifies a list of predefined SSL settings for outbound connections. These settings are configured at the

SSL Configuration Repertoires panel.

 To access the panel, complete the following steps:

1. Click Security > SSL certificate and key management.

2. Under Configuration settings, click Manage endpoint security configurations and trust zones.

3. Expand Outbound > outbound_configuration_name.

4. Under Related items, click SSL configurations.

 Data type: String

Range: Any SSL settings that are configured in the SSL

Configuration Repertoires panel

Note:

V6.0.x

This field is available only if a Version 6.0.x server exists in your environment.

SSL enabled:

Specifies whether secure socket communication is enabled to the server.

Centrally managed:

Specifies that the selection of an SSL configuration is based upon the outbound topology view for the Java

Naming and Directory Interface (JNDI) platform.

 Centrally managed configurations support one location to maintain SSL configurations rather than

spreading them across the configuration documents.

 Default: Enabled

Use specific SSL alias:

Specifies the SSL configuration alias that you want to use for outbound SSL communications.

 This option overrides the centrally managed configuration for the JNDI (LDAP) protocol.

Secure Authentication Service outbound transport settings

Use this page to specify transport settings for connections that are accepted by this server using the

Secure Authentication Service (SAS) authentication protocol.

To view this administrative console page, complete the following steps:

1. Click Security > Secure administration, applications, and infrastructure.

2. Under Authentication, expand RMI/IIOP security and click SAS outbound transport.

Chapter 5. Authenticating users 293

Attention:

V6.0.x

The panel associated with this article displays only when you have a Version 6.0.x

server in your environment.

SSL settings:

Specifies a list of predefined Secure Sockets Layer (SSL) settings to choose from for outbound

connections.

 These settings are configured on the SSL configuration panel. To access the SSL configuration panel,

complete the following steps:

1. Click Security > SSL certificate and key management > Manage endpoint security configurations

and trust zones.

2. Expand Outbound > configuration_name.

3. Under Related Items, click SSL configurations.

 Data type: String

Default: DefaultSSLSettings

Performing identity mapping for authorization across servers in

different realms

Identity mapping is a one-to-one mapping of a user identity between two servers so that the proper

authorization decisions are made by downstream servers. Identity mapping is necessary when the

integration of servers is needed, but the user registries are different and not shared between the systems.

The following topics are covered in this section:

v Configuring inbound identity mapping

v Configuring outbound identity mapping to a different target realm

Configuring inbound identity mapping

For inbound identity mapping, write a custom login module and configure WebSphere Application Server to

run the login module first within the system login configurations. Consider the following steps when you

write your custom login module.

1. Get the inbound user identity from the callbacks and map the identity, if necessary This step occurs in

the login method of the login module. A valid authentication has either or both NameCallback and the

WSCredTokenCallback callbacks present. The following code sample shows you how to determine the

user identity:

javax.security.auth.callback.Callback callbacks[] =

 new javax.security.auth.callback.Callback[3];

 callbacks[0] = new javax.security.auth.callback.NameCallback("");

 callbacks[1] = new javax.security.auth.callback.PasswordCallback

 ("Password: ", false);

 callbacks[2] = new com.ibm.websphere.security.auth.callback.

 WSCredTokenCallbackImpl("");

 callbacks[3] = new com.ibm.wsspi.security.auth.callback.

 WSTokenHolderCallback("");

 try

 {

 callbackHandler.handle(callbacks);

 }

 catch (Exception e)

 {

 // Handles exceptions

 throw new WSLoginFailedException (e.getMessage(), e);

 }

294 Securing applications and their environment

// Shows which callbacks contain information

 boolean identitySwitched = false;

 String uid = ((NameCallback) callbacks[0]).getName();

 char password[] = ((PasswordCallback) callbacks[1]).getPassword();

 byte[] credToken = ((WSCredTokenCallbackImpl) callbacks[2]).getCredToken();

 java.util.List authzTokenList = ((WSTokenHolderCallback)

 callbacks[3]).getTokenHolderList();

 if (credToken != null)

 {

 try

 {

 String uniqueID = WSSecurityPropagationHelper.validateLTPAToken(credToken);

 String realm = WSSecurityPropagationHelper.getRealmFromUniqueID (uniqueID);

 // Now set the string to the UID so that you can use the result for either

 // mapping or logging in.

 uid = WSSecurityPropagationHelper.getUserFromUniqueID (uniqueID);

 }

 catch (Exception e)

 {

 // Handles the exception

 }

 }

 else if (uid == null)

 {

 // Throws an exception if authentication data is not valid.

 // You must have either UID or CredToken

 throw new WSLoginFailedException("invalid authentication data.");

 }

 else if (uid != null && password != null)

 {

 // This is a typical authentication. You can choose to map this ID to

 // another ID or you can skip it and allow WebSphere Application Server

 // to log in for you. When passwords are presented, be very careful to not

 // validate the password because this is the initial authentication.

 return true;

 }

 // If desired, map this uid to something else and set the identitySwitched

 // boolean. If the identity was changed, clear the propagated attributes

 // below so they are not used incorrectly.

 uid = myCustomMappingRoutine (uid);

 // Clear the propagated attributes because they are no longer applicable

 // to the new identity

 if (identitySwitched)

 {

 ((WSTokenHolderCallback) callbacks[3]).setTokenHolderList(null);

 }

2. Check to see if attribute propagation occurred and if the attributes for the user are already present

when the identity remains the same. Check to see if the user attributes are already present from the

sending server to avoid duplicate calls to the user registry lookup. To check for the user attributes, use

a method on the WSTokenHolderCallback callback that analyzes the information present in the

callback to determine if the information is sufficient for WebSphere Application Server to create a

Subject. The following code sample checks for the user attributes:

boolean requiresLogin =

((com.ibm.wsspi.security.auth.callback.WSTokenHolderCallback)

callbacks[2]).requiresLogin();

If sufficient attributes are not present to form the WSCredential and the WSPrincipal objects that are

needed to perform authorization, the previous code sample returns a true result. When the result is

Chapter 5. Authenticating users 295

false, you can choose to discontinue processing as the necessary information exists to create the

Subject without performing additional remote user registry calls.

3. Optional: Look up the required attributes from the user registry, put the attributes in a hashtable, and

add the hashtable to the shared state. If the identity is switched in this login module, you must

complete the following steps:

a. Create the hashtable of attributes, as shown in the following example.

b. Add the hashtable to the shared state.

If the identity is not switched, but the value of the requiresLogin code sample shown previously is true,

you can create the hashtable of attributes. However, you are not required to create a hashtable in this

situation as WebSphere Application Server handles the login for you. However, you might consider

creating a hashtable to gather attributes in special cases where you are using your own special user

registry. Creating a UserRegistry implementation, using a hashtable, and letting WebSphere Application

Server gather the user attributes for you might be the easiest solution. The following table shows how

to create a hashtable of user attributes:

if (requiresLogin || identitySwitched)

 {

 // Retrieves the default InitialContext for this server.

 javax.naming.InitialContext ctx = new javax.naming.InitialContext();

 // Retrieves the local UserRegistry implementation.

 com.ibm.websphere.security.UserRegistry reg = (com.ibm.websphere.

 security.UserRegistry)

 ctx.lookup("UserRegistry");

 // Retrieves the user registry uniqueID based on the uid specified

 // in the NameCallback.

 String uniqueid = reg.getUniqueUserId(uid);

 uid = WSSecurityPropagationHelper.getUserFromUniqueID (uniqueID);

 // Retrieves the display name from the user registry based on the uniqueID.

 String securityName = reg.getUserSecurityName(uid);

 // Retrieves the groups associated with the uniqueID.

 java.util.List groupList = reg.getUniqueGroupIds(uid);

 // Creates the java.util.Hashtable with the information that you gathered

 // from the UserRegistry implementation.

 java.util.Hashtable hashtable = new java.util.Hashtable();

 hashtable.put(com.ibm.wsspi.security.token.AttributeNameConstants.

 WSCREDENTIAL_UNIQUEID, uniqueid);

 hashtable.put(com.ibm.wsspi.security.token.AttributeNameConstants.

 WSCREDENTIAL_SECURITYNAME, securityName);

 hashtable.put(com.ibm.wsspi.security.token.AttributeNameConstants.

 WSCREDENTIAL_GROUPS, groupList);

 // Adds a cache key that is used as part of the lookup mechanism for

 // the created Subject. The cache key can be an object, but should have

 // an implemented toString method. Make sure that the cacheKey contains

 // enough information to scope it to the user and any additional attributes

 // that you are using. If you do not specify this property the Subject is

 // scoped to the returned WSCREDENTIAL_UNIQUEID, by default.

 hashtable.put(com.ibm.wsspi.security.token.AttributeNameConstants.

 WSCREDENTIAL_CACHE_KEY, "myCustomAttribute" + uniqueid);

 // Adds the hashtable to the sharedState of the Subject.

 _sharedState.put(com.ibm.wsspi.security.token.AttributeNameConstants.

 WSCREDENTIAL_PROPERTIES_KEY, hashtable);

 }

The following rules define in more detail how a hashtable login is performed. You must use a

java.util.Hashtable object in either the Subject (public or private credential set) or the shared-state

HashMap. The com.ibm.wsspi.security.token.AttributeNameConstants class defines the keys that

contain the user information. If the Hashtable object is put into the shared state of the login context

296 Securing applications and their environment

using a custom login module that is listed prior to the Lightweight Third Party Authentication (LTPA)

login module, the value of the java.util.Hashtable object is searched using the following key within the

shared-state hashMap:

Property

com.ibm.wsspi.security.cred.propertiesObject

Reference to the property

AttributeNameConstants.WSCREDENTIAL_PROPERTIES_KEY

Explanation

This key searches for the Hashtable object that contains the required properties in the shared

state of the login context.

Expected result

A java.util.Hashtable object.

If a java.util.Hashtable object is found either inside the Subject or within the shared state area, verify

that the following properties are present in the hashtable:

Property

com.ibm.wsspi.security.cred.uniqueId

Reference to the property

AttributeNameConstants.WSCREDENTIAL_UNIQUEID

Returns

java.util.String

Explanation

The value of the property must be a unique representation of the user. For the WebSphere

Application Server default implementation, this property represents the information that is

stored in the application authorization table. The information is located in the application

deployment descriptor after it is deployed and user-to-role mapping is performed. See the

expected format examples if the user to role mapping is performed using a lookup to a

WebSphere Application Server user registry implementation.

 If a third-party authorization provider overrides the user-to-role mapping, then the third-party

authorization provider defines the format. To ensure compatibility with the WebSphere

Application Server default implementation for the unique ID value, call the WebSphere

Application Server public String getUniqueUserId(String userSecurityName) UserRegistry

method.

Expected format examples

 Realm Format (uniqueUserId)

Lightweight Directory Access

Protocol (LDAP)

ldaphost.austin.ibm.com:389/cn=user,o=ibm,c=us

Windows MYWINHOST/S-1-5-21-963918322-163748893-4247568029-500

UNIX MYUNIXHOST/32

The com.ibm.wsspi.security.cred.uniqueId property is required.

Property

com.ibm.wsspi.security.cred.securityName

Reference to the property

AttributeNameConstants. WSCREDENTIAL_ SECURITYNAME

Returns

java.util.String

Chapter 5. Authenticating users 297

Explanation

This property searches for the securityName of the authentication user. This name is

commonly called the display name or short name. WebSphere Application Server uses the

securityName attribute for the getRemoteUser, getUserPrincipal and getCallerPrincipal

application programming interfaces (APIs). To ensure compatibility with the WebSphere

Application Server default implementation for the securityName value, call the WebSphere

Application Server public String getUserSecurityName(String uniqueUserId) UserRegistry

method.

Expected format examples

 Realm Format (uniqueUserId)

LDAP user (LDAP UID)

Windows user (Windows username)

UNIX user (UNIX username)

The com.ibm.wsspi.security.cred.securityName property is required.

Property

com.ibm.wsspi.security.cred.groups

Reference to the property

AttributeNameConstants. WSCREDENTIAL_GROUPS

Returns

java.util.ArrayList

Explanation

This key searches for the array list of groups to which the user belongs. The groups are

specified in the realm_name/user_name format. The format of these groups is important as the

groups are used by the WebSphere Application Server authorization engine for group-to-role

mappings in the deployment descriptor. The format that is provided must match the format

expected by the WebSphere Application Server default implementation. When you use a

third-party authorization provider, you must use the format that is expected by the third-party

provider. To ensure compatibility with the WebSphere Application Server default

implementation for the unique group IDs value, call the WebSphere Application Server public

List getUniqueGroupIds(String uniqueUserId) UserRegistry method.

Expected format examples for each group in the array list

 Realm Format

LDAP ldap1.austin.ibm.com:389/cn=group1,o=ibm,c=us

Windows MYWINREALM/S-1-5-32-544

UNIX MY/S-1-5-32-544

The com.ibm.wsspi.security.cred.groups property is not required. A user is not required to have

associated groups.

Property

com.ibm.wsspi.security.cred.cacheKey

Reference to the property

AttributeNameConstants. WSCREDENTIAL_CACHE_KEY

Returns

java.lang.Object

Explanation

This key property can specify an object that represents the unique properties of the login,

298 Securing applications and their environment

including the user-specific information and the user dynamic attributes that might affect

uniqueness. For example, when the user logs in from location A, which might affect their

access control, the cache key needs to include location A so that the Subject that is received is

the correct Subject for the current location.

This com.ibm.wsspi.security.cred.cacheKey property is not required. When this property is not

specified, the cache lookup is the value that is specified for WSCREDENTIAL_UNIQUEID. When this

information is found in the java.util.Hashtable object, WebSphere Application Server creates a Subject

similar to the Subject that goes through the normal login process at least for LTPA. The new Subject

contains a WSCredential object and a WSPrincipal object that is fully populated with the information

found in the Hashtable object.

4. Add your custom login module into the RMI_INBOUND, WEB_INBOUND, and DEFAULT Java

Authentication and Authorization Service (JAAS) system login configurations. Configure the

RMI_INBOUND login configuration so that WebSphere Application Server loads your new custom login

module first.

a. Click Security > Secure administration, applications, and infrastructure > Java

Authentication and Authorization Service > System logins > RMI_INBOUND

b. Under Additional Properties, click JAAS login modules > New to add your login module to the

RMI_INBOUND configuration.

c. Return to the JAAS login modules panel for RMI_INBOUND.

d. Click Set order to change the order that the login modules are loaded so that WebSphere

Application Server loads your custom login module first. Use the Move Up or Move Down buttons

to arrange the order of the login modules.

e. Repeat the previous three steps for the WEB_INBOUND and DEFAULT login configurations.

This process configures identity mapping for an inbound request.

The “Example: Custom login module for inbound mapping” on page 300 topic shows a custom login

module that creates a java.util.Hashtable hashtable that is based on the specified NameCallback callback.

The java.util.Hashtable hashtable is added to the sharedState java.util.Map map so that the WebSphere

Application Server login modules can locate the information in the hashtable.

Identity mapping:

Identity mapping is a one-to-one mapping of a user identity between two servers so that the proper

authorization decisions are made by downstream servers. Identity mapping is necessary when the

integration of servers is needed, but the user registries are different and not shared between the systems.

 In most cases, requests flow downstream between two servers that are part of the same security domain.

In WebSphere Application Server, two servers that are members of the same cell are also members of the

same security domain. In the same cell, the two servers have the same user registry and the same

Lightweight Third Party Authentication (LTPA) keys for token encryption. These two commonalities ensure

that the LTPA token, among other user attributes, which flows between the two servers, not only can be

decrypted and validated, but also the user identity in the token can be mapped to attributes that are

recognized by the authorization engine.

The most reliable and recommended configuration involves two servers within the same cell. However,

sometimes you need to integrate multiple systems that cannot use the same user registry. When the user

registries are different between two servers, the security domain or realm of the target server does not

match the security domain of the sending server.

WebSphere Application Server enables mapping to occur either before sending the request outbound or

before enabling the existing security credentials to flow to the target server. The credentials are mapped

inbound with the specification that the target realm is trusted.

Chapter 5. Authenticating users 299

An alternative to mapping is to send the user identity without the token or the password to a target server

without actually mapping the identity. The use of the user identity is based on trust between the two

servers. Use Common Secure Interoperability Version 2 (CSIv2) identity assertion. When enabled, the

server sends just the X.509 certificate, principal name, or distinguished name (DN) based upon what was

used by the original client to perform the initial authentication. During CSIv2 identity assertion, trust is

established between WebSphere Application Servers.

The user identity must exist in the target user registry for identity assertion to work. This process can also

enable interoperability between other Java 2 Platform, Enterprise Edition (J2EE) Version 1.4 and higher

compliant application servers. If both the sending server and target servers have identity assertion

configured, WebSphere Application Server always uses this method of authentication, even when both

servers are in the same security domain. For more information on CSIv2 identity assertion, see “Identity

assertion” on page 216.

When the user identity is not present in the user registry of the target server, identity mapping must occur

either before the request is sent outbound or when the request comes inbound. This decision depends

upon your environment and requirements. However, it is typically easier to map the user identity before the

request is sent outbound for the following reasons:

v You know the user identity of the existing credential as it comes from the user registry of the sending

server.

v You do not have to worry about sharing Lightweight Third Party Authentication (LTPA) keys with the

other target realm because you are not mapping the identity to LTPA credentials. Typically, you are

mapping the identity to a user ID and password that are present in the user registry of the target realm.

When you do perform outbound mapping, in most cases, it is recommended that you use Secure Sockets

Layer (SSL) to protect the integrity and confidentiality of the security information sent across the network.

If LTPA keys are not shared between servers, an LTPA token cannot be validated at the inbound server. In

this case, outbound mapping is necessary because the user identity cannot be determined at the inbound

server to do inbound mapping. For more information, see “Configuring outbound mapping to a different

target realm” on page 303.

When you need inbound mapping, potentially due to the mapping capabilities of the inbound server, you

must ensure that both servers have the same LTPA keys so that you can get access to the user identity.

Typically, in secure communications between servers, an LTPA token is passed into the

WSCredTokenCallback callback of the inbound JAAS login configuration for the purposes of client

authentication. A method is available that enables you to open the LTPA token, if valid, and get access to

the user unique ID so that mapping can be performed. For more information, see “Configuring inbound

identity mapping” on page 294. In other cases, such as identity assertion, you might receive a user name

in the NameCallback callback of the inbound login configuration that enables you to map the identity.

Example: Custom login module for inbound mapping:

This sample shows a custom login module that creates a java.util.Hashtable hashtable that is based on

the specified NameCallback callback. The java.util.Hashtable hashtable is added to the sharedState

java.util.Map map so that the WebSphere Application Server login modules can locate the information in

the Hashtable.

 public customLoginModule()

{

public void initialize(Subject subject, CallbackHandler callbackHandler,

 Map sharedState, Map options)

{

 // (For more information on initialization, see

 // “Custom login module development for a system login configuration” on page 579.)

 _sharedState = sharedState;

}

public boolean login() throws LoginException

300 Securing applications and their environment

{

 // (For more information on what to do during login, see

 // “Custom login module development for a system login configuration” on page 579.)

 // Handles the WSTokenHolderCallback to see if this is an initial or

 // propagation login.

 javax.security.auth.callback.Callback callbacks[] =

 new javax.security.auth.callback.Callback[3];

 callbacks[0] = new javax.security.auth.callback.NameCallback("");

 callbacks[1] = new javax.security.auth.callback.PasswordCallback(

 "Password: ", false);

 callbacks[2] = new com.ibm.websphere.security.auth.callback.

 WSCredTokenCallbackImpl("");

 callbacks[3] = new com.ibm.wsspi.security.auth.callback.

 WSTokenHolderCallback("");

 try

 {

 callbackHandler.handle(callbacks);

 }

 catch (Exception e)

 {

 // Handles the exception

 }

 // Determines which callbacks contain information

 boolean identitySwitched = false;

 String uid = ((NameCallback) callbacks[0]).getName();

 char password[] = ((PasswordCallback) callbacks[1]).getPassword();

 byte[] credToken = ((WSCredTokenCallbackImpl) callbacks[2]).getCredToken();

 java.util.List authzTokenList = ((WSTokenHolderCallback) callbacks[3]).

 getTokenHolderList();

 if (credToken != null)

 {

 try

 {

 String uniqueID = WSSecurityPropagationHelper.validateLTPAToken(credToken);

 String realm = WSSecurityPropagationHelper.getRealmFromUniqueID (uniqueID);

 // Set the string to the UID so you can use the information to either

 // map or login.

 uid = WSSecurityPropagationHelper.getUserFromUniqueID (uniqueID);

 }

 catch (Exception e)

 {

 // handle exception

 }

 }

 else if (uid == null)

 {

 // The authentication data is not valid. You must have either UID

 // or CredToken

 throw new WSLoginFailedException("invalid authentication data.");

 }

 else if (uid != null && password != null)

 {

 // This is a typical authentication. You can choose to map this ID to

 // another ID or you can skip it and allow WebSphere Application Server

 // to log in for you. When passwords are presented, be very careful not

 // to validate the password because this is the initial authentication.

 return true;

 }

 // You can map this uid to something else and set the identitySwitched

 // boolean. If the identity is changed, clear the following propagated

 // attributes so they are not used incorrectly.

Chapter 5. Authenticating users 301

uid = myCustomMappingRoutine (uid);

 // Clear the propagated attributes because they no longer apply to the new identity

 if (identitySwitched)

 {

 ((WSTokenHolderCallback) callbacks[3]).setTokenHolderList(null);

 }

 boolean requiresLogin = ((com.ibm.wsspi.security.auth.callback.

 WSTokenHolderCallback) callbacks[2]).requiresLogin();

 if (requiresLogin || identitySwitched)

 {

 // Retrieves the default InitialContext for this server.

 javax.naming.InitialContext ctx = new javax.naming.InitialContext();

 // Retrieves the local UserRegistry object.

 com.ibm.websphere.security.UserRegistry reg =

 (com.ibm.websphere.security.UserRegistry) ctx.lookup("UserRegistry");

 // Retrieves the registry uniqueID based on the uid that is specified

 // in the NameCallback.

 String uniqueid = reg.getUniqueUserId(uid);

 uid = WSSecurityPropagationHelper.getUserFromUniqueID (uniqueID);

 // Retrieves the display name from the user registry based on the uniqueID.

 String securityName = reg.getUserSecurityName(uid);

 // Retrieves the groups associated with this uniqueID.

 java.util.List groupList = reg.getUniqueGroupIds(uid);

 // Creates the java.util.Hashtable with the information that you gathered

 // from the UserRegistry.

 java.util.Hashtable hashtable = new java.util.Hashtable();

 hashtable.put(com.ibm.wsspi.security.token.AttributeNameConstants.

 WSCREDENTIAL_UNIQUEID, uniqueid);

 hashtable.put(com.ibm.wsspi.security.token.AttributeNameConstants.

 WSCREDENTIAL_SECURITYNAME, securityName);

 hashtable.put(com.ibm.wsspi.security.token.AttributeNameConstants.

 WSCREDENTIAL_GROUPS, groupList);

 // Adds a cache key that is used as part of the lookup mechanism for

 // the created Subject. The cache key can be an object, but has

 // an implemented toString method. Make sure the cacheKey contains enough

 // information to scope it to the user and any additional attributes you are

 // using. If you do not specify this property, the Subject is scoped to the

 // WSCREDENTIAL_UNIQUEID returned, by default.

 hashtable.put(com.ibm.wsspi.security.token.AttributeNameConstants.

 WSCREDENTIAL_CACHE_KEY, "myCustomAttribute" + uniqueid);

 // Adds the hashtable to the shared state of the Subject.

 _sharedState.put(com.ibm.wsspi.security.token.AttributeNameConstants.

 WSCREDENTIAL_PROPERTIES_KEY, hashtable);

 }

 else if (requiresLogin == false)

 {

 // For more information on this section, see

 // “Security attribute propagation” on page 191.

 // If you added a custom Token implementation, you can search through the

 // token holder list for it to deserialize.

 // Note: Any Java objects are automatically deserialized by

 // wsMapDefaultInboundLoginModule

 for (int i=0; i<authzTokenList.size(); i++)

 {

 if (authzTokenList[i].getName().equals("com.acme.MyCustomTokenImpl")

 {

 byte[] myTokenBytes = authzTokenList[i].getBytes();

302 Securing applications and their environment

// Passes these bytes into the constructor of your implementation

 // class for deserialization.

 com.acme.MyCustomTokenImpl myTokenImpl =

 new com.acme.MyCustomTokenImpl(myTokenBytes);

 }

 }

 }

}

public boolean commit() throws LoginException

{

 // (For more information on what to do during a commit, see

 // “Custom login module development for a system login configuration” on page 579.)

}

// Defines your login module variables

com.ibm.wsspi.security.token.AuthorizationToken customAuthzToken = null;

com.ibm.wsspi.security.token.AuthenticationToken defaultAuthToken = null;

java.util.Map _sharedState = null;

}

Configuring outbound mapping to a different target realm

By default, when WebSphere Application Server makes an outbound request from one server to another

server in a different security realm, the request is rejected. This topic details alternatives for enabling one

server to send outbound requests to a target server in a different realm.

This outbound request is rejected to protect against a rogue server reading potentially sensitive information

if successfully impersonating the home of the object. Select one of the following alternative procedures so

that one server can send outbound requests to a target server in a different realm. When you are finished

with a procedure on the administrative console, click Apply.

v Do not perform mapping. Instead, allow the existing security information to flow to a trusted target

server, even if the target server resides in a different realm. Complete the following steps in the

administrative console:

1. Click Security > Secure administration, applications, and infrastructure.

2. Under RMI/IIOP security, click CSIv2 outbound authentication.

3. Specify the target realms in the Trusted target realms field. You can specify each trusted target

realm that is separated by a pipe (|) character. For example, specify

server_name.domain:port_number for a Lightweight Directory Access Protocol (LDAP) server or the

machine name for local operating system. If you want to propagate security attributes to a different

target realm, you must specify that target realm in the Trusted target realms field.

v Use the Java Authentication and Authorization Service (JAAS) WSLogin application login configuration

to create a basic authentication Subject that contains the credentials of the new target realm. This

configuration enables you to log in with a realm, user ID, and password that are specific to the user

registry of the target realm. You can provide the login information from within the Java 2 Platform,

Enterprise Edition (J2EE) application that is making the outbound request or from within the

RMI_OUTBOUND system login configuration. These two login options are described in the following

information:

1. Use the WSLogin application login configuration from within the J2EE application to log in and get a

Subject that contains the user ID and the password of the target realm. The application can wrap

the remote call with a WSSubject.doAs call. For an example, see “Example: Using the WSLogin

configuration to create a basic authentication subject” on page 304.

2. Use the code sample in “Example: Using the WSLogin configuration to create a basic authentication

subject” on page 304 from this plug point within the RMI_OUTBOUND login configuration. Every

outbound Remote Method Invocation (RMI) request passes through this login configuration when it

is enabled. Complete the following steps to enable and plug in this login configuration:

a. Click Security > Secure administration, applications, and infrastructure.

b. Under RMI/IIOP security, click CSIv2 outbound authentication.

Chapter 5. Authenticating users 303

c. Select the Custom outbound mapping option. If the Security Attribute Propagation option is

selected, then WebSphere Application Server is already using this login configuration and you do

not need to enable custom outbound mapping.

d. Write a custom login module. For more information, see “Custom login module development for

a system login configuration” on page 579.

The “Example: Sample login configuration for RMI_OUTBOUND” on page 305 shows a custom

login module that determines whether the realm names match. In this example, the realm names

do not match so the WSLoginmodule is used to create a basic authentication Subject based on

custom mapping rules. The custom mapping rules are specific to the customer environment and

must be implemented using a realm to user ID and password mapping utility.

e. Configure the RMI_OUTBOUND login configuration so that your new custom login module is first

in the list.

1) Click Security > Secure administration, applications, and infrastructure.

2) Under Java Authentication and Authorization Service, click System logins >

RMI_OUTBOUND

3) Under Additional Properties, click JAAS login modules > New to add your login module to

the RMI_OUTBOUND configuration.

4) Return to the JAAS login modules panel for RMI_OUTBOUND.

5) Click Set order to change the order that the login modules are loaded so that your custom

login is loaded first.

v Add the use_realm_callback and use_appcontext_callback options to the outbound mapping module for

WSLogin. To add these options, complete the following steps:

1. Click Security > Secure administration, applications, and infrastructure.

2. Under Java Authentication and Authorization Service, click Application logins > WSLogin.

3. Under Additional properties, click JAAS login modules >

com.ibm.ws.security.common.auth.module.WSLoginModuleImpl.

4. Under Additional properties, click Custom Properties > New.

5. On the Custom properties panel, enter use_realm_callback in the Name field and true in the Value

field.

6. Click OK.

7. Click New to enter the second custom property.

8. On the Custom properties panel, enter use_appcontext_callback in the Name field and true in the

Value field.

The following changes are made to the security.xml file:

<entries xmi:id="JAASConfigurationEntry_2" alias="WSLogin">

 <loginModules xmi:id="JAASLoginModule_2"

 moduleClassName="com.ibm.ws.security.common.auth.module.proxy.WSLoginModuleProxy"

 authenticationStrategy="REQUIRED">

 <options xmi:id="Property_2" name="delegate"

 value="com.ibm.ws.security.common.auth.module.WSLoginModuleImpl"/>

 <options xmi:id="Property_3" name="use_realm_callback" value="true"/>

 <options xmi:id="Property_4" name="use_appcontext_callback" value="true"/>

 </loginModules>

</entries>

Example: Using the WSLogin configuration to create a basic authentication subject:

This example shows how to use the WSLogin application login configuration from within a Java 2 Platform,

Enterprise Edition (J2EE) application to log in and get a Subject that contains the user ID and the

password of the target realm.

 javax.security.auth.Subject subject = null;

try

304 Securing applications and their environment

{

 // Create a login context using the WSLogin login configuration and specify a

 // user ID, target realm, and password. Note: If the target_realm_name is the

 // same as the current realm, an authenticated Subject is created. However, if

 // the target_realm_name is different from the current realm, a basic

 // authentication Subject is created that is not validated. This unvalidated

 // Subject is created so that you can send a request to the different target

 // realm with valid security credentials for that realm.

 javax.security.auth.login.LoginContext ctx = new LoginContext("WSLogin",

 new WSCallbackHandlerImpl("userid", "target_realm_name", "password"));

 // Note: The following code is an alternative that validates the user ID and

 // password specified against the target realm. The code performs a remote call

 // to the target server and will return true if the user ID and password are

 // valid and false if the user ID and password are not valid. If false is

 // returned, a WSLoginFailedException exception is created. You can catch

 // that exception and perform a retry or stop the request from flowing by

 // allowing that exception to surface out of this login.

 // ALTERNATIVE LOGIN CONTEXT THAT VALIDATES THE USER ID AND PASSWORD TO THE

 // TARGET REALM

 /**** currently remarked out ****

 java.util.Map appContext = new java.util.HashMap();

 appContext.put(javax.naming.Context.INITIAL_CONTEXT_FACTORY,

 "com.ibm.websphere.naming.WsnInitialContextFactory");

 appContext.put(javax.naming.Context.PROVIDER_URL,

 "corbaloc:iiop:target_host:2809");

 javax.security.auth.login.LoginContext ctx = new LoginContext("WSLogin",

 new WSCallbackHandlerImpl("userid", "target_realm_name", "password", appContext));

 **** currently remarked out ****/

 // Starts the login

 ctx.login();

 // Gets the Subject from the context

 subject = ctx.getSubject();

 }

 catch (javax.security.auth.login.LoginException e)

 {

 throw new com.ibm.websphere.security.auth.WSLoginFailedException (e.getMessage(), e);

 }

 if (subject != null)

 {

 // Defines a privileged action that encapsulates your remote request.

java.security.PrivilegedAction myAction = java.security.PrivilegedAction()

 {

 public Object run()

 {

 // Assumes a proxy is already defined. This example method returns a String

 return proxy.remoteRequest();

 }

 });

 // Starts this action using the basic authentication Subject needed for

 // the target realm security requirements.

 String myResult = (String) com.ibm.websphere.security.auth.WSSubject.doAs

 (subject, myAction);

 }

Example: Sample login configuration for RMI_OUTBOUND:

This example shows a sample login configuration for RMI_OUTBOUND that determines whether the realm

names match between two servers.

Chapter 5. Authenticating users 305

public customLoginModule()

{

 public void initialize(Subject subject, CallbackHandler callbackHandler,

 Map sharedState, Map options)

 {

 // (For more information on what to do during initialization, see

 // “Custom login module development for a system login configuration” on page 579.)

 }

 public boolean login() throws LoginException

 {

 // (For more information on what to do during login, see

 // “Custom login module development for a system login configuration” on page 579.)

 // Gets the WSProtocolPolicyCallback object

 Callback callbacks[] = new Callback[1];

 callbacks[0] = new com.ibm.wsspi.security.auth.callback.

 WSProtocolPolicyCallback("Protocol Policy Callback: ");

 try

 {

 callbackHandler.handle(callbacks);

 }

 catch (Exception e)

 {

 // Handles the exception

 }

 // Receives the RMI (CSIv2) policy object for checking the target realm

 // based upon information from the IOR.

 // Note: This object can be used to perform additional security checks.

 // See the application programming interface (API) documentation for

 // more information.

 csiv2PerformPolicy = (CSIv2PerformPolicy) ((WSProtocolPolicyCallback)callbacks[0]).

 getProtocolPolicy();

 // Checks if the realms do not match. If they do not match, then log in to

 // perform a mapping

 if (!csiv2PerformPolicy.getTargetSecurityName().equalsIgnoreCase(csiv2PerformPolicy.

 getCurrentSecurityName()))

 {

 try

 {

 // Do some custom realm -> user ID and password mapping

 MyBasicAuthDataObject myBasicAuthData = MyMappingLogin.lookup

 (csiv2PerformPolicy.getTargetSecurityName());

 // Creates the login context with basic authentication data gathered from

 // custom mapping

 javax.security.auth.login.LoginContext ctx = new LoginContext("WSLogin",

 new WSCallbackHandlerImpl(myBasicAuthData.userid,

 csiv2PerformPolicy.getTargetSecurityName(),

 myBasicAuthData.password));

 // Starts the login

 ctx.login();

 // Gets the Subject from the context. This subject is used to replace

 // the passed-in Subject during the commit phase.

 basic_auth_subject = ctx.getSubject();

 }

 catch (javax.security.auth.login.LoginException e)

 {

 throw new com.ibm.websphere.security.auth.

 WSLoginFailedException (e.getMessage(), e);

 }

 }

306 Securing applications and their environment

}

 public boolean commit() throws LoginException

 {

 // (For more information on what to do during commit, see

 // “Custom login module development for a system login configuration” on page 579.)

 if (basic_auth_subject != null)

 {

 // Removes everything from the current Subject and adds everything from the

 // basic_auth_subject

 try

 {

 public final Subject basic_auth_subject_priv = basic_auth_subject;

 // Do this in a doPrivileged code block so that application code

 // does not need to add additional permissions

 java.security.AccessController.doPrivileged(new java.security.

 PrivilegedExceptionAction()

 {

 public Object run() throws WSLoginFailedException

 {

 // Removes everything user-specific from the current outbound

 // Subject. This a temporary Subject for this specific invocation

 // so you are not affecting the Subject set on the thread. You may

 // keep any custom objects that you want to propagate in the Subject.

 // This example removes everything and adds just the new information

 // back in.

 try

 {

 subject.getPublicCredentials().clear();

 subject.getPrivateCredentials().clear();

 subject.getPrincipals().clear();

 }

 catch (Exception e)

 {

 throw new WSLoginFailedException (e.getMessage(), e);

 }

 // Adds everything from basic_auth_subject into the login subject.

 // This completes the mapping to the new user.

 try

 {

 subject.getPublicCredentials().addAll(basic_auth_subject.

 getPublicCredentials());

 subject.getPrivateCredentials().addAll(basic_auth_subject.

 getPrivateCredentials());

 subject.getPrincipals().addAll(basic_auth_subject.

 getPrincipals());

 }

 catch (Exception e)

 {

 throw new WSLoginFailedException (e.getMessage(), e);

 }

 return null;

 }

 });

 }

 catch (PrivilegedActionException e)

 {

 throw new WSLoginFailedException (e.getException().getMessage(),

 e.getException());

 }

 }

 }

Chapter 5. Authenticating users 307

// Defines your login module variables

 com.ibm.wsspi.security.csiv2.CSIv2PerformPolicy csiv2PerformPolicy = null;

 javax.security.auth.Subject basic_auth_subject = null;

}

Common Secure Interoperability Version 2 and Security Authentication

Service client configuration

A secure Java client requires configuration properties to determine how to perform security with a server.

These configuration properties are typically put into a properties file somewhere on the client system and

referenced by specifying the following system property on the command line of the Java client. For

example, this property accepts any valid Web address.

 -Dcom.ibm.CORBA.ConfigURL=file:profile_root/properties/sas.client.props

When this file is processed by the Object Request Broker (ORB), security can be enabled between the

Java client and the target server.

If any syntax problems exist with the ConfigURL property and the sas.client.props file is not found, the

Java client proceeds to connect insecurely. Errors display indicating the failure to read the ConfigURL

property. Typically the problem is related to having two slashes after file, which is not valid.

V6.0.x

Use the following properties to configure the SAS and CSIv2 authentication protocols:

v

v “Security Authentication Service authentication protocol client settings” on page 312

Important: SAS is supported only between Version 6.0.x and previous version servers that have been

federated in a Version 6.1 cell.

Common authentication protocol settings for a client configuration

You can use settings in the sas.client.props file to configure Security Authentication Service (SAS) and

Common Secure Interoperability Version 2 (CSIv2) clients.

V6.0.x

Use the following settings in the app_server_root/properties/sas.client.props file to configure

SAS and CSIv2 clients.

Important: SAS is supported only between Version 6.0.x and previous version servers that have been

federated in a Version 6.1 cell.

com.ibm.CORBA.securityEnabled

Use to determine if security is enabled for the client process.

 Setting Value

Data Type Boolean

Default True

Valid values True or false

com.ibm.CSI.protocol

Use to determine which authentication protocols are active.

308 Securing applications and their environment

The client can configure protocols of ibm, csiv2 or both as active. The only possible values for an

authentication protocol are ibm, csiv2 and both. Do not use sas for the value of an authentication protocol.

This restriction applies to both client and server configurations. The following list provides information

about using each of these protocol options:

ibm Use this authentication protocol option when you are communicating with WebSphere Application

Server Version 4.x or earlier servers.

V6.0.x

csiv2

Use this authentication protocol option when you are communicating with WebSphere Application

Server Version 5 or later servers because the SAS interceptors are not loaded and running for

each method request.

both Use this authentication protocol option for interoperability between WebSphere Application Server

Version 4.x or earlier servers and WebSphere Application Server Version 5 or later servers.

Typically, specifying both provides greater interoperability with other servers.

 Setting Value

Data type String

Default Both

Valid values ibm, csiv2, both

com.ibm.CORBA.authenticationTarget

Use to determine the type of authentication mechanism for sending security information from the client to

the server.

If basic authentication is specified, the user ID and password are sent to the server. Using the Secure

Sockets Layer (SSL) transport with this type of authentication is recommended; otherwise, the password is

not encrypted. The target server must support the specified authentication target.

If you specify Lightweight Third Party Authentication (LTPA), then LTPA must be the mechanism configured

at the server for a method request to proceed securely.

 Setting Value

Data type String

Default BasicAuth

Valid values BasicAuth, LTPA

com.ibm.CORBA.validateBasicAuth

Use to determine if the user ID and password get validated immediately after the login data is entered

when the authenticationTarget property is set to BasicAuth.

In previous releases, BasicAuth logins validated only with the initial method request. During the first

request, the user ID and password are sent to the server. This request is the first time that the client can

notice an error, if the user ID or password is incorrect. The validateBasicAuth method is specified and the

validation of the user ID and password occurs immediately to the security server.

For performance reasons, you might want to disable this property if you do not want to verify the user ID

and password immediately. If the client program can wait, it is better to have the initial method request

flow to the user ID and password. However, program logic might not be this simple because of error

handling considerations.

Chapter 5. Authenticating users 309

Setting Value

Data type Boolean

Default True

Valid values True, False

com.ibm.CORBA.authenticationRetryEnabled

Use to specify that a failed login attempt is retried. This property determines if a retry occurs for other

errors, such as stateful sessions that are not found on a server or validation failures at the server because

of an expiring credential.

The minor code in the exception that is returned to a client determines which errors are retried. The

number of retry attempts is dependent upon the com.ibm.CORBA.authenticationRetryCount property.

 Setting Value

Data type Boolean

Default True

Valid values True, False

com.ibm.CORBA.authenticationRetryCount

Use to specify the number of retries that occur until either a successful authentication occurs or the

maximum retry value is reached.

When the maximum retry value is reached, the authentication exception is returned to the client.

 Setting Value

Data type Integer

Default 3

Range 1-10

com.ibm.CORBA.loginSource

Use to specify how the request interceptor attempts to log in if it does not find an invocation credential

already set.

This property is valid only if message layer authentication occurs. If only transport layer authentication

occurs, this property is ignored. When specifying properties, the following two additional properties must

be defined:

v com.ibm.CORBA.loginUserid

v com.ibm.CORBA.loginPassword

When performing a programmatic login, it is not necessary to specify none as the login source. The

request fails if a credential is set as the invocation credential during a method request.

 Setting Value

Data type String

Default Prompt

Valid values Prompt, key file, stdin, none, properties

310 Securing applications and their environment

com.ibm.CORBA.loginUserid

Use to specify the user ID when a properties login is configured and message layer authentication occurs.

This property is valid only when com.ibm.CORBA.loginSource=properties. Also set the

com.ibm.CORBA.loginPassword property.

 Setting Value

Data type String

Range Any string that is appropriate for a user ID in the

configured user registry of the server.

com.ibm.CORBA.loginPassword

Use to specify the password when a properties login is configured and message layer authentication

occurs.

This property is valid only when com.ibm.CORBA.loginSource=properties. Also set the

com.ibm.CORBA.loginUserid property.

 Setting Value

Data type String

Range Any string that is appropriate for a password in the

configured user registry of the server.

com.ibm.CORBA.keyFileName

Use to specify the key file that is used to log in.

A key file is a file that contains a list of realm, user ID, and password combinations that a client uses to log

into multiple realms. The realm that is used is the one found in the interoperable object reference (IOR) for

the current method request. The value of this property is used when the com.ibm.CORBA.loginSource=key

file is used.

 Setting Value

Data type String

Default C;/WebSphere/AppServer/properties/wsserver.key

Range Any fully qualified path and file name of a WebSphere

Application Server key file.

com.ibm.CORBA.loginTimeout

Use to specify the length of time that the login prompt stays available before it is considered a failed login.

 Setting Value

Data type Integer

Units Seconds

Default 300 (5 minute intervals)

Range 0 - 600 (10 minute intervals)

Chapter 5. Authenticating users 311

com.ibm.CORBA.securityEnabled

Use to determine if security is enabled for the client process.

 Setting Value

Data type Boolean

Default True

Range True, False

 Related tasks

 “Configuring RMI over IIOP” on page 286
Complete the following steps to configure Common Secure Interoperability Version 2 (CSIV2) and

Security Authentication Service (SAS).

 Related reference

 “Common Secure Interoperability Version 2 and Security Authentication Service client configuration” on

page 308
A secure Java client requires configuration properties to determine how to perform security with a

server.

Security Authentication Service authentication protocol client settings

In addition to those properties which are valid for both Security Authentication Service (SAS) and Common

Secure Interoperability Version 2 (CSIv2), this article documents properties which are valid only for the

SAS authentication protocol.

Important: SAS is supported only between Version 6.0.x and previous version servers that have been

federated in a Version 6.1 cell.

com.ibm.CORBA.standardPerformQOPModels

Specifies the strength of the ciphers when making an Secure Sockets Layer (SSL) connection.

 Data type: String

Default: High

Range Low, Medium, High

Java Authentication and Authorization Service

The standard Java 2 security application programming interface (API) helps enforce access control based

on the location of the code source or the author or packager of the code that signed the jar file. The

current principal of the running thread is not considered in the Java 2 security authorization. Instances

where authorization is based on the principal, as opposed to the code base, and the user exist. The Java

Authentication and Authorization Service is a standard Java API that supports the Java 2 security

authorization to extend the code base on the principal as well as the code base and users.

The Java Authentication and Authorization Service (JAAS) Version 1.0 extends the Java 2 security

architecture of the Java 2 platform with additional support to authenticate and enforce access control with

principals and users. JAAS implements a Java version of the standard Pluggable Authentication Module

(PAM) framework, and extends the access control architecture of the Java 2 platform in a compatible

fashion to support user-based authorization or principal-based authorization. WebSphere Application

Server fully supports the JAAS architecture. JAAS extends the access control architecture to support

role-based authorization for Java 2 Platform, Enterprise Edition (J2EE) resources including servlets,

JavaServer Pages (JSP) files, and Enterprise JavaBeans (EJB) components.

Refer to “Java 2 security” on page 65 for more information.

312 Securing applications and their environment

The following sections cover the JAAS implementation and programming model:

v “Login configuration for Java Authentication and Authorization Service” on page 555

v “Programmatic login” on page 343

v “Java Authentication and Authorization Service authorization”

The JAAS documentation can be found at http://www.ibm.com/developerworks/java/jdk/security. Scroll

down to find the JAAS documentation for your platform.

Java Authentication and Authorization Service authorization

Java 2 security architecture uses a security policy to specify which access rights are granted to running

code. This architecture is code-centric. The permissions are granted based on code characteristics

including where the code is coming from, whether it is digitally signed, and by whom. Authorization of the

Java Authentication and Authorization Service (JAAS) augments the existing code-centric access controls

with new user-centric access controls. Permissions are granted based on what code is running and who is

running it.

When using JAAS authentication to authenticate a user, a subject is created to represent the authenticated

user. A subject is comprised of a set of principals, where each principal represents an identity for that user.

You can grant permissions in the policy to specific principals. After the user is authenticated, the

application can associate the subject with the current access control context. For each subsequent

security-checked operation, the Java runtime automatically determines whether the policy grants the

required permission to a specific principal only. If so, the operation is supported if the subject that is

associated with the access control context contains the designated principal only.

Associate a subject with the current access control context by calling the static doAs method from the

subject class, passing it an authenticated subject and the java.security.PrivilegedAction or

java.security.PrivilegedExceptionAction method. The doAs method associates the provided subject with the

current access control context and then invokes the run method from the action. The run method

implementation contains all the code that ran as the specified subject. The action runs as the specified

subject.

In the Java 2 Platform, Enterprise Edition (J2EE) programming model, when invoking the Enterprise

JavaBeans (EJB) method from an enterprise bean or servlet, the method runs under the user identity that

is determined by the run-as setting. The J2EE Version 1.4 Specification does not indicate which user

identity to use when invoking an enterprise bean from a Subject.doAs action block within either the EJB

code or the servlet code. A logical extension is to use the proper identity that is specified in the subject

when invoking the EJB method within the Subject doAs action block.

Letting the Subject.doAs action overwrite the run-as identity setting is an ideal way to integrate the JAAS

programming model with the J2EE run-time environment. However, JAAS introduced an issue into the

Software Development Kit (SDK), Java Technology Edition Versions 1.3 or later when integrating the JAAS

Version 1.0 or later implementation with the Java 2 security architecture. A subject, which is associated

with the access control context is cut off by a doPrivileged call when a doPrivileged call occurs within the

Subject.doAs action block. Until this problem is corrected, no reliable and run-time efficient way is

available to guarantee the correct behavior of Subject.doAs action in a J2EE run-time environment.

The problem can be explained better with the following example:

Subject.doAs(subject, new java.security.PrivilegedAction() {

 Public Object run() {

 // Subject is associated with the current thread context

 java.security.AccessController.doPrivileged(new

 java.security.PrivilegedAction() {

 public Object run() {

 // Subject was cut off from the current

 // thread context

Chapter 5. Authenticating users 313

http://www.ibm.com/developerworks/java/jdk/security

return null;

 }

 });

 // Subject is associated with the current thread context

 return null;

 }

});

In the previous code example, the Subject object is associated with the context of the current thread.

Within the run method of a doPrivileged action block, the Subject object is removed from the thread

context. After leaving the doPrivileged block, the Subject object is restored to the current thread context.

Because doPrivileged blocks can be placed anywhere along the running path and instrumented quite often

in a server environment, the run-time behavior of a doAs action block becomes difficult to manage.

To resolve this difficulty, WebSphere Application Server provides a WSSubject helper class to extend the

JAAS authorization to a J2EE EJB method invocation, as described previously. The WSSubject class

provides static doAs and doAsPrivileged methods that have identical signatures to the subject class. The

WSSubject.doAs method associates the Subject to the currently running thread. The WSSubject.doAs and

WSSubject.doAsPrivileged methods then invoke the corresponding Subject.doAs and

Subject.doAsPrivileged methods. The original credential is restored and associated with the running thread

upon leaving the WSSubject.doAs and WSSubject.doAsPrivileged methods.

The WSSubject class is not a replacement of the subject object, but rather a helper class to ensure

consistent run-time behavior as long as an EJB method invocation is a concern.

The following example illustrates the run-time behavior of the WSSubject.doAs method:

WSSubject.doAs(subject, new java.security.PrivilegedAction() {

 Public Object run() {

 // Subject is associated with the current thread context

 java.security.AccessController.doPrivileged(new

 java.security.PrivilegedAction() {

 public Object run() {

 // Subject was cut off from the current thread

 // context.

 return null;

 }

 });

 // Subject is associated with the current thread context

 return null;

 }

});

The Subject.doAs and Subject.doAsPrivileged methods are not integrated with the J2EE run-time

environment. EJB methods that are invoked within the Subject.doAs and Subject.doAsPrivileged action

blocks run under the identity that is specified by the run-as setting and not by the subject identity.

v The Subject object that is generated by the WSLoginModuleImpl instance and the

WSClientLoginModuleImpl instance contains a principal that implements the WSPrincipal interface.

Using the getCredential method for a WSPrincipal object returns an object that implements the

WSCredential interface. You can also find the WSCredential object instance in the PublicCredentials list

of the subject instance. Retrieve the WSCredential object from the PublicCredentials list instead of using

the getCredential method.

v The getCallerPrincipal method for the WSSubject class returns a string that represents the caller

security identity. The return type differs from the getCallerPrincipal method of the java.security.Principal

EJBContext interface.

314 Securing applications and their environment

v The Subject object that is generated by the Java 2 Connector (J2C) DefaultPrincipalMapping module

contains a resource principal and a PasswordCredentials list. The resource principal represents the

RunAs identity.

For more information, see J2EE connector security.

Using the Java Authentication and Authorization Service programming

model for Web authentication

WebSphere Application Server supports the Java 2 Platform, Enterprise Edition (J2EE) declarative security

model. You can define the authentication and access control policy using the J2EE deployment descriptor.

You can further stack custom login modules to customize the WebSphere Application Server authentication

mechanism.

A custom login module can perform principal and credential mapping, custom security token and custom

credential-processing, and error-handling among other possibilities. Typically, you do not need to use

application code to perform authentication function. Use the programming techniques that are described in

this section if you have to perform authentication function in application code. For example, if you have

applications that programmed to the SSOAuthenticator helper function, you can use the following

programming interface. The SSOAuthenticator helper function was deprecated starting with WebSphere

Application Server Version 4.0. Use declarative security as a rule; use the techniques that are described in

this section as a last resort.

When the Lightweight Third-Party Authentication (LTPA) mechanism single sign-on (SSO) option is

enabled, the Web client login session is tracked by an LTPA SSO token cookie after successful login. At

logout, this token is deleted to terminate the login session, but the server-side subject is not deleted. When

you use the declarative security model, the WebSphere Application Server Web container performs client

authentication and login session management automatically. You can perform authentication in application

code by setting a login page without a J2EE security constraint and by directing client requests to your

login page first. Your login page can use the Java Authentication and Authorization Service (JAAS)

programming model to perform authentication. To enable WebSphere Application Server Web login

modules to generate SSO cookies, use the following steps.

1. Select the wsMapDefaultInboundLoginModule login module and click Custom properties. There are two

login modules defined in your login configuration: ltpaLoginModule and

wsMapDefaultInboundLoginModule.

2. Create a new system login JAAS configuration. To access the panel, click Security > Secure

administration, applications, and infrastructure. Under Java Authentication and Authorization

Service, click System logins.

3. Manually clone the WEB_INBOUND login configuration, and give it a new alias. To clone the login

configuration, click New, enter a name for the configuration, click Apply, then click JAAS login

modules under Additional properties. Click New and configure the JAAS login module. For more

information, see “Login module settings for Java Authentication and Authorization Service” on page

565. WebSphere Application Server Web container uses the WEB_INBOUND login configuration to

authenticate Web clients. Changing the WEB_INBOUND login configuration affects all Web

applications in the cell. You should create your own login configuration by cloning the contents of the

WEB_INBOUND login configuration.

4. Select the wsMapDefaultInboundLoginModule login module and click Custom properties. There are two

login modules defined in your login configuration: ltpaLoginModule and

wsMapDefaultInboundLoginModule.

5. Add a login property name cookie with a value of true. The two login modules are enabled to generate

LTPA SSO cookies. Do not add the cookie login option to the original WEB_INBOUND login

configuration.

6. Stack your custom LoginModule(s) in the new login configuration (optional).

7. Use your login page for programmatic login by perform a JAAS LoginContext.login using your newly

defined login configuration. After a successful login, either the ltpaLoginModule or the

Chapter 5. Authenticating users 315

wsMapDefaultInboundLoginModule generates an LTPA SSO cookie upon a successful authentication.

Exactly which LoginModule generates the SSO cookie depends on many factors, including system

authentication configuration and runtime condition (which is beyond the scope of this section).

8. Call the modified WSSubject.setRunAsSubject method to add the subject to the authentication cache.

The subject must be a WebSphere Application Server JAAS subject created by LoginModule. Adding

the subject to the authentication cache recreates a subject from SSO token.

9. Use your programmatic logout page to revoke SSO cookies by invoking the revokeSSOCookies method

from the WSSecurityHelper class. The term cookies is used because WebSphere Application Server

Release 5.1.1 (and later) release supports a new LTPA SSO token with a different encryption

algorithm, but can be configured to generate the original LTPA SSO token for backward compatibility.

Note that the subject is still in the authentication cache and only the SSO cookies are revoked.

Use the following code sample to perform authentication:

Suppose you wrote a LoginServlet.java:

 Import com.ibm.wsspi.security.auth.callback.WSCallbackHandlerFactory;

 Import com.ibm.websphere.security.auth.WSSubject;

 public Object login(HttpServletRequest req, HttpServletResponse res)

 throws ServletException {

 PrintWriter out = null;

 try {

 out = res.getWriter();

 res.setContentType("text/html");

 } catch (java.io.IOException e){

 // Error handling

 }

 Subject subject = null;

 try {

 LoginContext lc = new LoginContext("system.Your_login_configuration",

WSCallbackHandlerFactory.getInstance().getCallbackHandler(

userid, null, password, req, res, null));

 lc.login();

 subject = lc.getSubject();

 WSSubject.setRunAsSubject(subject);

 } catch(Exception e) {

 // catch all possible exceptions if you want or handle them separately

 out.println("Exception in LoginContext login + Exception = " +

 e.getMessage());

 throw new ServletException(e.getMessage());

 }

The following is sample code to revoke the SSO cookies upon a programming logout:

The LogoutServlet.java:

 public void logout(HttpServletRequest req, HttpServletResponse res,

 Object retCreds) throws ServletException {

 PrintWriter out =null;

 try {

 out = res.getWriter();

 res.setContentType("text/html");

 } catch (java.io.IOException e){

 // Error Handling

 }

 try {

 WSSecurityHelper.revokeSSOCookies(req, res);

 } catch(Exception e) {

 // catch all possible exceptions if you want or handle them separately

316 Securing applications and their environment

out.println("JAASLogoutServlet: logout Exception = " + e.getMessage());

 throw new ServletException(e);

 }

 }

For more information on JAAS authentication, refer to Developing programmatic logins with the Java

Authentication and Authorization Service. For more information on the AuthenLoginModule login module,

refer to Example: Customizing a server-side Java Authentication and Authorization Service authentication

and login configuration.

Chapter 5. Authenticating users 317

318 Securing applications and their environment

Chapter 6. Authorizing access to resources

WebSphere Application Server provides many different methods for authorizing accessing resources. For

example, you can assign roles to users and configure a built-in or external authorization provider.

You can create an application, an Enterprise JavaBeans (EJB) module, or a Web module and secure them

using assembly tools.

To authorize user or group access to resources, read the following articles:

1. Secure you application during assembly and deployment. For more information on how to create a

secure application using an assembly tool, such as the IBM Rational Application Developer, see

“Securing applications during assembly and deployment” on page 909.

For general information about the tools that WebSphere Application Server supports, see Assembly

tools and Assembling applications.

2. Authorize access to Java 2 Platform, Enterprise Edition (J2EE) resources. WebSphere Application

Server supports authorization that is based on the Java Authorization Contract for Containers (JACC)

specification in addition to the default authorization. When security is enabled in WebSphere

Application Server, the default authorization is used unless a JACC provider is specified. For more

information, see “Authorization providers” on page 329.

3. Authorize access to administrative resources. You can assign users and groups to predefined

administrative roles such as the monitor, configurator, operator, administrator, and iscadmins roles.

These roles determine which tasks a user can perform in the administrative console. For more

information, see “Authorizing access to administrative roles” on page 372.

After authorizing access to resources, configure the Application Server for secure communication. For

more information, see Chapter 7, “Securing communications,” on page 381.

Authorization technology

Authorization information determines whether a user or group has the necessary privileges to access

resources.

WebSphere Application Server supports many authorization technologies including the following:

v Authorization involving the Web container and Java 2 Platform, Enterprise Edition (J2EE) technology

v Authorization involving an enterprise bean application and J2EE technology

v Authorization involving Web services and J2EE technology

v Java Message Service (JMS)

v Java Authorization Contract for Containers (JACC)

WebSphere Application Server supports both a default authorization provider, which was supported in

previous releases, and an authorization provider that is based on the Java Authorization Contract for

Containers (JACC) specification. The JACC-based authorization provider enables third-party security

providers to handle the J2EE authorization. For more information, see “JACC support in WebSphere

Application Server” on page 330.

v Java Authentication and Authorization Service (JAAS)

For more information, see “Java Authentication and Authorization Service” on page 312.

v Java 2 security

For more information, see “Java 2 security” on page 65.

v Naming and administrative authorization

v Pluggable authorization

© Copyright IBM Corp. 2006 319

WebSphere Application Server supports an authorization infrastructure that enables you to plug in an

external authorization provider. For more information, see “Enabling an external JACC provider” on page

354.

Administrative roles and naming service authorization

WebSphere Application Server extends the Java 2 Platform, Enterprise Edition (J2EE) security role-based

access control to protect the product administrative and naming subsystems.

Administrative roles

A number of administrative roles are defined to provide the degrees of authority that are needed to

perform certain WebSphere Application Server administrative functions from either the administrative

console or the system management scripting interface called wsadmin. The authorization policy is only

enforced when administrative security is enabled. The following table describes the administrative roles:

 Table 10. Administrative roles that are available through the administrative console and wsadmin

Role Description

Monitor An individual or group that uses the monitor role has the least amount of privileges. A

monitor can complete the following tasks:

v View the WebSphere Application Server configuration.

v View the current state of the Application Server.

Configurator An individual or group that uses the configurator role has the monitor privilege plus the

ability to change the WebSphere Application Server configuration. The configurator can

perform all the day-to-day configuration tasks. For example, a configurator can complete

the following tasks:

v Create a resource.

v Map an application server.

v Install and uninstall an application.

v Deploy an application.

v Assign users and groups-to-role mapping for applications.

v Set up Java 2 security permissions for applications.

v Customize the Common Secure Interoperability Version 2 (CSIv2), Security

Authentication Service (SAS), and Secure Sockets Layer (SSL) configurations.

Important: SAS is supported only between Version 6.0.x and previous version servers

that have been federated in a Version 6.1 cell.

Operator An individual or group that uses the operator role has monitor privileges plus ability to

change the runtime state. For example, an operator can complete the following tasks:

v Stop and start the server.

v Monitor the server status in the administrative console.

320 Securing applications and their environment

Table 10. Administrative roles that are available through the administrative console and wsadmin (continued)

Role Description

Administrator An individual or group that uses the administrator role has the operator and configurator

privileges plus additional privileges that are granted solely to the administrator role. For

example, an administrator can complete the following tasks:

v Modify the server user ID and password.

v Configure authentication and authorization mechanisms.

v Enable or disable administrative security.

Note: In previous releases of WebSphere Application Server, the Enable

administrative security option is known as the Enable global security option.

v Enforce Java 2 security using the Use Java 2 security to restrict application access

to local resources option.

v Change the Lightweight Third Party Authentication (LTPA) password and generate

keys.

v Create, update, or delete users in the federated repositories configuration.

v Create, update, or delete groups in the federated repositories configuration.

Note: An administrator cannot map users and groups to the administrator roles.

AdminSecurityManager Only users who are granted this role can map users to administrative roles. Also, when

fine-grained administrative security is used, only users who are granted this role can

manage authorization groups. See “Administrative roles” on page 326 for more

information.

 Table 11. Additional administrative role that is available through the administrative console

Role Description

iscadmins This role is only available for administrative console users and not for wsadmin users.

Users who are granted this role have administrator privileges for managing users and

groups in the federated respositories. For example, a user of the iscadmins role can

complete the following tasks:

v Create, update, or delete users in the federated repositories configuration.

v Create, update, or delete groups in the federated repositories configuration.

 Table 12. Additional administrative role that is available through wsadmin

Role Description

Deployer This role is only available for wsadmin users and not for administrative console users.

Users who are granted this role can perform both configuration actions and run-time

operations on applications.

When administrative security is enabled, the administrative subsystem role-based access control is

enforced. The administrative subsystem includes the security server, the administrative console, the

wsadmin scripting tool, and all the Java Management Extensions (JMX) MBeans. When administrative

security is enabled, both the administrative console and the administrative scripting tool require users to

provide the required authentication data. Moreover, the administrative console is designed so the control

functions that display on the pages are adjusted, according to the security roles that a user has. For

example, a user who has only the monitor role can see only the non-sensitive configuration data. A user

with the operator role can change the system state.

When you are changing registries (for example, from a federated repository to LDAP), make sure you

remove the information that pertains to the previously configured registry for console users and console

groups.

Chapter 6. Authorizing access to resources 321

When administrative security is enabled, WebSphere Application Servers run under the server identity that

is defined under the active user registry configuration. Although it is not shown on the administrative

console and in other tools, a special Server subject is mapped to the administrator role. The WebSphere

Application Server runtime code, which runs under the server identity, requires authorization to runtime

operations. If no other user is assigned administrative roles, you can log into the administrative console or

to the wsadmin scripting tool using the server identity to perform administrative operations and to assign

other users or groups to administrative roles. Because the server identity is assigned to the administrative

role by default, the administrative security policy requires the administrative role to perform the following

operations:

v Change server ID and server password

v Enable or disable WebSphere Application Serveradministrative security

v Enforce Java 2 security using the Use Java 2 security to restrict application access to local

resources option.

v Change the LTPA password or generate keys

v Assign users and groups to administrative roles

Primary administrative user name

The Version 6.1 release of WebSphere Application Server requires an administrative user, distinguished

from the server user identity, to improve auditability of administrative actions. The user name specifies a

user with administrative privileges that is defined in the local operating system.

Server user identity

The Version 6.1 release of WebSphere Application Server distinguishes the server identity from the

administrative user identity to improve auditability. The server user identity is used for authenticating

server-to-server communications.

Internal server ID

The internal server ID enables the automatic generation of the user identity for server-to-server

authentication. Automatic generation of the server identity supports improved auditability for cells only for

Version 6.1 or later nodes. In the Version 6.1 release of WebSphere Application Server, you can save the

internally-generated server ID because the Security WebSphere Common Configuration Model (WCCM)

model contains a new tag, internalServerId. You do not need to specify a server user ID and a password

during security configuration except in a mixed-cell environment. An internally-generated server ID adds a

further level of protection to the server environment because the server password is not exposed as it is in

releases prior to Version 6.1. However, to maintain backwards compatibility, you must specify the server

user ID if you use earlier versions of WebSphere Application Server.

When enabling security, you can assign one or more users and groups to naming roles. For more

information, see Assigning users to naming roles. However, before assigning users to naming roles,

configure the active user registry. User and group validation depends on the active user registry. For more

information, see Configuring user registries.

Special subject

In addition to mapping users or groups, you can map a special-subject to the administrative roles. A

special-subject is a generalization of a particular class of users. The AllAuthenticated special subject

means that the access check of the administrative role ensures that the user making the request is at least

authenticated. The Everyone special subject means that anyone, authenticated or not, can perform the

action as if security is not enabled.

322 Securing applications and their environment

Naming service authorization

CosNaming security offers increased granularity of security control over CosNaming functions. CosNaming

functions are available on CosNaming servers such as the WebSphere Application Server. These functions

affect the content of the WebSphere Application Server name space. Generally, you have two ways in

which client programs result in CosNaming calls. The first is through the Java Naming and Directory

Interface (JNDI) call. The second is with common object request broker architecture (CORBA) clients

invoking CosNaming methods directly.

Four security roles are introduced :

v CosNamingRead

v CosNamingWrite

v CosNamingCreate

v CosNamingDelete

The roles have authority levels from low to high:

CosNamingRead

You can query the WebSphere Application Server name space, using, for example, the JNDI

lookup method. The special-subject, Everyone, is the default policy for this role.

CosNamingWrite

You can perform write operations such as JNDI bind, rebind, or unbind, and CosNamingRead

operations. As a default policy, Subjects are not assigned this role.

CosNamingCreate

You can create new objects in the name space through such operations as JNDI createSubcontext

and CosNamingWrite operations. As a default policy, Subjects are not assigned this role.

CosNamingDelete

You can destroy objects in the name space, for example using the JNDI destroySubcontext

method and CosNamingCreate operations. As a default policy, Subjects are not assigned this role.

Additionally, a Server special-subject is assigned to all of the four CosNaming roles by default. The Server

special-subject provides a WebSphere Application Server process, which runs under the server identity, to

access all the CosNaming operations. The Server special-subject does not display and cannot be modified

through the administrative console or other administrative tools.

Special configuration is not required to enable the server identity as specified when enabling administrative

security for administrative use because the server identity is automatically mapped to the administrator

role.

Users, groups, or the special subjects AllAuthenticated and Everyone can be added or removed to or from

the naming roles from the WebSphere Application Server administrative console at any time. However, a

server restart is required for the changes to take effect. A best practice is to map groups or one of the

special-subjects, rather than specific users, to naming roles because it is more flexible and easier to

administer in the long run. By mapping a group to a naming role, adding or removing users to or from the

group occurs outside of WebSphere Application Server and does not require a server restart for the

change to take effect.

The CosNaming authorization policy is only enforced when administrative security is enabled. When

administrative security is enabled, attempts to do CosNaming operations without the proper role

assignment result in an org.omg.CORBA.NO_PERMISSION exception from the CosNaming server.

Each CosNaming function is assigned to only one role. Therefore, users who are assigned the

CosNamingCreate role cannot query the name space unless they have also been assigned

CosNamingRead. And in most cases a creator needs to be assigned three roles: CosNamingRead,

CosNamingWrite, and CosNamingCreate. The CosNamingRead and CosNamingWrite roles assignment for

Chapter 6. Authorizing access to resources 323

the creator example are included in the CosNamingCreate role. In most of the cases, WebSphere

Application Server administrators do not have to change the roles assignment for every user or group

when they move to this release from a previous one.

Although the ability exists to greatly restrict access to the name space by changing the default policy,

unexpected org.omg.CORBA.NO_PERMISSION exceptions can occur at runtime. Typically, J2EE

applications access the name space and the identity they use is that of the user that authenticated to

WebSphere Application Server when accessing the J2EE application. Unless the J2EE application provider

clearly communicates the expected naming roles, use caution when changing the default naming

authorization policy.

Role-based authorization

Use authorization information to determine whether a caller has the necessary privileges to request a

service.

The following figure illustrates the process that is used during authorization.

 Web resource access from a Web client is handled by a Web collaborator. The Enterprise JavaBeans

(EJB) resource access from a Java client, whether an enterprise bean or a servlet, is handled by an EJB

collaborator. The EJB collaborator and the Web collaborator extract the client credentials from the object

request broker (ORB) current object. The client credentials are set during the authentication process as

received credentials in the ORB current object. The resource and the received credentials are presented to

the WSAccessManager access manager to check whether access is permitted to the client for accessing

the requested resource.

The access manager module contains two main modules:

v The resource permission module helps determine the required roles for a given resource. This module

uses a resource-to-roles mapping table that is built by the security runtime during application startup. To

build the resource-to-role mapping table, the security runtime reads the deployment descriptor of the

enterprise beans or the Web module (ejb-jar.xml file or web.xml file)

Access manager

module

WebSphere Application Server

(1)

(1)

(2)

(2)

CSIv2/SAS, TCP/IP,

SSL

EJB

resource access

HTTP or HTTPS

Web resource access

Authorization

table

Resource

permission

Access

manager

Enterprise beans

collaborator

Web

collaborator

ORB

current object

Java client

Web client

(2)

(4)

(5)

Authorization

data

Received

credentials

(2)

Received

credentials

(3)

(3)

Resource and

credentials

Resource and

credentials

Resource

True/False

Roles

Roles, credentials

Authorization

data

Authentication

Role
Users/
Groups

Resource Roles

324 Securing applications and their environment

v The authorization table module consults a role-to-user or group table to determine whether a client is

granted one of the required roles. The role-to-user or group mapping table, also known as the

authorization table, is created by the security runtime during application startup.

To build the authorization table, the security runtime reads the ibm-application-bnd.xmi application

binding file.

Use authorization information to determine whether a caller has the necessary privilege to request a

service. You can store authorization information many ways. For example, with each resource, you can

store an access-control list, which contains a list of users and user privileges. Another way to store the

information is to associate a list of resources and the corresponding privileges with each user. This list is

called a capability list.

WebSphere Application Server uses the Java 2 Platform, Enterprise Edition (J2EE) authorization model. In

this model, authorization information is organized as follows:

During the assembly of an application, permission to invoke methods is granted to one or more roles. A

role is a set of permissions; for example, in a banking application, roles can include teller, supervisor,

clerk, and other industry-related positions. The teller role is associated with permissions to run methods

that are related to managing the money in an account, such as the withdraw and deposit methods. The

teller role is not granted permission to close accounts; this permission is given to the supervisor role. The

application assembler defines a list of method permissions for each role. This list is stored in the

deployment descriptor for the application.

Two special subjects are not defined by the J2EE model: AllAuthenticatedUsers and Everyone. A special

subject is a product-defined entity that is independent of the user registry. This entity is used to generically

represent a class of users or groups in the registry.

v The AllAuthenticatedUsers subject permits all authenticated users to access protected methods. As long

as the user can authenticate successfully, the user is permitted access to the protected resource. All of

this is done independent of the user registry.

v Everyone is a special subject that permits unrestricted access to a protected resource. Users do not

have to authenticate to get access; this special subject provides access to protected methods as if the

resources are unprotected. All of this is done independent of the user registry.

During the deployment of an application, real users or groups of users are assigned to the roles. When a

user is assigned to a role, the user gets all the method permissions that are granted to that role.

The application deployer does not need to understand the individual methods. By assigning roles to

methods, the application assembler simplifies the job of the application deployer. Instead of working with a

set of methods, the deployer works with the roles, which represent semantic groupings of the methods.

Users can be assigned to more than one role; the permissions that are granted to the user are the union

of the permissions granted to each role. Additionally, if the authentication mechanism supports the

grouping of users, these groups can be assigned to roles. Assigning a group to a role has the same effect

as assigning each individual user to the role.

A best practice during deployment is to assign groups instead of individual users to roles for the following

reasons:

v Improves performance during the authorization check. Typically far fewer groups exist than users.

v Provides greater flexibility, by using group membership to control resource access.

v Supports the addition and deletion of users from groups outside of the product environment. This action

is preferred to adding and removing them to WebSphere Application Server roles. Stop and restart the

enterprise application for these changes to take effect. This action can be very disruptive in a production

environment.

Chapter 6. Authorizing access to resources 325

At runtime, WebSphere Application Server authorizes incoming requests based on the user’s identification

information and the mapping of the user to roles. If the user belongs to any role that has permission to run

a method, the request is authorized. If the user does not belong to any role that has permission, the

request is denied.

The J2EE approach represents a declarative approach to authorization, but it also recognizes that you

cannot deal with all situations declaratively. For these situations, methods are provided for determining

user and role information programmatically. For enterprise beans, the following two methods are supported

by WebSphere Application Server:

v getCallerPrincipal: This method retrieves the user identification information.

v isCallerInRole: This method checks the user identification information against a specific role.

For servlets, the following methods are supported by WebSphere Application Server:

v getRemoteUser

v isUserInRole

v getUserPrincipal

These methods correspond in purpose to the enterprise bean methods.

For more information on the J2EE security authorization model, see the following Web site:

http://java.sun.com

Administrative roles

The Java 2 Platform, Enterprise Edition (J2EE) role-based authorization concept is extended to protect the

WebSphere Application Server administrative subsystem.

A number of administrative roles are defined to provide degrees of authority that are needed to perform

certain administrative functions from either the Web-based administrative console or the system

management scripting interface. The authorization policy is only enforced when administrative security is

enabled. The following table describes the administrative roles:

 Administrative roles

Role Description

Monitor An individual or group that uses the monitor role has the least amount of privileges. A

monitor can complete the following tasks:

v View the WebSphere Application Server configuration.

v View the current state of the Application Server.

Configurator An individual or group that uses the configurator role has the monitor privilege plus the

ability to change the WebSphere Application Server configuration. The configurator can

perform all the day-to-day configuration tasks. For example, a configurator can

complete the following tasks:

v Create a resource.

v Map an application server.

v Install and uninstall an application.

v Deploy an application.

v Assign users and groups-to-role mapping for applications.

v Set up Java 2 security permissions for applications.

v Customize the Common Secure Interoperability Version 2 (CSIv2), Security

Authentication Service (SAS), and Secure Sockets Layer (SSL) configurations.

Important: SAS is supported only between Version 6.0.x and previous version

servers that have been federated in a Version 6.1 cell.

326 Securing applications and their environment

http://java.sun.com

Administrative roles

Operator An individual or group that uses the operator role has monitor privileges plus ability to

change the runtime state. For example, an operator can complete the following tasks:

v Stop and start the server.

v Monitor the server status in the administrative console.

Administrator An individual or group that uses the administrator role has the operator and

configurator privileges plus additional privileges that are granted solely to the

administrator role. For example, an administrator can complete the following tasks:

v Modify the server user ID and password.

v Configure authentication and authorization mechanisms.

v Enable or disable administrative security.

v Enable or disable Java 2 security.

v Change the Lightweight Third Party Authentication (LTPA) password and generate

keys.

v Create, update, or delete users in the federated repositories configuration.

v Create, update, or delete groups in the federated repositories configuration.

Note: An administrator cannot map users and groups to the administrator roles.

iscadmins This role is only available for administrative console users, not for wsadmin users.

Users who are granted this role have administrator privileges for managing users and

groups in the federated repositories. For example, a user of the iscadmins role can

complete the following tasks:

v Create, update, or delete users in the federated repositories configuration.

v Create, update, or delete groups in the federated repositories configuration.

Deployer This role is only available for wsadmin users, not for administrative console users.

Users granted this role can perform both configuration actions and runtime operations

on applications. See the “Deployer role” section for more details.

AdminSecurityManager This role is only available for wsadmin users, not for administrative console users.

When using wsadmin, users granted this role can map users to administrative roles.

Also, when fine grained admin security is used, users granted this role can manage

authorization groups. See the “AdminSecurityManager role” on page 328 section for

more details.

The server ID that is specified and the administrative ID, if specified, when enabling administrative security

is automatically mapped to the administrator role.

Users and groups can be added or removed from the administrative roles from the WebSphere Application

Server administrative console at any time. A best practice is to map a group or groups, rather than specific

users, to administrative roles because it is more flexible and easier to administer.

In addition to mapping user or groups, a special-subject can also be mapped to the administrative roles. A

special-subject subject is a generalization of a particular class of users. The AllAuthenticated special

subject means that the access check of the administrative role ensures that the user making the request is

at least authenticated. The Everyone special subject means that anyone, authenticated or not, can perform

the action, as if security was not enabled.

Deployer role

A user that is granted a deployer role can perform all of the configuration and runtime operations on an

application. A deployer role can be subsets of both configurator and operator roles. However, a user

granted a deployer role cannot configure or operate any other resources (server, node).

Chapter 6. Authorizing access to resources 327

When fine-grained administrative security is used, only a user granted a deployer role to an application

can configure and operate that application.

Cell level configurators can configure applications (install, edit, deploy, and uninstall). Cell level operators

can also operate (start and stop) applications. However, a user granted a deployer role at cell level can

also perform configuration and operation on all applications.

The following table lists the capabilities of the deployer role when fine-grained administrative security is

used:

 Operation Required Roles (Any one)

Install application Cell-configurator, target-deployer

Uninstall application Cell-configurator, application-deployer

List application Cell-monitor, application-monitor

Edit, update and redeploy application Cell-configurator, application-deployer

Export application Cell-monitor, application-monitor

Start-stop application Cell-operator, application-deployer

Where:

Cell-configurator

is the configurator role at cell level.

Application-deployer

is the deployer role for the application that is being managed.

Target-deployer

is the deployer role for all servers or clusters for which an application is targeted. If you have a

target-deployer role, you can install a new application on the target. However, to edit or update the

installed application, you must be included in the authorization group of the installed

application-deployer.

 The target-deployer can not explicitly start or stop a new application. However, when a

target-deployer starts a server on a target, all of the applications that have their auto-start attribute

set to yes are started when the server starts.

 It is recommended that the application-deployer set this attribute to true if the application-deployer

does not want the application to be started by the target-deployer.

AdminSecurityManager role

The AdminSecurityManager role separates administrative security administration from other application

administration.

By default, serverId and adminID, if specified, are assigned to this role in the cell level authorization table.

This role implies a monitor role. However, an administrator role does not imply the AdminSecurityManager

role.

When fine-grained admin security is used, only a user granted this role at cell level can manage

administrative authorization groups. However, a user granted this role for each administrative authorization

group can map users to administrative roles for those groups. The following lists the capabilities of the

AdminSecurityManager role at different levels (cell and administrative authorization group):

 Action Who can perform

Map users to administrative roles for cell level Only the AdminSecurityManager of the cell

328 Securing applications and their environment

Action Who can perform

Map users to administrative roles for an authorization

group

Only the AdminSecurityManager of that authorization

group or the AdminSecurityManager of the cell

Manage authorization groups (create, delete, add

resource to an authorization group, or remove resource

from an authorization group or list)

Only the AdminSecurityManager of the cell

 Related tasks

 “Assigning users to naming roles” on page 376
Use this task to assign users to naming roles by using the administrative console.

Enterprise bean component security

An Enterprise JavaBeans (EJB) module consists of one or more beans. You can use development tools

such as Rational Application Developer to develop an EJB module. You can also enforce security at the

EJB method level.

You can assign a set of EJB methods to a set of one or more roles. When an EJB method is secured by

associating a set of roles, grant at least one role in that set so that you can access that method. To

exclude a set of EJB methods from access mark the set excluded. You can give everyone access to a set

of enterprise beans methods by clearing those methods. You can run enterprise beans as a different

identity, using the runAs identity, before invoking other enterprise beans.

Authorization providers

WebSphere Application Server supports authorization that is based on the Java Authorization Contract for

Containers (JACC) specification in addition to the default authorization.

JACC is a new specification in Java 2 Platform, Enterprise Edition (J2EE) 1.4. It enables third-party

security providers to manage authorization in the application server.

When security is enabled in WebSphere Application Server, the default authorization is used unless a

JACC provider is specified. The default authorization does not require special setup, and the default

authorization engine makes all of the authorization decisions. However, if a JACC provider is configured

and set up for WebSphere Application Server to use, all of the enterprise beans and Web authorization

decisions are delegated to the JACC provider.

WebSphere Application Server supports security for J2EE applications and also for its administrative

components. J2EE applications, such as Web and Enterprise JavaBeans (EJB) components are protected

and authorized per the J2EE specification. The administrative components are internal to WebSphere

Application Server and are protected by the role-based authorizer. The administrative components include

the administrative console, MBeans, and other components such as naming and security. For more

information on administrative security, see “Role-based authorization” on page 324.

When a JACC provider is used for authorization in WebSphere Application Server, all of the J2EE

application-based authorization decisions are delegated to the provider per the JACC specification.

However, all administrative security authorization decisions are made by the WebSphere Application

Server default authorization engine. The JACC provider is not called to make the authorization decisions

for administrative security.

When a protected J2EE resource is accessed, the authorization decision to give access to the principal is

the same whether using the default authorization engine or a JACC provider. Both of the authorization

models satisfy the J2EE specification, and function the same. Choose a JACC provider only when you

want to work with an external security provider such as Tivoli Access Manager. In this instance, the

security provider must support the JACC specification and be set up to work with WebSphere Application

Chapter 6. Authorizing access to resources 329

Server. Setting up and configuring a JACC provider requires additional configuration steps, depending on

the provider. Unless you have an external security provider that you can use with WebSphere Application

Server, use the default authorization.

JACC support in WebSphere Application Server

WebSphere Application Server supports the Java Authorization Contract for Containers (JACC)

specification, which enables third-party security providers to handle the Java 2 Platform, Enterprise Edition

(J2EE) authorization.

The JACC specification requires that both the containers in the application server and the provider satisfy

some requirements. Specifically, the containers are required to propagate the security policy information to

the provider during the application deployment and to call the provider for all authorization decisions. The

providers are required to store the policy information in their repository during application deployment. The

providers then use this information to make authorization decisions when called by the container.

JACC access decisions

When security is enabled and an enterprise bean or Web resource is accessed, the Enterprise JavaBeans

(EJB) container or Web container calls the security runtime to make an authorization decision on whether

to permit access. When using an external provider, the access decision is delegated to that provider.

According to the Java Authorization Contract for Containers (JACC) specification, the appropriate

permission object is created, the appropriate policy context handlers are registered, and the appropriate

policy context identifier (contextID) is set. A call is made to the java.security.Policy object method that is

implemented by the provider to make the access decision.

The following sections describe how the provider is called for both the enterprise bean and the Web

resources.

Access decisions for enterprise beans

When security is enabled, and an EJB method is accessed, the EJB container delegates the authorization

check to the security runtime. If JACC is enabled, the security runtime uses the following process to

perform the authorization check:

1. Creates the EJBMethodPermission object using the bean name, method name, interface name, and

the method signature.

2. Creates the context ID and sets it on the thread by using the PolicyContext.setContextID(contextID)

method.

3. Registers the required policy context handlers, including the Subject policy context handler.

4. Creates the ProtectionDomain object with principal in the Subject. If no principal exists, null is passed

for the principal name.

5. The access decision is delegated to the JACC provider by calling the implies method of the Policy

object, which is implemented by the provider. The EJBMethodPermission and the ProtectionDomain

objects are passed to this method.

6. The isCallerInRole access check also follows the same process, except that an EJBRoleRefPermission

object is created instead of an EJBMethodPermission object.

Access decisions for Web resources

When security is enabled and configured to use a JACC provider, and when a Web resource such as a

servlet or a JavaServer Pages (JSP) file is accessed, the security runtime delegates the authorization

decision to the JACC provider by using the following process:

1. A WebResourcePermission object is created to see if the URI is cleared. If the provider honors the

Everyone subject it is also selected here.

330 Securing applications and their environment

a. The WebResourcePermission object is constructed with the urlPattern and the HTTP method

accessed.

b. A ProtectionDomain object with a null principal name is created.

c. The JACC provider Policy.implies method is called with the permission and the protection domain.

If the URI access is cleared or given access to the Everyone subject, the provider permits access

(return true) in the implies method. Access is then granted without further checks.

2. If access is not granted in the previous step, a WebUserDataPermission object is created and used to

see if the Uniform Resource Identifier (URI) is precluded, excluded or must be redirected using the

HTTPS protocol.

a. The WebUserDataPermission object is constructed with the urlPattern accessed, the HTTP method

invoked, and the transport type of the request. If the request is over HTTPS, the transport type is

set to CONFIDENTIAL; otherwise, null is passed.

b. A ProtectionDomain object with a null principal name is created.

c. The JACC provider Policy.implies method is called with the permission and the protection domain.

If the request is using the HTTPS protocol and the implies method returns false, the HTTP 403

error is returned to imply excluded and precluded permission. In this case no further checks are

performed. If the request is not using the HTTPS protocol, and the implies returns false, the

request is redirected over HTTPS.

3. The security runtime attempts to authenticate the user. If the authentication information already exists

(for example, LTPA token), it is used. Otherwise, the user’s credentials must be entered.

4. After the user credentials are validated, a final authorization check is performed to see if the user is

granted access privileges to the URI.

a. As in Step 1, the WebResourcePermission object is created. The ProtectionDomain object now

contains the Principal that is attempting to access the URI. The Subject policy context handler also

contains the user’s information, which can be used for the access check.

b. The provider implies method is called using the Permission object and the ProtectionDomain object

created previously. If the user is granted permission to access the resource, the implies method

returns true. If the user is not granted access, the implies method returns false.

Even if the order listed previously is changed later (for example, to improve performance) the end result is

the same. For example, if the resource is precluded or excluded, the end result is that the resource cannot

be accessed.

Using information from the Subject for access decision

If the provider relies on the WebSphere Application Server generated Subject for access decision, the

provider can query the public credentials in the Subject to obtain the WSCredential credential. The

WSCredential API is used to obtain information about the user, including the name and the groups that the

user belongs to. This information is used to make the access decision.

If the provider adds the required information to the Subject, WebSphere Application Server can use the

information to make the access decision. The provider might add the information by using the Trust

Association Interface feature or by plugging login modules into the Application Server.

The security attribute propagation section contains additional documentation on how to add the

WebSphere Application Server required information to the Subject. For more information, see “Propagating

security attributes among application servers” on page 267.

Dynamic module updates in JACC

WebSphere Application Server supports dynamic updates to Web modules under certain conditions. If a

Web module is updated, deleted or added to an application, only that module is stopped and started as

appropriate. The other existing modules in the application are not impacted, and the application itself is not

stopped and then restarted.

Chapter 6. Authorizing access to resources 331

When using the default authorization engine, any security policies are modified in the Web modules and

the application is stopped and then restarted. When using the Java Authorization Contract for Containers

(JACC) based authorization, the behavior depends on the functionality that a provider supports. If a

provider can handle dynamic changes to the Web modules, then only the Web modules are impacted.

Otherwise, the entire application is stopped and restarted for the new changes in the Web modules to take

effect.

A provider can indicate if it supports the dynamic updates by configuring the Supports dynamic module

updates option in the JACC configuration model (see “Authorizing access to J2EE resources using Tivoli

Access Manager” on page 350 for more information). This option can be enabled or disabled using the

administrative console or by scripting. It is expected that most providers store the policy information in their

external repository, which makes it possible for them to support these dynamic updates. This option should

be enabled by default for most providers.

When the Supports dynamic module updates option is enabled, if a Web module that contains security

roles is dynamically added, modified, or deleted, only the specific Web modules are impacted and

restarted. If the option is disabled, the entire application is restarted. When dynamic updates are

performed, the security policy information of the modules impacted are propagated to the provider. For

more information about security policy propagation, see “JACC policy propagation” on page 334.

Initialization of the JACC provider

If a Java Authorization Contract for Containers (JACC) provider requires initialization during server startup,

for example, to enable the client code to communicate to the server code, the provider can implement the

com.ibm.wsspi.security.authorization.InitializeJACCProvider interface. See “Interfaces that support JACC”

on page 366 for more information.

When this interface is implemented, it is called during server startup. Any custom properties in the JACC

configuration model are propagated to the initialize method of this implementation. The custom properties

can be entered using either the administrative console or by scripting.

During server shutdown, the cleanup method is called for any clean-up work that a provider requires.

Implementation of this interface is strictly optional, and is used only if the provider requires initialization

during server startup.

Mixed node environment and JACC

Authorization using Java Authorization Contract for Containers (JACC) is a new feature in WebSphere

Application Server Version 6.0.x. Also, the JACC configuration is set up at the cell level and is applicable

for all the nodes and servers in that cell.

If you are planning to use the JACC-based authorization, the cell must contain Version 6.0.x and later

nodes only. This restriction implies that a mixed node environment containing a set of Version 5.x nodes in

a Version 6.0.x or later cell is not supported.

JACC providers

The Java Authorization Contract for Containers (JACC) is a new specification that is introduced in Java 2

Platform, Enterprise Edition (J2EE) Version 1.4 through the Java Specifications Request (JSR) 115

process. This specification defines a contract between J2EE containers and authorization providers.

The contract enables third-party authorization providers to plug into J2EE 1.4 application servers, such as

WebSphere Application Server, to make the authorization decisions when a J2EE resource is accessed.

The access decisions are made through the standard java.security.Policy object.

In WebSphere Application Server, two authorization contracts are supported using both a native and a

third-party JACC provider implementation.

332 Securing applications and their environment

To plug in to WebSphere Application Server, the third-party JACC provider must implement the policy

class, policy configuration factory class, and policy configuration interface, which are all required by the

JACC specification.

The JACC specification does not specify how to handle the authorization table information between the

container and the provider. It is the responsibility of the provider to provide some management facilities to

handle this information. The container is not required to provide the authorization table information in the

binding file to the provider.

WebSphere Application Server provides the RoleConfigurationFactory and the RoleConfiguration role

configuration interfaces to help the provider obtain information from the binding file, as well as an

initialization interface (InitializeJACCProvider). The implementation of these interfaces is optional. See

“Interfaces that support JACC” on page 366 for more information about these interfaces.

Tivoli Access Manager as the default JACC provider for WebSphere Application Server

The JACC provider in WebSphere Application Server is implemented by both the client and the server

pieces of the Tivoli Access Manager. The client piece of Tivoli Access Manager is embedded in

WebSphere Application Server. The server piece is located on a separate installable CD that is shipped as

part of the WebSphere Application Server Network Deployment (ND) package.

The JACC provider is not the default authorization. You must configure WebSphere Application Server to

use the JACC provider.

JACC policy context handlers

WebSphere Application Server supports all of the policy context handlers that are required by the Java

Authorization Contract for Containers (JACC) specification. However, due to performance impacts, the

Enterprise JavaBeans (EJB) arguments policy context handler is not activated unless it is specifically

required by the provider. Performance impacts result if objects must be created for each arguments of

each EJB method.

If the provider supports and requires this context handler, select the Requires the EJB arguments policy

context handler for access decisions check box in the External JACC provider link under the

Authorization providers panel or by using scripting. Any changes to this option are effective after the

servers are restarted. By default this option is disabled. Disable this option when using Tivoli Access

Manager as the JACC provider, because the argument values are not required for access decisions.

JACC policy context identifiers (ContextID) format

A policy context identifier is defined as a unique string that represents a policy context. A policy context

contains all of the security policy statements as defined by the Java Contract for Containers (JACC)

specification that affect access to the resources in a Web or Enterprise JavaBeans (EJB) module.

During policy propagation to the JACC provider, a PolicyConfiguration object is created for each policy

context. The object is populated with the policy statements, represented by the JACC permission objects

that correspond to the context. The object is propagated to the JACC provider using the JACC

specification APIs.

WebSphere Application Server makes the contextID unique by using the href:cellName/appName/
moduleName string as the contextID format for the modules. The href part of the string indicates that a

hierarchical name is passed as the context ID.

The cellName represents the name of the deployment manager cell or the base cell where the application

is installed. After an application is installed in one cell (for example, in a base application server where the

cell name is base1) and is added to a deployment manager cell whose name is cell1 by using addNode,

the context ID for the modules in the application contain base1 (not cell1) as the cell name because the

application is initially installed in base1.

Chapter 6. Authorizing access to resources 333

The appName part of the string in the context ID represents the application name containing the module.

The moduleName refers to the name of the module.

As an example, the context ID for the module Increment.jar file in an application named

DefaultApplication that is installed in cell1 is the href:cell1/DefaultApplication/Increment.jar file.

JACC policy propagation

When an application is installed or deployed in WebSphere Application Server, the security policy

information in the application is propagated to the provider when the configuration is saved. The context ID

for the application is saved in its application.xml file, that is used for propagating the policy to the Java

Authorization Contract for Containers (JACC) provider, and also for access decisions for Java 2 Platform,

Enterprise Edition (J2EE) resources.

When an application is uninstalled, the security policy information in the application is removed from the

provider when the configuration is saved.

If the provider implemented the RoleConfiguration interface, the security policy information that is

propagated to the policy provider also contains the authorization table information. See “Interfaces that

support JACC” on page 366 for more information about this interface.

If an application does not contain security policy information, the PolicyConfiguration (and the

RoleConfiguration, if implemented) objects do not contain any information. The existence of empty

PolicyConfiguration and RoleConfiguration objects indicates that security policy information for the module

does not exist.

After an application is installed, it can be updated without being uninstalled and reinstalled. For example, a

new module can be added to an existing application, or an existing module can be modified. In this

instance, the information in the impacted modules is propagated to the provider by default. A module is

impacted when the deployment descriptor of the module is changed as part of the update. If the provider

supports the RoleConfiguration interfaces, the entire authorization table for that application is propagated

to the provider.

If the security information is not propagated to the provider during application updates, you can set the

com.ibm.websphere.security.jacc.propagateonappupdate Java virtual machine (JVM) property to false in

the deployment manager, in a Network Deployment environment, or the unmanaged base application

server. If this property is set to false, any updates to an existing application in the server are not

propagated to the provider. You also can set this property on a per-application basis using the custom

properties of an application. The wsadmin tool can be used to set the custom property of an application. If

this property is set at the application level, any updates to that application are not propagated to the

provider. If the update to an application is a full update, for example, a new application enterprise archive

(EAR) file is used to replace the existing one, and the provider is refreshed with the entire application

security policy information.

As mentioned earlier, the security policy information is propagated to the JACC provider during the save

operation. The SystemOut.log file indicates the success or failure of the propagation to the provider. Check

the log file after the installation to ensure that the propagation had no problems. If the propagation had any

problems, access to the application fails when Tivoli Access Manager is used as the JACC provider.

If the security policy information for the application is successfully propagated to the provider, the audit

statements with the message key SECJ0415I appear. However, if there was a problem propagating the

security policy information to the provider (for example: network problems, JACC provider is not available),

the SystemOut.log files contain the error message with the message keys SECJ0396E during install or

SECJ0398E during modification. The installation of the application is not stopped due to a failure to

propagate the security policy to the JACC provider. Also, in the case of failure, no exception or error

messages appear during the save operation. When the problem causing this failure is fixed, run the

propagatePolicyToJaccProvider tool to propagate the security policy information to the provider without

334 Securing applications and their environment

reinstalling the application. For more information, see “Propagating security policy of installed applications

to a JACC provider using wsadmin scripting” on page 652.

JACC registration of the provider implementation classes

The JACC specification states that providers can plug in their provider using the

javax.security.jacc.policy.provider and the javax.security.jacc.PolicyConfigurationFactory.provider system

properties.

The javax.security.jacc.policy.provider property is used to set the policy object of the provider, while the

javax.security.jacc.PolicyConfigurationFactory.provider property is used to set the provider

PolicyConfigurationFactory implementation.

Although both system properties are supported in WebSphere Application Server, it is highly recommended

that you use the configuration model that is provided. You can set these values using either the JACC

configuration panel (see “Authorizing access to J2EE resources using Tivoli Access Manager” on page 350

for more information) or by using wsadmin scripting. One of the advantages of using the configuration

model instead of the system properties is that the information is entered in one place at the cell level, and

is propagated to all nodes during synchronization. Also, as part of the configuration model, additional

properties can be entered, as described in the JACC configuration panel.

Role-based security with embedded Tivoli Access Manager

The Java 2 Platform, Enterprise Edition (J2EE) role-based authorization model uses the concepts of roles

and resources. An example is provided here.

 Methods

Roles getBalance deposit closeAccount

Teller granted granted

Cashier granted

Supervisor granted

In the example of the banking application that is conceptualized in the previous table, three roles are

defined: teller, cashier, and supervisor. Permission to perform the getBalance, deposit, and closeAccount

application methods are mapped to these roles. From the example, you can see that users assigned the

role, Supervisor, can run the closeAccount method, whereas the other two roles are unable to run this

method.

The term, principal, within WebSphere Application Sever security refers to a person or a process that

performs activities. Groups are logical collections of principals that are configured in WebSphere

Application Server to promote the ease of applying security. Roles can be mapped to principals, groups, or

both. The entry that is invoked in the following table indicates that the principal or group can invoke any

methods that are granted to that role.

 Roles

Principal/Group Teller Cashier Supervisor

TellerGroup Invoke

CashierGroup Invoke

SupervisorGroup

Frank: A principal who is

not a member of any of the

previous groups

Invoke Invoke

Chapter 6. Authorizing access to resources 335

In the previous example, the principal Frank, can invoke the getBalance and the closeAccount methods,

but cannot invoke the deposit method because this method is not granted either the Cashier or the

Supervisor role.

At the time of application deployment, the Java Authorization Contract for Container (JACC) provider of

Tivoli Access Manager populates the Tivoli Access Manager-protected object space with any security

policy information that is contained in the application deployment descriptor. This security information is

used to determine access whenever the WebSphere Application Server resource is requested.

By default, the Tivoli Access Manager access check is performed using the role name, the cell name, the

application name, and the module name.

Tivoli Access Manager access control lists (ACLs) determine which application roles are assigned to a

principal. ACLs are attached to the applications in the Tivoli Access Manager-protected object space at the

time of application deployment.

Principal-to-role mappings are managed from the WebSphere Application Server administrative console

and are never modified using Tivoli Access Manager. Direct updates to ACLs are performed for

administrative security users only.

The following sequence of events occur:

1. During application deployment, policy information is sent to the JACC provider of Tivoli Access

Manager . This policy information contains permission-to-role mappings and role-to-principal and

role-to-group mapping information.

2. The JACC provider of Tivoli Access Manager converts the information into the required format, and

passes this information to the Tivoli Access Manager policy server.

3. The policy server adds entries to the Tivoli Access Manager-protected object space to represent the

roles that are defined for the application and the permission-to-role mappings. A permission is

represented as a Tivoli Access Manager-protected object and the role that is granted to this object is

attached as an extended attribute.

Tivoli Access Manager integration as the JACC provider

Tivoli Access Manager uses the Java Authorization Contract for Container (JACC) model in WebSphere

Application Server to perform access checks.

Tivoli Access Manager consists of the following components:

v Run time

v Client configuration

v Authorization table support

v Access check

v Authentication using the PDLoginModule module

Tivoli Access Manager run-time changes that are used to support JACC

For the run-time changes, Tivoli Access Manager implements the PolicyConfigurationFactory and the

PolicyConfiguration interfaces, as required by JACC. During the application installation, the security policy

information in the deployment descriptor and the authorization table information in the binding files are

propagated to the Tivoli provider using these interfaces. The Tivoli provider stores the policy and the

authorization table information in the Tivoli Access Manager policy server by calling the respective Tivoli

Access Manager application programming interfaces (API).

336 Securing applications and their environment

Tivoli Access Manager also implements the RoleConfigurationFactory and the RoleConfiguration

interfaces. These interfaces are used to ensure that the authorization table information is passed to the

provider with the policy information. See “Interfaces that support JACC” on page 366 for more information

about these interfaces.

Tivoli Access Manager client configuration

To configure the Tivoli Access Manager client, you can use either the administrative console or wsadmin

scripting. You can access the administrative console panels for the Tivoli Access Manager client

configuration by clicking Security > Secure administration, applications, and infrastructure > External

authorization providers. Under Related Items, click External JACC provider. The Tivoli client must be

set up to use the Tivoli Access Manager JACC Provider.

For more information about how to configure the Tivoli Access Manager client, see “Tivoli Access Manager

JACC provider configuration” on page 357.

Authorization table support

Tivoli Access Manager uses the RoleConfiguration interface to ensure that the authorization table

information is passed to the Tivoli Access Manager provider when the application is installed or deployed.

When an application is deployed or edited, the set of users and groups for the user or group-to-role

mapping are obtained from the Tivoli Access Manager server, which shares the same Lightweight Directory

Access Protocol (LDAP) server as WebSphere Application Server. This sharing is accomplished by

plugging into the application management users or groups-to-role administrative console panels. The

management APIs are called to obtain users and groups rather than relying on the WebSphere Application

Server-configured LDAP registry.

Access check

When WebSphere Application Server is configured to use the JACC provider for Tivoli Access Manager , it

passes the information to Tivoli Access Manager to make the access decision. The Tivoli Access Manager

policy implementation queries the local replica of the access control list (ACL) database for the access

decision.

Authentication using the PDLoginModule module

The custom login module in WebSphere Application Server can do the authentication. This login module is

plugged in before the WebSphere Application Server-provided login modules. The custom login modules

can provide information that can be stored in the Subject. If the required information is stored, no

additional registry calls are made to obtain that information.

As part of the JACC integration, the Tivoli Access Manager-provided PDLoginModule module is also used

to plug into WebSphere Application Server for both Lightweight Third Party Authentication (LTPA) and

Simple WebSphere Authentication Mechanism (SWAM) authentication. The PDLoginModule module is

modified to authenticate with the user ID or password. The module is also used to fill in the required

attributes in the Subject so that no registry calls are made by the login modules in WebSphere Application

Server. The information that is placed in the Subject is available for the Tivoli Access Manager policy

object to use for access checking.

Note:

V6.0.x

SWAM is deprecated in WebSphere Application Server Version 6.1 and will be removed

in a future release.

Tivoli Access Manager security for WebSphere Application Server

WebSphere Application Server provides embedded IBM Tivoli Access Manager client technology to secure

your WebSphere Application Server-managed resources.

Chapter 6. Authorizing access to resources 337

The benefits of using Tivoli Access Manager that are described here are only applicable when Tivoli

Access Manager client code is used with the Tivoli Access Manager server:

v Robust container-based authorization

v Centralized policy management

v Management of common identities, user profiles, and authorization mechanisms

v Single-point security management for Java 2 Platform, Enterprise Edition (J2EE) compliant and

non-compliant J2EE resources using the administrative console for Tivoli Access Manager Web Portal

Manager

v No requirements for coding or deployment changes to applications

v Easy management of users, groups, and roles using the WebSphere Application Server administrative

console

WebSphere Application Server supports the Java Authorization Contract for Containers (JACC)

specification. JACC details the contract requirements for J2EE containers and authorization providers. With

this contract, authorization providers can perform the access decisions for resources in J2EE Version 1.4

application servers such as WebSphere Application Server. The Tivoli Access Manager security utility that

is embedded within WebSphere Application Server is JACC-compliant and is used to:

v Add security policy information when applications are deployed

v Authorize access to WebSphere Application Server-secured resources.

When applications are deployed, the embedded Tivoli Access Manger client takes any policy and or user

and role information that is stored within the application deployment descriptor and stores it within the

Tivoli Access Manager Policy Server.

The Tivoli Access Manager JACC provider is also called when a user requests access to a resource that is

managed by WebSphere Application Server.

Embedded Tivoli Access Manager client architecture

The previous figure illustrates the following sequence of events:

1. Users that access protected resources are authenticated using the Tivoli Access Manager login module

that is configured for use when the embedded Tivoli Access Manager client is enabled.

Tivoli Access
Manager

login module

Tivoli Access Manager
JACC provider

Tivoli Access Manager
authorization server

Tivoli Access Manager
policy server

WebSphere Application Server

Policy
database
replication

LDAP
server

Policy
database

Policy
database

Protected object
space

/

SD

Client

Request

Response

338 Securing applications and their environment

2. The WebSphere Application Server container uses information from the J2EE application deployment

descriptor to determine the required role membership.

3. WebSphere Application Server uses the embedded Tivoli Access Manager client to request an

authorization decision from the Tivoli Access Manager authorization server. Additional context

information, when present, is also passed to the authorization server. This context information is

comprised of the cell name, J2EE application name, and J2EE module name. If the Tivoli Access

Manager policy database has policies that are specified for any of the context information, the

authorization server uses this information to make the authorization decision.

4. The authorization server consults the permissions that are defined for the specified user within the

Tivoli Access Manager-protected object space. The protected object space is part of the policy

database.

5. The Tivoli Access Manager authorization server returns the access decision to the embedded Tivoli

Access Manager client.

6. WebSphere Application Server either grants or denies access to the protected method or resource,

based on the decision that is returned from the Tivoli Access Manager authorization server.

At its core, Tivoli Access Manager provides an authentication and authorization framework. You can learn

more about Tivoli Access Manager, including the information that is necessary to make deployment

decisions, by reviewing the product documentation. The following guides are available at the IBM Tivoli

Access Manager for e-business information center:

v IBM Tivoli Access Manager Base Installation Guide

This guide describes how to plan, install, and configure a Tivoli Access Manager secure domain. Using

a series of easy installation scripts, you can quickly deploy a fully functional secure domain. These

scripts are very useful when prototyping the deployment of a secure domain.

To access this guide in the IBM Tivoli Access Manager for e-business information center, click Access

Manager for e-business > Base Information > Base Installation Guide.

v IBM Tivoli Access Manager Base Administration Guide

This document presents an overview of the Tivoli Access Manager security model for managing

protected resources. This guide describes how to configure the Tivoli Access Manager servers that

make access control decisions. In addition, detailed instructions describe how to perform important

tasks, such as declaring security policies, defining protected object spaces, and administering user and

group profiles.

To access this guide in the IBM Tivoli Access Manager for e-business information center, click Access

Manager for e-business > Base Information > Base Administration Guide.

Tivoli Access Manager provides centralized administration of multiple servers.

Chapter 6. Authorizing access to resources 339

http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp
http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp

The previous figure is an example architecture showing WebSphere Application Servers secured by Tivoli

Access Manager.

The participating WebSphere Application Servers use a local replica of the Tivoli Access Manager policy

database to make authorization decisions for incoming requests. The local policy databases are replicas of

the master policy database. The master policy database is installed as part of the Tivoli Access Manager

installation. Having policy database replicas on each participating WebSphere Application Server node

optimizes performance when making authorization decisions and provides failover capability.

Although the authorization server can also be installed on the same system as WebSphere Application

Server, this configuration is not illustrated in the diagram.

All instances of Tivoli Access Manager and WebSphere Application Server in the example architecture

share the Lightweight Directory Access Protocol (LDAP) user registry on Machine E.

The LDAP registries that are supported by WebSphere Application Server are also supported by Tivoli

Access Manager.

It is possible to have separate WebSphere Application Server profiles on the same host that is configured

for different Tivoli Access Manager servers. Such an architecture requires that the profiles are configured

for separate Java Runtime Environments (JRE) and therefore you need multiple JREs installed on the

same host.

Machine C

Tivoli
Access Manager
policy database

machine A - Cell manager

Machine D - Node 1

Policy database
replication

Machine B

WebSphere Application Server

Tivoli Access
Manager JACC

provider

Tivoli Access Manager
local policy

database replica

Policy database
replication

WebSphere Application Server

Tivoli Access
Manager JACC

provider

Tivoli Access Manager
local policy

database replica

Authorization
decisions

User registry
shared by all
applications

WebSphere Application Server Cell

Authorization
decisions

Master Policy
database

Machine E

Tivoli
Access Manager

Authorization
Server

Tivoli Access Manager
local policy

database replica

Credential
acquisition

Credential
acquisition

340 Securing applications and their environment

Delegations

Delegation is a process security identity propagation from a caller to a called object. As per the Java 2

Platform, Enterprise Edition (J2EE) specification, a servlet and enterprise beans can propagate either the

client or remote user identity when invoking enterprise beans, or they can use another specified identity as

indicated in the corresponding deployment descriptor.

The extension supports enterprise bean propagation to the server ID when invoking other entity beans.

Three types of delegations are possible:

v Delegate (RunAs) client identity

v Delegate (RunAs) specified identity

v Delegate (RunAs) system identity

Note: The RunAs system identity delegation only works when server ID and password are used. When

the internalServerId feature is used, it does not work because runAs with system identity is not

supported. You must specify RunAs roles. When internalServerID is used, use the RunAsSpecified

ID=user1

Enterprise beans

or Web client

RunAs client ID

Enterprise beans

or servlet

Other

enterprise beans

ID=user1

Delegate (RunAs) client identity

ID=user1

Delegate (RunAs) specified identity

Other

enterprise beans

Run As specified role

mapped to user2

Enterprise beans

or Web client

Enterprise beans

or servlet

ID=user2

ID=user1

RunAs system ID

ID=user1

Delegate (RunAs) system identity

Enterprise beans

or Web servlet
Enterprise beans

Other

enterprise beans

server1

Chapter 6. Authorizing access to resources 341

with a user ID and password that is mapped to the administrator role. See “Administrative roles and

naming service authorization” on page 320 for more information about internalServerId.

The EJB specification only supports delegation (RunAs) at the Enterprise JavaBeans (EJB) level. But an

extension allows EJB method-level RunAs specification. With an EJB method level, the RunAs

specification you can specify a different RunAs role for different methods within the same enterprise

beans.

The RunAs specification is detailed in the deployment descriptor, which is the ejb-jar.xml file in the EJB

module and the web.xml file in the Web module. The extension to the RunAs specification is included in

the ibm-ejb-jar-ext.xmi file.

An IBM-specific binding file is available for each application that contains a mapping from the RunAs role

to the user. This file is specified in the ibm-application-bnd.xmi file.

These specifications are read by the runtime during application startup. The following figure illustrates the

delegation mechanism, as implemented in the WebSphere Application Server security model.

Delegation Process

Two tables help in the delegation process:

v Resource to RunAs role mapping table

v RunAs role to user ID and password mapping table

Use the Resource to RunAs role mapping table to get the role that is used by a servlet or by enterprise

beans to propagate to the next enterprise beans call.

Use the RunAsRole to user ID and password mapping table to get the user ID that belongs to the RunAs

role and its password.

Delegation is performed after successful authentication and authorization. During this process, the

delegation module consults the Resource to RunAs role mapping table to get the RunAs role (3). The

delegation module consults the RunAs role to user ID and password mapping table to get the user that

belongs to the RunAs role (4). The user ID and password is used to create a new credential using the

authentication module, which is not shown in the figure.

Java client

Delegation process

WebSphere Application Server

(1)

(1)

CSIv2/SAS, TCP/IP,

SSL

EJB

resource access

HTTP or HTTPS

Web resource access

Enterprise beans

collaborator

Web

authenticator
Web client

(2)

Resource

(2)

Resource

Delegation

RunAs role to

credentials

Resource

to RunAs role

(3)

(4)

(5)

(6)

(7)

(7)

(6)

Resource

Credentials

RunAs roles

RunAs roles

RunAs
role

Users and
passwords

Resource
RunAs
roles

Delegate

module

Invoke credentials ORB

current

Enterprise

beans

Servlet

342 Securing applications and their environment

The resulting credential is stored in the Object Request Broker (ORB) Current as an invocation credential

(5). Servlet and enterprise beans when invoking other enterprise beans pick up the invocation credential

from the ORB Current (6) and call the next enterprise beans (7).

Programmatic login

Programmatic login is a type of form login that supports application presentation site-specific login forms

for the purpose of authentication.

When enterprise bean client applications require the user to provide identifying information, the writer of

the application must collect that information and authenticate the user. The work of the programmer can be

broadly classified in terms of where the actual user authentication is performed:

v In a client program

v In a server program

Users of Web applications can receive prompts for authentication data in many ways. The <login-config>

element in the Web application deployment descriptor file defines the mechanism that is used to collect

this information. Programmers who want to customize login procedures, rather than relying on general

purpose devices like a 401 dialog window in a browser, can use a form-based login to provide an

application-specific HTML form for collecting login information.

No authentication occurs unless administrative security is enabled. If you want to use form-based login for

Web applications, you must specify FORM in the auth-method tag of the <login-config> element in the

deployment descriptor of each Web application.

Applications can present site-specific login forms by using the WebSphere Application Server form-login

type. The Java 2 Platform, Enterprise Edition (J2EE) specification defines form login as one of the

authentication methods for Web applications. WebSphere Application Server provides a form-logout

mechanism.

Java Authentication and Authorization Service programmatic login

Java Authentication and Authorization Service (JAAS) is a new feature in WebSphere Application Server. It

is also mandated by the J2EE 1.4 Specification. JAAS is a collection of strategic authentication application

programming interfaces (API) that replace the Common Object Request Broker Architecture (CORBA)

programmatic login APIs. WebSphere Application Server provides some extensions to JAAS:

Before you begin developing with programmatic login APIs, consider the following points :

v For the pure Java client application or client container application, initialize the client Object Request

Broker (ORB) security prior to performing a JAAS login. Do this by running the following code prior to

the JAAS login:

...

import java.util.Hashtable;

import javax.naming.Context;

import javax.naming.InitialContext;

...

// Perform an InitialContext and default lookup prior to logging

// in to initialize ORB security and for the bootstrap host/port

// to be determined for SecurityServer lookup. If you do not want

// to validate the userid/password during the JAAS login, disable

// the com.ibm.CORBA.validateBasicAuth property in the

// sas.client.props file.

Hashtable env = new Hashtable();

env.put(Context.INITIAL_CONTEXT_FACTORY,

 "com.ibm.websphere.naming.WsnInitialContextFactory");

Chapter 6. Authorizing access to resources 343

env.put(Context.PROVIDER_URL,

 "corbaloc:iiop:myhost.mycompany.com:2809");

Context initialContext = new InitialContext(env);

Object obj = initialContext.lookup("");

For more information, see “Example: Programmatic logins” on page 551.

v For the pure Java client application or the client container application, make sure that the host name

and the port number of the target Java Naming and Directory Interface (JNDI) bootstrap properties are

specified properly. See the Developing applications that use CosNaming (CORBA Naming interface)

section for details.

v If the application uses custom JAAS login configuration, make sure that the custom JAAS login

configuration is properly defined. See the “Configuring programmatic logins for Java Authentication and

Authorization Service” on page 552 section for details.

v Some of the JAAS APIs are protected by Java 2 security permissions. If these APIs are used by

application code, make sure that these permissions are added to the application was.policy file. See

“Adding the was.policy file to applications” on page 525 to the application, “Using PolicyTool to edit

policy files” on page 512 and “Configuring the was.policy file” on page 520 sections for details. For more

details of which APIs are protected by Java 2 Security permissions, check the IBM Developer Kit, Java

Technology Edition; JAAS and the WebSphere Application Server public APIs documentation for more

details. The following list contains the APIs that are used in the samples code provided in this

documentation.

– javax.security.auth.login.LoginContext constructors are protected by

javax.security.auth.AuthPermission ″createLoginContext″.

– javax.security.auth.Subject.doAs and com.ibm.websphere.security.auth.WSSubject.doAs are

protected by javax.security.auth.AuthPermission ″doAs″.

– javax.security.auth.Subject.doAsPrivileged and

com.ibm.websphere.security.auth.WSSubject.doAsPrivileged are protected by

javax.security.auth.AuthPermission ″doAsPrivileged″.
v com.ibm.websphere.security.auth.WSSubject: Due to a design oversight in JAAS Version 1.0,

javax.security.auth.Subject.getSubject does not return the Subject associated with the running thread

inside a java.security.AccessController.doPrivileged code block. This can present an inconsistent

behavior that is problematic and causes an undesirable effort to work around. The

com.ibm.websphere.security.auth.WSSubject API provides a workaround to associate the Subject to the

running thread. The com.ibm.websphere.security.auth.WSSubject API extends the JAAS model to J2EE

resources for authorization checks. The Subject that is associated with the running thread within

com.ibm.websphere.security.auth.WSSubject.doAs or

com.ibm.websphere.security.auth.WSSubject.doAsPrivileged code block is used for J2EE resources

authorization checks.

v Administrative console support for defining new JAAS login configuration: You can configure JAAS login

configuration in the administrative console and store it in the WebSphere Application Server

configuration API. Applications can define new JAAS login configuration in the administrative console

and the data is persisted in the configuration repository that is stored with the WebSphere Application

Server configuration API. However, WebSphere Application Server still supports the default JAAS login

configuration format that is provided by the JAAS default implementation. If duplication login

configurations are defined in both the WebSphere Application Server configuration API and the plain text

file format, the login configuration in the WebSphere Application Server configuration API takes

precedence. Advantages to define the login configuration in the WebSphere Application Server

configuration API include:

– Defining the JAAS login configuration using the administrative console.

– Managing the JAAS login configuration centrally.
v JAAS login configurations for WebSphere Application Server: WebSphere Application Server provides

JAAS login configurations for applications to perform programmatic authentication to the WebSphere

Application Server security runtime. These JAAS login configurations for WebSphere Application Server

perform authentication to the configured authentication mechanism, Simple WebSphere Authentication

Mechanism (SWAM) or Lightweight Third-Party Authentication (LTPA), and user registry (Local OS,

LDAP, or Custom) based on the authentication data supplied. The authenticated Subject from these

344 Securing applications and their environment

JAAS login configurations contain the required principal and credentials that can be used by the

WebSphere Application Server security runtime to perform authorization checks on J2EE role-based

protected resources.

Note: SWAM is deprecated in WebSphere Application Server Version 6.1 and will be removed in a

future release.
Here are the JAAS login configurations that are provided by WebSphere Application Server:

– WSLogin JAAS login configuration: A generic JAAS login configuration that a Java client, client

container application, servlet, JSP file, enterprise bean, and so on, can use to perform authentication

that is based on a user ID and password, or a token to the WebSphere Application Server security

runtime. However, this configuration does not support the CallbackHandler handler that is specified in

the client container deployment descriptor.

– ClientContainer JAAS login configuration: This JAAS login configuration recognizes the

CallbackHandler handler that is specified in the client container deployment descriptor. The login

module of this login configuration uses the CallbackHandler handler in the client container

deployment descriptor if one is specified, even if the application code specified one CallbackHandler

handler in the login context. This is for client container application.

– The Subjects that are authenticated with the previously mentioned JAAS login configurations contain

a com.ibm.websphere.security.auth.WSPrincipal principal and a

com.ibm.websphere.security.auth.WSCredential credential. If the authenticated Subject is passed to

the com.ibm.websphere.security.auth.WSSubject.doAs method or the other doAs methods, the

WebSphere Application Server security runtime can perform authorization checks on J2EE

resources, based on the Subject com.ibm.websphere.security.auth.WSCredential credential.
v Customer-defined JAAS login configurations: You can define other JAAS login configurations. See

“Configuring programmatic logins for Java Authentication and Authorization Service” on page 552 for

details. Use these login configurations to perform programmatic authentication to the custom

authentication mechanism. However, the subjects from these customer-defined JAAS login

configurations might not be used by the WebSphere Application Server security runtime to perform

authorization checks if the subject does not contain the required principal and credentials.

Finding the root cause login exception from a JAAS login

If you get a LoginException exception after issuing the LoginContext.login API, you can find the root cause

exception from the configured user registry. In the login modules, the registry exceptions are wrapped by a

com.ibm.websphere.security.auth.WSLoginFailedException class. This exception has a getCause method

with which you can pull out the exception that was wrapped after issuing the previous command.

You are not always guaranteed to get a WSLoginFailedException exception, but most of the exceptions

that are generated from the user registry display here. The following example illustrates a

LoginContext.login API with the associated catch block. Cast the WSLoginFailedException exception to

com.ibm.websphere.security.auth.WSLoginFailedException class if you want to issue the getCause API.

The following determineCause example can be used for processing CustomUserRegistry exception types.

try

 {

 lc.login();

 }

 catch (LoginException le)

 {

 // drill down through the exceptions as they might cascade through the runtime

 Throwable root_exception = determineCause(le);

 // now you can use "root_exception" to compare to a particular exception type

 // for example, if you have implemented a CustomUserRegistry type, you would

 // know what to look for here.

 }

Chapter 6. Authorizing access to resources 345

/* Method used to drill down into the WSLoginFailedException to find the

"root cause" exception */

 public Throwable determineCause(Throwable e)

 {

 Throwable root_exception = e, temp_exception = null;

 // keep looping until there are no more embedded WSLoginFailedException or

 // WSSecurityException exceptions

 while (true)

 {

 if (e instanceof com.ibm.websphere.security.auth.WSLoginFailedException)

 {

 temp_exception = ((com.ibm.websphere.security.auth.WSLoginFailedException)

 e).getCause();

 }

 else if (e instanceof com.ibm.websphere.security.WSSecurityException)

 {

 temp_exception = ((com.ibm.websphere.security.WSSecurityException)

 e).getCause();

 }

 else if (e instanceof javax.naming.NamingException)

 // check for Ldap embedded exception

 {

 temp_exception = ((javax.naming.NamingException)e).getRootCause();

 }

 else if (e instanceof your_custom_exception_here)

 {

 // your custom processing here, if necessary

 }

 else

 {

 // this exception is not one of the types we are looking for,

 // lets return now, this is the root from the WebSphere

 // Application Server perspective

 return root_exception;

 }

 if (temp_exception != null)

 {

 // we have an exception; go back and see if this has another

 // one embedded within it.

 root_exception = temp_exception;

 e = temp_exception;

 continue;

 }

 else

 {

 // we finally have the root exception from this call path, this

 // has to occur at some point

 return root_exception;

 }

 }

 }

Finding the root cause login exception from a Servlet filter

You can also receive the root cause exception from a servlet filter when addressing post-form login

processing. This exception is useful because it shows the user what happened. You can issue the

following API to obtain the root cause exception:

346 Securing applications and their environment

Throwable t = com.ibm.websphere.security.auth.WSSubject.getRootLoginException();

if (t != null)

 t = determineCause(t);

When you have the exception, you can run it through the previous determineCause example to get the

native registry root cause.

Enabling root cause login exception propagation to pure Java clients

Currently, the root cause does not get propagated to a pure client for security reasons. However, you

might want to propagate the root cause to a pure client in a trusted environment. If you want to enable

root cause login exception propagation to a pure client, click Security > Secure administration,

applications, and infrastructure > Custom Properties on the WebSphere Application Server

Administrative Console and set the following property:

com.ibm.websphere.security.registry.propagateExceptionsToClient=true

Non-prompt programmatic login

WebSphere Application Server provides a non-prompt implementation of the

javax.security.auth.callback.CallbackHandler interface, which is called

com.ibm.websphere.security.auth.callback.WSCallbackHandlerImpl. Using this interface, an application can

push authentication data to the WebSphere LoginModule instance to perform authentication. This

capability is useful for server-side application code to authenticate an identity and to use that identity to

invoke downstream J2EE resources.

javax.security.auth.login.LoginContext lc = null;

try {

lc = new javax.security.auth.login.LoginContext("WSLogin",

new com.ibm.websphere.security.auth.callback.WSCallbackHandlerImpl("user",

 "securityrealm", "securedpassword"));

// create a LoginContext and specify a CallbackHandler implementation

// CallbackHandler implementation determine how authentication data is collected

// in this case, the authentication data is "push" to the authentication mechanism

// implemented by the LoginModule.

} catch (javax.security.auth.login.LoginException e) {

System.err.println("ERROR: failed to instantiate a LoginContext and the exception: "

+ e.getMessage());

e.printStackTrace();

// maybe javax.security.auth.AuthPermission "createLoginContext" is not granted

// to the application, or the JAAS login configuration is not defined.

}

if (lc != null)

try {

lc.login(); // perform login

javax.security.auth.Subject s = lc.getSubject();

// get the authenticated subject

// Invoke a J2EE resource using the authenticated subject

com.ibm.websphere.security.auth.WSSubject.doAs(s,

new java.security.PrivilegedAction() {

public Object run() {

try {

bankAccount.deposit(100.00); // where bankAccount is a protected EJB

} catch (Exception e) {

System.out.println("ERROR: error while accessing EJB resource, exception: "

+ e.getMessage());

e.printStackTrace();

Chapter 6. Authorizing access to resources 347

}

return null;

}

}

);

} catch (javax.security.auth.login.LoginException e) {

System.err.println("ERROR: login failed with exception: " + e.getMessage());

e.printStackTrace();

// login failed, might want to provide relogin logic

}

You can use the com.ibm.websphere.security.auth.callback.WSCallbackHandlerImpl callback handler with

a pure Java client, a client application container, enterprise bean, JavaServer Pages (JSP) files, servlet, or

other Java 2 Platform, Enterprise Edition (J2EE) resources. See “Example: Programmatic logins” on page

551 for more information about Object Request Broker (ORB) security initialization requirements in a pure

Java client.

Note: The WSCallbackHandlerImpl callback handler is different depending on whether you use

WebSphere Application Server security or Web services security. It is located in the sas.jar file for

security, and in the was-wssecurity.jar file for Web services security.

User interface prompt programmatic login

WebSphere Application Server also provides a user interface implementation of the

javax.security.auth.callback.CallbackHandler implementation to collect authentication data from a user

through user interface login prompts. The

com.ibm.websphere.security.auth.callback.WSGUICallbackHandlerImpl callback handler presents a user

interface login panel to prompt users for authentication data.

Note: This behavior requires an X11 server to be called out by the DISPLAY environment.

javax.security.auth.login.LoginContext lc = null;

try {

lc = new javax.security.auth.login.LoginContext("WSLogin",

new com.ibm.websphere.security.auth.callback.WSGUICallbackHandlerImpl());

// create a LoginContext and specify a CallbackHandler implementation

// CallbackHandler implementation determine how authentication data is collected

// in this case, the authentication date is collected by GUI login prompt

// and pass to the authentication mechanism implemented by the LoginModule.

} catch (javax.security.auth.login.LoginException e) {

System.err.println("ERROR: failed to instantiate a LoginContext and the exception: "

+ e.getMessage());

e.printStackTrace();

// maybe javax.security.auth.AuthPermission "createLoginContext" is not granted

// to the application, or the JAAS login configuration is not defined.

}

if (lc != null)

try {

lc.login(); // perform login

javax.security.auth.Subject s = lc.getSubject();

// get the authenticated subject

// Invoke a J2EE resources using the authenticated subject

com.ibm.websphere.security.auth.WSSubject.doAs(s,

new java.security.PrivilegedAction() {

public Object run() {

348 Securing applications and their environment

try {

bankAccount.deposit(100.00); // where bankAccount is a protected enterprise bean

} catch (Exception e) {

System.out.println("ERROR: error while accessing EJB resource, exception: "

+ e.getMessage());

e.printStackTrace();

}

return null;

}

}

);

} catch (javax.security.auth.login.LoginException e) {

System.err.println("ERROR: login failed with exception: " + e.getMessage());

e.printStackTrace();

// login failed, might want to provide relogin logic

}

Attention: Do not use the com.ibm.websphere.security.auth.callback.WSGUICallbackHandlerImpl callback

handler for server-side resources like enterprise bean, servlet, JSP files, and so on. The user

interface login prompt blocks the server for user input. This behavior is not good for a server

process.

Stdin prompt programmatic login

WebSphere Application Server also provides a stdin implementation of the

javax.security.auth.callback.CallbackHandler interface. The callback handler,

com.ibm.websphere.security.auth.callback.WSStdinCallbackHandlerImpl, prompts and collects

authentication data from a user through the stdin prompt.

javax.security.auth.login.LoginContext lc = null;

try {

lc = new javax.security.auth.login.LoginContext("WSLogin",

new com.ibm.websphere.security.auth.callback.WSStdinCallbackHandlerImpl());

// create a LoginContext and specify a CallbackHandler implementation

// CallbackHandler implementation determines how authentication data is collected

// in this case, the authentication date is collected by stdin prompt

// and passed to the authentication mechanism implemented by the LoginModule.

} catch (javax.security.auth.login.LoginException e) {

System.err.println("ERROR: failed to instantiate a LoginContext and the exception:

 " + e.getMessage());

e.printStackTrace();

// maybe javax.security.auth.AuthPermission "createLoginContext" is not granted

// to the application, or the JAAS login configuration is not defined.

}

if (lc != null)

try {

lc.login(); // perform login

javax.security.auth.Subject s = lc.getSubject();

// get the authenticated subject

// Invoke a J2EE resource using the authenticated subject

com.ibm.websphere.security.auth.WSSubject.doAs(s,

new java.security.PrivilegedAction() {

public Object run() {

try {

bankAccount.deposit(100.00);

// where bankAccount is a protected enterprise bean

Chapter 6. Authorizing access to resources 349

} catch (Exception e) {

System.out.println("ERROR: error while accessing EJB resource, exception: "

 + e.getMessage());

e.printStackTrace();

}

return null;

}

}

);

} catch (javax.security.auth.login.LoginException e) {

System.err.println("ERROR: login failed with exception: " + e.getMessage());

e.printStackTrace();

// login failed, might want to provide relogin logic

}

Attention: Do not use the com.ibm.websphere.security.auth.callback.WSStdinCallbackHandlerImpl

callback handler for server-side resources like enterprise beans, servlets, JSP files, and so on. The input

from the stdin prompt is not sent to the server environment. Most servers run in the background and do

not have a console. However, if the server does have a console, the stdin prompt blocks the server for

user input. This behavior is not good for a server process.

Authorizing access to J2EE resources using Tivoli Access Manager

The Java Authorization Contract for Containers (JACC) defines a contract between Java 2 Platform,

Enterprise Edition (J2EE) containers and authorization providers. You can use the default authorization or

an external JACC authorization provider. When security is enabled in WebSphere Application Server, the

default authorization is used unless a JACC provider is specified.

JACC enables any third-party authorization providers to plug into a J2EE application server (such as

WebSphere Application Server) to make the authorization decisions when a J2EE resource is accessed.

By default, WebSphere Application Server implements the JACC provider by using Tivoli Access Manager

as the external authorization provider.

Read the following articles for more detailed information about JACC before you attempt to configure

WebSphere Application Server to use a JACC provider:

v “JACC support in WebSphere Application Server” on page 330

v “JACC providers” on page 332

v “Tivoli Access Manager integration as the JACC provider” on page 336

Using the default authorization provider

You can extend the capabilities of WebSphere Application Server by plugging in your own authorization

provider. You can use the default authorization or an external JACC authorization provider.

For an explanation of the administrative console panels that support these capabilities, see:

v Use the default authorization provider. It is recommended that you do not modify any settings on the

authorization provider panels if you use the Default authorization option. For more information, see

“External authorization provider settings” on page 351.

v Use an external authorization provider. If you use the External authorization using a JACC provider

option, the external providers must be based on the Java™ Authorization Contract for Containers

(JACC) specification to handle the Java 2 Platform, Enterprise Edition (J2EE) authorization. By default,

WebSphere Application Server enables you to configure the Tivoli Access Manager Java Authorization

Contract for Containers (JACC) provider as the default external JACC provider. For more information,

see “External Java Authorization Contract for Containers provider settings” on page 351 and “Tivoli

Access Manager JACC provider settings” on page 358.

350 Securing applications and their environment

External authorization provider settings

Use this page to enable a Java Authorization Contract for Containers (JACC) provider for authorization

decisions.

To view this administrative console page, complete the following steps:

1. Click Security > Secure administration, applications, and infrastructure.

2. Click External authorization providers.

The application server provides a default authorization engine that performs all of the authorization

decisions. In addition, the application server also supports an external authorization provider using the

JACC specification to replace the default authorization engine for Java 2 Platform, Enterprise Edition

(J2EE) applications.

JACC is part of the J2EE specification, which enables third-party security providers such as Tivoli Access

Manager to plug into the application server and make authorization decisions.

Important: Unless you have an external JACC provider or want to use a JACC provider for Tivoli Access

Manager that can handle J2EE authorizations based on JACC, and it is configured and set up

to use with the application server, do not enable External authorization using a JACC

provider.

Default authorization:

Use this option all the time unless you want an external security provider such as the Tivoli Access

Manager to perform the authorization decision for J2EE applications that are based on the JACC

specification.

 Default: Enabled

External JACC provider: Use this link to configure the application server to use an external JACC

provider. For example, to configure an external JACC provider, the policy class name and the policy

configuration factory class name are required by the JACC specification.

The default settings that are contained in this link are used by Tivoli Access Manager for authorization

decisions. If you intend to use another provider, modify the settings as appropriate.

External Java Authorization Contract for Containers provider settings

Use this page to configure the application server to use an external Java Authorization Contract for

Containers (JACC) provider. For example, the policy class name and the policy configuration factory class

name are required by the JACC specification.

Use these settings when you have set up an external security provider that supports the JACC

specification to work with the application server. The configuration process involves installing and

configuring the provider server and configuring the client of the provider in the application server to

communicate with the server. If the JACC provider is not enabled, these settings will be ignored.

To view this administrative console page, complete the following steps:

1. Click Security > Secure administration, applications, and infrastructure.

2. Click External authorization providers.

3. Under Related items, click External JACC provider.

Use the default settings when you use Tivoli Access Manager as the JACC provider. Install and configure

the Tivoli Access Manager server prior to using it with the application server. Use the Tivoli Access

Chapter 6. Authorizing access to resources 351

Manager properties link under Additional properties, and configure the Tivoli Access Manager client in the

application server to use the Tivoli Access Manager server. If you intend to use another provider, modify

the settings as appropriate.

Name:

Specifies the name that is used to identify the external JACC provider.

 This field is required.

 Data type: String

Description:

Provides an optional description for the provider.

 Data type: String

Policy class name:

Specifies a fully qualified class name that represents the javax.security.jacc.policy.provider property as per

the JACC specification. The class represents the provider-specific implementation of the

java.security.Policy abstract methods.

 The class file must reside in the class path of each application server process. This class is used during

authorization decisions. The default class name is for Tivoli Access Manager implementation of the policy

file.

This field is required. For information on enabling the JACC provider using this field, see the ″Enabling the

JACC provider for Tivoli Access Manager″ article in the information center.

 Data type: String

Default: com.tivoli.pd.as.jacc.TAMPolicy

Policy configuration factory class name:

Specifies a fully qualified class name that represents the

javax.security.jacc.PolicyConfigurationFactory.provider property as per the JACC specification. The class

represents the provider-specific implementation of the javax.security.jacc.PolicyConfigurationFactory

abstract methods.

 This class represents the provider-specific implementation of the PolicyConfigurationFactory abstract class.

The class file must reside in the class path of each application server process. This class is used to

propagate the security policy information to the JACC provider during the installation of the J2EE

application. The default class name is for the Tivoli Access Manager implementation of the policy

configuration factory class name.

This field is required.

 Data type: String

Default: com.tivoli.pd.as.jacc.TAMPolicyConfigurationFactory

Role configuration factory class name:

352 Securing applications and their environment

Specifies a fully qualified class name that implements the

com.ibm.wsspi.security.authorization.RoleConfigurationFactory interface.

 The class file must reside in the class path of each application server process. When you implement this

class, the authorization table information in the binding file is propagated to the provider during the

installation of the J2EE application. The default class name is for the Tivoli Access Manager

implementation of the role configuration factory class name.

This field is optional. For information on enabling the JACC provider using this field, see the ″Enabling the

JACC provider for Tivoli Access Manager″ article in the information center.

 Data type: String

Default: com.tivoli.pd.as.jacc.TAMRoleConfigurationFactory

Provider initialization class name:

Specifies a fully qualified class name that implements the

com.ibm.wsspi.security.authorization.InitializeJACCProvider interface.

 The class file must reside in the class path of each application server process. When implemented, this

class is called at the start and the stop of all the application server processes. You can use this class for

any required initialization that is needed by the provider client code to communicate with the provider

server. The properties that are entered in the custom properties link are passed to the provider when the

process starts up. The default class name is for the Tivoli Access Manager implementation of the provider

initialization class name.

This field is optional. For information on enabling the JACC provider using this field, see the ″Enabling the

JACC provider for Tivoli Access Manager″ article in the information center.

 Data type: String

Default: com.tivoli.pd.as.jacc.cfg.TAMConfigInitialize

Requires the EJB arguments policy context handler for access decisions:

Specifies whether the JACC provider requires the EJBArgumentsPolicyContextHandler handler to make

access decisions.

 Because this option has an impact on performance, do not set it unless it is required by the provider.

Normally, this handler is required only when the provider supports instance-based authorization. Tivoli

Access Manager does not support this option for J2EE applications.

 Default: Disabled

Supports dynamic module updates:

Specifies whether you can apply changes made to security policies of Web modules in a running

application, dynamically without affecting the rest of the application.

 If this option is enabled, the security policies of the added or modified Web modules are propagated to the

JACC provider and only the affected Web modules are started.

If this option is disabled, then the security policies of the entire application are propagated to the JACC

provider for any module-level changes. The entire application is restarted for the changes to take effect.

Chapter 6. Authorizing access to resources 353

Typically, this option is enabled for an external JACC provider.

 Default: Enabled

Custom properties:

Specifies the properties that are required by the provider.

 These properties are propagated to the provider during the startup process when the provider initialization

class name is initialized. If the provider does not implement the provider initialization class name as

described previously, the properties are not used.

The Tivoli Access Manager implementation does not require that you enter any properties in this link.

Tivoli Access Manager properties:

Specifies properties that are required by the Tivoli Access Manager implementation.

 These properties are used to set up the communication between the application server and the Tivoli

Access Manager server. You must install and configure the Tivoli Access Manager server before entering

these properties.

Enabling an external JACC provider

Use this topic to enable an external JACC provider using the administrative console.

The Java Authorization Contract for Containers (JACC) defines a contract between Java 2 Platform,

Enterprise Edition (J2EE) containers and authorization providers. This contract enables any third-party

authorization providers to plug into a J2EE 1.4 application server, such as WebSphere Application Server

to make the authorization decisions when a J2EE resource is accessed.

1. From the WebSphere Application Server administrative console, click Security > Secure

administration, applications, and infrastructure > External authorization providers.

2. Under Related items, click External JACC provider.

3. The fields are set for Tivoli Access Manager by default. If you do not plan to use Tivoli Access

Manager as the JACC provider, replace these fields with the details for your own external JACC

provider.

4. If any custom properties are required by the JACC provider, click Custom properties under Additional

properties and enter the properties. When using the Tivoli Access Manager, use the Tivoli Access

Manager properties link instead of the Custom properties link. For more information, see “Configuring

the JACC provider for Tivoli Access Manager using the administrative console” on page 355.

5. On the External authorization providers panel, select the External authorization using a JACC

provider option and click OK.

6. Complete the remaining steps to enable security. If you are using Tivoli Access Manager, you must

select LDAP as the user registry and use the same LDAP server. For more information on configuring

LDAP registries, see “Configuring Lightweight Directory Access Protocol user registries” on page 93.

7. In a multinode environment, stop and start the deployment manager configuration.

Issue the following commands:

profile_root/bin/stopManager.bat

 -username user_name

 -password password

profile_root/bin/startManager.bat

8. Restart all servers to make these changes effective.

354 Securing applications and their environment

Configuring the JACC provider for Tivoli Access Manager using the administrative

console

Use this task to configure Tivoli Access Manager as the Java Authorization Contract for Containers (JACC)

provider using the administrative console.

Prior to completing the following steps, verify that you have previously created a security administrative

user. For more information, see “Creating the security administrative user” on page 356.

The following configuration is performed on the management server. When you click either Apply or OK,

configuration information is checked for consistency, saved, and applied if successful.

To configure Tivoli Access Manager as the JACC provider using the administrative console, complete the

following steps:

1. Start the WebSphere Application Server administrative console by clicking http://
yourhost.domain:port_number/ibm/console after starting WebSphere Application Server. If security is

currently disabled, log in with any user ID. If security is currently enabled, log in with a predefined

administrative ID and password. This ID is typically the server user ID that is specified when you

configure the user registry.

2. Click Security > Secure administration, applications, and infrastructure > External authorization

providers.

3. Under General properties, select External authorization using a JACC provider.

4. Under Related items, click External JACC provider.

5. Under Additional properties, click Tivoli Access Manager Properties. The Tivoli Access Manager

JACC provider configuration screen is displayed.

6. Enter the following information:

Enable embedded Tivoli Access Manager

Select this option to enable Tivoli Access Manager.

Ignore errors during embedded Tivoli Access Manager disablement

Select this option when you want to unconfigure the JACC provider. Do not select this option

during configuration.

Client listening port set

WebSphere Application Server must listen using a TCP/IP port for authorization database

updates from the policy server. More than one process can run on a particular node or

machine. More than one authorization server can be specified by separating the entries with

commas. Specifying more than one authorization server at a time is useful for reasons of

failover and performance. Enter the listening ports used by Tivoli Access Manager clients,

separated by a comma. If a range of ports is specified, separate the lower and higher values

by a colon (:) (for example, 7999, 9990:999).

Policy server

Enter the name of the Tivoli Access Manager policy server and the connection port. Use the

policy_server:port form. The policy communication port is set at the time of the Tivoli Access

Manager configuration, and the default is 7135.

Authorization servers

Enter the name of the Tivoli Access Manager authorization server. Use the

auth_server:port:priority form. The authorization server communication port is set at the

time of the Tivoli Access Manager configuration, and the default is 7136. The priority value is

determined by the order of the authorization server use (for example, auth_server1:7136:1

and auth_server2:7137:2). A priority value of 1 is required when configuring against a single

authorization server.

Chapter 6. Authorizing access to resources 355

Administrator user name

Enter the Tivoli Access Manager administrator user name that was created when Tivoli Access

Manager was configured; it is usually sec_master.

Administrator user password

Enter the Tivoli Access Manager administrator password.

User registry distinguished name suffix

Enter the distinguished name suffix for the user registry that is shared between Tivoli Access

Manager and WebSphere Application Server, for example, o=ibm, c=us.

Security domain

You can create more than one security domain in Tivoli Access Manager, each with its own

administrative user. Users, groups and other objects are created within a specific domain, and

are not permitted to access resource in another domain. Enter the name of the Tivoli Access

Manager security domain that is used to store WebSphere Application Server users and

groups.

 If a security domain is not established at the time of the Tivoli Access Manager configuration,

leave the value as Default.

Administrator user distinguished name

Enter the full distinguished name of the WebSphere Application Server security administrator

ID (for example, cn=wasdmin, o=organization, c=country). The ID name must match the

Server user ID on the Lightweight Directory Access Protocol (LDAP) User Registry panel in the

administrative console. To access the LDAP User Registry panel, click Security > Secure

administration, applications, and infrastructure. Under User account repository, choose

Standalone LDAP registry as the available realm definition. Then click Configure.

7. When all information is entered, click OK to save the configuration properties. The configuration

parameters are checked for validity and the configuration is attempted at the host server or cell

manager.

After you click OK, WebSphere Application Server completes the following actions:

v Validates the configuration parameters.

v Configures the host server or cell manager.

These processes might take some time depending on network traffic or the speed of your machine.

If the configuration is successful, the parameters are copied to all subordinate servers, including the node

agents. To complete the embedded Tivoli Access Manager client configuration, you must restart all of the

servers, including the host server, and enable WebSphere Application Server security.

Creating the security administrative user:

Enabling security requires the creation of a WebSphere Application Server administrative user. Use the

Tivoli Access Manager command-line pdadmin utility to create the Tivoli Access Manager administrative

user for WebSphere Application Server. This utility is available on the policy server host machine.

 Follow these steps to use the pdadmin utility.

1. From a command line, start the pdadmin utility as the Tivoli Access Manager administrative user,

sec_master:

pdadmin -a sec_master -p sec_master_password

2. Create a WebSphere Application Server security user. For example, the following instructions create a

new user, wasadmin. The command is entered as one continuous line:

pdadmin> user create wasadmin cn=wasadmin,o=organization,

c=country wasadmin wasadmin myPassword

356 Securing applications and their environment

Substitute values for organization and country that are valid for your Lightweight Directory Access

Protocol (LDAP) user registry.

3. Enable the account for the WebSphere Application Server security administrative user by issuing the

following command:

pdadmin> user modify wasadmin account-valid yes

Configure the Java Authorization Contract for Container (JACC) provider for Tivoli Access Manager. For

more information, see “Tivoli Access Manager JACC provider configuration.”

Tivoli Access Manager JACC provider configuration:

You can configure the Java Authorization Contract for Containers (JACC) provider for Tivoli Access

Manager to deliver authentication and authorization protection for your applications or for authentication

only. Most deployments that use the JACC provider for Tivoli Access Manager to configure Tivoli Access

Manager provide both authentication and authorization functionality.

 If you want Tivoli Access Manager to provide authentication, but leave authorization as part of WebSphere

Application Server’s native security, add the

com.tivoli.pd.as.amwas.DisableAddAuthorizationTableEntry=true property to the

amwas.amjacc.template.properties file. The file is located in the profile_root/config/cells/cell_name

directory.

After this property is set, perform the tasks for setting Tivoli Access Manager Security, as documented.

You can configure the JACC provider for Tivoli Access Manager using either the WebSphere Application

Server administrative console or the wsadmin command-line utility.

v For details on configuring the JACC provider for Tivoli Access Manager using the administrative

console, refer to “Configuring the JACC provider for Tivoli Access Manager using the administrative

console” on page 355.

v For details on configuring the Tivoli Access Manager JACC provider using the wsadmin command line

utility, refer to “Configuring the JACC provider for Tivoli Access Manager using the wsadmin utility” on

page 654.

The JACC configuration files for Tivoli Access Manager that are common across multiple WebSphere

Application Server profiles are created by default under the java/jre directory. When you install WebSphere

Application Server, you are given permissions to read and write to the files in this directory.

Profiles created by users who are different to the user that installed the application have read-only

permissions for this directory.

This situation is not ideal because configuration of the JACC provider for Tivoli Access Manager fails in

these situations. To avoid this situation, you can add the following property to the profile_root/config/cells/
cell_name/amwas.amjacc.template.properties file: com.tivoli.pd.as.jacc.CommonFileLocation=new

location where new location is a fully qualified directory name.

This property applies read and write permissions to the java/jre directory.

The wsadmin command is available to reconfigure the Java Authorization Contract for Containers (JACC)

Tivoli Access Manager interface:

$AdminTask reconfigureTAM -interactive

This command effectively prompts you through the process of unconfiguring the interface and then

reconfiguring it.

Chapter 6. Authorizing access to resources 357

Tivoli Access Manager JACC provider settings:

Use this page to configure the Java Authorization Contract for Container (JACC) provider for Tivoli Access

Manager.

Note: When a third-party authorization such as Tivoli Access Manager or SAF for z/OS is used, the

information in the administrative console panel might not represent the data in the provider. Also,

any changes to the panel might not be reflected in the provider automatically. Follow the provider’s

instructions to propagate any changes made to the provider.

To view the JACC provider settings for Tivoli Access Manager, complete the following steps:

1. Click Security > Secure administration, applications, and infrastructure.

2. Under Authentication, click External authorization providers.

3. Under Related items, click External JACC provider.

4. Under Additional properties, click Tivoli Access Manager Properties.

Enable embedded Tivoli Access Manager:

Enables or disables the embedded Tivoli Access Manager client configuration.

 Default: Disabled

Range: Enabled or Disabled

Note: If you want to disable Tivoli Access Manager as the JACC provider, clear this option and also select

Default authorization.

Ignore errors during embedded Tivoli Access Manager disablement:

When selected, errors are ignored during disablement of the embedded Tivoli Access Manager client.

 This option is applicable only when re-configuring an embedded Tivoli Access Manager client or disabling

an embedded Tivoli Access Manager.

 Default: Disabled

Range: Enabled or Disabled

Client listening port set:

Enter the ports that are used as listening ports by Tivoli Access Manager clients.

 The application server needs to listen on a TCP/IP port for authorization database updates from the policy

server. More than one process can run on a particular node and machine, so a list of ports is required for

use by the processes. If you specify a range of ports, separate the lower and higher values by a colon (:).

Single ports and port ranges are specified on separate lines. An example list might look like the following

example:

7999

 9900:9999

Note: Each of the servants might need to open up a listener port.

Policy server:

358 Securing applications and their environment

Enter the name, fully-qualified domain name, or IP address of the Tivoli Access Manager policy server and

the connection port.

 Use the form policy_server:port. The policy server communication port was set at the time of the Tivoli

Access Manager configuration. The default is 7135.

Authorization servers:

Enter the name, fully-qualified domain name, or IP address of the Tivoli Access Manager authorization

server. Use the form, auth_server:port:priority.

 The authorization server communication port is set at the time of Tivoli Access Manager configuration. The

default is 7136. You can specify more than one authorization server by entering each server on a new line.

Configuring more than one authorization server provides for failover. The priority value is the order of

authorization server use. For example:

auth_server1.mycompany.com:7136:1

auth_server2.mycompany.com:7137:2

A priority of 1 is still required when configuring a single authorization server.

Administrator user name:

Enter the Tivoli Access Manager administration user ID, as created at the time of Tivoli Access Manager

configuration. This ID is usually, sec_master.

Administrator user password:

Enter the Tivoli Access Manager administration password for the user ID that is entered in the

Administrator user name field.

User registry distinguished name suffix:

Enter the distinguished name suffix for the user registry to share between Tivoli Access Manager and the

application server. For example: o=organization,c=country

Security domain:

Enter the name of the Tivoli Access Manager security domain that is used to store application server users

and groups.

 Specification of the Tivoli Access Manager domain is required because more than one security domain can

be created in Tivoli Access Manager with its own administrative user. Users, groups, and other objects are

created within a specific domain and are not permitted to access resources in another domain. If a security

domain is not established at the time of Tivoli Access Manager configuration, leave the value as Default.

 Default: Default

Administrator user distinguished name:

Enter the fully distinguished name of the security administrator ID for the application server. For example,

cn=wasadmin,o=organization,c=country

JACC provider configuration properties for Tivoli Access Manager:

The JACC provider configuration properties detailed below may require configuration.

Chapter 6. Authorizing access to resources 359

The Java property files are created in the profile_root/etc/tam directory.

Two properties files might require configuration:

v amwas.node_name_server_name.amjacc.properties contains properties that are used by the JACC

provider of Tivoli Access Manager.

v amwas.node_name_server_name.pdjlog.properties contains logging properties that are created from the

amwas.pdjlog.template.properties file for the specific node and server combination at the time of

configuration.

Use amwas.node_name_server_name.amjacc.properties file to configure static role caching, dynamic role

caching, object caching, and role-based policy framework properties.

Static role caching properties:

The static role cache holds role memberships that do not expire.

 These properties are in the profile_root/etc/tam/amwas.node_name_server_name.amjacc.properties file.

The profile_root directory is the value of the profilePath parameter at profile creation time.

Enabling static role caching

com.tivoli.pd.as.cache.EnableStaticRoleCaching=true

Enables or disables static role caching. Static role caching is enabled by default.

Setting the static role cache

com.tivoli.pd.as.cache.StaticRoleCache=com.tivoli.pd.as.cache.StaticRoleCacheImpl

This property holds the implementation class of the static role cache. You do not need to change this

property, although the opportunity exists to implement your own cache, if necessary.

Define static roles

com.tivoli.pd.as.cache.StaticRoleCache.Roles=Administrator,Operator,Monitor,Deployer

Defines the administration roles for WebSphere Application Server.

Tip: Enhance Application performance by adding the static roles: CosNamingRead, CosNamingWrite,

CosNamingCreate, CosNamingDelete. These roles support for improved lookup performance within

the application naming service.

Dynamic role caching properties:

The dynamic role cache holds role memberships that expire.

 These properties are in the profile_root/etc/tam/amwas.node_name_server_name.amjacc.properties file.

The profile_root directory is the value of the profilePath parameter at profile creation time.

Enabling dynamic role caching

com.tivoli.pd.as.cache.EnableDynamicRoleCaching=true

Enables or disables dynamic role caching. Dynamic role caching is enabled by default.

360 Securing applications and their environment

Setting the dynamic role cache

com.tivoli.pd.as.cache.DynamicRoleCache=com.tivoli.pd.as.cache.DynamicRoleCacheImpl

This property holds the implementation class of the dynamic role cache. You do not need to change this

property, although the opportunity exists to implement your own cache, if necessary.

Specifying the maximum number of users

com.tivoli.pd.as.cache.DynamicRoleCache.MaxUsers=100000

The maximum number of users that the cache supports before a cache cleanup is performed. The default

number of users is 100000.

Specifying the number of cache tables

com.tivoli.pd.as.cache.DynamicRoleCache.NumBuckets=20

The number of tables that is used internally by the dynamic role cache. The default is 20. When a large

number of threads use the cache, increase the value to tune and optimize cache performance.

Specifying the principal lifetime

com.tivoli.pd.as.cache.DynamicRoleCache.PrincipalLifeTime=10

The period of time in minutes that a principal entry is stored in the cache. The default time is 10 minutes.

The term, principal, here refers to the Tivoli Access Manager credential that is returned from a unique

Lightweight Directory Access Protocol user.

Specifying the role lifetime

com.tivoli.pd.as.cache.DynamicRoleCache.RoleLifetime=20

The period of time in seconds that a role is stored in the role list for a user before it is discarded. The

default is 20 seconds.

Object caching properties:

The object cache is used to cache all Tivoli Access Manager objects, including their extended attributes.

This bypasses the need to query the Tivoli Access Manager authorization server for each resource

request.

 These properties are in the profile_root/etc/tam/amwas.node_name_server_name.amjacc.properties file.

The profile_root directory is the value of the profilePath parameter when the profile is created.

Enabling object caching

com.tivoli.pd.as.cache.EnableObjectCaching=true

This property enables or disables object caching. The default value is true.

Setting the object cache

com.tivoli.pd.as.cache.ObjectCache=com.tivoli.pd.as.cache.ObjectCacheImpl

Chapter 6. Authorizing access to resources 361

This property is the class used to perform object caching. You can implement your own object cache if

required. This can be done by implementing the com.tivoli.pd.as.cache.IObjectCache interface. The default

is com.tivoli.pd.as.cache.ObjectCacheImpl.

Setting the number of cache buckets

com.tivoli.pd.as.cache.ObjectCache.NumBuckets=20

This property specifies the number of buckets used to store object cache entries in the underlying hash

table. The default is 20.

Setting the number of cache bucket entries

com.tivoli.pd.as.cache.ObjectCache.MaxResources=10000

This property specifies the total number of entries for all buckets in the cache. This figure, divided by

NumBuckets determines the maximum size of each bucket. The default is 10000.

Setting the resource lifetime

com.tivoli.pd.as.cache.ObjectCache.ResourceLifeTime=20

This property specifies the length of time in minutes that objects are kept in the object cache. The default

is 20.

These object cache properties cannot be changed after configuration. If any require changing, it should be

done before configuration of the nodes in the cell. Changes need to be made in the template properties

file before any configuration actions are performed. Properties changed after configuration might cause

access decisions to fail.

Role-based policy framework properties:

Although it is very unlikely that you will need to change these properties, use this file to reference

supported properties within the role-based policy framework.

 The role-based policy framework parameters are located in the Java Authorization Contract for Containers

(JACC) configuration file and in the authorization configuration file. These parameters are set at the time of

JACC provider configuration and authorization server configuration. The role-based policy framework

settings for the authorization table and the JACC provider can be modified separately for each WebSphere

Application Server instance. The amwas.node_server.authztable.properties configuration file is generated

from the authorization table. The configuration file is generated from the JACC provider,

amwas.node_name_server_name.amjacc.properties. Both files are stored on the WebSphere Application

Server profile_root/etc/tam directory. It is unlikely that you need to change these properties, but these

properties are described here for reference:

Supported properties include:

com.tivoli.pd.as.rbpf.AMAction=i

This property is used to signify that a user is granted access to a role. This value is added to a Tivoli

Access Manager access control list (ACL) and places invoke access on roles for users and groups.

com.tivoli.pd.as.rbpf.AMActionGroup=WebAppServer

This property sets the Tivoli Access Manager action group that serves as a container for the action

that is specified by the com.tivoli.pd.as.rbpf.AMAction property. The permission set in the

com.tivoli.pd.as.rbpf.AMAction property goes into this action group.

com.tivoli.pd.as.rbpf.PosRoot=WebAppServer

This property is used to determine where roles are stored in the protected object space.

362 Securing applications and their environment

com.tivoli.pd.as.rbpf.ProductId=deployedResources

This property specifies the location under the root location that is specified in the posroot property to

separate other products in the protected object space. Embedded Tivoli Access Manager objects are

found in the /WebAppServer/deployedResources directory. The default value is deployedResources.

com.tivoli.pd.as.rbpf.ResourceContainerName=Resources

This property specifies the Tivoli Access Manager object space container name for the protected

resources. The default location is the /WebAppServer/deployedResources/Resources directory.

com.tivoli.pd.as.rbpf.RoleContainerName=Roles

This property specifies the Tivoli Access Manager protected object space container name for the

security roles. The default location is the /WebAppServer/deployedResources/Roles directory.

The previous settings cannot be changed after configuration. Make changes in the template properties file

before any configuration actions are performed. Properties that are changed after configuration will cause

access decisions to fail.

System-dependent configuration properties:

Do not change these system-dependent configuration properties. These properties are included in this

article for reference only.

 These properties are in the app_server_root/etcamwas.node_name_server_name.amjacc.properties file.

The profile_root variable is the value of the profilePath parameter when the profile is created.

The supported arguments include:

com.tivoli.pd.as.rbpf.AmasSession.CfgURL=file/:$WAS_HOME/profiles/profile_name/etc/tam/
amwas.node_server.pdperm.properties

This entry is generated by the Java Authorization Contract for Containers (JACC) provider

configuration. This argument specifies the location of the file that contains information about the JACC

provider of Tivoli Access Manager. Do not change this entry or the properties in the

amwas.node_server.pdperm.properties file.

com.tivoli.pd.as.rbpf.AmasSession.LoggingURL=file/:$WAS_HOME/profiles/profile_name/etc/tam/
amwas.node_server.pdjlog.properties

This entry contains the location of the logging configuration file for the JACC provider of Tivoli Access

Manager. The referenced file is generated by the JACC provider of Tivoli Access Manager

configuration. Do not change this entry.

Administering security users and roles with Tivoli Access Manager

Use these steps to manage user-to-role mappings and user-to-group mappings for applications.

User-to-role mapping and user-to-group mapping for the JACC provider of Tivoli Access Manager are

performed using the WebSphere Application Server administrative console.

1. Click Applications > Enterprise applications > application_name.

2. Under Additional properties, click Security role to user/group mapping. The user and groups

management screen is displayed.

3. Select the role that requires user or group management and use Lookup users or Lookup groups to

manage the users or groups for the selected role. The native role mapping uses the MapRolesToUsers

administrative task. If you are using Tivoli Access Manager, use the TAMMapRolesToUsers

administrative task instead. The syntax and options for the Tivoli version are the same as those used

in the native version. For more information, see csec_role_based_sec.dita and

tsec_use_TAM_groups.dita.

Chapter 6. Authorizing access to resources 363

csec_role_based_sec.dita
tsec_use_TAM_groups.dita

Configuring Tivoli Access Manager groups

Use these steps to configure the WebSphere Application Server administrative console to add objects of

the accessGroup class to the list of object classes that represent user registry groups.

You can use the WebSphere Application Server administrative console to specify security policies for

applications that run in the WebSphere Application Server environment. You can also use the WebSphere

Application Server administrative console specify security policies for other Web resources, based on the

entities that are stored in the user registry.

Tivoli Access Manager adds the accessGroup object class to the registry. Tivoli Access Manager

administrators can use the pdadmin utility, which is available only on the policy server host in the PD.RTE

fileset, to create new groups. These new groups are added to the registry as the accessGroup object

class.

The WebSphere Application Server administrative console is not configured by default to recognize objects

of the accessGroup class as user registry groups. You can configure the WebSphere Application Server

administrative console to add this object class to the list of object classes that represent user registry

groups. To do this configuration, complete the following instructions:

1. From the WebSphere Application Server administrative console, access the advanced settings for

configuring security by clicking Security > Secure administration, applications, and infrastructure.

2. Under User account repository, click the Available realm definitions drop-down list, selectStandalone

LDAP registry, and click Configure.

3. Under Additional properties, click Advanced Lightweight Directory Access Protocol (LDAP) user

registry settings.

4. Modify the Group Filter field. Add the following entry: (objectclass=accessGroup)

The Group Filter field looks like the following example:

(&(cn=%w)(|(objectclass=groupOfNames)

(objectclass=groupOfUniqueNames)(objectclass=accessGroup)))

5. Modify the Group Member ID Map field. Add the following entry: accessGroup:member The Group

Member ID Map field looks like the following example:

groupOfNames:member;groupOfUniqueNames:uniqueMember;

accessGroup:member

6. Stop and restart WebSphere Application Server.

Configuring additional authorization servers

Tivoli Access Manager secure domains can contain more than one authorization server. Having multiple

authorization servers is useful for providing a failover capability as well as improving performance when

the volume of access requests is large.

1. Refer to the Tivoli Access Manager Base Administration Guide for details on installing and configuring

authorization servers. This document is available in the IBM Tivoli Access Manager for e-business

information center.

2. Re-configure the Java Authorization Contract for Containers (JACC) provider using the $AdminTask

reconfigureTAM interactive wsadmin command. Enter all new and existing options.

Logging Tivoli Access Manager security

Use this topic to enable the trace specification to indicate tracing at the required level.

The Java Authorization Contract for Containers (JACC) for Tivoli Access Manager provider messages are

logged to the configured trace output location, and messages are written to standard out SystemOut.log

file. When trace is enabled, all logging, both trace and messaging, is sent to the trace.log file.

364 Securing applications and their environment

http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp
http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp

1. The amwas.node_server.pdjlog.properties file must be updated and the isLogging attribute set to

true for the required component. For example, to enable tracing for the JACC provider for Tivoli Access

Manager, set the following line to true:

amwas.node_server.pdjlog.properties:baseGroup.AMWASWebTraceLogger.isLogging=true

2. Enable tracing for the JACC provider of Tivoli Access Manager components in the WebSphere

Application Server administrative console by completing the following steps:

a. Click Troubleshooting > Logs and Trace > server_name.

b. Under Logs and Trace tasks, click Diagnostic trace.

c. Select the Enable Log option.

d. Click Apply.

e. Click Troubleshooting > Logs and Trace > server_name.

f. Click Change Log Detail Levels.

g. Click Components. Tracing for all components can be enabled using the com.tivoli.pd.as.*

command. Tracing for separate components can be enabled using the following commands:

v com.tivoli.pd.as.rbpf.* for role-based policy framework tracing

v com.tivoli.pd.as.jacc.* for JACC provider tracing

v com.tivoli.pd.as.pdwas.* for the authorization table

v com.tivoli.pd.as.cfg.* for configuration

v com.tivoli.pd.as.cache.* for caching

For more information, see utrb_loglevel.dita.

h. Click Apply.

The trace specification now indicates that tracing is enabled at the required level. Save the configuration

and restart the server for the changes to take effect.

Tivoli Access Manager loggers:

The Java Authorization Contract for Containers (JACC) for Tivoli Access Manager provider messages are

logged to the configured trace output location, and messages are written to standard out SystemOut.log

file. When trace is enabled, all logging, both trace and messaging, is sent to the trace.log file.

The JACC provider for Tivoli Access Manager uses the JLog logging framework as does the Java runtime

environment for Tivoli Access Manager. You can enable tracing and messaging selectively for specific

JACC provider for Tivoli Access Manager components.

Tracing and message logging for the JACC provider for Tivoli Access Manager are configured in the

amwas.node_server.pdjlog.properties properties file, which is located in the profile_root/etc/tam

directory. This file contains logging properties from the amwas.pdjlog.template.properties template file for

the specific node and server combination at the time of JACC provider for Tivoli Access Manager

configuration.

The contents of this file let the user control:

v Whether tracing is enabled or disabled for the JACC provider of Tivoli Access Manager components.

v Whether message logging is enabled or disabled for the JACC provider of Tivoli Access Manager

components.

The amwas.node_server.pdjlog.properties file defines several loggers, each of which is associated with

one JACC provider of Tivoli Access Manager component. These loggers include:

Chapter 6. Authorizing access to resources 365

utrb_loglevel.dita

Logger Name Description

AmasRBPFTraceLogger

AmasRBPFMessageLogger

Logs messages and trace for the role-based policy framework. This

underlying framework is used by embedded Tivoli Access Manager to

make access decisions.

AmasCacheTraceLogger

AmasCacheMessageLogger

Logs messages and trace for the policy caches that are used by the

role-based policy framework.

AMWASWebTraceLogger

AMWASWebMessageLogger

Logs messages and trace for the WebSphere Application Server

authorization plug-in.

AMWASConfigTraceLogger

AMWASConfigMessageLogger

Logs messages and trace for the configuration actions of the JACC

provider for Tivoli Access Manager .

JACCTraceLogger JACCMessageLogger Logs messages and trace for the JACC provider activity of Tivoli

Access Manager .

Note: Tracing can have a significant impact on system performance. Enable tracing only when diagnosing

the cause of a problem.

The implementation of these loggers routes messages to the WebSphere Application Server logging

sub-system. All messages are written to the WebSphere Application Server trace.log file.

For each logger, the amwas.node_server.pdjlog.properties file defines an isLogging attribute which, when

set to true, enables logging for the specific component. A value of false disables logging for that

component.

The amwas.node_server.pdjlog.properties file defines the parent loggers MessageLogger and

TraceLogger that also have an isLogging attribute. If the child loggers do not specify this isLogging

attribute, they inherit the value of their respective parent. When the JACC provider for Tivoli Access

Manager is enabled, the isLogging attribute is set to true for the MessageLogger and set tofalse for the

TraceLogger logger. Message logging is enabled for all components and tracing is disabled for all

components, by default.

To turn on tracing for a JACC provider component, see Logging Tivoli Access Manager security .

Interfaces that support JACC

WebSphere Application Server provides the RoleConfigurationFactory and the RoleConfiguration

interfaces, which are similar to PolicyConfigurationFactory and PolicyConfiguration interfaces so the

information that is stored in the bindings file can be propagated to the provider during installation. The

implementation of these interfaces is optional.

RoleConfiguration interface

Use the RoleConfiguration interface to propagate the authorization information to the provider. This

interface is similar to the PolicyConfiguration interface that is found in Java Authorization Contact for

Containers (JACC).

RoleConfiguration

 - com.ibm.wsspi.security.authorization.RoleConfiguration

/**

 * This interface is used to propagate the authorization table information

 * in the binding file during application installation. Implementation of this interface is

 * optional. When a JACC provider implements this interface during an application, both

 * the policy and the authorization table information are propagated to the provider.

* If this is not implemented, only the policy information is propagated as per

 * the JACC specification.

 * @ibm-spi

 * @ibm-support-class-A1

366 Securing applications and their environment

*/

public interface RoleConfiguration

/**

 * Add the users to the role in RoleConfiguration.

 * The role is created, if it does not exist in RoleConfiguration.

 * @param role the role name.

 * @param users the list of the user names.

 * @exception RoleConfigurationException if the users cannot be added.

 */

 public void addUsersToRole(String role, List users)

 throws RoleConfigurationException

/**

 * Remove the users to the role in RoleConfiguration.

 * @param role the role name.

 * @param users the list of the user names.

 * @exception RoleConfigurationException if the users cannot be removed.

 */

 public void removeUsersFromRole(String role, List users)

 throws RoleConfigurationException

/**

 * Add the groups to the role in RoleConfiguration.

 * The role is created if it does not exist in RoleConfiguration.

 * @param role the role name.

 * @param groups the list of the group names.

 * @exception RoleConfigurationException if the groups cannot be added.

 */

 public void addGroupsToRole(String role, List groups)

 throws RoleConfigurationException

/**

 * Remove the groups to the role in RoleConfiguration.

 * @param role the role name.

 * @param groups the list of the group names.

 * @exception RoleConfigurationException if the groups cannot be removed.

 */

 public void removeGroupsFromRole(String role, List groups)

 throws RoleConfigurationException

/**

 * Add the everyone to the role in RoleConfiguration.

 * The role is created if it does not exist in RoleConfiguration.

 * @param role the role name.

 * @exception RoleConfigurationException if the everyone cannot be added.

 */

 public void addEveryoneToRole(String role)

 throws RoleConfigurationException

/**

 * Remove the everyone to the role in RoleConfiguration.

 * @param role the role name.

 * @exception RoleConfigurationException if the everyone cannot be removed.

 */

 public void removeEveryoneFromRole(String role)

 throws RoleConfigurationException

/**

 * Add the all authenticated users to the role in RoleConfiguration.

 * The role is created if it does not exist in RoleConfiguration.

 * @param role the role name.

 * @exception RoleConfigurationException if the authentication users cannot

 * be added.

 */

 public void addAuthenticatedUsersToRole(String role)

 throws RoleConfigurationException

Chapter 6. Authorizing access to resources 367

/**

 * Remove the all authenticated users to the role in RoleConfiguration.

 * @param role the role name.

 * @exception RoleConfigurationException if the authentication users cannot

 * be removed.

 */

 public void removeAuthenticatedUsersFromRole(String role)

 throws RoleConfigurationException

/**

 * This commits the changes in Roleconfiguration.

 * @exception RoleConfigurationException if the changes cannot be

 * committed.

 */

 public void commit()

 throws RoleConfigurationException

/**

 * This deletes the RoleConfiguration from the RoleConfiguration Factory.

 * @exception RoleConfigurationException if the RoleConfiguration cannot

 * be deleted.

 */

 public void delete()

 throws RoleConfigurationException

/**

 * This returns the contextID of the RoleConfiguration.

 * @exception RoleConfigurationException if the contextID cannot be

 * obtained.

 */

 public String getContextID()

 throws RoleConfigurationException

RoleConfigurationFactory interface

The RoleConfigurationFactory interface is similar to the PolicyConfigurationFactory interface that is

introduced by JACC, and is used to obtain RoleConfiguration objects based on the contextID IDs.

RoleConfigurationFactory

 - com.ibm.wsspi.security.authorization.RoleConfigurationFactory

/**

 * This interface is used to instantiate the com.ibm.wsspi.security.authorization.RoleConfiguration

 * objects based on the context identifier similar to the policy context identifier.

 * Implementation of this interface is required only if the RoleConfiguration interface is implemented.

 *

 * @ibm-spi

 * @ibm-support-class-A1

 */

public interface RoleConfigurationFactory

/**

 * This gets a RoleConfiguration with contextID from the

 * RoleConfigurationfactory. If the RoleConfiguration does not exist

 * for the contextID in the RoleConfigurationFactory, a new

 * RoleConfiguration with contextID is created in the

 * RoleConfigurationFactory. The contextID is similar to

 * PolicyContextID, but it does not contain the module name.

 * If remove is true, the old RoleConfiguration is removed and a new

 * RoleConfiguration is created, and returns with the contextID.

 * @return the RoleConfiguration object for this contextID

 * @param contextID the context ID of RoleConfiguration

 * @param remove true or false

 * @exception RoleConfigurationException if RoleConfiguration

 * cannot be obtained.

 **/

public abstract com.ibm.ws.security.policy.RoleConfiguration

 getRoleConfiguration(String contextID, boolean remove)

 throws RoleConfigurationException

368 Securing applications and their environment

InitializeJACCProvider provider

When implemented by the provider, this interface is called by every process where the JACC provider can

be used for authorization. All additional properties that are entered during the authorization check are

passed to the provider. For example, the provider can use this information to initialize client code to

communicate with their server or repository. The cleanup method is called during server shutdown to clean

up the configuration.

Declaration

public interface InitializeJACCProvider

Description

This interface has two methods. The JACC provider can implement the interface, and WebSphere

Application Server calls it to initialize the JACC provider. The name of the implementation class is obtained

from the value of the initializeJACCProviderClassName system property.

This class must reside in a Java archive (JAR) file on the class path of each server that uses this provider.

InitializeJACCProvider

 - com.ibm.wsspi.security.authorization.InitializeJACCProvider

 /**

 * Initializes the JACC provider

 * @return 0 for success.

 * @param props the custom properties that are included for this provider will

 * pass to the implementation class.

 * @exception Exception for any problems encountered.

 **/

 public int initialize(java.util.Properties props)

 throws Exception

 /**

 * This method is for the JACC provider cleanup and will be called during a process stop.

 **/

 public void cleanup()

Enabling the JACC provider for Tivoli Access Manager

The Java Authorization Contract for Container (JACC) provider for Tivoli Access Manager is configured by

default. Use this topic to enable the JACC provider for Tivoli Access Manager.

Restriction: Do not perform this task if you are configuring the JACC provider for Tivoli Access Manager

to supply authentication services only. Only perform this task for installations that require

both Tivoli Access Manager authentication and authorization protection.

The JACC provider for Tivoli Access Manager is configured by default. The following list shows the JACC

provider configuration settings for Tivoli Access Manager:

 Field Value

Name Tivoli Access Manager

Description This field is optional and used as a reference.

J2EE policy class name com.tivoli.pd.as.jacc.TAMPolicy

Policy configuration factory class name com.tivoli.pd.as.jacc.TAMPolicyConfigurationFactory

Role configuration factory class name com.tivoli.pd.as.jacc.TAMRoleConfigurationFactory

JACC provider initialization class name com.tivoli.pd.as.jacc.cfg.TAMConfigInitialize

Chapter 6. Authorizing access to resources 369

Field Value

Requires the EJB arguments policy

context handler for access decisions

false

Supports dynamic module updates true

To enable the JACC provider for Tivoli Access Manager, use the previous settings and complete the

following steps:

 1. Click Security > Secure administration, applications, and infrastructure > External authorization

providers.

 2. Select the External authorization using a JACC provider option, then click Apply.

 3. Under Related Items, click External JACC provider. The JACC provider settings for Tivoli Access

Manager are displayed.

 4. Verify that the correct settings are present to work with your Tivoli Access Manager configuration. For

more information, see “External Java Authorization Contract for Containers provider settings” on page

351.

 5. Under Additional properties, click Tivoli Access Manager properties.

 6. Click the Enable embedded Tivoli Access Manager option and verify that the correct Tivoli Access

Manager server and WebSphere Application Server settings exist. For more information, see “Tivoli

Access Manager JACC provider settings” on page 358.

 7. Click OK.

 8. Save the settings by clicking Save at the top of the page.

 9. Log out of the WebSphere Application Server administrative console.

10. Restart WebSphere Application Server. The security configuration is now replicated to managed

servers and node agents. These other servers within a cell also require restarting before the security

changes take effect.

Enabling embedded Tivoli Access Manager

Embedded Tivoli Access Manager is not enabled by default, and you need to configure it for use.

Enabling Tivoli Access Manager security within WebSphere Application Server requires:

v A supported Lightweight Directory Access Protocol (LDAP) installed somewhere on your network. This

user registry contains the user and group information for both Tivoli Access Manager and WebSphere

Application Server.

v Tivoli Access Manager server exists and is configured to use the user registry. For details on the

installation and configuration of Tivoli Access Manager, refer to the IBM Tivoli Access Manager for

e-business information center.

Note: WebSphere Application Server contains an embedded client for Tivoli Access Manager. To use

Tivoli Access Manager, you must also configure the Tivoli Access Manager server.

However, the server version must be the same version or later as the client version. For

information on the supported version of Tivoli Access Manager, see WebSphere Application

Server - Supported Prerequisites.

v WebSphere Application Server is installed either in a single server model or as WebSphere Application

Server Network Deployment.

v When administrative security is configured with a Federal Information Processing Standard (FIPS)

provider, the Tivoli Access Manager server must be configured for FIPS as well

Complete the following steps to enable embedded Tivoli Access Manager security:

1. Create the security administrative user.

370 Securing applications and their environment

http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp
http://publib.boulder.ibm.com/infocenter/tivihelp/v2r1/index.jsp
http://www-306.ibm.com/software/webservers/appserv/doc/v60/prereqs/was_v602.htm
http://www-306.ibm.com/software/webservers/appserv/doc/v60/prereqs/was_v602.htm

For more information, see the Securing applications and their environment PDF.

2. Configure the Java Authorization Contract for Containers (JACC) provider for Tivoli Access Manager .

For more information, see the Securing applications and their environment PDF.

3. Enable WebSphere Application Server security. When you are using Tivoli Access Manager you must

configure LDAP as the user registry.

For more information, see the Securing applications and their environment PDF.

4. Enable the JACC provider for Tivoli Access Manager.

For more information, see the Securing applications and their environment PDF.

Disabling embedded Tivoli Access Manager client

To unconfigure Tivoli Access Manager Security in WebSphere Application Server, you can use either the

wsadmin command-line utility or the WebSphere Application Server administrative console.

v For details on unconfiguring the embedded Tivoli Access Manager client using the WebSphere

Application Server administrative console, refer to “Disabling embedded Tivoli Access Manager client

using the administrative console.”

v For details on unconfiguring the embedded Tivoli Access Manager client using the wsadmin command

line utility, refer to “Disabling embedded Tivoli Access Manager client using wsadmin” on page 655.

Disabling embedded Tivoli Access Manager client using the administrative

console

To unconfigure the JACC provider for Tivoli Access Manager, you can use the WebSphere Application

Server administrative console.

1. Click Security > Secure administration, applications, and infrastructure > External authorization

providers.

2. Under Related items, click External JACC provider.

3. Under Additional properties, click Tivoli Access Manager Properties. The configuration screen for the

JACC provider for Tivoli Access Manager is displayed.

4. Clear the Enable embedded Tivoli Access Manager option. If you want to ignore errors when

unconfiguring, select the Ignore errors during embedded Tivoli Access Manager disablement

option. Select this option only when the Tivoli Access Manager domain is in an irreparable state.

5. Click OK.

6. Optional: If you want security enabled without Tivoli Access Manager re-enable administrative

securityy.

7. Restart all WebSphere Application Server instances for the changes to take effect.

Forcing the unconfiguration of the Tivoli Access Manager JACC provider

If you find you cannot restart WebSphere Application Server after configuring the JACC provider for Tivoli

Access Manager a utility is available to clear the security configuration and return WebSphere Application

Server to an operable state.

The utility removes all of the PDLoginModuleWrapper entries as well as the Tivoli Access Manager

authorization table from security.xml and wsjaas.conf files. This utility effectively removes the JACC

provider for Tivoli Access Manager.

1. Back up the security.xml and wsjaas.conf files.

2. Enter the following command as one continuous line.

app_server_root/java/jre/bin/java

-classpath "app_server_root /$WAS_HOME/plug-in/com.ibm.ws.runtime_1.0.0.jar"

 com.tivoli.pd.as.jacc.cfg.CleanSecXML

 fully_qualified_path/security.xml fully_qualified_path/wsjaas.conf

Chapter 6. Authorizing access to resources 371

Authorizing access to administrative roles

You can assign users and groups to administrative roles to identify users who can perform WebSphere

Application Server administrative functions.

Administrative roles enable you to control access to WebSphere Application Server administrative

functions. Refer to the descriptions of these roles in rsec_adminroles.dita.

Before you assign users to administrative roles, you must set up your user registry. For information on the

supported registry types, see “Selecting a registry or repository” on page 87.

The following steps are needed to assign users to administrative roles.

In the administrative console, click Users and Groups. Click either Administrative User Roles or

Administrative Group Roles.

1. To add a user or a group, click Add on the Console users or Console groups panel.

2. To add a new administrator user, enter a user identity in the User field, highlight Administrator, and

click OK. If there is no validation error, the specified user is displayed with the assigned security role.

3. To add a new administrative group, either enter a group name in the Specify group field or select

EVERYONE or ALL AUTHENTICATED from the Special subject menu, highlight Administrator, and

click OK. If no validation error occurs, the specified group or special subject is displayed with the

assigned security role.

4. To remove a user or group assignment, click Remove on the Console Users or the Console Groups

panel. On the Console Users or the Console Groups panel, select the check box of the user or group

to remove and click OK.

5. To manage the set of users or groups to display, click Show filter function on the User Roles or

Group Roles panel. In the Search term(s) box, type a value, then click Go. For example, user*

displays only users with the user prefix.

6. After the modifications are complete, click Save to save the mappings.

7. Restart the application server for changes to take effect.

After you assign users to administrative roles, you must restart the server for the new roles to take effect.

However, the administrative resources are not protected until you enable security.

Administrative user roles settings and CORBA naming service user

settings

Use the Administrative User Roles page to give users specific authority to administer application servers

through tools such as the administrative console or wsadmin scripting. The authority requirements are only

effective when global security is enabled. Use the Common Object Request Broker Architecture (CORBA)

naming service users settings page to manage CORBA naming service users settings.

To view the Console Users administrative console page, complete either of the following steps:

v Click Security > Secure administration, applications, and infrastructure > Administrative User

Roles.

v Click Users and Groups > Administrative User Roles.

To view the CORBA naming service groups administrative console page, click Environment > Naming >

CORBA Naming Service Groups.

Note: When a third-party authorization such as Tivoli Access Manager or Service Access Facility (SAF) for

z/OS is used, the information in this panel might not represent the data in the provider. Also, any

changes to this panel might not be reflected in the provider automatically. Follow the provider’s

instructions to propagate any changes made here to the provider.

372 Securing applications and their environment

rsec_adminroles.dita

User (Administrative user roles)

Specifies users.

The users that are entered must exist in the configured active user registry.

 Data type: String

User (CORBA naming service users)

Specifies CORBA naming service users.

The users that are entered must exist in the configured active user registry.

 Data type: String

Role (Administrative user roles)

Specifies user roles.

The following administrative roles provide different degrees of authority that are needed to perform certain

application server administrative functions:

Administrator

The administrator role has operator permissions, configurator permissions, and the permission that

is required to access sensitive data including server password, Lightweight Third Party

Authentication (LTPA) password and keys, and so on.

Operator

The operator role has monitor permissions and can change the run-time state. For example, the

operator can start or stop services.

Configurator

The configurator role has monitor permissions and can change the WebSphere Application Server

configuration.

Monitor

The monitor role has the least permissions. This role primarily confines the user to viewing the

application server configuration and current state.

adminsecuritymanager

The adminsecuritymanager role has privileges for managing users and groups from within the

administrative console and determines who has access to modify users and groups using

administrative role mapping. Only the adminsecuritymanager role can map users and groups to

administrative roles, and by default, AdminId is granted to the adminsecuritymanager.

iscadmins

The iscadmins role has administrator privileges for managing users and groups from within the

administrative console only.

Note: To manage users and groups, click Users and Groups in the console navigation tree. Click

either Manage Users or Manage Groups.

 Data type: String

Range: Administrator, Operator, Configurator, Monitor, and

iscadmins

Note: Other arbitrary administrative roles might also be visible in the administrative console collection

table. Other contributors to the console might create these additional roles, which can be used for

applications that are deployed to the console.

Role (CORBA naming service users)

Specifies naming service user roles.

Chapter 6. Authorizing access to resources 373

A number of naming roles are defined to provide degrees of authority that are needed to perform certain

application server naming service functions. The authorization policy is only enforced when global security

is enabled. The following roles are valid: CosNamingRead, CosNamingWrite, CosNamingCreate, and

CosNamingDelete.

The roles now have authority levels from low to high:

CosNamingRead

You can query the application server name space by using, for example, the Java Naming and

Directory Interface (JNDI) lookup method. The EVERYONE special-subject is the default policy for

this role.

CosNamingWrite

You can perform write operations such as JNDI bind, rebind, or unbind, plus CosNamingRead

operations.

CosNamingCreate

You can create new objects in the name space through operations such as JNDI createSubcontext

and CosNamingWrite operations.

CosNamingDelete

You can destroy objects in the name space, for example using the JNDI destroySubcontext

method and CosNamingCreate operations.

 Data type: String

Range: CosNamingRead, CosNamingWrite, CosNamingCreate

and CosNamingDelete

Login status (Administrative user roles)

Species whether the user is active or inactive.

Administrative group roles and CORBA naming service groups

Use the Administrative Group Roles page to give groups specific authority to administer application servers

through tools such as the administrative console or wsadmin scripting. The authority requirements are only

effective when administrative security is enabled. Use the Common Object Request Broker Architecture

(CORBA) naming service groups page to manage CORBA Naming Service groups settings.

To view the Console Groups administrative console page, complete either of the following steps:

v Click Security > Secure administration, applications, and infrastructure > Administrative Group

Roles.

v Click Users and Groups > Administrative Group Roles.

To view the CORBA naming service groups administrative console page, click Environment > Naming >

CORBA Naming Service Groups.

Group (CORBA naming service groups)

Identifies CORBA naming service groups.

In previous releases of WebSphere Application Server, there were two default groups: ALL

AUTHENTICATED and EVERYONE. However, EVERYONE is now the only default group, and it provides

CosNamingRead privileges only.

 Data type: String

Range: EVERYONE

374 Securing applications and their environment

Role (CORBA naming service groups)

Identifies naming service group roles.

A number of naming roles are defined to provide the degrees of authority that are needed to perform

certain application server naming service functions. The authorization policy is only enforced when global

security is enabled.

Four name space security roles are available: CosNamingRead, CosNamingWrite, CosNamingCreate, and

CosNamingDelete. The roles have authority levels from low to high:

Cos Naming Read

You can query the application server name space using, for example, the Java Naming and

Directory Interface (JNDI) lookup method. The EVERYONE special-subject is the default policy for

this role.

Cos Naming Write

You can perform write operations such as JNDI bind, rebind, or unbind, and CosNamingRead

operations. The ALL_AUTHENTICATED special-subject is the default policy for this role.

Cos Naming Create

You can create new objects in the name space through operations such as JNDI createSubcontext

and CosNamingWrite operations. The ALL_AUTHENTICATED special-subject is the default policy

for this role.

Cos Naming Delete

You can destroy objects in the name space, for example using the JNDI destroySubcontext

method and CosNamingCreate operations. The ALL_AUTHENTICATED special-subject is the

default policy for this role.

 Data type: String

Range: CosNamingRead, CosNamingWrite, CosNamingCreate,

and CosNamingDelete

Group (Administrative group roles)

Specifies groups.

The ALL_AUTHENTICATED and the EVERYONE groups can have the following role privileges:

Administrator, Configurator, Operator, and Monitor.

 Data type: String

Range: ALL_AUTHENTICATED, EVERYONE

Role (Administrative group roles)

Specifies user roles.

The following administrative roles provide different degrees of authority needed to perform certain

application server administrative functions:

Administrator

The administrator role has operator permissions, configurator permissions, and the permission that

is required to access sensitive data, including server password, Lightweight Third Party

Authentication (LTPA) password and keys, and so on.

Operator

The operator role has monitor permissions and can change the run-time state. For example, the

operator can start or stop services.

Configurator

The configurator role has monitor permissions and can change the application server

configuration.

Chapter 6. Authorizing access to resources 375

Monitor

The monitor role has the least permissions. This role primarily confines the user to viewing the

application server configuration and current state.

iscadmins

The iscadmins role has administrator privileges for managing users and groups from within the

administrative console only.

Note: To manage users and groups, click Users and Groups in the console navigation tree. Click

either Manage Users or Manage Groups.

 Data type: String

Range: Administrator, Operator, Configurator, Monitor, and

iscadmins

Note: Other arbitrary administrative roles might also be visible in the administrative console collection

table. Other contributors to the console might create these additional roles, which can be used for

applications that are deployed to the console.

Assigning users to naming roles

Use this task to assign users to naming roles by using the administrative console.

The following steps are needed to assign users to naming roles. In the administrative console, click

Environment > Naming, and click CORBA Naming Service Users or CORBA Naming Service Groups.

1. Click Add on the CORBA Naming Service Users or the CORBA Naming Service Groups panel.

2. To add a new naming service user, enter a user identity in the User field, highlight one or more naming

roles, and click OK. If no validation errors occur, the specified user is displayed with the assigned

security role.

3. To add a new naming service group, either select Specify group and enter a group name or select

Select from special subject and then select EVERYONE. Click OK. If no validation errors occur, the

specified group or special subject is displayed with the assigned security role.

4. To remove a user or group assignment, go to the CORBA Naming Service Users or CORBA Naming

Service Groups panel. Select the check box next to the user or group that you want to remove and

click Remove.

5. To manage the set of users or groups to display, expand the Filter folder on the right panel, and

modify the filter text box. For example, setting the filter to user* displays only users with the user

prefix.

6. After modifications are complete, click Save to save the mappings. Restart the server for the changes

to take effect.

The default naming security policy is to grant all users read access to the CosNaming space and to grant

any valid user the privilege to modify the contents of the CosNaming space. You can perform the

previously mentioned steps to restrict user access to the CosNaming space. However, use caution when

changing the naming security policy. Unless a Java 2 Platform, Enterprise Edition (J2EE) application has

clearly specified its naming space access requirements, changing the default policy can result in

unexpected org.omg.CORBA.NO_PERMISSION exceptions at runtime.

Propagating administrative role changes to Tivoli Access Manager

These steps provide an example of how to migrate the admin-authz.xml file.

Additions and changes to console users and groups are not automatically added to the Tivoli Access

Manager object space after the Java Authorization Contract for Containers (JACC) provider for Tivoli

Access Manager is configured. Changes to console users and groups are saved in the admin-authz.xml

376 Securing applications and their environment

file and this file must be migrated before any changes take effect. The JACC provider for Tivoli Access

Manager includes the migrateEAR migration utility for incorporating console user and group changes into

the Tivoli Access Manager object space.

Note: The migrateEAR utility is used to migrate the changes made to console users and groups after the

JACC provider for Tivoli Access Manager is configured. The utility does not need to run for changes

and additions to console user and groups made prior to the configuration of the JACC provider for

Tivoli Access Manager because the changes made to the admin-authz.xml and naming-authz.xml

files are automatically migrated at configuration time. Furthermore, the migration tool does not need

to run before deploying standard Java 2 Platform, Enterprise Edition (J2EE) applications; J2EE

application policy deployment is also performed automatically.

For example, if you wanted to migrate the admin-authz.xml file, perform the following steps:

1. Set up the environment.

Before running the migrateEAR utility, set up the environment by running the setupCmdLine.bat or

setupCmdLine.sh file that is located in the app_server_root/bin directory.

Make sure that the WAS_HOME environment variable is set to the WebSphere Application Server

installation directory.

2. Change to the app_server_root/bin directory where the migrateEAR utility is located.

3. Run the migrateEAR utility to migrate the data contained in the admin-authz.xml file. Use the

parameter descriptions that are listed in “The migrateEAR utility for Tivoli Access Manager.”

For example:

migrateEAR

-j “app_server_root/profiles/profile_name/config/cells/cell_name/xml_filename”

-a sec_master

-p password

-w wsadmin

-d o=ibm,c=us

-c file:/”app_server_root/java/jre/PdPerm.properties”

where xml_filename might be admin-authz.xml or naming-authz.xml.

A status message is displayed when the migration completes. Output of the utility is logged to the

pdwas_migrate.log file, which is created in the directory where the utility is run. Check the log file after

each migration. If the log file displays errors, check the last recorded transaction, correct the source of

the error, and rerun the migration utility. If the migration is unsuccessful, verify that you supplied the

correct values for the -c and -j options.

4. WebSphere Application Server does not require a restart for the changes to take effect.

The migrateEAR utility for Tivoli Access Manager

The migrateEAR utility migrates changes made to console users and groups in the admin-authz.xml and

naming-authz.xml files into the Tivoli Access Manager object space.

Syntax

migrateEAR

-j fully_qualified_filename

-c pdPerm.properties_file_location

-a Tivoli_Access_Manager_administrator_ID

-p Tivoli_Access_Manager_administrator_password

-w WebSphere_Application_Server_administrator_user_name

-d user_registry_domain_suffix

[-r root_objectspace_name]

[-t ssl_timeout]

Chapter 6. Authorizing access to resources 377

Parameters

-aTivoli_Access_Manager_administrator_ID

The administrative user identifier. The administrative user must have the privileges required to create

users, objects, and access control lists (ACLs). For example, -a sec_master.

 This parameter is optional. When the parameter is not specified, you are prompted to supply it at run

time.

-c PdPerm.properties_file_location

The Uniform Resource Indicator (URI) location of the PdPerm.properties file that is configured by the

pdwascfg utility. When WebSphere Application Server is installed in the default location, the URI is:

Solaris

Linux

HP�UX

file:/opt/IBM/WebSphere/AppServer/java/jre/PdPerm.properties

AIX

file:/usr/IBM/WebSphere/AppServer/java/jre/PdPerm.properties

Windows

file:/"C:/Program Files/IBM/WebSphere/AppServer/java/jre/PdPerm.properties”

-d user_registry_domain_suffix

The domain suffix for the user registry to use. For example, for Lightweight Directory Access Protocol

(LDAP) user registries, this value is the domain suffix, such as: ″o=ibm,c=us″

Windows

Windows platforms require that the domain suffix is enclosed within quotes.

 You can use the pdadmin user show command to display the distinguished name (DN) for a user.

-j fully_qualified_pathname

The fully qualified path and file name of the Java 2 Platform, Enterprise Edition application archive file

,admin-authz.xml or the roles definitions file naming-authz.xml that is used for a naming operation

authorization. Optionally, this path can also be a directory of an expanded enterprise application. For

example, when WebSphere Application Server is installed in the default location, the path to the data

files to migrate includes:

Solaris

Linux

HP�UX

file:/opt/IBM/WebSphere/AppServer/profiles/profile_name/config/cells

/cell_name/admin-authz.xml

AIX

file:/usr/IBM/WebSphere/AppServer/profiles/profile_name/config/cells

/cell_name/admin-authz.xml

Windows

“C:/Program Files/IBM/WebSphere/AppServer/profiles/profile_name/config/cells

/cell_name/admin-authz.xml”

-p Tivoli_Access_Manager_administrator_password

The password for the Tivoli Access Manager administrative user. The administrative user must have

the privileges that are required to create users, objects, and access control lists (ACLs). For example,

you can specify the password for the -a sec_master administrative user as -p myPassword.

 When this parameter is not specified, the user is prompted to supply the password for the

administrative user name.

378 Securing applications and their environment

-r root_objectspace_name

The space name of the root object. The value is the name of the root of the protected object

namespace hierarchy that is created for WebSphere Application Server policy data.

 The default value for the root object space is WebAppServer.

 Set the Tivoli Access Manager root object space name by modifying the

amwas.amjacc.template.properties file prior to configuring the Java Authorization Contract for

Containers (JACC) provider for Tivoli Access Manager for the first time. Use this option if the default

object space value is not used in the configuration of the Tivoli Access Manager JACC provider for

Tivoli Access Manager.

 Do not change the Tivoli Access Manager object space name after the Tivoli Access Manager JACC

provider is configured.

-t ssl_timeout

The number of minutes for the Secure Sockets Layer (SSL) timeout. This parameter is used to

disconnect and reconnect the SSL context between the Tivoli Access Manager authorization server

and the policy server before the default connection times out.

 The default is 60 minutes. The minimum value is 10 minutes. The maximum value cannot exceed the

Tivoli Access Manager ssl-v3-timeout value. The default value for ssl-v3-timeout is 120 minutes.

 If you are not familiar with the administration of this value, you can safely use the default value.

-w WebSphere_Application_Server_administrator_user_name

The user name that is configured in the WebSphere Application Server security user registry field as

the administrator. This value matches the account that you created or imported in “Creating the

security administrative user” on page 356. Access permission for this user is needed to create or

update the Tivoli Access Manager protected object space.

 When the WebSphere Application Server administrative user does not already exist in the protected

object space, it is created or imported. In this case, a random password is generated for the user and

the account is set to not valid. Change this password to a known value and set the account to valid.

 A protected object and access control list (ACL) are created. The administrative user is added to the

pdwas-admin group with the following ACL attributes:

T Traverse permission

i Invoke permission

WebAppServer

You can overwrite the action group name. The default name is WebAppServer. This action

group name and the matching root object space can be overwritten when the migration utility

is run with the -r option.

Comments

This utility migrates security policy information from deployment descriptors or enterprise archive files to

Tivoli Access Manager for WebSphere Application Server. The script calls com.tivoli.pdwas.migrate.Migrate

the Java class.

Before invoking the script you must run the setupCmdLine.bat or the setupCmdLine.sh commands.

These files can be found in the %WAS_HOME%/bin directory.

The script is dependent on finding the correct environment variables for the location of prerequisite

software. The script calls Java code with the following options:

-Dpdwas.lang.home

The directory that contains the native language support libraries that are provided with the JACC

Chapter 6. Authorizing access to resources 379

provider for Tivoli Access Manager. These libraries are located in a subdirectory under the JACC

provider for Tivoli Access Manager installation directory. For example: -Dpdwas.lang.home=
%PDWAS_HOME%\java\nls

-cp %CLASSPATH% com.tivoli.pdwas.migrate.Migrate

The CLASSPATH variable must be set correctly for your Java installation.

Windows

Both the -j option and the -c option can reference the %WAS_HOME% variable to determine

where WebSphere Application Server is installed. This information is used to:

v Build the full path name of the enterprise archive file.

v Build the full URI path name to the location of the PdPerm.properties file.

To enable a new user access to the administrative group in WebSphere Application Server, it is

recommended that the user be added to the pdwas-admin group after JACC has been enabled. You can

enter the administrative primary ID (adminID) in the group. This is required when the serverID is not the

same as the adminID.

The following is an example of this command:

pdadmin> group modify pdwas-admin add adminID

Return codes

The utility can return the following exit status codes:

0 The command completed successfully.

1 The command failed.

380 Securing applications and their environment

Chapter 7. Securing communications

WebSphere Application Server provides several methods to secure communication between a server and

a client.

The following topics are covered in this section:

v Secure communications using Secure Sockets Layer

v Creating an SSL configuration

v Creating a keystore configuration

v Creating a self-signed certificate

v Creating a certificate authority request

v Extracting a signer certificate from a personal certificate

v Retrieving signers from a remote SSL port

v Adding a signer certificate to a keystore

v Exchanging signer certificates in a keystore

v Configuring certificate expiration monitoring

v Key management for cryptographic uses

v Creating a key set configuration

v Creating a key set group configuration

Secure communications using Secure Sockets Layer

The Secure Sockets Layer (SSL) protocol provides transport layer security including authenticity, data

signing, and data encryption to ensure a secure connection between a client and server that uses

WebSphere Application Server. The foundation technology for SSL is public key cryptography, which

guarantees that when an entity encrypts data using its private key, only entities with the corresponding

public key can decrypt that data.

WebSphere Application Server uses Java Secure Sockets Extension (JSSE) as the SSL implementation

for secure connections. JSSE is part of the Java 2 Standard Edition (J2SE) specification and is included in

the IBM implementation of the Java Runtime Extension (JRE). JSSE handles the handshake negotiation

and protection capabilities that are provided by SSL to ensure secure connectivity exists across most

protocols. JSSE relies on X.509 certificate-based asymmetric key pairs for secure connection protection

and some data encryption. Key pairs effectively encrypt session-based secret keys that encrypt larger

blocks of data. The SSL implementation manages the X.509 certificates.

Managing X.509 certificates

Secure communications for WebSphere Application Server require digitally-signed X.509 certificates. The

contents of an X.509 certificate, such as its distinguished name and expiration, are either signed by a

certificate authority (CA) or are self-signed. When a trusted CA signs an X.509 certificate, WebSphere

Application Server identifies the certificate and freely distributes it. A certificate must be signed by a CA

because the certificate represents the identity of an entity to the general public. Server-side ports that

accept connections from the general public must use CA-signed certificates. Most clients or browsers

already have the signer certificate that can validate the X.509 certificate so signer exchange is not

necessary for a successful connection.

You can trust the identity of a self-signed X.509 certificate only when a peer in a controlled environment,

such as internal network communications, accepts the signer certificate. To complete a trusted handshake,

© Copyright IBM Corp. 2006 381

you must first send a copy of the entity certificate to every peer that connects to the entity. Self-signed

certificates are less expensive than CA-signed certificates because they do not require signer exchange

for a secure connection.

CA and self-signed X.509 certificates reside in Java keystores. JSSE provides a reference to the keystore

in which a certificate resides. You can select from many types of keystores, including Java Cryptographic

Extension (JCE)-based and hardware-based keystores. Typically, each JSSE configuration has two Java

keystore references: a keystore and a truststore. The keystore reference represents a Java keystore object

that holds personal certificates. The truststore reference represents a Java keystore object that holds

signer certificates.

A personal certificate without a private key is an X.509 certificate that represents the entity that owns it

during a handshake. Personal certificates contain both public and private keys. A signer certificate is an

X.509 certificate that represents a peer entity or itself. Signer certificates contain just the public key and

verify the signature of the identity that is received during a peer-to-peer handshake.

For more information, see “Extracting a signer certificate from a personal certificate” on page 471

For more information about keystores, see csec_sslkeystoreconfs.dita.

Signer exchange

When you configure an SSL connection, you can exchange signers to establish trust in a personal

certificate for a specific entity. Signer exchange enables you to extract the X.509 certificate from the peer

keystore and add it into the truststore of another entity so that the two peer entities can connect. The

signer certificate also can originate from a CA as a root signer certificate or an intermediate signer

certificate. You can also extract a signer certificate directly from a self-signed certificate, which is the X.509

certificate with the public key.

Figure 1 illustrates a hypothetical keystore and truststore configuration. An SSL configuration determines

which entities can connect to other entities, and the peer connections that are trusted by an SSL

handshake. If you do not have the necessary signer certificate, the handshake fails because the peer

cannot be trusted.

Figure 3. Signer exchange

382 Securing applications and their environment

csec_sslkeystoreconfs.dita

Entity-B Signer

C 1

C 2

Entity- Signer

Entity- Signer

trust store

Entity-A Cert

keystore

C 1Entity- Signer

trust store

Entity-B Cert

keystore

Entity- SignerA

trust store

Entity-C Cert 1

Entity-C Cert 2

keystore

Entity-A Entity-B Entity-C

Signer Exchange Example

In this example, the truststore for Entity A contains three signers. Entity A can connect to any peer as long

as one of the three signers validates its personal certificate. For example, Entity A can connect to Entity B

or Entity C because the signers can trust both signed personal certificates. The truststore for Entity-B

contains one signer. Entity B is able to connect to Entity C only, and only when the peer endpoint is using

certificate Entity-C Cert 1 as its identity. The ports that use the other personal certificate for Entity C are

not trusted by Entity B. Entity C can connect to Entity A only.

In the example, the self-signed configuration seems to represent a one-to-one relationship between the

signer and the certificate. However, when a CA signs a certificate, it typically signs many at a time. The

advantage of using a single CA signer is that it can validate personal certificates that are generated by the

CA for use by peers. However, if the signer is a public CA, you must be aware that the signed certificates

might have been generated for another company other than your target entity. For your internal

communications, private CAs and self-signed certificates are preferable to public CAs because they enable

you to isolate the connections that you want to occur and prevent those that you do not want to occur.

SSL configurations

An SSL configuration comprises a set of configuration attributes that you can associate with an endpoint or

set of endpoints in the WebSphere Application Server topology. The SSL configuration enables you to

create an SSLContext object, which is the fundamental JSSE object that the server uses to obtain SSL

socket factories. You can manage the following configuration attributes:

v An alias for the SSLContext object

v A handshake protocol version

v A keystore reference

v A truststore reference

v A key manager

v One or more trust managers

v A security level selection of a cipher suite grouping or a specific cipher suite list

v A certificate alias choice for client and server connections

To understand the specifics of each SSL configuration attribute, see “Secure Sockets Layer configurations”

on page 387.

Chapter 7. Securing communications 383

Selecting SSL configurations

In previous releases of WebSphere Application Server, you can reference an SSL configuration only by

selecting the SSL configuration alias directly. Each secure endpoint was denoted by an alias attribute that

references a valid SSL configuration within a repertoire of SSL configurations. When you made a single

configuration change, you had to re-configure many alias references across the various processes.

Although the current release still supports direct selection, this approach is no longer recommended.

The current release provides improved capabilities for managing SSL configurations and more flexibility

when you select SSL configurations. In this release, you can select from the following approaches:

Programmatic selection

You can set an SSL configuration on the running thread prior to an outbound connection.

WebSphere Application Server ensures that most system protocols, including Internet Inter-ORB

Protocol (IIOP), Java Message Service (JMS), Hyper Text Transfer Protocol (HTTP), and

Lightweight Directory Access Protocol (LDAP), accept the configuration. See “Example:

Programmatically specifying an outbound SSL configuration using JSSEHelper API” on page 436

Dynamic selection

You can associate an SSL configuration dynamically with a specific target host, port, or outbound

protocol by using a predefined selection criteria. When it establishes the connection, WebSphere

Application Server checks to see if the target host and port match a predefined criteria that

includes the domain portion of the host. Additionally, you can predefine the protocol for a specific

outbound SSL configuration and certificate alias selection. See “Dynamic outbound selection of

Secure Sockets Layer configurations” on page 396 for more information.

Direct selection

You can select an SSL configuration by using a specific alias, as in past releases. This method of

selection is maintained for backwards compatibility because many applications and processes rely

on alias references.

Scope selection

You can associate an SSL configuration and its certificate alias, which is located in the keystore

associated with that SSL configuration, with a WebSphere Application Server management scope.

This approach is recommended to manage SSL configurations centrally. You can manage

endpoints more efficiently because they are located in one topology view of the cell. The

inheritance relationship between scopes reduces the number of SSL configuration assignments

that you must set.

 Each time you associate an SSL configuration with a cell scope, the node scope within the cell

automatically inherits the configuration properties. However, when you assign an SSL configuration

to a node, the node configuration overrides the configuration that the node inherits from the cell.

Similarly, all of the application servers for a node automatically inherit the SSL configuration for

that node unless you override these assignments. Unless you override a specific configuration, the

topology relies on the rules of inheritance from the cell level down to the endpoint level for each

application server.

 The topology view displays an inbound tree and outbound tree. You can make different SSL

configuration selections for each side of the SSL connection based on what that server connects

to as an outbound connection and what the server connects to as an inbound connection. See

“Central management of Secure Sockets Layer configurations” on page 397 for more information.

The runtime uses an order of precedence for determining which SSL configuration to choose because you

have many ways to select SSL configurations. Consider the following order of precedence when you select

a configuration approach:

1. Programmatic selection. If an application sets an SSL configuration on the running thread using the

com.ibm.websphere.ssl.JSSEHelper application programming interface (API), the SSL configuration is

guaranteed the highest precedence.

384 Securing applications and their environment

2. Dynamic selection criteria for outbound host and port or protocol.

3. Direct selection.

4. Scope selection. Scope inheritance guarantees that the endpoint that you select is associated with an

SSL configuration and is inherited by every scope beneath it that does not override this selection.

Default self-signed certificate configuration

By default, WebSphere Application Server creates a unique self-signed certificate for each node.

WebSphere Application Server no longer relies on the default or dummy certificate that is shipped with the

product. The key.p12 default keystore and the trust.p12 truststore are stored in the configuration repository

within the node directory.

When you federate a base application server, the following situations occur: the keystore and truststore

are included, and the signer certificate is added to the deployment manager common truststore, which is

located in the cell directory of the configuration repository.

All of the nodes put their signer certificates in this common truststore (trust.p12). Additionally, after you

federate a node, the default SSL configuration is automatically modified to point to the common truststore,

which is located in the cell directory. The node can now communicate with all other servers in the cell.

All default SSL configurations contain a keystore with the name suffix DefaultKeyStore and a truststore

with the name suffix DefaultTrustStore. These default suffixes instruct the WebSphere Application Server

runtime to add the signer of the personal certificate to the common truststore. If a keystore name does not

end with DefaultKeyStore, the keystore signer certificates are not added to the common truststore when

you federate the server. You can change the default SSL configuration, but you must ensure that the

correct trust is established for administrative connections, among others.

For more information, see “Default self-signed certificate configuration” on page 402 and “Web server

plug-in default configuration” on page 410.

Certificate expiration monitoring

Certificate monitoring ensures that the self-signed certificate for each node is not allowed to expire. The

certificate expiration monitoring function issues a warning before certificates and signers are set to expire.

Those certificates and signers that are located in keystores managed by the WebSphere Application

Server configuration can be monitored. You can configure the expiration monitor to automatically replace a

self-signed certificate with a new self-signed certificate that is based upon the same data that is used for

the initial creation. The monitor also can automatically replace old signers with the signers from the new

self-signed certificates in keystores that are managed by WebSphere Application Server. The existing

signer exchanges that occurred by the runtime during federation and by administration are preserved. For

more information, see “Certificate expiration monitoring” on page 409.

WebSphere Application Server clients: signer-exchange requirements

A new self-signed certificate is generated for each node during its initial startup. To ensure trust, clients

must be given these generated signers to establish a connection. Several enhancements in the current

release make this process simpler. You can gain access to the signer certificates of various nodes to

which the client must connect with any one of the following options (for more information, see “Secure

installation for client signer retrieval” on page 405):

v A signer exchange prompt enables you to import signer certificates that are not yet present in the

truststores during a connection to a server. By default, this prompt is enabled for administrative

connections and can be enabled for any client SSL configuration. When this prompt is enabled, any

connection that is made to a server where the signer is not already present offers the signer of the

server along with the certificate information and a Secure Hash Algorithm (SHA) digest of the certificate

for verification. The user is given a choice whether to accept these credentials. If the credentials are

Chapter 7. Securing communications 385

accepted, the signer is added to the truststore of the client until the signer is explicitly removed. The

signer exchange prompt does not occur again when connecting to the same server unless the personal

certificate changes.

 Attention: It is unsafe to trust a signer exchange prompt without verifying the SHA digest. An

unverified prompt can originate from a browser when a certificate is not trusted.

v You can run a retrieveSigners administrative script from a client prior to making connections to servers.

To download signers, no administrative authority is required. To upload signers, you must have

Administrator role authority. The script downloads all of the signers from a specified server truststore

into the specified client truststore and can be called to download only a specific alias from a truststore.

You can also call the script to upload signers to server truststores. When you select the

CellDefaultTrustStore truststore as the specified server truststore and common truststore for a cell, all of

the signers for that cell are downloaded to the specified client truststore, which is typically

ClientDefaultTrustStore. For more information, see rxml_retrievesigners.dita.

v You can physically distribute to clients the trust.p12 common truststore that is located in the cell

directory of the configuration repository. When doing this distribution, however, you must ensure that the

correct password has been specified in the ssl.client.props client SSL configuration file. The default

password for this truststore is WebAS. Change the default password prior to distribution. Physical

distribution is not as effective as the previous options. When changes are made to the personal

certificates on the server, automated exchange can fail.

Dynamic SSL configuration changes

The SSL runtime for WebSphere Application Server maintains listeners for most SSL connections. A

change to the SSL configuration causes the inbound connection listeners to create a new SSLContext

object. Existing connections continue to use the current SSLContext object. Outbound connections

automatically use the new configuration properties when they are attempted.

Make dynamic changes to the SSL configuration during off-peak hours to reduce the possibility of

timing-related problems and to prevent the possibility of the server starting again. If you enable the runtime

to accept dynamic changes, then change the SSL configuration and save the security.xml file. Your

changes take effect when the new security.xml file reaches each node.

Note: If configuration changes cause SSL handshake failures, administrative connectivity failures also can

occur, which can lead to outages. In this case, you must re-configure the SSL connections then

perform manual node synchronization to correct the problem. You must carefully complete any

dynamic changes. It is highly recommended that you perform changes to SSL configurations on a

test environment prior to making the same changes to a production system. For more information,

see “Dynamic configuration updates” on page 411.

Built-in certificate management

Certificate management that is comparable to iKeyMan functionality is now integrated into the keystore

management panels of the administrative console. Use built-in certificate management to manage personal

certificates, certificate requests, and signer certificates that are located in keystores. Additionally, you can

remotely manage keystores. For example, you can manage a file-based keystore that is located outside

the configuration repository on any node from the deployment manager. You also can remotely manage

hardware cryptographic keystores from the deployment manager.

With built-in certificate management, you can replace a self-signed certificate along with all of the signer

certificates scattered across many truststores and retrieve a signer from a remote port by connecting to

the remote SSL host and port and intercepting the signer during the handshake. The certificate is first

validated according to the certificate SHA digest, then the administrator must accept the validated

certificate before it can be placed into a truststore.

386 Securing applications and their environment

rxml_retrievesigners.dita

When you make a certificate request, you can send it to a certificate authority (CA). When the certificate is

returned, you can accept it within the administrative console. For more information, see “Certificate

management” on page 414.

Tip: Although iKeyMan functionality still ships with WebSphere Application Server, configure keystores

from the administrative console using the built-in certificate management functionality. iKeyMan is still

an option when it is not convenient to use the administrative console. For more information, see

csec_sslikeymancertman.dita.

AdminTask configuration management

The SSL configuration management panels in the administrative console rely primarily on administrative

tasks, which are maintained and enhanced to support the administrative console function. You can use

wsadmin commands from a Java console prompt to automate the management of keystores, SSL

configurations, certificates, and so on.

Secure Sockets Layer configurations

Secure Sockets Layer (SSL) configurations contain attributes that enable you to control the behavior of

both client and server SSL endpoints. You can identify SSL configurations by their user-assigned names or

aliases, and assign them to specific management scopes. The scope that an SSL configuration inherits

depends upon whether you create it using a cell, node, server, or endpoint link in the configuration

topology.

When you create an SSL configuration, you can set the following SSL connection attributes:

v Keystore

v Default client certificate for outbound connections

v Default server certificate for inbound connections

v Truststore

v Key manager for selecting a certificate

v Trust manager or managers for establishing trust during the handshake

v Handshaking protocol

v Ciphers for negotiating the handshake

v Client authentication support and requirements

You can manage an SSL configuration using any of the following methods:

v Central management selection

v Direct reference selection

v Dynamic outbound connection selection

v Programmatic selection

You can view an SSL configuration in the topology at the point where it was created and at all of the

scopes below that point. If you want the entire cell to view an SSL configuration, you must create the

configuration at the cell level in the topology. Using the administrative console, you can manage all of the

SSL configurations for WebSphere Application Server. From the administrative console, click Security >

SSL certificates and key management > Manage endpoint security configurations > Inbound |

Outbound > SSL_configuration. Using the ssl.client.props properties file, you can manage client SSL

configurations. The ssl.client.props file is located in the ${USER_INSTALL_ROOT}/properties directory

for each profile. For more information about configuring this file, see the “ssl.client.props client

configuration file” on page 446.

SSL configuration in the security.xml file

Chapter 7. Securing communications 387

csec_sslikeymancertman.dita

In the security.xml file, you can define specific attributes to configure an SSL configuration repertoire

entry at a specific management scope. The scope determines the point at which other levels in the cell

topology can see the configuration, as shown in the following example:

<repertoire xmi:id="SSLConfig_1" alias="NodeDefaultSSLSettings"

managementScope="ManagementScope_1" type="JSSE">

<setting xmi:id="SecureSocketLayer_1" clientAuthentication="false"

clientAuthenticationSupported="false" securityLevel="HIGH" enabledCiphers=""

jsseProvider="IBMJSSE2" sslProtocol="SSL_TLS" keyStore="KeyStore_1"

trustStore="KeyStore_2" trustManager="TrustManager_1" keyManager="KeyManager_1"

clientKeyAlias="default" serverKeyAlias="default"/>

</repertoire>

The SSL configuration attributes that display in the previous code are described in Table 1.

 Table 13. security.xml Attributes

security.xml attribute Description Default Associated SSL property

xmi:id The xml:id attribute represents

the unique identifier for this XML

entry and determines how the

SSL configuration is linked to

other XML objects, such as

SSLConfigGroup. This

system-defined value must be

unique.

The administrative

configuration service

defines the default

value.

None. This value is used only for XML

associations.

alias The alias attribute defines the

name of the SSL configuration.

Direct selection uses the alias

attribute and the node is not

prefixed to the alias. Rather, the

management scope takes care

of ensuring that the name is

unique within the scope.

The default is

NodeDefaultSSLSettings.

com.ibm.ssl.alias

managementScope The managementScope attribute

defines the management scope

for the SSL configuration and

determines the visibility of the

SSL configuration at runtime.

The default scope is

the node.

The managementScope attribute is not

mapped to an SSL property. However, it

confirms whether or not the SSL configuration

is associated with a process.

type The type attribute defines the

Java Secure Socket Extension

(JSSE) or System Secure

Sockets Layer (SSSL)

configuration option. JSSE is the

SSL configuration type for most

secure communications within

WebSphere Application Server.

The default is JSSE. com.ibm.ssl.sslType

clientAuthentication The clientAuthentication attribute

determines whether SSL client

authentication is required.

The default is false. com.ibm.ssl.clientAuthentication

388 Securing applications and their environment

Table 13. security.xml Attributes (continued)

security.xml attribute Description Default Associated SSL property

clientAuthenticationSupported The

clientAuthenticationSupported

attribute determines whether

SSL client authentication is

supported. The client does not

have to supply a client

certificate if it does not have a

client certificate.

Attention:

When you set the

clientAuthentication attribute to

true, you override the value that

is set for the

clientAuthenticationSupported

attribute.

The default is false. com.ibm.ssl.client.AuthenticationSupported

securityLevel The securityLevel attribute

determines the cipher suite

group. Valid values include

HIGH (128-bit ciphers),

MEDIUM (40-bit ciphers), LOW

(for all ciphers without

encryption), and CUSTOM (if

the cipher suite group is

customized. When you set the

enabledCiphers attribute with a

specific list of ciphers, the

system ignores this attribute.

The default is HIGH. com.ibm.ssl.securityLevel

enabledCiphers You can set the enabledCiphers

attribute to specify a unique list

of cipher suites. Separate each

cipher suite in the list with a

space.

The default is the

securityLevel

attribute for cipher

suite selection.

com.ibm.ssl.enabledCipherSuites

jsseProvider The jsseProvider attribute

defines a specific JSSE

provider.

The default is

IBMJSSE2.

com.ibm.ssl.contextProvider

sslProtocol The sslProtocol attribute defines

the SSL handshake protocol.

Valid options include: SSLv2

(client-side only), SSLv3, SSL,

SSL_TLS, TLSv1, and TLS

values. The SSL option includes

SSLv2 and SSLv3 values. The

TLS option includes the TLSv1

value. SSL_TLS, which is the

most interoperable protocol,

includes all these values and

defaults to a Transport Layer

Security (TLS) handshake.

The default is

SSL_TLS.

com.ibm.ssl.protocol

keyStore The keyStore attribute defines

the keystore and attributes of

the keyStore instance that the

SSL configuration uses for key

selection.

The default is

NodeDefaultKeyStore.

For more information, see Keystore

configurations.

trustStore The trustStore attribute defines

the key store that the SSL

configuration uses for certificate

signing verification.

The default is

NodeDefaultTrustStore.

A trustStore is a logical JSSE term. It

signifies a key store that contains signer

certificates. Signer certificates validate

certificates that are sent to WebSphere

Application Server during an SSL handshake.

Chapter 7. Securing communications 389

csec_sslkeystoreconfs.dita
csec_sslkeystoreconfs.dita

Table 13. security.xml Attributes (continued)

security.xml attribute Description Default Associated SSL property

keyManager The keyManager attribute

defines the key manager that

WebSphere Application Server

uses to select keys from a key

store. A JSSE key manager

controls the

javax.net.ssl.X509KeyManager

interface. A custom key

manager controls the

javax.net.ssl.X509KeyManager

and the

com.ibm.wsspi.ssl.KeyManagerExtendedInfo

interfaces. The

com.ibm.wsspi.ssl.KeyManagerExtendedInfo

interface provides more

information from WebSphere

Application Server.

The default is

IbmX509.

com.ibm.ssl.keyManager defines a

well-known key manager and accepts the

algorithm and algorithm|provider formats, for

example IbmX509 and IbmX509|IBMJSSE2.

com.ibm.ssl.customKeyManager defines a

custom key manager and takes precedence

over the other keyManager properties. This

class must implement

javax.net.ssl.X509KeyManager and can

implement

com.ibm.wsspi.ssl.KeyManagerExtendedInfo.

For more information, see

csec_sslx509certIDkeyman.dita

trustManager The trustManager determines

which trust manager or list of

trust managers to use for

determining whether to trust the

peer side of the connection. A

JSSE trust manager implements

the

javax.net.ssl.X509TrustManager

interface. A custom trust

manager might also implement

com.ibm.wsspi.ssl.TrustManagerExtendedInfo

interface to get more information

from the WebSphere Application

Server environment.

The default is

IbmX509. You can

specify the IbmPKIX

trust manager for

certificate revocation

list (CRL) verification

when the certificate

contains a CRL

distribution point.

com.ibm.ssl.trustManager defines a

well-known trust manager, which is required

for most handshake situations.

com.ibm.ssl.trustManager performs certificate

expiration checking and signature validation.

You can define

com.ibm.ssl.customTrustManagers with

additional custom trust managers that are

called during an SSL handshake. Separate

additional trust managers with the vertical bar

(|) character. For more information, see

csec_sslx509certtrustdecisions.dita

Trust manager control of X.509 certificate trust decisions

The role of the trust manager is to validate the Secure Sockets Layer (SSL) certificate that is sent by the

peer, which includes verifying the signature and checking the expiration date of the certificate. A Java

Secure Socket Extension (JSSE) trust manager determines if the remote peer can be trusted during an

SSL handshake.

WebSphere Application Server has the ability to call multiple trust managers during an SSL connection.

The default trust manager does the standard certificate validation; custom trust manager plug-ins run

customized validation such as host name verification. For more information, see “Example: Developing a

custom trust manager for custom SSL trust decisions” on page 427

When a trust manager is configured in a server-side SSL configuration, the server calls the isClientTrusted

method. When a trust manager is configured in a client-side SSL configuration, the client calls the

isServerTrusted method. The peer certificate chain is passed to these methods. If the trust manager

chooses not to trust the peer information, it might produce an exception to force a handshake failure.

Optionally, WebSphere Application Server provides the com.ibm.wsspi.ssl.TrustManagerExtendedInfo

interface so that additional information can be passed to the trust manager. For more information, see the

com.ibm.wsspi.ssl.TrustManagerExtendedInfo interface.

Default IbmX509 trust manager

The default IbmX509 trust manager, which is used in the following code sample, establishes trust by

performing standard certificate validation.

<trustManagers xmi:id="TrustManager_1132357815717" name="IbmX509" provider="IBMJSSE2"

algorithm="IbmX509" managementScope="ManagementScope_1132357815717"/>

390 Securing applications and their environment

csec_sslx509certIDkeyman.dita
csec_sslx509certtrustdecisions.dita

The trust manager provides a signer certificate to verify the peer certificate that is sent during the

handshake. The signers who are added to the truststore for the SSL configuration must be trustworthy. If

you do not trust the signers or do not want to allow others to connect to your servers, consider removing

default root certificates from certificate authorities (CA). You might also remove any self-signed certificates

if you cannot verify their origination.

Default IbmPKIX trust manager

You can use the default IbmPKIX trust manager to replace the IbmX509 trust manager, which is shown in

the following code sample:

<trustManagers xmi:id="TrustManager_1132357815719" name="IbmPKIX" provider="IBMJSSE2"

algorithm="IbmPKIX" trustManagerClass="" managementScope="ManagementScope_1132357815717">

<additionalTrustManagerAttrs xmi:id="DescriptiveProperty_1132357815717"

name="com.ibm.security.enableCRLDP" value="true" type="boolean"/>

<additionalTrustManagerAttrs xmi:id="DescriptiveProperty_1132357815718"

name="com.ibm.jsse2.checkRevocation" value="true" type="boolean"/>

 </trustManagers>

In addition to its role of standard certificate verification, the IbmPKIX trust manager checks for certificates

that contain certificate revocation list (CRL) distribution points. This process is known as extended CRL

checking. When you select a trust manager, its associated properties are automatically set as Java

System properties so that the IBMCertPath and IBMJSSE2 providers are aware that CRL checking is

enabled.

Custom trust manager

You can define a custom trust manager to perform additional trust checking, which is based upon the

needs of the environment. For example, in one environment, you might enable connections from the same

Transmission Control Protocol (TCP) subnet only. The com.ibm.wsspi.ssl.TrustManagerExtendedInfo

interface provides extended information about the connection that is not provided by the standard Java

Secure Sockets Extension (JSSE) javax.net.ssl.X509TrustManager interface. The configured

trustManagerClass attribute determines which class is instantiated by the runtime, as shown in the

following code sample:

<trustManagers xmi:id="TrustManager_1132357815718" name="CustomTrustManager"

trustManagerClass="com.ibm.ws.ssl.core.CustomTrustManager"

managementScope="ManagementScope_1132357815717"/>

The trustManagerClass attribute must implement the javax.net.ssl.X509TrustManager interface and,

optionally, can implement the com.ibm.wsspi.ssl.TrustManagerExtendedInfo interface.

Disabling the default trust manager

In some cases, you might not want to perform the standard certificate verification that is provided by the

IbmX509 and IbmPKIX default trust managers. For example, you might be working with an internal

automated test infrastructure that is not concerned with SSL client or server authentication, integrity, or

confidentiality. The following sample code shows a basic custom trust manager such as

com.ibm.ws.ssl.core.CustomTrustManager whose property is set to true.

com.ibm.ssl.skipDefaultTrustManagerWhenCustomDefined=true

You can set this property in the global properties at the top of the ssl.client.props file for clients or in the

security.xml custom properties file for servers. You must configure a custom trust manager when you

disable the default trust manager to prevent the server from calling the default trust manager even though

it is configured. Disabling the default trust manager is not a common practice. Be sure to test the system

with the disabled default trust manager in a test environment first. For more information on setting up a

custom trust manager, see “Creating a custom trust manager configuration” on page 424

Chapter 7. Securing communications 391

Key manager control of X.509 certificate identities

The role of a Java Secure Socket Extension (JSSE) key manager is to retrieve the certificate that is used

to identify the client or server during a Secure Sockets Layer (SSL) handshake.

WebSphere Application Server provides a default key manager that can select a certificate from a keystore

when you define the following SSL configuration properties:

com.ibm.ssl.keyStoreClientAlias

Defines the alias that is chosen from the keystore for the client side of a connection. This alias

must be present in the keystore.

com.ibm.ssl.keyStoreServerAlias

Defines the alias that is chosen from the keystore for the server side of a connection. This alias

must be present in the keystore.

These two properties are set automatically when you use the administrative console because the default

key manager is already configured.

With WebSphere Application Server, you can configure only one key manager at a time for a given SSL

configuration. If you want custom certificate selection logic on the client side, you must write a new custom

key manager. The custom key manager could provide function that prompts the user to choose a

certificate dynamically. Also, you can implement an extended interface so that a key manager can provide

information during connection time. For more information on the extended interface, see the

com.ibm.wsspi.ssl.KeyManagerExtendedInfo interface. For more information on custom key manager

development, see rsec_ssldevcustomkeymgr.dita.

Default IbmX509 key manager

The default IbmX509 key manager chooses a certificate to serve as the identity for an SSL handshake.

The key manager is called to enable client authentication on either side of the SSL handshake; frequently

on the server-side, and less frequently on the client side according to client and server requirements. If a

keystore is not configured on the client-side and SSL client authentication is enabled, the key manager

cannot select a certificate to send to the server. Therefore, the handshake fails.

The following sample code shows the key manager configuration in the security.xml file for an IbmX509

key manager.

<keyManagers xmi:id="KeyManager_1" name="IbmX509"

provider="IBMJSSE2" algorithm="IbmX509" keyManagerClass=""

managementScope="ManagementScope_1"/>

You do not specify the keyManagerClass class because the key manager is provided by the IBMJSSE2

provider. However, you can specify whether the key manager is a custom class implementation, in which

case you must specify the keyManager class, or an algorithm name that WebSphere Application Server

can start from the Java security provider framework.

Custom key manager

The following sample code shows the key manger configuration in the security.xml file for a custom

class.

<keyManagers xmi:id="KeyManager_2" name="CustomKeyManager"

keyManagerClass="com.ibm.ws.ssl.core.CustomKeyManager"

managementScope="ManagementScope_1"/>

The custom class must implement the javax.net.ssl.X509KeyManager interface and, optionally, implement

the com.ibm.wsspi.ssl.KeyManagerExtendedInfo interface to retrieve additional WebSphere Application

Server information. This interface replaces the function of the default key manager because you can

configure only one key manager at a time. Therefore, the custom key manager has sole responsibility for

392 Securing applications and their environment

rsec_ssldevcustomkeymgr.dita

selecting the alias to use from the configured keystore. The benefit of a custom key manager is its ability,

on the client side, to prompt for an alias. This process enables the user to decide which certificate to use

in situations where the user knows the client certificate identity. For more information, see

tsec_sslcreatecuskeymgr.dita.

Keystore configurations

Use keystore configurations to define how the runtime for WebSphere Application Server loads and

manages keystore types for Secure Sockets Layer (SSL) configurations.

By default, the java.security.Security.getAlgorithms(″KeyStore″) attribute does not display a predefined list

of keystore types in the administrative console. Instead, WebSphere Application Server retrieves all of the

KeyStore types that can be referenced by the java.security.KeyStore object, including hardware

cryptographic, z/OS platform, i5/OS platform, IBM Java Cryptography Extension (IBMJCE), and

Java-based content management system (CMS)-provider keystores. If you specify a keystore provider in

the java.security file or add it to the provider list programmatically, WebSphere Application Sever also

retrieves custom keystores. The retrieval list depends upon the java.security configuration for that platform

and process.

IBMJCE file-based keystores (JCEKS, JKS, and PKCS12)

A typical IBMJCE file-based keystore configuration is shown in the following sample code:

<keyStores xmi:id="KeyStore_1" name="NodeDefaultKeyStore"

password="{xor}349dkckdd=" provider="IBMJCE"

location="${USER_INSTALL_ROOT}/config/cells/myhostNode01Cell

/nodes/myhostNode01/key.p12" type="PKCS12" fileBased="true"

hostList="" initializeAtStartup="true" readOnly="false"

managementScope="ManagementScope_1"/>

For more information about default keystore configurations, see csec_ssldefselfsigncertconf.dita.

Table 1 describes the attributes that are used in the sample code.

 Table 14. keystore configurations

Attribute name Default Description

xmi:id Varies A value that issued to reference the keystore from

another area in the configuration, for example, from

an SSL configuration. Make this value unique within

the security.xml file.

name For Java Secure Socket Extension

(JSSE) keystore:

NodeDefaultKeyStore. For JSSE

truststore: NodeDefaultTrustStore.

A name that is used to identify the keystore by sight.

The name can determine if the keystore is a default

keystore based upon whether the name ends with

DefaultKeyStore or DefaultTrustStore.

password The default keystore password is

WebAS. It is recommended that this be

changed as soon as possible. See

“Updating default key store

passwords using scripting” on page

662 for more information.

The password that is used to access the keystore

name is also the default that is used to store keys

within the keystore.

provider The default provider is IBMJCE. The Java provider that implements the type attribute

(for example, PKCS12 type). The provider can be left

unspecified and the first provider that implements the

keystore type specified is used.

Chapter 7. Securing communications 393

tsec_sslcreatecuskeymgr.dita
csec_ssldefselfsigncertconf.dita

Table 14. keystore configurations (continued)

Attribute name Default Description

location The default varies, but typically

references a key.p12 file or a

trust.p12 file in the node or cell

directories of the configuration

repository. These files are PKCS12

type keystores.

The keystore location reference. If the keystore is

file-based, the location can reference any path in the

file system of the node where the keystore is located.

However, if the location is outside of the configuration

repository, and you want to manage the keystore

remotely from the administrative console or from the

wsadamin utility, then specify the hostList attribute

that contains the host name of the node where it

resides.

type The default Java crypto device

keystore type is PKCS12.

This type specifies the keystore. Valid types can be

those returned by the

java.security.Security.getAlgorithms(″KeyStore″)

attribute. These types include the following keystore

types, and availability depends on the process and

platform java.security configuration:

v JKS

v JCEKS

v PKCS12

v PKCS11 (Java crypto device)

v CMSKS

v IBMi5OSKeyStore

v JCERACFKS

v JCE4758KS (z/OS crypto device)

fileBased The default is true. This option is required for default keystores. It

indicates a file-system keystore so you can use a

FileInputStream or FileOutputStream for loading and

storing the keystore.

hostList The hostList attribute is used to

specify a remote hostname so that

the keystore can be remotely

managed. There are no remotely

managed keystores by default. All

default keystores are managed locally

in the configuration repository and

synchronized out to each of the

nodes.

The option manages a keystore remotely. You can set

the host name of a valid node for a keystore. When

you use either the administrative console or the

wsadmin utility to manage certificates for this

keystore, an MBean call is made to the node where

the keystore exists for the approved operation. You

can specify multiple hosts, although synchronization

of the keystore operations are not guaranteed. For

example, one of the hosts that is listed might be down

when a specific operation is performed. Therefore,

use multiple hosts in this list.

initializeAtStartup The default is true. This option informs the runtime to initialize the

keystore during startup. This option can be important

for hardware cryptographic device acceleration.

readOnly The default is false. This option informs the configuration that you cannot

write to this keystore. That is, certain update

operations on the keystore cannot be attempted and

are not allowed. An example of a read-only keystore

type is JCERACFKS on the z/OS platform. This type

is read-only from the WebSphere certificate

management standpoint, but you can also update it

using the keystore management facility for RACF.

394 Securing applications and their environment

Table 14. keystore configurations (continued)

Attribute name Default Description

managementScope The default scope is the node scope

for a base Application Server

environment and the cell scope for a

Network Deployment environment.

This option references a particular management

scope in which you can see this keystore. For

example, if a hardware cryptographic device is

physically located on a specific node, then create the

keystore from a link to that node in the topology view

under Security > Security Communications > SSL

configurations. You can also use management

scope to isolate a keystore reference. In some cases,

you might need to allow only a specific application

server to reference the keystore; the management

scope is for that specific server.

CMS keystores

You can set some provider-specific attributes in CMS keystores.

If the CMSKS provider supports the createStashFileForCMS attribute, and you set the attribute to true for

CMSKS keystores, WebSphere Application Server creates an .sth file in the keystore location that is

referenced by the attribute. The .sth extension is appended to the keystore name. For example, if the

CMSKS keystore is available for a plug-in configuration and you set createStashFileForCMS to true, the

stash file that is represented in the following sample code is created in the ${USER_INSTALL_ROOT}\
profiles\AppSrv01/config/cells/myhostCell01/nodes/myhostNode01/servers/webserver1/plugin-key.sth

path.

<keyStores xmi:id="KeyStore_1132071489571" name="CMSKeyStore"

password="{xor}HRYNFAtrbxEwOzpvbhw6MzM=" provider="IBMCMSProvider"

location="${USER_INSTALL_ROOT}\profiles\AppSrv01/config/cells/myhostCell01

/nodes/myhostNode01/servers/webserver1/plugin-key.kdb" type="CMSKS"

fileBased="true" createStashFileForCMS="true"

managementScope="ManagementScope_1132071489569"/>

When you create a CMS keystore, the CMS provider is IBMi5OSJSSEProvider, and the CMS type is

IBMi5OSKeyStore, as shown in the following sample code:

<keyStores xmi:id="KeyStore_1132071489571" name="CMSKeyStore"

password="{xor}HRYNFAtrbxEwOzpvbhw6MzM=" provider="IBMi5OSJSSEProvider"

location="${USER_INSTALL_ROOT}\profiles\AppSrv01/config/cells/myhostCell01

/nodes/myhostNode01/servers/webserver1/plugin-key.kdb" type="IBMi5OSKeyStore"

fileBased="true" createStashFileForCMS="true"

managementScope="ManagementScope_1132071489569"/>

Hardware cryptographic keystores

For cryptographic device configuration, see “Key management for cryptographic uses” on page 488 and

“Configuring a hardware cryptographic keystore” on page 454

You can add a slot either as the custom property, com.ibm.ssl.keyStoreSlot, or as the configuration

attribute, slot=″0″. The custom property is read before the attribute for backwards compatibility.

In certain environments, you can use the hardware cryptographic card for hardware acceleration. Either

set the useForAcceleration attribute to true or set the com.ibm.ssl.keyStoreUseForAcceleration custom

property. When you set the attribute to true, you are not required to configure a password. However, you

cannot use the device to store keys. For more information on configuring a hardware cryptographic

keystore, see Configuring hardware cryptographic keystore configurations.

Chapter 7. Securing communications 395

Default key store passwords

When WebSphere Application Server starts for the first time as a standalone application server or as a

network deployment, each server creates a key store and trust store for the default SSL configuration.

When WebSphere Application Server creates these files, they use a default password (WebAS). Because

the default password is well known, it is important that you change the password to protect the security of

the key store files and the SSL configuration.

You can change the keystore passwords of:

v A single keystore or multiple key stores using a command task

v Multiple keystores using a command task

v A single keystore, using the administrative console

Dynamic outbound selection of Secure Sockets Layer configurations

WebSphere Application Server provides dynamic outbound selection that enables you to choose a specific

Secure Sockets Layer (SSL) configuration and certificate alias for each outbound protocol, target host,

target port, or any combination of these attributes. You can specify the dynamic selection information for

outbound connections from a pure client or from a server that is acting as a client.

Before the SSL runtime for WebSphere Application Server starts an outbound connection, the runtime

attempts to match the outbound protocol, target host, and target port attributes with the dynamic outbound

selection information that is associated with an SSL configuration and certificate alias in the configuration.

The runtime caches both selection misses and selection hits, so the impact on performance can be

minimal. However, a relationship exists between the amount of dynamic outbound selection information

and its impact on the initial connection performance.

Target information during outbound connections

The dynamic outbound selection configurations are only effective when the outbound protocol uses the

JSSEHelper application programming interface (API) when you select an SSL configuration with a

specified connectionInfo hash map. This hash map must contain the following properties:

com.ibm.ssl.direction

The value for outbound connections is OUTBOUND.

com.ibm.ssl.remoteHost

The format should match what the protocol provides. Typically this is the canonical Domain Name

Space (DNS), but it also could be the IP address.

com.ibm.ssl.remotePort

The port is target port.

com.ibm.ssl.endPointName

The value for an outbound connection must be one of the following protocol strings:

v IIOP

v HTTP

v SIP

v LDAP

v ADMIN_SOAP

v BUS_TO_BUS

v BUS_CLIENT

v BUS_TO_WEBSPHERE_MQ

396 Securing applications and their environment

Central management of Secure Sockets Layer configurations

By default, Secure Sockets Layer (SSL) configurations for servers are managed from a central location in

the topology view in the administrative console. You can associate an SSL configuration and certificate

alias with a management scope. This method is the most efficient method to manipulate and modify

configurations when the server topology changes.

In prior releases, SSL configurations are managed in the server.xml file for each process. You have to

edit individual server.xml documents to modify individual SSL configuration aliases in the configuration

topology. In this release of WebSphere Application Server, management control of SSL configurations

offers more flexibility and options. You can make coarse-grained changes using the cell-scope and

fine-grained changes using a particular endpoint name, as defined in the serverindex.xml file for a

specific application server process.

Because SSL configuration associations manifest inheritance behaviors, you can simplify the number of

associations by referencing only the highest level management scope that needs a unique configuration.

Obviously, the security environment influences issues such as SSL configuration uniqueness, and SSL

configuration and certificate alias placement in the topology.

To configure the inbound and outbound topologies, which must be done separately in the administrative

console, click Security > SSL certificates and key management > Manage endpoint security

configurations > Inbound | Outbound.

The topology view provides the scoping mechanism. The SSL configuration inherits its visibility, which is its

display in the topology, at the scope where you created the configuration and at all the scopes beneath

this parent scope. When you create an SSL configuration at a specific node, the configuration can be seen

by that node agent and by every application server that is part of that node. Any application server or node

that is not part of this particular node cannot see this SSL configuration. You can configure different

certificate aliases and SSL configurations for inbound versus outbound connections.

Default centrally-managed SSL configuration

The default management scope is the node scope. When a node is federated into a cell, the default SSL

configurations for the node are maintained, as shown in the following sample code for the sslConfigGroups

and management scopes attributes:

<sslConfigGroups xmi:id="SSLConfigGroup_1" name="myhostNode01"

direction="inbound" certificateAlias="default" sslConfig="SSLConfig_1"

managementScope="ManagementScope_1"/>

<sslConfigGroups xmi:id="SSLConfigGroup_2" name="myhostNode01"

direction="outbound" certificateAlias="default" sslConfig="SSLConfig_1"

managementScope="ManagementScope_1"/>

<managementScopes xmi:id="ManagementScope_1"

scopeName="(cell):myhostNode01Cell:(node):myhostNode01" scopeType="node"/>

The SSL configuration xmi:id ″SSLConfig_1″ is also federated and applicable:

<repertoire xmi:id="SSLConfig_1" alias="NodeDefaultSSLSettings"

managementScope="ManagementScope_1">

<setting xmi:id="SecureSocketLayer_1" clientAuthentication="true"

securityLevel="HIGH" enabledCiphers="" jsseProvider="IBMJSSE2"

sslProtocol="SSL_TLS" keyStore="KeyStore_1" trustStore="KeyStore_2"

trustManager="TrustManager_1" keyManager="KeyManager_1"/>

</repertoire>

The keystores that are associated with the SSLConfig_1 SSL configuration are also federated, and

key.p12 is located in the node directory of the configuration repository:

<keyStores xmi:id="KeyStore_1" name="NodeDefaultKeyStore"

password="{xor}HRYNFAtrbxEwOzpvbhw6MzM=" provider="IBMJCE"

location="${USER_INSTALL_ROOT}/config/cells/myhostNode01Cell/nodes

Chapter 7. Securing communications 397

/myhostNode01/key.p12" type="PKCS12" fileBased="true" hostList=""

initializeAtStartup="true" managementScope="ManagementScope_1"/>

<keyStores xmi:id="KeyStore_2" name="NodeDefaultTrustStore"

password="{xor}HRYNFAtrbxEwOzpvbhw6MzM=" provider="IBMJCE"

location="${USER_INSTALL_ROOT}/config/cells/myhostNode01Cell

/nodes/myhostNode01/trust.p12" type="PKCS12" fileBased="true"

hostList="" initializeAtStartup="true" managementScope="ManagementScope_1"/>

Secure Sockets Layer node, application server, and cluster isolation

Secure Sockets Layer (SSL) enables you to ensure that any client that attempts to connect to a server

during the handshake first performs server authentication. You can isolate communications between

servers that must not communicate with each other over secure ports using SSL configurations at the

node, application server, and cluster scopes.

Before you attempt to isolate communications controlled by WebSphere Application Server, you must have

a good understanding of the deployment topology and application environment. To isolate a node,

application server, or cluster, you must be able to control the signers that are contained in the trust stores

that are associated with the SSL configuration. When the client does not contain the server signer, it

cannot establish a connection to the server. If you use self-signed certificates, the server that created the

personal certificate controls the signer, although you do have to manage the self-signed certificates. If you

obtain certificates from a certificate authority (CA), you must obtain multiple CA signers because all of the

servers can connect to each other if they share the same signer.

Authenticating only the server-side of a connection is not adequate protection when you need to isolate a

server. Any client can obtain a signer certificate for the server and add it to its trust store. SSL client

authentication must also be enabled between servers so that the server can control its connections by

deciding which client certificates it can trust. For more information, see tsec_sslclientauthinbound.dita,

which applies as well to enabling SSL client authentication at the cell level.

Isolation also requires that you use centrally managed SSL configurations for all or most endpoints in the

cell. Centrally managed configurations can be scoped, unlike direct or end point configuration selection,

and they enable you to create SSL configurations, key stores, and trust stores at a particular scope.

Because of the inheritance hierarchy of WebSphere Application Server cells, if you select only the

properties that you need for an SSL configuration, only these properties are defined at your selected

scope or lower. For example, if you configure at the node scope, your configuration applies to the

application server and individual end point scopes below the node scope. For more information, see

tsec_sslassocconfigscope.dita, tsec_sslselconfigdirect.dita, and tsec_sslassocconfigout.dita

When you configure the key stores, which contain cryptographic keys, you must work at the same scope

at which you define the SSL configuration and not at a higher scope. For example, if you create a key

store that contains a certificate whose host name is part of the distinguished name (DN), then store that

keystore in the node directory of the configuration repository. If you decide to create a certificate for the

application server, then store that keystore on the application server in the application server directory.

When you configure the trust stores, which control trust decisions on the server, you must consider how

much you want to isolate the application servers. You cannot isolate the application servers from the node

agents or the deployment manager. However, you can configure the SOAP connector end points with the

same personal certificate or to share trust. Naming persistence requires IIOP connections when they pass

through the deployment manager. Because application servers always connect to the node agents when

the server starts, the IIOP protocol requires that WebSphere Application Server establish trust between the

application servers and the node agents.

Establishing node SSL isolation

By default, WebSphere Application Server uses a single self-signed certificate for each node so you can

isolate nodes easily. A common trust store, which is located in the cell directory of the configuration

398 Securing applications and their environment

tsec_sslclientauthinbound.dita
tsec_sslassocconfigscope.dita
tsec_sslselconfigdirect.dita
tsec_sslassocconfigout.dita

repository, contains all of the signers for each node that is federated into the cell. After federation, each

cell process trusts all of the other cell processes because every SSL configuration references the common

trust store.

You can modify the default configuration so that each node has its own trust store, and every application

server on the node trusts only the node agent that uses the same personal certificate. You must also add

the signer to the node trust store so that WebSphere Application Server can establish trust with the

deployment manager. To isolate the node, ensure that the following conditions are met:

v The deployment manager must initiate connections to any process

v The node agent must initiate connections to the deployment manager and its own application servers

v The application servers must initiate connections to the applications servers on the same node, to its

own node agent, and the deployment manager

Figure 1 shows Node Agent A contains a key.p12 keystore and a trust.p12 trust store at the node level of

the configuration repository for node A.

server1

Dmgr

Node

Agent

(A)

Node

Agent

(B)

server2

server1

server2

key.p12

cell key

key.p12

nodeA key

key.p12

nodeB key
trust.p12

cell signer

nodeA signer

nodeB signer

trust.p12

nodeA signer
cell signer

trust.p12

nodeB signer
cell signer

server1

Dmgr

Node

Agent

(A)

server2

server1

server2

Figure 1: SSL Node Isolation

Node

Agent

(B)

When you associate an SSL configuration with this keystore and truststore, you break the link with the

cell-scoped trust store. To isolate the node completely, repeat this process for each node in the cell.

WebSphere Application Server SSL configurations override the cell scope and use the node scope instead

so that each process at this scope uses the SSL configuration and certificate alias that you selected at this

scope. You establish proper administrative trust by ensuring that nodeA signer is in the common trust store

and the cell signer is in the nodeA trust store. The same logic applies to node B as well. For more

information, see tsec_sslassocconfigscope.dita.

Figure 4.

Chapter 7. Securing communications 399

tsec_sslassocconfigscope.dita

Establishing application server SSL isolation

Isolating application server processes from one another is more challenging than isolating nodes. You

must consider the following application design and topology conditions:

v An application server process might need to communicate with the node agent and deployment

manager

v Isolating application server processes from each other might disable single sign-on capabilities for

horizontal propagation

If you configure outbound SSL configurations dynamically, you can accommodate these conditions. When

you define a specific outbound protocol, target host, and port for each different SSL configuration, you can

override the scoped configuration.

Figure 2 shows how you might isolate an application server completely, although in practice this approach

would be more complicated.

 key.p12

nodeAserver1 key

server1

Dmgr

Node

Agent

(A)

Node

Agent

(B)

server2

server1

server2

key.p12

cell key

key.p12

nodeA key

key.p12

nodeB key
trust.p12

cell signer

nodeA signer

nodeB signer

trust.p12

nodeA signer

nodeAserver1 signer

nodeAserver2 signer

cell signer

trust.p12

nodeB signer

nodeBserver1 signer

nodeBserver2 signer

cell signer

key.p12

nodeAserver1 signer

nodeA signer

cell signer

key.p12

nodeAserver2key

key.p12

nodeAserver2 signer

nodeA signer

cell signer

key.p12

nodeBserver1 key

key.p12

nodeBserver1 signer

nodeB signer

cell signer

key.p12

nodeBserver2 key

key.p12

nodeBserver2 signer

nodeB signer

cell signer

server1

Dmgr

Node

Agent

(A)

server2

server1

server2

Figure 2: SSL Application Server Isolation

Node

Agent

(B)

The dynamic configuration enables server1 on Node A to communicate with server 1 on Node B only over

IIOP. The dynamic outbound rule is IIOP,nodeBhostname,*. For more information, see

tsec_sslassocconfigout.dita

Establishing cluster SSL isolation

You can configure application servers into clusters instead of scoping them centrally at the node or

dynamically at the server to establish cluster SSL isolation. While clustered servers can communicate with

each other, application servers outside of the cluster cannot communicate with the cluster, thus isolating

the clustered servers. For example, you might need to separate applications from different departments

Figure 5.

400 Securing applications and their environment

tsec_sslassocconfigout.dita

while maintaining a basic level of trust among the clustered servers. Using the dynamic outbound SSL

configuration method described for servers above, you can easily extend the isolated cluster as needed.

Figure 3 shows a sample cluster configuration where cluster 1 contains a key.p12 with its own self-signed

certificate, and a trust.p12 that is located in the config/cells/<cellname>/clusters/<clustername> directory.

server1

Dmgr

Node

Agent

(A)

server2

server1

server2

Figure 3: SSL Cluster Isolation

key.p12
cell key

key.p12
nodeA key

key.p12
nodeB key

trust.p12
cell signer
nodeA signer
nodeB signer

trust.p12
nodeA signer
cluster1 signer
cluster2 signer
cell signer

trust.p12
nodeB signer
cluster1 signer
cluster2 signer
cell signer

Cluster 1

Cluster 2

key.p12
cluster1 key

trust.p12
cluster1 key
nodeA signer
nodeB signer
cell signer

trust.p12
cluster2 key
nodeA signer
nodeB signer
cell signer

key.p12
cluster2 key

server1

Dmgr

Node

Agent

(A)

server2

server1

server2

Cluster 1

Cluster 2

Node

Agent

(B)

In the example, cluster1 might contain web applications, and cluster2 might contain EJB applications.

Considering the various protocols, you decide to enable IIOP traffic between the two clusters. Your task is

to define a dynamic outbound SSL configuration at the cluster1 scope with the following properties:

IIOP,nodeAhostname,9403|IIOP,nodeAhostname,9404|IIOP,nodeBhostname,9403|IIOP,nodeBhostname,9404

You must create another SSL configuration at the cluster1 scope that contains a new trust.p12 file with the

cluster2 signer. Consequently, outbound IIOP requests go either to nodeAhostname ports 9403 and 9404

or to nodeBhostname ports 9403 and 9404. The IIOP SSL port numbers on these two application server

processes in cluster2 identify the ports.

As you review Figure 3, notice the following features of the cluster isolation configuration:

v The trust.p12 for cluster1 contains signers that allow communications with itself (cluster1 signer),

between both node agents (nodeAsigner and nodeBsigner), and with the deployment manager (cell

signer).

v The trust.p12 for cluster2 contains signers that allow communications with itself (cluster2 signer),

between both node agents (nodeAsigner and nodeBsigner), and with the deployment manager (cell

signer).

v Node agent A and Node agent B can communicate with themselves, the deployment manager, and both

clusters.

For more information, see tsec_sslassocconfigout.dita.

Figure 6.

Chapter 7. Securing communications 401

tsec_sslassocconfigout.dita

Although this article presents an overview of isolation methods from an SSL perspective, you must also

ensure that non-SSL ports are closed or applications require the confidentiality constraint in the

deployment descriptor. For example, you can set the CSIv2 inbound transport panel to require SSL and

disable the channel ports that are not secure from the server ports configuration.

Also, you must enable SSL client authentication for SSL to enforce the isolation requirements on both

sides of a connection. Without mutual SSL client authentication, a client can easily obtain a signer for the

server programmatically and thus bypass the goal of isolation. With SSL client authentication, the server

would require the client’s signer for the connection to succeed. For HTTP/S protocol, the client is typically

a browser, a Web Service, or a URL connection. For the IIOP/S protocol, the client is typically another

application server or a Java client. WebSphere Application Server must know the clients to determine if

SSL client authentication enablement is possible. Any applications that are available through a public

protocol must not enable SSL client authentication because the client may fail to obtain a certificate to

authenticate to the server.

Note: It is beyond the scope of this article to describe all of the factors you must consider to achieve

complete isolation.

Default self-signed certificate configuration

When a WebSphere Application Server process starts for the first time, the Secure Sockets Layer (SSL)

runtime initializes the default keystores and truststores that are specified in the SSL configuration.

Default keystore and truststore properties

WebSphere Application Server creates the key.p12 default keystore file and the trust.p12 default truststore

file during profile creation. A default, self-signed certificate is also created in the key.p12 file at this time.

The signer or public key is extracted from the key.p12 file and added to the trust.p12 file. If the files do not

exist during process startup, they are recreated during startup.

You can easily identify keystore and truststore defaults because of their suffixes: DefaultKeyStore and

DefaultTrustStore. Also, in the SSL configuration, you must set the fileBased attribute to true so that the

runtime uses the default keystores and truststores only.

On a base application server, default key and truststores are stored in the node directory of the

configuration repository. For example, the default key.p12 and trust.p12 stores are created with the

AppSrv01 profile name, the myhostNode01Cell name, and the myhostNode01 node name. The key and

truststores are located in the following directories:

C:\WebSphere\AppServer\profiles\AppSrv01\config\cells\myhostNode01Cell

\nodes\myhostNode01\key.p12

C:\WebSphere\AppServer\profiles\AppSrv01\config\cells\myhostNode01Cell

\nodes\myhostNode01\trust.p12

The default password is WebAS for all default keystores generated by WebSphere Application Server.

Change the default password after the initial configuration for a more secure environment.

Default self-signed certificate

The default self-signed certificate is created during profile creation for both the server and client for that

profile.

You can recreate the certificates with different information simply by deleting the *.p12 files in /config and

/etc. Change the four properties below to the values you want the certificates to contain, then restart the

processes. This causes the server certificate in /config and the client certificate in /etc to differ.

If you want to set up SSL client authentication between the client and server, you must perform a signer

exchange. The certificate properties below that exist in the ssl.client.props file do not exist in the server

402 Securing applications and their environment

configuration. However, you can use these values in the server configuration by adding them as custom

security properties in the administrative console. The certificate properties appear in the ssl.client.props

file, but do not appear in the server configuration. However, you can modify these values in the server

configuration by adding them as custom properties in the administrative console.

Click Security > Secure administration, applications, and infrastructure > Custom properties to

change the following properties:

com.ibm.ssl.defaultCertReqAlias=default_alias

com.ibm.ssl.defaultCertReqSubjectDN=cn=${hostname},o=IBM,c=US

com.ibm.ssl.defaultCertReqDays=365

com.ibm.ssl.defaultCertReqKeySize=1024

If a default_alias value already exists, the runtime appends _#, where the number sign (#) is a number that

increments until it is unique in the keystore. ${hostname} is a variable that is resolved to the host name

where it was originally created. The default expiration date of self-signed certificates is one year from their

creation date.

The runtime monitors the expiration dates of self-signed certificates using the Certificate Expiration

Monitor. These self-signed certificates are automatically replaced along with the signer certificates when

they are within the expiration threshold, which is typically 30 days before expiration. You can increase the

default key size beyond 1024 bits only when the Java Runtime Environment policy files are unrestricted,

that is, not exported. For more information, see csec_sslcertmonitoring.dita.

Default keystore and truststore configurations for new Base Application Server

processes

The following sample code shows the default SSL configuration for a base application server. References

to the default keystores and truststores files are highlighted.

<repertoire xmi:id="SSLConfig_1" alias="NodeDefaultSSLSettings"

managementScope="ManagementScope_1">

<setting xmi:id="SecureSocketLayer_1" clientAuthentication="false"

securityLevel="HIGH" enabledCiphers="" jsseProvider="IBMJSSE2" sslProtocol="SSL_TLS"

keyStore="KeyStore_1" trustStore="KeyStore_2" trustManager="TrustManager_1"

keyManager="KeyManager_1"/>

</repertoire>

Default keystore

In the following sample code, the keystore object that represents the default keystore is similar to the XML

object.

<keyStores xmi:id="KeyStore_1" name="NodeDefaultKeyStore"

password="{xor}349dkckdd=" provider="IBMJCE" location="${USER_INSTALL_ROOT}/config

/cells/myhostNode01Cell/nodes/myhostNode01/key.p12" type="PKCS12" fileBased="true"

hostList="" initializeAtStartup="true" managementScope="ManagementScope_1"/>

The NodeDefaultKeyStore keystore contains the personal certificate that represents the identity of the

secure endpoint. Any keystore reference can use the ${USER_INSTALL_ROOT} variable, which is

expanded by the runtime. The PKCS12 default keystore type is in the most interoperable format, which

means that it can be imported into most browsers. The myhostNode01Cell password is encoded.

The management scope determines which server runtime loads the keystore configuration into memory, as

shown in the following code sample:

<managementScopes xmi:id="ManagementScope_1" scopeName="

(cell):myhostNode01Cell:(node):myhostNode01" scopeType="node"/>

Chapter 7. Securing communications 403

csec_sslcertmonitoring.dita

Any configuration objects that are stored in the security.xml file whose management scopes are outside

the current process scope are not loaded in the current process. Instead, the management scope is

loaded by servers that are contained within the myhostNode01 node. Any application server that is on the

specific node can view the keystore configuration.

When you list the contents of the key.p12 file to show the self-signed certificate, note that the common

name (CN) of the distinguished name (DN) is the host name of the resident machine. This listing enables

you to verify the host name by its URL connections. Additionally, you can verify the host name from a

custom trust manager. For more information, see csec_sslx509certtrustdecisions.dita.

Contents of default keystore

The following sample code shows the contents of the default key.p12 file in a keytool list:

keytool -list -keystore c:\WebSphere\AppServer\profile\AppSrv01\profiles\config

\cells\myhostNode01Cell\nodes\myhostNode01\key.p12 -storepass myhostNode01Cell

-storetype PKCS12 -v

Alias name: default

Entry type: keyEntry

Owner: CN=myhost.austin.ibm.com, O=IBM, C=US

Issuer: CN=myhost.austin.ibm.com, O=IBM, C=US

Valid from: 10/18/05 4:06 PM until: 10/18/06 4:06 PM

Certificate fingerprint:

 SHA1: 33:6E:9E:10:65:04:CE:7A:6C:C3:B1:79:8B:9A:05:49:AC:E5:67:F3

The default alias name and the keyEntry entry type indicate that the private key is stored with the public

key, which represents a complete personal certificate. The certificate is owned by

CN=myhost.austin.ibm.com, O=IBM, C=US and it is issued by the same entity, which is self-signed. By

default, the certificate is valid for one year from the date of creation.

Additionally, in some signer-exchange situations, the certificate fingerprint ensures that the sent certificate

has not been modified. The fingerprint, which is a hash algorithm output for the certificate, is displayed by

the WebSphere Application Server runtime during an automated signer exchange on the client side. The

client fingerprint must match the fingerprint that is displayed on the server. The runtime typically uses the

SHA1 hash algorithm to generate certificate fingerprints.

Default truststore

In the following sample code, the keystore object represents the default trust.p12 truststore. The truststore

contains signer certificates that are necessary for making trust decisions:

<keyStores xmi:id="KeyStore_2" name="NodeDefaultTrustStore"

password="{xor}349dkckdd=" provider="IBMJCE" location="${USER_INSTALL_ROOT}

/config/cells/myhostNode01Cell/nodes/myhostNode01/trust.p12" type="PKCS12"

fileBased="true" hostList="" initializeAtStartup="true" managementScope="ManagementScope_1"/>

Contents of default truststore

The following sample code shows the contents of the default trust.p12 truststore in a keytool listing. For

the sample self-signed certificate, the default_signer alias name and the trustedCertEntry entry type

indicate that the certificate is the public key. The private key is not stored in this truststore.

keytool -list -keystore c:\WebSphere\AppServer\profile\AppSrv01\profiles\config

\cells\myhostNode01Cell\nodes\myhostNode01\trust.p12 -storepass myhostNode01Cell

-storetype PKCS12 -v

Alias name: default_signer

Entry type: trustedCertEntry

Owner: CN=myhost.austin.ibm.com, O=IBM, C=US

Issuer: CN=myhost.austin.ibm.com, O=IBM, C=US

404 Securing applications and their environment

csec_sslx509certtrustdecisions.dita

Valid from: 10/18/05 4:06 PM until: 10/18/06 4:06 PM

Certificate fingerprint:

 SHA1: 33:6E:9E:10:65:04:CE:7A:6C:C3:B1:79:8B:9A:05:49:AC:E5:67:F3

Secure installation for client signer retrieval

Each profile in the WebSphere Application Server environment contains a unique self-signed certificate

that was created when the profile was created. This certificate replaces the default dummy certificate that

ships with WebSphere Application Server in releases prior to version 6.1. When a profile is federated to a

deployment manager, the signer for that self-signed certificate is added to the common truststore for the

cell.

By default, clients do not trust servers from different profiles in the WebSphere Application Server

environment. That is, they do not contain the signer for these servers. There are some things that you can

do to assist in establishing this trust:

1. Enable the signer exchange prompt to except the signer during the connection attempt.

2. Run the retrieveSigners utility to download the signers from that system prior to making the

connection.

3. Copy the trust.p12 file from the /config/cells/<cell_name>/nodes/<node_name> directory of the

server profile to the /etc directory of the client. Update the SSL configuration to reflect the new file

name and password, if they are different. Copying the file provides the client with a trust.p12 that

contains all signers from servers in that cell. Also, you might need to perform this step for back-level

clients that are still using the DummyClientTrustFile.jks file. In this case, you might need to change

the sas.client.props or soap.client.props file to reflect the new truststore, truststore password, and

truststore type (PKCS12).

For clients to perform an in-band signer exchange, you must specify the ssl.client.props file as a

com.ibm.SSL.ConfigURL property in the SSL configuration. For managed clients, this is done

automatically. Signers are designated either as in-band during the connection or out-of-band during

runtime. You must also set the com.ibm.ssl.enableSignerExchangePrompt attribute to true.

Tip: You can configure a certificate expiration monitor to replace server certificates that are about to

expire. For more information about how clients can retrieve the new signer from the configuration,

see csec_sslcertmonitoring.dita.

Using the signer exchange prompt to retrieve signers from a client

When the client does not already have a signer to connect to a process, you can enable the signer

exchange prompt if you want to be able to accept the signer during the connection attempt. The prompt

displays once for each unique certificate and for each node. After the signer for the node is added, the

signer remains in the client truststore. The following sample code shows the signer exchange prompt

retrieving a signer from a client:

C:\WASX_e0540.11\AppServer\profiles\AppSrv01\bin\serverStatus -all

ADMU0116I: Tool information is being logged in file

 C:\WASX_e0540.11\AppServer\profiles\AppSrv01\logs\serverStatus.log

ADMU0128I: Starting tool with the AppSrv01 profile

ADMU0503I: Retrieving server status for all servers

ADMU0505I: Servers found in configuration:

ADMU0506I: Server name: dmgr

*** SSL SIGNER EXCHANGE PROMPT ***

SSL signer from target host 192.168.1.5 is not found in truststore

C:\WebSphere\AppServer\profiles\AppSrv01\etc\trust.p12.

Here is the signer information (verify the digest value matches what is

displayed at the server):

Subject DN: CN=myhost.austin.ibm.com, O=IBM, C=US

Issuer DN: CN=myhost.austin.ibm.com, O=IBM, C=US

Chapter 7. Securing communications 405

csec_sslcertmonitoring.dita

Serial number: 1128544457

Expires: Thu Oct 05 15:34:17 CDT 2006

SHA-1 Digest: 91:A1:A9:2D:F2:7D:70:0F:04:06:73:A3:B4:A4:9C:56:9D:A8:A3:BA

MD5 Digest: 88:72:C5:88:00:1C:A7:FA:D6:EB:04:88:AC:A1:C9:13

Add signer to the truststore now? (y/n) y

A retry of the request may need to occur.

ADMU0508I: The Deployment Manager "dmgr" is STARTED

To automate this process, see rxml_retrievesigners.dita.

When a prompt occurs to accept the signer, a socket timeout can occur and the connection might be

broken. For this reason, the message A retry of the request may need to occur. displays after

answering the prompt. The message informs the user to resubmit the request. This problem should not

happen frequently, and it might be more prevalent for some protocols than others.

Verify the displayed SHA-1 digest, which is the signature of the certificate that is sent by the server. If you

look at the certificate on the server, verify that the same SHA-1 digest displays.

You can disable the prompt when you do not want it to display by running the retrieveSigners utility to

retrieve all of the signers for a particular cell. You can download or upload the signers from any remote

keystore to any local keystore by referencing a common truststore with this client script. For more

information, see csec_ssldefselfsigncertconf.dita.

Using the retrieveSigners utility to download signers for a client

You can run the retrieveSigners utility to retrieve all of the signers from the remote keystore for a

specified client keystore.

The typical remote keystore to reference is NodeDefaultTrustStore.

The truststore contains the signers that enable the client to connect to its processes. The retrieveSigners

utility can point to any keystore in the target configuration, within the scope of the target process, and can

download the signers (certificate entries only) to any client keystore in the ssl.client.props file.

Obtaining signers for clients and servers from a previous release

When a client from a release prior to version 6.1 connects to the current release, the client must obtain

signers for a successful handshake. Clients using previous releases of WebSphere Application Server

cannot obtain signers as easily as in the current release. You can copy the deployment manager common

truststore to your back-level client or server, and then re-configure the SSL configuration to directly

reference that truststore. This common truststore of type PKCS12 is located in the /config/cells/
<cell_name>/nodes/<node_name> directory in the configuration repository and has a default password of

WebAS.

To collect all of the signers for the cell in a single trust.p12 keystore file, complete following steps:

1. Copy the trust.p12 keystore file on the server and replicate it on the client. The client references the

file directly from the sas.client.props and soap.client.props files that specify the SSL properties for

previous releases.

2. Change the client-side keystore password so that it matches the default cell name that is associated

with the copied keystore.

3. Change the default keystore type for the trust.p12 file to PKCS12 in the client configuration.

The following two code samples show you a before and an after view of the changes to make.

Default SSL configuration of sas.client.props for a previous release

406 Securing applications and their environment

rxml_retrievesigners.dita
csec_ssldefselfsigncertconf.dita

com.ibm.ssl.protocol=SSL

com.ibm.ssl.keyStore=file\:///

C\:/SERV1_601_0208/AppServer/profiles/AppSrv01/etc/DummyClientKeyFile.jks

com.ibm.ssl.keyStorePassword={xor}CDo9Hgw\=

com.ibm.ssl.keyStoreType=JKS

com.ibm.ssl.trustStore=file\:///

C\:/SERV1_601_0208/AppServer/profiles/AppSrv01/etc/DummyClientTrustFile.jks

com.ibm.ssl.trustStorePassword={xor}CDo9Hgw\=

com.ibm.ssl.trustStoreType=JKS

SSL configuration changes that are required to common truststore file in the /etc directory of the

client

com.ibm.ssl.protocol=SSL

com.ibm.ssl.keyStore=file\:///

C\:/SERV1_601_0208/AppServer/profiles/AppSrv01/etc/DummyClientKeyFile.jks

com.ibm.ssl.keyStorePassword={xor}CDo9Hgw\=

com.ibm.ssl.keyStoreType=JKS

com.ibm.ssl.trustStore=file\:///

C\:/SERV1_601_0208/AppServer/profiles/AppSrv01/etc/trust.p12

com.ibm.ssl.trustStorePassword=myhostNode01Cell

com.ibm.ssl.trustStoreType=PKCS12

You can also make these changes in the soap.client.props file and specify the key.p12 file in place of

the DummyClientKeyFile.jks file. However, you must also change the keyStorePassword and

keyStoreType values to match those in the default key.p12 file.

In releases of WebSphere Application Server prior to version 6.1, you must edit the SSL configuration on

the server to replace the common truststore. The trust.p12 file, which is used by the server, also must

contain the default dummy certificate signer for connections among servers at previous release levels. You

might need to manually extract the default certificate from the DummyServerKeyFile.jks file and hen import

the certificate into the trust.p12 file that you added to the configuration.

retrieveSigners command: The retrieveSigners command creates a new client self-signed certificate,

keystore, and SSL configuration in the ssl.client.props file. Using this command you can optionally extract

the signer to a file.

For more information about where to run this command, see the Using command tools article.

Syntax

The command syntax is as follows:

retrieveSigners <remoteKeyStoreName> <localKeyStoreName> [options]

where the <remoteKeyStoreName> and <localKeyStoreName> parameters are required. The optional

parameters include the following:

[-remoteAlias aliasFromRemoteStore]

[-localAlias storeAsAlias]

[-listRemoteKeyStoreNames][-listLocalKeyStoreNames]

[-autoAcceptBootstrapSigner][-uploadSigners] [-host host]

[-port port][-conntype RMI|SOAP][-user user]

[-password password]

[-trace] [-logfile filename]

[-replacelog] [-quiet] [-help]

Parameters

The following parameters are available for the retrieveSigners command:

-remoteKeyStoreName

The name of a truststore that is located in the server configuration from which to retrieve the signers.

Chapter 7. Securing communications 407

This will typically be the CellDefaultTrustStore file for an managed environment or the

NodeDefaultTrustStore file for an unmanaged environment.

-localKeyStoreName

The name of the truststore that is located in the ssl.client.props file for the profile to which the

retrieved signers is added. This will typically be the ClientDefaultTrustStore file for either a managed or

unmanaged environment.

-remoteAlias <aliasFromRemoteStore>

Specifies one alias from the remote truststore that you want to retrieve. Otherwise, all signers from the

remote truststore will be retrieved.

-localAlias <storeAsAlias>

Determines the name of the alias stored in the local truststore. This option is only valid if you specify

the –remoteAlias option. If you do not specify the -localAlias option, the alias name from the remote

truststore will be used, if possible. If an alias clash occurs, the alias name will be used and it will have

an incremented number appended to the end of it until it finds a unique alias.

-listRemoteKeyStoreNames

Sends a remote request to the server to list all keystores that you can specify for the

remoteKeyStoreName parameter. Use this command when you are unsure of the name of the remote

truststore that you want to download the signers from.

-listLocalKeyStoreNames

Lists the keystores located in the ssl.client.props file that you can specify for the localKeyStoreName

parameter. This truststore will receive the signers from the server. Use this parameter when you are

unsure of the name of the local truststore that you want to retrieve the signers into. The default name

of the truststore is ClientDefaultTrustStore and is located in the ssl.client.props file.

-autoAcceptBootstrapSigner

Automatically adds a signer in order to make a secure connection to the server. The purpose of the

option is to allow automation of the command so that you do not need to accept the signer. After the

signer is added to the local truststore, a SHA hash will print so that you can verify the certificate.

-uploadSigners

Converts the signer download into a signer upload. The signers from the localKeyStoreName

parameter will be sent to the remoteKeyStoreName parameter instead.

-host <host>

Specifies the target host from which the signers will be retrieved.

-port <port>

Specifies the target administrative port to which to connect. You must specify the port based on the

-conntype parameter. If the conntype is SOAP, the default port is 8879. This can vary for different

servers. If the conntype is RMI, the default port is 2809. This can vary for different servers.

-conntype <RMI|Soap>

Determines the administrative connector type that is used for the MBean call to retrieve the signers.

-user <user>

When global security is enabled, you can specify this option to supply the user name that will be

authenticated for the MBean operation. This must be an identity with administrator authority. If you do

not specify this parameter when global security is enabled, you will be prompted for credentials by

default.

-password <password>

When global security is enabled, you can specify this option to supply the password that will be

authenticated for the MBean operation. The password goes along with the –user parameter.

-trace

When specified, this enables tracing of the trace specification necessary to debug this component. By

default, the trace will appear in the profiles/profile_name/log/retrieveSigners.log. file.

408 Securing applications and their environment

-logfile <filename>

Overrides the default trace file. By default, the trace will appear in the profiles/profile_name/log/
retrieveSigners.log. file.

-replacelog

Causes the existing trace file to be replaced when the command is executed.

-quite

Suppresses most messages from printing out on the console.

-help

Prints a usage statement.

-? Prints a usage statement.

Usage scenario

The following examples demonstrate correct syntax:

v The following example lists remote and local keystores:

retrieveSigners.bat -listRemoteKeyStoreNames -listLocalKeyStoreNames -conntype RMI -port 2809 [Windows]

retrieveSigners.sh -listRemoteKeyStoreNames -listLocalKeyStoreNames -conntype RMI -port 2809 [Unix]

Example output

CWPKI0306I: The following remote keystores exist on the specified server:

 CMSKeyStore, NodeLTPAKeys, NodeDefaultTrustStore, NodeDefaultKeyStore

CWPKI0307I: The following local keystores exist on the client:

 ClientDefaultKeyStore, ClientDefaultTrustStore

v The following example retrieves all signers from NodeDefaultTrustStore:

retrieveSigners.bat NodeDefault TrustStore ClientDefaultTrustStore -autoAcceptBootstrapSigner

-conntype RMI -port 2809 [Windows]

retrieveSigners.sh NodeDefault TrustStore ClientDefaultTrustStore -autoAcceptBootstrapSigner

-conntype RMI -port 2809 [Unix]

Example output

CWPKI0308I: Adding signer alias "CN=BIRKT40.austin.ibm.com, O=IBM, C=US" to

 local keystore "ClientDefaultTrustStore" with the following SHA

 digest: 40:20:CF:BE:B4:B2:9C:F0:96:4D:EE:E5:14:92:9E:37:8D:51:A5:47

Certificate expiration monitoring

The certificate expiration monitor administrative task cycles through all the keystores that are configured in

the security.xml file and reports on any certificates that expire within a specified threshold, which is

typically within 30 days.

The default self-signed certificate on each node expires 365 days after creation. You can modify the

certificate validity period by changing the default value for the com.ibm.ssl.defaultCertReqDays=365

property in the ssl.client.props global property area for clients. You can also specify this property as a

security custom property on the administrative console. Click Security > Secure administration,

applications, and infrastructure > Custom properties.

The certificate expiration monitor task runs under a base application server process when the process is

not federated.

You can configure this monitor task to run according to a particular schedule. The schedule produces the

next start date that persists in the configuration and, when the date is reached, WebSphere Application

Server starts the monitor to check all of the keystores for certificates that meet the expiration threshold.

You can start the task manually to run at any time.

Chapter 7. Securing communications 409

The following security.xml configuration object specifies when the monitor task starts, determines the

certificate expiration threshold, and indicates whether you are notified in an e-mail using Simple Mail

Transfer Protocol (SMTP) or in a message log.

<wsCertificateExpirationMonitor xmi:id="WSCertificateExpirationMonitor_1"

name="Certificate Expiration Monitor" daysBeforeNotification="30"

isEnabled="true" autoReplace="true" deleteOld="true"

wsNotification="WSNotification_1" wsSchedule="WSSchedule_2"

nextStartDate="1134358204849"/>

The expiration monitor automatically replaces only self-signed certificates that meet the expiration

threshold criteria. To replace all of the signers from the old certificate with the signer that belongs to the

new certificate in all the keystores in the configuration for that cell, set the autoReplace attribute to true.

When the deleteOld attribute is true, the old personal certificate and old signers also are deleted from the

keystores. The isEnabled attribute determines whether the expiration monitor task runs based upon the

nextStartDate attribute that is derived from the schedule. The nextStartDate attribute is derived from the

schedule in milliseconds since 1970, and is identical to the System.currentTimeMillis(). If the nextStartDate

has already passed when an expiration monitor process begins, and the expiration monitor is enabled, the

task is started, but a new nextStartDate value is established based on the schedule.

The following sample code shows the frequency attribute as the number of days between each run.

<wsSchedules xmi:id="WSSchedule_2" name="ExpirationMonitorSchedule"

frequency="30" dayOfWeek="1" hour="21" minute="30"/>

The dayOfWeek attribute adjusts the schedule to run on a specified day of the week, which is always the

same day regardless of whether the frequency is set to 30 or 31 days. Based on 24-hour clock, the hour

and minute attributes determine when the expiration monitor is started on the specified day.

The following sample code shows the notification configuration, which notifies you after the expiration

monitor runs.

<>wsNotifications xmi:id="WSNotification_1" name="MessageLog" logToSystemOut="true" emailList=""/

For expiration monitor notifications, you can select message log, e-mail using SMTP server, or both

methods of notification. When you configure the e-mail option, use the format user@domain@smtpserver. If

you do not specify an SMTP server, WebSphere Application Server defaults to the same domain as the

e-mail address. For example, if you configure joeuser@ibm.com, WebSphere Application Server attempts

to call smtp-server.ibm.com. To specify multiple e-mail addresses using scripting, you must add a pipe (|)

character between entries. When you specify the logToSystemOut attribute, the expiration monitor results

are sent to the message log for the environment, which is typically the SystemOut.log file.

Web server plug-in default configuration

When you create a new Web server definition, WebSphere Application Server associates the Web server

plug-in with a Certificate Management Services (CMS) keystore for a specific node. The keystore contains

all of the signers for the current cell with the self-signed certificate, which belongs to the node. The plug-in

can communicate securely to WebSphere Application Server, even when the plug-in is configured with

Secure Sockets Layer (SSL) client authentication enabled.

When you set the Web server definition to webserver1 on node myhostNode01, WebSphere Application

Server creates the keystore configuration. The keystore is scoped to the webserver1 server, which makes

it visible to this server only. Other processes cannot use this keystore definition.

The following sample code from the security.xml file shows the configuration entries for the Web server

plug-in.

<keyStores xmi:id="KeyStore_1132357815719" name="CMSKeyStore"

password="{xor}HRYNFAtrbxEwOzpvbhw6MzM=" provider="IBMCMSProvider"

location="C:\WASX_e0540.11\AppServer\profiles\AppSrv01/config/cells

/myhostCell01/nodes/myhostNode01/servers/webserver1/plugin-key.kdb"

type="CMSKS" fileBased="true" createStashFileForCMS="true"

410 Securing applications and their environment

managementScope="ManagementScope_1132357815718"/>

<managementScopes xmi:id="ManagementScope_1132357815718" scopeName="

(cell):myhostCell01:(node):myhostNode01:(server):webserver1" scopeType="server"/>

The following sample code shows how the CMS keystore and stash file are generated in the security.xml

file.

C:\WebSphere\AppServer\profiles\Dmgr01\config\cells\myhostCell01\nodes

\myhostNode01\servers\webserver1\plugin-key.kdb

C:\WebSphere\AppServer\profiles\Dmgr01\config\cells\myhostCell01

\nodes\myhostNode01\servers\webserver1\plugin-key.sth

The default password for the keystore is WebAS. You can change the default keystore password by using

either the administrative console or the appropriate AdminTask command. The following sample code

shows the AdminTask command that you can use to create this CMS keystore.

$AdminTask createCMSKeyStore /config/cells/myhostCell01/nodes/myhostNode01

/servers/webserver1/plugin-key.kdb myhost.austin.ibm.com

Note the following characteristics of the previous example:

v You can create only one CMSKeyStore entry for each management scope. If a CMS keystore already

exists for scope (cell):myhostCell01:(node):myhostNode01:(server):webserver1, then you cannot create

another CMSKeyStore entry

v The Uniform Resource Identifier (URI) for the keystore name is /config/cells/myhostCell01/nodes/
myhostNode01/servers/webserver1/plugin-key.kdb

v The host name in the plug-in location is myhost.austin.ibm.com. WebSphere Application Server uses

this name to create a self-signed certificate, if a self-signed certificate does not already exist for that

particular node. If a self-signed certificate already exists for the node, then the certificate is put into the

CMS keystore and all the signers from the cell are added, by default.

When additional nodes are federated, the signers for these nodes are not automatically added to each

Web server for the CMS keystore. For the Web server plug-in to be able to communicate with a newly

federated node, you must manually exchange signers with the CMSKeyStore keystore. Use the

administrative console keystore certificate management function to exchange signers. For more

information, see “Extracting a signer certificate from a personal certificate” on page 471.

Dynamic configuration updates

During the Secure Sockets Layer (SSL) runtime, dynamic configuration updates affect both inbound and

outbound SSL endpoints. For inbound SSL endpoints, the changes that are implemented by the SSL

channel are only affected by dynamic changes. For outbound SSL endpoints, all outbound connections

inherit the new configuration changes.

In this release, dynamic update functionality provides you with greater flexibility and efficiency. You can

change SSL configurations without restarting WebSphere Application Server for the changes to take effect.

To make dynamic changes, in the administrative console click Security > SSL certificates and key

management, then select the Dynamically update the runtime when SSL configuration changes

occur check box. You must save your changes and then synchronize the security.xml file with remote

systems. A remote system must be able to confirm that dynamicallyUpdateSSLConfig=true is in the

security.xml file.

The SSL runtime reloads the modified SSL configuration and creates a new SSLEngine for the modified

connections that are associated with inbound endpoints. New outbound connections use the new

configuration while existing connections continue to use the old SSLEngine object and are not affected.

Tip: Make dynamic changes to the SSL configuration during off-peak hours. Synchronization delays can

negatively affect connections when you update SSL configurations during peak hours.

Chapter 7. Securing communications 411

You can turn on and off the dynamicallyUpdateSSLConfig attribute in the security.xml file to ensure

successful updates by doing the following actions:

1. Set dynamicallyUpdateSSLConfig=On.

2. Save the updated configuration.

3. Synchronize the security.xml file with remote systems.

4. Set the dynamicallyUpdateSSLConfig attribute to Off.

You must verify that all of the nodes receive the changes before turning off the

dynamicallyUpdateSSLConfig attribute. Test the changes in a test environment before updating the

production environment.

Tip: Some SSL changes, especially administrative SSL changes, can cause server outages if you fail to

test them first. When a change prevents trust between two endpoints, the endpoints cannot

communicate with each other. Additionally, if administrative SSL connection updates cause system

outages, you might need to disable the nodes after you make corrective changes using the

deployment manager. From the command line, you can manually synchronize the server to retrieve

the new SSL changes, then restart the nodes.

Restriction: In this release, the Object Request Broker (ORB) inbound SSL socket factory and the Admin

SOAP inbound SSL socket factory are not affected by dynamic configuration changes. SSL

socket factories cannot be bound to a port again without affecting the existing connections,

with the exception of the SSL channel. You must restart the server to make a change to the

SSL configuration for these two inbound protocols. Outbound configurations can still be

changed dynamically. These changes are affected because the sockets are created during

each new outbound connection.

Management scope configurations

Inbound and outbound management scopes represent opposing directions during the connection

handshake process. To view inbound and outbound management scopes, use the topology tree view in

the administrative console. You can define Secure Sockets Layer (SSL) configurations to distinguish the

connection requirements for each direction inbound or outbound).

When expanded, the topology tree represents inbound and outbound connections for each management

scope, cell, node group, node, server, cluster, and endpoint. Inbound endpoints require a server certificate.

The SSL configuration specifies the server certificate for server authentication. Outbound endpoints require

validated signers. Outbound endpoints connect to one or more target servers; inbound endpoints receive

requests from one or more clients. The set of peer endpoints for outbound connections is typically a

subset of the set of peer endpoints for inbound connections, which means you must define different

requirements for inbound and outbound connections.

412 Securing applications and their environment

The following figure shows an example of two nodes: Node1 and Node2. These two nodes are isolated

from one another because their SSL configurations, turststore files, and keystore files are different.

Node1 scope

(Node1SSL Config, default)

Server1 scope

Inherits from Node1

Server2 scope

Inherits from Node1

FINDPOINTS

FINDPOINTS

Inherits from Node1

Inherits from Node1

Cell scope

(CellDefaultSSL Config, default)

Node1 scope

(Node2SSL Config, default)

Server1 scope

Inherits from Node2

Server2 scope

Inherits from Node2

ENDPOINTS

ENDPOINTS

Inherits from Node2

Inherits from Node2

DynamicOutbound. AdminSoapSSLConfig,default ->ADMIN_SOAP
(to allow admin communications to use the same SSL configuration)

In the example of two nodes, note that Node1 cannot communicate with Node2, but each of the two nodes

must be able to communicate with the deployment manager and its administrative functions. With dynamic

outbound selection, you can choose an SSL configuration and a certificate alias that reference a common

truststore. When a process requires the ADMIN_SOAP protocol for an outbound connection, the server

uses this single SSL configuration. Because all of the scopes under the cell level inherit this configuration,

all outbound connections can communicate with the deployment manager. For more information, see

“Dynamic outbound selection of Secure Sockets Layer configurations” on page 396.

Another way to accomplish this same result is to associate the SSL configuration with the ADMIN_SOAP

endpoint for each individual process, deployment manager, Node1, Node2, Node1Server1, Node1Server2,

Node2Server1, and Node2Server2. However, it is recommended that you use dynamic outbound selection

because it is more efficient when defining a basic SSL configuration, its keystores, and its truststores at

the cell scope. The example shows how to apply the node scope association, but the same principles

apply for node groups, clusters, servers, and endpoints.

Note: If your topology includes clusters that span nodes or if your applications need to communicate

between nodes, the configuration that is shown in the example does not work.

Certificate management using iKeyman

Starting in WebSphere Application Server Version 6.1, you can manage your certificates from the

administrative console. When using versions of WebSphere Application Server prior to Version 6.1, use

iKeyman for certificate management. iKeyman is a key management utility.

WebSphere Application Server certificate management requires that you define the keystores in your

WebSphere Application Server configuration. With iKeyman, you need access to the keystore file only. You

can read a keystore file with personal certificates and signers that is created in iKeyman can be read into

the WebSphere Application Server configuration by using the createKeyStore command.

Chapter 7. Securing communications 413

The majority of certificate management functions are the same between WebSphere Application Server

and iKeyman, especially for personal certificates and signer certificates. However, certificate requests are

special. The underlying behavior is different in the two certificate management schemes. Because of the

different behavior, when a certificate request is generated from iKeyman, the process must be completed

in iKeyman. For example, a certificate that is generated by a certificate request that originated in iKeyman

must be received in iKeyman as well.

The same is true for WebSphere Application Server. For example, when a certificate is generated from a

certificate request that originated in WebSphere Application Server, the certificate must be received in

WebSphere Application Server.

You can perform the following certificate operations using iKeyman:

 Types of certificates Functions Description

Personal certificates Create a self-signed certificate Creates a self-signed certificate and stores it in a

keystore.

List personal certificates Lists all the personal certificates in a keystore.

Get information about a personal

certificate

Gets information about a personal certificate.

Delete a personal certificate Deletes a personal certificate from a keystore.

Import a certificate Imports a certificate from a keystore to a keystore.

Export a certificate Exports a certificate from a keystore to another

keystore.

Extract a certificate Extracts the signer part of a personal certificate to a

file.

Receive a certificate Reads a certificate that comes from a certificate

authority (CA) into a keystore.

Signer certificates Add a signer certificate Adds a signer certificate from a file to a keystore.

List signer certificates Lists all the signer certificates in a keystore.

Get information about a signer

certificate

Gets information about a signer certificate.

Delete a signer certificate Deletes a signer certificate from a keystore.

Extract a signer certificate Extracts a signer certificate from a keystore, and

stores the certificate in a file.

Certificate requests Create a certificate request Creates a certificate request that can be sent to a

CA.

List certificate requests Lists the certificate requests in a keystore.

Get information about a certificate

request

Gets information about a certificate request.

Delete a certificate request Deletes a certificate request from a keystore.

Extract a certificate request Extracts a certificate request to a file.

Certificate management

You can manage certificate operations that involve personal certificates, signer certificates, and personal

certificate requests on the administrative console.

Types of certificates

WebSphere Application Server uses the certificates that reside in keystores to establish trust for a Secure

Sockets Layer (SSL) connection. Click Security > SSL certificate and key management > Manage

414 Securing applications and their environment

endpoint security configurations > Inbound | Outbound > SSL_configuration_name > Key stores

and certificates, then select an existing or create a new keystore. After selecting a keystore, and

depending on the type of certificate you need, choose one of the following types of certificates under

Related Items:

v Personal certificate

v Signer certificate

v Personal certificate request

The following table describes the certificate operations that you can perform on the administrative console:

 Types of certificates Functions Description

Personal certificates Create a self-signed certificate Creates a self-signed certificate and stores it in a

keystore.

List personal certificates Lists all the personal certificates in a keystore.

Get information about a personal

certificate

Gets information about a personal certificate.

Delete a personal certificate Deletes a personal certificate from a keystore.

Import a certificate Imports a certificate from a keystore to a keystore.

Export a certificate Exports a certificate from a keystore to another

keystore.

Extract a certificate Extracts the signer part of a personal certificate to

a file.

Exchange signer certificates Exchange signer part of a personal certificate

between key store.

Receive a certificate Reads a certificate that comes from a certificate

authority (CA) into a keystore.

Replace a certificate Replaces all occurrences of a personal certificate

alias in the WebSphere Application Server

configuration with another certificate. Also, replaces

all occurrences of the personal certificates signer

with the new personal certificate signer.

Signer certificates Add a signer certificate Adds a signer certificate from a file to a keystore.

List signer certificates Lists all the signer certificates in a keystore.

Get information about a signer

certificate

Gets information about a signer certificate.

Delete a signer certificate Deletes a signer certificate from a keystore.

Extract a signer certificate Extracts a signer certificate from a keystore, and

stores the certificate in a file.

Retrieve a signer from a port Retrieves a signer certificate from a port, and

stores it in a key store.

Certificate requests Create a certificate request Creates a certificate request that can be sent to a

CA.

List certificate requests Lists the certificate requests in a keystore.

Get information about a certificate

request

Gets information about a certificate request.

Delete a certificate request Deletes a certificate request from a keystore.

Extract a certificate request Extracts a certificate request to a file.

Chapter 7. Securing communications 415

Personal certificates

The following table lists the operations that you can perform on personal certificates, the AdminTask object

that you can use to perform that operation, and how to navigate to the certificate on the console:

 Function AdminTask object Administrative console

Create a self-signed

certificate

createSelfSigneCertificate Security > Secure Communications > Key store and

certificates > key store > Create a Self-Signed

Certificate

List personal certificates listPersonalCertificates Security > Secure Communications > Key store and

certificates > key store > personal certificates

Get information about a

personal certificate

getPersonalCertificate Security > Secure Communications > Key store and

certificates > key store > personal certificates > alias

Delete a personal certificate deletePersonalCertificate Security > Secure Communications > Key store and

certificates > key store > personal certificates >

delete

Import a certificate importCertificate Security > Secure Communications > Key store and

certificates > key store > personal certificates >

import

Export a certificate exportCertificate Security > Secure Communications > Key store and

certificates > key store > personal certificates >

export

Extract a certificate extractCertificate Security > Secure Communications > Key store and

certificates > key store > personal certificates >

extract

Exchange signer certificates exchangeSignerCertificates Security > Secure Communications > Key store and

certificates > Exchange signers

Signer certificates

The following table lists the operations that you can perform with signer certificates, the AdminTask object

that you can use to perform the operation, and how to navigate to the certificate on the console:

 Function AdminTask object Administrative console

Add a signer certificate addSignerCertificate Security > Secure communications > Key store and

certificates > key store > signer certificates > Add

List signer certificates listSignerCertificates Security > Secure communications > Key store and

certificates > key store > signer certificates

Get information about a

signer certificate

getSignerCertificate Security > Secure communications > Key store and

certificates > key store > signer certificates > alias

Delete a signer certificate deleteSignerCertificate Security > Secure communications > Key store and

certificates > key store > signer certificate >delete

Extract a signer certificate to

a file

extractSignerCertificate Security > Secure communications > Key store and

certificates > key store > signer certificates >

extract

Retrieve a signer certificate

from a port

retrieveSignerFromPort Security > Secure communications > Key store and

certificates > key store > signer certificates >

retrieve from port

416 Securing applications and their environment

Personal certificate requests

The following table lists the operations that you can perform on personal certificate requests, the

AdminTask object that you can use to perform that operation, and how to navigate to the certificate

request on the console:

 Function AdminTask object Administrative console

Create a personal certificate

request

createCertificateRequest Security > Secure communications > Key store and

certificates > key store > Personal certificate

Requests > Add

List personal certificate

requests

listCertificateRequests Security > Secure communications > Key store and

certificates > key store > Personal certificate

requests

Get information about a

personal certificate request

getCertificateRequest Security > Secure communications > Key store and

certificates > key store > Personal certificate

requests > alias

Delete a personal certificate

request

deleteCertificateRequest Security > Secure communications > Key store and

certificates > key store > Personal certificate

requests > delete

Extract a personal certificate

request to a file

extractCertificateRequest Security > Secure communications > Key store and

certificates > key store > Personal certificate

requests > Extract

Creating a Secure Sockets Layer configuration

Secure Sockets Layer (SSL) configurations contain the attributes that you need to control the behavior of

client and server SSL endpoints. You create SSL configurations with unique names within specific

management scopes on the inbound and outbound tree in the configuration topology. This task shows you

how to define SSL configurations, including quality of protection and trust and key manager settings.

You must decide at which scope you need to define an SSL configuration, for instance, the cell, node

group, node, server, cluster, or endpoint scope, from the least specific to the most specific scope. When

you define an SSL configuration at the node scope, for example, only those processes within that node

can load the SSL configuration; however, any processes at the endpoint in the cell can use an SSL

configuration at the cell scope, which is higher in the topology.

You must also decide which scope to associate with the new SSL configuration, according to the

processes that the configuration affects. For example, an SSL configuration for a hardware cryptographic

device might require a keystore that is available only on a specific node, or you might need an SSL

configuration for a connection to a particular SSL host and port. For more information, see “Dynamic

outbound selection of Secure Sockets Layer configurations” on page 396.

Complete the following steps in the administrative console:

 1. Click Security > SSL certificate and key management > Manage endpoint security

configurations.

 2. Select an SSL configuration link on either the Inbound or Outbound tree, depending on the process

you are configuring.

v If the scope is already associated with a configuration and alias, the SSL configuration alias and

certificate alias are noted in parentheses.

v If the parenthetical information is not included, then the scope is not associated. Instead, the scope

inherits the configuration properties of the first scope above it that is associated with an SSL

configuration and certificate alias.

Chapter 7. Securing communications 417

The cell scope must be associated with an SSL configuration because it is at the top of the topology

and represents the default SSL configuration for the inbound or outbound connection.

 3. Click SSL configurations under Related Items. You can view and select any of the SSL

configurations that are configured at this scope. You can also view and select these configuration at

every scope that is lower on the topology.

 4. Click New to display the SSL configuration panel. You cannot select links under Additional Properties

until you type a configuration name and click Apply.

 5. Type an SSL configuration name. This field is required. The configuration name is the SSL

configuration alias. Make the alias name unique within the list of SSL configuration aliases that are

already created at the selected scope. The new SSL configuration uses this alias for other

configuration tasks.

 6. Select a truststore name from the drop-down list. A truststore name refers to a specific truststore that

holds signer certificates that validate the trust of certificates sent by remote connections during an

SSL handshake. If there is no truststore in the list, see “Creating a keystore configuration” on page

453 to create a new truststore, which is a keystore whose role is to establish trust during the

connection.

 7. Select a keystore name from the drop-down list. A keystore contains the personal certificates that

represent a signer identity and the private key that WebSphere Application Server uses to encrypt

and sign data.

v If you change the keystore name, click Get certificate aliases to refresh the list of certificates from

which you can choose a default alias. WebSphere Application Server uses a server alias for

inbound connections and a client alias for outbound connections.

v If there is no keystore in the list, see “Creating a keystore configuration” on page 453 to create a

new keystore.

 8. Choose a default server certificate alias for inbound connections. Select the default only when you

have not specified an SSL configuration alias elsewhere and have not selected a certificate alias. A

centrally managed SSL configuration tree can override the default alias. For more information, see

“Central management of Secure Sockets Layer configurations” on page 397.

 9. Choose a default client certificate alias for outbound connections. Select the default only when the

server SSL configuration specifies an SSL client authentication.

10. Review the identified management scope for the SSL configuration. Make the management scope in

this field identical to the link you selected in Step 2. If you want to change the scope, you must click a

different link in the topology tree and continue at Step 3.

11. Click Apply if you intend to configure Additional Properties. If not, go to Step 24.

12. Click Quality of protection (QoP) settings under Additional Properties. QoP settings define the

strength of the SSL encryption, the integrity of the signer, and the authenticity of the certificate.

13. Select a client authentication setting to establish an SSL configuration for inbound connections and

for clients to send their certificates, if appropriate.

v If you select None, the server does not request that a client send a certificate during the

handshake.

v If you select Supported, the server requests that a client send a certificate. However, if the client

does not have a certificate, the handshake might still succeed.

v If you select Required, the server requests that a client send a certificate. However, if the client

does not have a certificate, the handshake fails.

Important: The signer certificate that represents the client must be in the truststore that you select

for the SSL configuration. By default, servers within the same cell trust each other

because they use the common truststore, trust.p12, that is located in the cell directory

of the configuration repository. However, if you use keystores and truststores that you

create, perform a signer exchange before you select either Supported or Required.

14. Select a protocol for the SSL handshake.

418 Securing applications and their environment

v The default protocol, SSL_TLS, supports client protocols TLSv1, SSLv3, and SSLv2.

v The TLSv1 protocol supports TLS and TLSv1. The SSL server connection must support this

protocol for the handshake to proceed.

v The SSLv3 protocol supports SSL and SSLv3. The SSL server connection must support this

protocol for the handshake to proceed.

Important: Do not use the SSLv2 protocol for the SSL server connection. Use it only when

necessary on the client side.

15. Select one of the following options:

v A predefined Java Secure Socket Extension (JSSE) provider. The IBMJSSE2 provider is

recommended for use on all platforms which support it. It is required for use by the channel

framework SSL channel. When Federal Information Processing Standard (FIPS) is enabled,

IBMJSSE2 is used in combination with the IBMJCEFIPS crypto provider.

v A custom JSSE provider. Type a provider name in the Custom provider field.

16. Select from among the following cipher suite groups:

v Strong: WebSphere Application Server can perform 128-bit confidentiality algorithms for

encryption and support integrity signing algorithms. However, a strong cipher suite can affect the

performance of the connection.

v Medium: WebSphere Application Server can perform 40-bit encryption algorithms for encryption

and support integrity signing algorithms.

v Weak: WebSphere Application Server can support integrity signing algorithms but not to perform

encryption. Select this option with care because passwords and other sensitive information that

cross the network are visible to an Internet Protocol (IP) sniffer.

v Custom: you can select specific ciphers. Any time you change the ciphers that are listed from a

specific cipher suite group, the group name changes to Custom.

17. Click Update selected ciphers to view a list of the available ciphers for each cipher strength.

18. Click OK to return to the new SSL configuration panel.

19. Click Trust and key managers under Additional Properties.

20. Select a default trust manager for the primary SSL handshake trust decision.

v Choose IbmPKIX when you require certificate revocation list (CRL) checking using CRL distribution

points in the certificates.

v Choose IbmX509 when you do not require CRL checking but do need increased performance. You

can configure a custom trust manager to perform CRL checking, if necessary.

21. Define a custom trust manager, if appropriate. You can define a custom trust manager that runs with

the default trust manager you select. The custom trust manager must implement the JSSE

javax.net.ssl.X509TrustManager interface and, optionally, the

com.ibm.wsspi.ssl.TrustManagerExtendedInfo interface to obtain product-specific information.

a. Click Security > SSL certificate and key management > Manage endpoint security

configurations > SSL_configuration > Trust and key managers > Trust managers > New.

b. Type a unique trust manager name.

c. Select the Custom option.

d. Type a class name.

e. Click OK. When you return to the Trust and key managers panel, the new custom trust manager

displays in the Additional ordered trust managers field. Use the left and right list boxes to add

and remove custom trust managers.

22. Select a key manager for the SSL configuration. By default, IbmX509 is the only key manager unless

you create a custom key manager.

Important: If you choose to implement your own key manager, you can affect the alias selection

behavior because the key manager is responsible for selecting the certificate alias from

Chapter 7. Securing communications 419

the keystore. The custom key manager might not interpret the SSL configuration as the

WebSphere Application Server key manager IbmX509 does. To define a custom key

manager, click Security > Secure communications > SSL configurations >

SSL_configuration > Trust and key managers > Key managers > New.

23. Click OK to save the trust and key manager settings and return to the new SSL configuration panel.

24. Click Save to save the new SSL configuration.

Important: You can override the default trust manager when you configure at least one custom trust

manager and set the com.ibm.ssl.skipDefaultTrustManagerWhenCustomDefined property to

true. Click Custom Property on the SSL configuration panel. However, if you change the

default, you leave all the trust decisions to the custom trust manager, which is not

recommended for production environments. In test environments, use a dummy trust manager

to avoid certificate validation. Remember that these environment are not secure.

In this release of WebSphere Application Server, you can associate SSL configurations with protocols

using one of the following methods:

v Set the SSL configuration on the thread programmatically

v Associate the SSL configuration with an outbound protocol, and target host and port. For more

information, see “Associating a Secure Sockets Layer configuration dynamically with an outbound

protocol and remote secure endpoint” on page 435

v Associate the SSL configuration directly using the alias. For more information, see

tsec_sslselconfigdirect.dita

v Manage the SSL configurations centrally by associating them with SSL configuration groups or zones

that are scoped for endpoints. For more information, see “Associating Secure Sockets Layer

configurations centrally with inbound and outbound scopes” on page 438

SSL certificate and key management

Use this page to configure security for Secure Socket Layer (SSL) and key management, certificates, and

notifications. The SSL protocol provides secure communications between remote server processes or

endpoints. SSL security can be used for establishing communications inbound to and outbound from an

endpoint. To establish secure communications, a certificate and an SSL configuration must be specified for

the endpoint.

To view this administrative console page, click Security > SSL certificate and key management.

Configuration settings

Specifies the following administrative console tasks:

v Manage endpoint security configurations

v Manage certificate expiration

Use Federal Information Processing Standard (FIPS) algorithms

Specifies the Federal Information Processing Standard (FIPS)-compliant Java cryptography engine is

enabled.

v Does not affect the SSL cryptography that is performed by the application server for z/OS System

Secure Sockets Layer (SSSL).

v Does not change the JSSE provider if this cell includes any Application Server versions before the

application server for z/OS Version 6.0.x.

When you select the Use the Federal Information Processing Standard (FIPS) option, the Lightweight

Third Party Authentication (LTPA) implementation uses IBMJCEFIPS. IBMJCEFIPS supports the Federal

Information Processing Standard (FIPS)-approved cryptographic algorithms for Data Encryption Standard

(DES), Triple DES, and Advanced Encryption Standard (AES). Although the LTPA keys are backwards

420 Securing applications and their environment

tsec_sslselconfigdirect.dita

compatible with prior releases of the application server, the LTPA token is not compatible with prior

releases. In prior releases, the application server did not generate the LTPA token using a FIPS-approved

algorithm.

The IBMJSSE2 JSSE provider does not perform cryptographic functions directly, and therefore does not

need to be FIPS-approved. Instead, the IBMJSSE2 JSSE provider uses the JCE framework for

cryptographic functions and uses IBMJCEFIPS when FIPS mode is enabled.

Important:

HP�UX

The IBMJSSEFIPS provider is not supported on the HP-UX platform. However, the

IBMJSSE2 provider, which uses IBMJCEFIPS, is supported on the HP-UX platform.

 Default: Disabled

Dynamically update the runtime when SSL configuration changes occur

Specifies that all of the SSL-related attributes that change must be read from the configuration dynamically

after they have been saved, then reused for new connections. To avoid customer impact, it is

recommended that changes to production servers be made during off-peak periods.

 Default: Disabled

When this option is selected, the configuration is updated each time you configure an SSL communication.

SSL configurations for selected scopes

Use this page to display Secure Socket Layer (SSL) configurations for selected scopes, such as a cell,

node, server, or cluster. From this page you can navigate to configuration panels for the following: SSL

configurations, dynamic inbound and outbound endpoint SSL configurations, key stores, key sets, key set

groups, key managers, and trust managers.

To view this administrative console page, click Security > SSL certificate and key management >

Manage endpoint security configurations > {Inbound | Outbound} > ssl_configuration.

Name

Specifies the SSL configuration scope, which is derived from the selected object in the hierarchy.

 Data type: Text

Direction

Specifies the direction for which the SSLConfig applies. Inbound refers to any listener port. Outbound

refers to outbound end point connections.

 Data type: Text

Inherited SSL configuration name

Specifies the name of the SSL configuration that is inherited from a higher level scope

This field displays for server and nodegroups within the object hierarchy.

 Data type: Text

Inherited certificate alias

Specifies the certificate alias that is inherited from a higher-level scope.

This field displays for server and node groups within the object hierarchy.

Chapter 7. Securing communications 421

Data type: Text

Override inherited values

Specifies the SSL configuration to be used for this scope and any lower scopes that have not already

designated an SSL configuration.

This field displays for server and node groups within the object hierarchy.

 Default: Disabled

SSL configuration

Specifies the SSL configuration that is used by requests at this scope.

 Data type: Text

Update certificate alias list

Specifies the certificate aliases contained in the key store for this SSL configuration can be selected from

the Certificate alias in key store list. You must update the certificate list after choosing a different SSL

configuration alias. If you do not update the list, you will save a certificate alias that is not contained in the

SSL configuration.

Manage certificates

Specifies to open the keystore panel for the key store in this SSL configuration, which enables you to

manage personal certificates, signers, and certificate requests.

Certificate alias in key store

Specifies the certificate to use in the key store.

If you select None, the Java Secure Sockets Extension (JSSE) key manager determines which certificate

is used. If multiple certificates exist in the key store, the key manager might not consistently select the

same certificate.

 Data type: Text

SSL configurations collection

Use this page to define a list of Secure Sockets Layer (SSL) configurations.

To view this administrative console page, click Security > SSL certificate and key management >

Manage endpoint security configurations > {Inbound | Outbound} > ssl_configuration . Under

Related items, click SSL configurations.

 Button Resulting action

New The Java Secure Socket Extension (JSSE) repertoire is for Java-based SSL

communications. You can define a new JSSE configuration that can be used

to create an SSLContext, URLStreamHandler, SSLSocketFactory,

SSLServerSocketFactory, and so on, using the

com.ibm.websphere.ssl.JSSEHelper API.

Delete Deletes an existing JSSE configuration (administrator only). Be careful that

any references to the SSL configuration have been removed prior to deleting

this SSL configuration.

422 Securing applications and their environment

Name

Specifies the unique name of the SSL configuration in the management scope.

SSL configuration settings

Use this page to define Secure Sockets Layer (SSL) configuration properties.

To view this administrative console page, click Security > SSL certificate and key management >

Manage endpoint security configurations > {Inbound | Outbound} > SSL_configuration_name.

Under Related items click SSL configurations > New.

Name

Specifies the unique name of the SSL configuration within the management scope in which it resides. For

ways to programmatically access the properties that are configured for this SSL configuration, see the

com.ibm.websphere.ssl.JSSEHelper application programming interface (API).

 Data type: Text

Trust store name

Specifies a reference to a specific trust store used by Java Secure Sockets Extension (JSSE). The trust

store holds signer certificates that validate the trust of certificates sent by remote connections during an

SSL handshake.

 Data type: Text

Default: selected trust store

Key store name

Specifies a reference to a specific key store. The key store holds personal certificates that represent the

identity of one side of a connection. The public key of this personal certificate is sent to the other side of

the connection to establish trust during the handshake. The remote side of the connection needs the root

certificate authority (CA) certificate or self-signed public key (signer) to be in the trust store to validate this

personal certificate.

 Data type: Text

Default: selected key store

Get certificate aliases

Queries the keystore for the aliases of all the personal certificates in the keystore from which to choose.

Default server certificate alias

Specifies the certificate alias used as the identity for this SSL configuration if one has not been specified

elsewhere.

If you select None, the Java Secure Sockets Extension (JSSE) key manager determines which certificate

is used. If multiple certificates exist in the key store, the key manager might not consistently select the

same certificate.

 Data type: Text

Default client certificate alias

Specifies the description for a client certificate alias.

Chapter 7. Securing communications 423

If you select None, the Java Secure Sockets Extension (JSSE) key manager determines which certificate

is used. If multiple certificates exist in the key store, the key manager might not consistently select the

same certificate.

 Data type: Text

Management scope

Specifies the scope where this SSL configuration is visible. For example, if you choose a specific node,

then the configuration is visible only on that node and on any servers that are part of that node.

 Data type: Text

Creating a custom trust manager configuration

You can create a custom trust manager configuration at any management scope and associate the new

trust manager with a Secure Sockets Layer (SSL) configuration.

You must develop, package, and locate a Java Archive JAR file for a custom key manager in the

was.install.root/lib/ext directory on WebSphere Application Server. For more information, see

“Example: Developing a custom trust manager for custom SSL trust decisions” on page 427.

Complete the following steps in the administrative console:

 1. Decide whether you want to create the custom trust manager at the cell scope or below the cell

scope at the node, server, or cluster, for example.

Important: When you create a custom trust manager at a level below the cell scope, you can

associate it only with a Secure Sockets Layer (SSL) configuration at the same scope or

higher. An SSL configuration at a scope lower than the trust manager does not see the

trust manager configuration.

v To create a custom trust manager at the cell scope, click Security > SSL certificate and key

management > Trust managers. Every SSL configuration in the cell can select the trust manager

at the cell scope.

v To create a custom trust manager at a scope below the cell level, click Security > SSL certificate

and key management > Manage endpoint security configurations > {Inbound | Outbound} >

ssl_configuration > Trust managers.

 2. Click New to create a new custom trust manager.

 3. Type a unique trust manager name.

 4. Select the Custom implementation setting. The custom setting enables you to define a Java class

with an implementation of the javax.net.ssl.X509TrustManager Java interface and, optionally, the

com.ibm.wsspi.ssl.TrustManagerExtendedInfo WebSphere Application Server interface.

Note: The standard implementation setting applies only when the trust manager is already defined in

the Java security provider list as a provider and an algorithm, which is not the case for a

custom trust manager.

 5. Type a class name, for example, com.ibm.test.CustomTrustManager.

 6. Select one of the following actions:

v Click Apply, then click Custom properties under Additional Properties to add custom properties to

the new custom trust manager. When you are finished adding custom properties, click OK and

Save, then go to the next step.

v Click OK and Save, then go to the next step.

 7. Click SSL certificate and key management in the page navigation at the top of the panel.

 8. Select one of the following actions:

424 Securing applications and their environment

v Click SSL configurations under Related Items for a cell-scoped SSL configuration.

v Click Manage endpoint security configurations to select an SSL configuration at a lower scope.

 9. Click the link for the existing SSL configuration that you want to associate with the new custom trust

manager. You can create a new SSL configuration instead of associating the custom trust manager

with an existing configuration. For more information, see “Creating a Secure Sockets Layer

configuration” on page 417.

10. Click Trust and Key managers under Additional Properties. If the new custom trust manager is not

listed in the Additional ordered trust managers list, verify that you selected an SSL configuration

scope that is at the same level or below the scope that you selected in Step 8.

11. Click Add. This action adds the new trust manager to the list of custom trust managers.

12. Click OK and Save.

You have created a custom trust manager configuration that references a JAR file in the install directory of

WebSphere Application Server and associates it with an SSL configuration during the connection

handshake.

You can create a custom trust manager for a pure client. For more information, see “Commands for the

TrustManagerCommands group of the AdminTask object” on page 809.

Trust and key managers settings

Use this page to specify trust and key managers for the selected SSL configuration.

To view this administrative console page, click Security > SSL certificate and key management >

Manage endpoint security configurations > Inbound | Outbound > SSL_configuration_name. Under

Related items click SSL configurations > SSL_configuration_name | New. Under Additional Properties

click Trust and key managers.

 Attention: The application server checks the default trust managers first before checking the additional

ordered trust managers in descending order.

Default trust manager:

Specifies the default trust manager, which is typically the IbmX509 trust manager by the IBMJSSE2

provider. The other default trust manager is IbmPKIX, which can be selected when certificate revocation

checks must be made using the X509Certificate CRL distribution list. The IbmPKIX trust manager does not

perform as well as the IbmX509 trust manager.

 Data type: Text

Default: ibmX509TrustManager

Additional ordered trust managers:

Specifies additional trust managers that are used in the order shown for this SSL configuration.

Add:

Specifies to add the selection to the Additional ordered trust managers right-hand list.

Remove:

Specifies to remove the selection from the Additional ordered trust managers right-hand list.

Key manager:

Specifies the key manager that runs for this SSL configuration.

Chapter 7. Securing communications 425

Data type: Text

Default: IbmX509KeyManager

Trust managers collection

Use this page to define the implementation settings for the trust manager. A trust manager is a class that

is invoked during an Secure Sockets Layer (SSL) handshake to make trust decisions about the remote

end point. A default trust manager is used to validate the signature and expiration of the certificate.

Custom trust managers can be plugged in to perform an extended certificate and host name check.

To view this administrative console page, click Security > SSL certificate and key management >

Manage endpoint security configurations > {Inbound | Outbound} > ssl_configuration . Under

Related items, click Trust managers.

 Button Resulting action

New Adds a new trust manager that can be selected by an SSL configuration. A

trust manager is invoked during an SSL handshake and can decide whether

the handshake should be accepted based on the information it knows about

the remote certificate and host.

Delete Deletes an existing trust manager. Make sure the trust manager is not

referenced by any SSL configuration before you delete it.

Name:

Specifies the name of the trust manager. This name is used as a selection in the SSL configuration panel.

Class name:

Specifies a class that implements the javax.net.ssl.X509TrustManager interface. Optionally, the class can

implement the com.ibm.wsspi.ssl.TrustMangerExtendedInfo interface to get extended information about the

connection. The class can use the information to verify the host name and so on.

Algorithm:

Specifies the algorithm name of the trust manager that is implemented by the selected provider.

Trust managers settings

This page enables you to view and set definitions for trust manager implementation settings. A trust

manager is a class that gets invoked during a Secure Sockets Layer (SSL) handshake to make trust

decisions about the remote end point. A default trust manager is used to validate the signature and

expiration of the certificate. Custom trust managers can be plugged in to perform an extended certificate

and hostname check.

To view this administrative console page, click Security > SSL certificate and key management >

Manage endpoint security configurations > {Inbound | Outbound} > ssl_configuration . Under

Related items click Trust managers > New .

Name:

Specifies the name of the trust manager.

 Data type: Text

Default: ibmX509TrustManager

Standard:

426 Securing applications and their environment

Specifies that the trust manager selection is available from a Java provider that is installed in the

java.security file. This provider might be shipped by the Java Secure Sockets Extension (JSSE) or might

be a custom provider that implements the javax.net.ssl.X509TrustManager interface.

 Default: Enabled

Provider:

Specifies the provider name that has an implementation of the javax.net.ssl.X509TrustManager interface.

This provider is typically set to IBMJSSE2.

 Enabled when Standard is selected.

 Default IBMJCE

Algorithm:

Specifies the algorithm name of the trust manager implemented by the selected provider.

 Enabled when Standard is selected.

 Default ibmX509 or IbmPKIX

Range ibmX509, IbmPKIX

Custom:

Specifies that the trust manager selection is based on a custom implementation class that implements the

javax.net.ssl.X509TrustManager interface and optionally the com.ibm.wsspi.ssl.TrustManagerExctendedInfo

interface to obtain additional connection information that is not otherwise available.

 Default: Disabled

Class name:

Specifies a class that implements the javax.net.ssl.X509TrustManager interface. Optionally, the class can

implement the com.ibm.wsspi.ssl.TrustMangerExtendedInfo interface to get extended information about the

connection. The class can use the information to verify the host name and so on.

 Enabled when Custom is selected.

 Data type: Text

Example: Developing a custom trust manager for custom SSL trust decisions

The following example is of a sample custom trust manager. The custom trust manager makes no trust

decisions but instead uses the information in the X.509 certificate that it references to make decisions.

After you build and package the custom trust manager, configure it either from the ssl.client.props file

for a pure client or the SSLConfiguration TrustManager link in the administrative console. See “Trust

manager control of X.509 certificate trust decisions” on page 390 for more information about trust

managers.

Note: This example should only be used as a sample, and is not supported.

Chapter 7. Securing communications 427

import java.security.cert.X509Certificate;

import javax.net.ssl.*;

import com.ibm.wsspi.ssl.TrustManagerExtendedInfo;

public final class CustomTrustManager implements X509TrustManager,

TrustManagerExtendedInfo

{

 private static ThreadLocal threadLocStorage = new ThreadLocal();

 private java.util.Properties sslConfig = null;

 private java.util.Properties props = null;

 public CustomTrustManager()

 {

 }

 /**

 * Method called by WebSphere Application Server run time to set the target

 * host information and potentially other connection info in the future.

 * This needs to be set on ThreadLocal since the same trust manager can be

 * used by multiple connections.

 *

 * @param java.util.Map - Contains information about the connection.

 */

 public void setExtendedInfo(java.util.Map info)

 {

 threadLocStorage.set(info);

 }

 /**

 * Method called internally to retrieve information about the connection.

 *

 * @return java.util.Map - Contains information about the connection.

 */

 private java.util.Map getExtendedInfo()

 {

 return (java.util.Map) threadLocStorage.get();

 }

 /**

 * Method called by WebSphere Application Server run time to set the custom

 * properties.

 *

 * @param java.util.Properties - custom props

 */

 public void setCustomProperties(java.util.Properties customProps)

 {

 props = customProps;

 }

 /**

 * Method called internally to the custom properties set in the Trust Manager

 * configuration.

 *

 * @return java.util.Properties - information set in the configuration.

 */

 private java.util.Properties getCustomProperties()

 {

 return props;

 }

 /**

 * Method called by WebSphere Application Server runtime to set the SSL

 * configuration properties being used for this connection.

 *

 * @param java.util.Properties - contains a property for the SSL configuration.

 */

 public void setSSLConfig(java.util.Properties config)

428 Securing applications and their environment

{

 sslConfig = config;

 }

 /**

 * Method called by TrustManager to get access to the SSL configuration for

 * this connection.

 *

 * @return java.util.Properties

 */

 public java.util.Properties getSSLConfig ()

 {

 return sslConfig;

 }

 /**

 * Method called on the server-side for establishing trust with a client.

 * See API documentation for javax.net.ssl.X509TrustManager.

 */

 public void checkClientTrusted(X509Certificate[] chain, String authType)

 throws java.security.cert.CertificateException

 {

 for (int j=0; j<chain.length; j++)

 {

 System.out.println("Client certificate information:");

 System.out.println(" Subject DN: " + chain[j].getSubjectDN());

 System.out.println(" Issuer DN: " + chain[j].getIssuerDN());

 System.out.println(" Serial number: " + chain[j].getSerialNumber());

 System.out.println("");

 }

 }

 /**

 * Method called on the client-side for establishing trust with a server.

 * See API documentation for javax.net.ssl.X509TrustManager.

 */

 public void checkServerTrusted(X509Certificate[] chain, String authType)

 throws java.security.cert.CertificateException

 {

 for (int j=0; j<chain.length; j++)

 {

 System.out.println("Server certificate information:");

 System.out.println(" Subject DN: " + chain[j].getSubjectDN());

 System.out.println(" Issuer DN: " + chain[j].getIssuerDN());

 System.out.println(" Serial number: " + chain[j].getSerialNumber());

 System.out.println("");

 }

 }

 /**

 * Return an array of certificate authority certificates which are trusted

 * for authenticating peers. You can return null here since the IbmX509

 * or IbmPKIX will provide a default set of issuers.

 *

 * See API documentation for javax.net.ssl.X509TrustManager.

 */

 public X509Certificate[] getAcceptedIssuers()

 {

 return null;

 }

}

 Related concepts

 “Trust manager control of X.509 certificate trust decisions” on page 390
The role of the trust manager is to validate the Secure Sockets Layer (SSL) certificate that is sent by

Chapter 7. Securing communications 429

the peer, which includes verifying the signature and checking the expiration date of the certificate. A

Java Secure Socket Extension (JSSE) trust manager determines if the remote peer can be trusted

during an SSL handshake.

Creating a custom key manager

You can create a custom key manager configuration at any management scope and associate the new

key manager with a Secure Sockets Layer (SSL) configuration.

You must develop, package, and locate a Java Archive (.JAR) file for a custom key manager in the

was.install.root/lib/ext directory on WebSphere Application Server. For more information, see

rsec_ssldevcustomkeymgr.dita.

Complete the following steps in the administrative console:

 1. Decide whether you want to create the custom key manager at the cell scope or below the cell scope

at the node, server, or cluster, for example.

Important: When you create a custom key manager at a level below the cell scope, you can

associate it only with a Secure Sockets Layer (SSL) configuration at the same scope or

higher. An SSL configuration at a scope lower than the key manager does not see the

key manager configuration.

v To create a custom key manager at the cell scope, click Security > SSL certificate and key

management > Key managers. Every SSL configuration in the cell can select the key manager at

the cell scope.

v To create a custom key manager at a scope below the cell level, click Security > SSL certificate

and key management > Manage endpoint security configurations > {Inbound | Outbound} >

SSL_configuration > Key managers.

 2. Click New to create a new key manager.

 3. Type a unique key manager name.

 4. Select the Custom implementation setting. With the custom setting, you can define a Java class that

has an implementation on the Java interface javax.net.ssl.X509KeyManager and, optionally, the

com.ibm.wsspi.ssl.KeyManagerExtendedInfo WebSphere Application Server interface. The standard

implementation setting applies only when the key manager is already defined in the Java security

provider list as a provider and an algorithm, which is not the case for a custom key manager. The

typical standard key manager is algorithm = IbmX509, provider = IBMJSSE2.

 5. Type a class name. For example, com.ibm.test.CustomKeyManager.

 6. Select one of the following actions:

v Click Apply, then click Custom properties under Additional Properties to add custom properties to

the new custom key manager. When you are finished adding custom properties, click OK and

Save, then go to the next step.

v Click OK and Save, then go to the next step.

 7. Click SSL certificate and key management in the page navigation at the top of the panel.

 8. Select one of the following actions:

v Click SSL configurations under Related Items for a cell-scoped SSL configuration.

v Click Manage endpoint security configurations to select an SSL configuration at a lower scope.

 9. Click the link for the existing SSL configuration that you want to associate with the new custom key

manager. You can create a new SSL configuration instead of associating the custom key manager

with an existing configuration. For more information, see “Creating a Secure Sockets Layer

configuration” on page 417.

10. Click Trust and Key managers under Additional Properties.

430 Securing applications and their environment

rsec_ssldevcustomkeymgr.dita

11. Select the new custom key manager in the Key manager drop-down list. If the new custom key

manager is not listed, verify that you selected an SSL configuration scope that is at the same level or

below the scope that you selected in Step 8.

12. Click OK and Save.

You have created a custom key manager configuration that references a JAR file in the installation

directory of WebSphere Application Server and associates the custom configuration with an SSL

configuration during the connection handshake.

You can create a custom key manager for a pure client. For more information, see “Commands for the

keyManagerCommands group of the AdminTask object” on page 813.

Example: Developing a custom key manager for custom Secure Sockets Layer key

selection

The following example is of a sample custom key manager. This simple key manager provides the alias if

it is set, and defers to the custom key manager if it is not set. Additional code can be added, for example,

to prompt for a key that is given to the issuers that are provided.

After you build and package a custom key manager, you can configure it from either the ssl.client.props

file for a pure client or by using the SSLConfiguration KeyManager link in the administrative console. See

“Key manager control of X.509 certificate identities” on page 392 for more information about key

managers.

Because only one key manager can be configured at a time for any given Secure Sockets Layer (SSL)

configuration, the certificate selections on the server side might not work as they would when the default

IbmX509 key manager is specified. When a custom key manager is configured, it is up to the owner of

that key manager to ensure that the selection of the alias from the SSL configuration supplied is set

properly when chooseClientAlias or chooseServerAlias are called. Look for the

com.ibm.ssl.keyStoreClientAlias and com.ibm.ssl.keyStoreServerAlias SSL properties.

Note: This example should only be used as a sample, and is not supported.

package com.ibm.test;

import java.security.cert.X509Certificate;

import com.ibm.wsspi.ssl.KeyManagerExtendedInfo;

public final class CustomKeyManager

 implements javax.net.ssl.X509KeyManager, com.ibm.wsspi.ssl.KeyManagerExtendedInfo

{

 private java.util.Properties props = null;

 private java.security.KeyStore ks = null;

 private javax.net.ssl.X509KeyManager km = null;

 private java.util.Properties sslConfig = null;

 private String clientAlias = null;

 private String serverAlias = null;

 private int clientslotnum = 0;

 private int serverslotnum = 0;

 public CustomKeyManager()

 {

 }

 /**

 * Method called by WebSphere Application Server runtime to set the custom

 * properties.

 *

 * @param java.util.Properties - custom props

Chapter 7. Securing communications 431

*/

 public void setCustomProperties(java.util.Properties customProps)

 {

 props = customProps;

 }

 private java.util.Properties getCustomProperties()

 {

 return props;

 }

 /**

 * Method called by WebSphere Application Server runtime to set the SSL

 * configuration properties being used for this connection.

 *

 * @param java.util.Properties - contains a property for the SSL configuration.

 */

 public void setSSLConfig(java.util.Properties config)

 {

 sslConfig = config;

 }

 private java.util.Properties getSSLConfig()

 {

 return sslConfig;

 }

 /**

 * Method called by WebSphere Application Server runtime to set the default

 * X509KeyManager created by the IbmX509 KeyManagerFactory using the KeyStore

 * information present in this SSL configuration. This allows some delegation

 * to the default IbmX509 KeyManager to occur.

 *

 * @param javax.net.ssl.KeyManager defaultX509KeyManager - default key manager for IbmX509

 */

 public void setDefaultX509KeyManager(javax.net.ssl.X509KeyManager defaultX509KeyManager)

 {

 km = defaultX509KeyManager;

 }

 public javax.net.ssl.X509KeyManager getDefaultX509KeyManager()

 {

 return km;

 }

 /**

 * Method called by WebSphere Application Server runtime to set the SSL

 * KeyStore used for this connection.

 *

 * @param java.security.KeyStore - the KeyStore currently configured

 */

 public void setKeyStore(java.security.KeyStore keyStore)

 {

 ks = keyStore;

 }

 public java.security.KeyStore getKeyStore()

 {

 return ks;

 }

432 Securing applications and their environment

/**

 * Method called by custom code to set the server alias.

 *

 * @param String - the server alias to use

 */

 public void setKeyStoreServerAlias(String alias)

 {

 serverAlias = alias;

 }

 private String getKeyStoreServerAlias()

 {

 return serverAlias;

 }

 /**

 * Method called by custom code to set the client alias.

 *

 * @param String - the client alias to use

 */

 public void setKeyStoreClientAlias(String alias)

 {

 clientAlias = alias;

 }

 private String getKeyStoreClientAlias()

 {

 return clientAlias;

 }

 /**

 * Method called by custom code to set the client alias and slot (if necessary).

 *

 * @param String - the client alias to use

 * @param int - the slot to use (for hardware)

 */

 public void setClientAlias(String alias, int slotnum) throws Exception

 {

 if (!ks.containsAlias(alias))

 {

 throw new IllegalArgumentException ("Client alias " + alias + "

 not found in keystore.");

 }

 this.clientAlias = alias;

 this.clientslotnum = slotnum;

 }

 /**

 * Method called by custom code to set the server alias and slot (if necessary).

 *

 * @param String - the server alias to use

 * @param int - the slot to use (for hardware)

 */

 public void setServerAlias(String alias, int slotnum) throws Exception

 {

 if (! ks.containsAlias(alias))

 {

 throw new IllegalArgumentException ("Server alias " + alias + "

 not found in keystore.");

Chapter 7. Securing communications 433

}

 this.serverAlias = alias;

 this.serverslotnum = slotnum;

 }

 /**

 * Method called by JSSE runtime to when an alias is needed for a client

 * connection where a client certificate is required.

 *

 * @param String keyType

 * @param Principal[] issuers

 * @param java.net.Socket socket (not always present)

 */

 public String chooseClientAlias(String[] keyType, java.security.Principal[] issuers, java.net.Socket socket
 {

 if (clientAlias != null && !clientAlias.equals(""))

 {

 String[] list = km.getClientAliases(keyType[0], issuers);

 String aliases = "";

 if (list != null)

 {

 boolean found=false;

 for (int i=0; i<list.length; i++)

 {

 aliases += list[i] + " ";

 if (clientAlias.equalsIgnoreCase(list[i]))

 found=true;

 }

 if (found)

 {

 return clientAlias;

 }

 }

 }

 // client alias not found, let the default key manager choose.

 String[] keyArray = new String [] {keyType[0]};

 String alias = km.chooseClientAlias(keyArray, issuers, null);

 return alias.toLowerCase();

 }

 /**

 * Method called by JSSE runtime to when an alias is needed for a server

 * connection to provide the server identity.

 *

 * @param String[] keyType

 * @param Principal[] issuers

 * @param java.net.Socket socket (not always present)

 */

 public String chooseServerAlias(String keyType, java.security.Principal[]

 issuers, java.net.Socket socket)

 {

 if (serverAlias != null && !serverAlias.equals(""))

 {

 // get the list of aliases in the keystore from the default key manager

 String[] list = km.getServerAliases(keyType, issuers);

434 Securing applications and their environment

String aliases = "";

 if (list != null)

 {

 boolean found=false;

 for (int i=0; i<list.length; i++)

 {

 aliases += list[i] + " ";

 if (serverAlias.equalsIgnoreCase(list[i]))

 found = true;

 }

 if (found)

 {

 return serverAlias;

 }

 }

 }

 // specified alias not found, let the default key manager choose.

 String alias = km.chooseServerAlias(keyType, issuers, null);

 return alias.toLowerCase();

 }

 public String[] getClientAliases(String keyType, java.security.Principal[] issuers)

 {

 return km.getClientAliases(keyType, issuers);

 }

 public String[] getServerAliases(String keyType, java.security.Principal[] issuers)

 {

 return km.getServerAliases(keyType, issuers);

 }

 public java.security.PrivateKey getPrivateKey(String s)

 {

 return km.getPrivateKey(s);

 }

 public java.security.cert.X509Certificate[] getCertificateChain(String s)

 {

 return km.getCertificateChain(s);

 }

 public javax.net.ssl.X509KeyManager getX509KeyManager()

 {

 return km;

 }

}

Associating a Secure Sockets Layer configuration dynamically with an

outbound protocol and remote secure endpoint

After you create a Secure Sockets Layer (SSL) configuration, you must associate a secure outbound

management scope with the new configuration. In this release, you can associate one SSL configuration

with one remote secure endpoint and a different SSL configuration to another remote secure endpoint.

Both endpoints can use the same outbound protocol, if appropriate. This task describes how to create the

association dynamically.

Chapter 7. Securing communications 435

Dynamic outbound selection requires that you provide only the outbound protocol name, the target host,

and the target port so that WebSphere Application Server can make a connection between the SSL

configuration and the outbound protocol or remote secure endpoint. The dynamic outbound selection

method takes precedence over other selection methods, such as central management and direct selection,

but is second to the programmatic method, that is, setting an SSL configuration on the running thread. For

more information about the selection types and precedence rules, see “Secure communications using

Secure Sockets Layer” on page 381.

Complete the following steps in the administrative console:

 1. Click Security > SSL certificate and key management > Manage endpoint security

configurations > Outbound.

 2. Select the management scope that you want to associate with an SSL configuration on the topology

tree.

 3. Under Related Items, click Dynamic outbound endpoint SSL configurations. The default dynamic

outbound configuration name, the target protocol, host, and port connection information, and the SSL

configuration name display.

 4. Click New to create a new dynamic outbound configuration.

 5. Type a dynamic outbound configuration name. Use a name that is descriptive of the purpose of the

dynamic selection configuration.

 6. Optionally, type a dynamic selection configuration description.

 7. Type the connection information that you want to associate with the configuration that is displayed in

the SSL configuration drop-down list. The connection information must be in the format protocol

name, target host, target port. You can substitute an asterisk (*) for any value, as in the following

examples:

v *,*,443

v *,www.ibm.com,443

v HTTP,.austin.ibm.com,*

where 443 is a port, www.ibm.com is a host, HTTP is a protocol, and .austin.ibm.com is a target host.

You can add multiple connections, but each additional connection can affect outbound performance.

 8. Click Add to add the new connection to the set of SSL configuration connections. To remove a

connection, select it and click Remove.

 9. Select an SSL configuration from the list.

10. Click Get certificate aliases to refresh the certificate aliases that are contained in the associated key

store.

11. Choose a certificate alias from the list.

12. Click OK and Save.

WebSphere Application Server is ready to connect one or more SSL configurations to one or more remote

secure endpoints.

You can return to the outbound tree and select another management scope to associate with the same or

a new outbound configuration.

Example: Programmatically specifying an outbound SSL configuration using

JSSEHelper API

WebSphere Application Server provides a way to specify programmatically which Secure Sockets Layer

(SSL) configurations to use prior to making an outbound connection. The

com.ibm.websphere.ssl.JSSEHelper interface provides a complete set of application programming

interfaces (APIs) for handling SSL configurations.

436 Securing applications and their environment

You must perform the following steps for your application when using the JSSEHelper API to establish an

SSL properties object on the thread for use by the runtime. Some of these APIs have Java 2 Security

permission requirements. See the JSSEHelper API documentation for more information about the

permissions required by your application.

1. Obtain an instance of the JSSEHelper API by typing the following command:

com.ibm.websphere.ssl.JSSEHelper jsseHelper

= com.ibm.websphere.ssl.JSSEHelper.getInstance();

2. Obtain SSL properties from the WebSphere Application Server configuration or use those provided by

your application. You can obtain these properties in several ways:

v By direction selection of an alias name, within the same management scope or higher as in the

following example:

try

{

 String alias = "NodeAServer1SSLSettings";

// As specified in the WebSphere SSL configuration

 Properties sslProps = jsseHelper.getProperties(alias);

}

catch (com.ibm.websphere.ssl.SSLException e)

{

 e.printStackTrace(); // handle exception

}

v By using the getProperties API for programmatic, direction, dynamic outbound, or management

scope selection (based on precedence rules and inheritance). The SSL runtime uses the

getProperties API to determine which SSL configuration to use for a particular protocol. This

decision is based on both the input (sslAlias and connectionInfo) and the management scope from

which the property is called. The getProperties API makes decisions in the following order:

a. The API checks the thread to see if properties already exist.

b. The API checks for a dynamic outbound configuration that matches the ENDPOINT_NAME,

REMOTE_HOST, and or REMOTE_PORT.

c. The API checks to see if the optional sslAlias property is specified. You can configure any

protocol as direct or centrally managed. When a protocol is configured as direct, the sslAlias

parameter is null. When a protocol is configured as centrally managed, the sslAlias parameter

is also null.

d. If no selection has been made, the API chooses the dynamic outbound configuration based on

the management scope it was called from. If the dynamic outbound configuration is not defined

in the same scope, it then searches the hierarchy to locate one.

The last choice is the cell-scoped SSL configuration (in Network Deployment) or the node-scoped

SSL configuration (in Base Application Server). The

com.ibm.websphere.ssl.SSLConfigChangeListener parameter is notified when the SSL configuration

that is chosen by a call to the getProperties API changes. The protocol can then call the API again

to obtain the new properties as in the following example:

try

{

 String sslAlias = null; // The sslAlias is not specified directly at this time.

 String host = "myhost.austin.ibm.com"; // the target host

 String port = "443"; // the target port

 HashMap connectionInfo = new HashMap();

 connectionInfo.put(JSSEHelper.CONNECTION_INFO_DIRECTION,

 JSSEHelper.DIRECTION_OUTBOUND);

 connectionInfo.put(JSSEHelper.CONNECTION_INFO_REMOTE_HOST, host);

 connectionInfo.put(JSSEHelper.CONNECTION_INFO_REMOTE_PORT,

 Integer.toString(port));

 connectionInfo.put(JSSEHelper.CONNECTION_INFO_ENDPOINT_NAME,

 JSSEHelper.ENDPOINT_IIOP);

 java.util.Properties props = jsseHelper.getProperties(sslAlias,

 connectionInfo, null);

Chapter 7. Securing communications 437

}

catch (com.ibm.websphere.ssl.SSLException e)

{

 e.printStackTrace(); // handle exception

}

v By creating your own SSL properties and then passing them to the runtime, as in the following

example:

try

{

 // This is the recommended "minimum" set of SSL properties. The trustStore can

 // be the same as the keyStore.

 Properties sslProps = new Properties();

 sslProps.setProperty("com.ibm.ssl.trustStore", "some value");

 sslProps.setProperty("com.ibm.ssl.trustStorePassword", "some value");

 sslProps.setProperty("com.ibm.ssl.trustStoreType", "some value");

 sslProps.setProperty("com.ibm.ssl.keyStore", "some value");

 sslProps.setProperty("com.ibm.ssl.keyStorePassword", "some value");

 sslProps.setProperty("com.ibm.ssl.keyStoreType", "some value");

 jsseHelper.setSSLPropertiesOnThread(sslProps);

}

catch (com.ibm.websphere.ssl.SSLException e)

{

 e.printStackTrace(); // handle exception

}

3. Use the JSSEHelper.setSSLPropertiesOnThread(props) API to set the Properties object on the thread

so that the runtime picks it up and uses the same JSSEHelper.getProperties API. You can also obtain

properties from the thread after they are set with the jsseHelper.getSSLPropertiesOnThread() API, as

in the following example:

try

{

 Properties sslProps = jsseHelper.getProperties(null,

 connectionInfo, null); jsseHelper.setSSLPropertiesOnThread(sslProps);

}

catch (com.ibm.websphere.ssl.SSLException e)

{

 e.printStackTrace(); // handle exception

}

4. When the connection is completed, you must clear the SSL properties from the thread by passing the

null value to the setPropertiesOnThread API, as in the following example:

try

{

 jsseHelper.setSSLPropertiesOnThread(null);

}

catch (com.ibm.websphere.ssl.SSLException e)

{

 e.printStackTrace(); // handle exception

}

Select the approach that best fits your connection situation when you specify programmatically which

Secure Sockets Layer (SSL) configurations to use prior to making an outbound connection.

Associating Secure Sockets Layer configurations centrally with inbound and

outbound scopes

After you create a Secure Sockets Layer (SSL) configuration, you must associate a secure inbound or

outbound management scope with the new configuration. You can manage the association centrally so

that you can easily make changes that affect all the scopes that are lower on the topology and that are

associated with the configuration. Beginning with WebSphere Application Server version 6.1, the

recommended and the default configuration method is centrally managed SSL configurations.

438 Securing applications and their environment

You can simplify the number of associations that you need to make for an SSL configuration by

associating the configuration with the highest level management scope requiring a unique configuration.

SSL configuration associations manifest inheritance behaviors. Because of the inheritance behaviors, all of

the scopes that are lower on the topology inherit this SSL configuration. For example, an association you

make at the cell level affects nodes, servers, clusters, and endpoints. For more information, see “Central

management of Secure Sockets Layer configurations” on page 397.

A precedence rule determines which SSL configuration association is used at a particular scope. The

highest precedence is given to endpoints on the topology. If you establish an association at the endpoint,

this association overrides any prior association that you made higher up on the management scope

topology.

Complete the following steps in the administrative console:

 1. Click Security > SSL certificate and key management.

 2. Select the Dynamically update the runtime when SSL configuration changes check box if you

want changes that you make to an existing SSL configuration to occur dynamically. All outbound SSL

communications honor the dynamic SSL changes. Protocols that do not use the channel frameworks

SSL channel for inbound communications, including Object Request Broker (ORB) and administrative

SOAP protocols, do not honor dynamic updates. For more information, see “Dynamic configuration

updates” on page 411.

 3. Click Manage endpoint security configurations.

 4. Select either the inbound or the outbound tree. After finishing the selected tree, you can return to this

step to repeat the following steps for the other tree.

 5. Click the link for the selected cell, node, node group, server, cluster, or endpoint on the topology tree.

If the scope already has an associated SSL configuration and alias, these objects display in

parentheses immediately following the scope name, for example:

Node01(NodeDefaultSSLSettings,default). If the deployment manager has federated a node, the node

scope SSL configuration overrides the cell scope configuration above it in the topology.

 6. Decide whether to override the inherited values that display in the read-only fields. Read-only fields

include the management scope name, the direction, and the inherited SSL configuration name and

certificate alias.

v If you are satisfied with these values, do not override them.

v If you want to override the inherited values, select the Override inherited values check box.

 7. Select an SSL configuration from the list.

 8. Click Update certificate alias list. The certificate alias list comes from the key store that is

referenced by the new SSL configuration.

 9. Click Manage certificates if you want to manage the personal certificates that are contained in the

key store that is referenced in the SSL configuration.

10. Click Update certificate alias list to refresh the list of aliases.

11. Select a certificate alias in the key store to represent the identity of the endpoint.

12. Click OK to save your changes.

13. Click Manage endpoint security configurations and trust zones to return to the topology tree.

14. Configure the opposite direction on the topology tree using the steps in this task. You can also select

additional scopes to associate with the SSL configuration, as needed.

Each SSL configuration at the selected scope and at scopes beneath it on the topology tree have the

same SSL configuration properties. The following SSL configuration methods override the centrally

managed configurations that you associate in the tree view:

v Direct selection at the endpoint

v Dynamic outbound SSL configuration associations

v Programmatic specifications

Chapter 7. Securing communications 439

At any management scope, you can configure the following objects: dynamic outbound endpoint SSL

configurations, key stores, key sets, key set groups, key managers, and trust managers. Like SSL

configurations, these objects are scoped automatically so that they are not visible higher up in the tree nor

are they loaded during runtime by processes that are higher up in the tree.

Selecting an SSL configuration alias directly from an endpoint configuration

You can associate a secure outbound endpoint with a new Secure Sockets Layer (SSL) configuration

directly. If you are migrating from a release prior to version 6.1, WebSphere Application Server still

supports configurations that were selected directly at an endpoint. Direct selection always overrides

centrally managed configurations and preserves migrated configurations.

Select an SSL configuration alias directly at the following endpoints:

v Security > Secure administration, applications, and infrastructure > RMI/IIOP security > CSIv2

outbound transport

v Security > Secure administration, applications, and infrastructure > RMI/IIOP security > CSIv2

inbound transport

v System administration > Deployment manager > Transport Chain > WCInboundAdminSecure >

SSL inbound channel (SSL_1)

v System administration > Deployment manager > Administration Services > JMX connectors >

SOAPConnector > Custom Properties > sslConfig

v System administration > Node agents > nodeagent > Administration Services > JMX connectors

> SOAPConnector > Custom Properties > sslConfig

v Servers > Application servers > server1 > Messaging engine inbound transports >

InboundSecureMessaging > SSL inbound channel (SIB_SSL_JFAP)

v Servers > Application servers > server1 > WebSphere MQ link inbound transports >

InboundSecureMQLink > SSL inbound channel (SIB_SSL_MQFAP)

v Servers > Application servers > server1 > SIP Container Settings > SIP container transport

chains > SIPCInboundDefaultSecure > SSL inbound channel (SSL_5)

v Servers > Application servers > server1 > Web Container Settings > Web container transport

chains > WCInboundAdminSecure > SSL inbound channel (SSL_1)

v Servers > Application servers > server1 > Web Container Settings > Web container transport

chains > WCInboundDefaultSecure > SSL inbound channel (SSL_2)

Attention: Keep in mind that central management of SSL configurations can be a more efficient strategy

because multiple configurations can be contained within a single SSLConfigGroup. If you need to convert

configuration references that are already directly managed to centrally managed configurations, modify

each endpoint individually. For more information on specific wsadmin commands, see “Commands for the

SSLConfigGroupCommands group of the AdminTask object” on page 817.

Complete the following steps in the administrative console:

Note: These steps provide an example to follow when you directly select any of the endpoints listed

above.

1. Click Security > Secure administration, applications, and infrastructure > RMI/IIOP security >

CSIv2 outbound transport.

2. Click Use specific SSL alias. When you identify a specific SSL alias, you override the centrally

managed scope associations.

3. Select an SSL configuration alias from the drop-down list.

4. Click OK.

5. Repeat these steps for additional protocols or endpoints, if desired.

By associating the endpoint directly, you have overridden a centrally managed SSL configuration.

440 Securing applications and their environment

If you decide to use management scopes instead of endpoints to associate an SSL configuration, follow

the steps above, but click Centrally managed instead of Use specific SSL alias, then click Manage

endpoint security configurations. The console is redirected to Security > SSL certificate and key

management > Manage endpoint security configurations.

Enabling Secure Sockets Layer client authentication for a specific inbound

endpoint

When you establish a Secure Sockets Layer (SSL) configuration, you can enable client authentication for a

specific inbound endpoint.

The endpoint configuration must already exist in the SSL topology.

Complete the following steps in the administrative console:

1. Click Security > SSL certificate and key management > Manage endpoint security configurations

> Inbound > SSL_configuration. If you want to enable SSL client authentication for all processes,

define an SSL configuration for the new endpoint at the node or cell level so that it is visible to all

processes on the same node or on the entire cell. For more information, see “Creating a Secure

Sockets Layer configuration” on page 417.

2. Select Override inherited values. The SSL configuration is used for the current scope and any lower

scopes that have not already designated an SSL configuration. This field displays for server and node

groups within the object hierarchy and does not display for the top-level node or cell.

3. Select an SSL configuration from the drop-down list.

4. Click Update certificate alias list.

5. Select a Certificate alias from the drop-down list.

6. Click OK to save the configuration.

You can repeat the previous steps for each endpoint that uses the same SSL configuration to enable client

authentication for the inbound endpoints.

CSIv2 Protocol Exception:

The Common Secure Interoperability Version 2 (CSIv2) secure endpoints, used for Remote Method

Invocation over the Internet Inter-ORB Protocol (RMI/IIOP) security, cannot override inherited values. While

the rest of the SSL properties are effective for CSIv2 when they are selected at the centrally-managed

Secure Communications panel, the client authentication selection is controlled by the CSIv2 protocol

configuration.

To enable SSL client certificate authentication for the CSIv2 protocol, you must use the CSIv2 inbound and

outbound authentication panels. For SSL client authentication to occur between two servers, you must

enable (support or require) SSL client certificate authentication for both the inbound and the outbound

policies.

WebSphere Application Server can either request (support) clients to provide signer certificates for the

SSL handshake, or the server can require clients to provide a valid signer certificates for the SSL

handshake, which is a more secure method. However, when the server requires certificates, the server

must obtain a signer for each client that connects to the server, which involves more server-side

management.

The client certificate should not be used for the identity when it is used from server-to-server. However,

when a pure client sends the client certificate it is used for the identity unless a message level identity is

specified, such as a user ID or a password.

Do the following to enable client certificate authentication for the CSIv2 protocol for server-to-server:

1. Click Security > Secure administration, applications, and infrastructure.

Chapter 7. Securing communications 441

2. Expand the RMI/IIOP security section.

3. Click CSIv2 inbound authentication.

4. Under Client authentication, select either supported or required. When you select required, only one

SSL port is opened (CSV2_SSL_MUTUALAUTH_LISTENER_ADDRESS). When you select supported,

two SSL ports are opened (both CSIV2_SSL_MUTUALAUTH_LISTENER_ADDRESS and

CSIV2_SSL_SERVERAUTH_LISTENER_ADDRESS).

If there are two ports, the client can select either based on the security configuration policy of the port.

5. Click OK to save.

6. If you want server-to-server SSL client authentication, then complete the remaining steps. If you don’t

complete the remaining steps, only pure clients are enabled to send client certificates.

7. Expand the RMI/IIOP security section.

8. Click CSIv2 outbound authentication.

9. Under Client authentication, select either supported or required.

The SSL configuration for the inbound secure endpoints for which you enable SSL client certificate

authentication must have the signer certificate from any client that attempts to open a connection to that

inbound secure endpoint. You must collect those signers and then add them to the trust store associated

with the inbound secure endpoints SSL configuration.

Manage endpoint security configurations

Use this page to select a Secure Socket Layer (SSL) configuration from the Local Topology hierarchy,

which includes cells, nodes, node groups, servers, and clusters.

To view this administrative console page, click Security > SSL certificate and key management >

Manage endpoint security configurations.

Local topology:

The Local topology represents the hierarchy of nodes, node groups, clusters, servers, and end points

within the cell that comprise a centralized SSL configuration.

 The topology acts as a hierarchical tree in terms of inheritance. For example, if an SSL configuration has

been associated with a specific node, then all servers within that node will inherit that SSL configuration

selection, provided the servers are not associated with an SSL configuration at the server scope.

Centralized management of SSL is the default configuration; however, it can be overridden at various

locations to directly select a specific SSL alias as in previous releases for backwards compatibility.

 Scope Description

Inbound/Outbound Specifies the topology tree in terms of connection

direction. For example, the inbound tree represents all

server endpoints that receive connections at the various

servers within the cell. The outbound tree represents the

client side of connections from the various servers within

the cell.

Nodes Specifies the nodes that are part of the cell. The list of

nodes is updated anytime a node gets federated into the

cell.

Servers Specifies the servers that are part of a specific node. You

can enable a specific server to have an SSL configuration

associated with it so that resources within the same

server can use the associated SSL configuration.

442 Securing applications and their environment

Scope Description

Clusters Specifies the clusters that are part of the cell. When an

SSL configuration is associated with a cluster, all servers

within the cluster will use the same SSL configuration

unless specified at a lower level in the topology.

Nodegroups Specifies the node groups that are part of the cell. When

an SSL configuration is associated with a node group, all

nodes within that node group may use the same SSL

configuration unless one is specified at a lower scope in

the topology or the specific end point has chosen a direct

alias reference.

Secure port and transport Specifies an endpoint name to associate with an SSL

configuration when more specific SSL settings are

needed at this level. You could select an alias directly at

the endpoint panel; however, when you use Secure port

and transport, you can maintain more centralized control

of the SSL configuration and make changes more easily.

Dynamic inbound and outbound endpoint SSL configurations collection

Use this page to manage dynamic endpoint Secure Sockets Layer (SSL) configurations, which represent

associations between Secure Socket Layer (SSL) configurations and their target protocol, host, and port.

To view this administrative console page, click Security > SSL certificate and key management >

Manage endpoint security configurations > {Inbound | Outbound} > ssl_configuration . Under

Related items, click Dynamic [inbound | outbound] endpoint SSL configurations.

When an outbound connection is attempted, this association is checked ahead of the SSL configuration

scope association. Based on the target protocol,host,port, the outbound SSL configuration used can be

different from the default specified in the SSL scope configuration.

 Button Resulting action

New Adds a new dynamic outbound selection criteria. The outbound connection

selects an SSL configuration based upon connection information, including

DNS host name and domain, port, and protocol type. When an outbound

connection is being made, the dynamic outbound selection criteria are queried

for a match, and if found the SSL configuration associated is used.

Delete Deletes an existing dynamic outbound endpoint SSL configuration.

Name:

Specifies the unique name of the dynamic endpoint configuration.

Connection information:

Specifies the set of target protocol, host, port for the outbound request in the form protocol,host,port.

SSL Configuration:

Specifies the SSL configuration that is used by requests at this scope when a match occurs for the given

selection criteria.

Dynamic outbound endpoint SSL configuration settings

Use this page to set properties for dynamic outbound endpoint SSL configurations, which represent

associations between SSL configurations and their target protocol, host, and port.

Chapter 7. Securing communications 443

To view this administrative console page, click Security > SSL certificate and key management >

Manage endpoint security configurations > {Inbound | Outbound} > ssl_configuration . Under

Related items, click Dynamic [inbound | outbound] endpoint SSL configurations > New.

When an outbound connection is attempted, this association is checked ahead of the Secure Sockets

Layer (SSL) configuration scope association. This means based on the target protocol,host,port, the

outbound SSL configuration used can be different than the default specified in the SSL scope

configuration.

Name:

Specifies the unique name of the dynamic endpoint configuration.

 Data type: Text

Description:

Specifies text that describes the purpose of this dynamic selection criteria.

 Data type: Text

Add connection information:

Specifies select information in the form protocol,host,port for the outbound connection. Multiple selection

criteria can be entered. An asterisk (*) can be used to mean all protocols, hosts, or ports. You can use an

* for any field.

 Data type: Text

An example of selection criteria is *,www.ibm.com,*, which means that any time the target host is

www.ibm.com, you must use the SSL configuration specified here. Another example selection criteria is

IIOP,*,*, which means that any outbound IIOP request uses the SSL configuration that is specified in the

SSL configuration field. When there is a conflict between two selection criteria, the application server uses

the first match. The list of valid protocols you can use include: IIOP, HTTP, JMS, LDAP, SIP,

ADMIN_SOAP, or ADMIN_IIOP.

Add:

Specifies to add the selected information from the Add select information menu to the right-hand list.

Remove:

Specifies to remove the selection from the right-hand list.

SSL Configuration:

Specifies the SSL configuration to be used by requests at this scope when a match occurs for the given

selection criteria.

 Data type: Text

Get certificate alias:

444 Securing applications and their environment

When selected, the keystore within the selected SSL configuration is queried for a list of personal

certificates from which to choose.

Certificate alias:

Specifies the certificate alias that is used as the identity for the connection.

 If you select None, the Java Secure Sockets Extension (JSSE) key manager determines which certificate

is used. If multiple certificates exist in the keystore, the key manager might not consistently select the

same certificate.

 Data type: Text

Default: (none)

Quality of protection (QoP) settings

Use this page to specify security level, ciphers, and mutual authentication settings for the Secure Socket

Layer (SSL) configuration.

To view this administrative console page, click Security > SSL certificate and key management >

Manage endpoint security configurations > {Inbound | Outbound SSL_configuration_name}. Under

Related Items, click SSL configurations > {SSL_configuration_name | New}. Under Additional

Properties, click Quality of protection (QoP) settings.

Client authentication

Specifies the whether SSL client authentication should be requested if the SSL connection is used for the

server side of the connection.

If None is selected, the server does not request that a client certificate be sent during the handshake. If

Supported is selected, the server requests that a client certificate be sent. If the client does not have a

certificate, the handshake might still succeed. If Required is selected, the server requests that a client

certificate be sent. If the client does not have a certificate, the handshake fails.

 Data type: Text

Default: None

Protocol

Specifies the Secure Sockets Layer (SSL) handshake protocol. This protocol is typically SSL_TLS, which

supports all handshake protocols except for SSLv2 on the server side. When United States Federal

Information Processing standard (FIPS) option is enabled, Transport Layer Security (TLS) is automatically

used regardless of this setting.

 Data type: text

Default: SSL_TLS

Predefined JSSE provider

Specifies one of the predefined Java Secure Sockets Extension (JSSE) providers. The IBMJSSE2 provider

is recommended for use on all platforms which support it. It is required for use by the channel framework

SSL channel. When Federal Information Processing Standard (FIPS) is enabled, IBMJSSE2 is used in

combination with the IBMJCEFIPS crypto provider.

 Default: Enabled

Chapter 7. Securing communications 445

Select provider

Specifies a package that implements a subset of the cryptography aspects for the Java security application

programming interface (API). This value is a JSSE provider name that is listed in the java.security file.

Note that cipher suites and protocol values depend upon the provider.

 Data type: Text

Default: IBMJSSE2

Custom JSSE provider

Specifies that a custom JSSE provider should be used.

 Default: Disabled

Custom provider

Specifies a package that implements a subset of the cryptography aspects for the Java security application

programming interface (API). This value is a Java Secure Sockets Extension (JSSE) provider name that is

listed in the java.security file. Note that cipher suites and protocol values depend upon the provider.

 Data type: Text

Cipher suite groups

Specifies the various cipher suite groups that can be chosen depending upon your security needs. The

stronger the cipher suite strength, the better the security; however, this can result in performance

consequences.

 Data type: Text

Default: Strong

Update selected ciphers

When selected, the cipher suites that are contained within the selected Cipher suite group are added to

the list of Selected ciphers. Any change to this list changes the Cipher suite group to custom.

Selected ciphers

Specifies the ciphers that are effective when the configuration is saved. These ciphers are used to

negotiate with the remote side of the connection during the handshake. A common cipher needs to be

selected or the handshake fails.

 Data type: Text

Add

Specifies to add the selected cipher to the Selected ciphers list.

Remove

Specifies to remove the selected cipher from the Selected ciphers list.

ssl.client.props client configuration file

Use the ssl.client.props file to configure Secure Sockets Layer (SSL) for clients. In previous releases of

WebSphere Application Server, SSL properties were specified in the sas.client.props or

soap.client.props files or as system properties. By consolidating the configurations, WebSphere

Application Server enables you to manage security in a manner that is comparable to server-side

configuration management. You can configure the ssl.client.props file with multiple SSL configurations.

446 Securing applications and their environment

Setting up the SSL configuration for clients

Client runtimes are dependent on the WebSphere Application Server ssl.client.props configurations.

Use the setupCmdLine.bat or setupCmdLine.sh script on the command line to specify the

com.ibm.SSL.ConfigURL system property.

-Dcom.ibm.SSL.ConfigURL=file:C:\WebSphere\AppServer\profiles\default

\properties\ssl.client.props

The com.ibm.SSL.ConfigURL property references a file URL that points to the ssl.client.props file. You

can reference the CLIENTSSL variable on the command line of any script that uses the setupCmdLine.bat

or setupCmdLine.sh file.

When you specify the com.ibm.SSL.ConfigURL system property, the SSL configuration is available to all

protocols that use SSL. SSL configurations, which are referenced in the ssl.client.props file, also have

aliases that you can reference. In the following sample code from the sas.client.props file, all of the SSL

properties are replaced with a property that points to an SSL configuration in the ssl.client.props file:

com.ibm.ssl.alias=default

The following sample code shows a property in the soap.client.props file that is similar to the

com.ibm.SSL.ConfigURL property. This property references a different SSL configuration on the client side:

com.ibm.ssl.alias=ADMIN_SOAP

In the ssl.client.props file, you can change the administrative SSL configuration to avoid modifying the

soap.client.props file.

Tip: In WebSphere Application Server Version 6.1, support for SSL properties is still specified in the

sas.client.props and soap.client.props files. However, consider moving the SSL configurations to

the ssl.client.props file, because this file is the new configuration model for client SSL.

Properties of the ssl.client.props file

This section describes the default ssl.client.props file properties in detail, by sections within the file.

Global properties

Global SSL properties are process-specific properties that include Federal Information Processing

Standard (FIPS) enablement, the default SSL alias, the user.root property for specifying the root location of

the key and truststore paths, and so on.

 Property Default Description

com.ibm.ssl.defaultAlias DefaultSSLSettings Specifies the default alias that is used whenever an

alias is not specified by the protocol that calls the

JSSEHelper API to retrieve an SSL configuration. This

property is the final arbiter on the client side for

determining which SSL configuration to use.

com.ibm.ssl.validationEnabled false When set to true, this property validates each SSL

configuration as it is loaded. Use this property for

debug purposes only, to avoid unnecessary

performance overhead during production.

Chapter 7. Securing communications 447

Property Default Description

com.ibm.ssl.performURLHostNameVerification false When set to true, this property enforces URL host

name verification. When HTTP URL connections are

made to target servers, the common name (CN) from

the server certificate must match the target host name.

Without a match, the host name verifier rejects the

connection. The default value of false omits this

check. As a global property, it sets the default host

name verifier. Any javax.net.ssl.HttpsURLConnection

object can choose to enable host name verification for

that specific instance by calling the setHostnameVerifier

method with its own HostnameVerifier instance.

com.ibm.security.useFIPS false When set to true, FIPS-compliant algorithms are used

for SSL and other Java Cryptography Extension

(JCE)-specific applications. This property is typically not

enabled unless the property is required by the

operating environment.

user.root C:\WebSphere\
AppServer

\profiles\default

This property can be used by key and truststore

location properties as a single property for specifying

the root path to the key and truststores. Typically, this

property is the profile root. However, you can modify

this property to any root directory on the local machine

that has the proper read and potentially write authority

to that directory.

profile_root of the profile C\WebSphere\
AppServer

\profiles\default

Key and truststore location properties can use this

property as a single property for specifying the root

path to the key and truststores. You can modify this

property to any root directory on the local machine that

has the proper read (and potentially write) authority to

that directory.

Certificate creation properties

Use certificate creation properties to specify the default self-signed certificate values for the major

attributes of a certificate. You can define the distinguished name (DN), expiration date, key size, and alias

that are stored in the keystore.

 Property Default Description

com.ibm.ssl.defaultCertReqAlias default_alias This property specifies the default alias to use to

reference the self-signed certificate that is created in the

keystore. If the alias already exists with that name, the

default alias is appended with _#, where the number

sign (#) is an integer that starts with 1 and increments

until it finds a unique alias.

com.ibm.ssl.defaultCertReqSubjectDN cn=${hostname},

o=IBM,c=US

This property uses the property distinguished name

(DN) that you set for the certificate when it is created.

The ${hostname} variable is expanded to the host name

on which it resides. You can use correctly formed DNs

as specified by the X.509 certificate.

com.ibm.ssl.defaultCertReqDays 365 This property specifies the validity period for the

certificate and can be as small as 1 day and as large as

the maximum number of days that a certificate can be

set, which is approximately 20 years.

448 Securing applications and their environment

Property Default Description

com.ibm.ssl.defaultCertReqKeySize 1024 This property is the default key size. The valid values

depend upon the Java Virtual Machine (JVM) security

policy files that are installed. By default, the product

JVMs ship with the export policy file that limits the key

size to 1024. To get a large key size such as 2048, you

can download the restricted policy files from the Web

site.

SSL configuration properties

Use the SSL configuration properties section to set multiple SSL configurations. For a new SSL

configuration specification, set the com.ibm.ssl.alias property because the parser starts a new SSL

configuration with this alias name. The SSL configuration is referenced by using the alias property from

another file, such as sas.client.props or soap.client.props, through the default alias property. The

properties that are specified in the following table enable you to create a javax.net.ssl.SSLContext, among

other SSL objects.

 Property Default Description

com.ibm.ssl.alias DefaultSSLSettings This property is the name of this SSL configuration and

must be the first property for an SSL configuration

because it references the SSL configuration. If you

change the name of this property after it is referenced

elsewhere in the configuration, the runtime defaults to

the com.ibm.ssl.defaultAlias property whenever the

reference is not found. The error trust file is null or

key file is null might display when you start an

application using an SSL reference that is no longer

valid.

com.ibm.ssl.protocol SSL_TLS This property is the SSL handshake protocol that is used

for this SSL configuration. This property attempts

Transport Layer Security (TLS) first, but accepts any

remote handshake protocol, including SSLv3 and TLS.

Valid values for this property include SSLv2 (client side

only), SSLv3, SSL, TLS, TLSv1, and SSL_TLS.

com.ibm.ssl.securityLevel HIGH This property specifies the cipher group that is used for

the SSL handshake. The typical selection is HIGH, which

specifies 128-bit or higher ciphers. The MEDIUM

selection provides 40-bit ciphers. The LOW selection

provides ciphers that do not perform encryption, but do

perform signing for data integrity. If you specify your own

cipher list selection, uncomment the property

com.ibm.ssl.enabledCipherSuites.

com.ibm.ssl.trustManager IbmX509 This property specifies the default trust manager that you

must use to validate the certificate sent by the target

server. This trust manager does not perform certificate

revocation list (CRL) checking. You can choose to

change this to IbmPKIX for CRL checking using CRL

distribution lists in the certificate, which is a standard

way to perform CRL checking. When you want to

perform custom CRL checking, you must implement a

custom trust manager and specify the trust manager in

the com.ibm.ssl.customTrustManagers property. The

IbmPKIX option might affect performance because this

option requires IBMCertPath for trust validation. Use

IbmX509 unless CRL checking is necessary.

Chapter 7. Securing communications 449

Property Default Description

com.ibm.ssl.keyManager IbmX509 This property specifies the default key manager to use

for choosing the client alias from the specified keystore.

This key manager uses the

com.ibm.ssl.keyStoreClientAlias property to specify the

keystore alias. If this property is not specified, the choice

is delegated to Java Secure Socket Extension (JSSE).

JSSE typically chooses the first alias that it finds.

com.ibm.ssl.contextProvider IBMJSSE2 This property is used to choose the JSSE provider for

the SSL context creation. It is recommended that you

default to IBMJSSE2 when you use a Java virtual

machine (JVM). The client plug-in can use the SunJSSE

provider when using a Sun JVM.

com.ibm.ssl.enableSignerExchangePrompt true This property determines whether to display the signer

exchange prompt when a signer is not present in the

client truststore. The prompt displays information about

the remote certificate so that WebSphere Application

Server can decide whether or not to trust the signer. It is

very important to validate the certificate signature (hash).

This signature is the only reliable information that can

guarantee that the certificate has not been modified from

the original server certificate. For automated scenarios,

disable this property to avoid SSL handshake

exceptions. Run the retrieveSigners.bat file or the

retrieveSigners.sh script, which sets up the SSL signer

exchange, to download the signers from the server prior

to running the client.

com.ibm.ssl.keyStoreClientAlias default This property is used to reference an alias from the

specified keystore when the target does not request

client authentication. When WebSphere Application

Server creates a self-signed certificate for the SSL

configuration, this property determines the alias and

overrides the global com.ibm.ssl.defaultCertReqAlias

property.

com.ibm.ssl.customTrustManagers Commented out by

default

This property enables you to specify one or more custom

trust managers, which are separated by commas. These

trust managers can be in the form of

algorithm|provider or classname. For example,

IbmX509|IBMJSSE2 is in thealgorithm|provider format,

and the com.acme.myCustomTrustManager interface is

in the classname format. The class must implement the

javax.net.ssl.X509TrustManager interface. Optionally, the

class can implement the

com.ibm.wsspi.ssl.TrustManagerExtendedInfo interface.

These trust managers run in addition to the default trust

manager that is specified by the

com.ibm.ssl.trustManager interface. These trust

managers do not replace the default trust manager.

450 Securing applications and their environment

Property Default Description

com.ibm.ssl.customKeyManager Commented out by

default

This property enables you to have one, and only one,

custom key manager. The key manager replaces the

default key manager that is specified in the

com.ibm.ssl.keyManager property. The form of the key

manager is algorithm|provider or classname. See the

format examples for the

com.ibm.ssl.customTrustManagers property. The class

must implement the javax.net.ssl.X509KeyManager

interface. Optionally, the class can implement the

com.ibm.wsspi.ssl.KeyManagerExtendedInfo interface.

This key manager is responsible for alias selection.

com.ibm.ssl.dynamicSelectionInfo Commented out by

default

This property enables dynamic association with the SSL

configuration. The syntax for a dynamic association is

outbound_protocol, target_host, or target_port. For

multiple specifications, use the vertical bar (|) as the

delimiter. You can replace any of these values with an

asterisk (*) to indicate a wildcard value. Valid

outbound_protocol values include: IIOP, HTTP, LDAP,

SIP, BUS_CLIENT, BUS_TO_WEBSPHERE_MQ,

BUS_TO_BUS, and ADMIN_SOAP. When you want the

dynamic selection criteria to choose the SSL

configuration, uncomment the default property, and add

the connection information. For example, add the

following on one line

com.ibm.ssl.dynamicSelectionInfo=HTTP,

.ibm.com,443|HTTP,.ibm.com,9443

. ADMIN_IIOP, and ADMIN_SOAP represent

administrative uses of these protocols for the Remote

Method Invocation (RMI) and SOAP connectors,

respectively. In the SSL configuration alias

AdminSOAPSSLSettings, you can set the value to

ADMIN_SOAP,*,*, which indicates that any outbound

administrative SOAP connection can use this SSL

configuration. Dynamic selection takes precedence over

direct alias selection in the soap.client.props file.

com.ibm.ssl.enabledCipherSuites Commented out by

default

This property enables you to specify a custom cipher

suite list and override the group selection in the

com.ibm.ssl.securityLevel property. The valid list of

ciphers varies according to the provider and JVM policy

files that are applied. For cipher suites, use a space as

the delimiter.

com.ibm.ssl.keyStoreName ClientDefaultKeyStore This property references a keystore configuration name.

If you have not already defined the keystore, the rest of

the keystore properties must follow this property. After

you define the keystore, you can specify this property to

reference the previously specified keystore configuration.

New keystore configurations in the ssl.client.props file

have a unique name.

com.ibm.ssl.trustStoreName ClientDefaultTrustStore This property references a truststore configuration name.

If you have not already defined the truststore, the rest of

the truststore properties must follow this property. After

you define the truststore, you can specify this property to

reference the previously specified truststore

configuration. New truststore configurations in the

ssl.client.props file should have a unique name.

Chapter 7. Securing communications 451

Keystore configurations

SSL configurations reference keystore configurations whose purpose is to identify the location of

certificates. Certificates represent the identity of clients that use the SSL configuration. You can specify

keystore configurations with other SSL configuration properties. However, it is recommended that you

specify the keystore configurations in this section of the ssl.client.props file after the

com.ibm.ssl.keyStoreName property identifies the start of a new keystore configuration. After you fully

define the keystore configuration, the com.ibm.ssl.keyStoreName property can reference the keystore

configuration at any other point in the file.

 Property Default Description

com.ibm.ssl.keyStoreName ClientDefaultKeyStore This property specifies the name of the keystore as it is

referenced by the runtime. Other SSL configurations can

reference this name further down in the

ssl.client.props file to avoid duplication.

com.ibm.ssl.keyStore ${user.root}/etc/
key.p12

This property specifies the location of the keystore in the

required format of the com.ibm.ssl.keyStoreType

property. Typically, this property references a keystore file

name. However, for cryptographic token types, this

property references a Dynamic Link Library (DLL) file.

com.ibm.ssl.keyStorePassword WebAS This property is the default password, which is the cell

name for the profile when it is created. The password is

typically encoded using an {xor} algorithm. You can use

iKeyman to change the password in the keystore, then

change this reference. If you do not know the password

and if the certificate is created for you, change the

password in this property, then delete the keystore from

the location where it resides. Restart the client to

recreate the keystore by using the new password, but

only if the keystore name ends with DefaultKeyStore and

if the fileBased property is true. Delete both the keystore

and truststore at the same time so that a proper signer

exchange can occur when both are recreated together.

com.ibm.ssl.keyStoreType PKCS12 This property is the keystore type. Use the default,

PKCS12, because of its interoperability with other

applications. You can specify this property as any valid

keystore type that is supported by the JVM on the

provider list.

com.ibm.ssl.keyStoreProvider IBMJCE The IBM Java Cryptography Extension property is the

keystore provider for the keystore type. The provider is

typically IBMJCE or IBMPKCS11Impl for cryptographic

devices.

com.ibm.ssl.keyStoreFileBased true This property indicates to the runtime that the keystore is

file-based, meaning it is located on the file system.

com.ibm.ssl.keyStoreReadOnly false This property indicates to the runtime whether the

keystore can be modified during the runtime.

Truststore Configurations

SSL configurations reference truststore configurations, whose purpose is to contain the signer certificates

for servers that are trusted by this client. You can specify these properties with other SSL configuration

properties. However, it is recommended that you specify truststore configurations in this section of the

ssl.client.props file after the com.ibm.ssl.trustStoreName property has identified the start of a new

truststore configuration. After you fully define the truststore configuration, the com.ibm.ssl.trustStoreName

property can reference the configuration at any other point in the file.

452 Securing applications and their environment

A truststore is a keystore that JSSE uses for trust evaluation. A truststore contains the signers that

WebSphere Application Server requires before it can trust the remote connection during the handshake. If

you configure the com.ibm.ssl.trustStoreName=ClientDefaultKeyStore property, you can reference the

keystore as the truststore. Further configuration is not required for the truststore because all of the signers

that are generated through signer exchanges are imported into the keystore where they are called by the

runtime.

 Property Default Description

com.ibm.ssl.trustStoreName ClientDefaultTrustStore This property specifies the name of the truststore as it is

referenced by the runtime. Other SSL configurations can

reference further down in the ssl.client.props file to

avoid duplication.

com.ibm.ssl.trustStore ${user.root}/etc/
trust.p12

This property specifies the location of the truststore in the

format that is required by the truststore type that is

referenced by the com.ibm.ssl.trustStoreType property.

Typically, this property references a truststore file name.

However, for cryptographic token types, this property

references a DLL file.

com.ibm.ssl.trustStorePassword WebAS This property specifies the default password, which is the

cell name for the profile when it is created. The password

is typically encoded using an {xor} algorithm. You can use

iKeyman to change the password in the keystore, then

change the reference in this property. If you do not know

the password and if the certificate was created for you,

change the password in this property, then delete the

truststore from the location where it resides. Restart the

client to recreate the truststore by using the new

password, but only if the keystore name ends with

DefaultTrustStore and the fileBased property is true. It is

recommended that you delete the keystore and the

truststore at the same time so that a proper signer

exchange can occur when both are recreated together.

com.ibm.ssl.trustStoreType PKCS12 This property is the truststore type. Use the default

PKCS12 type because of its interoperability with other

applications. You can specify this property as any valid

truststore type that is supported by the JVM functionality

on the provider list.

com.ibm.ssl.trustStoreProvider IBMJCE This property is the truststore provider for the truststore

type. The provider is typically IBMJCE or IBMPKCS11Impl

for cryptographic devices.

com.ibm.ssl.trustStoreFileBased true This property indicates to the runtime that the truststore is

file-based, meaning it is located on the file system.

com.ibm.ssl.trustStoreReadOnly false This property indicates to the runtime whether the

truststore can be modified during the runtime.

Creating a keystore configuration

A Secure Sockets Layer (SSL) configuration references keystore configurations during WebSphere

Application Server runtime. Whether a keystore file was created by another keystore tool or saved from a

previous configuration, the file must be part of a keystore configuration object. You can create a keystore

configuration for the existing keystore object.

A keystore must already exist.

Complete the following steps in the administrative console:

Chapter 7. Securing communications 453

1. Click Security > SSL certificate and key management > Manage endpoint security configurations

> {Inbound | Outbound} > SSL_configuration > Key stores and certificates > New.

2. Type a name in the Name field. This name uniquely identifies the keystore in the configuration.

3. Type the location of the keystore file in the Path field. The location can be a file name or a file URL to

an existing keystore file.

4. Type the keystore password in the Password field. This password is for the keystore file that you

specified in the Path field.

5. Type the keystore password again in the Confirm Password field to confirm the password.

6. Select a keystore type from the list. The type that you select is for the keystore file that you specified

in the Path field.

7. Select any of the following optional selections:

v The Read only selection creates a keystore configuration object but does not create a keystore file.

If this option is selected, the keystore file that you specified in the Path field must already exist.

v The Initialize at startup selection initializes the keystore during runtime.

8. Click Apply and Save.

You have created a keystore configuration object for the keystore file that you specified. This keystore can

now be used in an SSL configuration.

You can create additional keystore configurations, as needed.

Changing a keystore password

You can change the WebSphere Application Server password from the default password value, WebAS, in

the administrative console or at a Java command prompt. Because the default password is well known, it

is important that you change the password after you install WebSphere Application Server to protect the

security of the keystore files and the Secure Sockets Layer (SSL) configuration.

When WebSphere Application Server starts for the first time as a standalone application server or as a

Network Deployment Server, each server creates a keystore and truststore for the default SSL

configuration. WebSphere Application Server creates these files and assigns the default password, WebAS.

Complete the following steps in the administrative console:

1. Click Security > SSL certificate and key management > Key Stores and Certificates.

2. Select a keystore.

3. Type the new keystore password in the Change Password field.

4. Type the keystore password again in the Confirm Password field to confirm the password.

5. Select Apply.

WebSphere Application Server and its keystores are protected by a unique password.

Use the new password the next time you start the WebSphere Application Server.

Configuring a hardware cryptographic keystore

You can create a hardware cryptographic keystore that WebSphere Application Server can use to provide

cryptographic token support in the server configuration.

Complete the following steps in the administrative console:

1. Click Security > SSL certificate and key management > Manage endpoint security configurations

> {Inbound | Outbound} > SSL_configuration > Key stores and certificates.

2. Click New.

454 Securing applications and their environment

3. Type a name to identify the keystore. This name is used to enable hardware cryptography in the Web

services security configuration.

4. Type the path for the hardware device-specific configuration file. The configuration file is a text file that

contains entries in the following format: attribute = value. The valid values for attribute and value are

described in detail in the Software Developer Kit, Java Technology Edition documentation. The two

mandatory attributes are name and library, as shown in the following sample code:

name = FooAccelerator

library = /opt/foo/lib/libpkcs11.so

slotListIndex = 0

5. Type a password if the token login is required. Operations that use keys on the token require a secure

login. This field is optional if the keystore is used as a cryptographic accelerator. In this case, you need

to select Enable pure acceleration for hardware cryptographic operations.

6. Select the PKCS11 type.

7. Select Read only.

8. Click OK and Save.

WebSphere Application Server can now provide cryptographic token support in the server configuration.

You can refer to this keystore in any server Secure Sockets Layer (SSL) configuration to achieve the

following results:

v Cryptographic acceleration because the cryptographic hardware device has no persistent key storage

v Secure cryptographic hardware because a cryptographic token generates and securely stores the

private key that WebSphere Application Server uses for SSL key exchange.

You can also refer to this keystore in the Web services security default bindings configuration to achieve

similar results.

Managing keystore configurations remotely

You can manage keystores remotely in a Network Deployment environment on separate machines. A node

server can hold the configuration for a keystore, while the actual keystore resides on another system. After

you set up a remotely managed configuration, you can perform all of the certificate and keystore

operations for the keystore on the remote machine from the server that contains the keystore remote

configuration.

Key stores can be remotely managed only in network deployed environments.

Complete the following steps in the administrative console:

 1. Click Security > SSL certificate and key management > Manage endpoint security

configurations > {Inbound | Outbound} > ssl_configuration > Key stores and certificates.

 2. Click New.

 3. Type a name in the Name field. This name uniquely identifies the keystore in the configuration.

 4. Type the location of the keystore file in the Path field. The location can be a file name or a file

Uniform Resource Locator (URL) to an existing keystore file.

 5. Type the keystore password in the Password field. This password is for the keystore file that you

specified in the Path field.

 6. Type the keystore password again in the Confirm Password field to confirm the password.

 7. Select a keystore type from the list. The type you select is for the keystore file that you specified in

the Path field.

 8. Select the Remotely managed check box, and then fill in one or more hosts names of the systems

where the keystore file is to be located. If you provide multiple host names, separate the host names

with a pipe (|).

 9. Select any of the following optional selections:

Chapter 7. Securing communications 455

v The Read only selection creates a keystore configuration object but does not create a keystore

file. If this option is selected, the keystore file that you specified in the Path field must already

exist.

v The Initialize at startup selection initializes the keystore during run time.

10. Select Apply and Save.

A keystore configuration object is created on the server from where the command was run. The keystore

file for the configuration will be created on each system that you specified in the host list.

Now, you can perform all certificate management operations on the keystore from the system where the

keystore configuration resides. For example, you can perform certificate management operations, such as:

creating a self-signed certificate, extracting a certificate, or extracting a signer certificate.

To manage a self-signed certificates by using the wsadmin tool, use the PersonalCertificateCommands

group commands of the AdminTask object. For more information, see “Commands for the

PersonalCertificateCommands group of the AdminTask object” on page 868.

Key stores and certificates collection

Use this page to manage key store types, including cryptography, Resource Access Control Facility

(RACF) , Certificate Management Services (CMS), Java, and all trust store types.

To view this administrative console page, click Security > SSL certificate and key management >

Manage endpoint security configurations > Inbound | Outbound > SSL_configuration_name. Under

Related items, click Key stores and certificates.

 Button Resulting action

New Adds a new key store object that can be referenced by Secure Sockets Layer

(SSL) configurations or KeySets. The KeyStore management scope is based

on the part of the topology tree from which it was created.

Delete Deletes an existing key store. The key store should not be referenced by any

other parts of the configuration before you delete it.

Exchange signers Refers to exchanging signers in a key store. You can select two key stores,

along with personal certificates from a selected key store, then add them as a

signer to another selected key store.

Name

Specifies the unique name that is used to identify the key store. This name is typically scoped by the

ManagementScope scopeName and based upon the location of the key store. The name must be unique

within the existing key store collection.

This is a user-defined name.

Path

Specifies the location of the key store file in the format needed by the key store type. This file can be a

card-specific configuration file for cryptographic devices or a filename or file URL for file-based key stores.

It can be a safkeyring URL for RACF keyrings.

Key store settings

Use this page to create all keystore types, including cryptographic, Resource Access Control Facility

(RACF), Certificate Management Services (CMS), Java, and all truststore types.

456 Securing applications and their environment

To view this administrative console page, click Security > SSL certificate and key management >

Manage endpoint security configurations > {Inbound | Outbound SSL_configuration_name}. Under

Related Items, click Key stores and certificates. Click either New or an existing keystore.

Links to Personal certificates, Signer certificates, and Personal certificate requests enable you to manage

certificates in a manner similar to iKeyman capabilities. A keystore can be file-based, such as CMS or

Java keystore types, or it can be remotely managed.

Note: Any changes made to this panel are permanent.

Name

Specifies the unique name to identify the keystore. The keystore is typically scoped by the

ManagementScope scopeName based on the location of the keystore. The name must be unique within

the existing keystore collection.

 Data type: Text

Path

Specifies the location of the keystore file in the format needed by the keystore type. This file can be a

dynamic link library (DLL) for cryptographic devices or a filename or file URL for file-based keystores. It

can be a safkeyring URL for RACF keyrings.

 Data type: Text

Enable cryptographic operations on hardware device

Specifies whether a hardware cryptographic device is used for cryptographic operations only. Operations

that require a login are not supported when using this option.

 Default: Disabled

Password [new keystore] | Change password [existing keystore]

Specifies the password used to protect the keystore. For the default keystore (names ending in

DefaultKeyStore or DefaultTrustStore), the password is the Cell name. This default password must be

changed.

This field can be edited.

 Data type: Text

Confirm password

Specifies confirmation of the password to open the keystore file or device.

 Data type: Text

Type

Specifies the implementation for keystore management. This value defines the tool that operates on this

keystore type.

The list of options is returned by java.security.Security.getAlgorithms(″KeyStore″). Some options might be

filtered and some might be added based on the java.security configuration.

 Data type: Text

Default: PKCS12

Chapter 7. Securing communications 457

Read only

Specifies whether the keystore can be written to or not. If the keystore cannot be written to, certain

operations cannot be performed, such as creating or importing certificates.

 Default: Disabled

Initialize at startup

Specifies whether the keystore needs to be initialized before it can be used for cryptographic operations. If

enabled, the keystore is initialized at server startup.

 Default: Disabled

Key managers collection

Use this page to define the implementation settings for key managers. A key manager is invoked during a

Secure Sockets Layer (SSL) handshake to determine which certificate alias is used. The default key

manager (WSX509KeyManager) performs alias selection. If more advanced function is desired, define a

custom key manager and select it on the Manage endpoint security configurations panel.

To view this administrative console page, click Security > SSL certificate and key management >

Manage endpoint security configurations > Inbound | Outbound > SSL_configuration_name. Under

Related items, click Key managers.

 Button Resulting action

New Adds a new key manager that can be selected by an SSL configuration. A key

manager is invoked during an SSL handshake to select a specific certificate

alias to use from a key store.

Delete Deletes an existing key manager. The key manager should not be referenced

by any SSL configuration before you can delete it.

Name

Specifies the name of the key manager, which you can select on the SSL configuration panel.

Class name

Specifies the name of the key manager implementation class. This class implements

javax.net.ssl.X509KeyManager interface and, optionally, the com.ibm.wsspi.ssl.KeyManagerExtendedInfo

interface.

Algorithm

Specifies the algorithm name of the key manager that is implemented by the selected provider.

Key managers settings

Use this page to define key managers implementation settings. A key manager gets invoked during an

Secure Sockets Layer (SSL) handshake to determine the certificate alias to be used. The default key

manager (WSX509KeyManager) performs alias selection. If more advanced function is desired, a custom

key manager can be specified here and selected in the SSL configuration.

To view this administrative console page, click Security > SSL certificate and key management >

Manage endpoint security configurations > Inbound | Outbound > SSL_configuration_name. Under

Related items, click Key managers > New.

Name

Specifies the name of the key manager, which you can select on the SSL configuration panel.

458 Securing applications and their environment

Data type: Text

Standard

Specifies the key manager selection that is available from a Java provider that is installed in the

java.security file. This provider might be shipped by Java Secure Sockets Extension (JSSE) or be a

custom provider that implements an X509KeyManager interface.

 Default: Enabled

Provider

Specifies the provider name that has an implementation of an X509KeyManager interface. This provider is

typically set to IBMJSSE2.

 Data type: Text

Default: IBMJCE

Algorithm

Specifies the algorithm name of the trust manager implemented by the selected provider.

 Data type: Text

Default: IbmX509

Custom

Specifies that the key manager selection is based on a custom implementation class that implements the

javax.net.ssl.X509KeyManager interface and optionally the com.ibm.wsspi.ssl.KeyManagerExtendedInfo

interface to obtain additional connection information not otherwise available.

 Default: Disabled

Class name

Specifies the name of the key manager implementation class.

 Data type: Text

Creating a self-signed certificate

You can create a self-signed certificate. WebSphere Application Server uses the certificate at runtime

during the handshake protocol. Self-signed certificates are located in the default keystore.

You must create a keystore before you can create a self-signed certificate.

Complete the following steps in the administrative console:

1. Click Security > SSL certificate and key management > Manage endpoint security configurations

> {Inbound | Outbound} > ssl_configuration > Key stores and certificates > [keystore].

2. From Additional Properties, click Personal certificates.

3. Click Create a self-signed certificate.

4. Type a certificate alias name. The alias identifies the certificate request in the keystore.

5. Type a common name (CN) value. This value is the CN value in the certificate distinguished name

(DN).

6. Type an organization value. This value is the O value in the certificate DN.

7. You can configure one or more of the following optional values:

Chapter 7. Securing communications 459

a. Optional: Select a key size value. The default key size value is 1024 bits.

b. Optional: Type an organizational unit value. This organizational unit value is the OU value in the

certificate DN.

c. Optional: Type a locality value. This locality value is the L value in the certificate DN.

d. Optional: Type a state or providence value. This value is the ST value in the certificate DN.

e. Optional: Type a zip code value. This zip code value is the POSTALCODE value in the certificate

DN.

f. Optional: Select a country value from the list. This country value is the C= value in the certificate

request DN.

8. Click Apply.

You have created a self-signed certificate that resides in the keystore. The SSL configuration for the

WebSphere Application Server runtime uses this certificate for SSL communication. Extract the signer of

the self-signed certificate to add the signer to another keystore.

To create a self-signed certificate by using the wsadmin tool, use the createSelfSignedCertificate

command of the AdminTask object. For more information, see “Commands for the

PersonalCertificateCommands group of the AdminTask object” on page 868.

Replacing an existing self-signed certificate

Occasionally, you need to replace an existing or expired self-signed certificate with a new certificate.

Certificates are referenced in the runtime configuration by the Secure Sockets Layer (SSL) Configuration

object and the Dynamic SSL Configuration Selection object. You can replace a certificate with a new

certificate alias reference or with a new signer certificate.

The current certificate and the certificate replacement must exist in the same keystore before you can

replace a certificate.

Complete the following steps in the administrative console:

1. Click Security > SSL certificate and key management > Manage endpoint security configurations

> {Inbound | Outbound} > ssl_configuration > Key stores and certificates > [keystore].

2. Under Additional Properties, click Personal certificates.

3. Select a personal certificate. The alias list must include at least two certificates that reside in the

keystore.

4. Click Replace.

5. Select a replacement certificate alias from the list.

6. You can delete one of the following types of certificates:

v Select Delete old certificate to delete the existing certificate.

v Select Delete old signers to delete the existing signer certificates.

7. Click Apply.

Your results depend on what you selected:

v If you selected Delete old certificate, the new certificate alias replaces all of the references to the

certificate alias in the configuration.

v If you selected Delete old signers, the new signer certificate replaces all of the occurrences of the old

signer certificates.

v If the new certificate alias replaces the existing alias, the WebSphere Application Server runtime checks

to make sure that:

– All of the SSL Configurations objects reference the certificate

460 Securing applications and their environment

– The Dynamic SSL Configuration Selections objects and the SSL Configuration group objects

reference the certificate.

v If you selected Delete old signers, the existing signer certificates are replaced.

v If you selected Delete old certificate, the existing certificate are deleted.

To replace a self-signed certificate by using the wsadmin tool, use the replaceCertificate command of the

AdminTask object. For more information, see rxml_atpersonalcert.dita.

Creating a certificate authority request

To ensure Secure Sockets Layer (SSL) communication, servers require a personal certificate that is either

self-signed or signed by a certificate authority (CA). You must first create a personal certificate request to

obtain a certificate that is signed by a CA.

The keystore that contains a personal certificate request must already exist.

Complete the following steps in the administrative console:

1. Click Security > SSL certificate and key management > Manage endpoint security configurations

> {Inbound | Outbound} > ssl_configuration > Key stores and certificates > keystore.

2. Click Personal certificate requests > New.

3. Type the full path of the certificate request file. The certificate request is created in this location.

4. Type an alias name in the Key label field. The alias identifies the certificate request in the keystore.

5. Type a common name (CN) value. This value is the CN value in the certificate distinguished name

(DN).

6. Type an organization value. This value is the O value in the certificate DN.

7. You can configure one or more of the following optional values:

a. Optional: Select a key size value. The default key size value is 1024 bits.

b. Optional: Type an organizational unit value. This organizational unit value is the OU value in the

certificate DN.

c. Optional: Type a locality value. This locality value is the L value in the certificate DN.

d. Optional: Type a state or providence value. This value is the ST value in the certificate DN.

e. Optional: Type a zip code value. The zip code value is the POSTALCODE value in the certificate

DN.

f. Optional: Select a country value from the list. This country value is the C= value in the certificate

request DN.

8. Click Apply.

The certificate request is created in the specified file location in the keystore. The request functions as a

temporary placeholder for the signed certificate until you manually receive the certificate in the keystore.

To create a certificate request using the wsadmin tool, use the createCertificateRequest command of the

AdminTask object. For more information, see “Commands for the PersonalCertificateCommands group of

the AdminTask object” on page 868.

Note: Key store tools (such as iKeyman and keyTool) cannot receive signed certificates that are

generated by certificate requests from WebSphere Application Server. Similarly, WebSphere

Application Server cannot accept certificates that are generated by certificate requests from other

keystore utilities.

Now you can receive the CA-signed certificate into the keystore to complete the process of generating a

signed certificate for your server.

Chapter 7. Securing communications 461

rxml_atpersonalcert.dita

Certificate request settings

Use this page to verify the properties of a personal certificate request.

To view this administrative console page, click Security > SSL certificate and key management >

Manage endpoint security configurations > Inbound | Outbound > ssl_configuration. Under Related

items, click Key stores and certificates > key store. Under Additional Properties, click Personal

certificate requests > certificate request .

Key label

Specifies the certificate alias name for the signer in the key store, which is specified in the SSL

configuration.

Key size

Specifies the size of the keys that are generated.

Requested by

Specifies the Subject distinguished name (DN) that represents the identity of the certificate request.

Fingerprint (SHA Digest)

Specifies the SHA hash of the personal certificate, which can be used to verify that the certificate has not

been altered when it is used in a remote connection.

Signature algorithm

Specifies the algorithm used to sign the certificate.

Personal certificates collection

Use this page to manage personal certificates.

To view this administrative console page, click Security > SSL certificate and key management >

Manage endpoint security configurations > {Inbound | Outbound} > ssl_configuration. Under

Related items, click Key stores and certificates > key store . Under Additional Properties, click Personal

certificates.

The Personal certificates page lists all Personal certificates in the selected key store. You can do most

certificate management operations in this panel, including creating a new self-signed certificate, deleting a

certificate, receiving one generated from a CA, replacing a certificate (simultaneous delete and create,

replacing references across all key stores), extracting the signer, and importing or exporting a personal

certificate.

Personal certificate requests are temporary place holders for certificates that will be signed by a certificate

authority (CA).

The Key store collection must contain at least two key store files. You must select one file in order to

replace, extract, or export a key store,

 Button Resulting action

Create a self-signed certificate Enables the application server to create a new self-signed certificate.

Delete Specifies to delete a certificate from the key store. Be careful that the

certificate alias is not referenced elsewhere in the Secure Sockets Layer

configuration.

Receive a certificate from a

certificate authority

Enables the application server to receive a certificate authority (CA)-generated

certificate from a file to complete a certificate request.

462 Securing applications and their environment

Button Resulting action

Replace Replaces a self-signed certificate with another self-signed certificate that

contains the same information, but with a new expiration period. The signer

from the old certificate that is contained in any managed key store in the cell is

replaced by the signer from the new certificate.

Extract Extracts a certificate from the key store that will be added to another key store

as a trusted certificate (signer).

Import Imports a certificate, including the private key, from a key store file.

Export Exports a certificate, including the private key, to a specified key store file.

Alias

Specifies the alias by which the personal certificate is referenced in the key store.

When you select an alias, the View Certificate panel opens.

Issued by

Specifies the distinguished name of the entity by which the certificate was issued. This name is the same

as the issued-to distinguished name when the personal certificate is self-signed.

Issued to

Specifies the distinguished name of the entity to which the certificate was issued.

Serial number

Specifies the certificate serial number that is generated by the issuer of the certificate.

Expiration

Specifies the expiration date of the signer certificate for validation purposes.

Personal certificates settings

Use this page to create new personal certificates.

To view this administrative console page, click Security > SSL certificate and key management >

Manage endpoint security configurations > Inbound | Outbound > SSL_configuration_name. Under

Related items, click Key stores and certificates > key store. Under Additional Properties, click Personal

certificates > Create a self-signed certificate.

This same help file is available when you create a new certificate or modify an existing certificate. The

fields in this file are marked according to when they show on the administrative console.

Alias

Specifies the alias for the personal certificate in the key store.

This field displays when you create a new certificate. This field is read-only when you view an existing

certificate.

 Data type: Text

Version

Specifies the version of the personal certificate. Valid versions include X509 V3, X509 V2, or X509 V1. It is

recommended to use X509 V3 certificates.

Chapter 7. Securing communications 463

This field is read-only when you create or view a certificate.

 Data type: Text

Default: X509 V3

Range:

Key size

Specifies the key size of the private key that is used by the personal certificate.

This field displays when you create or view a certificate.

 Data type: Integer

Default: 1024

Common name

Specifies the common name portion of the distinguished name (DN). It is recommended that this name be

the host name of the machine on which the certificate resides. In some cases, the common name is used

to login during Secure Socket Layer (SSL) certificate authentication; therefore, in some cases, this name

might be used as a user ID for a local operating system registry.

This field displays when you create a new certificate, but does not display when you view an existing

certificate.

 Data type: Text

Serial number

Specifies the certificate serial number that is generated by the issuer of the certificate.

This field displays only when you view an existing certificate.

Validity period

Specifies the length in days during which the certificate is valid. The default is 365 days.

This field displays when you create or view a certificate.

 Data type: Text

Organization

Specifies the organization portion of the distinguished name.

This field displays only when you create a new certificate.

 Data type: Text

Organization unit

Specifies the organization unit portion of the distinguished name. This field is optional.

This field displays only when you create a new certificate.

 Data type: Text

Locality

Specifies the locality portion of the distinguished name. This field is optional.

464 Securing applications and their environment

This field displays only when you create a new certificate.

 Data type: Text

State/Province

Specifies the state portion of the distinguished name. This field is optional.

This field displays only when you create a new certificate.

 Data type: Text

Zip code

Specifies the zip code portion of the distinguished name. This field is optional.

This field displays only when you create a new certificate.

 Data type: Integer

Country or region

Specifies the country portion of the distinguished name.

This field displays only when you create a new certificate.

 Data type: Text

Default: (none)

Refer to http://www.iso.org/iso/en/prods-services/iso3166ma/02iso-3166-code-lists/list-en1.html for a list of

ISO 3166 country codes.

Validity period

Specifies the length, in days, when the certificate is valid. The default is 365 days.

This read-only field displays only when you view an existing certificate.

Issued to

Specifies the distinguished name of the entity to which the certificate was issued.

This read-only field displays only when you view an existing certificate.

Issued by

Specifies the distinguished name of the entity that issued the certificate. When the personal certificate is

self-signed, this name is identical to the Issued to distinguished name.

This read-only field displays only when you view an existing certificate.

Fingerprint (SHA Digest)

Specifies the Secure Hash Algorithm (SHA hash) of the certificate, which can be used to verify the

certificate’s hash at another location, such as the client side of a connection.

This read-only field displays only when you view an existing certificate.

Chapter 7. Securing communications 465

http://www.iso.org/iso/en/prods-services/iso3166ma/02iso-3166-code-lists/list-en1.html

Signature algorithm

Specifies the algorithm used to sign the certificate.

This read-only field displays only when you view an existing certificate.

Personal certificate requests collection

Use this page to manage personal certificate requests. Personal certificate requests are temporary place

holders for certificates that will be signed by a certificate authority (CA).

To view this administrative console page, click Security > SSL certificate and key management >

Manage endpoint security configurations > {Inbound | Outbound} > ssl_configuration . Under

Related items, click Key stores and certificates > key store . Under Additional Properties, click Personal

certificate requests.

A private key is generated during the certificate request generation, but only the certificate is sent to the

CA. The CA generates a new certificate, signed by the CA. This can be added in the Personal Certificates

panel.

 Button Resulting action

New Creates a personal certificate request that can be given to a certificate

authority to complete.

Delete Deletes a personal certificate request.

Extract Extracts a personal certificate request. Only one certificate request can be

selected at a time.

Note: Any changes made to this panel are permanent.

Key label

Specifies the alias that represents the personal certificate request in the key store.

Requested by

Specifies the Subject distinguished name (DN) that represents the identity of the certificate request.

Personal certificate requests settings

Use this page to create a new certificate request that can be extracted and sent to a certificate authority

(CA).

To view this administrative console page, click Security > SSL certificate and key management >

Manage endpoint security configurations > {Inbound | Outbound} > ssl_configuration . Under

Related items, click Key stores and certificates > key store . Under Additional Properties, click Personal

certificate requests > New.

Personal certificate requests are temporary place holders for certificates that will be signed by a certificate

authority (CA). The private key is generated during the certificate request generation, but only the

certificate is sent to the CA. The CA generates a new certificate, signed by the CA.

Note: Any changes made to this panel are permanent.

File for certificate request

Specifies the fully qualified file name from which the certificate request is exported. This portion of the

certificate request can be given to the certificate authority to generate the real certificate. After the real

certificate is generated, you can perform an ″Receive a certificate from a certificate authority″ from the

personal certificate collection view.

466 Securing applications and their environment

Data type: Text

Key label

Specifies the alias that represents the personal certificate request in the key store.

 Data type: Text

Key size

Specifies the size of the keys that are generated.

 Data type: Integer

Default: 1024

Common name

Specifies the name of the entity that the certificate represents. This common name can represent a

person, company, or machine. For Web sites, the common name is frequently the DNS host name where

the server resides.

 Data type: Text

Organization

Specifies the organization portion of the distinguished name.

 Data type: Text

Organizational unit

Specifies the organization unit portion of the distinguished name. This field is optional.

 Data type: Text

Locality

Specifies the locality portion of the distinguished name. This field is optional.

 Data type: Text

State/Province

Specifies the state portion of the distinguished name. This field is optional.

 Data type: Text

Zip code

Specifies the zip code portion of the distinguished name. This field is optional.

 Data type: Integer

Country or region

Specifies the country portion of the distinguished name.

 Data type: Text

Default: US

Chapter 7. Securing communications 467

Refer to http://www.iso.org/iso/en/prods-services/iso3166ma/02iso-3166-code-lists/list-en1.html for a list of

ISO 3166 country codes.

Extract certificate request

Use this page to extract a certificate request and send it to a certificate authority (CA).

To view this administrative console page, click Security > SSL certificate and key management >

Manage endpoint security configurations > {Inbound | Outbound} > ssl_configuration . Under

Related items, click Key stores and certificates > key store . Under Additional Properties, click Personal

certificate requests > Extract.

Key label

Specifies the alias that represents the personal certificate request in the key store.

File for certificate request

Specifies the filename where the extracted certificate request is placed.

 Data type: Text

Receiving a certificate issued by a certificate authority

When a certificate authority (CA) receives a certificate request, it issues a new certificate that functions as

a temporary placeholder for a CA-issued certificate. A keystore receives the certificate from the CA and

generates a CA-signed personal certificate that WebSphere Application Server can use for Secure Sockets

Layer (SSL) security.

The keystore must contain the certificate request that was created and sent to the CA. Also, the keystore

must be able to access the certificate that is returned by the CA.

WebSphere Application Server can receive only those certificates that are generated by a WebSphere

Application Server certificate request. It cannot receive certificates that are created with certificate requests

from other keystore tools, such as iKeyman and keyTool.

Complete the following steps in the administrative console:

1. Click Security > SSL certificate and key management > Manage endpoint security configurations

> {Inbound | Outbound} > ssl_configuration > Key stores and certificates > [keystore].

2. Under Additional Properties, click Personal certificates.

3. Select a personal certificate.

4. Click Receive a certificate from a certificate authority.

5. Type the full path and name of the certificate file.

6. Select a data type from the list.

7. Click Apply and Save.

The keystore contains a new personal certificate that is issued by a CA. The original certificate request is

changed to a personal certificate.

The SSL configuration is ready to use the new CA-signed personal certificate.

To receive a certificate by using the wsadmin tool, use the receiveCertificate command of the AdminTask

object. For more information, see “Commands for the PersonalCertificateCommands group of the

AdminTask object” on page 868.

Export certificate to a key file

Use this page to specify a personal certificate to export to a key file.

468 Securing applications and their environment

http://www.iso.org/iso/en/prods-services/iso3166ma/02iso-3166-code-lists/list-en1.html

To view this administrative console page, click Security > SSL certificate and key management >

Manage endpoint security configurations > {Inbound | Outbound} > ssl_configuration . Under

Related items, click Key stores and certificates > key store . Under Additional Properties, click Personal

certificates > Export.

Certificate alias to export:

Displays the name of the certificate that you selected to export on the previous panel.

 Data type: Text

Alias:

Specifies the alias that the personal certificate is referenced by in the key store.

 Data type: Text

Key file name:

Specifies the key store file name into which the exported certificate is added. If the key store file name

already exists, the exported certificate will be added. If the key store file name does not already exist, one

will be created, and the exported certificate will be added.

 Data type: Text

Type:

Specifies the type of key store file. The valid types are listed in the menu.

 Data type: Text

Default: JKS

Key file password:

Specifies the password that is used to access the key store file.

 Data type: Text

Confirm password:

Confirms the password entered in the previous field.

 The key file password and the new alias must be specified in case a certificate already exists with the

same name.

 Data type: Text

Import certificate from a key file

Use this page to specify a personal certificate to import from a key file.

Chapter 7. Securing communications 469

To view this administrative console page, click Security > SSL certificate and key management >

Manage endpoint security configurations > Inbound | Outbound > SSL_configuration_name. Under

Related items, click Key stores and certificates > key store . Under Additional Properties, click Personal

certificates > Import certificates from a key file.

Key file name:

Specifies the fully qualified path to keystore file that contains the certificate to import.

 Data type: Text

Type:

Specifies the type of keystore file. The valid types are listed in the menu.

 Data type: Text

Key file password:

Specifies the password that is used to access the keystore file.

 Data type: Text

Certificate alias to import:

Specifies the certificate alias identified as the Key file name that you want to import into the current key

store.

 Data type: Text

Default: (none)

Imported certificate alias:

Specifies the new alias that you want the certificate to be named in the current key store.

 Data type: Text

Receive certificate from CA

Use this page to import your personal certificate from the certificate authority (CA). The imported certificate

replaces the temporary certificate associated with the public/private keys in the certificate request that is

stored in the key store.

To view this administrative console page, click Security > SSL certificate and key management >

Manage endpoint security configurations > {Inbound | Outbound} > ssl_configuration . Under

Related items click Key stores and certificates > key store . Under Additional Properties, click Personal

certificates > Receive certificate from CA.

Certificate file name:

Specifies the filename that contains the certificate generated by the certificate authority (CA).

 Data type: Text

470 Securing applications and their environment

Data type:

Specifies the format of the file that is either Base64 encoded ASCII data or Binary DER data.

 Data type: Text

Default: Base64-encoded ASCII data

Replace a certificate

Use this page to specify two certificates: the first selected certificate is replaced by the second selected

certificate. The replace function replaces all the old signer certificates in key stores that are managed

throughout the cell with the new signer from the new certificate. The same level of trust that was

established with the old certificate is maintained.

To view this administrative console page, click Security > SSL certificate and key management >

Manage endpoint security configurations > Inbound | Outbound > ssl_configuration . Under Related

items, click Key stores and certificates > key store . Under Additional Properties click Personal

certificates > Replace certificate.

Old certificate

Specifies the certificate that you want to replace.

 Data type: Text

Replace with

Specifies the certificate that you want to replace the old certificate.

 Data type: Text

Default: (none)

Delete old certificate after replacement

Specifies that you want to delete the old certificate and all associated signer certificates after the new

certificate replaces it. If you do not replace the old personal certificate, it might be assigned a new alias

name.

 Default: Disabled

Delete old signers

Specifies that you want to delete the old signer certificates that are associated with the old certificate after

the new signer certificates replace them. If you do not delete the old signer certificates, they might be

assigned new alias names.

 Default: Disabled

Extracting a signer certificate from a personal certificate

Personal certificates contain a private key and a public key. You can extract the public key, called the

signer certificate, to a file, then import the certificate into another keystore. The client requires the signer

portion of a personal certificate for Security Socket Layer (SSL) communication.

The keystore that contains a personal certificate must already exist.

Complete the following steps in the administrative console:

Chapter 7. Securing communications 471

1. Click Security > SSL certificate and key management > Manage endpoint security configurations

> {Inbound | Outbound} > ssl_configuration > Key stores and certificates > keystore .

2. Under Additional Properties, click Personal certificates.

3. Select a personal certificate.

4. Click Extract.

5. Type the full path for the certificate file name. The signer certificate is written to this certificate file.

6. Select a data type from the list.

7. Click Apply.

The signer portion of the personal certificate is stored in the file that is provided.

This signer can now be imported into other keystores.

To extract a signer certificate from a personal certificate using the wsadmin tool, use the

extractCertificate command of the AdminTask object. For more information, see “Commands for the

PersonalCertificateCommands group of the AdminTask object” on page 868.

Extract certificate

Use this page to extract the signer from the personal certificate. The certificate can be imported into a trust

store for trust verification.

To view this administrative console page, click Security > SSL certificate and key management >

Manage endpoint security configurations > {Inbound | Outbound} > ssl_configuration . Under

Related items, click Key stores and certificates > key store . Under Additional Properties, click Personal

certificates > Extract.

Certificate alias to extract

Specifies the filename that contains the extracted certificate.

 Data type: Text

Certificate file name

Specifies the fully qualified path where the certificate file will reside.

 Data type: Text

Data type

Specifies the format of the file, which is either Base64-encoded ASCII data or Binary DER data.

 Data type: Text

Default: Base64-encoded ASCII data

Extract signer certificate

Use this page to extract a signer certificate that can be added elsewhere.

To view this administrative console page, click Security > SSL certificate and key management >

Manage endpoint security configurations > {Inbound | Outbound} > Key stores and certificates >

key store > Signer Certificates > Extract signer certificate.

File name

Specifies the fully qualified file name where the extracted signer certificate is placed.

472 Securing applications and their environment

Data type: Text

Data type

Specifies the format of the file, which is either Base64 encoded ASCII data or Binary DER data.

 Data type: Text

Retrieving signers using the retrieveSigners utility at the client

The client requires the signer certificates from the server to be able to communicate with WebSphere

Application Server. Use the retrieveSigners command to get the signer certificate from a server.

The retrieveSigners utility is located in one of the following directories, depending on your operating

system:

v On Windows operating system: profile_root\bin . For example: C:\WebSphere\AppServer\profiles\
AppSrv01\bin

v On UNIX operating systems: ../profile_root/bin

In this release, a Java client that does not have access to a stdin console prompt should use the

retrieveSigners utility to download the signers from the remote server key store when signers are needed

for a Secure Sockets Layer (SSL) handshake. For example, you might interpret the client as failing to

respond if an applet client or Java Web Start Client application cannot access the stdin signer exchange

prompt. Thus, you must add the WebSphere Java method call

com.ibm.wsspi.ssl.RetrieveSignersHelper.callRetrieveSigners to your client application to retrieve the

signers and to avoid running the retrieveSigners utility manually.

Use the retrieveSigners utility for situations where you cannot verify whether or not the

com.ibm.ssl.enableSignerExchangePrompt= property is enabled or disabled when the application makes a

request. Set the com.ibm.ssl.enableSignerExchangePrompt= property to false in the ssl.client.props file if

you cannot see the console.

Alternatively, you can manually create the server key in the client truststore.

Complete the following steps, as required:

1. Use the retrieveSigners command to get the signer certificate from a server. You can find details

about the retrieveSigners. parameters in “Secure installation for client signer retrieval” on page 405.

2. If the client and server are on the same machine, you will need only the remoteKeyStoreName and

localKeyStoreName parameters. The most typical key store to reference on a remote system is

CellDefaultTrustStore on a network deployed environment and NodeDefaultTrustStore on an

application server.

3. When retrieving signers from a remote server, add these required connection-related parameters:

–host host, –port port, –conntype {RMI | SOAP}.

4. If the remote server has security enabled, also supply the –user user –password password

parameters.

5. Use the –autoAcceptBootstrapSigner parameter if you want to enable automation of the signer

retrieval. This parameter automatically adds to the server all the signers that are needed to make the

connection.

After running, the command displays the SHI-1 digest of the signers added. The output looks similar to the

following output:

Chapter 7. Securing communications 473

C:\WebSphere\AppServer\profiles\AppSrv01\bin\retrieveSigners.bat

CellDefaultTrustStore ClientDefaultTrustStore

CWPKI0308I: Adding signer alias "default_signer" to local keystore

 "ClientDefaultTrustStore" with the following SHA digest:

See the following examples of how to call the retrieveSigners.bat file on the Windows operating system:

To retrieve signers on the same system, enter:

’profile_home’\bin\retrieveSigners.bat CellDefaultTrustStore ClientDefaultTrustStore

To retrieve signers on a remote system with a SOAP connection, enter:

’profile_home’\bin\retrieveSigners.bat CellDefaulTrustStore ClientDefaultTrustStore

-host myRemoteHost -port 8879 -conntype SOAP -autoAcceptBootstrapSigner

To retrieve signers on a remote system with an RMI connection, enter:

’profile_home’\bin\retrieveSigners.bat CellDefaultTrustStore ClientDefaultTrustStore

-host myRemoteHost -port 2809 -conntype RMI -autoAcceptBootstrapSigner

To retrieve signers on a remote system that has security enabled, enter:

’profile_home’\bin\retrieveSigners.bat CellDefaultTrustStore ClientDefaultTrustStore

-host myRemoteHost -port 8879 -conntype SOAP -user testuser -password testuserpwd

-autoAcceptBootstrapSigner

Changing the signer auto-exchange prompt at the client

For clients to communicate with WebSphere Application Server, clients must obtain a signer certificate

from the server. Clients can use the retrieveSigners command to connect to a server to obtain the

appropriate signer. A prompt displays that asks whether or not you want to add a signer to the truststore. If

the Secure Sockets Layer (SSL) configuration uses an automated script that might hang, use the prompt

to obtain the certificate.

The com.ibm.ssl.enableSignerExchangePrompt property in the profile_home/properties/
ssl.client.props file controls the signer certificate prompt. By default, this property is set to true,

meaning the prompt is enabled.

Complete the following steps to disable or enable the signer-exchange prompt at the client:

1. Open the profile_home/properties/ssl.client.props file using an editor.

2. Locate the section containing the SSL configuration information for the client that you are working with.

3. Change the value of the com.ibm.ssl.enableSignerExchangePrompt property to false if you do not

want the signer-exchange prompt, or set it to true if you want to be prompted.

4. Save and close the file.

When the com.ibm.ssl.enableSignerExchangePrompt property is set to false, no prompt displays, so you

can exchange signers while some administrative clients are running. When the

com.ibm.ssl.enableSignerExchangePrompt property is set to true, a signer-exchange prompt displays, and

you are asked to accept or reject the certificate. The prompt looks like the following example:

C:\WebSphere\AppServer\profiles\dmgr\bin>serverStatus -all

ADMU0116I: Tool information is being logged in file

 C:\WebSphere\AppServer\profiles\Dmgr\logs\serverStatus.log

ADMU0128I: Starting tool with the dmgr profile

ADMU0503I: Retrieving server status for all servers

ADMU0505I: Servers found in configuration:

ADMU0506I: Server name: dmgr

*** SSL SIGNER EXCHANGE PROMPT ***

SSL signer from target host 192.174.1.5 is not found in truststore

C:/WebSphere/AppServer/profiles/Dmgr/etc/trust.p12.

474 Securing applications and their environment

Verify that the digest value matches what is displayed at the server in the following signer information:

Subject DN: CN=hostname.austin.ibm.com, O=IBM, C=US

Issuer DN: CN=hostname.austin.ibm.com, O=IBM, C=US

Serial number: 1128544457

Expires: Thu Oct 20 15:34:17 CDT 2006

SHA-1 Digest: 91:A1:A9:2D:F2:7D:70:0F:04:06:73:A3:B4:A4:9C:56:9D:A8:A3:BA

MD5 Digest: 88:72:C5:88:00:1C:A7:FA:D6:EB:04:88:AC:A1:C9:13

Add signer to the truststore now? (y/n) y

A retry of the request might need to occur.

ADMU0508I: The Application Server "server1" is STARTED.

Clients can instigate communications for various processes using signer certificates obtained from

WebSphere Application Server.

Importing a signer certificate from a truststore to a z/OS keyring

You can import a signer certificate, which is also called a certificate authority (CA) certificate, from a

truststore on a non-z/OS platform server to a z/OS keyring.

To import a certificate to a z/OS keyring, complete the following steps:

1. On the non-z/OS platform server, change to the install_root/bin directory and start the iKeyman

utility, which is called ikeyman.bat (Windows) or ikeyman.sh (UNIX). The install_root variable refers to

the installation path for WebSphere Application Server.

2. Within the iKeyman utility, open the server truststore. The default server truststore is called the

DummyServerTrustFile.jks file. The file is located in the $[USER_INSTALL_ROOT}/etc/ directory. The

default password is WebAS.

3. Extract the signer certificate from the truststore using the ikeyman utility. Complete the following steps

to extract the signer certificate:

a. Select Signer certificates from the menu.

b. Select new websphere dummy server alias.

c. Select Extract.

d. Select the correct data type. The signer_certificate can have either a Base64-encoded ASCII data

type or a Binary DER data type.

e. Specify the fully qualified path and the file name of the certificate.

4. From an FTP prompt on the non-z/OS platform server, type cd bin to change to binary mode.

5. From an FTP prompt on the non-z/OS platform server, type put ’signer_certificate’ mvs.dataset.

The signer_certificate variable refers to the name of the signer certificate on the non-z/OS platform

server. The mvs.dataset variable is the data set name to which the certificate was exported.

The RACDCERT CERTAUTH ADD command in the next step works with a Multiple Virtual Storage (MVS)

data set only. You can either turn the certificate file into a binary MVS data set or use the put

command with an Hierarchical File System (HFS) file, and then use the following command to copy the

file into a MVS data set:

OGET file_name mvs.dataset

6. On the z/OS platform server, go to option 6 in the Interactive System Productivity Facility (ISPF) dialog

panels and issue the following commands as a super user to add the signer certificate to the z/OS

keyring:

a. Type RACDCERT CERTAUTH ADD (’signer_certificate’) WITHLABEL(’Dummy Server CA’) TRUST The

Dummy Server CA variable refers to the label name for the certificate authority (CA) certificate that

you are importing from a non-z/OS platform server. The keyring_name variable refers to the name

of the z/OS keyring that is used by the servers in the cell.

b. Type RACDCERT ID(ASCR1) CONNECT(CERTAUTH LABEL(’Dummy Server CA’) RING(keyring_name)

c. Type RACDCERT ID(DMCR1) CONNECT(CERTAUTH LABEL(’Dummy Server CA’) RING(keyring_name)

Chapter 7. Securing communications 475

d. Type RACDCERT ID(DMSR1) CONNECT(CERTAUTH LABEL(’Dummy Server CA’) RING(keyring_name) In

the previous commands, ASCR1, DMCR1, and DMSR1 are the RACF IDs under which the started tasks

for the cell run in WebSphere Application Server for z/OS. The ASCR1 value is the RACF ID for the

application server control region. The DMCR1 value is the RACF ID for the deployment manager

control region. The DMSR1 value is the RACF ID for the deployment manager server region.

After completing these steps, the z/OS keyring contains the signer certificates that originated on the

non-z/OS platform server.

To verify that the certificates were added, use option 6 on the ISPF dialog panel and type the following

command:

RACDCERT ID(CBSYMSR1) LISTRING(keyring_name)

The CBSYMSR1 value is the RACF ID for the application server region.

Note: Although iKeyman is supported for WebSphere Application Server Version 6.1, customers are

encouraged to use the administrative console to export signer certificates.

Exporting a signer certificate from WebSphere Application Server for

z/OS to a truststore

You can export a signer certificate, which is also called a certificate authority (CA) certificate, from

WebSphere Application Server for z/OS to a truststore.

WebSphere Application Server, WebSphere Application Server Network Deployment, or WebSphere

Application Server - Express can use the certificate in the truststore.

To export the certificate to a truststore, complete the following steps:

 1. Export the z/OS® signer certificate to a data set by issuing the following Resource Access Control

Facility (RACF) command as a super user using Time Sharing Option (TSO) option 6:

RACDCERT CERTAUTH EXPORT(LABEL(’signer_certificate’)) DSN(’mvs.dataset’)FORMAT(CERTDER)

The signer_certificate variable is the RACF label name of the certificate that is used by the cell. The

signer_certificate can have either a Base64-encoded ASCII data type or a Binary DER data type. The

mvs.dataset variable is the data set name to which the certificate is exported. You do not need to

pre-allocate this data set because it is created by RACF.

 2. From a command line on the non-z/OS platform server, type cd and change to the following directory:

install_root/profiles/default/etc

 3. From an FTP prompt on the non-z/OS platform server, type cd bin to change to binary mode.

 4. From an FTP prompt on the non-z/OS platform server, type the following command:

get ’mvs.dataset’ signer_certificate

 5. On the non-z/OS platform server, change to the install_root/bin directory and start the iKeyman

utility, which is called ikeyman.bat for Windows or ikeyman.sh for UNIX.

 6. Within the iKeyman utility, open the server truststore. The default server truststore is called the

DummyServerTrustFile.jks file. The file is located in the ${USER_INSTALL_ROOT}/etc/ directory. The

default password is WebAS. It is recommended that you create a new key file and trust file if you plan

to use the certificate in a production environment.

 7. Add your exported signer certificate to the server truststore using the iKeyman utility. Complete the

following steps to add your exported signer certificate:

a. Select Signer certificates from the menu.

b. Select the correct data type. The signer certificate can have either a Base64-encoded ASCII data

type or a Binary DER data type.

c. Specify the fully qualified path and file name of the signer certificate.

476 Securing applications and their environment

8. Within the iKeyman utility, open the client truststore. The default client truststore is called the

DummyClientTrustFile.jks file. The file is located in the ${USER_INSTALL_ROOT}/etc/ directory. The

default password is WebAS. It is recommended that you create a new key file and trust file if you plan

to use the certificate in a production environment.

 9. Add your exported signer certificate to the client truststore using the iKeyman utility. Complete the

following steps to add your exported signer certificate:

a. Select Signer certificates from the menu.

b. Select the correct data type. The signer certificate can have either a Base64-encoded ASCII data

type or a Binary DER data type.

c. Specify the fully qualified path and file name of the signer certificate.

10. Restart the server process to use the new signer certificates.

After completing these steps, you can use the exported signer certificates with the WebSphere Application

Server, WebSphere Application Server Network Deployment, or WebSphere Application Server - Express

products.

Importing a signer certificate from a truststore to a z/OS keyring

You can import a signer certificate, which is also called a certificate authority (CA) certificate, from a

truststore on a non-z/OS platform server to a z/OS keyring.

To import a certificate to a z/OS keyring, complete the following steps:

1. On the non-z/OS platform server, change to the install_root/bin directory and start the iKeyman

utility, which is called ikeyman.bat (Windows) or ikeyman.sh (UNIX). The install_root variable refers to

the installation path for WebSphere Application Server.

2. Within the iKeyman utility, open the server truststore. The default server truststore is called the

DummyServerTrustFile.jks file. The file is located in the $[USER_INSTALL_ROOT}/etc/ directory. The

default password is WebAS.

3. Extract the signer certificate from the truststore using the ikeyman utility. Complete the following steps

to extract the signer certificate:

a. Select Signer certificates from the menu.

b. Select new websphere dummy server alias.

c. Select Extract.

d. Select the correct data type. The signer_certificate can have either a Base64-encoded ASCII data

type or a Binary DER data type.

e. Specify the fully qualified path and the file name of the certificate.

4. From an FTP prompt on the non-z/OS platform server, type cd bin to change to binary mode.

5. From an FTP prompt on the non-z/OS platform server, type put ’signer_certificate’ mvs.dataset.

The signer_certificate variable refers to the name of the signer certificate on the non-z/OS platform

server. The mvs.dataset variable is the data set name to which the certificate was exported.

The RACDCERT CERTAUTH ADD command in the next step works with a Multiple Virtual Storage (MVS)

data set only. You can either turn the certificate file into a binary MVS data set or use the put

command with an Hierarchical File System (HFS) file, and then use the following command to copy the

file into a MVS data set:

OGET file_name mvs.dataset

6. On the z/OS platform server, go to option 6 in the Interactive System Productivity Facility (ISPF) dialog

panels and issue the following commands as a super user to add the signer certificate to the z/OS

keyring:

a. Type RACDCERT CERTAUTH ADD (’signer_certificate’) WITHLABEL(’Dummy Server CA’) TRUST The

Dummy Server CA variable refers to the label name for the certificate authority (CA) certificate that

you are importing from a non-z/OS platform server. The keyring_name variable refers to the name

of the z/OS keyring that is used by the servers in the cell.

Chapter 7. Securing communications 477

b. Type RACDCERT ID(ASCR1) CONNECT(CERTAUTH LABEL(’Dummy Server CA’) RING(keyring_name)

c. Type RACDCERT ID(DMCR1) CONNECT(CERTAUTH LABEL(’Dummy Server CA’) RING(keyring_name)

d. Type RACDCERT ID(DMSR1) CONNECT(CERTAUTH LABEL(’Dummy Server CA’) RING(keyring_name) In

the previous commands, ASCR1, DMCR1, and DMSR1 are the RACF IDs under which the started tasks

for the cell run in WebSphere Application Server for z/OS. The ASCR1 value is the RACF ID for the

application server control region. The DMCR1 value is the RACF ID for the deployment manager

control region. The DMSR1 value is the RACF ID for the deployment manager server region.

After completing these steps, the z/OS keyring contains the signer certificates that originated on the

non-z/OS platform server.

To verify that the certificates were added, use option 6 on the ISPF dialog panel and type the following

command:

RACDCERT ID(CBSYMSR1) LISTRING(keyring_name)

The CBSYMSR1 value is the RACF ID for the application server region.

Note: Although iKeyman is supported for WebSphere Application Server Version 6.1, customers are

encouraged to use the administrative console to export signer certificates.

Exporting a signer certificate from WebSphere Application Server for

z/OS to a truststore

You can export a signer certificate, which is also called a certificate authority (CA) certificate, from

WebSphere Application Server for z/OS to a truststore.

WebSphere Application Server, WebSphere Application Server Network Deployment, or WebSphere

Application Server - Express can use the certificate in the truststore.

To export the certificate to a truststore, complete the following steps:

 1. Export the z/OS® signer certificate to a data set by issuing the following Resource Access Control

Facility (RACF) command as a super user using Time Sharing Option (TSO) option 6:

RACDCERT CERTAUTH EXPORT(LABEL(’signer_certificate’)) DSN(’mvs.dataset’)FORMAT(CERTDER)

The signer_certificate variable is the RACF label name of the certificate that is used by the cell. The

signer_certificate can have either a Base64-encoded ASCII data type or a Binary DER data type. The

mvs.dataset variable is the data set name to which the certificate is exported. You do not need to

pre-allocate this data set because it is created by RACF.

 2. From a command line on the non-z/OS platform server, type cd and change to the following directory:

install_root/profiles/default/etc

 3. From an FTP prompt on the non-z/OS platform server, type cd bin to change to binary mode.

 4. From an FTP prompt on the non-z/OS platform server, type the following command:

get ’mvs.dataset’ signer_certificate

 5. On the non-z/OS platform server, change to the install_root/bin directory and start the iKeyman

utility, which is called ikeyman.bat for Windows or ikeyman.sh for UNIX.

 6. Within the iKeyman utility, open the server truststore. The default server truststore is called the

DummyServerTrustFile.jks file. The file is located in the ${USER_INSTALL_ROOT}/etc/ directory. The

default password is WebAS. It is recommended that you create a new key file and trust file if you plan

to use the certificate in a production environment.

 7. Add your exported signer certificate to the server truststore using the iKeyman utility. Complete the

following steps to add your exported signer certificate:

a. Select Signer certificates from the menu.

478 Securing applications and their environment

b. Select the correct data type. The signer certificate can have either a Base64-encoded ASCII data

type or a Binary DER data type.

c. Specify the fully qualified path and file name of the signer certificate.

 8. Within the iKeyman utility, open the client truststore. The default client truststore is called the

DummyClientTrustFile.jks file. The file is located in the ${USER_INSTALL_ROOT}/etc/ directory. The

default password is WebAS. It is recommended that you create a new key file and trust file if you plan

to use the certificate in a production environment.

 9. Add your exported signer certificate to the client truststore using the iKeyman utility. Complete the

following steps to add your exported signer certificate:

a. Select Signer certificates from the menu.

b. Select the correct data type. The signer certificate can have either a Base64-encoded ASCII data

type or a Binary DER data type.

c. Specify the fully qualified path and file name of the signer certificate.

10. Restart the server process to use the new signer certificates.

After completing these steps, you can use the exported signer certificates with the WebSphere Application

Server, WebSphere Application Server Network Deployment, or WebSphere Application Server - Express

products.

Retrieving signers from a remote SSL port

To perform Secure Sockets Layer (SSL) communication with a server, WebSphere Application Server must

retrieve a signer certificate from a secure remote SSL port during the handshake. After the signer

certificate is retrieved, you can add the signer certificate to a keystore.

The keystore that is to contain the signer certificate must already exist.

Complete the following steps in the administrative console:

1. Click Security > SSL certificate and key management > Manage endpoint security configurations

> {Inbound | Outbound} > Key stores and certificates > keystore > Signer certificates > Retrieve

from port.

2. Click Retrieve from port.

3. Type the host name of the machine on which the signer resides.

4. Type the port location on the host machine on which the signer resides. The port location is not limited

to ports on WebSphere Application Server. The ports can include Lightweight Directory Access

Protocol (LDAP) ports or ports on any server on which an SSL port is already configured, such as

SIB_ENDPOINT_SECURE_ADDRESS.

5. Select an SSL configuration for the outbound connection from the list.

6. Type an alias name for the certificate.

7. Click Retrieve signer information. A message window displays information about the retrieved signer

certificate, such as: the serial number, issued-to and issued-by identities, SHA hash, and expiration

date.

8. Click Apply. This action indicates that you accept the credentials of the signer.

The signer certificate that is retrieved from the remote port is stored in the keystore.

An SSL configuration or client process that requires an SSL connection to the server can use the retrieved

and approved signer certificate.

To retrieve a signer certificate from a port using the wsadmin tool, use the retrieveSignerFromPort

command of the AdminTask object. For more information, see “Commands for the

PersonalCertificateCommands group of the AdminTask object” on page 868.

Chapter 7. Securing communications 479

Retrieve from port

Use this page to retrieve a signer certificate from a remote SSL port. The system connects to the specified

remote SSL host and port and receives the signer during the handshake using a trust manager. The signer

SHA hash displays for validation and, if approved by an administrator, is added to the currently selected

trust store.

To view this administrative console page, click Security > SSL certificate and key management >

Manage endpoint security configurations > {Inbound | Outbound} > ssl_configuration . Under

Related items, click Key stores and certificates > key store > Signer certificates > Retrieve from port.

Host

Specifies the host name to which you connect when attempting to retrieve the signer certificate from the

Secure Sockets Layer (SSL) port.

 Data type: Text

Port

Specifies the SSL port to which you connect when attempting to retrieve the signer certificate.

 Data type: Text

SSL configuration for outbound connection

Specifies the SSL configuration that is used to connect to the previously specified SSL port. This

configuration is also the SSL configuration that contains the signer after retrieval. This SSL configuration

does not need to have the trusted certificate for the SSL port as it is retrieved during validation and

presented here.

 Data type: Text

Default: DefaultSSLConfig

Alias

Specifies the certificate alias name that you want to reference the signer in the key store, which is

specified in the SSL configuration.

 Data type: Text

Retrieved signer information

Specifies the signer certificate information if it is retrieved from the remote host and port.

Serial number

Specifies the certificate serial number that is generated by the issuer of the certificate.

Issued to

Specifies the distinguished name of the entity to which the certificate was issued.

Issued by

Specifies the distinguished name of the entity that issued the certificate. This name is the same as the

issued-to distinguished name when the signer certificate is self-signed.

Fingerprint (SHA Digest)

Specifies the Secure Hash Algorithm (SHA hash) of the certificate, which can be used to verify the

certificate’s hash at another location, such as the client side of a connection.

480 Securing applications and their environment

Expiration

Specifies the expiration date of the retrieved signer certificate for validation purposes.

Adding a signer certificate to a keystore

Signer certificates establish the trust relationship in SSL communication. You can extract the signer part of

a personal certificate from a keystore, and then you can add the signer certificate to other keystores.

The keystore that you want to add the signer certificate to must already exist.

Complete the following steps in the administrative console:

1. Click Security > SSL certificate and key management > Manage endpoint security configurations

> Inbound | Outbound > SSL_configuration_name > Key stores and certificates.

2. Select a keystore from the list of keystores.

3. Click Add signers.

4. Enter an alias for the signer certificate in the Alias field

5. Enter the full path to the signer certificate file in the File name field.

6. Select a data type from the list in the Data type field.

7. Click Apply.

When these steps are completed, the signer from the certificate file is stored in the keystore. You can see

the signer in the keystore files list of signer certificates. Use the keystore to establish trust relationships for

the SSL configurations.

To add a signer certificate to a keystore by using the wsadmin tool, use the addSignerCertificate

command of the AdminTask object. For more information, see rxml_atpersonalcert.dita.

Add signer certificate

Use this page to add a signer certificate to the key store.

To view this administrative console page, click Security > SSL certificate and key management >

Manage endpoint security configurations > {Inbound | Outbound} > ssl_configuration. Under

Related items click Key stores and certificates > key store > Signer certificates > Add.

Alias

Specifies the alias that the signer certificate is referenced by in the key store.

 Data type: Text

File name

Specifies the filename where the encoded signer certificate is located.

 Data type: Text

Data type

Specifies the format of the file, which is either Base64 encoded ASCII data or Binary DER data.

 Data type: Text

Chapter 7. Securing communications 481

rxml_atpersonalcert.dita

Signer certificates collection

Use this page to manage signer certificates in key stores. Signer certificates are used by Java Secure

Socket Extensions (JSSE) to validate certificates sent by the remote side of the connection during a

Secure Sockets Layer (SSL) handshake. If a signer does not exist in the trust store that can validate the

certificate sent, the handshake fails and generates an ″unknown certificate″ error.

To view this administrative console page, click Security > SSL certificate and key management >

Manage endpoint security configurations > {Inbound | Outbound} > ssl_configuration . Under

Related items click Key stores and certificates > key store > Signer certificates.

 Button Resulting action

Add Adds a new trusted (signer) certificate.

Delete Deletes an existing signer certificate.

Extract Extracts a signer certificate from a personal certificate to a file.

Retrieve from port Makes a test connection to an SSL port and retrieves the signer from the

server during the handshake. The information from the certificate will be

displayed so you can decide whether to trust it based upon the MD5 and/or

SHA hash.

Alias

Specifies the alias for this signer certificate in the key store.

Issued to

Specifies the distinguished name of the entity that requested the certificate.

Fingerprint (SHA digest)

Specifies the Secure Hash Algorithm (SHA hash) of the certificate. This can be used to verify the hash for

the certificate at another location, such as the client side of a connection.

Expiration

Specifies the expiration date of the signer certificate for validation purposes.

Signer certificate settings

Use this page to verify the general properties of the selected signer certificate.

To view this administrative console page, click Security > SSL certificate and key management >

Manage endpoint security configurations > {Inbound | Outbound} > ssl_configuration . Under

Related items, click Key stores and certificates > key store > Signer certificates > signer certificate .

Alias

Specifies the alias for this signer certificate in the key store.

Version

Specifies the version of the personal certificate. Valid versions include X509 V3, X509 V2, or X509 V1.

Key size

Specifies the key size of the public key used by the signer certificate.

Serial number

Specifies the certificate serial number that is generated by the issuer of the certificate.

Validity period

Specifies the begin and end dates of the certificate.

482 Securing applications and their environment

Issued to

Specifies the distinguished name of the entity that requested the certificate.

Issued by

Specifies the distinguished name of the entity that issued the certificate. This name is the same as the

issued-to distinguished name when the signer certificate is self-signed.

Fingerprint (SHA Digest)

Specifies the Secure Hash Algorithm (SHA) hash of the certificate, which can be used to verify the hash

for the certificate at another location such as the client side of a connection.

Signature algorithm

Specifies the algorithm that is used to sign the certificate.

Exchanging signer certificates

To establish trust relationships, you can exchange signer certificates between keystores. When you

exchange signer certificates, you are extracting a personal certificate from one keystore and adding it to

another keystore as a signer certificate.

To exchange signer certificates, there must be two keystores.

Complete the following steps in the administrative console:

1. Click Security > SSL certificate and key management > Manage endpoint security configurations

> {Inbound | Outbound} > ssl_configuration > Key stores and certificates.

2. Select two keystores from the list of keystores.

3. Click Exchange signers.

4. Select any of the certificates in the first personal certificates list, and click Add. After adding, the signer

part of the selected personal certificate appears in the other (second) keystore signers list.

5. Select any of the certificates in the second personal certificates list, and click Add. After adding, the

signer part of the selected personal certificate appears in the other (first) keystore signers list.

6. Optional: If you need to remove any of the certificates from either of the signers lists, highlight one or

more of the certificates, and click Remove.

7. Click Apply and Save.

The signer certificate appears in the list for each keystore.

The extracted signer certificate is available to both keystores during the connection handshake.

Key stores and certificates exchange signers

Use this page to extract a personal certificate from one keystore and add it to another keystore as a signer

certificate.

To view this administrative console page, click Security > SSL certificate and key management >

Manage endpoint security configurations > {Inbound | Outbound} > ssl_configuration. Under

Related items, click Key stores and certificates > Exchange signers.

Note: Any changes made to this panel are permanent.

[key store] personal certificates

Specifies the personal certificates that are currently stored in the specified key store.

Chapter 7. Securing communications 483

Press and hold the Ctrl key to select more than one item from the list.

 Data type: Text

[key store] signers

Specifies the trusted signer certificates that are currently stored in the specified key store and selected for

the exchange.

Press and hold the Ctrl key to select more than one item from the list.

 Data type: Text

Add

Specifies to extract the signer from the selected personal certificate in the key store list on the left and add

it to the signers list of the key store on the right.

After the certificate is added, it no longer displays in the left-hand list. The personal certificate is still in the

key store, but it is no longer selectable

Remove

Specifies to remove a selected signer from the signers list of the key store on the right. The removed

certificate displays in the key store list on the left.

Configuring certificate expiration monitoring

When certificates expire, they can no longer be used by the system. WebSphere Application Server

provides a utility to monitor certificates that are close to expiration or have already expired. You can

schedule certificate monitoring, or you can request certificate monitoring on demand. You can also

configure options for deleting expired certificates and for recreating certificates.

WebSphere Application Server notifies you when a certificate is about to expire. Complete the information

required for notification messaging in “Notifications” on page 486.

Complete the following configuration steps in the administrative console:

1. Click Security > SSL certificate and key management > Manage certificate expiration.

2. Type a number for the number of days threshold in the Expiration notification threshold field.

WebSphere Application Server issues an expiration warning n number of days before expiration.

3. Select or check one or more of the following options:

v Expiration check notification. Select the method from the list that you want to use to receive your

notification.

v Automatically replace expiring self-signed certificates. If you do not want to recreate the

self-signed certificate, clear the check box.

v Delete expiring certificates and signers after replacement. If you do not want to delete the

expired certificates and signers, clear the check box.

v Enable checking. If you do not want to have certificate monitoring enabled, clear the check box.

4. Enter the time of day when you want certificate monitoring to take place to schedule the running of the

certificate expiration monitor.

5. Select one of the following options:

v Check by calendar. For Weekday, enter the day of week that you want to run the certificate

expiration monitor. For Repeat Interval, specify the frequency to run the certificate monitor.

v Check by number of days. Enter a number for how frequently the monitor runs, in number of days.

6. Click Apply.

484 Securing applications and their environment

After completing the settings, a certificate expiration monitor object and a schedule are set up in the

configuration. The certificate expiration monitor runs according to the configurations options that you

configured.

You can generate reports that state which certificates have expired. The reports identify the notifications of

certificate replacements and deletions. The report is sent according to the notification option that you

specified.

Manage certificate expiration settings

Use this page to configure the certificate expiration monitor.

To view this administrative console page, click Security > SSL certificate and key management >

Manage certificate expiration.

 Attention: To see the changes to the Expiration checking fields, you must click Apply.

Expiration notification threshold

Specifies a threshold number of days during which the application warns specified individuals that a

certificate is about to expire. For example, when the expiration monitor is run and the threshold is 30 days,

if the current date is 30 days or less from the certificate expiration date, the certificate is flagged for

notification. The application server can be configured to provide certification expiration notification through

either e-mail or the message log file.

 Data type: Integer

Default: 30 days

Expiration check notification

Specifies the notification type (such as e-mail or System Out) when an expiration monitor runs.

 Default:

Automatically replace expiring self-signed certificates

Specifies a new self-signed certificate be generated using the same certificate information if the expiration

notification threshold is reached. The old certificate is replaced and uses the same alias. All old signers

are managed by the key store configuration are also replaced. The system only replaces self-signed

certificates.

 Default: Enabled

Delete expiring certificates and signers after replacement

Specifies whether to completely remove old, self-signed certificates from the key store during a replace

operation or leave them there under a renamed alias. If an old certificate is not deleted, the system

renames the alias so that the new certificate can use the old alias, which might be referenced elsewhere

in the configuration.

 Default: Enabled

Enable checking

Specifies the certificate monitor is active and will run as scheduled.

Scheduled time of day to check for expired certificates

Specifies the scheduled time that the system checks for expired certificates.

Chapter 7. Securing communications 485

You can type the scheduled time in hours and minutes, specify either A.M. or P.M., or 24-hour.

 Data type Integer

Default: 0, 0

Range: 1–12, 0–59

Check by calendar

Indicates that you want to schedule a specific day of the week on which the expiration monitor runs. For

example, it might run on Sunday.

 Default: Disabled

Weekday

Specifies the day of the week on which the expiration monitor runs if Check on a specific day is

selected.

 Default: Sunday

Range: Sunday, Monday, Tuesday, Wednesday, Thursday, Friday,

Saturday

Repeat interval

Specifies the period of time between each schedule time to check for expired certificates or the interval

between schedule checks.

 Default: Daily

Range: Daily, Weekly

Check by number of days

Specifies that you want to schedule a specific number of days between each run of the expiration monitor.

The day of the week on which this occurs is not counted. For example, if you set the interval to check for

expired certificates every seven days, the expiration monitor runs on day eight.

 Default: Disabled

Next start date

Specifies the date for the next scheduled check. This allows the deployment manager to be stopped and

restarted without resetting the date.

Notifications

Use this page to specify the generic notification definitions that are used in certificate expiration monitors.

To view this administrative console page, complete the following steps:

1. Click Security > SSL certificate and key management.

2. Under Configuration settings, click Manage certificate expiration.

3. Under Related items, click Notifications.

 Button Resulting action

New Adds a notification. The notification configures how the expiration monitor

notifies the administrator of certificates that will expire within the specified

threshold.

Delete Deletes an existing notification.

486 Securing applications and their environment

Notification name

Specifies the notification name.

Message log

Specifies that this configuration intends to log certificate expiration information to the message log file.

List of e-mail addresses

Specifies the e-mail addresses that are sent notifications when certificates fall within the expiration

threshold. You must specify the SMTP server for each e-mail address. If an e-mail address is not

specified, by default the application server assumes that the SMTP server is ″smtp-server.″ For example, if

you type name@domain, the SMTP server will be smtp-server.domain.

Notifications settings

Use this page to set properties for new notifications used in certificate expiration monitors.

To view this administrative console page, complete the following steps:

1. Click Security > SSL certificate and key management.

2. Under Configuration settings, click Manage certificate expiration.

3. Under Related items, click Notifications > New.

Notification name

Specifies the name of the notification configuration.

 Data type: Text

Message log

Specifies that this configuration will log certificate expiration information to a message log file.

 Default: Disabled

Email sent to notification list

Specifies that this configuration intends to send certificate expiration information in an e-mail to the e-mail

list.

 Default: Disabled

Email address to add

Specifies the e-mail addresses that are sent notifications when certificates fall within the expiration

threshold. You must specify the SMTP server for each e-mail address. If an e-mail address is not

specified, by default the application server assumes that the SMTP server is ″smtp-server.″ For example, if

you type name@domain, the SMTP server will be smtp-server.domain.

 Data type: Text (format as valid Internet mail address)

Add

Adds the e-mail address to the right-hand list.

Remove

Removes the e-mail address from the right-hand list.

Outgoing mail (SMTP) server

Specifies the SMTP server to be used with the e-mail address. If none is specified, the e-mail realm will be

used.

Chapter 7. Securing communications 487

Key management for cryptographic uses

WebSphere Application Server provides a framework for managing keys (secret keys or key pairs) that

applications use to perform cryptographic operations on data. The key management framework provides

an application programming interface (API) for retrieving these keys. Keys are managed in keystores so

the keystore type can be supported by WebSphere Application Server, provided that the keystores can

store the referenced key type. You can configure keys and scope keystores so that they are visible only to

particular processes, nodes, clusters, and so on.

The key management infrastructure is based on two key configuration object types: key sets and key set

groups. WebSphere Application Server uses a key set to manage instances of keys of the same type. You

can configure a key set to generate a single key or a key pair, depending on the key or key pair generator

class. A key set group manages one or more key sets and enables you to configure and generate different

key types at the same time. For example, if your application needs both a secret key and key pair for

cryptographic operations, you can configure two key sets, one for the key pair and one for the secret key

that the key set group manages. The key set group controls the auto-generation characteristics of the

keys, including the schedule. The framework can automatically generate keys on a scheduled basis, such

as on a particular day of the week and time of day, so that key generation is done during off-peak hours.

Figure 1 shows an example of a key set group that is configured to manage two key sets: key set 1 and

key set 2.

Key set 1 generates key pairs. Key set 2 generates secret keys. The application needs both types of keys

for its cryptographic operations, signing and encryption, on data. The keys for each key set need to be

Key set group:

Auto -generate

every Sunday

at 11pm

Key set 1:

KeyPairGenerator

Key set 2:

KeyGenerator

com.ibm.websphere.crypto.KeySetHelper API

Key store Key store

Key reference
Key reference

Key reference
Key reference

Key reference
Key reference

Active key history:

Keep the 3 most recent

Actual keys

Application

getAllKeysForKeySetGroup:
used for decryption of

getLatestKeysForKeySetGroup:
used for encryption of

Active key history:

Keep the 3 most recent

Key set group:

Auto -generate

every Sunday

at 11pm

Key set 1:

KeyPairGenerator

Key set 2:

KeyGenerator

com.ibm.websphere.crypto.KeySetHelper API

Key store Key store

Key reference
Key reference

Key reference

Key reference
Key reference

Key reference

Active key history:

Keep the 3 most recent

Actual key pairs

Application

getAllKeysForKeySetGroup:
used for decryption of dataexistingused for encryption of datanew

Active key history:

Keep the 3 most recent

Figure 1: Key Management Infrastructure

Figure 7.

488 Securing applications and their environment

generated in tandem. The application stores the key set group name with the encrypted data. The key set

group generates a new set of keys every Sunday night at 11 P.M.. The application maintains key

generation data for two weeks.

Creating a key set configuration

You can use key sets to manage multiple instances of cryptographic keys. WebSphere Application Server

uses keys to encrypt or sign outbound data, and decrypt or verify inbound data during cryptographic

operations.

You must have write-access to the keystore that will contain the keys after you generate them from a key

set. However, if you want to generate keys outside of WebSphere Application Server, you can reference

the keys from a read-only keystore that contains a secret key that you can access when you generate the

keys. If you are creating a key pair using an X509Certificate and a PrivateKey object , see “Example:

Developing a key or key pair generation class for automated key generation” on page 495.

Complete the following steps in the administrative console:

 1. Decide whether you want to create the key set at the cell scope or below the cell scope at the node,

server, or cluster, for example:

v To create a key set at the cell scope, click Security > SSL certificate and key management >

Key sets.

v To create a key set at a scope below the cell level, click Security > SSL certificate and key

management > Manage endpoint security configurations > {Inbound | Outbound} >

ssl_configuration > Key sets.

 2. Click New to create a new key set.

 3. Type a key set name. For example, CellmyKey.

 4. Type a key alias prefix name. For example, myKey. This field specifies the prefix for the key alias

when the new key is generated and stored in the keystore. Following the prefix is the key reference

version number, for example, 2, so that the full key alias name would be myKey_2. If the key reference

already has a specified alias for a key that exists in the keystore, then WebSphere Application Server

ignores this field.

 5. Type a key password. The key password protects the key in the keystore. This password is ignored

by WebSphere Application Server if you already specified a password for the key alias reference. To

check for a key reference password, click Active key history under Additional Properties. The key

reference password protects keys that are generated by a key generator class.

 6. Type the password again to confirm it.

 7. Optional: Type the key generator class name. For example,

com.ibm.ws.security.ltpa.LTPAKeyGenerator. The class name generates keys. If the class

implements com.ibm.websphere.crypto.KeyGenerator, then a getKey method returns a

java.security.Key object that is set in the keystore using the setKey method without a certificate chain.

If the class implements com.ibm.websphere.crypto.KeyPairGenerator, then a getKeyPair method

returns a com.ibm.websphere.crypto.KeyPair object that contains either a java.security.PublicKey and

java.security.PrivateKey or a java.security.cert.Certificate and a java.security.PrivateKey object. The

key generator class and the KeySetHelper API specify the details of the keys that are generated.

 8. Optional: Select Delete key references that are beyond the maximum number of keys if you do

not want old keys saved in the keystore after WebSphere Application Server removes their references

from the Active key history listing. The Active key history lists the keys that the KeySetHelper API is

currently tracking. The number of keys in the list is equal to the number of keys that you specify in

Maximum number of keys referenced.

 9. Type a numeric value for the maximum number of keys referenced. For example, if you type 3 and

select Delete key references that are beyond the maximum number of keys, the fourth key

version generation automatically triggers WebSphere Application Server to delete the first key version

Chapter 7. Securing communications 489

from the keystore. If you choose not to delete the old keys, they do not display in the Active key

history list but instead remain in the keystore where you can remove them manually.

10. Select a keystore from the drop-down list.

v Select a JCEKS keystore if you are storing a secret key.

v Select any keystore if you are storing a key pair with an X509Certificate and PrivateKey object.

11. Optional: Select Generates key pair if your key generator class name implements the

com.ibm.websphere.crypto.KeyPairGenerator interface instead of the

com.ibm.websphere.crypto.KeyGenerator interface. This option designates that the key references a

key pair instead of a single key. A key pair contains both a public key and a private key. The

WebSphere Application Server run time determines whether or not key pairs are stored and loaded

differently than single keys.

12. Optional: Click Apply if you want to select Active key history under Additional Properties to add

alias references or generate more keys.

a. Click Active key history.

b. Click Add key alias reference if you are not using the key generator class name to add key alias

references to the keys that already exist in the keystore. Use this option to retrieve the keys from

a read-only keystore without the key set generating them.

c. Type an alias reference.

d. Click Generate key if you want to generate a key using the class name that you defined in the

key sets panel. Each new key increments numerically, for example, myAlias_2.

e. Click Apply.

13. Click the key set name in the navigation path at the top of the panel.

14. Click OK and Save.

You have created a key set that you can manage using the Active key history link. You can generate

keys manually to associate them with specified key sets.

After you generate new keys from a key set, you can access them programmatically using the

com.ibm.websphere.crypto.KeySetHelper API. You must have Java 2 Security permissions, if enabled, to

access keys in key sets. Specify the key set name within the fine-grained permissions, as in the following

code sample: WebSphereRuntimePermission "getKeySets.keySetName". For more information, see

“Example: Retrieving the generated keys from a key set group” on page 494. To generate multiple key

types at the same time or to schedule the key generation on a specific schedule, see “Creating a key set

group configuration” on page 493.

Active key history collection

Use this page to manage key alias references.

To view this administrative console page, click Security > SSL certificate and key management >

Manage endpoint security configurations > {Inbound | Outbound} > SSL_configuration_name.

Under Related items, click Key Sets > key set > Active key history.

 Button Resulting action

Add key alias reference Adds a reference to a key that already exists in a key store. If a key

generation class is configured, the references are added automatically during

generation and do not need to be added manually.

Delete Deletes an existing key reference. This action does not delete the key in the

keystore.

Generate key Generates a key. The button is displayed only if a generator class name is

specified for the key set, and the selected key store is editable.

490 Securing applications and their environment

Key alias reference

Specifies the name of the alias as it appears in the keystore.

Add key alias reference settings

Use this page to access key alias reference information.

To view this administrative console page, click Security > SSL certificate and key management >

Manage endpoint security configurations > {Inbound | Outbound} > SSL_configuration_name.

Under Related items, click Key Sets > key set > Active key history > Add key alias reference.

Alias reference

Specifies the name of the alias as it appears in the key store.

 Data type: Text

Password

Specifies the key password to get access to the key. This password is enforced by the keystore for that

specific key. If the key does not have a password, this field can be left blank.

 Data type: Text

Confirm password

Confirms the password entered in the previous field.

 Data type: Text

Key sets collection

Use this page to manage key sets, which control a set of key instances of the same type for use in

cryptographic operations. The keys can either be generated using a custom class or reference keys that

already exist in a keystore.

To view this administrative console page, click Security > SSL certificate and key management >

Manage endpoint security configurations > {Inbound | Outbound} > ssl_configuration . Under

Related items, click Key sets.

 Button Resulting action

New Adds a new key set.

Delete Deletes an existing key set. Make sure the key set is not referenced by a key

set group before deleting it.

Key set name

Specifies the key set name that is used to select the key set from a key set group and from runtime

application programming interfaces (API).

Key store

Specifies the key store that contains the keys for storage, retrieval, or both.

Key alias prefix name

Specifies the prefix for the key alias when a new key is generated and stored in a key store. The rest of

the key alias comes from the key reference version number.

Chapter 7. Securing communications 491

For example, if the alias prefix is mykey and the key reference version is 2, the keystore references the key

using alias mykey_2. If the key reference already has a specified alias for a key already existing in the

keystore, this field is ignored.

Key sets settings

Use this page to set the properties for a new key set.

To view this administrative console page, click Security > SSL certificate and key management >

Manage endpoint security configurations > {Inbound | Outbound} > ssl_configuration . Under

Related items, click Key sets > New.

Key set name

Specifies the key set name that is used to select the key set from a key set group and from runtime

application programming interfaces (API).

 Data type: Text

Key alias prefix name

Specifies the prefix for the key alias when a new key is generated and stored in a keystore. The rest of

the key alias comes from the key reference version number. For example, if the alias prefix is mykey and

the key reference version is 2, the keystore references the key using alias mykey_2. If the key reference

already has a specified alias for a key already existing in the keystore, this field is ignored.

 Data type: Text

Key password

Specifies the password used to protect the key in the keystore. If a password is specified in the key

reference as well, this password is ignored. This password is used for keys that get generated by a key

generator class.

 Data type: Text

Confirm password

Specifies the same password again to confirm it was entered correctly the first time.

 Data type: Text

Key generator class name

Specifies the class name that generates keys. If the class implements

com.ibm.websphere.crypto.KeyGenerator, then a getKey() method should return a java.security.Key object

that is set in the key store using the setKey method without a certificate chain. The key store type

associated with the key set must support storing keys without certificates, such as JCEKS.

 Data type: Text

If the class implements com.ibm.websphere.crypto.KeyPairGenerator, then a getKeyPair() method should

return a com.ibm.websphere.crypto.KeyPair object containing either a java.security.PublicKey and

java.security.PrivateKey, or a java.security.cert.Certificate[] and a java.security.PrivateKey. The key

generator class and the caller of the KeySetHelper API should know the details of the keys that are

generated. This framework does not need to understand the key algorithms and lengths.

Delete key references that are beyond the maximum number of keys:

492 Securing applications and their environment

Specifies that the keys are deleted from the keystore at the same time that the key reference is deleted.

The server deletes the older key references as the Maximum number of keys referenced value is

exceeded.

Maximum number of keys referenced

Specifies the maximum number of key instances that are returned when keys from this key set are

requested. The oldest key reference gets removed whenever a new key reference gets generated after the

maximum has been reached.

 Data type: Integer

Default: 3

Key store

Specifies the key store that contains the keys for storage, retrieval, or both.

 Data type: Text

Generates key pair

Specifies that a key references a key pair instead of a key. The key pair contains both a public key and a

private key.

Creating a key set group configuration

A key set group manages one or more key sets. WebSphere Application Server uses key set groups to

automatically generate cryptographic keys or multiple synchronized key sets.

Complete the following steps in the administrative console:

 1. Decide whether you want to create the key set group at the cell scope or below the cell scope at the

node, server, or cluster, for example.

v To create a key set group at the cell scope, click Security > SSL certificate and key

management > Key set groups.

v To create a key set group at a scope below the cell level, click Security > SSL certificate and

key management > Manage endpoint security configurations > {Inbound | Outbound} >

SSL_configuration > Key set groups.

 2. You can choose to generate a key for an existing key set group, delete an existing key set group, or

create a new key set group.

v To generate a key for an existing key set group, select a key set group from the list of existing key

set groups, and click Generate keys. You have generated a new key for each key set in the

selected group.

v To delete an existing key set group, select a key set group from the list of existing key set groups,

and click Delete. You have deleted the key set group.

v To create a new key set group, go to step 3.

 CAUTION:

Do not delete the cell or node LTPAKeySetGroup, which is used by the Lightweight Third Party

Authentication (LPTA) mechanism.

 3. Click New to create a new key set group.

 4. Type a key set group name. You can reference this name by using the

com.ibm.websphere.crypto.KeySetHelper API to retrieve the managed keys from an application.

 5. Select one or more key sets from the Key sets list.

Chapter 7. Securing communications 493

Note: If the key set(s) you want is not listed, make sure that it was created at the same scope or a

higher scope than where you are creating the new key set group.

 6. Click Add to add the selected key set(s) to the new key set group.

 7. Select Automatically generate keys to generate the new keys on a schedule. If you decide to

generate keys automatically, then you must specify a scheduled time of day.

 8. Specify the scheduled time to generate keys automatically in hours and minutes, A.M. or P.M., or

every 24 hours.

 9. You can choose to generate new keys on a specific day or at an interval.

v Select Generate on a specific day. Select a day of the week from the drop-down list, and type a

repeat interval number for the number of days between each key generation. This choice enables

you to schedule key generation when your systems are least busy.

v Select Generate at an interval. Type a repeat interval number for the number of days between

each key generation. This choice enables you to schedule key generation more frequently than

once a week.

Note: The Next start date is a read-only field that specifies the date for the next scheduled

generation. You can stop and restart the deployment manager or base application server

without resetting this date. If you do not see the next start date appear after changing the

configuration, click OK to save it, then check that the next start date displays.

10. Click Save.

You have created a new key set group to manage key sets and key generation on a schedule.

After you generate new keys from a key set, you can access them programmatically using the

com.ibm.websphere.crypto.KeySetHelper API. You must have Java 2 Security permissions, if enabled, to

access keys in key sets. Specify the key set name within the fine-grained permissions, as in the following

code sample: WebSphereRuntimePermission ″getKeySets.keySetName″. For more information, see

“Example: Retrieving the generated keys from a key set group.”

Example: Retrieving the generated keys from a key set group

This example shows how applications can use the com.ibm.websphere.crypto.KeySetHelper API to retrieve

managed keys from the KeySet or KeySetGroup configurations. Use the

com.ibm.websphere.crypto.KeySetHelper API to get either the latest set of keys or the all keys in the

KeySet or KeySetGroup object.

Use the latest keys when performing any new cryptographic operations. All of the other keys that are

defined in the KeySet or KeySetGroup object are for the validation of previously performed cryptographic

operations.

The following example uses a method that an application might use to initialize the keys in the associated

KeySetGroup object. The application might want to store the keys in two separate maps, one for

generation and one for validation. Refer to the API documentation for KeySetHelper API to determine

which Java 2 Security requirements are required.

/**

 * Initializes the primary and secondary Maps used for initializing the keys.

 */

 public void initializeKeySetGroupKeys() throws com.ibm.websphere.crypto.KeyException

 {

 java.util.Map generationKeys = null;

 java.util.Map validationKeys = null;

 PublicKey tempPublicKey = null;

 PrivateKey tempPrivateKey = null;

 byte[] tempSharedKey = null;

494 Securing applications and their environment

keySetGroupName = "ApplicationKeySetGroup";

 com.ibm.websphere.crypto.KeySetHelper ksh = com.ibm.websphere.crypto.KeySetHelper.getInstance();

 generationKeys = ksh.getLatestKeysForKeySetGroup(keySetGroupName);

 /***

 * Latest keys: {

 * KeyPair_3=com.ibm.websphere.crypto.KeyPair@64ec64ec,

 * Secret_3=javax.crypto.spec.SecretKeySpec@fffe8aa7

 * }

 ***/

 if (generationKeys != null)

 {

 Iterator iKeySet = generationKeys.keySet().iterator();

 while (iKeySet.hasNext())

 {

 String keyAlias = (String)iKeySet.next();

 Object key = generationKeys.get(keyAlias);

 if (key instanceof java.security.Key)

 {

 tempSharedKey = ((java.security.Key)key).getEncoded();

 }

 else if (key instanceof com.ibm.websphere.crypto.KeyPair)

 {

 java.security.Key publicKeyAsSecret =

 ((com.ibm.websphere.crypto.KeyPair)key).getPublicKey();

 tempPublicKey = new PublicKey(publicKeyAsSecret.getEncoded());

 java.security.Key privateKeyAsSecret =

 ((com.ibm.websphere.crypto.KeyPair)key).getPrivateKey();

 tempPrivateKey = new PrivateKey(privateKeyAsSecret.getEncoded());

 }

 }

 // save these for use later, if necessary

 validationKeys = ksh.getAllKeysForKeySetGroup(keySetGroupName);

 /***

 * All keys: {

 * version_1=

 * {Secret_1=javax.crypto.spec.SecretKeySpec@178cf,

 * KeyPair_1=com.ibm.websphere.crypto.KeyPair@1c121c12},

 * version_2=

 * {Secret_2=javax.crypto.spec.SecretKeySpec@17a77,

 * KeyPair_2=com.ibm.websphere.crypto.KeyPair@182e182e},

 * version_3=

 * {Secret_3=javax.crypto.spec.SecretKeySpec@fffe8aa7,

 * KeyPair_3=com.ibm.websphere.crypto.KeyPair@4da04da0}

 * }

 ***/

 }

 else

 {

 throw new com.ibm.websphere.crypto.KeyException("Could not generateKeys.");

 }

 }

Example: Developing a key or key pair generation class for automated

key generation

A class that generates keys for cryptographic operations can be created automatically. With this capability,

the key management infrastructure can maintain a list of keys for a predefined key set, and applications

can access these keys.

Chapter 7. Securing communications 495

You can schedule new key generation at predefined frequencies. Remember that key generation

frequency affects the security of your data. For example, for persistent data, you might schedule key

generation less frequently than for real time communications, which require that the keys be generated

more often as old keys expire.

When you develop a key generation class, decide if you are creating a shared key or a key pair because

this decision determines the interface you must use.

If you are developing shared keys, refer to the following example, which uses the KeyGenerator class to

implement the com.ibm.websphere.crypto.KeyGenerator interface. The interface returns a java.security.Key

key, which is stored as a SecretKey in a JCEKS keystore type. You can use any other keystore type that

supports storing secret keys.

package com.ibm.test;

import java.util.*;

import com.ibm.ws.ssl.core.*;

import com.ibm.ws.ssl.config.*;

import com.ibm.websphere.crypto.KeyException;

public class KeyGenerator implements com.ibm.websphere.crypto.KeyGenerator

{

 private java.util.Properties customProperties = null;

 private java.security.Key secretKey = null;

 public KeyGenerator()

 {

 }

 /**

 * <p>

 * This method is called to pass any custom properties configured with

 * the KeySet to the implementation of this interface.

 * </p>

 *

 * @param java.util.Properties

 **/

 public void init (java.util.Properties customProps)

 {

 customProperties = customProps;

 }

 /**

 * <p>

 * This method is called whenever a key needs to be generated either

 * from the schedule or manually requested. The key is stored in the

 * KeyStore referenced by the configured KeySet that contains the

 * keyGenerationClass implementing this interface. The implementation of

 * this interface manages the key type. The user of the KeySet

 * must know the type that is returned by this keyGenerationClass.

 * </p>

 *

 * @return java.security.Key

 * @throws com.ibm.websphere.crypto.KeyException

 **/

 public java.security.Key generateKey () throws KeyException

 {

 try

 {

 // Assume generate3DESKey is there to create the key.

 byte[] tripleDESKey = generate3DESKey();

 secretKey = new javax.crypto.spec.SecretKeySpec(tripleDESKey, 0, 24, "3DES");

 if (secretKey != null)

 {

 return secretKey;

 }

 else

 {

496 Securing applications and their environment

throw new com.ibm.websphere.crypto.KeyException ("Key could not be generated.");

 }

 }

 catch (Exception e)

 {

 e.printStackTrace(); // handle exception

 }

 }

}

If you are developing a key pair, refer to the following example, which uses the KeyPairGenerator class to

implement the com.ibm.websphere.crypto.KeyPairGenerator interface.

package com.ibm.test;

import java.util.*;

import javax.crypto.spec.SecretKeySpec;

import com.ibm.websphere.crypto.KeyException;

/**

 * <p>

 * This implementation defines the method to generate a java.security.KeyPair.

 * When a keyGeneration class implements this method, the generateKeyPair method

 * is called and a KeyPair is stored in the keystore. The isKeyPair

 * attribute is ignored since the KeyGenerationClass is an

 * implementation of KeyPairGenerator. The isKeyPair attributes is for when

 * the keys already exist in a KeyStore, and are just read (not

 * generating them).

 * </p>

 * @author IBM Corporation

 * @version WebSphere Application Server 6.1

 * @since WebSphere Application Server 6.1

 **/

public class KeyPairGenerator implements com.ibm.websphere.crypto.KeyPairGenerator

{

 private java.util.Properties customProperties = null;

 public KeyPairGenerator()

 {

 }

 /**

 * <p>

 * This method is called to pass any custom properties configured with

 * the KeySet to the implementation of this interface.

 * </p>

 *

 * @param java.util.Properties

 **/

 public void init (java.util.Properties customProps)

 {

 customProperties = customProps;

 }

 /**

 * <p>

 * This method is called whenever a key needs to be generated either

 * from the schedule or manually requested and isKeyPair=true in the KeySet

 * configuration. The key is stored in the KeyStore referenced by

 * the configured KeySet which contains the keyGenerationClass implementing

 * this interface. The implementation of this interface manages the

 * type of the key. The user of the KeySet must know the type that

 * is returned by this keyGenerationClass.

 * </p>

 *

 * @return com.ibm.websphere.crypto.KeyPair

 * @throws com.ibm.websphere.crypto.KeyException

 **/

 public com.ibm.websphere.crypto.KeyPair generateKeyPair () throws KeyException

 {

 try

Chapter 7. Securing communications 497

{

 java.security.KeyPair keyPair = generateKeyPair();

 // Store as SecretKeySpec

 if (keyPair != null)

 {

 java.security.PrivateKey privKey = keyPair.getPrivate();

 java.security.PublicKey pubKey = keyPair.getPublic();

 SecretKeySpec publicKeyAsSecretKey = new SecretKeySpec

 (pubKey.getEncoded(), "RSA_PUBLIC");

 SecretKeySpec privateKeyAsSecretKey = new SecretKeySpec

 (privKey.getEncoded(), "RSA_PRIVATE");

 com.ibm.websphere.crypto.KeyPair pair = new

 com.ibm.websphere.crypto.KeyPair(publicKeyAsSecretKey, privateKeyAsSecretKey);

 return pair;

 }

 else

 {

 throw new com.ibm.websphere.crypto.KeyException ("Key pair could

 not be generated.");

 }

 }

 catch (Exception e)

 {

 e.printStackTrace(); // handle exception

 }

 }

}

This interface returns a com.ibm.websphere.crypto.KeyPair key pair, which can contain either a

X509Certificate and PrivateKey object or PublicKey and PrivateKey objects. If the

com.ibm.websphere.crypto.KeyPair interface contains aX509Certificate and PrivateKey object, the

certificate and private key are stored in the keystore. Consequently, they can use any KeyStore type.

If the com.ibm.websphere.crypto.KeyPair interface contains PublicKey and PrivateKey objects, you must

convert the encoded values to the SecretKeySpec object in order to store them. The WebSphere

Application Server runtime stores and retrieves the key pair as secret keys. The runtime converts the key

pair back to PublicKey and PrivateKey objects when the server retrieves the pair during the handshake.

Use the following constructors to develop the com.ibm.websphere.crypto.KeyPair interface:

v Public and private constructor

public KeyPair(java.security.Key publicKey, java.security.Key privateKey)

v Certificate and private constructor.

public KeyPair(java.security.cert.Certificate[] certChain,

java.security.Key privateKey)

The previous example code shows the KeyPairGenerator class using the public and private constructor.

Each call to this class generates a new and unique key pair, and this class is invoked by a KeySet to

create a new key pair when isKeyPair=true. The version number in the key set increments each time it is

called.

Key set groups collection

Use this page to manage groups of public, private, and shared keys. These key groups enable the

application server to control multiple sets of Lightweight Third Party Authentication (LTPA) keys.

To view this administrative console page, click Security > SSL certificate and key management >

Manage endpoint security configurations > {Inbound | Outbound} > ssl_configuration . Under

Related items, click Key set groups.

498 Securing applications and their environment

Button Resulting action

New Adds a key set group. A key set group combines one or more key sets

together as a single key set group. It allows the generation of multiple different

types of keys to occur at the same time. A single key set represents one type

of key, so a key set group allows you to group the different types.

Delete Deletes an existing key set group. You must be sure that there are no other

references to this key set group before you delete it.

Generate keys Generates keys for key set group. The system generates keys for each key set

within the key set group so that the keys remain synchronized with each other

in terms of version. You must configure a valid key generation class and a key

store that is writable. See the com.ibm.websphere.crypto.KeySetHelper

application programming interfaces (APIs) to enable the use of keys that are

managed by a KeySetGroup or KeySet.

Key set group name

Specifies the name of the key set group used to reference it.

Automatically generate keys

Specifies that the keys are to be generated automatically on a schedule.

Key set groups settings

Use this page to create new key set groups.

To view this administrative console page, click Security > SSL certificate and key management >

Manage endpoint security configurations > {Inbound | Outbound} > ssl_configuration . Under

Related items, click Key set groups > New.

Key set group name

Specifies the name of key set group used. This name can be referenced using the

com.ibm.websphere.crypto.KeySetHelper API to retrieve the managed keys from an application.

 Data type: Text

Key sets

Specifies a set of key instances of the same type for use in cryptographic operations.

Add

Specifies to add the selected key set part of this key set group.

Remove

Specifies to remove the selection from the Key sets list.

Automatically generate keys

Specifies that the keys are generated automatically on a schedule. When a new key is generated, the

security.xml is updated and saved by the runtime to track the key reference version. This can cause

save conflicts when updating the same file from admin applications.

 Default: Disabled

Scheduled time for generation

Specifies the scheduled time when the system generates selected key set group or groups. You can

specify the scheduled time in hours and minutes; specify either A.M. or P.M., or specify 24-hour. You can

Chapter 7. Securing communications 499

also specify the day of the week you want the scheduled event to occur. It is recommended that you set

this event to occur during a low peak time, especially for keys that are used by runtime for token

validation.

 Data type Integer

Default: 0, 0

Range: 1–12, 0–59

Generate on a specific day

Specifies whether to have the generation occur on a specific day of the week. It is best to auto-generate

keys during a low peak day.

 Default: Enabled

Weekday

Specifies the day of the week on which the expiration monitor will run if the Check on a specific day option

is selected.

 Default: Sunday

Range: Sunday, Monday, Tuesday, Wednesday, Thursday, Friday,

Saturday

Repeat interval

Specifies the period of time between each schedule time to check for expired certificates or the interval

between schedule checks.

 Default: Daily

Range: Daily, Weekly

Generate at an interval

Specifies to generate keys at the specified frequency regardless of the day of the week on which

generation occurs.

 Default: Disabled

Next start date

Specifies the date for the next scheduled check. This allows the deployment manager to be stopped and

restarted without resetting the date.

500 Securing applications and their environment

Chapter 8. Developing extensions to the WebSphere security

infrastructure

WebSphere Application Server provides various plug points so that you can extend the security

infrastructure.

The following topics are covered in this section:

v Developing custom user registries

v Developing applications that use programmatic security

v Customizing Web application login forms

v Customizing application login forms with Java Authentication and Authorization Service (JAAS)

v Securing transports with Java Secure Sockets Extension (JSSE) and Java Cryptography Extension

(JCE) programming interfaces

v Implementing tokens for security attribute propagation

Developing standalone custom registries

This development provides considerable flexibility in adapting WebSphere Application Server security to

various environments where some notion of a user registry, other than LDAP or Local OS, already exists

in the operational environment.

WebSphere Application Server security supports the use of standalone custom registries in addition to the

local operating system registry, standalone Lightweight Directory Access Protocol (LDAP) registries, and

federated repositories for authentication and authorization purposes. A standalone custom-implemented

registry uses the UserRegistry Java interface as provided by WebSphere Application Server. A standalone

custom-implemented registry can support virtually any type or notion of an accounts repository from a

relational database, flat file, and so on.

Implementing a standalone custom registry is a software development effort. Use the methods that are

defined in the UserRegistry interface to make calls to the appropriate registry to obtain user and group

information. The interface defines a general set of methods for encapsulating a wide variety of registries.

You can configure a standalone custom registry as the selected repository when configuring WebSphere

Application Server security on the Secure administration, applications, and infrastructure panel.

In WebSphere Application Server Version 6.1, make sure that your implementation of the standalone

custom registry does not depend on any WebSphere Application Server components such as data

sources, Enterprise JavaBeans (EJB) and Java Naming and Directory Interface (JNDI). You can not have

this dependency because security is initialized and enabled prior to most of the other WebSphere

Application Server components during startup. If your previous implementation used these components,

make a change that eliminates the dependency. For example, if your previous implementation used data

sources to connect to a database, use DriverManager to connect to the database.

Refer to the “Migrating custom user registries” on page 37 for more information on migrating. If your

previous implementation uses data sources to connect to a database, change the implementation to use

Java database connectivity (JDBC) connections. However, it is recommended that you use the new

interface to implement your custom registry.

1. Implement all the methods in the interface except for the CreateCredential method, which is

implemented by WebSphere Application Server. FileRegistrySample.java file is provided for reference.

 Attention: The sample provided is intended to familiarize you with this feature. Do not use this

sample in an actual production environment.

2. Build your implementation.

© Copyright IBM Corp. 2006 501

To compile your code, you need the app_server_install_rootBase/plugins/
com.ibm.ws.runtime_6.1.0.jar and the app_server_install_rootBase/plugins/
com.ibm.ws.security.crypto_6.1.0/cryptosf.jar files in your class path. For example:

%install_root%/java/bin/javac -classpath

%install_root%app_server_install_rootBase/plugins/com.ibm.ws.runtime_6.1.0.jar;

%install_root%app_server_install_rootBase/plugins/com.ibm.ws.security.crypto_6.1.0

 /cryptosf.jar your_implementation_file.java

3. Copy the class files that are generated in the previous step to the product class path.

The preferred location is the %install_root%/lib/ext directory. Copy these class files to all of the

product process class paths.

4. Follow the steps in “Configuring standalone custom registries” on page 111 to configure your

implementation using the administrative console. This step is required to implement custom user

registries.

If you enable security, make sure that you complete the remaining steps:

1. Save and synchronize the configuration and restart all of the servers.

2. Try accessing some J2EE resources to verify that the custom registry implementation is correct.

Example: Standalone custom registries

Use these links to view registry examples.

A standalone custom registry is a customer-implemented registry that implements the UserRegistry Java

interface, as provided by WebSphere Application Server. A custom-implemented registry can support

virtually any type or form of an accounts repository from a relational database, flat file, and so on. The

custom registry provides considerable flexibility in adapting WebSphere Application Server security to

various environments where some form of a registry, other than a federated repository, Lightweight

Directory Access Protocol (LDAP) registry, or local operating system registry, already exist in the

operational environment.

To view a sample standalone custom registry, refer to the following files:

v FileRegistrySample.java file

v users.props file

v groups.props file

Result.java file

This module is used by user registries in WebSphere Application Server when calling the getUsers and

getGroups methods. The user registries use this method to set the list of users and groups and to indicate

if more users and groups in the user registry exist than requested.

//

// 5639-D57, 5630-A36, 5630-A37, 5724-D18

// (C) COPYRIGHT International Business Machines Corp. 1997, 2005

// All Rights Reserved * Licensed Materials - Property of IBM

//

package com.ibm.websphere.security;

import java.util.List;

public class Result implements java.io.Serializable {

 /**

 Default constructor

 */

 public Result() {

 }

 /**

 Returns the list of users and groups

 @return the list of users and groups

502 Securing applications and their environment

*/

 public List getList() {

 return list;

 }

 /**

 indicates if there are more users and groups in the registry

 */

 public boolean hasMore() {

 return more;

 }

 /**

 Set the flag to indicate that there are more users and groups

 in the registry to true

 */

 public void setHasMore() {

 more = true;

 }

 /*

 Set the list of users and groups

 @param list list of users/groups

 */

 public void setList(List list) {

 this.list = list;

 }

 private boolean more = false;

 private List list;

}

UserRegistry.java files

The following file is a custom property that is used with a custom user registry.

For more information, see “Configuring standalone custom registries” on page 111.

// 5639-D57, 5630-A36, 5630-A37, 5724-D18

// (C) COPYRIGHT International Business Machines Corp. 1997, 2005

// All Rights Reserved * Licensed Materials - Property of IBM

//

// DESCRIPTION:

//

// This file is the UserRegistry interface that custom registries in WebSphere

// Application Server implement to enable WebSphere security to use the custom

// registry.

//

package com.ibm.websphere.security;

import java.util.*;

import java.rmi.*;

import java.security.cert.X509Certificate;

import com.ibm.websphere.security.cred.WSCredential;/**

 * Implementing this interface enables WebSphere Application Server Security

 * to use custom registries. This interface extends java.rmi.Remote because the

 * registry can be in a remote process.

 *

 * Implementation of this interface must provide implementations for:

*

* initialize(java.util.Properties)

* checkPassword(String,String)

* mapCertificate(X509Certificate[])

* getRealm

* getUsers(String,int)

* getUserDisplayName(String)

Chapter 8. Developing extensions to the WebSphere security infrastructure 503

* getUniqueUserId(String)

* getUserSecurityName(String)

* isValidUser(String)

* getGroups(String,int)

* getGroupDisplayName(String)

* getUniqueGroupId(String)

* getUniqueGroupIds(String)

* getGroupSecurityName(String)

* isValidGroup(String)

* getGroupsForUser(String)

* getUsersForGroup(String,int)

* createCredential(String)

**/

public interface UserRegistry extends java.rmi.Remote

{

 /**

 * Initializes the registry. This method is called when creating the

 * registry.

 *

 * @param props the registry-specific properties with which to

 * initialize the custom registry

 * @exception CustomRegistryException

 * if there is any registry specific problem

 * @exception RemoteException

 * as this extends java.rmi.Remote

 **/

 public void initialize(java.util.Properties props)

 throws CustomRegistryException,

 RemoteException; /**

 * Checks the password of the user. This method is called to authenticate a

 * user when the user’s name and password are given.

 *

 * @param userSecurityName the name of the user

 * @param password the password of the user

 * @return a valid userSecurityName. Normally this is

 * the name of same user whose password was checked but if the

 * implementation wants to return any other valid

 * userSecurityName in the registry it can do so

 * @exception CheckPasswordFailedException if userSecurityName/

 * password combination does not exist in the registry

 * @exception CustomRegistryException if there is any registry specific

 * problem

 * @exception RemoteException as this extends java.rmi.Remote

 **/

 public String checkPassword(String userSecurityName, String password)

 throws PasswordCheckFailedException,

 CustomRegistryException,

 RemoteException; /**

 * Maps a certificate (of X509 format) to a valid user in the registry.

 * This is used to map the name in the certificate supplied by a browser

 * to a valid userSecurityName in the registry

 *

 * @param cert the X509 certificate chain

 * @return the mapped name of the user userSecurityName

 * @exception CertificateMapNotSupportedException if the particular

 * certificate is not supported.

 * @exception CertificateMapFailedException if the mapping of the

 * certificate fails.

 * @exception CustomRegistryException if there is any registry specific

 * problem

 * @exception RemoteException as this extends java.rmi.Remote

504 Securing applications and their environment

**/

 public String mapCertificate(X509Certificate[] cert)

 throws CertificateMapNotSupportedException,

 CertificateMapFailedException,

 CustomRegistryException,

 RemoteException; /**

 * Returns the realm of the registry.

 *

 * @return the realm. The realm is a registry-specific string indicating

 * the realm or domain for which this registry

 * applies. For example, for OS400 or AIX this would be the

 * host name of the system whose user registry this object

 * represents.

 * If null is returned by this method realm defaults to the

 * value of "customRealm". It is recommended that you use

 * your own value for realm.

 * @exception CustomRegistryException if there is any registry specific

 * problem

 * @exception RemoteException as this extends java.rmi.Remote

 **/

 public String getRealm()

 throws CustomRegistryException,

 RemoteException; /**

 * Gets a list of users that match a pattern in the registry.

 * The maximum number of users returned is defined by the limit

 * argument.

 * This method is called by administrative console and by scripting (command

 * line) to make available the users in the registry for adding them (users)

 * to roles.

 *

 * @parameter pattern the pattern to match. (For example., a* will match all

 * userSecurityNames starting with a)

 * @parameter limit the maximum number of users that should be returned.

 * This is very useful in situations where there are thousands of

 * users in the registry and getting all of them at once is not

 * practical. A value of 0 implies get all the users and hence

 * must be used with care.

 * @return a Result object that contains the list of users

 * requested and a flag to indicate if more users exist.

 * @exception CustomRegistryException if there is any registry specific

 * problem

 * @exception RemoteException as this extends java.rmi.Remote

 **/

 public Result getUsers(String pattern, int limit)

 throws CustomRegistryException,

 RemoteException; /**

 * Returns the display name for the user specified by userSecurityName.

 *

 * This method is called only when the user information displays

 * (information purposes only, for example, in the administrative console) and not used

 * in the actual authentication or authorization purposes. If there are no

 * display names in the registry return null or empty string.

 *

 * In WebSphere Application Server Version 4.0 custom registry, if you had a display

 * name for the user and if it was different from the security name, the display name

 * was returned for the EJB methods getCallerPrincipal() and the servlet methods

 * getUserPrincipal() and getRemoteUser().

 * In WebSphere Application Server Version 5.0 for the same methods the security

 * name is returned by default. This is the recommended way as the display name

 * is not unique and might create security holes.

 *

 * See the documentation for more information.

 *

Chapter 8. Developing extensions to the WebSphere security infrastructure 505

* @parameter userSecurityName the name of the user.

 * @return the display name for the user. The display name

 * is a registry-specific string that represents a descriptive, not

 * necessarily unique, name for a user. If a display name does

 * not exist return null or empty string.

 * @exception EntryNotFoundException if userSecurityName does not exist.

 * @exception CustomRegistryException if there is any registry specific

 * problem

 * @exception RemoteException as this extends java.rmi.Remote

 **/

 public String getUserDisplayName(String userSecurityName)

 throws EntryNotFoundException,

 CustomRegistryException,

 RemoteException; /**

 * Returns the unique ID for a userSecurityName. This method is called when

 * creating a credential for a user.

 *

 * @parameter userSecurityName the name of the user.

 * @return the unique ID of the user. The unique ID for a user is

 * the stringified form of some unique, registry-specific, data

 * that serves to represent the user. For example, for the UNIX

 * user registry, the unique ID for a user can be the UID.

 * @exception EntryNotFoundException if userSecurityName does not exist.

 * @exception CustomRegistryException if there is any registry specific

 * problem

 * @exception RemoteException as this extends java.rmi.Remote

 **/

 public String getUniqueUserId(String userSecurityName)

 throws EntryNotFoundException,

 CustomRegistryException,

 RemoteException; /**

 * Returns the name for a user given its unique ID.

 *

 * @parameter uniqueUserId the unique ID of the user.

 * @return the userSecurityName of the user.

 * @exception EntryNotFoundException if the uniqueUserID does not exist.

 * @exception CustomRegistryException if there is any registry specific

 * problem

 * @exception RemoteException as this extends java.rmi.Remote

 **/

 public String getUserSecurityName(String uniqueUserId)

 throws EntryNotFoundException,

 CustomRegistryException,

 RemoteException;

 /**

 * Determines if the userSecurityName exists in the registry

 *

 * @parameter userSecurityName the name of the user

 * @return true if the user is valid. false otherwise

 * @exception CustomRegistryException if there is any registry specific

 * problem

 * @exception RemoteException as this extends java.rmi.Remote

 **/

 public boolean isValidUser(String userSecurityName)

 throws CustomRegistryException,

 RemoteException;

 /**

 * Gets a list of groups that match a pattern in the registry.

 * The maximum number of groups returned is defined by the limit

 * argument.

 * This method is called by the administrative console and scripting

506 Securing applications and their environment

* (command line) to make available the groups in the registry for adding

 * them (groups) to roles.

 *

 * @parameter pattern the pattern to match. (For e.g., a* will match all

 * groupSecurityNames starting with a)

 * @parameter limit the maximum number of groups to return.

 * This is very useful in situations where there are thousands of

 * groups in the registry and getting all of them at once is not

 * practical. A value of 0 implies get all the groups and hence

 * must be used with care.

 * @return a Result object that contains the list of groups

 * requested and a flag to indicate if more groups exist.

 * @exception CustomRegistryException if there is any registry-specific

 * problem

 * @exception RemoteException as this extends java.rmi.Remote

 **/

 public Result getGroups(String pattern, int limit)

 throws CustomRegistryException,

 RemoteException;

 /**

 * Returns the display name for the group specified by groupSecurityName.

 *

 * This method may be called only when the group information displayed

 * (for example, the administrative console) and not used in the actual

 * authentication or authorization purposes. If there are no display names

 * in the registry return null or empty string.

 *

 * @parameter groupSecurityName the name of the group.

 * @return the display name for the group. The display name

 * is a registry-specific string that represents a descriptive, not

 * necessarily unique, name for a group. If a display name does

 * not exist return null or empty string.

 * @exception EntryNotFoundException if groupSecurityName does not exist.

 * @exception CustomRegistryException if there is any registry specific

 * problem

 * @exception RemoteException as this extends java.rmi.Remote

 **/

 public String getGroupDisplayName(String groupSecurityName)

 throws EntryNotFoundException,

 CustomRegistryException,

 RemoteException;

 /**

 * Returns the unique ID for a group.

 * @parameter groupSecurityName the name of the group.

 * @return the unique ID of the group. The unique ID for

 * a group is the stringified form of some unique,

 * registry-specific, data that serves to represent the group.

 * For example, for the UNIX user registry, the unique ID might

 * be the GID.

 * @exception EntryNotFoundException if groupSecurityName does not exist.

 * @exception CustomRegistryException if there is any registry specific

 * problem

 * @exception RemoteException as this extends java.rmi.Remote

 **/

 public String getUniqueGroupId(String groupSecurityName)

 throws EntryNotFoundException,

 CustomRegistryException,

 RemoteException;

Chapter 8. Developing extensions to the WebSphere security infrastructure 507

/**

 * Returns the unique IDs for all the groups that contain the unique ID of

 * a user.

 * Called during creation of a user’s credential.

 *

 * @parameter uniqueUserId the unique ID of the user.

 * @return a list of all the group unique IDs that the unique user ID

 * belongs to. The unique ID for an entry is the stringified

 * form of some unique, registry-specific, data that serves

 * to represent the entry. For example, for the

 * UNIX user registry, the unique ID for a group could be the GID

 * and the unique ID for the user could be the UID.

 * @exception EntryNotFoundException if unique user ID does not exist.

 * @exception CustomRegistryException if there is any registry specific

 * problem

 * @exception RemoteException as this extends java.rmi.Remote

 **/

 public List getUniqueGroupIds(String uniqueUserId)

 throws EntryNotFoundException,

 CustomRegistryException,

 RemoteException;

 /**

 * Returns the name for a group given its unique ID.

 *

 * @parameter uniqueGroupId the unique ID of the group.

 * @return the name of the group.

 * @exception EntryNotFoundException if the uniqueGroupId does not exist.

 * @exception CustomRegistryException if there is any registry-specific

 * problem

 * @exception RemoteException as this extends java.rmi.Remote

 **/

 public String getGroupSecurityName(String uniqueGroupId)

 throws EntryNotFoundException,

 CustomRegistryException,

 RemoteException;

 /**

 * Determines if the groupSecurityName exists in the registry

 *

 * @parameter groupSecurityName the name of the group

 * @return true if the groups exists, false otherwise

 * @exception CustomRegistryException if there is any registry specific

 * problem

 * @exception RemoteException as this extends java.rmi.Remote

 **/

 public boolean isValidGroup(String groupSecurityName)

 throws CustomRegistryException,

 RemoteException;

 /**

 * Returns the securityNames of all the groups that contain the user

 *

 * This method is called by administrative console and scripting

 * (command line) to verify the user entered for RunAsRole mapping belongs

 * to that role in the roles to user mapping. Initially, the check is done

 * to see if the role contains the user. If the role does not contain the user

 * explicitly, this method is called to get the groups that this user

 * belongs to so that checks are made on the groups that the role contains.

 *

 * @parameter userSecurityName the name of the user

 * @return a List of all the group securityNames that the user

 * belongs to.

508 Securing applications and their environment

* @exception EntryNotFoundException if user does not exist.

 * @exception CustomRegistryException if there is any registry specific

 * problem

 * @exception RemoteException as this extends java.rmi.Remote

 **/

 public List getGroupsForUser(String userSecurityName)

 throws EntryNotFoundException,

 CustomRegistryException,

 RemoteException;

 /**

 * Gets a list of users in a group.

 *

 * The maximum number of users returned is defined by the limit

 * argument.

 *

 * This method is used by the WebSphere Business Integration

 * Server Foundation process choreographer when staff assignments

 * are modeled using groups.

 *

 * In rare situations where you are working with a user registry and it is not

 * practical to get all of the users from any of your groups (for example if

 * a large number of users exist) you can create the NotImplementedException

 * for those particular groups. Make sure that if the WebSphere Business

 * Integration Server Foundation Process Choreographer is installed (or

 * if installed later) that the users are not modeled using these particular groups.

 * If no concern exists about the staff assignments returning the users from

 * groups in the registry it is recommended that this method be implemented

 * without throwing the NotImplemented exception.

 *

 * @parameter groupSecurityName that represents the name of the group

 * @parameter limit the maximum number of users to return.

 * This option is very useful in situations where lots of

 * users are in the registry and getting all of them at

 * once is not practical. A value of 0 means get all of

 * the users and must be used with care.

 * @return a Result object that contains the list of users

 * requested and a flag to indicate if more users exist.

 * @deprecated This method will be deprecated in the future.

 * @exception NotImplementedException create this exception in rare situations

 * if it is not practical to get this information for any of the

 * groups from the registry.

 * @exception EntryNotFoundException if the group does not exist in

 * the registry

 * @exception CustomRegistryException if any registry-specific

 * problem occurs

 * @exception RemoteException as this extends java.rmi.Remote interface

 **/

 public Result getUsersForGroup(String groupSecurityName, int limit)

 throws NotImplementedException,

 EntryNotFoundException,

 CustomRegistryException,

 RemoteException;

 /**

 * This method is implemented internally by the WebSphere Application Server

 * code in this release. This method is not called for the custom registry

 * implementations for this release. Return null in the implementation.

 *

 * Note that because this method is not called you can also return the

 * NotImplementedException as the previous documentation says.

 *

Chapter 8. Developing extensions to the WebSphere security infrastructure 509

**/

 public com.ibm.websphere.security.cred.WSCredential

 createCredential(String userSecurityName)

 throws NotImplementedException,

 EntryNotFoundException,

 CustomRegistryException,

 RemoteException;

}

Implementing custom password encryption

WebSphere Application Server supports the use of custom password encryption.

An installation can implement any password encryption algorithm it chooses.

Complete the following steps to implement custom password encryption:

1. Build your custom password encryption class. An example of a custom password encryption class

follows.

// CustomPasswordEncryption

// Encryption and decryption functions

public interface CustomPasswordEncryption {

 public EncryptedInfo encrypt(byte[] clearText) throws PasswordEncryptException;

 public byte[] decrypt(EncryptedInfo cipherTextInfo) throws PasswordEncryptException;

 public void initialize(HashMap initParameters);

};

// Encapsulation of cipher text and label

public class EncryptedInfo {

 public EncryptedInfo(byte[] bytes, String keyAlias);

 public byte[] getEncryptedBytes();

 public String getKeyAlias();

};

2. Enable custom password encryption.

a. Set the custom property com.ibm.wsspi.security.crypto.customPasswordEncryptionClass to

the name of the class that is to be given control.

b. Enable the function. Set the custom property,

com.ibm.wsspi.security.crypto.customPasswordEncryptionEnabled to true.

Custom password encryption at the installation is complete.

Developing applications that use programmatic security

For some applications, declarative security is not sufficient to express the security model of the application.

Use this topic to develop applications that use programmatic security.

IBM WebSphere Application Server provides security components that provide or collaborate with other

services to provide authentication, authorization, delegation, and data protection. WebSphere Application

Server also supports the security features that are described in the Java 2 Platform, Enterprise Edition

(J2EE) specification. An application goes through three stages before it is ready to run:

v Development

v Assembly

v Deployment

Most of the security for an application is configured during the assembly stage. The security that is

configured during the assembly stage is called declarative security because the security is declared or

defined in the deployment descriptors. The declarative security is enforced by the security runtime. For

some applications, declarative security is not sufficient to express the security model of the application. For

these applications, you can use programmatic security.

510 Securing applications and their environment

1. Develop secure Web applications. For more information, see “Developing with programmatic security

APIs for Web applications” on page 533.

2. Develop servlet filters for form login processing. For more information, see “Developing servlet filters

for form login processing” on page 544.

3. Develop form login pages. For more information, see “Customizing Web application login” on page

541.

4. Develop enterprise bean component applications. For more information, see “Developing with

programmatic APIs for EJB applications” on page 537.

5. Develop with Java Authentication and Authorization Service to log in programmatically. For more

information, see “Developing programmatic logins with the Java Authentication and Authorization

Service” on page 548.

6. Develop your own Java 2 security mapping module. For more information, see “Configuring

programmatic logins for Java Authentication and Authorization Service” on page 552.

7. Develop custom user registries. For more information, see “Developing standalone custom registries”

on page 501.

8. Develop a custom interceptor for trust associations.

Protecting system resources and APIs (Java 2 security)

Java 2 security is a programming model that is very pervasive and has a huge impact on application

development.

Java 2 security is orthogonal to Java 2 Platform, Enterprise Edition (J2EE) role-based security; you can

disable or enable it independently of administrative security.

However, it does provide an extra level of access control protection on top of the J2EE role-based

authorization. It particularly addresses the protection of system resources and application programming

interfaces (API). Administrators need to consider the benefits against the risks of disabling Java 2 security.

The following recommendations are provided to help enable Java 2 security in a test or production

environment:

1. Make sure the application is developed with the Java 2 security programming model. Developers have

to know whether or not the APIs that are used in the applications are protected by Java 2 security. It is

very important that the required permissions for the APIs used are declared in the policy file

(was.policy), or the application fails to run when Java 2 security is enabled. Developers can reference

the Web site for Development Kit APIs that are protected by Java 2 security. See the Programming

model and decisions section of the Security: Resources for learning topic to visit this Web site.

2. Make sure that migrated applications from previous releases are given the required permissions.

Because Java 2 security is not supported or partially supported in previous WebSphere Application

Server releases, applications developed prior to Version 5 most likely are not using the Java 2 security

programming model. No easy way to find out all the required permissions for the application is

available. The following are activities you can perform to determine the extra permissions that are

required by an application:

v Code review and code inspection

v Application documentation review

v Sandbox testing of migrated enterprise applications with Java 2 security enabled in a preproduction

environment. Enable tracing in WebSphere Java 2 security manager to help determine the missing

permissions in the application policy file. The trace specification is:

com.ibm.ws.security.core.SecurityManager=all=enabled.

v Use the com.ibm.websphere.java2secman.norethrow system property to aid debugging. Do not use

this property in a production environment..

Refer to “Java 2 security” on page 65

Chapter 8. Developing extensions to the WebSphere security infrastructure 511

The default permission set for applications is the recommended permission set that is defined in the J2EE

1.3 Specification. The default is declared in the app_server_root/profiles/profile_name/config/cells/
cell_name/nodes/node_name/app.policy policy file with permissions defined in the Development Kit

(JAVA_HOME/jre/lib/security/java.policy) policy file that grant permissions to everyone. However,

applications are denied permissions that are declared in the profiles/profile_name/config/cells/
cell_name/filter.policy file. Permissions that are declared in the filter.policy file are filtered for

applications during the permission check.

Define the required permissions for an application in a was.policy file and embed the was.policy file in

the application enterprise archive (EAR) file as YOURAPP.ear/META-INF/was.policy, see “Configuring Java

2 security policy files” on page 514 for details.

The following steps describe how to enforce Java 2 security on the cell level for WebSphere Application

Server Network Deployment and the server level for WebSphere Application Server and WebSphere

Application Server Express:

1. Click Security > Secure administration, applications, and infrastructure. The Secure

administration, applications, and infrastructure panel is displayed.

2. Select the Use Java 2 security to restrict application access to local resources option.

3. Click OK or Apply.

4. Click Save to save the changes.

5. Restart the server for the changes to take effect.

Java 2 security is enabled and enforced for the servers. Java 2 security permission is selected when a

Java 2 security protected API is called.

When to use Java 2 security

1. Enable protection on system resources, for example when opening or listening to a socket connection,

reading or writing to operating system file systems, reading or writing Java virtual machine system

properties, and so on.

2. Prevent application code from calling destructive APIs, for example, calling the System.exit method

brings down the application server.

3. Prevent application code from obtaining privileged information (passwords) or gaining extra privileges

(obtaining server credentials).

The Java 2 security manager is enhanced to dump the Java 2 security permissions that are granted to all

classes on the call stack when an application is denied access to a resource. The

java.security.AccessControlException exception is created. However, this tracing capability is disabled by

default. You can enable this capability by specifying the server trace service with the

com.ibm.ws.security.core.SecurityManager=all=enabled trace specification. When the exception is

created, the trace dump provides hints to determine whether the application is missing permissions or the

product runtime code or the third-party libraries that are used are not properly marked as privileged when

accessing Java 2 security-protected resources. See the Security Problem Determination Guide for details.

Using PolicyTool to edit policy files

Use the PolicyTool utility to update policy files.

Java 2 security uses several policy files to determine the granted permission for each Java program. The

Java Development Kit provides the PolicyTool tool to edit these policy files. This tool is recommended for

editing any policy file to verify the syntax of its contents. Syntax errors in the policy file cause an

AccessControlException exception when the application runs, including the server start. Identifying the

cause of this exception is not easy because the user might not be familiar with the resource that has an

access violation. Be careful when you edit these policy files.

See “Java 2 security policy files” on page 69 for the list of available policy files.

1. Start the PolicyTool.

512 Securing applications and their environment

Windows For example, you can enter the following command at a Windows command prompt:

%{was.install.root}/java/jre/bin/policytool

The PolicyTool window opens. The tool looks for the java.policy file in your home directory. If it does

not exist, an error message displays.

Click OK.

2. Click File > Open.

3. Navigate the directory tree in the Open window to pick up the policy file that you need to update. After

selecting the policy file, click Open. The code base entries are listed in the window.

4. Create or modify the code base entry.

a. Modify the existing code base entry by double-clicking the code base, or click the code base and

click Edit Policy Entry. The Policy Entry window opens with the permission list defined for the

selected code base.

b. Create a new code base entry by clicking Add Policy Entry.

The Policy Entry window opens. At the code base column, enter the code base information as a

URL format.

For example, you can enter:

app_server_root/InstalledApps/testcase.ear

where the app_server_root variable represents your installation location.

5. Modify or add the permission specification.

a. Modify the permission specification by double-clicking the entry that you want to modify, or by

selecting the permission and clicking Edit Permission. The Permissions window opens with the

selected permission information.

b. Add a new permission by clicking Add Permission. The Permissions window opens. In the

Permissions window are four rows for Permission, Target Name, Actions, and Signed By.

6. Select the permission from the Permission list. The selected permission displays. After a permission is

selected, the Target Name, Actions, and Signed By fields automatically show the valid choices or they

enable text input in the right text input area.

a. Select Target Name from the list, or enter the target name in the right text input area.

b. Select Actions from the list.

c. Input Signed By if it is needed.

Important: The Signed By keyword is not supported in the following policy files: app.policy,

spi.policy, library.policy, was.policy, and filter.policy files. However, the

Signed By keyword is supported in the following policy files: #java.policy,

server.policy, and client.policy files. The Java Authentication and Authorization

Service (JAAS) is not supported in the app.policy, spi.policy, library.policy,

was.policy, and filter.policy files. However, the JAAS principal keyword is

supported in a JAAS policy file when it is specified by the java.security.auth.policy Java

virtual machine (JVM) system property.

7. Click OK to close the Permissions window. Modified permission entries of the specified code base

display.

8. Click Done to close the window. Modified code base entries are listed. Repeat the previous steps until

you complete editing.

9. Click File > Save after you finish editing the file.

A policy file is updated. If any policy files need editing, use the PolicyTool utility. Do not edit the policy file

manually. Syntax errors in the policy files can potentially cause application servers or enterprise

applications to not start or function incorrectly. For the changes in the updated policy file to take effect,

restart the Java processes.

Chapter 8. Developing extensions to the WebSphere security infrastructure 513

Configuring Java 2 security policy files

Use can configure Java 2 security policy files so that the required permission is granted for the specified

WebSphere Application Server enterprise application.

Java 2 security uses several policy files to determine the permissions for each Java programs.

See the “Java 2 security policy files” on page 69 topic for the list of available policy files that are supported

by WebSphere Application Server.

Two types of policy files are supported by WebSphere Application Server: dynamic policy files and static

policy files. Static policy files provide the default permissions. Dynamic policy files provide application

permissions. Six dynamic policy files are provided:

 Policy file name Description

app.policy Contains default permissions for all of the enterprise applications in the cell.

was.policy Contains application-specific permissions for an WebSphere Application Server

enterprise application. This file is packaged in an enterprise archive (EAR) file.

ra.xml Contains connector application specific permissions for a WebSphere Application Server

enterprise application. This file is packaged in a resource adapter archive (RAR) file.

spi.policy Contains permissions for Service Provider Interface (SPI) or third-party resources that

are embedded in WebSphere Application Server. The default contents grant everything.

Update this file carefully when the cell requires more protection against SPI in the cell.

This file is applied to all of the SPIs that are defined in the resources.xml file.

library.policy Contains permissions for the shared library of enterprise applications.

filter.policy Contains the list of permissions that require filtering from the was.policy file and the

app.policy file in the cell. This filtering mechanism only applies to the was.policy and

app.policy files.

In WebSphere Application Server, applications must have the appropriate thread permissions specified in

the was.policy or app.policy file. Without the thread permissions specified, the application cannot

manipulate threads and WebSphere Application Server creates a java.security.AccessControlException

exception. The app.policy file applies to a specified node. If you change the permissions in one

app.policy file, you must incorporate the new thread policy in the same file on the remaining nodes. Also,

if you add the thread permissions to the app.policy file, you must restart WebSphere Application Server to

enforce the new permissions. However, if you add the permissions to the was.policy file for a specific

application, you do not need to restart WebSphere Application Server. An administrator must add the

following code to a was.policy or app.policy file for an application to manipulate threads:

grant codeBase "file:${application}" {

permission java.lang.RuntimePermission "stopThread";

permission java.lang.RuntimePermission "modifyThread";

permission java.lang.RuntimePermission "modifyThreadGroup";

};

Important: The Signed By keyword is not supported in the following policy files: app.policy, spi.policy,

library.policy, was.policy, and filter.policy files. However, the Signed By keyword is

supported in the following policy files:java.policy, server.policy, and client.policy files.

The Java Authentication and Authorization Service (JAAS) is not supported in the app.policy,

spi.policy, library.policy, was.policy, and filter.policy files. However, the JAAS

principal keyword is supported in a JAAS policy file when it is specified by the

java.security.auth.policy Java virtual machine (JVM) system property. You can statically

set the authorization policy files in java.security.auth.policy with auth.policy.url.n=URL,

where URL is the location of the authorization policy.

1. Identify the policy file to update.

514 Securing applications and their environment

v If the permission is required by an application, update the static policy file. Refer to “Configuring

static policy files” on page 527.

v If the permission is required by all of the WebSphere Application Server enterprise applications in

the node, refer to “spi.policy file permissions” on page 522.

v If the permission is required only by specific WebSphere Application Server enterprise applications

and the permission is required only by connector, update the ra.xml file. Refer to Assembling

resource adapter (connector) modules. Otherwise, update the was.policy file. Refer to “Configuring

the was.policy file” on page 520 and “Adding the was.policy file to applications” on page 525.

v If the permission is required by shared libraries, refer to “library.policy file permissions” on page 523.

v If the permission is required by SPI libraries, refer to “spi.policy file permissions” on page 522.

Tip: Pick up the policy file with the smallest scope. You can avoid giving an extra permission to the

Java programs and protect the resources. You can update the ra.xml file or the was.policy file

rather than the app.policy file. Use specific component symbols ($(ejbcomponent),

${webComponent},${connectorComponent} and ${jars}) than ${application} symbols. Update

dynamic policy files, rather than static policy files.

Add any permission that you never want granted to the WebSphere Application Server enterprise

application in the cell to the filter.policy file. Refer to “filter.policy file permissions” on page 518.

2. Restart the WebSphere Application Server enterprise application.

The required permission is granted for the specified WebSphere Application Server enterprise application.

If an WebSphere Application Server enterprise application in a cell requires permissions, some of the

dynamic policy files need updating. The symptom of the missing permission is the

java.security.AccessControlException exception. The missing permission is listed in the exception data.

java.security.AccessControlException: access denied

(java.io.FilePermission C:\WebSphere\AppServer\java\jre\lib\ext\mail.jar read)

The previous two lines were split onto two lines because of the width of the page. Enter the permission on

one line.

When a Java program receives this exception and adding this permission is justified, add a permission to

an adequate dynamic policy file.

grant codeBase "file:user_client_installed_location" {

permission java.io.FilePermission

"C:\WebSphere\AppServer\java\jre\lib\ext\mail.jar", "read";

};

The previous permission information lines were split onto more than one line because of their length. Enter

the permission on one line.

To decide whether to add a permission, refer to the “Access control exception” on page 74 topic.

app.policy file permissions:

Java 2 security uses several policy files to determine the granted permissions for each Java program.

 For the list of available policy files that are supported by WebSphere Application Server, see the “Java 2

security policy files” on page 69 article The app.policy file is a default policy file that is shared by all of

the WebSphere Application Server enterprise applications. The union of the permissions that are contained

in the following files is applied to the WebSphere Application Server enterprise application:

v Any policy file that is specified in the policy.url.* properties in the java.security file.

v The app.policy files, which are managed by configuration and file replication services.

v The server.policy file.

Chapter 8. Developing extensions to the WebSphere security infrastructure 515

v The java.policy file.

v The application was.policy file.

v The permission specification of the ra.xml file.

v The shared library, which is the library.policy file.

In WebSphere Application Server, applications that manipulate threads must have the appropriate thread

permissions specified in the was.policy or app.policy file. Without the thread permissions specified, the

application cannot manipulate threads and WebSphere Application Server creates a

java.security.AccessControlException exception. If an administrator adds thread permissions to the

app.policy file, the permission change requires a restart of the WebSphere Application Server. An

administrator must add the following code to a was.policy or app.policy file for an application to

manipulate threads:

grant codeBase "file:${application}" {

permission java.lang.RuntimePermission "stopThread";

permission java.lang.RuntimePermission "modifyThread";

permission java.lang.RuntimePermission "modifyThreadGroup";

};

Important: The Signed By and the Java Authentication and Authorization Service (JAAS) principal

keywords are not supported in the app.policy file. However, the Signed By keyword is

supported in the following files: java.policy, server.policy, and the client.policy files. The

JAAS principal keyword is supported in a JAAS policy file when it is specified by the

java.security.auth.policy Java virtual machine (JVM) system property. You can statically set the

authorization policy files in the java.security.auth.policy property with

auth.policy.url.n=URL where URL is the location of the authorization policy.

If the default permissions for enterprise applications (the union of the permissions that is defined in the

java.policy file, the server.policy file and the app.policy file) are enough; no action is required. The

default app.policy file is used automatically. If a specific change is required to all of the enterprise

applications in the cell, update the app.policy file. Syntax errors in the policy files cause start failures in

the application servers. Edit these policy files carefully.

To extract the policy file, use a command prompt to enter the following command on one line using the

appropriate variable values for your environment:

wsadmin> set obj [$AdminConfig extract profiles/profile_name/cells/cell_name/node/

node_name/app.policy c:/temp/test/app.policy]

Edit the extracted app.policy file with the Policy Tool. For more information, see “Using PolicyTool to edit

policy files” on page 512. Changes to the app.policy file are local for the node.

To check in the policy file, use a command prompt to enter the following command on one line using the

appropriate variable values for your environment:

wsadmin> $AdminConfig checkin profiles/profile_name/cells/cell_name/nodes/

node_name/app.policy c:/temp/test/was.policy $obj

Several product-reserved symbols are defined to associate the permission lists to a specific type of

resource.

 Symbol Meaning

file:${application} Permissions apply to all resources within the application

file:${jars} Permissions apply to all utility Java archive (JAR) files within the application

file:${ejbComponent} Permissions apply to enterprise bean resources within the application

516 Securing applications and their environment

Symbol Meaning

file:${webComponent} Permissions apply to Web resources within the application

file:${connectorComponent} Permissions apply to connector resources both within the application and within

standalone connector resources.

Five embedded symbols are provided to specify the path and name for the java.io.FilePermission

permission. These symbols enable flexible permission specifications. The absolute file path is fixed after

the installation of the application.

 Symbol Meaning

${app.installed.path} Path where the application is installed

${was.module.path} Path where the module is installed

${current.cell.name} Current cell name

${current.node.name} Current node name

${current.server.name} Current server name

Tip: You cannot use the ${was.module.path} in the ${application} entry.

The app.policy file that is supplied by WebSphere Application Server resides at app_server_root/
profiles/profile_name/config/cells/cell_name/nodes/node_name/app.policy, which contains the

following default permissions:

Attention: In the following code sample, the first two lines that are related to java.io.FilePermission

permission are split into two lines for illustrative purposes only.
grant codeBase "file:${application}" {

 // The following are required by Java mail

 permission java.io.FilePermission "${was.install.root}${/}lib${/}mail-impl.jar", "read";

 permission java.io.FilePermission "${was.install.root}${/}lib${/}activation-impl.jar", "read";

};

grant codeBase "file:${jars}" {

 permission java.net.SocketPermission "*", "connect";

 permission java.util.PropertyPermission "*", "read";

};

grant codeBase "file:${connectorComponent}" {

 permission java.net.SocketPermission "*", "connect";

 permission java.util.PropertyPermission "*", "read";

};

grant codeBase "file:${webComponent}" {

 permission java.io.FilePermission "${was.module.path}${/}-", "read, write";

 permission java.lang.RuntimePermission "loadLibrary.*";

 permission java.lang.RuntimePermission "queuePrintJob";

 permission java.net.SocketPermission "*", "connect";

 permission java.util.PropertyPermission "*", "read";

};

grant codeBase "file:${ejbComponent}" {

 permission java.lang.RuntimePermission "queuePrintJob";

 permission java.net.SocketPermission "*", "connect";

 permission java.util.PropertyPermission "*", "read";

};

If all of the WebSphere Application Server enterprise applications in a cell require permissions that are not

defined as defaults in the java.policy file, the server.policy file and the app.policy file, then update the

app.policy file. The symptom of a missing permission is the java.security.AccessControlException

Chapter 8. Developing extensions to the WebSphere security infrastructure 517

exception. The missing permission is listed in the exception data, for example,

java.security.AccessControlException: access denied (java.io.FilePermission C:\WebSphere\
AppServer\java\jre\lib\ext\mail.jar read).

When a Java program receives this exception and adding this permission is justified, add a permission to

the server.policy file, for example:

grant codeBase "file:user_client_installed_location" {

permission java.io.FilePermission

"C:/WebSphere/AppServer/java/jre/lib/ext/mail.jar", "read"; };

To decide whether to add a permission, refer to the AccessControlException topic.

Restart all WebSphere Application Server enterprise applications to ensure that the updated app.policy

file takes effect.

filter.policy file permissions:

Java 2 security uses several policy files to determine the granted permission for each Java program. Java

2 security policy filtering is only in effect when Java 2 security is enabled.

 Before modifying the filter.policy file, you must start the wsadmin tool. See the Starting the wsadmin

scripting client article for more information.

Refer to “Protecting system resources and APIs (Java 2 security)” on page 511. The filtering policy defined

in the filter.policy file is cell wide. The filter.policy file is the only policy file that is used when

restricting the permission instead of granting permission. The permissions that are listed in the filter policy

file are filtered out from the app.policy file and the was.policy file. Permissions that are defined in the

other policy files are not affected by the filter.policy file.

When a permission is filtered out, an audit message is logged. However, if the permissions that are

defined in the app.policy file and the was.policy file are compound permissions like the

java.security.AllPermission permission, for example, the permission is not removed. A warning message is

logged. If the Issue Permission Warning flag is enabled (default) and if the app.policy file and the

was.policy file contain custom permissions (non-Java API permission, the permission package name

begins with characters other than java or javax), a warning message is logged and the permission is not

removed. You can change the value of the Warn if applications are granted custom permissions option

on the Secure administration, applications, and infrastructure panel. It is not recommended that you use

the AllPermission permission for the enterprise application.

Some default permissions that are defined in the filter.policy file. These permissions are the minimal

ones that are recommended by the product. If more permissions are added to the filter.policy file,

certain operations can fail for enterprise applications. Add permissions to the filter.policy file carefully.

You cannot use the Policy Tool to edit the filter.policy file. Editing must be completed in a text editor.

Be careful and verify that no syntax errors exist in the filter.policy file. If any syntax errors exist in the

filter.policy file, the file is not loaded by the product security runtime, which implies that filtering is

disabled.

To extract the filter.policy file, enter the following command using information from your environment:

set obj [$AdminConfig extract cells/cell_name/filter.policy c:/temp/test/filter.policy]

To check in the policy file, enter the following command using information from your environment:

$AdminConfig checkin cells/cell_name/filter.policy c:/temp/test/filter.policy $obj

518 Securing applications and their environment

An updated filter.policy file is applied to all of the WebSphere Application Server enterprise

applications after the servers are restarted. The filter.policy file is managed by configuration and file

replication services.

The filter.policy file that is supplied by WebSphere Application Server resides at: app_server_root/
profiles/profile_name/config/cells/cell_name/filter.policy.

This fill contains these permissions as defaults:

filterMask {

permission java.lang.RuntimePermission ″exitVM″;

permission java.lang.RuntimePermission ″setSecurityManager″;

permission java.security.SecurityPermission ″setPolicy″;

permission javax.security.auth.AuthPermission ″setLoginConfiguration″; };

runtimeFilterMask {

permission java.lang.RuntimePermission ″exitVM″;

permission java.lang.RuntimePermission ″setSecurityManager″;

permission java.security.SecurityPermission ″setPolicy″;

permission javax.security.auth.AuthPermission ″setLoginConfiguration″; };

The permissions that are defined in filterMask filter are for static policy filtering. The security runtime tries

to remove the permissions from applications during application startup. Compound permissions are not

removed, but are issued with a warning, and application deployment is stopped if applications contain

permissions that are defined in the filterMask filter, and if scripting is used. The runtimeFilterMask filter

defines permissions that are used by the security runtime to deny access to those permissions to

application thread. Do not add more permissions to the runtimeFilterMask filter. Application start failure or

incorrect functioning might result. Be careful when adding more permissions to the runtimeFilterMask filter.

Usually, you only need to add permissions to the filterMask stanza.

WebSphere Application Server relies on the filter policy file to restrict or disallow certain permissions that

can compromise the integrity of the system. For instance, WebSphere Application Server considers the

exitVM and setSecurityManager permissions as those permissions that most applications never have. If

these permissions are granted, the following scenarios are possible:

exitVM

A servlet, JavaServer Pages (JSP) file, enterprise bean, or other library that is used by the

aforementioned might call the System.exit API and cause the entire WebSphere Application Server

process to terminate.

setSecurityManager

An application might install its own security manager and either grant more permissions or bypass

the default policy that the WebSphere Application Server security manager enforces.

Important: In application code, do not use the setSecurityManager permission to set a security manager.

When an application uses the setSecurityManager permission, a conflict exists with the

internal security manager within WebSphere Application Server. If you must set a security

manager in an application for Remote Method Invocation (RMI) purposes, you also must

enable the Enforce Java 2 Security option on the Global security settings page within the

WebSphere Application Server administrative console. WebSphere Application Server then

registers a security manager, which the application code can verify is registered by using the

System.getSecurityManager application programming interface (API).

Important: In application code, do not use the setSecurityManager permission to set a security manager.

When an application uses the setSecurityManager permission, a conflict exists with the

internal security manager within WebSphere Application Server. If you must set a security

manager in an application for Remote Method Invocation (RMI) purposes, you also must

enable the Use Java 2 security to restrict application access to local resources option on

Chapter 8. Developing extensions to the WebSphere security infrastructure 519

the Secure administration, applications, and infrastructure panel within the WebSphere

Application Server administrative console. WebSphere Application Server then registers a

security manager, which the application code can verify is registered by using the

System.getSecurityManager application programming interface (API).

For the updated filter.policy file to take effect, restart related Java processes.

Configuring the was.policy file:

You should update the was.policy file if the application has specific resources to access.

 Java 2 security uses several policy files to determine the granted permission for each Java program. The

was.policy file is an application-specific policy file for WebSphere Application Server enterprise

applications. This file is embedded in the META-INF/was.policy enterprise archive (.EAR) file. The

was.policy file is located in:

profile_root/config/cells/cell_name/applications/

ear_file_name/deployments/application_name/META-INF/was.policy

See “Java 2 security policy files” on page 69 for the list of available policy files that are supported by

WebSphere Application Server Version 6.1.

The union of the permissions that are contained in the following files is applied to the WebSphere

Application Server enterprise application:

v Any policy file that is specified in the policy.url.* properties in the java.security file.

v The app.policy files, which are managed by configuration and file replication services.

v The server.policy file.

v The java.policy file.

v The application was.policy file.

v The permission specification of the ra.xml file.

v The shared library, which is the library.policy file.

Several product-reserved symbols are defined to associate the permission lists to a specific type of

resources.

 Symbol Definition

file:${application} file:${application}

file:${jars} Permissions apply to all utility Java archive (JAR) files

within the application

file:${ejbComponent} Permissions apply to enterprise bean resources within the

application

file:${webComponent} Permissions apply to Web resources within the

application

file:${connectorComponent} Permissions apply to connector resources within the

application

In WebSphere Application Server, applications that manipulate threads must have the appropriate thread

permissions specified in the was.policy or app.policy file. Without the thread permissions specified, the

application cannot manipulate threads and WebSphere Application Server creates a

java.security.AccessControlException exception. If you add the permissions to the was.policy file for a

specific application, you do not need to restart WebSphere Application Server. An administrator must add

the following code to a was.policy or app.policy file for an application to manipulate threads:

520 Securing applications and their environment

grant codeBase "file:${application}" {

permission java.lang.RuntimePermission "stopThread";

permission java.lang.RuntimePermission "modifyThread";

permission java.lang.RuntimePermission "modifyThreadGroup";

};

An administrator can add the thread permissions to the app.policy file, but the permission change

requires a restart of WebSphere Application Server.

Important: The Signed By and the Java Authentication and Authorization Service (JAAS) principal

keywords are not supported in the was.policy file. The Signed By keyword is supported in the

java.policy, server.policy, and client.policy policy file. The JAAS principal keyword is

supported in a JAAS policy file when it is specified by the java.security.auth.policy Java

virtual machine (JVM) system property. You can statically set the authorization policy files in

the java.security.auth.policy file with the auth.policy.url.n=URL, where URL is the

location of the authorization policy.

Other than these blocks, you can specify the module name for granular settings. For example,

"file:DefaultWebApplication.war" {

 permission java.security.SecurityPermission "printIdentity";

 };

grant codeBase "file:IncCMP11.jar" {

 permission java.io.FilePermission

 "${user.install.root}${/}bin${/}DefaultDB${/}-",

 "read,write,delete";

};

Five embedded symbols are provided to specify the path and name for the java.io.FilePermission

permission. These symbols enable flexible permission specification. The absolute file path is fixed after the

application is installed.

 Symbol Definition

${app.installed.path} Path where the application is installed

${was.module.path} Path where the module is installed

${current.cell.name} Current cell name

${current.node.name} Current node name

${current.server.name} Current server name

If the default permissions for the enterprise application are enough, an action is not required. The default

permissions are a union of the permissions that are defined in the java.policy file, the server.policy file,

and the app.policy file. If an application has specific resources to access, update the was.policy file. The

first two steps assume that you are creating a new policy file.

Tip: Syntax errors in the policy files cause the application server to fail. Use care when editing these

policy files.

1. Create or edit a new was.policy file by using the PolicyTool. For more information, see “Using

PolicyTool to edit policy files” on page 512.

2. Package the was.policy file into the enterprise archive (EAR) file.

For more information, see “Adding the was.policy file to applications” on page 525.The following

instructions describe how to import a was.policy file.

a. Import the EAR file into an assembly tool.

b. Open the Project Navigator view.

Chapter 8. Developing extensions to the WebSphere security infrastructure 521

c. Expand the EAR file and click META-INF. You might find a was.policy file in the META-INF

directory. If you want to delete the file, right-click the file name and select Delete.

d. At the bottom of the Project Navigator view, click J2EE Hierarchy.

e. Import the was.policy file by right-clicking the Modules directory within the deployment descriptor

and by clicking Import > Import > File system.

f. Click Next.

g. Enter the path name to the was.policy file in the From directory field or click Browse to locate

the file.

h. Verify that the path directory that is listed in the Into directory field lists the correct META-INF

directory.

i. Click Finish.

j. To validate the EAR file, right-click the EAR file, which contains the Modules directory, and click

Run Validation.

k. To save the new EAR file, right-click the EAR file, and click Export > Export EAR file. If you do

not save the revised EAR file, the EAR file will contain the new was.policy file. However, if the

workspace becomes corrupted, you might lose the revised EAR file.

l. To generate deployment code, right-click the EAR file and click Generate Deployment Code.

3. Update an existing installed application, if one already exists.

a. Modify the was.policy file with the Policy Tool. For more information, see “Using PolicyTool to edit

policy files” on page 512.

The updated was.policy file is applied to the application after the application restarts.

If an application must access a specific resource that is not defined as a default in the java.policy file,

the server.policy file, and the app.policy, delete the was.policy file for that application. The symptom of

the missing permission is the java.security.AccessControlException exception. The missing permission is

listed in the exception data:

java.security.AccessControlException: access denied (java.io.FilePermission

app_server_root/lib/mail-impl.jar read)

The previous example was split onto several lines for illustrative purposes only.

When a Java program receives this exception and adding this permission is justified, add the following

permission to the was.policy file:

grant codeBase "file:user_client_installed_location" {

permission java.io.FilePermission "app_server_root/lib/mail-impl.jar", "read"; };

The previous example was split onto several lines for illustrative purposes only.

To determine whether to add a permission, see “Access control exception” on page 74.

Restart all applications for the updated app.policy file to take effect.

spi.policy file permissions:

Java 2 security uses several policy files to determine the granted permission for each Java program.

 For the list of available policy files that are supported by WebSphere Application Server Version 6.0.x, see

“Java 2 security policy files” on page 69.

Because the default permission for the Service Provider Interface (SPI) is the AllPermission permission,

the only reason to update the spi.policy file is a restricted SPI permission. When a change in the

spi.policy is required, complete the following steps.

522 Securing applications and their environment

Syntax errors in the policy files cause the application server to fail. Edit these policy files carefully.

Important: Do not place the codebase keyword or any other keyword after the filterMask and

runtimeFilterMask keywords. The Signed By and the Java Authentication and Authorization

Service (JAAS) Principal keywords are not supported in the spi.policy file. The Signed By

keyword is supported in the java.policy, server.policy, and client.policy policy files. The

JAAS Principal keyword is supported in a JAAS policy file that is specified by the

java.security.auth.policy Java virtual machine (JVM) system property. You can statically set the

authorization policy files in java.security.auth.policy with auth.policy.url.n=URL, where

URL is the location of the authorization policy.

To extract the filter.policy file, enter the following command using information from your environment:

set obj [$AdminConfig extract profiles/profile_name/cells/cell_name/nodes/node_name/spi.policy

 c:/temp/test/spi.policy]

Edit the file using the Policy Tool. For more information, see “Using PolicyTool to edit policy files” on page

512.

To check in the policy file, enter the following command using information from your environment:

$AdminConfig checkin profiles/profile_name/cells/cell_name/nodes/node_name/spi.policy

 c:/temp/test/spi.policy $obj

The updated spi.policy is applied to the Service Provider Interface (SPI) libraries after the Java process

is restarted.

Examples

The spi.policy file is the template for SPIs or third-party resources embedded in the product. Examples

of SPIs are Java Message Services (JMS) (MQSeries) and Java database connectivity (JDBC) drivers.

They are specified in the resources.xml file. The dynamic policy grants the permissions that are defined in

the spi.policy file to the class paths defined in the resources.xml file. The union of the permission that is

contained in the java.policy file and the spi.policy file are applied to the SPI libraries. The spi.policy

files are managed by configuration and file replication services.

You can find the spi.policy file that is supplied by WebSphere Application Server in the following location:

app_server_root/profiles/profile_name/config/cells/cell_name/nodes/node_name/spi.policy. This file

contains the following default permission:

grant {

 permission java.security.AllPermission;

};

Restart the related Java processes for the changes in the spi.policy file to become effective.

library.policy file permissions:

Java 2 security uses several policy files to determine the granted permission for each Java program.

 For the list of available policy files that are supported by WebSphere Application Server, see “Java 2

security policy files” on page 69.

The library.policy file is the template for shared libraries (Java library classes). Multiple enterprise

applications can define and use shared libraries. Refer to Managing shared libraries for information on how

to define and manage the shared libraries.

Chapter 8. Developing extensions to the WebSphere security infrastructure 523

If the default permissions for a shared library (union of the permissions defined in the java.policy file, the

app.policy file and the library.policy file) are enough, no action is required. The default library policy is

picked up automatically. If a specific change is required to share a library in the cell, update the

library.policy file.

Syntax errors in the policy files cause the application server to fail. Edit these policy files carefully.

Important: Do not place the codebase keyword or any other keyword after the grant keyword. The Signed

By keyword and the Java Authentication and Authorization Service (JAAS) Principal keyword

are not supported in the library.policy file. The Signed By keyword is supported in the

java.policy, the server.policy, and the client.policy policy files. The JAAS Principal

keyword is supported in a JAAS policy file when it is specified by the Java virtual machine

(JVM) system property, java.security.auth.policy. You can statically set the authorization policy

files in the java.security.auth.policy file with auth.policy.url.n=URL where URL is the

location of the authorization policy.

To extract the policy file, use a command prompt to enter the following command using the appropriate

variable values for your environment:

wsadmin> set obj [$AdminConfig extract cells/cell_name/nodes/

node_name/library.policy c:/temp/test/library.policy]

The previous two lines were split onto two lines for illustrative purposes only.

Edit the extracted library.policy file with the Policy Tool. For more information, see “Using PolicyTool to

edit policy files” on page 512.

To check in the policy file, use a command prompt to enter the following command using the appropriate

variable values for your environment:

wsadmin> $AdminConfig checkin cells/cell_name/nodes/node_name/library.policy

 c:/temp/test/library.policy $obj

An updated library.policy is applied to shared libraries after the servers restart.

Example

The union of the permission that is contained in the java.policy file, the app.policy file, and the

library.policy file are applied to the shared libraries. The library.policy file is managed by

configuration and file replication services.

The library.policy file are supplied by WebSphere Application Server resides at: app_server_root/
config/cells/cell_name/nodes/node_name/ directory. The file contains an empty permission entry as a

default. For example:

grant {

 };

If the shared library in a cell requires permissions that are not defined as defaults in the java.policy file,

the app.policy file and the library.policy file, update the library.policy file. The missing permission

causes the java.security.AccessControlException exception. The missing permission is listed in the

exception data.

Windows

For example:

java.security.AccessControlException: access denied (java.io.FilePermission

app_server_root/lib/mail-impl.jar read)

524 Securing applications and their environment

The previous lines are split into two lines for illustrative purposes only. The app_server_root variable

represents your installation directory.

When a Java program receives this exception and adding this permission is justified, add a permission to

the library.policy file.

Windows

For example:

grant { permission java.io.FilePermission "app_server_root/lib/mail-impl.jar", "read"; };

The previous lines are split into two lines for illustrative purposes only. The app_server_root variable

represents your installation directory.

To decide whether to add a permission, refer to “Access control exception” on page 74.

Restart the related Java processes for the changes in the library.policy file to become effective.

Adding the was.policy file to applications:

An application might need a was.policy file if it accesses resources that require more permissions than

those granted in the default app.policy file.

 When Java 2 security is enabled for a WebSphere Application Server, all the applications that run on

WebSphere Application Server undergo a security check before accessing system resources. An

application might need a was.policy file if it accesses resources that require more permissions than those

granted in the default app.policy file. By default, the product security reads an app.policy file that is

located in each node and grants the permissions in the app.policy file to all the applications. Include any

additional required permissions in the was.policy file. The was.policy file is only required if an application

requires additional permissions.

The default policy file for all applications is specified in the app.policy file. This file is provided by the

product security, is common to all applications, and you do not change this file. Add any new permissions

that are required for an application in the was.policy file.

The app.policy file is located in the profile_root/config/cells/cell_name/nodes/node_name directory.

The contents of the app.policy file are presented in the following example:

Attention: In the following code sample, the two permissions that are required by JavaMail are split onto

two lines for illustrative purposes only.
// The following permissions apply to all the components under the application.

grant codeBase "file:${application}" {

 // The following are required by JavaMail

 permission java.io.FilePermission "

 ${was.install.root}${/}lib${/}mail-impl.jar","read";

 permission java.io.FilePermission "

 ${was.install.root}${/}lib${/}activation-impl.jar","read"; };

 // The following permissions apply to all utility .jar files (other

 // than enterprise beans JAR files) in the application.

grant codeBase "file:${jars}" {

 permission java.net.SocketPermission "*", "connect";

 permission java.util.PropertyPermission "*", "read";

};

// The following permissions apply to connector resources within the application

grant codeBase "file:${connectorComponent}" {

 permission java.net.SocketPermission "*", "connect";

 permission java.util.PropertyPermission "*", "read";

};

// The following permissions apply to all the Web modules (.war files)

Chapter 8. Developing extensions to the WebSphere security infrastructure 525

// within the application.

grant codeBase "file:${webComponent}" {

 permission java.io.FilePermission "${was.module.path}${/}-", "read, write";

 // where "was.module.path" is the path where the Web module is

 // installed. Refer to Dynamic policy concepts for other symbols.

 permission java.lang.RuntimePermission "loadLibrary.*";

 permission java.lang.RuntimePermission "queuePrintJob";

 permission java.net.SocketPermission "*", "connect";

 permission java.util.PropertyPermission "*", "read";

};

// The following permissions apply to all the EJB modules within the application.

grant codeBase "file:${ejbComponent}" {

 permission java.lang.RuntimePermission "queuePrintJob";

 permission java.net.SocketPermission "*", "connect";

 permission java.util.PropertyPermission "*", "read";

};

If additional permissions are required for an application or for one or more modules of an application, use

the was.policy file for that application. For example, use codeBase of ${application} and add required

permissions to grant additional permissions to the entire application. Similarly, use codeBase of

${webComponent} and ${ejbComponent} to grant additional permissions to all the Web modules and all

the enterprise bean modules in the application. You can assign additional permissions to each module

(.war file or .jar file), as shown in the following example.

The following example illustrates adding extra permissions for an application in the was.policy file:

Attention: In the following code sample, the permission for the EJB module was split onto two lines for

illustrative purposes only.
// grant additional permissions to a Web module

grant codeBase " file:aWebModule.war" {

 permission java.security.SecurityPermission "printIdentity";

};

// grant additional permission to an EJB module

grant codeBase "file:aEJBModule.jar" {

 permission java.io.FilePermission "

 ${user.install.root}${/}bin${/}DefaultDB${/}-" ."read.write,delete";

 // where, ${user.install.root} is the system property whose value is

 // located in the app_server_root directory.

 };

To use a was.policy file for your application, perform the following steps:

1. Create a was.policy file using the policy tool. For more information on using the policy tool, see “Using

PolicyTool to edit policy files” on page 512.

2. Add the required permissions in the was.policy file using the policy tool.

3. Place the was.policy file in the application enterprise archive (EAR) file under the META-INF directory.

Update the application EAR file with the newly created was.policy file by using the jar command.

4. Verify that the was.policy file is inserted and start an assembly tool.

5. Verify that the was.policy file in the application is syntactically correct. In an assembly tool, right-click

the enterprise application module and click Run Validation.

An application EAR file is now ready to run when Java 2 security is enabled.

This step is required for applications to run properly when Java 2 security is enabled. If the was.policy file

is not created and it does not contain required permissions, the application might not access system

resources.

526 Securing applications and their environment

The symptom of the missing permissions is the java.security.AccessControlException exception. The

missing permission is listed in the exception data, for example:

java.security.AccessControlException: access denied (java.io.FilePermission

app_server_root/lib/mail-impl.jar read)

The previous two lines are one continuous line for illustration purposes only.

When an application program receives this exception and adding this permission is justified, include the

permission in the was.policy file, for example,

grant codeBase "file:${application}" {

 permission java.io.FilePermission

 "app_server_root/lib/mail-impl.jar", "read";

 };

Lines are split in this example for illustration purposes only.

Install the application.

Configuring static policy files

By configuring the static policy files, the required permission will be granted for all of the Java programs.

Java 2 security uses several policy files to determine the granted permission for each Java program.

See the “Java 2 security policy files” on page 69 topic for the list of available policy files that are supported

by WebSphere Application Server.

Two types of policy files are supported by WebSphere Application Server: dynamic policy files and static

policy files. Static policy files provide the default permissions. Dynamic policy files provide application

permissions.

 Policy file name Description

java.policy Contains default permissions for all of the Java programs on the node. This

file seldom changes.

server.policy Contains default permissions for all of the WebSphere Application Server

programs on the node. This file is rarely updated.

client.policy Contains default permissions for all of the applets and client containers on

the node.

The static policy file is not a configuration file that is managed by the repository and the file replication

service. Changes to this file are local and do not get replicated to the other machine.

1. Identify the policy file to update.

v If the permission is required only by an application, update the dynamic policy file. Refer to

“Configuring Java 2 security policy files” on page 514.

v If the permission is required only by applets and client containers, update the client.policy file.

Refer to “client.policy file permissions” on page 531.

v If the permission is required only by WebSphere Application Server (servers, agents, managers and

application servers), update the server.policy file. Refer to “server.policy file permissions” on page

529.

v If the permission is required by all of the Java programs running on the Java virtual machine (JVM),

update the java.policy file. Refer to “java.policy file permissions” on page 528.

2. Stop and restart WebSphere Application Server.

The required permission is granted for all of the Java programs that run with the restarted JVM.

Chapter 8. Developing extensions to the WebSphere security infrastructure 527

If Java programs on a node require permissions, the policy file needs updating. If the Java program that

required the permission is not part of an enterprise application, update the static policy file. The missing

permission results in the creation of the java.security.AccessControlException exception. The missing

permission is listed in the exception data.

For example:

java.security.AccessControlException: access denied (java.io.FilePermission

C:/WAS_HOME/lib/mail-impl.jar read)

When a Java program receives this exception and adding this permission is justified, add a permission to

an adequate policy file.

For example:

grant codeBase "file:user_client_installed_location" {

 permission java.io.FilePermission

 "C:/WAS_HOME/lib/mail-impl.jar",

 "read";

};

To decide whether to add a permission, refer to “Access control exception” on page 74.

java.policy file permissions:

Java 2 security uses several policy files to determine the granted permission for each Java program.

 See “Java 2 security policy files” on page 69 for the list of available policy files that are supported by

WebSphere Application Server.

The java.policy file is a global default policy file that is shared by all of the Java programs that run in the

Java virtual machine (JVM) on the node. Modifying this file is not recommended.

If a specific change is required to some of the Java programs on a node and the java.policy file requires

updating, modify the java.policy file with the policy tool. For more information, see “Using PolicyTool to

edit policy files” on page 512. A change to the java.policy file is local for the node. The default Java

policy is picked up automatically. Syntax errors in the policy files cause the application server to fail. Edit

these policy files carefully. An updated java.policy file is applied to all the Java programs that run in all

the JVMs on the local node. Restart the programs for the updates to take effect.

The java.policy file is not a configuration file that is managed by the repository and the file replication

service. Changes to this file are local and do not get replicated to the other machine. The java.policy file

that is supplied by WebSphere Application Server is located at install_root/java/jre/lib/security/
java.policy. This file contains these default permissions.

// Standard extensions get all permissions by default

grant codeBase "file:${java.home}/lib/ext/*" {

 permission java.security.AllPermission;

};

// default permissions granted to all domains

grant {

 // Allows any thread to stop itself using the java.lang.Thread.stop()

 // method that takes no argument.

 // Note that this permission is granted by default only to remain

 // backwards compatible.

 // It is strongly recommended that you either remove this permission

 // from this policy file or further restrict it to code sources

 // that you specify, because Thread.stop() is potentially unsafe.

 // See "http://java.sun.com/notes" for more information.

 // permission java.lang.RuntimePermission "stopThread";

 // allows anyone to listen on un-privileged ports

528 Securing applications and their environment

permission java.net.SocketPermission "localhost:1024-", "listen";

 // "standard" properties that can be read by anyone

 permission java.util.PropertyPermission "java.version", "read";

 permission java.util.PropertyPermission "java.vendor", "read";

 permission java.util.PropertyPermission "java.vendor.url", "read";

 permission java.util.PropertyPermission "java.class.version", "read";

 permission java.util.PropertyPermission "os.name", "read";

 permission java.util.PropertyPermission "os.version", "read";

 permission java.util.PropertyPermission "os.arch", "read";

 permission java.util.PropertyPermission "file.separator", "read";

 permission java.util.PropertyPermission "path.separator", "read";

 permission java.util.PropertyPermission "line.separator", "read";

 permission java.util.PropertyPermission "java.specification.version", "read";

 permission java.util.PropertyPermission "java.specification.vendor", "read";

 permission java.util.PropertyPermission "java.specification.name", "read";

 permission java.util.PropertyPermission "java.vm.specification.version","read";

 permission java.util.PropertyPermission "java.vm.specification.vendor","read";

 permission java.util.PropertyPermission "java.vm.specification.name", "read";

 permission java.util.PropertyPermission "java.vm.version", "read";

 permission java.util.PropertyPermission "java.vm.vendor", "read";

 permission java.util.PropertyPermission "java.vm.name", "read";

 };

If some Java programs on a node require permissions that are not defined as defaults in the java.policy

file, consider updating the java.policy file. Most of the time, other policy files are updated instead of the

java.policy file. The missing permission causes the creation of the , java.security.AccessControlException

exception. The missing permission is listed in the exception data.

For example:

java.security.AccessControlException: access denied (java.io.FilePermission

C:\WebSphere\AppServer\java\jre\lib\ext\mail.jar read)

The previous two lines are one continuous line.

When a Java program receives this exception and adding this permission is justified, add a permission to

the java.policy file.

For example:

grant codeBase "file:user_client_installed_location" {

permission java.io.FilePermission

"C:\WebSphere\AppServer\java\jre\lib\ext\mail.jar", "read"; };

To decide whether to add a permission, refer to “Access control exception” on page 74.

Restart all of the Java processes for the updated java.policy file to take effect.

server.policy file permissions:

Java 2 security uses several policy files to determine the granted permission for each Java program.

 See “Java 2 security policy files” on page 69 for the list of available policy files that are supported by

WebSphere Application Server.

The server.policy file is a default policy file that is shared by all of the WebSphere Application Servers on

a node. The server.policy file is not a configuration file that is managed by the repository and the file

replication service. Changes to this file are local and do not replicate to the other machine.

Chapter 8. Developing extensions to the WebSphere security infrastructure 529

If the default permissions for a server (the union of the permissions that is defined in the java.policy file

and the server.policy file) are enough, no action is required. The default server policy is picked up

automatically. If a specific change is required to some of the server programs on a node, update the

server.policy file with the Policy Tool. Refer to the “Using PolicyTool to edit policy files” on page 512 topic

to edit policy files. Changes to the server.policy file are local for the node. Syntax errors in the policy

files cause the application server to fail. Edit these policy files carefully. An updated server.policy file is

applied to all the server programs on the local node. Restart the servers for the updates to take effect.

If you want to add permissions to an application, use the app.policy file and the was.policy file.

When you do need to modify the server.policy file, locate this file at: install_root/properties/
server.policy. This file contains these default permissions:

// Allow to use ibm jdk extensions

grant codeBase "file:${was.install.root}/java/ext/-" {

 permission java.security.AllPermission;

};

// Allow to use ibm tools

grant codeBase "file:${was.install.root}/java/tools/ibmtools.jar" {

 permission java.security.AllPermission;

};

// Allow to use sun tools

grant codeBase "file:/QIBM/ProdData/Java400/jdk14/lib/tools.jar" {

 permission java.security.AllPermission;

};

// Allow to use sun tools (V5R2M0 codebase)

grant codeBase "file:/QIBM/ProdData/OS400/Java400/jdk/lib/tools.jar" {

 permission java.security.AllPermission;

};

// WebSphere system classes

grant codeBase "file:${was.install.root}/plugins/-" {

 permission java.security.AllPermission;

};

grant codeBase "file:${was.install.root}/lib/-" {

 permission java.security.AllPermission;

};

grant codeBase "file:${was.install.root}/classes/-" {

 permission java.security.AllPermission;

};

// Allow the WebSphere deploy tool all permissions

grant codeBase "file:${was.install.root}/deploytool/-" {

 permission java.security.AllPermission;

};

// Allow the WebSphere deploy tool all permissions

grant codeBase "file:${was.install.root}/optionalLibraries/-" {

 permission java.security.AllPermission;

};

// Allow Channel Framework classes all permission

grant codeBase "file:${was.install.root}/installedChannels/-" {

 permission java.security.AllPermission;

};

grant codeBase "file:${user.install.root}/lib/-" {

 permission java.security.AllPermission;

};

530 Securing applications and their environment

grant codeBase "file:${user.install.root}/classes/-" {

 permission java.security.AllPermission;

};

If some server programs on a node require permissions that are not defined as defaults in the

server.policy file and the server.policy file, update the server.policy file. The missing permission

creates the java.security.AccessControlException exception. The missing permission is listed in the

exception data.

For example:

java.security.AccessControlException: access denied (java.io.FilePermission

C:\WebSphere\AppServer\java\jre\lib\ext\mail-impl.jar read)

The previous two lines are split into two lines for illustrative purposes only.

When a Java program receives this exception and adding this permission is justified, add a permission to

the server.policy file.

For example:

grant codeBase "file:user_client_installed_location" {

permission java.io.FilePermission

"C:\WebSphere\AppServer\java\jre\lib\ext\mail.jar", "read"; };

To decide whether to add a permission, refer to “Access control exception” on page 74.

Restart all of the Java processes for the updated server.policy file to take effect.

client.policy file permissions:

Java 2 security uses several policy files to determine the granted permission for each Java program.

 For the list of available policy files that are supported by WebSphere Application Server, see “Java 2

security policy files” on page 69.

v The client.policy file is a default policy file that is shared by all of the WebSphere Application Server

client containers and applets on a node.

v The union of the permissions that is contained in the java.policy file and the client.policy file are

given to all of the client containers for WebSphere Application Server and applets running on the node.

v The client.policy file is not a configuration file that is managed by the repository and the file

replication service. Changes to this file are local and do not replicate to the other machine.

v The client.policy file supplied by WebSphere Application Server is located in the

profile_root/properties/client.policy.

v If the default permissions for a client (union of the permissions defined in the java.policy file and the

client.policy file) are enough, no action is required. The default client policy is picked up

automatically.

v If a specific change is required to some of the client containers and applets on a node, modify the

client.policy file with the Policy Tool. Refer to “Using PolicyTool to edit policy files” on page 512, to

edit policy files. Changes to the client.policy file are local for the node.

This file contains these default permissions:

grant codeBase "file:${was.install.root}/java/ext/*" {

 permission java.security.AllPermission;

};

// JDK classes

grant codeBase "file:${was.install.root}/java/ext/-" {

Chapter 8. Developing extensions to the WebSphere security infrastructure 531

permission java.security.AllPermission;

};

grant codeBase "file:${was.install.root}/java/tools/ibmtools.jar" {

 permission java.security.AllPermission;

};

grant codeBase "file:/QIBM/ProdData/Java400/jdk14/lib/tools.jar" {

 permission java.security.AllPermission;

};

// WebSphere system classes

grant codeBase "file:${was.install.root}/lib/-" {

 permission java.security.AllPermission;

};

grant codeBase "file:${was.install.root}/plugins/-" {

 permission java.security.AllPermission;

};

grant codeBase "file:${was.install.root}/classes/-" {

 permission java.security.AllPermission;

};

grant codeBase "file:${was.install.root}/installedConnectors/-" {

 permission java.security.AllPermission;

};

grant codeBase "file:${user.install.root}/installedConnectors/-" {

 permission java.security.AllPermission;

};

grant codeBase "file:${was.install.root}/installedChannels/-" {

 permission java.security.AllPermission;

};

// J2EE 1.4 permissions for client container WebSphere Application Server applications

// in $WAS_HOME/installedApps

grant codeBase "file:${user.install.root}/installedApps/-" {

 //Application client permissions

 permission java.awt.AWTPermission "accessClipboard";

 permission java.awt.AWTPermission "accessEventQueue";

 permission java.awt.AWTPermission "showWindowWithoutWarningBanner";

 permission java.lang.RuntimePermission "exitVM";

 permission java.lang.RuntimePermission "loadLibrary";

 permission java.lang.RuntimePermission "queuePrintJob";

 permission java.net.SocketPermission "*", "connect";

 permission java.net.SocketPermission "localhost:1024-", "accept,listen";

 permission java.io.FilePermission "*", "read,write";

 permission java.util.PropertyPermission "*", "read";

};

// J2EE 1.4 permissions for client container - expanded ear file code base

grant codeBase "file:${com.ibm.websphere.client.applicationclient.archivedir}/-" {

 permission java.awt.AWTPermission "accessClipboard";

 permission java.awt.AWTPermission "accessEventQueue";

 permission java.awt.AWTPermission "showWindowWithoutWarningBanner";

 permission java.lang.RuntimePermission "exitVM";

 permission java.lang.RuntimePermission "loadLibrary";

 permission java.lang.RuntimePermission "queuePrintJob";

 permission java.net.SocketPermission "*", "connect";

 permission java.net.SocketPermission "localhost:1024-", "accept,listen";

 permission java.io.FilePermission "*", "read,write";

 permission java.util.PropertyPermission "*", "read";

};

All of the client containers and applets on the local node are granted the updated permissions when they

start. If some client containers or applets on a node require permissions that are not defined as defaults in

the java.policy file and the default client.policy file, update the client.policy file. The missing

permission creates the java.security.AccessControlException exception. The missing permission is listed in

the exception data, for example,

532 Securing applications and their environment

java.security.AccessControlException: access denied (java.io.FilePermission

C:\WebSphere\AppServer\java\jre\lib\ext\mail.jar read)

The previous two lines of sample code are one continuous line, but presented as such for illustrative

purposes only.

When a client program receives this exception and adding this permission is justified, add a permission to

the client.policy file, for example, grant codebase ″file:user_client_installed_location″ { permission

java.io.FilePermission ″C:\WebSphere\AppServer\java\jre\lib\ext\mail.jar″, ″read″; };.

To decide whether to add a permission, refer to “Access control exception” on page 74.

If you update the policy file, you must restart the browser and any client applications.

Developing with programmatic security APIs for Web applications

Use this information to programmatically secure APIs for Web applications.

Programmatic security is used by security-aware applications when declarative security alone is not

sufficient to express the security model of the application. Programmatic security consists of the following

methods of the HttpServletRequest interface:

getRemoteUser

Returns the user name that the client used for authentication. Returns null if no user is

authenticated.

isUserInRole

(String role name): Returns true if the remote user is granted the specified security role. If the

remote user is not granted the specified role, or if no user is authenticated, it returns false.

getUserPrincipal

Returns the java.security.Principal object that contains the remote user name. If no user is

authenticated, it returns null.

You can configure several options for Web authentication that determine how the Web client interacts with

protected and unprotected Uniform Resource Identifiers (URI). Also, you can specify whether WebSphere

Application Server challenges the Web client for basic authentication information if the certificate

authentication for the HTTPS client fails. For more information, see “Authentication mechanisms” on page

173.

When the isUserInRole method is used, declare a security-role-ref element in the deployment descriptor

with a role-name subelement containing the role name that is passed to this method. Because actual roles

are created during the assembly stage of the application, you can use a logical role as the role name and

provide enough hints to the assembler in the description of the security-role-ref element to link that role to

the actual role. During assembly, the assembler creates a role-link subelement to link the role name to the

actual role. Creation of a security-role-ref element is possible if an assembly tool such as Rational

Application Developer (RAD) is used. You also can create the security-role-ref element during assembly

stage using an assembly tool.

1. Add the required security methods in the servlet code.

2. Create a security-role-ref element with the role-name field. If a security-role-ref element is not created

during development, make sure it is created during the assembly stage.

A programmatically secured servlet application.

This step is required to secure an application programmatically. This action is particularly useful when a

Web application needs to access external resources and wants to control the access to external resources

using its own authorization table (external-resource to remote-user mapping). In this case, use the

getUserPrincipal or the getRemoteUser methods to get the remote user and then it can consult its own

authorization table to perform authorization. The remote user information also can help retrieve the

Chapter 8. Developing extensions to the WebSphere security infrastructure 533

corresponding user information from an external source such as a database or from an enterprise bean.

You can use the isUserInRole method in a similar way.

After development, a security-role-ref element can be created:

<security-role-ref>

 <description>Provide hints to assembler for linking this role

 name to an actual role here<\description>

 <role-name>Mgr<\role-name>

</security-role-ref>

During assembly, the assembler creates a role-link element:

<security-role-ref>

 <description>Hints provided by developer to map the role

 name to the role-link</description>

 <role-name>Mgr</role-name>

 <role-link>Manager</role-link>

</security-role-ref>

You can add programmatic servlet security methods inside any servlet doGet, doPost, doPut, and

doDelete service methods. The following example depicts using a programmatic security API:

public void doGet(HttpServletRequest request,

HttpServletResponse response) {

 // to get remote user using getUserPrincipal()

 java.security.Principal principal = request.getUserPrincipal();

 String remoteUser = principal.getName();

 // to get remote user using getRemoteUser()

 remoteUser = request.getRemoteUser();

 // to check if remote user is granted Mgr role

 boolean isMgr = request.isUserInRole("Mgr");

 // use the above information in any way as needed by

 // the application

}

After developing an application, use an assembly tool to create roles and to link the actual roles to role

names in the security-role-ref elements. For more information, see “Securing Web applications using an

assembly tool” on page 905.

getRemoteUser and getAuthType methods

The getRemoteUser and getAuthType methods are methods of the javax.servlet.http.HttpServletRequest

interface. If the user has been authenticated, the getRemoteUser method returns the login of the user that

makes the request. If the user is not authenticated, the getRemoteUser method returns null. The

getAuthType method returns the name of the authentication scheme that is used to protect the servlet (for

example, BASIC or SSL). If the servlet is not protected, the getAuthType method returns null.

For both methods, the data that is returned depends upon whether security is enabled in the application

server where the servlet is deployed. The following possibilities exist:

v If security is not enabled, a servlet is requested and it is configured with Web server protection. The

getRemoteUser method returns the login and getAuthType method returns the authentication scheme.

v If security is enabled and a servlet is requested, both methods return null when WebSphere Application

Server protection is not configured for the servlet.

534 Securing applications and their environment

v If security is enabled, a servlet is requested, and the servlet is configured with WebSphere Application

Server protection, then the getRemoteUser method returns the login and the getAuthType method

returns the configured authentication scheme.

Example: Web application code

The following example depicts a Web application or servlet using the programmatic security model.

This example illustrates one use and not necessarily the only use of the programmatic security model. The

application can use the information that is returned by the getUserPrincipal, isUserInRole, and the

getRemoteUser methods in any other way that is meaningful to that application. Using the declarative

security model whenever possible is strongly recommended.

File : HelloServlet.java

 public class HelloServlet extends javax.servlet.http.HttpServlet {

 public void doPost(

 javax.servlet.http.HttpServletRequest request,

 javax.servlet.http.HttpServletResponse response)

 throws javax.servlet.ServletException, java.io.IOException {

 }

public void doGet(

 javax.servlet.http.HttpServletRequest request,

 javax.servlet.http.HttpServletResponse response)

 throws javax.servlet.ServletException, java.io.IOException {

 String s = "Hello";

 // get remote user using getUserPrincipal()

 java.security.Principal principal = request.getUserPrincipal();

 String remoteUserName = "";

 if(principal != null)

 remoteUserName = principal.getName();

// get remote user using getRemoteUser()

 String remoteUser = request.getRemoteUser();

 // check if remote user is granted Mgr role

 boolean isMgr = request.isUserInRole("Mgr");

 // display Hello username for managers and bob.

 if (isMgr || remoteUserName.equals("bob"))

 s = "Hello " + remoteUserName;

 String message = "<html> \n" +

 "<head><title>Hello Servlet</title></head>\n" +

 "<body> /n +"

 "<h1> " +s+ </h1>/n " +

 byte[] bytes = message.getBytes();

 // displays "Hello" for ordinary users

 // and displays "Hello username" for managers and "bob".

 response.getOutputStream().write(bytes);

 }

}

After developing the servlet, you can create a security role reference for the HelloServlet servlet as shown

in the following example:

<security-role-ref>

 <description> </description>

 <role-name>Mgr</role-name>

</security-role-ref>

Chapter 8. Developing extensions to the WebSphere security infrastructure 535

Web authentication settings

Use this page to specify the Web authentication settings that are associated with a Web client.

To view this administrative console page, complete the following steps:

1. Click Security > Secure administration and applications.

2. Under Authentication, expand Web security and click General settings.

You can override the global Web authentication setting that you select on this panel by specifying a

system property on the server level. To specify the system property, complete the following steps:

1. Click Servers > Application servers > server_name.

2. Under Server infrastructure, click Java and Process Management > Process definition.

3. Under Additional properties, click Java Virtual Machine > Custom properties > New

You can specify the following system properties on the server level for Web authentication.

 Table 15. Web authentication system property values

Property name Value Explanation

com.ibm.wsspi.security.web.webAuthReq lazy This value is equivalent to the

Authenticate only when the URI is

protected option.

com.ibm.wsspi.security.web.webAuthReq persisting This value is equivalent to the Use

available authentication data when

an unprotected URI is accessed

option.

com.ibm.wsspi.security.web.webAuthReq always This value is equivalent to the

Authenticate when any URI is

accessed option.

com.ibm.wsspi.security.web.failOverToBasicAuth true This value is equivalent to the Default

to basic authentication when

certificate authentication for the

HTTPS client fails option.

Authenticate only when the URI is protected:

The application server challenges the Web client to provide authentication data when the Web client

accesses a Uniform Resource Identifier (URI) that is protected by a Java 2 Platform, Enterprise Edition

(J2EE) role. The authenticated identity is available only when the Web client accesses a protected URI.

 This option is the default J2EE Web authentication behavior that is also available in previous releases of

WebSphere Application Server.

 Default: Enabled

Use available authentication data when an unprotected URI is accessed:

The Web client can access validated authenticated data that it previously could not access. This option

enables the Web client to call the getRemoteUser, isUserInRole, and getUserPrincipal methods to retrieve

an authenticated identity from an unprotected URI.

 When you select this option with the Authenticate only when the URI is protected option, the Web client

can use authenticated data when the URI is protected or not protected.

536 Securing applications and their environment

Important: This option does not challenge the Web client to provide authenticated data if the Web client

accesses an unprotected URI without authenticated data.

 Default: Disabled

Authenticate when any URI is accessed:

The Web client must provide authentication data regardless of whether the URI is protected.

 Default: Disabled

Default to basic authentication when certificate authentication for the HTTPS client fails:

When the required HTTPS client certificate authentication fails, the application server uses the basic

authentication method to challenge the Web client to provide a user ID and password.

 The HTTP client certification authentication that is performed by the application server security is different

from the client authentication that is performed by the Web server plug-in. If you configure the Web server

plug-in for mutual authentication and client authentication fails, the following situations will occur:

v The Web server produces a error and the Web request is not processed by application server security.

v The application server cannot fail over to basic authentication.

 Default: Disabled

Developing with programmatic APIs for EJB applications

Use this topic to programmatically secure your Enterprise JavaBeans (EJB) applications.

Programmatic security is used by security-aware applications when declarative security alone is not

sufficient to express the security model of the application. The javax.ejb.EJBContext application

programming interface (API) provides two methods whereby the bean provider can access security

information about the enterprise bean caller.

v IsCallerInRole(String rolename): Returns true if the bean caller is granted the security role that is

specified by role name. If the caller is not granted the specified role, or if the caller is not authenticated,

it returns false. If the specified role is granted Everyone access, it always returns true.

v getCallerPrincipal: Returns the java.security. Principal object that contains the bean caller name. If the

caller is not authenticated, it returns a principal that contains an unauthorized name.

You can enable a login module to indicate which principal class is returned by these calls.

When the isCallerInRole method is used, declare a security-role-ref element in the deployment descriptor

with a role-name that is subelement containing the role name that is passed to this method. Because

actual roles are created during the assembly stage of the application, you can use a logical role as the

role name and provide enough hints to the assembler in the description of the security-role-ref element to

link that role to an actual role. During assembly, the assembler creates a role-link subelement to link the

role-name to the actual role. Creation of a security-role-ref element is possible if an assembly tool such as

Rational Application Developer (RAD) is used. You also can create the security-role-ref element during the

assembly stage using an assembly tool.

1. Add the required security methods in the EJB module code.

2. Create a security-role-ref element with a role-name field for all the role names used in the

isCallerInRole method. If a security-role-ref element is not created during development, make sure it is

created during the assembly stage.

Performing the previous steps result in a programmatically secured EJB application.

Chapter 8. Developing extensions to the WebSphere security infrastructure 537

Hard coding security policies in applications is strongly discouraged. The Java 2 Platform, Enterprise

Edition (J2EE) security model capabilities of declaratively specifying security policies is encouraged

wherever possible. Use these APIs to develop security-aware EJB applications.

Using J2EE security model capabilities to specify security policies declaratively is useful when an EJB

application wants to access external resources and wants to control the access to these external

resources using its own authorization table (external-resource to user mapping). In this case, use the

getCallerPrincipal method to get the caller identity and then the application can consult its own

authorization table to perform authorization. The caller identification also can help retrieve the

corresponding user information from an external source, such as database or from another enterprise

bean. You can use the isCallerInRole method in a similar way.

After development, you can create a security-role-ref element:

<security-role-ref>

<description>Provide hints to assembler for linking this role-name to

actual role here<\description>

<role-name>Mgr<\role-name>

</security-role-ref>

During assembly, the assembler creates a role-link element:

<security-role-ref>

<description>Hints provided by developer to map role-name to role-link</description>

<role-name>Mgr</role-name>

<role-link>Manager</role-link>

</security-role-ref>

You can add programmatic EJB component security methods for example isCallerInRole and

getCallerPrincipal, inside any business methods of an enterprise bean. The following example of

programmatic security APIs includes a session bean:

public class aSessionBean implements SessionBean {

 // SessionContext extends EJBContext. If it is entity bean use EntityContext

 javax.ejb.SessionContext context;

 // The following method will be called by the EJB container

 // automatically

 public void setSessionContext(javax.ejb.SessionContext ctx) {

 context = ctx; // save the session bean’s context

 }

 private void aBusinessMethod() {

 // to get bean’s caller using getCallerPrincipal()

 java.security.Principal principal = context.getCallerPrincipal();

 String callerId= principal.getName();

 // to check if bean’s caller is granted Mgr role

 boolean isMgr = context.isCallerInRole("Mgr");

 // use the above information in any way as needed by the

 //application

538 Securing applications and their environment

}

}

After developing an application, use an assembly tool to create roles and to link the actual roles to role

names in the security-role-ref elements. For more information, see “Securing enterprise bean applications”

on page 925.

Example: Enterprise bean application code

The following Enterprise JavaBeans (EJB) component example illustrates the use of the isCallerInRole and

the getCallerPrincipal methods in an EJB module.

Using that declarative security is recommended. The following example is one way of using the

isCallerInRole and the getCallerPrincipal methods. The application can use this result in any way that is

suitable.

A remote interface

File : Hello.java

package tests;

import java.rmi.RemoteException;

/**

 * Remote interface for Enterprise Bean: Hello

 */

public interface Hello extends javax.ejb.EJBObject {

 public abstract String getMessage()throws RemoteException;

 public abstract void setMessage(String s)throws RemoteException;

}

A home interface

File : HelloHome.java

package tests;

/**

 * Home interface for Enterprise Bean: Hello

 */

public interface HelloHome extends javax.ejb.EJBHome {

 /**

 * Creates a default instance of Session Bean: Hello

 */

 public tests.Hello create() throws javax.ejb.CreateException,

 java.rmi.RemoteException;

}

A bean implementation

File : HelloBean.java

package tests;

/**

 * Bean implementation class for Enterprise Bean: Hello

 */

public class HelloBean implements javax.ejb.SessionBean {

 private javax.ejb.SessionContext mySessionCtx;

 /**

 * getSessionContext

 */

 public javax.ejb.SessionContext getSessionContext() {

 return mySessionCtx;

Chapter 8. Developing extensions to the WebSphere security infrastructure 539

}

 /**

 * setSessionContext

 */

 public void setSessionContext(javax.ejb.SessionContext ctx) {

 mySessionCtx = ctx;

 }

 /**

 * ejbActivate

 */

 public void ejbActivate() {

 }

 /**

 * ejbCreate

 */

 public void ejbCreate() throws javax.ejb.CreateException {

 }

 /**

 * ejbPassivate

 */

 public void ejbPassivate() {

 }

 /**

 * ejbRemove

 */

 public void ejbRemove() {

 }

 public java.lang.String message;

 //business methods

 // all users can call getMessage()

 public String getMessage() {

 return message;

 }

 // all users can call setMessage() but only few users can set new message.

 public void setMessage(String s) {

 // get bean’s caller using getCallerPrincipal()

 java.security.Principal principal = mySessionCtx.getCallerPrincipal();

 java.lang.String callerId= principal.getName();

 // check if bean’s caller is granted Mgr role

 boolean isMgr = mySessionCtx.isCallerInRole("Mgr");

 // only set supplied message if caller is "bob" or caller is granted Mgr role

 if (isMgr || callerId.equals("bob"))

 message = s;

 else

 message = "Hello";

 }

}

After the development of the entity bean, create a security role reference in the deployment descriptor

under the session bean, Hello:

540 Securing applications and their environment

<security-role-ref>

 <description>Only Managers can call setMessage() on this bean (Hello)</description>

 <role-name>Mgr</role-name>

</security-role-ref>

For an explanation of how to create a <security-role-ref> element, see “Securing enterprise bean

applications” on page 925. Use the information under Map security-role-ref and role-name to role-link to

create the element.

Customizing Web application login

You can create a form login page and an error page to authenticate a user.

A Web client or a browser can authenticate a user to a Web server using one of the following

mechanisms:

v HTTP basic authentication: A Web server requests the Web client to authenticate and the Web client

passes a user ID and a password in the HTTP header.

v HTTPS client authentication: This mechanism requires a user (Web client) to possess a public key

certificate. The Web client sends the certificate to a Web server that requests the client certificates. This

authentication mechanism is strong and uses the Hypertext Transfer Protocol with Secure Sockets

Layer (HTTPS) protocol.

v Form-based Authentication: A developer controls the look and feel of the login screens using this

authentication mechanism.

The Hypertext Transfer Protocol (HTTP) basic authentication transmits a user password from the Web

client to the Web server in simple base64 encoding. Form-based authentication transmits a user password

from the browser to the Web server in plain text. Therefore, both HTTP basic authentication and

form-based authentication are not very secure unless the HTTPS protocol is used.

The Web application deployment descriptor contains information about which authentication mechanism to

use. When form-based authentication is used, the deployment descriptor also contains entries for login

and error pages. A login page can be either an HTML page or a JavaServer Pages (JSP) file. This login

page displays on the Web client side when a secured resource (servlet, JSP file, HTML page) is accessed

from the application. On authentication failure, an error page displays. You can write login and error pages

to suit the application needs and control the look and feel of these pages. During assembly of the

application, an assembler can set the authentication mechanism for the application and set the login and

error pages in the deployment descriptor.

Form login uses the servlet sendRedirect method, which has several implications for the user. The

sendRedirect method is used twice during form login:

v The sendRedirect method initially displays the form login page in the Web browser. It later redirects the

Web browser back to the originally requested protected page. The sendRedirect(String URL) method

tells the Web browser to use the HTTP GET request to get the page that is specified in the Web

address. If HTTP POST is the first request to a protected servlet or JavaServer Pages (JSP) file, and

no previous authentication or login occurred, then HTTP POST is not delivered to the requested page.

However, HTTP GET is delivered because form login uses the sendRedirect method, which behaves as

an HTTP GET request that tries to display a requested page after a login occurs.

v Using HTTP POST, you might experience a scenario where an unprotected HTML form collects data

from users and then posts this data to protected servlets or JSP files for processing, but the users are

not logged in for the resource. To avoid this scenario, structure your Web application or permissions so

that users are forced to use a form login page before the application performs any HTTP POST actions

to protected servlets or JSP files.

1. Create a form login page with the required look and feel, including the required elements to perform

form-based authentication. For an example, see “Example: Form login” on page 542.

2. Create an error page. You can program error pages to retry authentication or to display an appropriate

error message.

Chapter 8. Developing extensions to the WebSphere security infrastructure 541

3. Place the login page and error page in the Web archive (.war) file relative to the top directory. For

example, if the login page is configured as /login.html in the deployment descriptor, place it in the top

directory of the WAR file. An assembler can also perform this step using the assembly tool.

4. Create a form logout page and insert it to the application only when the Web application requires a

form-based authentication mechanism.

See the “Example: Form login” article for sample form login pages.

The WebSphere Application Server Samples Gallery provides a form login Sample that demonstrates how

to use the WebSphere Application Server login facilities to implement and configure form login procedures.

The Sample integrates the following technologies to demonstrate the WebSphere Application Server and

Java 2 Platform, Enterprise Edition (J2EE) login functionality:

v J2EE form-based login

v J2EE servlet filter with login

v IBM extension: form-based login

The form login sample is part of the Technology Samples package. For more information on how to access

the form login sample, see Accessing the Samples (Samples Gallery).

After developing login and error pages, add them to the Web application. Use the assembly tool to

configure an authentication mechanism and insert the developed login page and error page in the

deployment descriptor of the application.

Example: Form login

This article provides several examples pertaining to form login.

For the authentication to proceed appropriately, the action of the login form must always have the

j_security_check action. The following example shows how to code the form into the HTML page:

<form method="POST" action="j_security_check">

<input type="text" name="j_username">

<input type="text" name="j_password">

<\form>

Use the j_username input field to get the user name, and use the j_password input field to get the user

password.

On receiving a request from a Web client, the Web server sends the configured form page to the client

and preserves the original request. When the Web server receives the completed form page from the Web

client, the server extracts the user name and password from the form and authenticates the user. On

successful authentication, the Web server redirects the call to the original request. If authentication fails,

the Web server redirects the call to the configured error page.

The following example depicts a login page in HTML (login.html):

<!DOCTYPE HTML PUBLIC "-//W3C/DTD HTML 4.0 Transitional//EN">

<html>

<META HTTP-EQUIV = "Pragma" CONTENT="no-cache">

<title> Security FVT Login Page </title>

<body>

<h2>Form Login</h2>

<FORM METHOD=POST ACTION="j_security_check">

<p>

 Enter user ID and password:

 User ID <input type="text" size="20" name="j_username">

 Password <input type="password" size="20" name="j_password">

542 Securing applications and their environment

 And then click this button:

<input type="submit" name="login" value="Login">

</p>

</form>

</body>

</html>

The following example depicts an error page in a JSP file:

<!DOCTYPE HTML PUBLIC "-//W3C/DTD HTML 4.0 Transitional//EN">

<html>

<head><title>A Form login authentication failure occurred</head></title>

<body>

<H1>A Form login authentication failure occurred</H1>

<P>Authentication may fail for one of many reasons. Some possibilities include:

The user-id or password may be entered incorrectly; either misspelled or the

wrong case was used.

The user-id or password does not exist, has expired, or has been disabled.

</P>

</body>

</html>

After an assembler configures the Web application to use form-based authentication, the deployment

descriptor contains the login configuration as shown:

<login-config id="LoginConfig_1">

<auth-method>FORM<auth-method>

<realm-name>Example Form-Based Authentication Area</realm-name>

<form-login-config id="FormLoginConfig_1">

<form-login-page>/login.html</form-login-page>

<form-error-page>/error.jsp</form-error-page>

</form-login-config>

</login-config>

A sample Web application archive (WAR) file directory structure that shows login and error pages for the

previous login configuration follows:

META-INF

 META-INF/MANIFEST.MF

 login.html

 error.jsp

 WEB-INF/

 WEB-INF/classes/

 WEB-INF/classes/aServlet.class

Form logout

Form logout is a mechanism to log out without having to close all Web-browser sessions. After logging out

of the form logout mechanism, access to a protected Web resource requires re-authentication. This feature

is not required by J2EE specifications, but it is provided as an additional feature in WebSphere Application

Server security.

Suppose that you want to log out after logging into a Web application and perform some actions. A form

logout works in the following manner:

1. The logout-form URI is specified in the Web browser and loads the form.

2. The user clicks Submit on the form to log out.

3. The WebSphere security code logs the user out.

4. Upon logout, the user is redirected to a logout exit page.

Form logout does not require any attributes in a deployment descriptor. The form-logout page is an HTML

or a JavaServer Pages (JSP) file that is included with the Web application. The form-logout page is like

Chapter 8. Developing extensions to the WebSphere security infrastructure 543

most HTML forms except that like the form-login page, the form-logout page has a special post action.

This post action is recognized by the Web container, which dispatches the post action to a special internal

form-logout servlet. The post action in the form-logout page must be ibm_security_logout.

You can specify a logout-exit page in the logout form and the exit page can represent an HTML or a JSP

file within the same Web application to which the user is redirected after logging out. Additionally, the

logout-exit page permits a fully qualified URL in the form of http://hostname:port/URL. The logout-exit

page is specified as a parameter in the form-logout page. If no logout-exit page is specified, a default

logout HTML message is returned to the user.

Here is a sample form logout HTML form. This form configures the logout-exit page to redirect the user

back to the login page after logout.

<!DOCTYPE HTML PUBliC "-//W3C/DTD HTML 4.0 Transitional//EN">

<html>

 <META HTTP-EQUIV = "Pragma" CONTENT="no-cache">

 <title>Logout Page </title>

 <body>

 <h2>Sample Form Logout</h2>

 <FORM METHOD=POST ACTION="ibm_security_logout" NAME="logout">

 <p>

 Click this button to log out:

 <input type="submit" name="logout" value="Logout">

 <INPUT TYPE="HIDDEN" name="logoutExitPage" VALUE="/login.html">

 </p>

 </form>

 </body>

</html>

The WebSphere Application Server Samples Gallery provides a form login Sample that demonstrates how

to use the WebSphere Application Server login facilities to implement and configure form login procedures.

The Sample integrates the following technologies to demonstrate the WebSphere Application Server and

Java 2 Platform, Enterprise Edition (J2EE) login functionality:

v J2EE form-based login

v J2EE servlet filter with login

v IBM extension: form-based login

The form login Sample is part of the Technology Samples package.

Developing servlet filters for form login processing

You can control the look and feel of the login screen using the form-based login mechanism. In

form-based login, you specify a login page that is used to retrieve the user ID and password information.

You also can specify an error page that displays when authentication fails.

If additional authentication or additional processing is required before and after authentication, servlet

filters are an option. Servlet filters can dynamically intercept requests and responses to transform or to use

the information that is contained in the requests or responses. One or more servlet filters can be attached

to a servlet or to a group of servlets. Servlet filters also can attach to JavaServer Pages (JSP) files and

HTML pages. All of the attached servlet filters are called before the servlet is invoked.

Both form-based login and servlet filters are supported by any servlet Version 2.3 specification-complaint

Web container. The form login servlet performs the authentication and servlet filters perform additional

authentication, auditing, or logging information.

To perform pre-login and post-login actions using servlet filters, configure these filters for either form login

page support or for the /j_security_check URL. The j_security_check is posted by a form login page with

544 Securing applications and their environment

the j_username parameter that contains the user name and the j_password parameter that contains the

password. A servlet filter can use the user name parameter and password information to perform more

authentication or other special needs.

1. A servlet filter implements the javax.servlet.Filter class. Implement three methods in the filter class:

v init(javax.servlet.FilterConfig cfg). This method is called by the container once, when the servlet

filter is placed into service. The FilterConfig passed to this method contains the init-parameters of

the servlet filter. Specify the init-parameters for a servlet filter during configuration using the

assembly tool.

v destroy. This method is called by the container when the servlet filter is taken out of a service.

v doFilter(ServletRequest req, ServletResponse res, FilterChain chain). This method is called by

the container for every servlet request that maps to this filter before invoking the servlet. The

FilterChain chain that is passed to this method can be used to invoke the next filter in the chain of

filters. The original requested servlet runs when the last filter in the chain calls the chain.doFilter

method. Therefore, all filters call the chain.doFilter method for the original servlet to run after

filtering. If an additional authentication check is implemented in the filter code and results in failure,

the original servlet does not run. The chain.doFilter method is not called and can be redirected to

some other error page.

2. If a servlet maps to many servlet filters, servlet filters are called in the order that is listed in the web.xml

deployment descriptor of the application. Place the servlet filter class file in the WEB-INF/classes

directory of the application.

An example of a servlet filter follows: This login filter can map to the /j_security_check URL to perform

pre-login and post-login actions.

import javax.servlet.*;

 public class LoginFilter implements Filter {

 protected FilterConfig filterConfig;

 // Called once when this filter is instantiated.

 // If mapped to j_security_check, called

 // very first time j_security_check is invoked.

 public void init(FilterConfig filterConfig) throws ServletException {

 this.filterConfig = filterConfig;

 }

 public void destroy() {

 this.filterConfig = null;

 }

 // Called for every request that is mapped to this filter.

 // If mapped to j_security_check,

 // called for every j_security_check action

 public void doFilter(ServletRequest request,

 ServletResponse response, FilterChain chain)

 throws java.io.IOException, ServletException {

 // perform pre-login action here

 chain.doFilter(request, response);

 // calls the next filter in chain.

 // j_security_check if this filter is

 // mapped to j_security_check.

 // perform post-login action here.

 }

 }

Example of servlet filters

This example illustrates one way that the servlet filters can perform pre-login and post-login processing

during form login.

Servlet filter source code: LoginFilter.java

/**

 * A servlet filter example: This example filters j_security_check and

 * performs pre-login action to determine if the user trying to log in

 * is in the revoked list. If the user is on the revoked list, an error is

 * sent back to the browser.

 *

 * This filter reads the revoked list file name from the FilterConfig

 * passed in the init() method. It reads the revoked user list file and

Chapter 8. Developing extensions to the WebSphere security infrastructure 545

* creates a revokedUsers list.

 *

 * When the doFilter method is called, the user logging in is checked

 * to make sure that the user is not on the revoked Users list.

 *

 */

import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

public class LoginFilter implements Filter {

 protected FilterConfig filterConfig;

 java.util.List revokeList;

 /**

 * init() : init() method called when the filter is instantiated.

 * This filter is instantiated the first time j_security_check is

 * invoked for the application (When a protected servlet in the

 * application is accessed).

 */

 public void init(FilterConfig filterConfig) throws ServletException {

 this.filterConfig = filterConfig;

 // read revoked user list

 revokeList = new java.util.ArrayList();

 readConfig();

 }

 /**

 * destroy() : destroy() method called when the filter is taken

 * out of service.

 */

 public void destroy() {

 this.filterConfig = null;

 revokeList = null;

 }

 /**

 * doFilter() : doFilter() method called before the servlet to

 * which this filter is mapped is invoked. Since this filter is

 * mapped to j_security_check,this method is called before

 * j_security_check action is posted.

 */

 public void doFilter(ServletRequest request, ServletResponse response,

FilterChain chain) throws java.io.IOException, ServletException {

 HttpServletRequest req = (HttpServletRequest)request;

 HttpServletResponse res = (HttpServletResponse)response;

 // pre login action

 // get username

 String username = req.getParameter("j_username");

 // if user is in revoked list send error

 if (revokeList.contains(username)) {

 res.sendError(javax.servlet.http.HttpServletResponse.SC_UNAUTHORIZED);

 return;

 }

 // call next filter in the chain : let j_security_check authenticate

 // user

 chain.doFilter(request, response);

 // post login action

546 Securing applications and their environment

}

 /**

 * readConfig() : Reads revoked user list file and creates a revoked

 * user list.

 */

 private void readConfig() {

 if (filterConfig != null) {

 // get the revoked user list file and open it.

 BufferedReader in;

 try {

 String filename = filterConfig.getInitParameter("RevokedUsers");

 in = new BufferedReader(new FileReader(filename));

 } catch (FileNotFoundException fnfe) {

 return;

 }

 // read all the revoked users and add to revokeList.

 String userName;

 try {

 while ((userName = in.readLine()) != null)

 revokeList.add(userName);

 } catch (IOException ioe) {

 }

 }

 }

}

Important: In the previous code sample, the line that begins public void doFilter(ServletRequest

request is broken into two lines for illustrative purposes only. The public void

doFilter(ServletRequest request line and the line after it are one continuous line.

An example of the web.xml file that shows the LoginFilter filter configured and mapped to the

j_security_check URL:

<filter id="Filter_1">

 <filter-name>LoginFilter</filter-name>

 <filter-class>LoginFilter</filter-class>

 <description>Performs pre-login and post-login operation</description>

 <init-param>

 <param-name>RevokedUsers</param-name>

 <param-value>c:\WebSphere\AppServer\installedApps\

 <app-name>\revokedUsers.lst</param-value>

 </init-param>

</filter-id>

<filter-mapping>

 <filter-name>LoginFilter</filter-name>

 <url-pattern>/j_security_check</url-pattern>

</filter-mapping>

An example of a revoked user list file:

user1

cn=user1,o=ibm,c=us

user99

cn=user99,o=ibm,c=us

Configuring servlet filters

IBM Rational Application Developer or an assembly tool can configure the servlet filters. Two steps are

involved in configuring a servlet filter.

Chapter 8. Developing extensions to the WebSphere security infrastructure 547

1. Name the servlet filter and assign the corresponding implementation class to the servlet filter.

Optionally, assign initialization parameters that get passed to the init method of the servlet filter.After

configuring the servlet filter, the web.xml application deployment descriptor contains a servlet filter

configuration similar to the following example:

<filter id="Filter_1">

 <filter-name>LoginFilter</filter-name>

 <filter-class>LoginFilter</filter-class>

 <description>Performs pre-login and post-login

 operation</description>

 <init-param>// optional

 <param-name>ParameterName</param-name>

 <param-value>ParameterValue</param-value>

 </init-param>

</filter>

2. Map the servlet filter to a URL or a servlet.

After mapping the servlet filter to a URL or a servlet, theweb.xml application deployment descriptor

contains servlet mapping similar to the following example:

<filter-mapping>

 <filter-name>LoginFilter</filter-name>

 <url-pattern>/j_security_check</url-pattern>

 // can be servlet <servlet>servletName</servlet>

</filter-mapping>

You can use servlet filters to replace the CustomLoginServlet servlet, and to perform additional

authentication, auditing, and logging.

The WebSphere Application Server Samples Gallery provides a form login sample that demonstrates how

to use the WebSphere Application Server login facilities to implement and configure form login procedures.

The sample integrates the following technologies to demonstrate the WebSphere Application Server and

Java 2 Platform, Enterprise Edition (J2EE) login functionality:

v J2EE form-based login

v J2EE servlet filter with login

v IBM extension: form-based login

The form login sample is part of the Technology Samples package. For more information on how to access

the form login sample, see Accessing the Samples (Samples Gallery).

Customizing application login with Java Authentication and

Authorization Service

The following topics are covered in this section:

v Developing programmatic logins with the Java Authentication and Authorization Service (JAAS)

v Configuring programmatic logins for JAAS

v Configuring a server-side Java Authentication and Authorization Service authentication and login

configuration

Developing programmatic logins with the Java Authentication and

Authorization Service

Use this topic to develop programmatic logins with the Java Authentication and Authorization Service.

Java Authentication and Authorization Service (JAAS) represents the strategic application programming

interfaces (API) for authentication.

548 Securing applications and their environment

JAAS replaces the Common Object Request Broker Architecture (CORBA) programmatic login application

programming interfaces (APIs).

WebSphere Application Server provides some extension to JAAS:

v Refer to the Developing applications that use CosNaming (CORBA Naming interface) article for details

on how to set up the environment for thin client applications to access remote resources on a server.

v If the application uses a custom JAAS login configuration, verify that the JAAS login configuration is

properly defined. See “Configuring programmatic logins for Java Authentication and Authorization

Service” on page 552 for details.

v Some of the JAAS APIs are protected by Java 2 security permissions. If these APIs are used by

application code, verify that these permissions are added to the application was.policy file.

For details, see the following articles:

– “Adding the was.policy file to applications” on page 525

– “Using PolicyTool to edit policy files” on page 512

– “Configuring the was.policy file” on page 520

For more details on which APIs are protected by Java 2 security permissions, check the IBM Developer

Kit, Java Technology Edition; JAAS and WebSphere Application Server public APIs documentation in

Security: Resources for learning.

Some of the APIs that are used in the sample code in this documentation and the Java 2 security

permissions that are required by these APIs are in the following list:

– javax.security.auth.login.LoginContext constructors are protected by the

javax.security.auth.AuthPermission ″createLoginContext″ object.

– javax.security.auth.Subject.doAs and com.ibm.websphere.security.auth.WSSubject.doAs methods are

protected by the javax.security.auth.AuthPermission ″doAs″ object.

– javax.security.auth.Subject.doAsPrivileged and

com.ibm.websphere.security.auth.WSSubject.doAsPrivileged methods are protected by the

javax.security.auth.AuthPermission ″doAsPrivileged″ object.
v Enhanced model to Java 2 Platform, Enterprise Edition (J2EE) resources for authorization

checks.

Due to a design oversight in JAAS Version 1.0, the javax.security.auth.Subject.getSubject method does

not return the Subject that is associated with the running thread inside a

java.security.AccessController.doPrivileged code block. This oversight can present inconsistent behavior,

which might have unwanted effects. The com.ibm.websphere.security.auth.WSSubject class provides a

workaround to associate a Subject to a running thread. The

com.ibm.websphere.security.auth.WSSubject class extends the JAAS model to Java 2 Platform,

Enterprise Edition (J2EE) resources for authorization checks. If the Subject associates with the running

thread within the com.ibm.websphere.security.auth.WSSubject.doAs method or if the

com.ibm.websphere.security.auth.WSSubject.doAsPrivileged code block contains product credentials,

the Subject is used for J2EE resource authorization checks.

v User interface support for defining new JAAS login configuration.

You can configure a JAAS login configuration in the administrative console and store the JAAS login

configuration in a configuration repository. Applications can define a new JAAS login configuration in the

administrative console and the data is persisted in the configuration repository. However, WebSphere

Application Server still supports the default JAAS login configuration format (plain text file) that is

provided by the JAAS default implementation. If duplicate login configurations are defined in both the

configuration repository and the plain text file format, the one in the repository takes precedence.

Advantages to defining the login configuration in the configuration repository includes:

– Administrative console support in defining JAAS login configuration

– Central management of the JAAS login configuration
v Application support for programmatic authentication.

WebSphere Application Server provides JAAS login configurations for applications to perform

programmatic authentication to the WebSphere security runtime. These configurations perform

authentication to the WebSphere Application Server-configured authentication mechanism (Simple

WebSphere Authentication Mechanism (SWAM) or Lightweight Third Party Authentication (LTPA)) and

Chapter 8. Developing extensions to the WebSphere security infrastructure 549

user registry (Local OS, Lightweight Directory Access Protocol (LDAP), custom registries, or federated

repositories) based on the authentication data that is supplied. The authenticated Subject from these

JAAS login configurations contains the required principal and credentials that the WebSphere security

runtime can use to perform authorization checks on J2EE role-based protected resources.

Note: SWAM is deprecated in WebSphere Application Server Version 6.1 and will be removed in a

future release.

Here are the JAAS login configurations that are provided by WebSphere Application Server:

– WSLogin JAAS login configuration. A generic JAAS login configuration can use Java clients, client

container applications, servlets, JavaServer Pages (JSP) files, and Enterprise JavaBeans (EJB)

components to perform authentication based on a user ID and password, or a token to the security

runtime for WebSphere Application Server. However, this configuration does not honor the

CallbackHandler handler that is specified in the client container deployment descriptor.

– ClientContainer JAAS login configuration. This JAAS login configuration honors the

CallbackHandler handler that is specified in the client container deployment descriptor. The login

module of this login configuration uses the CallbackHandler handler in the client container

deployment descriptor if one is specified, even if the application code specified one callback handler

in the login context. This is for a client container application.

A Subject authenticated with the previously mentioned JAAS login configurations contains a

com.ibm.websphere.security.auth.WSPrincipal principal and a

com.ibm.websphere.security.cred.WSCredential credential. If the authenticated Subject is passed in

the com.ibm.websphere.security.auth.WSSubject.doAs or the other doAs methods, the product

security runtime can perform authorization checks on J2EE resources based on the

com.ibm.websphere.security.cred.WSCredential Subject.
v Customer-defined JAAS login configurations.

You can define other JAAS login configurations to perform programmatic authentication to your

authentication mechanism. See the “Configuring programmatic logins for Java Authentication and

Authorization Service” on page 552 for details. For the product security runtime to perform authorization

checks, the subjects from these customer-defined JAAS login configurations must contain the required

principal and credentials.

v Naming requirements for programmatic login on a pure Java client.

When programmatic login occurs on a pure Java client and the property

com.ibm.CORBA.validateBasicAuth equals true, it is necessary for the security code to know where the

SecurityServer resides. Typically, the default InitialContext is sufficient when a java.naming.provider.url

property is set as a system property or when the property is set in the jndi.properties file. In other

cases it is not desirable to have the same java.naming.provider.url properties set in a system-wide

scope. In this case, there is a need to specify security specific bootstrap information in the

sas.client.props file. The following steps present the order of precedence for determining how to find

the SecurityServer in a pure Java client:

1. Use the sas.client.props file and look for the following properties:

com.ibm.CORBA.securityServerHost=myhost.mydomain

com.ibm.CORBA.securityServerPort=mybootstrap port

If you specify these properties, you are guaranteed that security looks here for the SecurityServer. The

host and port specified can represent any valid WebSphere host and bootstrap port. The

SecurityServer resides on all server processes and therefore it is not important which host or port you

choose. If specified, the security infrastructure within the client process look up the SecurityServer

based on the information in the sas.client.props file.

2. Place the following code in your client application to get a new InitialContext():

...

 import java.util.Hashtable;

 import javax.naming.Context;

 import javax.naming.InitialContext;

 ...

550 Securing applications and their environment

// Perform an InitialContext and default lookup prior to logging

// in so that target realm and bootstrap host/port can be

// determined for SecurityServer lookup.

 Hashtable env = new Hashtable();

 env.put(Context.INITIAL_CONTEXT_FACTORY, "

 com.ibm.websphere.naming.WsnInitialContextFactory");

 env.put(Context.PROVIDER_URL,

 "corbaloc:iiop:myhost.mycompany.com:2809");

 Context initialContext = new InitialContext(env);

 Object obj = initialContext.lookup("");

 // programmatic login code goes here.

Complete this step prior to running any programmatic login. It is in this code that you specify a URL

provider for your naming context, but it must point to a valid WebSphere Application Server within the

cell to which you are authenticating. Pointing to one cell allows thread specific programmatic logins

going to different cells to have a single system-wide SecurityServer location.

3. Use the new default InitialContext() method relying on the naming precedence rules. These rules are

defined in the article, Example: Getting the default initial context.

See the “Example: Programmatic logins” article.

Example: Programmatic logins

This example illustrates how application programs can perform a programmatic login using Java

Authentication and Authorization Service (JAAS).

LoginContext lc = null;

 try {

 lc = new LoginContext("WSLogin",

 new WSCallbackHandlerImpl("userName", "password"));

 } catch (LoginException le) {

 System.out.println("Cannot create LoginContext. " + le.getMessage());

 // Insert the error processing code

 } catch(SecurityException se) {

 System.out.println("Cannot create LoginContext." + se.getMessage());

 // Insert the error processing code

 }

 try {

 lc.login();

 } catch(LoginException le) {

 System.out.println("Fails to create Subject. " + le.getMessage());

 // Insert the error processing code

As shown in the example, the new login context is initialized with the WSLogin login configuration and the

WSCallbackHandlerImpl callback handler. Use the WSCallbackHandlerImpl instance on a server-side

application where you do not want prompting. A WSCallbackHandlerImpl instance is initialized by the

specified user ID, password, and realm information. The present WSLoginModuleImpl class

implementation that is specified by the WSLogin login configuration can only retrieve authentication

information from the specified callback handler. You can construct a login context with a Subject object, but

the Subject is disregarded by the present WSLoginModuleImpl implementation. For product

client-container applications, replace WSLogin login configuration by ClientContainer login configuration,

which specifies the WSClientLoginModuleImpl implementation that is tailored for client container

requirements.

For a pure Java application client, the product provides two other callback handler implementations:

WSStdinCallbackHandlerImpl and WSGUICallbackHandlerImpl, which prompt for user ID, password, and

Chapter 8. Developing extensions to the WebSphere security infrastructure 551

realm information on the command line and pop-up panel, respectively. You can choose either of these

product callback handler implementations, depending on the particular application environment. You can

develop a new callback handler if neither of these implementations fit your particular application

requirement.

You also can develop your own login module if the default WSLoginModuleImpl implementation fails to

meet all your requirements. This product provides utility functions that the custom login module can use,

which are described in the next section.

In cases where no java.naming.provider.url property is set as a system property or in the jndi.properties

file, a default InitialContext context does not function if the product server is not at the localhost:2809

location. In this situation, construct a new InitialContext context programmatically ahead of the JAAS login.

JAAS needs to know where the security server resides to verify that the entered user ID or password is

correct, prior to performing a commit method. By constructing a new InitialContext context in the way

specified below, the security code has the information that is needed to find the security server location

and the target realm.

 Attention: The first line starting with env.put was split into two lines for illustration purposes only.
import java.util.Hashtable;

 import javax.naming.Context;

 import javax.naming.InitialContext;

 ...

// Perform an InitialContext and default lookup prior to logging in so that target realm

// and bootstrap host/port can be determined for SecurityServer lookup.

 Hashtable env = new Hashtable();

 env.put(Context.INITIAL_CONTEXT_FACTORY,

 "com.ibm.websphere.naming.WsnInitialContextFactory");

 env.put(Context.PROVIDER_URL, "corbaloc:iiop:myhost.mycompany.com:2809");

 Context initialContext = new InitialContext(env);

 Object obj = initialContext.lookup("");

 LoginContext lc = null;

 try {

 lc = new LoginContext("WSLogin",

 new WSCallbackHandlerImpl("userName", "realm", "password"));

 } catch (LoginException le) {

 System.out.println("Cannot create LoginContext. " + le.getMessage());

 // insert error processing code

 } catch(SecurityException se) {

 System.out.printlin("Cannot create LoginContext." + se.getMessage();

 // Insert error processing

 }

 try {

 lc.login();

 } catch(LoginException le) {

 System.out.printlin("Fails to create Subject. " + le.getMessage());

 // Insert error processing code

 }

Configuring programmatic logins for Java Authentication and

Authorization Service

A new JAAS login configuration can be added and modified using the administrative console. The changes

are saved in the cell-level security document and are available to all managed application servers.

Java Authentication and Authorization Service (JAAS) is a feature in WebSphere Application Server. JAAS

is a collection of WebSphere Application Server strategic authentication APIs and replaces the Common

Object Request Broker Architecture (CORBA) programmatic login APIs.

WebSphere Application Server provides some extensions to JAAS:

552 Securing applications and their environment

v com.ibm.websphere.security.auth.WSSubject. The com.ibm.websphere.security.auth.WSSubject API

extends the JAAS authorization model to Java 2 Platform, Enterprise Edition (J2EE) resources.

v You can configure the JAAS login in the administrative console and store this login configuration in the

Application Server configuration. However, WebSphere Application Server still supports the default

JAAS login configuration format (plain text file) that is provided by the JAAS default implementation. If

duplicate login configurations are defined in both the WebSphere Application Server configuration API

and the plain text file format, the one in the WebSphere Application Server configuration API takes

precedence. Advantages to defining the login configuration in the WebSphere configuration API include:

– User interface support in defining JAAS login configuration

– Central management of the JAAS login configuration

Due to a design oversight in JAAS Version 1.0, the javax.security.auth.Subject.getSubject method does

not return the subject that is associated with the running thread inside a

java.security.AccessController.doPrivileged code block. This problem presents an inconsistent behavior

that might cause unfavorable results. The com.ibm.websphere.security.auth.WSSubject API provides a

workaround to associate the subject to a running thread.

v Proxy LoginModule. The Proxy LoginModule loads the actual LoginModule module. The default JAAS

implementation does not use the thread context class loader to load classes. The LoginModule module

cannot load if the LoginModule class file is not in the application class loader or the Java extension

class loader class path. Due to this class loader visibility problem, WebSphere Application Server

provides a proxy LoginModule module to load the JAAS LoginModule using the thread context class

loader. You do not need to place the LoginModule implementation on the application class loader or the

class path for the Java extension class loader with this proxy LoginModule module.

If you do not want to use the Proxy LoginModule module, you can place the LoginModule module in the

app_server_root/lib/ext/ directory. However, this action is not recommended due to the security risks.

JAAS login configurations are defined in the WebSphere Application Server configuration application

programming interface (API) security document. Click Security > Secure administration, applications,

and infrastructure. Under Java Authentication and Authorization Service, click Application logins. The

following JAAS login configurations are available:

ClientContainer

Defines a login configuration and a LoginModule implementation that is similar to that of the

WSLogin configuration, but enforces the requirements of the WebSphere Application Server client

container. For more information, see “Configuration entry settings for Java Authentication and

Authorization Service” on page 557.

DefaultPrincipalMapping,

Defines a special LoginModule module that is typically used by J2EE connectors to map an

authenticated WebSphere Application Server user identity to a set of user authentication data

(user ID and password) for the specified back-end enterprise information system (EIS). For more

information about J2EE Connector and the DefaultMappingModule module, refer to the J2EE

security section.

WSLogin

Defines a login configuration and a LoginModule implementation that applications can use in

general.

A new JAAS login configuration can be added and modified using the administrative console. The changes

are saved in the cell-level security document and are available to all managed application servers. An

application server restart is required for the changes to take effect at run time.

Attention: Do not remove or delete the predefined JAAS login configurations (such as, ClientContainer,

WSLogin, and DefaultPrincipalMapping). Deleting or removing them can cause other enterprise

applications to fail.

1. Delete a JAAS login configuration.

Chapter 8. Developing extensions to the WebSphere security infrastructure 553

a. Click Security > Secure administration, applications, and infrastructure.

b. Under Java Authentication and Authorization Service, click Application logins. The Application

Login Configuration panel is displayed.

c. Select the check box for the login configurations to delete and click Delete.

2. Create a new JAAS login configuration.

a. Click Security > Secure administration, applications, and infrastructure.

b. Under Java Authentication and Authorization Service, click Application logins.

c. Click New. The Application Login Configuration panel is displayed.

d. Specify the alias name of the new JAAS login configuration and click Apply. This value is the

name of the login configuration that you pass in the javax.security.auth.login.LoginContext

implementation for creating a new LoginContext context.

Click Apply to save changes and to add the extra node name that precedes the original alias

name. Clicking OK does not save the new changes in the security.xml file.

e. Under Additional properties, click JAAS Login Modules.

f. Click New.

g. Specify the Module class name. Specify the WebSphere Application Server proxy LoginModule

module because of the limitation of the class loader visibility.

h. Specify the LoginModule implementation as the delegate property of the Proxy LoginModule

module. The WebSphere Application Server proxy LoginModule class name is

com.ibm.ws.security.common.auth.module.proxy.WSLoginModuleProxy.

i. Select Authentication strategy from the list and click Apply.

j. Under Additional properties, click Custom properties. The Custom properties panel is displayed for

the selected LoginModule.

k. Create a new property with the name delegate and the value of the real LoginModule

implementation. You can specify other properties like debug with the true value. These properties

are passed to the LoginModule class as options to the initialize method of the LoginModule

instance.

l. Click Save.

Several locations are within the WebSphere Application Server directory structure where you can place

a JAAS login module. The following list provides locations for the JAAS login module in order of

recommendation:

v Within an enterprise archive (EAR) file for a specific Java 2 Platform, Enterprise Edition (J2EE)

application.

If you place the login module within the EAR file, the login module is accessible by the specific

application only.

v In the WebSphere Application Server-shared library.

If you place the login module in the shared library, you must specify which applications can access

the module. For more information on shared libraries, see Managing shared libraries.

v In the Java extensions directory.

If you place the JAAS login module in the Java extensions directory, the login module is available to

all applications.

Although the Java extensions directory provides the greatest availability for the login module, place the

login module in an application EAR file. If other applications need to access the same login module,

consider using shared libraries.

3. Change the plain text file.

WebSphere Application Server supports the default JAAS login configuration format, which is a plain

text file, that is provided by the JAAS default implementation. However, a tool is not provided that edits

plain text files in this format. You can define the JAAS login configuration in the plain text file, which is

554 Securing applications and their environment

located in the app_server_root/properties/wsjaas.conf file. Any syntax errors can cause the incorrect

parsing of the plain JAAS login configuration text file. This problem can cause other applications to fail.

Java client programs that use the Java Authentication and Authorization Service (JAAS) for

authentication must invoke with the JAAS configuration file specified. This configuration file is set in the

app_server_root/bin/launchClient.bat file as:

set JAAS_LOGIN_CONFIG=-Djava.security.auth.login.config=%install_root%\properties\wsjaas_client.conf

If the launchClient.bat file is not used to invoke the Java client program, verify that the appropriate

JAAS configuration file is passed to the Java virtual machine with the

-Djava.security.auth.login.config flag.

A new JAAS login configuration is created or an old JAAS login configuration is removed. An enterprise

application can use a newly created JAAS login configuration without restarting the application server

process.

However, new JAAS login configurations that are defined in the app_server_root/properties/wsjaas.conf

file, do not refresh automatically. Restart the application servers to validate changes. These JAAS login

configurations are specific to a particular node and are not available for other application servers running

on other nodes.

Create new JAAS login configurations that are used by enterprise applications to perform custom

authentication. Use these newly defined JAAS login configurations to perform programmatic login.

Login configuration for Java Authentication and Authorization Service

Java Authentication and Authorization Service (JAAS) is a new feature in WebSphere Application Server.

JAAS is WebSphere Application Server strategic application programming interface (API) for authentication

that replaces the Common Object Request Broker Architecture (CORBA) programmatic login API.

WebSphere Application Server provides some extensions to JAAS:

v com.ibm.websphere.security.auth.WSSubject: The com.ibm.websphere.security.auth.WSSubject API

extends the JAAS authorization model to Java 2 Platform, Enterprise Edition (J2EE) resources. You can

configure JAAS login in the administrative console or by using the scripting functions and store this

configuration in the WebSphere Application Server configuration API. However, WebSphere Application

Server still supports the default JAAS login configuration format, a plain text file, which is provided by

the JAAS default implementation. If duplicate login configurations are defined in both the WebSphere

Application Server configuration API and the plain text file format, the one in the WebSphere Application

Server configuration API takes precedence. Advantages to defining the login configuration in the

WebSphere configuration API include:

– User interface support in defining JAAS login configuration

– Central management of the JAAS login configuration

– Distribution of the JAAS login configuration in a Network Deployment product installation

Due to a design oversight in JAAS 1.0, the javax.security.auth.Subject.getSubject method does not

return the Subject that is associated with the running thread inside a

java.security.AccessController.doPrivileged code block. This action can present an inconsistent behavior

that is problematic. The com.ibm.websphere.security.auth.WSSubject extension provides a workaround

to associate the Subject to the running thread. The com.ibm.websphere.security.auth.WSSubject

extension expands the JAAS authorization model to J2EE resources.

Why WebSphere Application Server has its own subject class: You can retrieve the subjects in a

Subject.doAs block with the Subject.getSubject call. However, this procedure does not work if an

AccessController.doPrivileged call is contained within the Subject.doAs block. In the following example,

s1 is equal to s, but s2 is null:

* AccessController.doPrivileged() not only truncates the Subject propagation,

* but also reduces the permissions. It does not include the JAAS security

* policy defined for the principals in the Subject.

Subject.doAs(s, new PrivilegedAction() {

 public Object run() {

Chapter 8. Developing extensions to the WebSphere security infrastructure 555

System.out.println("Within Subject.doAsPrivileged()");

 Subject s1 = Subject.getSubject(AccessController.getContext());

 AccessController.doPrivileged(new PrivilegedAction() {

 public Object run() {

 Subject s2 = Subject.getSubject(AccessController.getContext());

 return null;

 }

 });

 return null;

}

});

v JAAS Login Configuration can be configured in either the administrative console or by using the

scripting functions and stored in the WebSphere Application Server configuration repository. An

application can define a new JAAS login configuration in the administrative console and persist the data

in the configuration repository that is stored in the WebSphere Application Server configuration API.

However, WebSphere Application Server still supports the default JAAS login configuration format that is

provided by the JAAS default implementation. If duplicate login configurations are defined in both the

WebSphere Application Server configuration API and the plan text file format, the one in the WebSphere

Application Server configuration API takes precedence. The advantages to defining the login

configuration in the WebSphere Application Server configuration API include:

– UI support in defining JAAS login configuration.

– The JAAS configuration login configuration can be managed centrally.

– The JAAS configuration login configuration is distributed in a Network Deployment installation.
v Proxy LoginModule: The Proxy.LoginModule is a proxy to the configured user or the system-defined

module that the context class loader uses to load the module instead of the system class loader. The

default JAAS implementation does not use the thread context class loader to load classes. The

LoginModule module cannot be loaded if the LoginModule class file is not in the application class loader

or the class loader class path for the Java extension. WebSphere Application Server provides a proxy

LoginModule module to load the JAAS LoginModule using the thread context class loader. You do not

need to place the LoginModule implementation on the application class loader or the class loader class

path for the Java extension with this proxy LoginModule module.

Tip: Do not remove or delete the predefined JAAS login configurations (ClientContainer, WSLogin and

DefaultPrincipalMapping). Deleting or removing them can cause other enterprise applications to fail.

A system administrator determines the authentication technologies, or login modules, to use for each

application and configures them in a login configuration. The source of the configuration information, for

example, a file or a database, is up to the current javax.security.auth.login.Configuration implementation.

The WebSphere Application Server implementation permits the definition of the login configuration in both

the WebSphere Application Server configuration API security document and in a JAAS configuration file,

where the former takes precedence.

JAAS login configurations are defined in the API security document for WebSphere Application Server

configuration for applications to use. To access the configurations, complete the following steps:

1. Click Security > Secure administration, applications, and infrastructure.

2. Under Java Authentication and Authorization Service, click Application logins.

The WSLogin module defines a login configuration and the LoginModule implementation that can be used

by applications in general.

The ClientContainer module defines a login configuration and the LoginModule implementation that is

similar to the WSLogin module, but enforces the requirements of the WebSphere Application Server client

container.

The DefaultPrincipalMapping module defines a special LoginModule that is typically used by Java 2

Connector to map an authenticated WebSphere Application Server user identity to a set of user

556 Securing applications and their environment

authentication data (user ID and password) for the specified back-end enterprise information system (EIS).

For more information about Java 2 Connector and the DefaultMappingModule, see the Java 2 Security

section.

A new JAAS login configuration can be added and modified using the administrative console. The changes

are saved in the cell-level security document and are available to all managed application servers. An

application server restart is required for the changes to take effect at runtime and for the client container

login configuration to be made available.

WebSphere Application Server also reads JAAS configuration information from the wsjaas.conf file under

the properties subdirectory of the root directory under which WebSphere Application Server is installed.

Changes made to the wsjaas.conf file are used only by the local application server and take effect after

the application server restarts. The JAAS configuration in the WebSphere Application Server configuration

API security document takes precedence over that defined in the wsjaas.conf file. A configuration entry in

the wsjaas.conf is overridden by an entry of the same alias name in the WebSphere Application Server

configuration API security document.

The Java Authentication and Authorization Service (JAAS) login configuration entries in the administrative

console are propagated to the server runtime when they are created, not when the configuration is saved.

However, the deleted JAAS login configuration entries are not removed from the server runtime. To

remove the entries, save the new configuration, then stop and restart the server.

The Samples Gallery provides a JAAS login sample that demonstrates how to use JAAS with WebSphere

Application Server. The sample uses a server-side login with JAAS to authenticate a user with the security

runtime for WebSphere Application Server. The sample demonstrates the following technology:

v Java 2 Platform, Enterprise Edition (J2EE) Java Authentication and Authorization Service (JAAS)

v JAAS for WebSphere Application Server

v WebSphere Application Server security

The form login sample is a component of the technology samples. For more information on how to access

the form login sample, see Accessing the Samples (Samples Gallery).

Configuration entry settings for Java Authentication and Authorization Service

Use this page to specify a list of Java Authentication and Authorization Service (JAAS) login configurations

for the application code to use, including Java 2 Platform, Enterprise Edition (J2EE) components such as

enterprise beans, JavaServer Pages (JSP) files, servlets, resource adapters, and message-driven beans

(MDBs).

To view this administrative console page, complete the following steps:

1. Click Security > Secure administration, applications, and infrastructure.

2. Under Authentication, click Java Authentication and Authorization Service > Application logins.

Read the JAAS specifications before you begin defining additional login modules for authenticating to the

application server security run time. You can define additional login configurations for your applications.

However, if the application server LoginModule

com.ibm.ws.security.common.auth.module.WSLoginModuleImpl module is not used or the LoginModule

module does not produce a credential that is recognized by the application server. The application server

security run time cannot use the authenticated subject from these login configurations for an authorization

check for resource access.

You must invoke Java client programs that use Java Authentication and Authorization Service (JAAS) for

authentication with a JAAS configuration file that is specified. The application server supplies the

wsjaas_client.conf default JAAS configuration file under the app_server_root/properties directory. This

configuration file is set in the app_server_root/bin/launchClient.bat file as:

set JAAS_LOGIN_CONFIG=-Djava.security.auth.login.config=%WAS_HOME%\properties\wsjaas_client.conf

Chapter 8. Developing extensions to the WebSphere security infrastructure 557

ClientContainer:

Specifies the login configuration used by the client container application, which uses the CallbackHandler

API that is defined in the client container deployment descriptor.

 The ClientContainer configuration is the default login configuration for the application server. Do not

remove this default, as other applications that use it fail.

 Default: ClientContainer

DefaultPrincipalMapping:

Specifies the login configuration that is used by Java 2 Connectors to map users to principals that are

defined in the J2C authentication data entries.

 The ClientContainer configuration is the default login configuration for the application server. Do not

remove this default, as other applications that use it fail.

 Default: ClientContainer

WSLogin:

Indicates whether all of the applications can use the WSLogin configuration to perform authentication for

the application server security run time.

 This login configuration does not honor the CallbackHandler handler that is defined in the client container

deployment descriptor. To use this functionality, use the ClientContainer login configuration.

The WSLogin configuration is the default login configuration for the application server. Do not remove this

default because other administrative applications that use it fail. This login configuration authenticates

users for the application server security run time. Use the credentials from the authenticated subject that

are returned from this login configuration as an authorization check for access to application server

resources.

 Default: ClientContainer

System login configuration entry settings for Java Authentication and

Authorization Service

Use this page to specify a list of Java Authentication and Authorization Service (JAAS) system login

configurations.

To view this administrative console page, complete the following steps:

1. Click Security > Secure administration, applications, and infrastructure.

2. Under Authentication, click Java Authentication and Authorization Service > System logins.

Read the Java Authentication and Authorization Service documentation before you begin defining

additional login modules for authenticating to the application server security runtime. Do not remove the

following system login modules:

v RMI_INBOUND

v WEB_INBOUND

v DEFAULT

v RMI_OUTBOUND

v SWAM

558 Securing applications and their environment

v wssecurity.IDAssertion

v wssecurity.signature

v wssecurity.PKCS7

v wssecurity.PkiPath

v wssecurity.UsernameToken

v wssecurity.X509BST

v LTPA

v LTPA_WEB

RMI_INBOUND, WEB_INBOUND, DEFAULT:

Processes inbound login requests for Remote Method Invocation (RMI), Web applications, and most of the

other login protocols.

RMI_INBOUND

This login configuration handles logins for inbound RMI requests. Typically, these logins are

requests for authenticated access to Enterprise JavaBeans (EJB) files. When using the RMI

connector, these logins might be requests for Java Management Extensions (JMX).

WEB_INBOUND

This login configuration handles logins for Web application requests, which include servlets and

JavaServer Pages (JSP) files. This login configuration can interact with the output that is

generated from a trust association interceptor (TAI), if configured. The Subject that is passed into

the WEB_INBOUND login configuration might contain objects that are generated by the TAI.

DEFAULT

This login configuration handles the logins for inbound requests that are made by most of the

other protocols and internal authentications.

 These three login configurations will pass in the following callback information, which is handled by the

login modules within these configurations. These callbacks are not passed in at the same time. However,

the combination of these callbacks determines how the application server authenticates the user.

Callback

callbacks[0] = new javax.security.auth.callback.

NameCallback(″Username: ″);

Responsibility

Collects the user name that is provided during a login. This information can be the user name for

the following types of logins:

v User name and password login, which is known as basic authentication.

v User name only for identity assertion.

Callback

callbacks[1] = new javax.security.auth.callback.

PasswordCallback(″Password: ″, false);

Responsibility

Collects the password that is provided during a login.

Callback

callbacks[2] = new com.ibm.websphere.security.auth.callback.

WSCredTokenCallbackImpl(″Credential Token: ″);

Responsibility

Collects the Lightweight Third Party Authentication (LTPA) token or other token type during a login.

Typically, this information is present when a user name and a password are not present.

Chapter 8. Developing extensions to the WebSphere security infrastructure 559

Callback

callbacks[3] = new com.ibm.wsspi.security.auth.callback.

WSTokenHolderCallback(″Authz Token List: ″);

Responsibility

Collects the ArrayList list of the TokenHolder objects that are returned from the call to the

WSOpaqueTokenHelper. The callback uses the createTokenHolderListFromOpaqueToken method

with the Common Secure Interoperability version 2 (CSIv2) authorization token as input.

Restriction: This callback is present only when the Security Attribute Propagation option is

enabled and this login is a propagation login. In a propagation login, sufficient

security attributes are propagated with the request to prevent having to access the

user registry for additional attributes. You must enable security attribute propagation

for both the outbound and inbound authentication.

You can enable the Security attribute propagation option for CSIv2 outbound

authentication by completing the following steps:

1. Click Security > Secure administration, applications, and infrastructure.

2. Under Authentication, expand RMI/IIOP security and click CSIv2 outbound

authentication.

3. Enable the Security attribute propagation option.

You can enable the Security attribute propagation option for CSIv2 inbound

authentication by completing the following steps:

1. Click Security > Secure administration, applications, and infrastructure.

2. Under Authentication, expand RMI/IIOP security and click CSIv2 inbound

authentication.

3. Enable the Security attribute propagation option.

 In system login configurations, the application server authenticates the user based upon the information

that is collected by the callbacks. However, a custom login module does not need to act upon any of these

callbacks. The following list explains the typical combinations of these callbacks:

v The callbacks[0] = new javax.security.auth.callback.NameCallback(″Username: ″); callback only

This callback occurs for CSIv2 identity assertion; Web and CSIv2 X509 certificate logins; old-style trust

association interceptor logins, and so on. In Web and CSIv2 X509 certificate logins, the application

server maps the certificate to a user name. This callback is used by any login type that establishes trust

with the user name only.

v Both the callbacks[0] = new javax.security.auth.callback.NameCallback(″Username: ″); callback

and the callbacks[1] = new javax.security.auth.callback.PasswordCallback(″Password: ″, false);

callbacks.

This combination of callbacks is typical for basic authentication logins. Most user authentications occur

using these two callbacks.

v The callbacks[2] = new

com.ibm.websphere.security.auth.callback.WSCredTokenCallbackImpl(″Credential Token: ″); only

This callback is used to validate a Lightweight Third Party Authentication (LTPA) token. This validation

typically occurs during a single sign-on (SSO) or downstream login. Any time a request originates from

the application server, instead of a pure client, the LTPA token flows to the target server. For single

sign-on (SSO), the LTPA token is received in the cookie and the token is used for login. If a custom

login module needs the user name from an LTPA token, the module can use the following method to

retrieve the unique ID from the token:

com.ibm.wsspi.security.token.WSSecurityPropagationHelper.

validateLTPAToken(byte[])

560 Securing applications and their environment

After retrieving the unique ID, use the following method to get the user name:

com.ibm.wsspi.security.token.WSSecurityPropagationHelper.

getUserFromUniqueID(uniqueID)

Important: Any time a custom login module is plugged in ahead of the application server login modules

and it changes the identity using a credential mapping service, it is important that this login

module validates the LTPA token, if present. Calling the following method is sufficient to

validate the trust in the LTPA token:

com.ibm.wsspi.security.token.WSSecurityPropagationHelper.

validateLTPAToken(byte[])

The receiving server must have the same LTPA keys as the sending server for this

validation to be successful. A security exposure is possible if you do not validate this LTPA

token, when present.

v A combination of any of the previously mentioned callbacks plus the callbacks[3] = new

com.ibm.wsspi.security.auth.callback.WSTokenHolderCallback(″Authz Token List: ″); callback.

This callback indicates that some propagated attributes arrived at the server. The propagated attributes

still require one of the following authentication methods:

– callbacks[0] = new javax.security.auth.callback.

NameCallback(″Username: ″);

– callbacks[1] = new javax.security.auth.callback.

PasswordCallback(″Password: ″, false);

– callbacks[2] = new com.ibm.websphere.security.auth.callback.

WSCredTokenCallbackImpl(″Credential Token: ″);

If the attributes are added to the Subject from a pure client, then the NameCallback and

PasswordCallback callbacks authenticate the information and the objects that are serialized in the token

holder are added to the authenticated Subject.

If both CSIv2 identity assertion and propagation are enabled, the application server uses the

NameCallback callback and the token holder, which contains all of the propagated attributes, to

deserialize most of the objects. The application server uses the NameCallback callback because trust is

established with the servers that you indicate in the CSIv2 trusted server list. To specify trusted servers,

complete the following steps:

1. Click Security > Secure administration, applications, and infrastructure.

2. Under Authentication, click CSIv2 inbound authentication.

A custom login module needs to handle custom serialization. For more information, see ″Security

attribute propagation″ in the information center.

In addition to the callbacks that are defined previously, the WEB_INBOUND login configuration can contain

the following additional callbacks only:

Callback

callbacks[4] = new com.ibm.websphere.security.auth.callback.

WSServletRequestCallback(″HttpServletRequest: ″);

Responsibility

Collects the HTTP servlet request object, if presented. This callback enables login modules to

retrieve information from the HTTP request to use during a login.

Callback

callbacks[5] = new com.ibm.websphere.security.auth.callback.

WSServletResponseCallback(″HttpServletResponse: ″);

Chapter 8. Developing extensions to the WebSphere security infrastructure 561

Responsibility

Collects the HTTP servlet response object, if presented. This callback enables login modules to

add information into the HTTP response as a result of the login. For example, login modules might

add the SingleSignonCookie cookie to the response.

Callback

callbacks[6] = new com.ibm.websphere.security.auth.callback.

WSAppContextCallback(″ApplicationContextCallback: ″);

Responsibility

Collects the Web application context used during the login. This callback consists of a hashtable,

which if present contains the application name and the redirected Web address.

Callback

callbacks[7] = new WSRealmNameCallbackImpl(″Realm Name: ″, <default_realm>);

Responsibility

Collects the realm name for the login information. The realm information might not always be

provided and should be assumed to be the current realm if it is not provided.

Callback

callbacks[8] = new WSX509CertificateChainCallback(″X509Certificate[]: ″);

Responsibility

If the login source is an X509Certificate from SSL client authentication, this callback contains the

certificate that was validated by SSL. The ltpaLoginModule calls the same mapping functions as in

previous releases. Once it is passed into the login, it provides a custom login module with the

opportunity to map the certificate in a custom way. It then perform a hashtable login (see

“Example: Custom login module for inbound mapping” on page 300 for an example of a hashtable

login).

If you want to use security attribute propagation with the WEB_INBOUND login configuration, you can

enable Web inbound security attribute propagation option on the Single sign-on panel.

1. Click Security > Secure administration, applications, and infrastructure.

2. Under Authentication, expand Web security and click Single sign-on (SSO).

3. Select the Web inbound security attribute propagation option.

The following login modules are predefined for the RMI_INBOUND, WEB_INBOUND, and DEFAULT

system login configurations. You can add custom login modules before, between, or after any of these

login modules, but you cannot remove these predefined login modules:

v com.ibm.ws.security.server.lm.ltpaLoginModule

Performs the primary login when attribute propagation is either enabled or disabled. A primary login

uses normal authentication information such as a user ID and password, an LTPA token, or a trust

association interceptor (TAI) and a certificate distinguished name (DN). If any of the following scenarios

are true, this login module is not used and the

com.ibm.ws.security.server.lm.wsMapDefaultInboundLoginModule module performs the primary login:

– The java.util.Hashtable object with the required user attributes is contained in the Subject.

– The java.util.Hashtable object with the required user attributes is present in the sharedState

HashMap of the LoginContext.

– The WSTokenHolderCallback callback is present without a specified password. If a user name and a

password are present with a WSTokenHolderCallback callback, which indicates propagated

information, the request likely originates from either a pure client or a server from a different realm

that mapped the existing identity to a user ID and password.

v com.ibm.ws.security.server.lm.wsMapDefaultInboundLoginModule

This login module performs the primary login using the normal authentication information if any of the

following conditions are true:

562 Securing applications and their environment

– A java.util.Hashtable object with required user attributes is contained in the Subject.

– A java.util.Hashtable object with required user attributes is present in the sharedState HashMap of

the LoginContext context.

– The WSTokenHolderCallback callback is present without a PasswordCallback callback.

When the java.util.Hashtable object is present, the login module maps the object attributes into a valid

Subject. When the WSTokenHolderCallback callback is present, the login module deserializes the byte

token objects and regenerates the serialized Subject contents. The java.util.Hashtable hashtable takes

precedence over all of the other forms of login. Be careful to avoid duplicating or overriding what the

application server might have propagated previously.

By specifying a java.util.Hashtable hashtable to take precedence over other authentication information,

the custom login module must have already verified the LTPA token, if present, to establish sufficient

trust. The custom login module can use the

com.ibm.wsspi.security.token.WSSecurityPropagationHelper.validationLTPAToken(byte[]) method to

validate the LTPA token present in the WSCredTokenCallback callback. Failure to validate the LTPA

token presents a security risk.

For more information on adding a hashtable containing well-known and well-formed attributes used by

the application server as sufficient login information, see ″Configuring inbound identity mapping″ in the

information center.

RMI_OUTBOUND:

Processes Remote Method Invocation (RMI) requests that are sent outbound to another server when

either the com.ibm.CSI.rmiOutboundLoginEnabled or the com.ibm.CSIOutboundPropagationEnabled

properties are true.

 These properties are set in the CSIv2 authentication panel. To access the panel, complete the following

steps:

1. Click Security > Secure administration, applications, and infrastructure.

2. Under Authentication, expand RMI/IIOP security and click CSIv2 outbound authentication.

To set the com.ibm.CSI.rmiOutboundLoginEnabled property, select Custom outbound mapping. To set

the com.ibm.CSIOutboundPropagationEnabled property, select the Security attribute propagation option.

This login configuration determines the security capabilities of the target server and its security domain.

For example, if the application server Version 5.1.1 or later (or 5.1.0.2 for z/OS) communicates with a

Version 5.x Application Server, then the Version 5.1.1 Application Server sends the authentication

information only, using an LTPA token, to the Version 5.x Application Server. However, if WebSphere

Application Server Version 5.1.1 or later communicates with a Version 5.1.x Application Server, the

authentication and authorization information is sent to the receiving application server if propagation is

enabled at both the sending and receiving servers. When the application server sends both the

authentication and authorization information downstream, the application server removes the need to

access the user registry again and look up the security attributes of the user for authorization purposes.

Additionally, any custom objects that are added at the sending server are present in the Subject at the

downstream server.

The following callback is available in the RMI_OUTBOUND login configuration. You can use the

com.ibm.wsspi.security.csiv2.CSIv2PerformPolicy object that is returned by this callback to query the

security policy for this particular outbound request. This query can help determine if the target realm is

different than the current realm and if the application server must map the realm. For more information,

see ″Configuring outbound mapping to a different target realm″ in the information center.

Callback

callbacks[0] = new WSProtocolPolicyCallback(″Protocol Policy Callback: ″);

Responsibility

Chapter 8. Developing extensions to the WebSphere security infrastructure 563

Provides protocol-specific policy information for the login modules on this outbound invocation.

This information is used to determine the level of security, including the target realm, target

security requirements, and coalesced security requirements.

 The following method obtains the CSIv2PerformPolicy policy from this specific login module:

csiv2PerformPolicy = (CSIv2PerformPolicy)

((WSProtocolPolicyCallback)callbacks[0]).getProtocolPolicy();

 A different protocol other than RMI might have a different type of policy object.

 The following login module is predefined in the RMI_OUTBOUND login configuration. You can add custom

login modules before, between, or after any of these login modules, but you cannot remove these

predefined login modules.

com.ibm.ws.security.lm.wsMapCSIv2OutboundLoginModule

Retrieves the following tokens and objects before creating an opaque byte that is sent to another

server by using the Common Secure Interoperability Version 2 (CSIv2) authorization token layer:

v Forwardable com.ibm.wsspi.security.token.Token implementations from the Subject

v Serializable custom objects from the Subject

v Propagation tokens from the thread

You can use a custom login module prior to this login module to perform credential mapping.

However, it is recommended that the login module change the contents of the Subject that is

passed in during the login phase. If this recommendation is followed, the login modules are

processed after this login module acts on the new Subject contents.

For more information, see ″Configuring outbound mapping to a different target realm″ in the information

center.

SWAM:

Processes login requests in a single server environment when Simple WebSphere Authentication

Mechanism (SWAM) is used as the authentication method.

 SWAM does not support forwardable credentials. When SWAM is the authentication method, the

application server cannot send requests from server to server. In this case, you must use LTPA.

Note: The SWAM login configuration is deprecated and will be removed in a future release.

wssecurity.IDAssertion:

Processes login configuration requests for Web services security using identity assertion.

 This login configuration is for Version 5.x systems. For more information, see ″Identity assertion

authentication method″ in the information center.

wssecurity.PKCS7:

Verifies an X.509 certificate with a certificate revocation list in a Public Key Cryptography Standards #7

(PKCS7) object.

 This login configuration is for Version 6.0.x systems.

wssecurity.PkiPath:

Verifies an X.509 certificate with a public key infrastructure (PKI) path.

564 Securing applications and their environment

This login configuration is for Version 6.0.x systems.

wssecurity.signature:

Processes login configuration requests for Web services security using digital signature validation.

 This login configuration is for Version 5.x systems.

wssecurity.UsernameToken:

Verifies basic authentication (user name and password).

 This login configuration is for Version 6.0.x systems.

wssecurity.X509BST:

Verifies an X.509 binary security token (BST) by checking the validity of the certificate and the certificate

path.

 This login configuration is for Version 6.0.x systems.

LTPA_WEB:

Processes login requests to components in the Web container such as servlets and JavaServer pages

(JSP) files.

 The com.ibm.ws.security.web.AuthenLoginModule login module is predefined in the LTPA login

configuration. You can add custom login modules before or after this module in the LTPA_WEB login

configuration.

The LTPA_WEB login configuration can process the HttpServletRequest object, the HttpServletResponse

object, and the Web application name that are passed in using a callback handler. For more information,

see ″Example: Customizing a server-side Java Authentication and Authorization Service authentication and

logon configuration″ in the information center.

LTPA:

Processes login requests that are not handled by the LTPA_WEB login configuration.

 This login configuration is used by WebSphere Application Server Version 5.1 and previous versions.

The com.ibm.ws.security.server.lm.ltpaLoginModule login module is predefined in the LTPA login

configuration. You can add custom login modules before or after this module in the LTPA login

configuration. For more information, see ″Example: Customizing a server-side Java Authentication and

Authorization Service authentication and logon configuration″ in the information center.

Login module settings for Java Authentication and Authorization Service

Use this page to define the login module for a Java Authentication and Authorization Service (JAAS) login

configuration.

You can define the JAAS login modules for application and system logins. To define these login modules in

the administrative console, complete the following steps:

1. Click Security > Secure administration, applications, and infrastructure.

2. Under Authentication, click Java Authentication and Authorization Service > Application logins or

System logins > alias_name.

3. Under Additional properties, click JAAS login modules.

Chapter 8. Developing extensions to the WebSphere security infrastructure 565

Module class name:

Specifies the class name of the given login module.

 Data type: String

Use login module proxy:

Specifies that the Java Authentication and Authorization Service (JAAS) loads the login module proxy

class. JAAS then delegates calls to the login module classes that are defined in the Module class name

field.

 Use this option when you use both Version 5.x and Version 6 Application Servers in the same

environment. If you migrate a Version 5.x Application Server to Version 6, WebSphere Application Server

Version 6 automatically enables this option. If you have Version 6 only cells in your environment, you

might choose to deselect this option.

 Default: Enabled

Proxy class name:

Specifies the name of the proxy login module class.

 The default login modules that are defined by the application server use the

com.ibm.ws.security.common.auth.module.WSLoginModuleProxy proxy LoginModule class. This proxy

class loads the application server login module with the thread context class loader and delegates all the

operations to the real login module implementation. The real login module implementation is specified as

the delegate option in the option configuration. The proxy class is needed because the Developer Kit

application class loaders do not have visibility of the application server product class loaders.

 Data type: String

Authentication strategy:

Specifies the authentication behavior as authentication proceeds down the list of login modules.

 A Java Authentication and Authorization Service (JAAS) authentication provider supplies the authentication

strategy. In JAAS, an authentication strategy is implemented through the LoginModule interface.

 Data type: String

Default: Required

Range: Required, Requisite, Sufficient and Optional

Required

The LoginModule module is required to succeed. Whether authentication succeeds or fails, the

process still continues down the LoginModule list for each realm.

Requisite

The LoginModule module is required to succeed. If authentication is successful, the process

continues down the LoginModule list in the realm entry. If authentication fails, control immediately

returns to the application. Authentication does not proceed down the LoginModule list.

Sufficient

The LoginModule module is not required to succeed. If authentication succeeds, control

566 Securing applications and their environment

immediately returns to the application. Authentication does not proceed down the LoginModule list.

If authentication fails, the process continues down the list.

Optional

The LoginModule module is not required to succeed. Whether authentication succeeds or fails, the

process still continues down the LoginModule list.

Specify additional options by clicking Custom Properties under Additional Properties. These name and

value pairs are passed to the login modules during initialization. This process is one of the mechanisms

that is used to passed information to login modules.

Module order:

Specifies the order in which the Java Authentication and Authorization Service (JAAS) login modules are

processed.

 Click Set Order to change the processing order of the login modules.

Login module order settings for Java Authentication and Authorization Service

Use this page to specify the order in which the application server processes the login configuration

modules.

You can specify the order of the login modules for application and system logins. To define these login

modules in the administrative console, complete the following steps:

1. Click Security > Secure administration, applications, and infrastructure.

2. Under Authentication, click Java Authentication and Authorization Service > Application logins or

System logins > alias. You can create a new configuration by clicking New.

3. Under Additional properties, click JAAS login modules.

4. Click Set order.

When you select one of the JAAS login module class names, you can move that class name up and down

the list. After you click OK and save the changes, the new order is reflected on either the Application login

configuration or the System login configuration panel.

Login configuration settings for Java Authentication and Authorization Service

Use this page to configure application login configurations.

To view this administrative console page, complete the following steps:

1. Click Security > Secure administration, applications, and infrastructure.

2. Under Authentication, click Java Authentication and Authorization Service > Application logins or

System logins > alias_name.

Click Apply to save changes and to add the extra node name that precedes the original alias name.

Clicking OK does not save the new changes in the security.xml file.

Alias:

Specifies the alias name of the application login.

 Do not use the forward slash character (/) in the alias name when defining JAAS login configuration

entries. The JAAS login configuration parser cannot process the forward slash character.

 Data type: String

Chapter 8. Developing extensions to the WebSphere security infrastructure 567

Managing J2EE Connector Architecture authentication data entries

This task creates and deletes Java 2 Connector (J2C) authentication data entries.

Java 2 Platform, Enterprise Edition (J2EE) Connector authentication data entries are used by resource

adapters and Java DataBase Connectivity (JDBC) data sources. A J2EE Connector authentication data

entry contains authentication data, which includes the following information:

Alias An identifier that identifies the authentication data entry. When configuring resource adapters or

data sources, the administrator can specify which authentication data to choose using the

corresponding alias.

User ID

A user identity of the intended security domain. For example, if a particular authentication data

entry is used to open a new connection to DB2, this entry contains a DB2 user identity.

Password

The password of the user identity is encoded in the configuration repository.

Description

A short text description.

1. Delete a J2C authentication data entry.

a. Click Security > Secure administration, applications, and infrastructure.

b. Under Java Authentication and Authorization Service, click J2C authentication data. The J2C

Authentication Data Entries panel is displayed.

c. Select the check boxes for the entries to delete and click Delete. Before deleting or removing an

authentication data entry, make sure that it is not used or referenced by any resource adapter or

data source. If the deleted authentication data entry is used or referenced by a resource, the

application that uses the resource adapter or the data source fails to connect to the resources.

2. Create a new J2C authentication data entry.

a. Click Security > Secure administration, applications, and infrastructure.

b. Under Java Authentication and Authorization Service, click J2C authentication data. The J2C

Authentication Data Entries panel is displayed.

c. Click New.

d. Enter a unique alias, a valid user ID, a valid password, and a short description (optional).

e. Click OK or Apply. No validation for the user ID and password is required.

f. Click Save.

A new J2C authentication data entry is created or an old entry is removed. The newly created entry is

visible without restarting the application server process to use in the data source definition. But the entry is

only in effect after the server is restarted. Specifically, the authentication data is loaded by an application

server when starting an application and is shared among applications in the same application server.

This step defines authentication data that you can share among resource adapters and data sources. Use

the authentication data entry that is defined in the resource adapters or the data sources.

Java 2 Connector authentication data entry settings:

Use this page as a central place for administrators to define authentication data, which includes user

identities and passwords. These values can reference authentication data entries by resource adapters,

data sources, and other configurations that require authentication data using an alias.

 You can display this page directly from the Java Authentication and Authorization Service (JAAS)

configuration page or from other pages for resources that use J2EE Connector (J2C) authentication data

entries. To view this administrative page, complete the following steps:

1. Click Security > Secure administration, applications, and infrastructure.

2. Under Authentication, click Java Authentication and Authorization Service > J2C authentication

data.

568 Securing applications and their environment

Deleting authentication data entries: Be careful when deleting authentication data entries. If the deleted

authentication data is used by other configurations, the initializing resources process fails.

Define a new authentication data entry by clicking New.

Alias:

Specifies the name of the authentication data entry.

 Data type: String

Units: String

Default: None

User ID:

Specifies the user identity.

 Data type: String

Password:

Specifies the password that is associated with the user identity.

 This field is not available on the collections panel. However, the panel is available when you create a new

J2C authentication data entry.

 Data type: String

Description:

Specifies an optional description of the authentication data entry. For example, this authentication data

entry is used to connect to DB2.

 Data type: String

J2C principal mapping modules:

You can develop your own J2EE Connector (J2C) mapping module if your application requires more

sophisticated mapping functions. The mapping login module that you might have developed on

WebSphere Application Server Version 5.x is still supported in WebSphere Application Server Version 6.0.x

and later.

 You can use the Version 5.x login modules in the connection factory mapping configuration. These login

modules can also be used in the reference mapping configuration for the resource manager connection

factory. A version 5.x mapping login module is not able to use the custom mapping properties.

If you want to develop a new mapping login module in Version 6.0.x and later, use the programming

interface that is described in the following sections.

transition: Migrate your Version 5.x mapping login module to use the new programming model and the

new custom properties as well as the mapping configuration isolation at application scope.

Note that mapping login modules that are developed using WebSphere Application Server

Version 6.0.x cannot be used in the deprecated mapping configuration for the resource

connection factory.

Chapter 8. Developing extensions to the WebSphere security infrastructure 569

Invoking the login module for the resource reference mapping

A com.ibm.wsspi.security.auth.callback.WSMappingCallbackHandler class, which implements the

javax.security.auth.callback.CallbackHandler interface, is a new WebSphere Application Service Provider

Programming Interface (SPI) in WebSphere Application Server Version 6.0.x.

Application code uses the com.ibm.wsspi.security.auth.callback.WSMappingCallbackHandlerFactory helper

class to retrieve a CallbackHandler object:

package com.ibm.wsspi.security.auth.callback;

public class WSMappingCallbackHandlerFactory {

 private WSMappingCallbackHandlerFactory;

 public static CallbackHandler getMappingCallbackHandler(

ManagedConnectionFactory mcf,

HashMap mappingProperties);

}

The WSMappingCallbackHandler class implements the CallbackHandler interface:

package com.ibm.wsspi.security.auth.callback;

public class WSMappingCallbackHandler implements CallbackHandler {

 public WSMappingCallbackHandler(ManagedConnectionFactory mcf,

HashMap mappingProperties);

 public void handle(Callback[] callbacks) throws IOException,

 UnsupportedCallbackException;

}

The WSMappingCallbackHandler handler can manage two new callback types that are defined in Version

6.0.x:

com.ibm.wsspi.security.auth.callback.WSManagedConnectionFactoryCallback

com.ibm.wsspi.security.auth.callback.WSMappingPropertiesCallback

The new login modules use the two callback types that are used at the reference mapping configuration

for the resource manager connection factory. The WSManagedConnectionFactoryCallback callback

provides a ManagedConnectionFactory instance that you set in the PasswordCredential credential. With

this setting, the ManagedConnectionFactory instance can determine whether a PasswordCredential

instance is used for signon to the target Enterprise Information Systems (EIS) instance. The

WSMappingPropertiesCallback callback provides a hash map that contains custom mapping properties.

The com.ibm.mapping.authDataAlias property name is reserved for setting the authentication data alias.

The WebSphere Application Server WSMappingCallbackHandle handle continues to support the two

WebSphere Application Server Version 5.x callback types that older mapping login modules can use. The

two callbacks defined can be used only by login modules that the login configuration uses at the

connection factory. For backward compatibility, WebSphere Application Server Version 6.0.x and later

passes the authentication data alias, if defined in the list of custom properties under the

com.ibm.mapping.authDataAlias property name using the WSAuthDataAliasCallback callback to Version

5.x login modules:

com.ibm.ws.security.auth.j2c.WSManagedConnectionFactoryCallback

com.ibm.ws.security.auth.j2c.WSAuthDataAliasCallback

Invoking the login module for the connection factory mapping

The WSPrincipalMappingCallbackHandler class handles two callback types:

com.ibm.wsspi.security.auth.callback.WSManagedConnectionFactoryCallback

com.ibm.wsspi.security.auth.callback.WSMappingPropertiesCallback

The WSPrincipalMappingCallbackHandler handler and the two callbacks are deprecated in WebSphere

Application Server Version 6.

570 Securing applications and their environment

Passing the mapping properties for the resource reference to the mapping login module

You can pass arbitrary custom properties to your mapping login module. The following example shows

how the WebSphere Application Server default mapping login module looks for the authentication data

alias property.

 try {

 wspm_callbackHandler.handle(callbacks);

 String userID = null;

 String password = null;

 String alias = null;

 wspm_properties = ((WSMappingPropertiesCallback)callbacks[1]).getProperties();

 if (wspm_properties != null) {

 alias = (String) wspm_properties.get(com.ibm.wsspi.security.auth.callback.

 Constants.MAPPING_ALIAS);

 if (alias != null) {

 alias = alias.trim();

 }

 }

 } catch (UnsupportedCallbackException unsupportedcallbackexception) {

 . . . // error handling

The default mapping login module for WebSphere Application Server Version 6.0.x requires one mapping

property to define the authentication data alias. The mapping property, which is called MAPPING_ALIAS,

is defined in the Constants.class file in the com.ibm.wsspi.security.auth.callback package.

MAPPING_ALIAS = ″com.ibm.mapping.authDataAlias″

When you click Use default method > Select authentication data entry authentication on the Map

resource references to resources panel, the administrative console automatically creates a

MAPPING_ALIAS entry with the selected authentication data alias value in the mapping properties. If you

create your own custom login configuration and then use the default mapping login module, you must set

this property manually on the mapping properties for the resource factory reference.

In a custom login module, you can use the WSSubject.getRunAsSubject method to retrieve the subject

that represents the identity of the current running thread. The identity of the current running thread is

known as the RunAs identity. The RunAs subject typically contains a WSPrincipal principal in the principal

set and a WSCredential credential in the public credential set. The subject instance that is created by your

mapping module contains a Principal instance in the principals set and a PasswordCredential credential or

an org.ietf.jgss.GSSCredential instance in the set of private credentials.

The GenericCredential interface that is defined in Java Cryptography Architecture (JCA) Specification

Version 1.0 is removed in the JCA Version 1.5 specification. The GenericCredential interface is supported

by WebSphere Application Server Version 6.0.x to support older resource adapters that might be

programmed to the GenericCredential interface.

Customizing an application login to perform an identity assertion

Using the Java Authentication and Authorization Service (JAAS) login framework, you can create a JAAS

login configuration that can be used to perform login to an identity assertion.

You can allow an application or system provider to perform an identity assertion with trust validation. To do

this, you use the JAAS login framework, where trust validation is accomplished in one login module and

credential creation is accomplished in another module. The two custom login modules allow you to create

a JAAS login configuration that can be used to perform a login to an identity assertion.

Two custom login modules are required:

Chapter 8. Developing extensions to the WebSphere security infrastructure 571

User implemented trust association login module (trust validation)

The user implemented trust association login module performs whatever trust verification the user

requires. When trust is verified, the trust verification status and the login identity should be put into

a map in the share state of the login module so that the credential creation login module can use

the information. This map should be stored in the property:

 com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule.state

 (which consists of)

 com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule.trusted

 (which is set to true if trusted and false if not trusted)

 com.ibm.wsspi.security.common.auth.module.IdenityAssertionLoginModule.principal

 (which contains the principal of the identity)

 com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule.certificates

 (which contains the certificate of the identity)

Identity assertion login module (credential creation)

The com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule performs the

credential creation. This module relies on the trust state information being in the login context’s

shared state. This login module is protected by the Java 2 security runtime permissions for:

v com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule.initialize

v com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule.login

The identity assertion login module looks for the trust information in the shared state property,

com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule.state, which contains

the trust status and the identity to login and should include:

 com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule.trusted

 (which when true indicates trusted and false when not trusted)

 com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule.principal

 (which contains the principal of the identity to login, if using a principal)

 com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule.certificates

 (which contains a array of a certificate chain that contains the identity to login,

 if using a certificate)

 A WSLoginFailedException is returned if the state, trust, or identity information is missing. The

login module then performs a login of the identity, and the subject will contain the new identity

1. Delegate trust validation to a user implemented plug point. Trust validation must be accomplished in a

custom login module. This custom login module should perform any trust validation required, then set

the trust and identity information in the shared state to be passed on to the identity assertion login

module. A map is required in the shared state key,

com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule.state. If the state is missing

then a WSLoginFailedException is thrown by the IdentityAssertionLoginModule. This map must include:

v A trust key called com.ibm.wsspi.secuirty.common.auth.module.IdentityAssertionLoginModule.trust. If

the key is set to true, then trust is established. If the key is set to false, then no trust is established.

If the trust key is not set to true, then the IdentityAssertionLoginModule will throw a

WSLoginFailedException.

v v An identity key is set: A java.security.Principal can be set in the

com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule.principal key.

v Or a java.security.cert.X509Certificate[] can be set in the

com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule.certficates key

572 Securing applications and their environment

If both a principal and certificate are supplied, then the principal is used and a warning is issued.

2. Create a new JAAS configuration for application logins The JAAS configuration will contain the user

implemented trust validation custom login module and the IdentityAssertionLoginModule. Then to

configure an application login configuration, perform the following on the administration console:

a. Expand Security > Secure administration, applications, and infrastructure

b. Expand Java authentication and authorization services > Application logins

c. Select New.

d. Give the JAAS configuration an alias.

e. Click Apply.

f. Select JAAS Login Modules

g. Select New.

h. Enter the Module class name of the user implemented trust validation custom login module.

i. Click Apply.

j. Enter the Module class name of

com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule

k. Make sure the Module class name classes are in the correct order. The user implemented trust

validation login module should be first and the IdentityAssertionLoginModule should be the second

class in the list.

l. Click Save.

This JAAS configuration is then used by the application to perform an Identity Assertion.

3. Perform the programmable identity assertion. A program can now use the JAAS login configuration to

perform a programmatic identity assertion. The application program can create a login context for the

JAAS configuration created in step 2, then login to that login context with the identity they would assert

to. If the login is successful then that identity can be set in the current running process. Here is a

example of how such code would operate:

MyCallbackHandler handler = new MyCallbackHandler(new MyPrincipal(“Joe”));

LoginContext lc = new LoginContext(“MyAppLoginConfig”, handler);

lc.login(); //assume successful

Subject s = lc.getSubject();

WSSubject.setRunAsSubject(s);

// From here on , the runas identity is “Joe”

Using the JAAS login framework and two user implemented login modules, you can create a JAAS login

configuration that can be used to perform login to an identity assertion.

Customization of a server-side Java Authentication and Authorization

Service authentication and login configuration

WebSphere Application Server supports plugging in a custom Java Authentication and Authorization

Service (JAAS) login module before or after the WebSphere Application Server system login module.

However, WebSphere Application Server does not support the replacement of the WebSphere Application

Server system login modules, which are used to create the WSCredential credential and WSPrincipal

principal in the Subject. By using a custom login module, you can either make additional authentication

decisions or add information to the Subject to make additional, potentially finer-grained, authorization

decisions inside a Java 2 Platform, Enterprise Edition (J2EE) application.

WebSphere Application Server enables you to propagate information downstream that is added to the

Subject by a custom login module. For more information, see “Security attribute propagation” on page 191.

To determine which login configuration to use for plugging in your custom login modules, see the

descriptions of the login configurations that are located in the “System login configuration entry settings for

Java Authentication and Authorization Service” on page 558.

Chapter 8. Developing extensions to the WebSphere security infrastructure 573

WebSphere Application Server supports the modification of the system login configuration through the

administrative console and by using the wsadmin scripting utility. To configure the system login

configuration using the administrative console, click Security > Secure administration, applications, and

infrastructure. Under Java Authentication and Authorization Service, click System logins.

Refer to the following code sample to configure a system login configuration using the wsadmin tool. The

following sample Jacl script adds a custom login module into the Lightweight Third-party Authentication

(LTPA) Web system login configuration:

Attention: Lines 32, 33, and 34 in the following code sample are split into two lines.

1. ###

2. #

3. # Open security.xml

4. #

5. ###

6.

7.

8. set sec [$AdminConfig getid /Cell:hillside/Security:/]

9.

10.

11. ###

12. #

13. # Locate systemLoginConfig

14. #

15. ###

16.

17.

18. set slc [$AdminConfig showAttribute $sec systemLoginConfig]

19.

20. set entries [lindex [$AdminConfig showAttribute $slc entries] 0]

21.

22.

23. ###

24. #

25. # Append a new LoginModule to LTPA_WEB

26. #

27. ###

28.

29. foreach entry $entries {

30. set alias [$AdminConfig showAttribute $entry alias]

31. if {$alias == "LTPA_WEB"} {

32. set newJAASLoginModuleId [$AdminConfig create JAASLoginModule

 $entry {{moduleClassName

 "com.ibm.ws.security.common.auth.module.proxy.WSLoginModuleProxy"}}]

33. set newPropertyId [$AdminConfig create Property

 $newJAASLoginModuleId {{name delegate}{value

 "com.ABC.security.auth.CustomLoginModule"}}]

34. $AdminConfig modify $newJAASLoginModuleId

 {{authenticationStrategy REQUIRED}}

35. break

36. }

37. }

38.

39.

40. ###

41. #

42. # save the change

43. #

574 Securing applications and their environment

44. ###

45.

46. $AdminConfig save

47.

Attention: The wsadmin scripting utility inserts a new object to the end of the list. To insert the custom

login module before the AuthenLoginModule login module, delete the AuthenLoginModule login module

and recreate it after inserting the custom login module. Save the sample script into a sample.jacl file, and

run the sample script using the following command:

wsadmin -f sample.jacl

You can use the following sample Jacl script to remove the current LTPA_WEB login configuration and all

the login modules:

48. ###

49. #

50. # Open security.xml

51. #

52. ###

53.

54.

55. set sec [$AdminConfig getid /Cell:hillside/Security:/]

56.

57.

58. ###

59. #

60. # Locate systemLoginConfig

61. #

62. ###

63.

64.

65. set slc [$AdminConfig showAttribute $sec systemLoginConfig]

66.

67. set entries [lindex [$AdminConfig showAttribute $slc entries] 0]

68.

69.

70. ###

71. #

72. # Remove the LTPA_WEB login configuration

73. #

74. ###

75.

76. foreach entry $entries {

77. set alias [$AdminConfig showAttribute $entry alias]

78. if {$alias == "LTPA_WEB"} {

79. $AdminConfig remove $entry

80. break

81. }

82. }

83.

84.

85. ###

86. #

87. # save the change

88. #

89. ###

90.

91. $AdminConfig save

You can use the following sample Jacl script to recover the original LTPA_WEB configuration:

Chapter 8. Developing extensions to the WebSphere security infrastructure 575

Attention: Lines 122, 124, and 126 in the following code sample are split into two or more lines for

illustrative purposes only.

92. ###

93. #

94. # Open security.xml

95. #

96. ###

97.

98.

99. set sec [$AdminConfig getid /Cell:hillside/Security:/]

100.

101.

102. ###

103. #

104. # Locate systemLoginConfig

105. #

106. ###

107.

108.

109. set slc [$AdminConfig showAttribute $sec systemLoginConfig]

110.

111. set entries [lindex [$AdminConfig showAttribute $slc entries] 0]

112.

113.

114.

115. ###

116. #

117. # Recreate the LTPA_WEB login configuration

118. #

119. ###

120.

121.

122. set newJAASConfigurationEntryId [$AdminConfig create JAASConfigurationEntry

 $slc {{alias LTPA_WEB}}]

123.

124. set newJAASLoginModuleId [$AdminConfig create JAASLoginModule

 $newJAASConfigurationEntryId

 {{moduleClassName

 "com.ibm.ws.security.common.auth.module.proxy.WSLoginModuleProxy"}}]

125.

126. set newPropertyId [$AdminConfig create Property

 $newJAASLoginModuleId {{name delegate}

 {value "com.ibm.ws.security.web.AuthenLoginModule"}}]

127.

128. $AdminConfig modify $newJAASLoginModuleId {{authenticationStrategy REQUIRED}}

129.

130.

131. ###

132. #

133. # save the change

134. #

135. ###

136.

137. $AdminConfig save

The WebSphere Application Server Version ltpaLoginModule and AuthenLoginModule login modules use

the shared state to save state information so that custom login modules can modify the information. The

ltpaLoginModule login module initializes the callback array in the login method using the following code.

The callback array is created by the ltpaLoginModule login module only if an array is not defined in the

shared state area. In the following code sample, the error handling code is removed to make the sample

576 Securing applications and their environment

concise. If you insert a custom login module before the ltpaLoginModule login module, the custom login

module might follow the same style to save the callback into the shared state.

Attention: In the following code sample, several lines of code are split into two lines for illustrative

purposes only.

138. Callback callbacks[] = null;

139. if (!sharedState.containsKey(

 com.ibm.wsspi.security.auth.callback.Constants.

 CALLBACK_KEY)) {

140. callbacks = new Callback[3];

141. callbacks[0] = new NameCallback("Username: ");

142. callbacks[1] = new PasswordCallback("Password: ", false);

143. callbacks[2] = new com.ibm.websphere.security.auth.callback.

 WSCredTokenCallbackImpl("Credential Token: ");

144. try {

145. callbackHandler.handle(callbacks);

146. } catch (java.io.IOException e) {

147. . . .

148. } catch (UnsupportedCallbackException uce) {

149. . . .

150. }

151. sharedState.put(

 com.ibm.wsspi.security.auth.callback.Constants.CALLBACK_KEY,

 callbacks);

152. } else {

153. callbacks = (Callback [])

 sharedState.get(com.ibm.wsspi.security.auth.callback.

 Constants.CALLBACK_KEY);

154. }

The ltpaLoginModule and AuthenLoginModule login modules generate both a WSPrincipal object and a

WSCredential object to represent the authenticated user identity and security credentials. The WSPrincipal

and WSCredential objects also are saved in the shared state. A JAAS login uses a two-phase commit

protocol.

First, the login methods in login modules, which are configured in the login configuration, are called. Then,

their commit methods are called. A custom login module, which is inserted after the ltpaLoginModule and

the AuthenLoginModule login modules, can modify the WSPrincipal and WSCredential objects before

these objects are committed. The WSCredential and WSPrincipal objects must exist in the Subject after

the login is completed. Without these objects in the Subject, WebSphere Application Server run-time code

rejects the Subject to make security decisions.

AuthenLoginModule uses the following code to initialize the callback array:

Attention: In the following code sample, several lines of code are split into two lines for illustrative

purposes only.

155. Callback callbacks[] = null;

156. if (!sharedState.containsKey(

 com.ibm.wsspi.security.auth.callback.Constants.

 CALLBACK_KEY)) {

157. callbacks = new Callback[6];

158. callbacks[0] = new NameCallback("Username: ");

159. callbacks[1] = new PasswordCallback("Password: ", false);

160. callbacks[2] =

 new com.ibm.websphere.security.auth.callback.WSCredTokenCallbackImpl(

 "Credential Token: ");

161. callbacks[3] =

 new com.ibm.wsspi.security.auth.callback.WSServletRequestCallback(

 "HttpServletRequest: ");

Chapter 8. Developing extensions to the WebSphere security infrastructure 577

162. callbacks[4] =

 new com.ibm.wsspi.security.auth.callback.WSServletResponseCallback(

 "HttpServletResponse: ");

163. callbacks[5] =

 new com.ibm.wsspi.security.auth.callback.WSAppContextCallback(

 "ApplicationContextCallback: ");

164. try {

165. callbackHandler.handle(callbacks);

166. } catch (java.io.IOException e) {

167. . . .

168. } catch (UnsupportedCallbackException uce {

169. . . .

170. }

171. sharedState.put(com.ibm.wsspi.security.auth.callback.

 Constants.CALLBACK_KEY, callbacks);

172. } else {

173. callbacks = (Callback []) sharedState.get(

 com.ibm.wsspi.security.auth.callback.

 Constants.CALLBACK_KEY);

174. }

Three more objects, which contain callback information for the login, are passed from the Web container to

the AuthenLoginModule login module: a java.util.Map, an HttpServletRequest, and an HttpServletResponse

object. These objects represent the Web application context. The WebSphere Application Server Version

5.1 application context, java.util.Map object, contains the application name and the error page web

address. You can obtain the application context, java.util.Map object, by calling the getContext method on

the WSAppContextCallback object. The java.util.Map object is created with the following deployment

descriptor information.

Attention: In the following code sample, several lines of code are split into two lines for illustrative

purposes only.

175. HashMap appContext = new HashMap(2);

176. appContext.put(

 com.ibm.wsspi.security.auth.callback.Constants.WEB_APP_NAME,

 web_application_name);

177. appContext.put(

 com.ibm.wsspi.security.auth.callback.Constants.REDIRECT_URL,

 errorPage);

The application name and the HttpServletRequest object might be read by the custom login module to

perform mapping functions. The error page of the form-based login might be modified by a custom login

module. In addition to the JAAS framework, WebSphere Application Server supports the trust association

interface (TAI).

Other credential types and information can be added to the caller Subject during the authentication

process using a custom login module. The third-party credentials in the caller Subject are managed by

WebSphere Application Server as part of the security context. The caller Subject is bound to the running

thread during the request processing. When a Web or an Enterprise JavaBeans (EJB) module is

configured to use the caller identity, the user identity is propagated to the downstream service in an EJB

request. The WSCredential credential and any third-party credentials in the caller Subject are not

propagated downstream. Instead, some of the information can be regenerated at the target server based

on the propagated identity. Add third-party credentials to the caller Subject at the authentication stage. The

caller Subject, which is returned from the WSSubject.getCallerSubject method, is read-only and cannot be

modified. For more information on the WSSubject subject, see “Example: Getting the caller subject from

the thread” on page 589.

578 Securing applications and their environment

Custom login module development for a system login configuration

For WebSphere Application Server, multiple Java Authentication and Authorization Service (JAAS) plug-in

points exist for configuring system logins. WebSphere Application Server uses system login configurations

to authenticate incoming requests, outgoing requests, and internal server logins.

Application login configurations are called by Java 2 Platform, Enterprise Edition (J2EE) applications for

obtaining a Subject that is based on specific authentication information. This login configuration enables

the application to associate the Subject with a specific protected remote action. The Subject is picked up

on the outbound request processing. The following list identifies the main system plug-in points. If you

write a login module that adds information to the Subject of a system login, these are the main login

configurations to plug in:

v WEB_INBOUND

v RMI_OUTBOUND

v RMI_INBOUND

v DEFAULT

WEB_INBOUND login configuration

The WEB_INBOUND login configuration authenticates Web requests. Figure 1 shows an example of a

configuration using a trust association interceptor (TAI) that creates a Subject with the initial information

that is passed into the WEB_INBOUND login configuration. If the trust association interceptor is not

configured, the authentication process goes directly to the WEB_INBOUND system login configuration,

which consists of all the login modules combined in Figure 1. Figure 1 shows where you can plug in

custom login modules and where the ltpaLoginModule and the wsMapDefaultInboundLoginModule login

modules are required.

Figure 1

Chapter 8. Developing extensions to the WebSphere security infrastructure 579

Custom

login

module

Authenticated?

Trust

association

interceptor?

Authenticate

Use trust

association

interceptor

Web request

requiring

authorization

Custom

login

module

Web

container

Custom

login

module

Trust

association

interceptor

wsMapDefaultInboundLoginModule

Optional

custom credential

Hashtable

in Subject

ItpaLoginModule

Subject,

security name

or unique I.D.

Already authenticated

IBM required

authentication

modules

Single application server

Web authentication

plug points

For more detailed information on the WEB_INBOUND configuration including its associated callbacks, see

″RMI_INBOUND, WEB_INBOUND, DEFAULT″ in “System login configuration entry settings for Java

Authentication and Authorization Service” on page 558.

RMI_OUTBOUND login configuration

The RMI_OUTBOUND login configuration is a plug point for handling outbound requests. WebSphere

Application Server uses this plug point to create the serialized information that is sent downstream based

on the invocation Subject passed in and other security context information such as propagation tokens. A

custom login module can use this plug point to change the identity. For more information, see “Configuring

outbound mapping to a different target realm” on page 303. Figure 2 shows where you can plug in custom

login modules and shows where the wsMapCSIv2OutboundLoginModule login module is required.

Figure 2

580 Securing applications and their environment

Custom

login

module

Common Secure

Interoperability version 2

session established

Authenticate

Outbound

RMI request

Single application server

Remote

enterprise bean

container

Possibly modified

Subject and propagation

attributes. Opportunity

for mapping, if needed.

Already established

IBM required

authentication module

Custom

login

module

wsMapCSIv2OutoundLoginModule

RMI outbound

authentication

plug points

For more information on the RMI_OUTBOUND login configuration, including its associated callbacks, see

″RMI_OUTBOUND″ in “System login configuration entry settings for Java Authentication and Authorization

Service” on page 558.

RMI_INBOUND login configuration

The RMI_INBOUND login configuration is a plug point that handles inbound authentication for enterprise

bean requests. WebSphere Application Server uses this plug point for either an initial login or a

propagation login. For more information about these two login types, see “Security attribute propagation”

on page 191. During a propagation login, this plug point is used to deserialize the information that is

received from an upstream server. A custom login module can use this plug point to change the identity,

handle custom tokens, add custom objects into the Subject, and so on. For more information on changing

the identity using a Hashtable object, which is referenced in figure 3, see “Configuring inbound identity

mapping” on page 294. Figure 3 shows where you can plug in custom login modules and shows that the

ltpaLoginModule and the wsMapDefaultInboundLoginModule login modules are required.

Figure 3

Chapter 8. Developing extensions to the WebSphere security infrastructure 581

Custom

login

module

Authenticated?

Authenticate

RMI inbound

request

Single application server

Enterprise

bean

container

Custom

login

module

Optional custom credential

Hashtable in Subject

RMI inbound

authentication

plug points

Already authenticated

IBM required

authentication modules

Custom

login

module

wsMapDefaultInboundLoginModuleItpaLoginModule

For more information on the RMI_INBOUND login configuration, including its associated callbacks, see

″RMI_INBOUND, WEB_INBOUND, DEFAULT″ in “System login configuration entry settings for Java

Authentication and Authorization Service” on page 558.

DEFAULT login configuration

The DEFAULT login configuration is a plug point that handles all of the other types of authentication

requests, including administrative SOAP requests and internal authentication of the server ID. Propagation

logins typically do not occur at this plug point.

For more information on the DEFAULT login configuration including its associated callbacks, see

″RMI_INBOUND, WEB_INBOUND, DEFAULT″ in “System login configuration entry settings for Java

Authentication and Authorization Service” on page 558.

Writing a login module

When you write a login module that plugs into a WebSphere Application Server application login or system

login configuration, read the JAAS programming model, which is located at: http://java.sun.com/products/
jaas. The JAAS programming model provides basic information about JAAS. However, before writing a

login module for the WebSphere Application Server environment, read the following sections in this article:

v Useable callbacks

v Shared state variables

v Initial versus propagation logins

v Sample custom login module

Useable callbacks

Each login configuration must document the callbacks that are recognized by the login configuration.

However, the callbacks are not always passed data. The login configuration must contain logic to know

when specific information is present and how to use the information. For example, if you write a custom

login module that can plug into all four of the pre-configured system login configurations mentioned

582 Securing applications and their environment

http://java.sun.com/products/jaas
http://java.sun.com/products/jaas

previously, three sets of callbacks might be presented to authenticate a request. Other callbacks might be

present for other reasons, including propagation and making other information available to the login

configuration.

Login information can be presented in the following combinations:

User name (NameCallback) and password (PasswordCallback)

This information is a typical authentication combination.

User name only (NameCallback)

This information is used for identity assertion, trust association interceptor (TAI) logins, and

certificate logins.

Token (WSCredTokenCallbackImpl)

This information is for Lightweight Third Party Authentication (LTPA) token validation.

Propagation token list (WSTokenHolderCallback)

This information is used for a propagation login.

The first three combinations are used for typical authentication. However, when the

WSTokenHolderCallback callback is present in addition to one of the first three information combinations,

the login is called a propagation login. A propagation login means that some security attributes are

propagated to this server from another server. The servers can reuse these security attributes if the

authentication information validates successfully. In some cases, a WSTokenHolderCallback callback might

not have sufficient attributes for a full login. Check the requiresLogin method on the

WSTokenHolderCallback callback to determine if a new login is required. You can always ignore the

information returned by the requiresLogin method, but, as a result, you might duplicate information. The

following list contains the callbacks that might be present in the system login configurations. The list

includes the callback name and a description of their responsibility.

callbacks[0] = new javax.security.auth.callback.NameCallback(″Username: ″);

This callback handler collects the user name for the login. The result can be the user name for a

basic authentication login (user name and password) or a user name for an identity assertion

login.

callbacks[1] = new javax.security.auth.callback.PasswordCallback(″Password: ″, false);

This callback handler collects the password for the login.

callbacks[2] = new

com.ibm.websphere.security.auth.callback.WSCredTokenCallbackImpl(″Credential Token: ″);

This callback handler collects the Lightweight Third Party Authentication (LTPA) token or other

token type for the login. This callback handler is typically present when a user name and password

are not present.

callbacks[3] = new com.ibm.wsspi.security.auth.callback.WSTokenHolderCallback(″Authz Token

List: ″);

This callback handler collects the ArrayList of TokenHolder objects that are returned from a call to

the WSOpaqueTokenHelper.createTokenHolderListFromOpaqueToken API using the Common

Secure Interoperability Version 2 (CSIv2) authorization token as input.

callbacks[4] = new

com.ibm.websphere.security.auth.callback.WSServletRequestCallback(″HttpServletRequest: ″);

This callback handler collects the HTTP servlet request object, if present. This callback handler

enables login modules to get information from the HTTP request for use in the login, and is

presented from the WEB_INBOUND login configuration only.

callbacks[5] = new

com.ibm.websphere.security.auth.callback.WSServletResponseCallback(″HttpServletResponse: ″);

This callback handler collects the HTTP servlet response object, if present. This callback handler

enables login modules to put information into the HTTP response as a result of the login. An

Chapter 8. Developing extensions to the WebSphere security infrastructure 583

example of this situation might be adding the SingleSignonCookie cookie to the response.This

callback handler is presented from the WEB_INBOUND login configuration only.

callbacks[6] = new

com.ibm.websphere.security.auth.callback.WSAppContextCallback(″ApplicationContextCallback: ″);

This callback handler collects the Web application context that is used during the login. This

callback handler consists of a HashMap object, which contains the application name and the

redirect web address, if present. The callback handler is presented from the WEB_INBOUND login

configuration only.

callbacks[7] = new WSRealmNameCallbackImpl(″Realm Name: ″, default_realm);

This callback handler collects the realm name for the login information. The realm information

might not always be provided. If the realm information is not provided, assume that it is the current

realm.

callbacks[8] = new WSX509CertificateChainCallback(″X509Certificate[]: ″);

This callback handler contains the certificate that was validated by Secure Sockets Layer (SSL) if

the login source is an X509Certificate from SSL client authentication. The ltpaLoginModule calls

the same mapping functions as WebSphere Application Server releases prior to version 6.1.

However, having it passed into the login gives a custom login module the opportunity to map the

certificate in a custom way. Then, it performs a Hashtable login. See “Configuring inbound identity

mapping” on page 294 for more information on a Hashtable login.

Shared state variables

Shared state variables are used to share information between login modules during the login phase. The

following list contains recommendations for using the shared state variables:

v When you have a custom login module, use the shared state variables to communicate to a WebSphere

Application Server login module using a documented shared state variable, as shown in the following

table.

v Try not to update the Subject until the commit phase. If you call the abort method, you must remove

any objects added to the Subject.

v Enable the login module that adds information into the shared state Map during login to remove this

information during commit in case the same shared state is used for another login.

v If a stop or logout occurs, clean up the information in the login configuration for the shared state and the

Subject.

The com.ibm.wsspi.security.token.AttributeNameConstants.WSCREDENTIAL_PROPERTIES_KEY shared

state variable can inform the WebSphere Application Server login configurations about asserted privilege

attributes. This variable references the com.ibm.wsspi.security.cred.propertiesObject property. Associate a

java.util.Hashtable with this property. This hashtable contains properties that are used by WebSphere

Application Server for login purposes and ignores the callback information. This hashtable enables a

custom login module, which is carried out first in the login configuration to map user identities or enable

WebSphere Application Server to avoid making unnecessary user registry calls if you already have the

required information. For more information, see “Configuring inbound identity mapping” on page 294.

If you want to access the objects that WebSphere Application Server creates during a login, refer to the

following shared state variables. The variables are set in the following login modules: ltpaLoginModule,

swamLoginModule, and wsMapDefaultInboundLoginModule.

Shared state variable

com.ibm.wsspi.security.auth.callback.Constants.WSPRINCIPAL_KEY

Purpose

Specifies the com.ibm.websphere.security.auth.WSPrincipal object. See the WebSphere

584 Securing applications and their environment

Application Server API documentation for application programming interface (API) usage. This

shared state variable is for read-only purposes. Do not set this variable in the shared state for

custom login modules.

The login module in which variables are set

ltpaLoginModule, swamLoginModule, and wsMapDefaultInboundLoginModule

Shared state variable

com.ibm.wsspi.security.auth.callback.Constants.WSCREDENTIAL_KEY

Purpose

Specifies the com.ibm.websphere.security.cred.WSCredential object. See the WebSphere

Application Server API documentation for API usage. This shared state variable is for read-only

purposes. Do not set this variable in the shared state for custom login modules.

Login module in which variables are set

wsMapDefaultInboundLoginModule

Shared state variable

com.ibm.wsspi.security.auth.callback.Constants.WSAUTHZTOKEN_KEY

Purpose

Specifies the default com.ibm.wsspi.security.token.AuthorizationToken object. Login modules can

use this object to set custom attributes plugged in after the wsMapDefaultInboundLoginModule

login module. The information set here is propagated downstream and is available to the

application. See the WebSphere Application Server API documentation for API usage.

Initial versus propagation logins

As mentioned previously, some logins are considered initial logins because of the following reasons:

v It is the first time authentication information is presented to WebSphere Application Server.

v The login information is received from a server that does not propagate security attributes so this

information must be gathered from a user registry.

Other logins are considered propagation logins when a WSTokenHolderCallback callback is present and

contains sufficient information from a sending server to recreate all the required objects needed by

WebSphere Application Server runtime. In cases where there is sufficient information for the WebSphere

Application Server runtime, the information you might add to the Subject is likely to exist from the previous

login. To verify if your object is present, you can get access to the ArrayList object that is present in the

WSTokenHolderCallback callback, and search through this list looking at each TokenHolder getName

method. This search is used to determine if WebSphere Application Server is deserializing your custom

object during this login. Check the class name returned from the getName method using the String

startsWith method because the runtime might add additional information at the end of the name to know

which Subject is set to add the custom object after deserialization.

The following code snippet can be used in your login() method to determine when sufficient information is

present. For another example, see “Configuring inbound identity mapping” on page 294.

// This is a hint provided by WebSphere Application Server that

// sufficient propagation information does not exist and, therefore,

// a login is required to provide the sufficient information. In this

// situation, a Hashtable login might be used.

boolean requiresLogin = ((com.ibm.wsspi.security.auth.callback.

WSTokenHolderCallback) callbacks[1]).requiresLogin();

if (requiresLogin)

{

// Check to see if your object exists in the TokenHolder list,

if not, add it.

java.util.ArrayList authzTokenList = ((WSTokenHolderCallback) callbacks[6]).

getTokenHolderList();boolean found = false;

Chapter 8. Developing extensions to the WebSphere security infrastructure 585

if (authzTokenList != null)

{

Iterator tokenListIterator = authzTokenList.iterator();

while (tokenListIterator.hasNext())

{

com.ibm.wsspi.security.token.TokenHolder th = (com.ibm.wsspi.security.token.

TokenHolder) tokenListIterator.next();

if (th != null && th.getName().startsWith("com.acme.myCustomClass"))

{

found=true;

break;

}

}

if (!found)

{

// go ahead and add your custom object.

}

}

}

else

{

// This code indicates that sufficient propagation information is present.

// User registry calls are not needed by WebSphere Application Server to

// create a valid Subject. This code might be a no-op in your login module.

}

Sample custom login module

You can use the following sample to get ideas on how to use some of the callbacks and shared state

variables.

{

 // Defines your login module variables

 com.ibm.wsspi.security.token.AuthenticationToken customAuthzToken = null;

 com.ibm.wsspi.security.token.AuthenticationToken defaultAuthzToken = null;

 com.ibm.websphere.security.cred.WSCredential credential = null;

 com.ibm.websphere.security.auth.WSPrincipal principal = null;

 private javax.security.auth.Subject _subject;

 private javax.security.auth.callback.CallbackHandler _callbackHandler;

 private java.util.Map _sharedState;

 private java.util.Map _options;

 public void initialize(Subject subject, CallbackHandler callbackHandler,

 Map sharedState, Map options)

 {

 _subject = subject;

 _callbackHandler = callbackHandler;

 _sharedState = sharedState;

 _options = options;

 }

 public boolean login() throws LoginException

 {

 boolean succeeded = true;

 // Gets the CALLBACK information

 javax.security.auth.callback.Callback callbacks[] = new javax.security.

 auth.callback.Callback[7];

 callbacks[0] = new javax.security.auth.callback.NameCallback(

 "Username: ");

 callbacks[1] = new javax.security.auth.callback.PasswordCallback(

 "Password: ", false);

 callbacks[2] = new com.ibm.websphere.security.auth.callback.

 WSCredTokenCallbackImpl ("Credential Token: ");

586 Securing applications and their environment

callbacks[3] = new com.ibm.wsspi.security.auth.callback.

 WSServletRequestCallback ("HttpServletRequest: ");

 callbacks[4] = new com.ibm.wsspi.security.auth.callback.

 WSServletResponseCallback ("HttpServletResponse: ");

 callbacks[5] = new com.ibm.wsspi.security.auth.callback.

 WSAppContextCallback ("ApplicationContextCallback: ");

 callbacks[6] = new com.ibm.wsspi.security.auth.callback.

 WSTokenHolderCallback ("Authz Token List: ");

 try

 {

 callbackHandler.handle(callbacks);

 }

 catch (Exception e)

 {

 // Handles exceptions

 throw new WSLoginFailedException (e.getMessage(), e);

 }

 // Sees which callbacks contain information

 uid = ((NameCallback) callbacks[0]).getName();

 char password[] = ((PasswordCallback) callbacks[1]).getPassword();

 byte[] credToken = ((WSCredTokenCallbackImpl) callbacks[2]).getCredToken();

 javax.servlet.http.HttpServletRequest request = ((WSServletRequestCallback)

 callbacks[3]).getHttpServletRequest();

 javax.servlet.http.HttpServletResponse response = ((WSServletResponseCallback)

 callbacks[4]).getHttpServletResponse();

 java.util.Map appContext = ((WSAppContextCallback)

 callbacks[5]).getContext();

 java.util.List authzTokenList = ((WSTokenHolderCallback)

 callbacks[6]).getTokenHolderList();

 // Gets the SHARED STATE information

 principal = (WSPrincipal) _sharedState.get(com.ibm.wsspi.security.

 auth.callback.Constants.WSPRINCIPAL_KEY);

 credential = (WSCredential) _sharedState.get(com.ibm.wsspi.security.

 auth.callback.Constants.WSCREDENTIAL_KEY);

 defaultAuthzToken = (AuthorizationToken) _sharedState.get(com.ibm.

 wsspi.security.auth.callback.Constants.WSAUTHZTOKEN_KEY);

 // What you tend to do with this information depends upon the scenario

 // that you are trying to accomplish. This example demonstrates how to

 // access various different information:

 // - Determine if a login is initial versus propagation

 // - Deserialize a custom authorization token (For more information, see

 //

“Security attribute propagation” on page 191 // - Add a new custom authorization token (For more

information, see // “Security attribute propagation” on page 191 // - Look for a WSCredential and read

attributes, if found. // - Look for a WSPrincipal and read attributes, if found. // - Look for a default

AuthorizationToken and add attributes, if found. // - Read the header attributes from the

HttpServletRequest, if found. // - Add an attribute to the HttpServletResponse, if found. // - Get the Web

application name from the appContext, if found. // - Determines if a login is initial versus propagation. This

is most // useful when login module is first. boolean requiresLogin = ((WSTokenHolderCallback)

callbacks[6]).requiresLogin(); // initial login - asserts privilege attributes based on user identity if

(requiresLogin) { // If you are validating a token from another server, there is an // application programming

interface (API) to get the uniqueID from it. if (credToken != null && uid == null) { try { String uniqueID =

WSSecurityPropagationHelper. validateLTPAToken(credToken); String realm =

WSSecurityPropagationHelper.getRealmFromUniqueID (uniqueID); // Now set it to the UID so you can use

that to either map or // login with. uid = WSSecurityPropagationHelper.getUserFromUniqueID (uniqueID); }

catch (Exception e) { // handle exception } } // Adds a Hashtable to shared state. // Note: You can perform

custom mapping on the NameCallback value returned // to change the identity based upon your own

mapping rules. uid = mapUser (uid); // Gets the default InitialContext for this server.

javax.naming.InitialContext ctx = new javax.naming.InitialContext(); // Gets the local UserRegistry object.

Chapter 8. Developing extensions to the WebSphere security infrastructure 587

com.ibm.websphere.security.UserRegistry reg = (com.ibm.websphere.security. UserRegistry)

ctx.lookup(″UserRegistry″); // Gets the user registry uniqueID based on the uid specified in the //

NameCallback. String uniqueid = reg.getUniqueUserId(uid); uid =

WSSecurityPropagationHelper.getUserFromUniqueID (uniqueID); // Gets the display name from the user

registry based on the uniqueID. String securityName = reg.getUserSecurityName(uid); // Gets the groups

associated with this uniqueID. java.util.List groupList = reg.getUniqueGroupIds(uid); // Creates the

java.util.Hashtable with the information you gathered from // the UserRegistry. java.util.Hashtable hashtable

= new java.util.Hashtable(); hashtable.put(com.ibm.wsspi.security.token.AttributeNameConstants.

WSCREDENTIAL_UNIQUEID, uniqueid);

hashtable.put(com.ibm.wsspi.security.token.AttributeNameConstants. WSCREDENTIAL_SECURITYNAME,

securityName); hashtable.put(com.ibm.wsspi.security.token.AttributeNameConstants.

WSCREDENTIAL_GROUPS, groupList); // Adds a cache key that is used as part of the lookup mechanism

for // the created Subject. The cache key can be an Object, but should // implement the toString() method.

Make sure the cacheKey contains // enough information to scope it to the user and any additional //

attributes that you use. If you do not specify this property the // Subject is scoped to the

WSCREDENTIAL_UNIQUEID returned, by default.

hashtable.put(com.ibm.wsspi.security.token.AttributeNameConstants. WSCREDENTIAL_CACHE_KEY,

″myCustomAttribute″ + uniqueid); // Adds the hashtable to the sharedState of the Subject.

_sharedState.put(com.ibm.wsspi.security.token.AttributeNameConstants.

WSCREDENTIAL_PROPERTIES_KEY,hashtable); } // propagation login - process propagated tokens else

{ // - Deserializes a custom authorization token. For more information, see // “Security attribute

propagation” on page 191. // This can be done at any login module plug in point (first, // middle, or last). if

(authzTokenList != null) { // Iterates through the list looking for your custom token for (int i=0;

i<authzTokenList.size(); i++) { TokenHolder tokenHolder = (TokenHolder)authzTokenList.get(i); // Looks for

the name and version of your custom AuthorizationToken // implementation if

(tokenHolder.getName().equals(″com.ibm.websphere.security.token. CustomAuthorizationTokenImpl″) &&

tokenHolder.getVersion() == 1) { // Passes the bytes into your custom AuthorizationToken constructor // to

deserialize customAuthzToken = new com.ibm.websphere.security.token.

CustomAuthorizationTokenImpl(tokenHolder.getBytes()); } } } // - Adds a new custom authorization token

(For more information, // see “Security attribute propagation” on page 191) // This can be done at any login

module plug in point (first, middle, // or last). else { // Gets the PRINCIPAL from the default

AuthenticationToken. This must // match all of the tokens. defaultAuthToken =

(com.ibm.wsspi.security.token.AuthenticationToken)

sharedState.get(com.ibm.wsspi.security.auth.callback.Constants. WSAUTHTOKEN_KEY); String principal =

defaultAuthToken.getPrincipal(); // Adds a new custom authorization token. This is an initial login. // Pass

the principal into the constructor customAuthzToken = new com.ibm.websphere.security.token.

CustomAuthorizationTokenImpl(principal); // Adds any initial attributes if (customAuthzToken != null) {

customAuthzToken.addAttribute(″key1″, ″value1″); customAuthzToken.addAttribute(″key1″, ″value2″);

customAuthzToken.addAttribute(″key2″, ″value1″); customAuthzToken.addAttribute(″key3″, ″something

different″); } } } // - Looks for a WSCredential and read attributes, if found. // This is most useful when

plugged in as the last login module. if (credential != null) { try { // Reads some data from the credential

String securityName = credential.getSecurityName(); java.util.ArrayList = credential.getGroupIds(); } catch

(Exception e) { // Handles exceptions throw new WSLoginFailedException (e.getMessage(), e); } } // -

Looks for a WSPrincipal and read attributes, if found. // This is most useful when plugged as the last login

module. if (principal != null) { try { // Reads some data from the principal String principalName =

principal.getName(); } catch (Exception e) { // Handles exceptions throw new WSLoginFailedException

(e.getMessage(), e); } } // - Looks for a default AuthorizationToken and add attributes, if found. // This is

most useful when plugged in as the last login module. if (defaultAuthzToken != null) { try { // Reads some

data from the defaultAuthzToken String[] myCustomValue = defaultAuthzToken.getAttributes (″myKey″); //

Adds some data if not present in the defaultAuthzToken if (myCustomValue == null)

defaultAuthzToken.addAttribute (″myKey″, ″myCustomData″); } catch (Exception e) { // Handles exceptions

throw new WSLoginFailedException (e.getMessage(), e); } } // - Reads the header attributes from the

HttpServletRequest, if found. // This can be done at any login module plug in point (first, middle, // or last).

if (request != null) { java.util.Enumeration headerEnum = request.getHeaders(); while

(headerEnum.hasMoreElements()) { System.out.println (″Header element: ″ +

(String)headerEnum.nextElement()); } } // - Adds an attribute to the HttpServletResponse, if found // This

588 Securing applications and their environment

can be done at any login module plug in point (first, middle, // or last). if (response != null) {

response.addHeader (″myKey″, ″myValue″); } // - Gets the Web application name from the appContext, if

found // This can be done at any login module plug in point (first, middle, // or last). if (appContext != null) {

String appName = (String) appContext.get(com.ibm.wsspi.security.auth.

callback.Constants.WEB_APP_NAME); } return succeeded; } public boolean commit() throws

LoginException { boolean succeeded = true; // Add any objects here that you have created and belong in

the // Subject. Make sure the objects are not already added. If you added // any sharedState variables,

remove them before you exit. If the abort() // method gets called, make sure you cleanup anything added

to the // Subject here. if (customAuthzToken != null) { // Sets the customAuthzToken token into the Subject

try { // Do this in a doPrivileged code block so that application code // does not need to add additional

permissions java.security.AccessController.doPrivileged(new java.security.PrivilegedAction() { public Object

run() { try { // Adds the custom authorization token if it is not // null and not already in the Subject if

((customAuthzTokenPriv != null) && (!_subject.getPrivateCredentials().contains(customAuthzTokenPriv))) {

_subject.getPrivateCredentials().add(customAuthzTokenPriv); } } catch (Exception e) { throw new

WSLoginFailedException (e.getMessage(), e); } return null; } }); } catch (Exception e) { throw new

WSLoginFailedException (e.getMessage(), e); } } return succeeded; } public boolean abort() throws

LoginException { boolean succeeded = true; // Makes sure to remove all objects that have already been

added (both into the // Subject and shared state). if (customAuthzToken != null) { // remove the

customAuthzToken token from the Subject try { final AuthorizationToken customAuthzTokenPriv =

customAuthzToken; // Do this in a doPrivileged block so that application code does not need // to add

additional permissions java.security.AccessController.doPrivileged(new java.security.PrivilegedAction() {

public Object run() { try { // Removes the custom authorization token if it is not // null and not already in the

Subject if ((customAuthzTokenPriv != null) && (_subject.getPrivateCredentials().

contains(customAuthzTokenPriv))) { _subject.getPrivateCredentials(). remove(customAuthzTokenPriv); } }

catch (Exception e) { throw new WSLoginFailedException (e.getMessage(), e); } return null; } }); } catch

(Exception e) { throw new WSLoginFailedException (e.getMessage(), e); } } return succeeded; } public

boolean logout() throws LoginException { boolean succeeded = true; // Makes sure to remove all objects

that have already been added // (both into the Subject and shared state). if (customAuthzToken != null) { //

Removes the customAuthzToken token from the Subject try { final AuthorizationToken

customAuthzTokenPriv = customAuthzToken; // Do this in a doPrivileged code block so that application

code does // not need to add additional permissions java.security.AccessController.doPrivileged(new

java.security. PrivilegedAction() { public Object run() { try { // Removes the custom authorization token if it

is not null and not // already in the Subject if ((customAuthzTokenPriv != null) && (_subject.

getPrivateCredentials(). contains(customAuthzTokenPriv))) {

_subject.getPrivateCredentials().remove(customAuthzTokenPriv); } } catch (Exception e) { throw new

WSLoginFailedException (e.getMessage(), e); } return null; } }); } catch (Exception e) { throw new

WSLoginFailedException (e.getMessage(), e); } } return succeeded; } }

After developing your custom login module for a system login configuration, you can configure the system

login using either the administrative console or using the wsadmin utility. To configure the system login

using the administrative console, click Security > Secure administration, applications, and

infrastructure. Under Java Authentication and Authorization Service, click System logins. For more

information on using the wsadmin utility for system login configuration, see “Customization of a server-side

Java Authentication and Authorization Service authentication and login configuration” on page 573. Also

refer to the “Customization of a server-side Java Authentication and Authorization Service authentication

and login configuration” on page 573 article for information on system login modules and to determine

whether to add additional login modules.

Example: Getting the caller subject from the thread

The Caller subject (or ″received subject″) contains the user authentication information that is used in the

call for this request. This subject is returned after issuing the WSSubject.getCallerSubject application

programming interface (API) to prevent replacing existing objects. The subject is marked read-only. This

API can be used to get access to the WSCredential credential so that you can put or set data in the

hashmap within the credential.

Chapter 8. Developing extensions to the WebSphere security infrastructure 589

Most data within the subject is not propagated downstream to another server. Only the credential token

within the WSCredential credential is propagated downstream and a new caller subject is generated.

try

{

 javax.security.auth.Subject caller_subject;

 com.ibm.websphere.security.cred.WSCredential caller_cred;

 caller_subject = com.ibm.websphere.security.auth.WSSubject.getCallerSubject();

 if (caller_subject != null)

 {

 caller_cred = caller_subject.getPublicCredentials

 (com.ibm.websphere.security.cred.WSCredential.class).iterator().next();

 String CALLERDATA = (String) caller_cred.get (″MYKEY″);

 System.out.println(″My data from the Caller credential is: ″ + CALLERDATA);

 }

}

catch (WSSecurityException e)

{

 // log error

}

catch (Exception e)

{

 // log error

}

Requirement: You need the following Java 2 security permissions to runthis API: permission

javax.security.auth.AuthPermission ″wssecurity.getCallerSubject;″.

Example: Getting the RunAs subject from the thread

The RunAs subject or invocation subject contains the user authentication information for the RunAs mode

set in the application deployment descriptor for this method.

The RunAs subject (or invocation subject) contains the user authentication information for the RunAs

mode set in the application deployment descriptor for this method. This subject is marked read-only when

returned from the WSSubject.getRunAsSubject application programming interface (API) to prevent

replacing existing objects. You can use this API to get access to the WSCredential credential, which is

documented in the API documentation, so that you can put or set data in the hashmap within the

credential.

Most data within the Subject is not propagated downstream to another server. Only the credential token

within the WSCredential credential is propagated downstream and a new Caller subject is generated.

try

{

 javax.security.auth.Subject runas_subject;

 com.ibm.websphere.security.cred.WSCredential runas_cred;

 runas_subject = com.ibm.websphere.security.auth.WSSubject.getRunAsSubject();

 if (runas_subject != null)

 {

 runas_cred = runas_subject.getPublicCredentials(

 com.ibm.websphere.security.cred.WSCredential.class).iterator().next();

 String RUNASDATA = (String) runas_cred.get ("MYKEY");

 System.out.println("My data from the RunAs credential is: " + RUNASDATA);

 }

590 Securing applications and their environment

}

catch (WSSecurityException e)

{

 // log error

}

catch (Exception e)

{

 // log error

}

Requirements: You need the Java 2 security permissions to run this API: permission

javax.security.auth.AuthPermission ″wssecurity.getRunAsSubject;″.

Example: Overriding the RunAs subject on the thread

To extend the function that is provided by the Java Authentication and Authorization Service (JAAS)

application programming interfaces (APIs), you can set the RunAs subject or invocation subject with a

different valid entry that is used for outbound requests on this running thread.

This extension gives you the flexibility to associate the Subject with all the remote calls on this thread

whether you use a WSSubject.doAs method to associate the subject with the remote action. For example:

try

{

javax.security.auth.Subject runas_subject, caller_subject;

 runas_subject = com.ibm.websphere.security.auth.WSSubject.getRunAsSubject();

 caller_subject = com.ibm.websphere.security.auth.WSSubject.getCallerSubject();

 // set a new RunAs subject for the thread, overriding the one declaratively set

 com.ibm.websphere.security.auth.WSSubject.setRunAsSubject(caller_subject);

 // do some remote calls

 // restore back to the previous runAsSubject

 com.ibm.websphere.security.auth.WSSubject.setRunAsSubject(runas_subject);

}

catch (WSSecurityException e)

{

 // log error

}

catch (Exception e)

{

 // log error

}

You need the following Java 2 security permissions to run these APIs:

v permission javax.security.auth.AuthPermission ″wssecurity.getRunAsSubject″;

v permission javax.security.auth.AuthPermission ″wssecurity.getCallerSubject″;

v permission javax.security.auth.AuthPermission ″wssecurity.setRunAsSubject″;

Example: User revocation from a cache

In WebSphere Application Server, Version 5.0.2 and later, revocation of a user from the security cache

using an MBean interface is supported.

This procedure can be called from another JACL script. The following Java Command Language (JACL)

revokes a user when given the realm and the user ID, and cycles through all the security administration

Chapter 8. Developing extensions to the WebSphere security infrastructure 591

MBean instances that are returned for the entire cell when run from the deployment manager wsadmin

command. The command also purges the user from the cache during each process.

Note: When a user is removed from authentication cache, the user can still login to WebSphere

Application Server at any time. Removing the cache only removes the user from the runtime cache.

It does not remove the user from registry, nor does it lock out the user.

 Attention: In some of the following lines of code, the lines are split into two or more lines for illustrative

purposes only.

proc revokeUser {realm userid} {

 global AdminControl AdminConfig

 if {[catch {$AdminControl queryNames WebSphere:type=SecurityAdmin,*}

 result]} {

 puts stdout "\$AdminControl queryNames WebSphere:type=SecurityAdmin,*

 caught an exception $result\n"

 return

 } else {

 if {$result != {}} {

 foreach secBean $result {

 if {$secBean != {} || $secBean != "null"} {

 if {[catch {$AdminControl invoke $secBean

 purgeUserFromAuthCache "$realm $userid"} result]} {

 puts stdout "\$AdminControl invoke $secBean

 purgeUserFromAuthCache $realm $userid caught an

 exception $result\n"

 return

 } else {

 puts stdout "\nUser $userid has been purged from the

 cache of process $secBean\n"

 }

 } else {

 puts stdout "unable to get securityAdmin Mbean, user

 $userid not revoked"

 }

 }

 } else {

 puts stdout "Security Mbean was not found\n"

 return

 }

 }

 return true

}

Enabling identity assertion with trust validation

By enabling identity assertion with trust validation, an application can use the JAAS login configuration to

perform a programmatic identity assertion.

To enable an identity assertion with trust validation, follow these steps:

1. Create a custom login module to perform a trust validation. The login module must set trust and

identity information in the shared state, which is then passed on to the IdentityAssertionLoginModule.

The trust and identity information is stored in a map in the shared state under the key,

com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule.state. If this key is missing

from the shared state, a WSLoginFailedException error is thrown by the IdentityAssertionLoginModule

module. The custom login module should include the following:

v A trust key named com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule.trust.

If the trust key is set to true, trust is established. If the trust key is set to false, the

IdentityAssertionLoginModule module creates a WSLoginFailedException error.

592 Securing applications and their environment

v The identity of the java.security.Principal type set in the

com.ibm.wsspi.security.common.auth.module.IdenityAssertionLoginModule.principal key.

v The identity in the form of a java,security.cert.X509Certificate[] certificate set in the

com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule.certificates key.

Note: If both a principal and a certificate are supplied, the principal is used, and a warning is issued.

2. Create a new Java Authentication and Authorization Service (JAAS) configuration for application logins.

It contains the user-implemented trust validation custom login module and the

IdentityAssertionLoginModule module. To configure an application login configuration from the

administrative console, complete the following steps:

a. Click Security > Secure administration, applications, and infrastructure.

b. Under Java Authentication and Authorization Service, click Application logins > New.

c. Supply the JAAS configuration with an alias, and then click Apply.

d. Under Additional properties, click JAAS Login Modules > New.

e. Enter the module class name of the user-implemented trust validation custom login module, and

then click Apply.

f. Enter the com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule module class

name.

g. Make sure that the module class name classes are in the correct order. The user-implemented

trust validation login module must be the first class in the list, and the IdentityAssertionLoginModule

module must be the second class.

h. Click Save. The new JAAS configuration is used by the application to perform an identity assertion.

An application can now use the JAAS login configuration to perform a programmatic identity assertion. The

application can create a login context for the JAAS configuration created in step 2, then login to that login

context with the identity it asserts to. If the login is successful, that identity can be set in the current

running process, as in the following example:

MyCallbackHandler handler = new MyCallbackHandler(new MyPrincipal(“Joe”));

LoginContext lc = new LoginContext(“MyAppLoginConfig”, handler);

lc.login(); //assume successful

Subject s = lc.getSubject();

WSSubject.setRunAsSubject(s);

// From here on, the runas identity is “Joe”

Secure transports with JSSE and JCE programming interfaces

This topic provides detailed information about transport security using Java Secure Socket Extension

(JSSE) and Java Cryptography Extension (JCE) programming interfaces. Within this topic, there is a

description of the IBM version of the Java Cryptography Extension Federal Information Processing

Standard (IBMJCEFIPS).

Java Secure Socket Extension

Java Secure Socket Extension (JSSE) provides the transport security for WebSphere Application Server.

JSSE provides the application programming interface (API) framework and the implementation of the APIs

for Secure Sockets Layer (SSL) and Transport Layer Security (TLS) protocols, including functionality for

data encryption, message integrity, and authentication.

JSSE APIs are integrated into the Java 2 SDK, Standard Edition (J2SDK), Version 5. The API package for

JSSE APIs is javax.net.ssl.*. Documentation for using JSSE APIs can be found in the J2SE 5 API

documentation that is located at http://java.sun.com/j2se/1.5.0/docs/api/index.html.

Several JSSE providers ship with the J2SDK Version 5 that comes with WebSphere Application Server.

The IBMJSSE provider is used in previous WebSphere Application Server releases. Associated with the

Chapter 8. Developing extensions to the WebSphere security infrastructure 593

IBMJSSE provider is the IBMJSSEFIPS provider, which is used when FIPS is enabled on the server. Both

of these providers do not work with the Java Message Service (JMS) and HTTP transports in WebSphere

Application Server Version 6.1. These transports take advantage of the J2SDK Verison 5 network

input/output (NIO) asynchronous channels.

The HTTP and JMS transports use a new IBMJSSE2 provider. All other transports in WebSphere

Application Server Version 6.x currently use the IBMJSSE2 provider, but can be switched to the old

IBMJSSE provider, if necessary (specified in the SSL repertoire configuration).

For more information on the new IBMJSSE2 provider, please review the documentation located in the

http://www.ibm.com/developerworks/java/jdk/security/142/jsse2docs.zip file. After it is unzipped, the

JSSE2 Reference Guide can be found at jsse2Docs/JSSE2RefGuide.html, the JSSE2 API documentation

can be found at jsse2Docs/api/index.html and finally, the JSSE2 samples can be found at

jsse2Docs/samples.

Customizing Java Secure Socket Extension

You can customize a number of aspects of JSSE by plugging in different implementations of Cryptography

Package Provider, X509Certificate and HTTPS protocols, or specifying different default keystore files, key

manager factories, and trust manager factories. The following table summarizes which aspects can be

customized, what the defaults are, and which mechanisms are used to provide customization. You can

customize the following key aspects:

 Customizable item Default How to customize

X509Certificate X509Certificate

implementation from IBM

The cert.provider.x509v1 security property

HTTPS protocol Implementation from IBM The java.protocol.handler.pkgs system property

Cryptography Package Provider IBMJSSE A security.provider.n= line in security properties file.

See description.

Default keystore None The * javax.net.ssl.keyStore system property

Default truststore jssecacerts, if it exists.

Otherwise, cacerts

The * javax.net.ssl.trustStore system property

Default key manager factory IbmX509 The ssl.KeyManagerFactory.algorithm security

property

Default trust manager factory IbmX509 The ssl.TrustManagerFactory.algorithm security

property

For aspects that you can customize by setting a system property, statically set the system property by

using the -D option of the Java command. You can set the system property using the administrative

console, or set the system property dynamically by calling the java.lang.System.setProperty method in

your code: System.setProperty(propertyName,″propertyValue″).

For aspects that you can customize by setting a Java security property, statically specify a security

property value in the java.security properties file, which is located in the app_server_root/java/jre/lib/

security directory. The security property is propertyName=propertyValue. Dynamically set the Java security

property by calling the java.security.Security.setProperty method in your code.

Application Programming Interface

The JSSE provides a standard application programming interface (API) that is available in packages of the

javax.net file, javax.net.ssl file, and the javax.security.cert file. The APIs cover:

v Sockets and SSL sockets

v Factories to create the sockets and SSL sockets

594 Securing applications and their environment

v Secure socket context that acts as a factory for secure socket factories

v Key and trust manager interfaces

v Secure HTTP URL connection classes

v Public key certificate API

You can find more information documented for the JSSE APIs if you access the following information:

Version 1.4.2

1. Access the http://www.ibm.com/developerworks/java/jdk/security/ Web site.

2. Click Java 1.4.2.

3. Click Javadoc HTML documentation in the Java Secure Socket Extension (JSSE) Guide

section.

Samples using Java Secure Socket Extension

The Java Secure Socket Extension (JSSE) also provides samples to demonstrate its functionality. The

Java Secure Socket Extension (JSSE) also provides samples to demonstrate its functionality. You can

access the samples in the following location:

Version 1.4.2

1. Access the http://www.ibm.com/developerworks/java/jdk/security/ Web site.

2. Click Java 1.4.2.

3. Click jssedocs_samples.zip in the Java Secure Socket Extension (JSSE) Guide section.

Look for the following files:

 Files Description

ClientJsse.java Demonstrates a simple client and server interaction using JSSE. All enabled

cipher suites are used.

OldServerJsse.java Back-level samples

ServerPKCS12Jsse.java Demonstrates a simple client and server interaction using JSSE with the

PKCS12 keystore file. All enabled cipher suites are used.

ClientPKCS12Jsse.java Demonstrates a simple client and server interaction using JSSE with the

PKCS12 keystore file. All enabled cipher suites are used.

UseHttps.java Demonstrates accessing an SSL or non-SSL Web server using the Java

protocol handler of the com.ibm.net.ssl.www.protocol class. The URL is

specified with the http or https prefix. The HTML that is returned from this

site is displayed.

See more instructions in the source code. Follow these instructions before you run the samples.

Permissions for Java 2 security

You might need the following permissions to run an application with JSSE: This list is for reference only.

v java.util.PropertyPermission ″java.protocol.handler.pkgs″, ″write″

v java.lang.RuntimePermission ″writeFileDescriptor″

v java.lang.RuntimePermission ″readFileDescriptor″

v java.lang.RuntimePermission ″accessClassInPackage.sun.security.x509″

v java.io.FilePermission ″${user.install.root}${/}etc${/}.keystore″, ″read″

v java.io.FilePermission ″${user.install.root}${/}etc${/}.truststore″, ″read″

For the IBMJSSE provider:

v java.security.SecurityPermission ″putProviderProperty.IBMJSSE″

v java.security.SecurityPermission ″insertProvider.IBMJSSE″

Chapter 8. Developing extensions to the WebSphere security infrastructure 595

http://www.ibm.com/developerworks/java/jdk/security/
http://www.ibm.com/developerworks/java/jdk/security/

For the SUNJSSE provider:

v java.security.SecurityPermission ″putProviderProperty.SunJSSE″

v java.security.SecurityPermission ″insertProvider.SunJSSE″

Debugging

By configuring through the javax.net.debug system property, JSSE provides the following dynamic debug

tracing: -Djavax.net.debug=true.

A value of true turns on the trace facility, provided that the debug version of JSSE is installed.

Documentation

See the Security: Resources for learning topic for documentation references to JSSE.

JCE

Java Cryptography Extension (JCE) provides cryptographic, key and hash algorithms for WebSphere

Application Server. JCE provides a framework and implementations for encryption, key generation, key

agreement, and Message Authentication Code (MAC) algorithms. Support for encryption includes

symmetric, asymmetric, block and stream ciphers.

IBMJCE

The IBM version of the Java Cryptography Extension (IBMJCE) is an implementation of the JCE

cryptographic service provider that is used in WebSphere Application Server. The IBMJCE is similar to

SunJCE, except that the IBMJCE offers more algorithms:

v Cipher algorithm (AES, DES, TripleDES, PBEs, Blowfish, and so on)

v Signature algorithm (SHA1withRSA, MD5withRSA, SHA1withDSA)

v Message digest algorithm (MD5, MD2, SHA1, SHA-256, SHA-384, SHA-512)

v Message authentication code (HmacSHA1, HmacMD5)

v Key agreement algorithm (DiffieHellman)

v Random number generation algorithm (IBMSecureRandom, SHA1PRNG)

v Key store (JKS, JCEKS, PKCS12, JCERACFKS [z/OS only])

v Key store (JKS, JCEKS, PKCS12, JCERACFKS [z/OS only])

The IBMJCE belongs to the com.ibm.crypto.provider.* packages.

For further information, see the information on JCE on the following web site: http://www.ibm.com/
developerworks/java/jdk/security/142/.

IBMJCEFIPS

The IBM version of the Java Cryptography Extension Federal Information Processing Standard

(IBMJCEFIPS) is an implementation of the JCE cryptographic service provider that is used in WebSphere

Application Server. The IBMJCEFIPS service provider implements the following:

v Signature algorithms (SHA1withDSA, SHA1withRSA)

v Cipher algorithms (AES, TripleDES, RSA)

v Key agreement algorithm (DiffieHellman)

v Key (pair) generator (DSA, AES, TripleDES, HmacSHA1, RSA, DiffieHellman)

v Message authentication code (MAC) (HmacSHA1)

v Message digest (MD5, SHA-1, SHA-256, SHA-384, SHA-512)

v Algorithm parameter generator (DiffieHellman, DSA)

v Algorithm parameter (AES, DiffieHellman, DES, TripleDES, DSA)

596 Securing applications and their environment

v Key factory (DiffieHellman, DSA, RSA)

v Secret key factory (AES, TripleDES)

v Certificate (X.509)

v Secure random (IBMSecureRandom)

Application Programming Interface

Java Cryptography Extension (JCE) has a provider-based architecture. Providers can be plugged into the

JCE framework by implementing the APIs that are defined by the JCE. The JCE APIs cover:

v Symmetric bulk encryption, such as DES, RC2, and IDEA

v Symmetric stream encryption, such as RC4

v Asymmetric encryption, such as RSA

v Password-based encryption (PBE)

v Key agreement

v Message authentication codes

There is more information documented for the JCE APIs on the http://www.ibm.com/developerworks/
java/jdk/security/ Web site.

Samples using Java Cryptography Extension

There are samples located on the http://www.ibm.com/developerworks/java/jdk/security/ Web site in

the jceDocs_samples.zip file. Unzip the file and locate the following samples in the jceDocs/samples

directory:

 File Description

SampleDSASignature.java Demonstrates how to generate a pair of DSA keys (a public key and a

private key) and use the key to digitally sign a message using the

SHA1withDSA algorithm

SampleMarsCrypto.java Demonstrates how to generate a Mars secret key, and how to do Mars

encryption and decryption

SampleMessageDigests.java Demonstrates how to use the message digest for MD2 and MD5

algorithms

SampleRSACrypto.java Demonstrates how to generate an RSA key pair, and how to do RSA

encryption and decryption

SampleRSASignatures.java Demonstrates how to generate a pair of RSA keys (a public key and a

private key) and use the key to digitally sign a message using the

SHA1withRSA algorithm

SampleX509Verification.java Demonstrates how to verify X509 certificates

Documentation

Refer to the Security: Resources for learning for documentation on JCE.

Configuring Federal Information Processing Standard Java Secure

Socket Extension files

Use this topic to configure Federal Information Processing Standard Java Secure Socket Extension files.

In WebSphere Application Server, the Java Secure Socket Extension (JSSE) provider used is the

IBMJSSE2 provider. This provider delegates encryption and signature functions to the Java Cryptography

Chapter 8. Developing extensions to the WebSphere security infrastructure 597

Extension (JCE) provider. Consequently, IBMJSSE2 does not need to be Federal Information Processing

Standard (FIPS)-approved because it does not perform cryptography. However, the JCE provider requires

FIPS-approval.

WebSphere Application Server provides a FIPS-approved IBMJCEFIPS provider that IBMJSSE2 can

utilize. The IBMJCEFIPS provider that is shipped in WebSphere Application Server Version 6.1 supports

the following SSL ciphers:

v SSL_RSA_WITH_AES_128_CBC_SHA

v SSL_RSA_WITH_3DES_EDE_CBC_SHA

v SSL_RSA_FIPS_WITH_3DES_EDE_CBC_SHA

v SSL_DHE_RSA_WITH_AES_128_CBC_SHA

v SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA

v SSL_DHE_DSS_WITH_AES_128_CBC_SHA

v SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA

Even though the IBMJSSEFIPS provider is still present, the runtime does not use this provider. If

IBMJSSEFIPS is specified as a contextProvider, WebSphere Application Server automatically defaults to

the IBMJSSE2 provider (with the IBMJCEFIPS provider) for supporting FIPS. When enabling the Use the

United States Federal Information Processing Standard (FIPS) algorithms option on the server SSL

certificate and key management panel, the runtime always uses IBMJSSE2, despite the contextProvider

that you specify for SSL (IBMJSSE, IBMJSSE2 or IBMJSSEFIPS). Also, because FIPS requires the SSL

protocol be TLS, the runtime always uses TLS when FIPS is enabled, regardless of the SSL protocol

setting in the SSL repertoire. This simplifies the FIPS configuration in Version 6.1Version 6.1 because an

administrator needs to enable only the Use the United States Federal Information Processing

Standard (FIPS) algorithms option on the server SSL certificate and key management panel to enable all

transports using SSL.

1. Click Security > SSL certificate and key management.

2. Select the Use the United States Federal Information Processing Standard (FIPS) algorithms

option and click Apply. This option makes IBMJSSE2 and IBMJCEFIPS the active providers.

3. Accommodate Java clients that must access enterprise beans.

Change the com.ibm.security.useFIPS property value from false to true in the profile_root/
properties/ssl.client.props file.

4. Ensure that the java.security includes the provider.

Edit the java.security file to insert the IBMJCEFIPS provider

(com.ibm.crypto.fips.provider.IBMJCEFIPS) before the IBMJCE provider, and also renumber the other

providers in the provider list. The IBMJCEFIPS provider must be in the java.security file provider list.

The java.security file is located in the WASHOME/java/jre/lib/security directory.

The IBM SDK java.security file looks like the following example after completing this step:

security.provider.1=com.ibm.crypto.fips.provider.IBMJCEFIPS

security.provider.2=com.ibm.crypto.provider.IBMJCE

security.provider.3=com.ibm.jsse.IBMJSSEProvider

security.provider.4=com.ibm.jsse2.IBMJSSEProvider2

security.provider.5=com.ibm.security.jgss.IBMJGSSProvider

security.provider.6=com.ibm.security.cert.IBMCertPath

security.provider.7=com.ibm.crypto.pkcs11.provider.IBMPKCS11

security.provider.8=com.ibm.security.cmskeystore.CMSProvider

security.provider.9=com.ibm.security.jgss.mech.spnego.IBMSPNEGO

If you are using the Sun JDK, the java.security file looks like the following example after completing

this step:

security.provider.1=sun.security.provider.Sun

security.provider.2=com.ibm.security.jgss.IBMJGSSProvider

security.provider.3=com.ibm.crypto.fips.provider.IBMJCEFIPS

security.provider.4=com.ibm.crypto.provider.IBMJCE

598 Securing applications and their environment

security.provider.5=com.ibm.jsse.IBMJSSEProvider

security.provider.6=com.ibm.jsse2.IBMJSSEProvider2

security.provider.7=com.ibm.security.cert.IBMCertPath

#security.provider.8=com.ibm.crypto.pkcs11.provider.IBMPKCS11

After completing these steps, a FIPS-approved JSSE or JCE provider offers increased encryption

capabilities. However, when you use FIPS-approved providers:

v By default, Microsoft Internet Explorer might not have TLS enabled. To enable TLS, open the Internet

Explorer browser and click Tools > Internet Options. On the Advanced tab, select the Use TLS 1.0

option.

Note: Netscape Version 4.7.x and earlier versions might not support TLS.

v IBM Directory Server Version 5.1 (and earlier versions) do not support TLS.

v If you have an administrative client that uses a SOAP connector and you enable FIPS, add the following

line to the profile_root/properties/soap.client.props file:

com.ibm.ssl.contextProvider=IBMJSSEFIPS

v When you select the Use the Federal Information Processing Standard (FIPS) option on the SSL

certificate and key management panel, the Lightweight Third-Party Authentication (LTPA) token format is

not backwards-compatible with previous releases of WebSphere Application Server. However, you can

import the LTPA keys from a previous version of the application server.

Note: When enabling FIPS, you cannot configure cryptographic token devices in the SSL repertoires.

IBMJSSE2 must use IBMJCEFIPS when utilizing cryptographic services for FIPS.

The following FIPS 140-2 approved cryptographic providers that are the only devices that are supported

with the FIPS option:

v IBMJCEFIPS (certificate 376)

v IBM Cryptography for C (ICC) (certificate 384)

The relevant certificates are listed on the NIST Web site: Cryptographic Module Validation Program FIPS

140-1 and FIPS 140-2 Pre-validation List

To unconfigure the FIPS provider, reverse the changes that you made in the previous steps. After you

reverse the changes, verify that you have made the following changes to the sas.client.props,

soap.client.props, and java.security files:

v In the ssl.client.props file, you must change the com.ibm.security.useFIPS value to false.

v In the java.security file, you must change the FIPS provider to a non-FIPS provider.

If you are using the IBM SDK java.security file, you must change the first provider to a non-FIPS

provider as shown in the following example:

#security.provider.1=com.ibm.crypto.fips.provider.IBMJCEFIPS

security.provider.1=com.ibm.crypto.provider.IBMJCE

security.provider.2=com.ibm.jsse.IBMJSSEProvider

security.provider.3=com.ibm.jsse2.IBMJSSEProvider2

security.provider.4=com.ibm.security.jgss.IBMJGSSProvider

security.provider.5=com.ibm.security.cert.IBMCertPath

#security.provider.6=com.ibm.crypto.pkcs11.provider.IBMPKCS11

If you are using the Sun JDK java.security file, you must change the third provider to a non-FIPS

provider as shown in the following example:

security.provider.1=sun.security.provider.Sun

security.provider.2=com.ibm.security.jgss.IBMJGSSProvider

security.provider.3=com.ibm.crypto.fips.provider.IBMJCEFIPS

security.provider.4=com.ibm.crypto.provider.IBMJCE

security.provider.5=com.ibm.jsse.IBMJSSEProvider

security.provider.6=com.ibm.jsse2.IBMJSSEProvider2

security.provider.7=com.ibm.security.cert.IBMCertPath

#security.provider.8=com.ibm.crypto.pkcs11.provider.IBMPKCS11

Chapter 8. Developing extensions to the WebSphere security infrastructure 599

http://csrc.nist.gov/cryptval/140-1/140val-all.htm
http://csrc.nist.gov/cryptval/140-1/140val-all.htm

Implementing tokens for security attribute propagation

As part of an extensible architecture, WebSphere Application Server enables you to implement your own

tokens in which to propagate security attributes.

The following topics are covered in this section:

v Implementing a custom propagation token

v Implementing a custom authorization token

v Implementing a custom a single sign-on token

v Implementing a custom authentication token

v Propagating a custom Java serializable object

Implementing a custom propagation token

This topic explains how you might create your own propagation token implementation, which is set on the

running thread and propagated downstream.

The default propagation token usually is sufficient for propagating attributes that are not user-specific.

Consider writing your own implementation if you want to accomplish one of the following tasks:

v Isolate your attributes within your own implementation.

v Serialize the information using custom serialization. You must deserialize the bytes at the target and add

that information back on the thread by plugging in a custom login module into the inbound system login

configurations. This task also might include encryption and decryption.

To implement a custom propagation token, you must complete the following steps:

1. Write a custom implementation of the PropagationToken interface. Many different methods are

available for implementing the PropagationToken interface. However, make sure that the methods that

are required by the PropagationToken interface and the token interface are fully implemented.

After you implement this interface, you can place it in the app_server_root/classes directory.

Alternatively, you can place the class in any private directory. However, make sure that the WebSphere

Application Server class loader can locate the class and that it is granted the appropriate permissions.

You can add the Java archive (JAR) file or directory that contains this class into the server.policy file

so that it has the required permissions for the server code.

Tip: All of the token types that are defined by the propagation framework have similar interfaces. The

token types are marker interfaces that implement the com.ibm.wsspi.security.token.Token

interface. This interface defines most of the methods. If you plan to implement more than one

token type, consider creating an abstract class that implements the

com.ibm.wsspi.security.token.Token interface. All of your token implementations, including the

propagation token, might extend the abstract class and then most of the work is complete.

To see an implementation of the propagation token, see “Example:

com.ibm.wsspi.security.token.PropagationToken implementation” on page 601.

2. Add and receive the custom propagation token during WebSphere Application Server logins This task

is typically accomplished by adding a custom login module to the various application and system login

configurations. You also can add the implementation from an application. However, to deserialize the

information, you need to plug in a custom login module, which is discussed in “Propagating a custom

Java serializable object” on page 635. The WSSecurityPropagationHelper class has APIs that are used

to set a propagation token on the thread and to retrieve the token from the thread to make updates.

The code sample in “Example: Custom propagation token login module” on page 606 shows how to

determine if the login is an initial login or a propagation login. The difference between these login types

is whether the WSTokenHolderCallback callback contains propagation data. If the callback does not

contain propagation data, initialize a new custom propagation token implementation and set it on the

thread. If the callback contains propagation data, look for your specific custom propagation token

600 Securing applications and their environment

TokenHolder instance, convert the byte array back into your customer PropagationToken object, and

set it back on the thread. The code sample shows both instances.

You can add attributes any time your custom propagation token is added to the thread. If you add

attributes between requests and the getUniqueId method changes, the Common Secure

Interoperability Version 2 (CSIv2) client session is invalidated so that it can send the new information

downstream. Adding attributes between requests can affect performance. In many cases, you want the

downstream requests to receive the new propagation token information.

To add the custom propagation token to the thread, call the

WSSecurityPropagationHelper.addPropagationToken token. This call requires the

WebSphereRuntimePerMission ″setPropagationToken″ Java 2 Security permission.

3. Add your custom login module to WebSphere Application Server system login configurations that

already contain the com.ibm.ws.security.server.lm.wsMapDefaultInboundLoginModule login module for

receiving serialized versions of your custom propagation token You can also add this login module to

any of the application logins where you might want to generate your custom propagation token on the

thread during the login. Alternatively, you can generate the custom PropagationToken implementation

from within your application. However, to deserialize it, you need to add the implementation to the

system login modules.

For information on how to add your custom login module to the existing login configurations, see

“Custom login module development for a system login configuration” on page 579

After completing these steps, you have implemented a custom PropagationToken.

Example: com.ibm.wsspi.security.token.PropagationToken implementation

Use this file to see an example of a propagation token implementation. The following sample code does

not extend an abstract class, but implements the com.ibm.wsspi.security.token.PropagationToken interface

directly. You can implement the interface directly, but it might cause you to write duplicate code. However,

you might choose to implement the interface directly if considerable differences exist between how you

handle the various token implementations.

For information on how to implement a custom propagation token, see “Implementing a custom

propagation token” on page 600.

package com.ibm.websphere.security.token;

import com.ibm.websphere.security.WSSecurityException;

import com.ibm.websphere.security.auth.WSLoginFailedException;

import com.ibm.wsspi.security.token.*;

import com.ibm.websphere.security.WebSphereRuntimePermission;

import java.io.ByteArrayOutputStream;

import java.io.ByteArrayInputStream;

import java.io.DataOutputStream;

import java.io.DataInputStream;

import java.io.ObjectOutputStream;

import java.io.ObjectInputStream;

import java.io.OutputStream;

import java.io.InputStream;

import java.util.ArrayList;

public class CustomPropagationTokenImpl implements com.ibm.wsspi.security.

 token.PropagationToken

{

 private java.util.Hashtable hashtable = new java.util.Hashtable();

 private byte[] tokenBytes = null;

 // 2 hours in millis, by default

 private static long expire_period_in_millis = 2*60*60*1000;

 private long counter = 0;

/**

 * The constructor that is used to create initial PropagationToken instance

 */

Chapter 8. Developing extensions to the WebSphere security infrastructure 601

public CustomAbstractTokenImpl ()

 {

 // set the token version

 addAttribute("version", "1");

 // set the token expiration

 addAttribute("expiration", new Long(System.currentTimeMillis() +

 expire_period_in_millis).toString());

 }

/**

 * The constructor that is used to deserialize the token bytes received

 * during a propagation login.

 */

 public CustomAbstractTokenImpl (byte[] token_bytes)

 {

 try

 {

 hashtable = (java.util.Hashtable) com.ibm.wsspi.security.token.

 WSOpaqueTokenHelper.deserialize(token_bytes);

 }

 catch (Exception e)

 {

 e.printStackTrace();

 }

 }

/**

 * Validates the token including expiration, signature, and so on.

 * @return boolean

 */

 public boolean isValid ()

 {

 long expiration = getExpiration();

 // if you set the expiration to 0, it does not expire

 if (expiration != 0)

 {

 // return if this token is still valid

 long current_time = System.currentTimeMillis();

 boolean valid = ((current_time < expiration) ? true : false);

 System.out.println("isValid: returning " + valid);

 return valid;

 }

 else

 {

 System.out.println("isValid: returning true by default");

 return true;

 }

 }

/**

 * Gets the expiration as a long type.

 * @return long

 */

 public long getExpiration()

 {

 // get the expiration value from the hashtable

 String[] expiration = getAttributes("expiration");

 if (expiration != null && expiration[0] != null)

 {

 // expiration is the first element (should only be one)

 System.out.println("getExpiration: returning " + expiration[0]);

 return new Long(expiration[0]).longValue();

 }

602 Securing applications and their environment

System.out.println("getExpiration: returning 0");

 return 0;

 }

/**

 * Returns if this token should be forwarded/propagated downstream.

 * @return boolean

 */

 public boolean isForwardable()

 {

 // You can choose whether your token gets propagated. In some cases

 // you might want the token to be local only.

 return true;

 }

/**

 * Gets the principal that this token belongs to. If this token is an

 * authorization token, this principal string must match the authentication

 * token principal string or the message is rejected.

 * @return String

 */

 public String getPrincipal()

 {

 // It is not necessary for the PropagationToken to return a principal,

 // because it is not user-centric.

 return "";

 }

/**

 * Returns the unique identifier of the token based upon information that

 * the provider considers makes it a unique token. This identifier is used

 * for caching purposes and might be used in combination with other token

 * unique IDs that are part of the same Subject.

 *

 * This method should return null if you want the accessID of the user to

 * represent its uniqueness. This is the typical scenario.

 *

 * @return String

 */

 public String getUniqueID()

 {

 // If you want to propagate the changes to this token, change the

 // value that this unique ID returns whenever the token is changed.

 // Otherwise, CSIv2 uses an existing session when everything else is

 // the same. This getUniqueID is checked by CSIv2 to determine the

 // session lookup.

 return counter;

 }

/**

 * Gets the bytes to be sent across the wire. The information in the byte[]

 * needs to be enough to recreate the Token object at the target server.

 * @return byte[]

 */

 public byte[] getBytes ()

 {

 if (hashtable != null)

 {

 try

 {

 // Do this if the object is set to read-only during login commit

 // because this guarantees that no new data is set.

 if (isReadOnly() && tokenBytes == null)

 tokenBytes = com.ibm.wsspi.security.token.WSOpaqueTokenHelper.

 serialize(hashtable);

Chapter 8. Developing extensions to the WebSphere security infrastructure 603

// You can deserialize this in the downstream login module using

 // WSOpaqueTokenHelper.deserialize()

 return tokenBytes;

 }

 catch (Exception e)

 {

 e.printStackTrace();

 return null;

 }

 }

 System.out.println("getBytes: returning null");

 return null;

 }

/**

 * Gets the name of the token, which is used to identify the byte[] in the

 * protocol message.

 * @return String

 */

 public String getName()

 {

 return this.getClass().getName();

 }

/**

 * Gets the version of the token as a short type. This code also is used

 * to identify the byte[] in the protocol message.

 * @return short

 */

 public short getVersion()

 {

 String[] version = getAttributes("version");

 if (version != null && version[0] != null)

 return new Short(version[0]).shortValue();

 System.out.println("getVersion: returning default of 1");

 return 1;

 }

/**

 * When called, the token becomes irreversibly read-only. The implementation

 * needs to ensure that any setter methods check that this read-only flag has

 * been set.

 */

 public void setReadOnly()

 {

 addAttribute("readonly", "true");

 }

/**

 * Called internally to see if the token is readonly

 */

 private boolean isReadOnly()

 {

 String[] readonly = getAttributes("readonly");

 if (readonly != null && readonly[0] != null)

 return new Boolean(readonly[0]).booleanValue();

 System.out.println("isReadOnly: returning default of false");

 return false;

 }

/**

 * Gets the attribute value based on the named value.

604 Securing applications and their environment

* @param String key

 * @return String[]

 */

 public String[] getAttributes(String key)

 {

 ArrayList array = (ArrayList) hashtable.get(key);

 if (array != null && array.size() > 0)

 {

 return (String[]) array.toArray(new String[0]);

 }

 return null;

 }

/**

 * Sets the attribute name and value pair. Returns the previous values set

 * for the key, or returns null if the value is not previously set.

 * @param String key

 * @param String value

 * @returns String[];

 */

 public String[] addAttribute(String key, String value)

 {

 // Gets the current value for the key

 ArrayList array = (ArrayList) hashtable.get(key);

 if (!isReadOnly())

 {

 // Increments the counter to change the uniqueID

 counter++;

 // Copies the ArrayList to a String[] as it currently exists

 String[] old_array = null;

 if (array != null && array.size() > 0)

 old_array = (String[]) array.toArray(new String[0]);

 // Allocates a new ArrayList if one was not found

 if (array == null)

 array = new ArrayList();

 // Adds the String to the current array list

 array.add(value);

 // Adds the current ArrayList to the Hashtable

 hashtable.put(key, array);

 // Returns the old array

 return old_array;

 }

 return (String[]) array.toArray(new String[0]);

 }

/**

 * Gets the list of all of the attribute names present in the token.

 * @return java.util.Enumeration

 */

 public java.util.Enumeration getAttributeNames()

 {

 return hashtable.keys();

 }

/**

 * Returns a deep clone of this token. This is typically used by the session

 * logic of the CSIv2 server to create a copy of the token as it exists in the

Chapter 8. Developing extensions to the WebSphere security infrastructure 605

* session.

 * @return Object

 */

 public Object clone()

 {

 com.ibm.websphere.security.token.CustomPropagationTokenImpl deep_clone =

 new com.ibm.websphere.security.token.CustomPropagationTokenImpl();

 java.util.Enumeration keys = getAttributeNames();

 while (keys.hasMoreElements())

 {

 String key = (String) keys.nextElement();

 String[] list = (String[]) getAttributes(key);

 for (int i=0; i<list.length; i++)

 deep_clone.addAttribute(key, list[i]);

 }

 return deep_clone;

 }

}

Example: Custom propagation token login module

This example shows how to determine if the login is an initial login or a propagation login.

public customLoginModule()

{

 public void initialize(Subject subject, CallbackHandler callbackHandler,

 Map sharedState, Map options)

 {

 // (For more information on what to do during initialization, see

 // “Custom login module development for a system login configuration” on page 579.)

 }

 public boolean login() throws LoginException

 {

 // (For more information on what to do during login, see

 // “Custom login module development for a system login configuration” on page 579.)

 // Handles the WSTokenHolderCallback to see if this is an initial

 // or propagation login.

 Callback callbacks[] = new Callback[1];

 callbacks[0] = new WSTokenHolderCallback("Authz Token List: ");

 try

 {

 callbackHandler.handle(callbacks);

 }

 catch (Exception e)

 {

 // handle exception

 }

 // Receives the ArrayList of TokenHolder objects (the serialized tokens)

 List authzTokenList = ((WSTokenHolderCallback) callbacks[0]).getTokenHolderList();

 if (authzTokenList != null)

 {

 // Iterates through the list looking for your custom token

 for (int i=0; i<authzTokenList.size(); i++)

 {

 TokenHolder tokenHolder = (TokenHolder)authzTokenList.get(i);

 // Looks for the name and version of your custom PropagationToken implementation

 if (tokenHolder.getName().equals("

606 Securing applications and their environment

com.ibm.websphere.security.token.CustomPropagationTokenImpl") &&

 tokenHolder.getVersion() == 1)

 {

 // Passes the bytes into your custom PropagationToken constructor

 // to deserialize

 customPropToken = new

 com.ibm.websphere.security.token.CustomPropagationTokenImpl(tokenHolder.

 getBytes());

 }

 }

 }

 else // This is not a propagation login. Create a new instance of

 // your PropagationToken implementation

 {

 // Adds a new custom propagation token. This is an initial login

 customPropToken = new com.ibm.websphere.security.token.CustomPropagationTokenImpl();

 // Adds any initial attributes

 if (customPropToken != null)

 {

 customPropToken.addAttribute("key1", "value1");

 customPropToken.addAttribute("key1", "value2");

 customPropToken.addAttribute("key2", "value1");

 customPropToken.addAttribute("key3", "something different");

 }

 }

 // Note: You can add the token to the thread during commit in case

 // something happens during the login.

 }

 public boolean commit() throws LoginException

 {

 // For more information on what to do during commit, see

 // “Custom login module development for a system login configuration” on page 579

 if (customPropToken != null)

 {

 // Sets the propagation token on the thread

 try

 {

 System.out.println(tc, "*** ADDED MY CUSTOM PROPAGATION TOKEN TO THE THREAD ***");

 // Prints out the values in the deserialized propagation token

 java.util.Enumeration keys = customPropToken.getAttributeNames();

 while (keys.hasMoreElements())

 {

 String key = (String) keys.nextElement();

 String[] list = (String[]) customPropToken.getAttributes(key);

 for (int k=0; k<list.length; k++)

 System.out.println("Key/Value: " + key + "/" + list[k]);

 }

 // This sets it on the thread using getName() + getVersion() as the key

 com.ibm.wsspi.security.token.WSSecurityPropagationHelper.addPropagationToken(

 customPropToken);

 }

 catch (Exception e)

 {

 // Handles exception

 }

 // Now you can verify that you have set it properly by trying to get

 // it back from the thread and print the values.

 try

 {

Chapter 8. Developing extensions to the WebSphere security infrastructure 607

// This gets the PropagationToken from the thread using getName()

 // and getVersion() parameters.

 com.ibm.wsspi.security.token.PropagationToken tempPropagationToken =

 com.ibm.wsspi.security.token.WSSecurityPropagationHelper.getPropagationToken

 ("com.ibm.websphere.security.token.CustomPropagationTokenImpl", 1);

 if (tempPropagationToken != null)

 {

 System.out.println(tc, "*** RECEIVED MY CUSTOM PROPAGATION

 TOKEN FROM THE THREAD ***");

 // Prints out the values in the deserialized propagation token

 java.util.Enumeration keys = tempPropagationToken.getAttributeNames();

 while (keys.hasMoreElements())

 {

 String key = (String) keys.nextElement();

 String[] list = (String[]) tempPropagationToken.getAttributes(key);

 for (int k=0; k<list.length; k++)

 System.out.println("Key/Value: " + key + "/" + list[k]);

 }

 }

 }

 catch (Exception e)

 {

 // Handles exception

 }

 }

 }

 // Defines your login module variables

 com.ibm.wsspi.security.token.PropagationToken customPropToken = null;

}

Implementing a custom authorization token

This task explains how you might create your own AuthorizationToken implementation, which is set in the

login Subject and propagated downstream.

The default AuthorizationToken usually is sufficient for propagating attributes that are user-specific.

Consider writing your own implementation if you want to accomplish one of the following tasks:

v Isolate your attributes within your own implementation.

v Serialize the information using custom serialization. You must deserialize the bytes at the target and add

that information back on the thread. This task also might include encryption and decryption.

v Affect the overall uniqueness of the Subject using the getUniqueID() application programming interface

(API).

To implement a custom authorization token, you must complete the following steps:

1. Write a custom implementation of the AuthorizationToken interface. There are many different methods

for implementing the AuthorizationToken interface. However, make sure that the methods required by

the AuthorizationToken interface and the token interface are fully implemented.

After you implement this interface, you can place it in the app_server_root/classes directory.

Alternatively, you can place the class in any private directory. However, make sure that the WebSphere

Application Server class loader can locate the class and that it is granted the appropriate permissions.

You can add the Java archive (JAR) file or directory that contains this class into the server.policy file

so that it has the necessary permissions that are needed by the server code.

Tip: All of the token types defined by the propagation framework have similar interfaces. Basically, the

token types are marker interfaces that implement the com.ibm.wsspi.security.token.Token

interface. This interface defines most of the methods. If you plan to implement more than one

token type, consider creating an abstract class that implements the

608 Securing applications and their environment

com.ibm.wsspi.security.token.Token interface. All of your token implementations, including the

AuthorizationToken, might extend the abstract class and then most of the work is completed.

To see an implementation of AuthorizationToken, see “Example:

com.ibm.wsspi.security.token.AuthorizationToken implementation”

2. Add and receive the custom AuthorizationToken during WebSphere Application Server logins This task

is typically accomplished by adding a custom login module to the various application and system login

configurations. However, in order to deserialize the information, you must plug in a custom login

module, which is discussed in “Propagating a custom Java serializable object” on page 635. After the

object is instantiated in the login module, you can add the object to the Subject during the commit()

method.

If you only want to add information to the Subject to get propagated, see “Propagating a custom Java

serializable object” on page 635. If you want to ensure that the information is propagated, want to do

you own custom serialization, or want to specify the uniqueness for Subject caching purposes, then

consider writing your own AuthorizationToken implementation.

The code sample in “Example: custom AuthorizationToken login module” on page 614 shows how to

determine if the login is an initial login or a propagation login. The difference between these login types

is whether the WSTokenHolderCallback contains propagation data. If the callback does not contain

propagation data, initialize a new custom AuthorizationToken implementation and set it into the Subject.

If the callback contains propagation data, look for your specific custom AuthorizationToken TokenHolder

instance, convert the byte[] back into your custom AuthorizationToken object, and set it back into the

Subject. The code sample shows both instances.

You can make your AuthorizationToken read-only in the commit phase of the login module. If you do

not make the token read-only, then attributes can be added within your applications.

3. Add your custom login module to WebSphere Application Server system login configurations that

already contain the com.ibm.ws.security.server.lm.wsMapDefaultInboundLoginModule for receiving

serialized versions of your custom authorization token

Because this login module relies on information in the sharedState added by the

com.ibm.ws.security.server.lm.wsMapDefaultInboundLoginModule, add this login module after

com.ibm.ws.security.server.lm.wsMapDefaultInboundLoginModule. For information on how to add your

custom login module to the existing login configurations, see “Custom login module development for a

system login configuration” on page 579

After completing these steps, you have implemented a custom AuthorizationToken.

Example: com.ibm.wsspi.security.token.AuthorizationToken implementation

Use this file to see an example of a AuthorizationToken implementation. The following sample code does

not extend an abstract class, but rather implements the com.ibm.wsspi.security.token.AuthorizationToken

interface directly. You can implement the interface directly, but it might cause you to write duplicate code.

However, you might choose to implement the interface directly if there are considerable differences

between how you handle the various token implementations.

For information on how to implement a custom AuthorizationToken, see “Implementing a custom

authorization token” on page 608.

package com.ibm.websphere.security.token;

import com.ibm.websphere.security.WSSecurityException;

import com.ibm.websphere.security.auth.WSLoginFailedException;

import com.ibm.wsspi.security.token.*;

import com.ibm.websphere.security.WebSphereRuntimePermission;

import java.io.ByteArrayOutputStream;

import java.io.ByteArrayInputStream;

import java.io.DataOutputStream;

import java.io.DataInputStream;

import java.io.ObjectOutputStream;

import java.io.ObjectInputStream;

import java.io.OutputStream;

Chapter 8. Developing extensions to the WebSphere security infrastructure 609

import java.io.InputStream;

import java.util.ArrayList;

public class CustomAuthorizationTokenImpl implements com.ibm.wsspi.security.

 token.AuthorizationToken

{

 private java.util.Hashtable hashtable = new java.util.Hashtable();

 private byte[] tokenBytes = null;

 private static long expire_period_in_millis = 2*60*60*1000;

 // 2 hours in millis, by default

/**

 * Constructor used to create initial AuthorizationToken instance

 */

 public CustomAuthorizationTokenImpl (String principal)

 {

 // Sets the principal in the token

 addAttribute("principal", principal);

 // Sets the token version

 addAttribute("version", "1");

 // Sets the token expiration

 addAttribute("expiration", new Long(System.currentTimeMillis() +

 expire_period_in_millis).toString());

 }

/**

 * Constructor used to deserialize the token bytes received during a

 * propagation login.

 */

 public CustomAuthorizationTokenImpl (byte[] token_bytes)

 {

 try

 {

 hashtable = (java.util.Hashtable) com.ibm.wsspi.security.token.

 WSOpaqueTokenHelper.deserialize(token_bytes);

 }

 catch (Exception e)

 {

 e.printStackTrace();

 }

 }

/**

 * Validates the token including expiration, signature, and so on.

 * @return boolean

 */

 public boolean isValid ()

 {

 long expiration = getExpiration();

 // if you set the expiration to 0, it does not expire

 if (expiration != 0)

 {

 // return if this token is still valid

 long current_time = System.currentTimeMillis();

 boolean valid = ((current_time < expiration) ? true : false);

 System.out.println("isValid: returning " + valid);

 return valid;

 }

 else

 {

 System.out.println("isValid: returning true by default");

 return true;

 }

610 Securing applications and their environment

}

/**

 * Gets the expiration as a long.

 * @return long

 */

 public long getExpiration()

 {

 // Gets the expiration value from the hashtable

 String[] expiration = getAttributes("expiration");

 if (expiration != null && expiration[0] != null)

 {

 // The expiration is the first element. There should be only one expiration.

 System.out.println("getExpiration: returning " + expiration[0]);

 return new Long(expiration[0]).longValue();

 }

 System.out.println("getExpiration: returning 0");

 return 0;

 }

/**

 * Returns if this token should be forwarded/propagated downstream.

 * @return boolean

 */

 public boolean isForwardable()

 {

 // You can choose whether your token gets propagated. In some cases,

 // you might want it to be local only.

 return true;

 }

/**

 * Gets the principal that this Token belongs to. If this is an authorization token,

 * this principal string must match the authentication token principal string or the

 * message will be rejected.

 * @return String

 */

 public String getPrincipal()

 {

 // this might be any combination of attributes

 String[] principal = getAttributes("principal");

 if (principal != null && principal[0] != null)

 {

 return principal[0];

 }

 System.out.println("getExpiration: returning null");

 return null;

 }

/**

 * Returns a unique identifier of the token based upon the information that provider

 * considers makes this a unique token. This will be used for caching purposes

 * and might be used in combination with other token unique IDs that are part of

 * the same Subject.

 *

 * This method should return null if you want the accessID of the user to represent

 * uniqueness. This is the typical scenario.

 *

 * @return String

 */

 public String getUniqueID()

 {

 // if you don’t want to affect the cache lookup, just return NULL here.

Chapter 8. Developing extensions to the WebSphere security infrastructure 611

// return null;

 String cacheKeyForThisToken = "dynamic attributes";

 // if you do want to affect the cache lookup, return a string of

 // attributes that you want factored into the lookup.

 return cacheKeyForThisToken;

 }

/**

 * Gets the bytes to be sent across the wire. The information in the byte[]

 * needs to be enough to recreate the Token object at the target server.

 * @return byte[]

 */

 public byte[] getBytes ()

 {

 if (hashtable != null)

 {

 try

 {

 // Do this if the object is set to read-only during login commit,

 // because this makes sure that no new data gets set.

 if (isReadOnly() && tokenBytes == null)

 tokenBytes = com.ibm.wsspi.security.token.WSOpaqueTokenHelper.

 serialize(hashtable);

 // You can deserialize this in the downstream login module using

 // WSOpaqueTokenHelper.deserialize()

 return tokenBytes;

 }

 catch (Exception e)

 {

 e.printStackTrace();

 return null;

 }

 }

 System.out.println("getBytes: returning null");

 return null;

 }

/**

 * Gets the name of the token used to identify the byte[] in the protocol message.

 * @return String

 */

 public String getName()

 {

 return this.getClass().getName();

 }

/**

 * Gets the version of the token as an short. This also is used to identify the

 * byte[] in the protocol message.

 * @return short

 */

 public short getVersion()

 {

 String[] version = getAttributes("version");

 if (version != null && version[0] != null)

 return new Short(version[0]).shortValue();

 System.out.println("getVersion: returning default of 1");

 return 1;

 }

/**

612 Securing applications and their environment

* When called, the token becomes irreversibly read-only. The implementation

 * needs to ensure that any setter methods check that this flag has been set.

 */

 public void setReadOnly()

 {

 addAttribute("readonly", "true");

 }

/**

 * Called internally to see if the token is read-only

 */

 private boolean isReadOnly()

 {

 String[] readonly = getAttributes("readonly");

 if (readonly != null && readonly[0] != null)

 return new Boolean(readonly[0]).booleanValue();

 System.out.println("isReadOnly: returning default of false");

 return false;

 }

/**

 * Gets the attribute value based on the named value.

 * @param String key

 * @return String[]

 */

 public String[] getAttributes(String key)

 {

 ArrayList array = (ArrayList) hashtable.get(key);

 if (array != null && array.size() > 0)

 {

 return (String[]) array.toArray(new String[0]);

 }

 return null;

 }

/**

 * Sets the attribute name and value pair. Returns the previous values set for key,

 * or null if not previously set.

 * @param String key

 * @param String value

 * @returns String[];

 */

 public String[] addAttribute(String key, String value)

 {

 // Gets the current value for the key

 ArrayList array = (ArrayList) hashtable.get(key);

 if (!isReadOnly())

 {

 // Copies the ArrayList to a String[] as it currently exists

 String[] old_array = null;

 if (array != null && array.size() > 0)

 old_array = (String[]) array.toArray(new String[0]);

 // Allocates a new ArrayList if one was not found

 if (array == null)

 array = new ArrayList();

 // Adds the String to the current array list

 array.add(value);

 // Adds the current ArrayList to the Hashtable

 hashtable.put(key, array);

Chapter 8. Developing extensions to the WebSphere security infrastructure 613

// Returns the old array

 return old_array;

 }

 return (String[]) array.toArray(new String[0]);

 }

/**

 * Gets the list of all attribute names present in the token.

 * @return java.util.Enumeration

 */

 public java.util.Enumeration getAttributeNames()

 {

 return hashtable.keys();

 }

/**

 * Returns a deep copying of this token, if necessary.

 * @return Object

 */

 public Object clone()

 {

 com.ibm.websphere.security.token.CustomAuthorizationTokenImpl deep_clone =

 new com.ibm.websphere.security.token.CustomAuthorizationTokenImpl();

 java.util.Enumeration keys = getAttributeNames();

 while (keys.hasMoreElements())

 {

 String key = (String) keys.nextElement();

 String[] list = (String[]) getAttributes(key);

 for (int i=0; i<list.length; i++)

 deep_clone.addAttribute(key, list[i]);

 }

 return deep_clone;

 }

}

Example: custom AuthorizationToken login module

This file shows how to determine if the login is an initial login or a propagation login

For information on what to do during initialization, login and commit, see “Custom login module

development for a system login configuration” on page 579.

public customLoginModule()

{

 public void initialize(Subject subject, CallbackHandler callbackHandler,

 Map sharedState, Map options)

 {

 _sharedState = sharedState;

 }

 public boolean login() throws LoginException

 {

 // Handles the WSTokenHolderCallback to see if this is an initial or

 // propagation login.

 Callback callbacks[] = new Callback[1];

 callbacks[0] = new WSTokenHolderCallback("Authz Token List: ");

 try

 {

 callbackHandler.handle(callbacks);

614 Securing applications and their environment

}

 catch (Exception e)

 {

 // Handles exception

 }

 // Receives the ArrayList of TokenHolder objects (the serialized tokens)

 List authzTokenList = ((WSTokenHolderCallback) callbacks[0]).getTokenHolderList();

 if (authzTokenList != null)

 {

 // Iterates through the list looking for your custom token

 for (int i=0; i

 for (int i=0; i<authzTokenList.size(); i++)

 {

 TokenHolder tokenHolder = (TokenHolder)authzTokenList.get(i);

 // Looks for the name and version of your custom AuthorizationToken

 // implementation

 if (tokenHolder.getName().equals("com.ibm.websphere.security.token.

 CustomAuthorizationTokenImpl") &&

 tokenHolder.getVersion() == 1)

 {

 // Passes the bytes into your custom AuthorizationToken constructor

 // to deserialize

 customAuthzToken = new

 com.ibm.websphere.security.token.CustomAuthorizationTokenImpl(

 tokenHolder.getBytes());

 }

 }

 }

 else

 // This is not a propagation login. Create a new instance of your

 // AuthorizationToken implementation

 {

 // Gets the prinicpal from the default AuthenticationToken. This must match

 // all tokens.

 defaultAuthToken = (com.ibm.wsspi.security.token.AuthenticationToken)

 sharedState.get(com.ibm.wsspi.security.auth.callback.Constants.WSAUTHTOKEN_KEY);

 String principal = defaultAuthToken.getPrincipal();

 // Adds a new custom authorization token. This is an initial login. Pass the

 // principal into the constructor

 customAuthzToken = new com.ibm.websphere.security.token.

 CustomAuthorizationTokenImpl(principal);

 // Adds any initial attributes

 if (customAuthzToken != null)

 {

 customAuthzToken.addAttribute("key1", "value1");

 customAuthzToken.addAttribute("key1", "value2");

 customAuthzToken.addAttribute("key2", "value1");

 customAuthzToken.addAttribute("key3", "something different");

 }

 }

 // Note: You can add the token to the Subject during commit in case something

 // happens during the login.

 }

 public boolean commit() throws LoginException

 {

 if (customAut // (hzToken != null)

 {

 // sSets the customAuthzToken token into the Subject

 try

Chapter 8. Developing extensions to the WebSphere security infrastructure 615

{

 public final AuthorizationToken customAuthzTokenPriv = customAuthzToken;

 // Do this in a doPrivileged code block so that application code does not

 // need to add additional permissions

 java.security.AccessController.doPrivileged(new java.security.PrivilegedAction()

 {

 public Object run()

 {

 try

 {

 // Adds the custom authorization token if it is not null

 // and not already in the Subject

 if ((customAuthzTokenPriv != null) &&

 (!subject.getPrivateCredentials().contains(customAuthzTokenPriv)))

 {

 subject.getPrivateCredentials().add(customAuthzTokenPriv);

 }

 }

 catch (Exception e)

 {

 throw new WSLoginFailedException (e.getMessage(), e);

 }

 return null;

 }

 });

 }

 catch (Exception e)

 {

 throw new WSLoginFailedException (e.getMessage(), e);

 }

 }

 }

 // Defines your login module variables

 com.ibm.wsspi.security.token.AuthorizationToken customAuthzToken = null;

 com.ibm.wsspi.security.token.AuthenticationToken defaultAuthToken = null;

 java.util.Map _sharedState = null;

}

Implementing a custom single sign-on token

You can create your own single sign-on token implementation. The single sign-on token implementation is

set in the login Subject and added to the HTTP response as an HTTP cookie.

The cookie name is the concatenation of the SingleSignonToken.getName application programming

interface (API) and the SingleSignonToken.getVersion API. There is no delimiter. When you add a single

sign-on token to the Subject, it also gets propagated horizontally and downstream in case the Subject is

used for other Web requests. You must deserialize your custom single sign-on token when you receive it

from a propagation login. Consider writing your own implementation if you want to accomplish one of the

following tasks:

v Isolate your attributes within your own implementation.

v Serialize the information using custom serialization. Encrypt the information because it is out to the

HTTP response and is available on the Internet. You must deserialize or decrypt the bytes at the target

and add that information back into the Subject.

v Affect the overall uniqueness of the Subject using the getUniqueID API

To implement a custom single sign-on token, complete the following steps:

1. Write a custom implementation of the SingleSignonToken interface.

Many different methods are available for implementing the SingleSignonToken interface. However,

make sure the methods that are required by the SingleSignonToken interface and the token interface

are fully implemented.

616 Securing applications and their environment

After you implement this interface, you can place it in the app_server_root/classes directory.

Alternatively, you can place the class in any private directory. However, make sure that the WebSphere

Application Server class loader can locate the class and that it is granted the appropriate permissions.

You can add the Java archive (JAR) file or directory that contains this class into the server.policy file

so that it has the required permissions for the server code.

Tip: All of the token types that are defined by the propagation framework have similar interfaces.

Basically, the token types are marker interfaces that implement the

com.ibm.wsspi.security.token.Token interface. This interface defines most of the methods. If you

plan to implement more than one token type, consider creating an abstract class that implements

the com.ibm.wsspi.security.token.Token interface. All of your token implementations, including the

single sign-on token, might extend the abstract class and then most of the work is complete.

To see an implementation of the single sign-on token, see “Example: A

com.ibm.wsspi.security.token.SingleSignonToken implementation” on page 618

2. Add and receive the custom single sign-on token during WebSphere Application Server logins. This

task is typically accomplished by adding a custom login module to the various application and system

login configurations. However, to deserialize the information, you need to plug in a custom login

module, which is discussed in a subsequent step. After the object is instantiated in the login module,

you can add it to the Subject during the commit method.

The code sample in “Example: A custom single sign-on token login module” on page 622, shows how

to determine if the login is an initial login or a propagation login. The difference is whether the

WSTokenHolderCallback callback contains propagation data. If the callback does not contain

propagation data, initialize a new custom single sign-on token implementation and set it into the

Subject. Also, look for the HTTP cookie from the HTTP request if the HTTP request object is available

in the callback. You can get your custom single sign-on token both from a horizontal propagation login

and from the HTTP request. However, it is recommended that you make the token available in both

places because then the information arrives at any front-end application server, even if that server

does not support propagation.

You can make your single sign-on token read-only in the commit phase of the login module. If you

make the token read-only, additional attributes cannot be added within your applications.

Restriction:

v HTTP cookies have a size limitation so do not add too much data to this token.

v The WebSphere Application Server runtime does not handle cookies that it does not

generate, so this cookie is not used by the runtime.

v The SingleSignonToken object, when in the Subject, does affect the cache lookup of

the Subject if you return something in the getUniqueID method.

3. Get the HTTP cookie from the HTTP request object during login or from an application. The sample

code that is found in “Example: An HTTP cookie retrieval” on page 624 shows how you can retrieve

the HTTP cookie from the HTTP request, decode the cookie so that it is back to your original bytes,

and create your custom SingleSignonToken object from the bytes.

4. Add your custom login module to WebSphere Application Server system login configurations that

already contain the com.ibm.ws.security.server.lm.wsMapDefaultInboundLoginModule for receiving

serialized versions of your custom propagation token. Because this login module relies on information

in the sharedState state that is added by the

com.ibm.ws.security.server.lm.wsMapDefaultInboundLoginModule login module, add this login module

after the com.ibm.ws.security.server.lm.wsMapDefaultInboundLoginModule login module.

For information on adding your custom login module into the existing login configurations, see “Custom

login module development for a system login configuration” on page 579.

After completing these steps, you have implemented a custom single sign-on token.

Chapter 8. Developing extensions to the WebSphere security infrastructure 617

Example: A com.ibm.wsspi.security.token.SingleSignonToken implementation

Use this file to see an example of a single sign-on implementation. The following sample code does not

extend an abstract class, but implements the com.ibm.wsspi.security.token.SingleSignonToken interface

directly. You can implement the interface directly, but it might cause you to write duplicate code. However,

you might choose to implement the interface directly if considerable differences exist between how you

handle the various token implementations.

For information on how to implement a custom single sign-on token, see “Implementing a custom single

sign-on token” on page 616.

package com.ibm.websphere.security.token;

import com.ibm.websphere.security.WSSecurityException;

import com.ibm.websphere.security.auth.WSLoginFailedException;

import com.ibm.wsspi.security.token.*;

import com.ibm.websphere.security.WebSphereRuntimePermission;

import java.io.ByteArrayOutputStream;

import java.io.ByteArrayInputStream;

import java.io.DataOutputStream;

import java.io.DataInputStream;

import java.io.ObjectOutputStream;

import java.io.ObjectInputStream;

import java.io.OutputStream;

import java.io.InputStream;

import java.util.ArrayList;

public class CustomSingleSignonTokenImpl implements com.ibm.wsspi.security.

 token.SingleSignonToken

{

 private java.util.Hashtable hashtable = new java.util.Hashtable();

 private byte[] tokenBytes = null;

 // 2 hours in millis, by default

 private static long expire_period_in_millis = 2*60*60*1000;

/**

 * Constructor used to create initial SingleSignonToken instance

 */

 public CustomSingleSignonTokenImpl (String principal)

 {

 // set the principal in the token

 addAttribute("principal", principal);

 // set the token version

 addAttribute("version", "1");

 // set the token expiration

 addAttribute("expiration", new Long(System.currentTimeMillis() +

 expire_period_in_millis).toString());

 }

/**

 * Constructor used to deserialize the token bytes received during a propagation login.

 */

 public CustomSingleSignonTokenImpl (byte[] token_bytes)

 {

 try

 {

 // you should implement a decryption algorithm to decrypt the cookie bytes

 hashtable = (java.util.Hashtable) some_decryption_algorithm (token_bytes);

 }

 catch (Exception e)

 {

 e.printStackTrace();

 }

 }

/**

618 Securing applications and their environment

* Validates the token including expiration, signature, and so on.

 * @return boolean

 */

 public boolean isValid ()

 {

 long expiration = getExpiration();

 // if you set the expiration to 0, it does not expire

 if (expiration != 0)

 {

 // return if this token is still valid

 long current_time = System.currentTimeMillis();

 boolean valid = ((current_time < expiration) ? true : false);

 System.out.println("isValid: returning " + valid);

 return valid;

 }

 else

 {

 System.out.println("isValid: returning true by default");

 return true;

 }

 }

/**

 * Gets the expiration as a long.

 * @return long

 */

 public long getExpiration()

 {

 // get the expiration value from the hashtable

 String[] expiration = getAttributes("expiration");

 if (expiration != null && expiration[0] != null)

 {

 // expiration will always be the first element (should only be one)

 System.out.println("getExpiration: returning " + expiration[0]);

 return new Long(expiration[0]).longValue();

 }

 System.out.println("getExpiration: returning 0");

 return 0;

 }

/**

 * Returns if this token should be forwarded/propagated downstream.

 * @return boolean

 */

 public boolean isForwardable()

 {

 // You can choose whether your token gets propagated or not, in some cases

 // you might want it to be local only.

 return true;

 }

/**

 * Gets the principal that this Token belongs to. If this is an authorization token,

 * this principal string must match the authentication token principal string or the

 * message will be rejected.

 * @return String

 */

 public String getPrincipal()

 {

 // this could be any combination of attributes

 String[] principal = getAttributes("principal");

Chapter 8. Developing extensions to the WebSphere security infrastructure 619

if (principal != null && principal[0] != null)

 {

 return principal[0];

 }

 System.out.println("getExpiration: returning null");

 return null;

 }

/**

 * Returns a unique identifier of the token based upon information the provider

 * considers makes this a unique token. This will be used for caching purposes

 * and may be used in combination with other token unique IDs that are part of

 * the same Subject.

 *

 * This method should return null if you want the access ID of the user to represent

 * uniqueness. This is the typical scenario.

 *

 * @return String

 */

 public String getUniqueID()

 {

 // this could be any combination of attributes

 return getPrincipal();

 }

/**

 * Gets the bytes to be sent across the wire. The information in the byte[]

 * needs to be enough to recreate the Token object at the target server.

 * @return byte[]

 */

 public byte[] getBytes ()

 {

 if (hashtable != null)

 {

 try

 {

 // do this if the object is set read-only during login commit,

 // since this guarantees no new data gets set.

 if (isReadOnly() && tokenBytes == null)

 tokenBytes = some_encryption_algorithm (hashtable);

 // you can deserialize the tokenBytes using a similiar decryption algorithm.

 return tokenBytes;

 }

 catch (Exception e)

 {

 e.printStackTrace();

 return null;

 }

 }

 System.out.println("getBytes: returning null");

 return null;

 }

/**

 * Gets the name of the token, used to identify the byte[] in the protocol message.

 * @return String

 */

 public String getName()

 {

 return "myCookieName";

 }

/**

 * Gets the version of the token as a short. This is also used to identify the

620 Securing applications and their environment

* byte[] in the protocol message.

 * @return short

 */

 public short getVersion()

 {

 String[] version = getAttributes("version");

 if (version != null && version[0] != null)

 return new Short(version[0]).shortValue();

 System.out.println("getVersion: returning default of 1");

 return 1;

 }

/**

 * When called, the token becomes irreversibly read-only. The implementation

 * needs to ensure any setter methods check that this has been set.

 */

 public void setReadOnly()

 {

 addAttribute("readonly", "true");

 }

/**

 * Called internally to see if the token is readonly

 */

 private boolean isReadOnly()

 {

 String[] readonly = getAttributes("readonly");

 if (readonly != null && readonly[0] != null)

 return new Boolean(readonly[0]).booleanValue();

 System.out.println("isReadOnly: returning default of false");

 return false;

 }

/**

 * Gets the attribute value based on the named value.

 * @param String key

 * @return String[]

 */

 public String[] getAttributes(String key)

 {

 ArrayList array = (ArrayList) hashtable.get(key);

 if (array != null && array.size() > 0)

 {

 return (String[]) array.toArray(new String[0]);

 }

 return null;

 }

/**

 * Sets the attribute name/value pair. Returns the previous values set for key,

 * or null if not previously set.

 * @param String key

 * @param String value

 * @returns String[];

 */

 public String[] addAttribute(String key, String value)

 {

 // get the current value for the key

 ArrayList array = (ArrayList) hashtable.get(key);

 if (!isReadOnly())

Chapter 8. Developing extensions to the WebSphere security infrastructure 621

{

 // copy the ArrayList to a String[] as it currently exists

 String[] old_array = null;

 if (array != null && array.size() > 0)

 old_array = (String[]) array.toArray(new String[0]);

 // allocate a new ArrayList if one was not found

 if (array == null)

 array = new ArrayList();

 // add the String to the current array list

 array.add(value);

 // add the current ArrayList to the Hashtable

 hashtable.put(key, array);

 // return the old array

 return old_array;

 }

 return (String[]) array.toArray(new String[0]);

 }

/**

 * Gets the List of all attribute names present in the token.

 * @return java.util.Enumeration

 */

 public java.util.Enumeration getAttributeNames()

 {

 return hashtable.keys();

 }

/**

 * Returns a deep copying of this token, if necessary.

 * @return Object

 */

 public Object clone()

 {

 com.ibm.websphere.security.token.CustomSingleSignonImpl deep_clone =

 new com.ibm.websphere.security.token.CustomSingleSignonTokenImpl();

 java.util.Enumeration keys = getAttributeNames();

 while (keys.hasMoreElements())

 {

 String key = (String) keys.nextElement();

 String[] list = (String[]) getAttributes(key);

 for (int i=0; i<list.length; i++)

 deep_clone.addAttribute(key, list[i]);

 }

 return deep_clone;

 }

}

Example: A custom single sign-on token login module

This file shows how to determine if the login is an initial login or a propagation login.

For information on initialization and on what to do during login and commit, see “Custom login module

development for a system login configuration” on page 579.

public customLoginModule()

{

 public void initialize(Subject subject, CallbackHandler callbackHandler,

622 Securing applications and their environment

Map sharedState, Map options)

 {

 _sharedState = sharedState;

 }

 public boolean login() throws LoginException

 {

 // Handles the WSTokenHolderCallback to see if this is an initial or

 // propagation login.

 Callback callbacks[] = new Callback[1];

 callbacks[0] = new WSTokenHolderCallback("Authz Token List: ");

 try

 {

 callbackHandler.handle(callbacks);

 }

 catch (Exception e)

 {

 // handle exception

 }

 // Receives the ArrayList of TokenHolder objects (the serialized tokens)

 List authzTokenList = ((WSTokenHolderCallback) callbacks[0]).getTokenHolderList();

 if (authzTokenList != null)

 {

 // iterate through the list looking for your custom token

 for (int i=0; i

 for (int i=0; i<authzTokenList.size(); i++)

 {

 TokenHolder tokenHolder = (TokenHolder)authzTokenList.get(i);

 // Looks for the name and version of your custom SingleSignonToken

 // implementation

 if (tokenHolder.getName().equals("myCookieName")

 && tokenHolder.getVersion() == 1)

 {

 // Passes the bytes into your custom SingleSignonToken constructor

 // to deserialize

 customSSOToken = new

 com.ibm.websphere.security.token.CustomSingleSignonTokenImpl

 (tokenHolder.getBytes());

 }

 }

 }

 else

 // This is not a propagation login. Create a new instance of your

 // SingleSignonToken implementation

 {

 // Gets the principal from the default SingleSignonToken. This principal

 // must match all tokens.

 defaultAuthToken = (com.ibm.wsspi.security.token.AuthenticationToken)

 sharedState.get(com.ibm.wsspi.security.auth.callback.Constants.WSAUTHTOKEN_KEY);

 String principal = defaultAuthToken.getPrincipal();

 // Adds a new custom single sign-on (SSO) token. This is an initial login.

 // Pass the principal into the constructor

 customSSOToken = new com.ibm.websphere.security.token.

 CustomSingleSignonTokenImpl(principal);

 // add any initial attributes

 if (customSSOToken != null)

 {

 customSSOToken.addAttribute("key1", "value1");

 customSSOToken.addAttribute("key1", "value2");

 customSSOToken.addAttribute("key2", "value1");

Chapter 8. Developing extensions to the WebSphere security infrastructure 623

customSSOToken.addAttribute("key3", "something different");

 }

 }

 // Note: You can add the token to the Subject during commit in case something

 // happens during the login.

 }

 public boolean commit() throws LoginException

 {

 if (customSSOToken != null)

 {

 // Sets the customSSOToken token into the Subject

 try

 {

 public final SingleSignonToken customSSOTokenPriv = customSSOToken;

 // Do this in a doPrivileged code block so that application code does not

 // need to add additional permissions

 java.security.AccessController.doPrivileged(new java.security.PrivilegedAction()

 {

 public Object run()

 {

 try

 {

 // Adds the custom SSO token if it is not null and

 // not already in the Subject

 if ((customSSOTokenPriv != null) &&

 (!subject.getPrivateCredentials().

 contains(customSSOTokenPriv)))

 {

 subject.getPrivateCredentials().

 add(customSSOTokenPriv);

 }

 }

 catch (Exception e)

 {

 throw new WSLoginFailedException (e.getMessage(), e);

 }

 return null;

 }

 });

 }

 catch (Exception e)

 {

 throw new WSLoginFailedException (e.getMessage(), e);

 }

 }

 }

 // Defines your login module variables

 com.ibm.wsspi.security.token.SingleSignonToken customSSOToken = null;

 com.ibm.wsspi.security.token.AuthenticationToken defaultAuthToken = null;

 java.util.Map _sharedState = null;

}

Example: An HTTP cookie retrieval

The following example shows you how to retrieve a cookie from an HTTP request, decode the cookie so

that it is back to your original bytes, and create your custom SingleSignonToken object from the bytes.

This example shows how to complete these steps from a login module. However, you also can complete

these steps using a servlet.

For information on what to do during initialization, login and commit, see “Custom login module

development for a system login configuration” on page 579.

624 Securing applications and their environment

public customLoginModule()

{

 public void initialize(Subject subject, CallbackHandler callbackHandler,

 Map sharedState, Map options)

 {

 _sharedState = sharedState;

 }

 public boolean login() throws LoginException

 {

 // Handles the WSTokenHolderCallback to see if this is an

 // initial or propagation login.

 Callback callbacks[] = new Callback[2];

 callbacks[0] = new WSTokenHolderCallback("Authz Token List: ");

 callbacks[1] = new WSServletRequestCallback("HttpServletRequest: ");

 try

 {

 callbackHandler.handle(callbacks);

 }

 catch (Exception e)

 {

 // Handles the exception

 }

 // receive the ArrayList of TokenHolder objects (the serialized tokens)

 List authzTokenList = ((WSTokenHolderCallback) callbacks[0]).getTokenHolderList();

 javax.servlet.http.HttpServletRequest request =

 ((WSServletRequestCallback) callbacks[1]).getHttpServletRequest();

 if (request != null)

 {

 // Checks if the cookie is present

 javax.servlet.http.Cookie[] cookies = request.getCookies();

 String[] cookieStrings = getCookieValues (cookies, "myCookeName1");

 if (cookieStrings != null)

 {

 String cookieVal = null;

 for (int n=0;n<cookieStrings.length;n++)

 {

 cookieVal = cookieStrings[n];

 if (cookieVal.length()>0)

 {

 // Removes the cookie encoding from the cookie to get

 // your custom bytes

 byte[] cookieBytes =

 com.ibm.websphere.security.WSSecurityHelper.

 convertCookieStringToBytes(cookieVal);

 customSSOToken =

 new com.ibm.websphere.security.token.

 CustomSingleSignonTokenImpl(cookieBytes);

 // Now that you have your cookie from the request,

 // you can do something with it here, or add it

 // to the Subject in the commit() method for use later.

 if (debug || tc.isDebugEnabled())

 {

 System.out.println("*** GOT MY CUSTOM SSO TOKEN FROM

 THE REQUEST ***");

 }

 }

 }

 }

 }

Chapter 8. Developing extensions to the WebSphere security infrastructure 625

}

 public boolean commit() throws LoginException

 {

 if (customSSOToken != null)

 {

 // Sets the customSSOToken token into the Subject

 try

 {

 public final SingleSignonToken customSSOTokenPriv = customSSOToken;

 // Do this in a doPrivileged code block so that application code does not

 // need to add additional permissions

 java.security.AccessController.doPrivileged(new java.security.PrivilegedAction()

 {

 public Object run()

 {

 try

 {

 // Add the custom SSO token if it is not null and not

 // already in the Subject

 if ((customSSOTokenPriv != null) &&

 (!subject.getPrivateCredentials().

 contains(customSSOTokenPriv)))

 {

 subject.getPrivateCredentials().add(customSSOTokenPriv);

 }

 }

 catch (Exception e)

 {

 throw new WSLoginFailedException (e.getMessage(), e);

 }

 return null;

 }

 });

 }

 catch (Exception e)

 {

 throw new WSLoginFailedException (e.getMessage(), e);

 }

 }

 }

 // Private method to get the specific cookie from the request

 private String[] getCookieValues (Cookie[] cookies, String hdrName)

 {

 Vector retValues = new Vector();

 int numMatches=0;

 if (cookies != null)

 {

 for (int i = 0; i < cookies.length; ++i)

 {

 if (hdrName.equals(cookies[i].getName()))

 {

 retValues.add(cookies[i].getValue());

 numMatches++;

 System.out.println(cookies[i].getValue());

 }

 }

 }

 if (retValues.size()>0)

 return (String[]) retValues.toArray(new String[numMatches]);

 else

 return null;

 }

626 Securing applications and their environment

// Defines your login module variables

 com.ibm.wsspi.security.token.SingleSignonToken customSSOToken = null;

 com.ibm.wsspi.security.token.AuthenticationToken defaultAuthToken = null;

 java.util.Map _sharedState = null;

}

Implementing a custom authentication token

This topic explains how you might create your own authentication token implementation, which is set in the

login Subject and propagated downstream.

With this implementation you can specify an authentication token that can be used by a custom login

module or application. Consider writing your own implementation if you want to accomplish one of the

following tasks:

v Isolate your attributes within your own implementation.

v Serialize the information using custom serialization. You must deserialize the bytes at the target and add

that information back on the thread. This task also might include encryption and decryption.

v Affect the overall uniqueness of the Subject using the getUniqueID application programming interface

(API).

Important: Custom authentication token implementations are not used by the security runtime in

WebSphere Application Server to enforce authentication. WebSphere Application Security

runtime uses this token in the following situations only:

v Call the getBytes method for serialization

v Call the getForwardable method to determine whether to serialize the authentication token.

v Call the getUniqueId method for uniqueness

v Call the getName and the getVersion methods for adding serialized bytes to the token

holder that is sent downstream

All of the other uses are custom implementations.

To implement a custom authentication token, you must complete the following steps:

1. Write a custom implementation of the AuthenticationToken interface. Many different methods are

available for implementing the AuthenticationToken interface. However, make sure the methods that

are required by the AuthenticationToken interface and the token interface are fully implemented. After

you implement this interface, you can place it in the install_dir/classes directory. Alternatively, you

can place the class in any private directory. However, make sure that the WebSphere Application

Server class loader can locate the class and that it is granted the appropriate permissions. You can

add the Java archive (JAR) file or directory that contains this class into the server.policy file so the

class has the necessary permissions required by the server code.

Tip: All of the token types that are defined by the propagation framework have similar interfaces. The

token types are marker interfaces that implement the com.ibm.wsspi.security.token.Token

interface. This interface defines most of the methods. If you plan to implement more than one

token type, consider creating an abstract class that implements the

com.ibm.wsspi.security.token.Token interface. All of your token implementations, including the

authentication token, might extend the abstract class and then most of the work is complete.

To see an implementation of the AuthenticationToken interface, see “Example: A

com.ibm.wsspi.security.token.AuthenticationToken implementation” on page 628.

2. Add and receive the custom authentication token during WebSphere Application Server logins. This

task is typically accomplished by adding a custom login module to the various application and system

login configurations. However, to deserialize the information you must plug in a custom login module.

After the object is instantiated in the login module, you can add the object to the Subject during the

commit method.

Chapter 8. Developing extensions to the WebSphere security infrastructure 627

If you only want to add information to the Subject to get propagated, see “Propagating a custom Java

serializable object” on page 635. If you want to ensure that the information is propagated, do your own

custom serialization, or specify the uniqueness for Subject caching purposes, consider writing your

own authentication token implementation.

The code sample in “Example: A custom authentication token login module” on page 633, shows how

to determine if the login is an initial login or a propagation login. The difference between these login

types is whether the WSTokenHolderCallback callback contains propagation data. If the callback does

not contain propagation data, initialize a new custom authentication token implementation and set it

into the Subject. If the callback contains propagation data, look for your specific custom authentication

token TokenHolder instance, convert the byte array back into your custom AuthenticationToken object,

and set it back into the Subject. The code sample shows both instances.

You can make your authentication token read-only in the commit phase of the login module. If you do

not make the token read-only, attributes can be added within your applications.

3. Add your custom login module to WebSphere Application Server system login configurations that

already contain the com.ibm.ws.security.server.lm.wsMapDefaultInboundLoginModule login module for

receiving serialized versions of your custom authorization token.

Because this login module relies on information in the shared state that is added by the

com.ibm.ws.security.server.lm.wsMapDefaultInboundLoginModule login module, add this login module

after the com.ibm.ws.security.server.lm.wsMapDefaultInboundLoginModule login module. For

information on how to add your custom login module to the existing login configurations, see “Custom

login module development for a system login configuration” on page 579.

After completing these steps, you have implemented a custom authentication token.

Example: A com.ibm.wsspi.security.token.AuthenticationToken implementation

The following example illustrates an authentication token implementation. The following sample code does

not extend an abstract class, but rather implements the com.ibm.wsspi.security.token.AuthenticationToken

interface directly. You can implement the interface directly, but it might cause you to write duplicate code.

However, you might choose to implement the interface directly if considerable differences exist between

how you handle the various token implementations.

package com.ibm.websphere.security.token;

import com.ibm.websphere.security.WSSecurityException;

import com.ibm.websphere.security.auth.WSLoginFailedException;

import com.ibm.wsspi.security.token.*;

import com.ibm.websphere.security.WebSphereRuntimePermission;

import java.io.ByteArrayOutputStream;

import java.io.ByteArrayInputStream;

import java.io.DataOutputStream;

import java.io.DataInputStream;

import java.io.ObjectOutputStream;

import java.io.ObjectInputStream;

import java.io.OutputStream;

import java.io.InputStream;

import java.util.ArrayList;

public class CustomAuthenticationTokenImpl implements com.ibm.wsspi.security.

 token.AuthenticationToken

{

 private java.util.Hashtable hashtable = new java.util.Hashtable();

 private byte[] tokenBytes = null;

 // 2 hours in millis, by default

 private static long expire_period_in_millis = 2*60*60*1000;

 private String oidName = "your_oid_name";

 // This string can really be anything if you do not want to use an OID.

/**

 * Constructor used to create initial AuthenticationToken instance

 */

 public CustomAuthenticationTokenImpl (String principal)

628 Securing applications and their environment

{

 // Sets the principal in the token

 addAttribute("principal", principal);

 // Sets the token version

 addAttribute("version", "1");

 // Sets the token expiration

 addAttribute("expiration", new Long(System.currentTimeMillis()

 + expire_period_in_millis).toString());

 }

/**

 * Constructor used to deserialize the token bytes received during a

 * propagation login.

 */

 public CustomAuthenticationTokenImpl (byte[] token_bytes)

 {

 try

 {

 // The data in token_bytes should be signed and encrypted if the

 // hashtable is acting as an authentication token.

 hashtable = (java.util.Hashtable) custom_decryption_algorithm (token_bytes);

 }

 catch (Exception e)

 {

 e.printStackTrace();

 }

 }

/**

 * Validates the token including expiration, signature, and so on.

 * @return boolean

 */

 public boolean isValid ()

 {

 long expiration = getExpiration();

 // If you set the expiration to 0, the token does not expire

 if (expiration != 0)

 {

 // Returns a response that identifies whether this token is still valid

 long current_time = System.currentTimeMillis();

 boolean valid = ((current_time < expiration) ? true : false);

 System.out.println("isValid: returning " + valid);

 return valid;

 }

 else

 {

 System.out.println("isValid: returning true by default");

 return true;

 }

 }

/**

 * Gets the expiration as a long type.

 * @return long

 */

 public long getExpiration()

 {

 // Gets the expiration value from the hashtable

 String[] expiration = getAttributes("expiration");

 if (expiration != null && expiration[0] != null)

 {

 // The expiration is the first element and there should only be one expiration

 System.out.println("getExpiration: returning " + expiration[0]);

Chapter 8. Developing extensions to the WebSphere security infrastructure 629

return new Long(expiration[0]).longValue();

 }

 System.out.println("getExpiration: returning 0");

 return 0;

 }

/**

 * Returns if this token should be forwarded/propagated downstream.

 * @return boolean

 */

 public boolean isForwardable()

 {

 // You can choose whether your token gets propagated. In some cases

 // you might want it to be local only.

 return true;

 }

/**

 * Gets the principal to which this token belongs. If this is an

 * authorization token, this principal string must match the

 * authentication token principal string or the message is rejected.

 * @return String

 */

 public String getPrincipal()

 {

 // This value might be any combination of attributes

 String[] principal = getAttributes("principal");

 if (principal != null && principal[0] != null)

 {

 return principal[0];

 }

 System.out.println("getExpiration: returning null");

 return null;

 }

/**

 * Returns a unique identifier of the token based upon information the provider

 * considers makes this a unique token. This identifier is used for caching purposes

 * and can be used in combination with other token unique IDs that are part of

 * the same Subject.

 *

 * This method should return null if you want the accessID of the user to represent

 * uniqueness. This is the typical scenario.

 *

 * @return String

 */

 public String getUniqueID()

 {

 // If you do not want to affect the cache lookup, just return NULL here.

 return null;

 String cacheKeyForThisToken = "dynamic attributes";

 // If you do want to affect the cache lookup, return a string of

 // attributes that you want factored into the lookup.

 return cacheKeyForThisToken;

 }

/**

 * Gets the bytes to be sent across the wire. The information in the byte[]

 * needs to be enough to recreate the token object at the target server.

 * @return byte[]

 */

 public byte[] getBytes ()

630 Securing applications and their environment

{

 if (hashtable != null)

 {

 try

 {

 // Do this if the object is set read-only during login commit

 // because this ensures that new data is not set.

 if (isReadOnly() && tokenBytes == null)

 tokenBytes = custom_encryption_algorithm (hashtable);

 return tokenBytes;

 }

 catch (Exception e)

 {

 e.printStackTrace();

 return null;

 }

 }

 System.out.println("getBytes: returning null");

 return null;

 }

/**

 * Gets the name of the token, which is used to identify the byte[] in the

 * protocol message.

 * @return String

 */

 public String getName()

 {

 return oidName;

 }

/**

 * Gets the version of the token as a short type. This also is used

 * to identify the byte[] in the protocol message.

 * @return short

 */

 public short getVersion()

 {

 String[] version = getAttributes("version");

 if (version != null && version[0] != null)

 return new Short(version[0]).shortValue();

 System.out.println("getVersion: returning default of 1");

 return 1;

 }

/**

 * When called, the token becomes irreversibly read-only. The implementation

 * needs to ensure that any set methods check that this state has been set.

 */

 public void setReadOnly()

 {

 addAttribute("readonly", "true");

 }

/**

 * Called internally to see if the token is read-only

 */

 private boolean isReadOnly()

 {

 String[] readonly = getAttributes("readonly");

 if (readonly != null && readonly[0] != null)

 return new Boolean(readonly[0]).booleanValue();

Chapter 8. Developing extensions to the WebSphere security infrastructure 631

System.out.println("isReadOnly: returning default of false");

 return false;

 }

/**

 * Gets the attribute value based on the named value.

 * @param String key

 * @return String[]

 */

 public String[] getAttributes(String key)

 {

 ArrayList array = (ArrayList) hashtable.get(key);

 if (array != null && array.size() > 0)

 {

 return (String[]) array.toArray(new String[0]);

 }

 return null;

 }

/**

 * Sets the attribute name/value pair. Returns the previous values set for key,

 * or null if not previously set.

 * @param String key

 * @param String value

 * @returns String[];

 */

 public String[] addAttribute(String key, String value)

 {

 // Gets the current value for the key

 ArrayList array = (ArrayList) hashtable.get(key);

 if (!isReadOnly())

 {

 // Copies the ArrayList to a String[] as it currently exists

 String[] old_array = null;

 if (array != null && array.size() > 0)

 old_array = (String[]) array.toArray(new String[0]);

 // Allocates a new ArrayList if one was not found

 if (array == null)

 array = new ArrayList();

 // Adds the String to the current array list

 array.add(value);

 // Adds the current ArrayList to the Hashtable

 hashtable.put(key, array);

 // Returns the old array

 return old_array;

 }

 return (String[]) array.toArray(new String[0]);

 }

/**

 * Gets the list of all attribute names present in the token.

 * @return java.util.Enumeration

 */

 public java.util.Enumeration getAttributeNames()

 {

 return hashtable.keys();

 }

632 Securing applications and their environment

/**

 * Returns a deep copying of this token, if necessary.

 * @return Object

 */

 public Object clone()

 {

 com.ibm.wsspi.security.token.AuthenticationToken deep_clone =

 new com.ibm.websphere.security.token.CustomAuthenticationTokenImpl();

 java.util.Enumeration keys = getAttributeNames();

 while (keys.hasMoreElements())

 {

 String key = (String) keys.nextElement();

 String[] list = (String[]) getAttributes(key);

 for (int i=0; i<list.length; i++)

 deep_clone.addAttribute(key, list[i]);

 }

 return deep_clone;

 }

/**

 * This method returns true if this token is storing a user ID and password

 * instead of a token.

 * @return boolean

 */

 public boolean isBasicAuth()

 {

 return false;

 }

}

Example: A custom authentication token login module

This examples shows how to determine if the login is an initial login or a propagation login.

For information on what to do during initialization, login and commit, see “Custom login module

development for a system login configuration” on page 579.

public customLoginModule()

{

 public void initialize(Subject subject, CallbackHandler callbackHandler,

 Map sharedState, Map options)

 {

 _sharedState = sharedState;

 }

 public boolean login() throws LoginException

 {

 // Handles the WSTokenHolderCallback to see if this is an initial or

 // propagation login.

 Callback callbacks[] = new Callback[1];

 callbacks[0] = new WSTokenHolderCallback("Authz Token List: ");

 try

 {

 callbackHandler.handle(callbacks);

 }

 catch (Exception e)

 {

 // Handles exception

 }

 // Receives the ArrayList of TokenHolder objects (the serialized tokens)

Chapter 8. Developing extensions to the WebSphere security infrastructure 633

List authzTokenList = ((WSTokenHolderCallback) callbacks[0]).getTokenHolderList();

 if (authzTokenList != null)

 {

 // Iterates through the list looking for your custom token

 for (int i=0; i<authzTokenList.size(); i++)

 {

 TokenHolder tokenHolder = (TokenHolder)authzTokenList.get(i);

 // Looks for the name and version of your custom AuthenticationToken

 // implementation

 if (tokenHolder.getName().equals("your_oid_name") && tokenHolder.getVersion() == 1)

 {

 // Passes the bytes into your custom AuthenticationToken constructor

 // to deserialize

 customAuthzToken = new

 com.ibm.websphere.security.token.

 CustomAuthenticationTokenImpl(tokenHolder.getBytes());

 }

 }

 }

 else

 // This is not a propagation login. Create a new instance of your

 // AuthenticationToken implementation

 {

 // Gets the principal from the default AuthenticationToken. This principal

 // should match all default tokens.

 // Note: WebSphere Application Server runtime only enforces this for

 // default tokens. Thus, you can choose

 // to do this for custom tokens, but it is not required.

 defaultAuthToken = (com.ibm.wsspi.security.token.AuthenticationToken)

 sharedState.get(com.ibm.wsspi.security.auth.callback.Constants.WSAUTHTOKEN_KEY);

 String principal = defaultAuthToken.getPrincipal();

 // Adds a new custom authentication token. This is an initial login. Pass

 // the principal into the constructor

 customAuthToken = new com.ibm.websphere.security.token.

 CustomAuthenticationTokenImpl(principal);

 // Adds any initial attributes

 if (customAuthToken != null)

 {

 customAuthToken.addAttribute("key1", "value1");

 customAuthToken.addAttribute("key1", "value2");

 customAuthToken.addAttribute("key2", "value1");

 customAuthToken.addAttribute("key3", "something different");

 }

 }

 // Note: You can add the token to the Subject during commit in case

 // something happens during the login.

 }

 public boolean commit() throws LoginException

 {

 if (customAuthToken != null)

 {

 // Sets the customAuthToken token into the Subject

 try

 {

 private final AuthenticationToken customAuthTokenPriv = customAuthToken;

 // Do this in a doPrivileged code block so that application code does

 // not need to add additional permissions

 java.security.AccessController.doPrivileged(new java.security.PrivilegedAction()

 {

 public Object run()

634 Securing applications and their environment

{

 try

 {

 // Adds the custom Authentication token if it is not

 // null and not already in the Subject

 if ((customAuthTokenPriv != null) &&

 (!subject.getPrivateCredentials().

 contains(customAuthTokenPriv)))

 {

 subject.getPrivateCredentials().add(customAuthTokenPriv);

 }

 }

 catch (Exception e)

 {

 throw new WSLoginFailedException (e.getMessage(), e);

 }

 return null;

 }

 });

 }

 catch (Exception e)

 {

 throw new WSLoginFailedException (e.getMessage(), e);

 }

 }

 }

 // Defines your login module variables

 com.ibm.wsspi.security.token.AuthenticationToken customAuthToken = null;

 com.ibm.wsspi.security.token.AuthenticationToken defaultAuthToken = null;

 java.util.Map _sharedState = null;

}

Propagating a custom Java serializable object

This document describes how to add an object into the Subject from a login module and describes other

infrastructure considerations to make sure that the Java object gets propagated.

Prior to completing this task, verify that security propagation is enabled in the administrative console.

With security attribute propagation enabled, you can propagate data either horizontally with single sign-on

(SSO) enabled or downstream using Common Secure Interoperability Version 2 (CSIv2). When a login

occurs, either through an application login configuration or a system login configuration, a custom login

module can be plugged in to add Java serialized objects into the Subject during login. This document

describes how to add an object into the Subject from a login module and describes other infrastructure

considerations to make sure that the Java object gets propagated.

1. Add your custom Java object into the Subject from a custom login module. A two-phase process exists

for each Java Authentication and Authorization Service (JAAS) login module. WebSphere Application

Server completes the following processes for each login module present in the configuration:

login method

In this step, the login configuration callbacks are analyzed, if necessary, and the new objects

or credentials are created.

commit method

In this step, the objects or credentials that are created during login are added into the Subject.

After a custom Java object is added into the Subject, WebSphere Application Server serializes the

object on the sending server, deserializes the object on the receiving server, and adds the object back

into the Subject downstream. However, some requirements exist for this process to occur successfully.

For more information on the JAAS programming model, see the JAAS information provided in Security:

Resources for learning.

Chapter 8. Developing extensions to the WebSphere security infrastructure 635

Important: Whenever you plug a custom login module into the login infrastructure of WebSphere

Application Server, make sure that the code is trusted. When you add the login module

into the install_root/classes directory, the login module has Java 2 Security

AllPermissions permissions . It is recommended that you add your login module and other

infrastructure classes into any private directory. However, you must modify the

install_root/properties/server.policy file to make sure that your private directory, Java

archive (JAR) file, or both have the permissions required to run the application

programming interfaces (API) that are called from the login module. Because the login

module might be run after the application code on the call stack, you might add

doPrivileged code so that you do not need to add additional properties to your

applications.

The following code sample shows how to add doPrivileged code. For information on what to do during

initialization, login and commit, see “Custom login module development for a system login

configuration” on page 579.

public customLoginModule()

{

 public void initialize(Subject subject, CallbackHandler callbackHandler,

 Map sharedState, Map options)

 {

 }

 public boolean login() throws LoginException

 {

 // Construct callback for the WSTokenHolderCallback so that you

 // can determine if

 // your custom object has propagated

 Callback callbacks[] = new Callback[1];

 callbacks[0] = new WSTokenHolderCallback("Authz Token List: ");

 try

 {

 _callbackHandler.handle(callbacks);

 }

 catch (Exception e)

 {

 throw new LoginException (e.getLocalizedMessage());

 }

 // Checks to see if any information is propagated into this login

 List authzTokenList = ((WSTokenHolderCallback) callbacks[1]).

 getTokenHolderList();

 if (authzTokenList != null)

 {

 for (int i = 0; i< authzTokenList.size(); i++)

 {

 TokenHolder tokenHolder = (TokenHolder)authzTokenList.get(i);

 // Look for your custom object. Make sure you use

 // "startsWith"because there is some data appended

 // to the end of the name indicating in which Subject

 // Set it belongs. Example from getName():

 // "com.acme.CustomObject (1)". The class name is

 // generated at the sending side by calling the

 // object.getClass().getName() method. If this object

 // is deserialized by WebSphere Application Server,

 // then return it and you do not need to add it here.

 // Otherwise, you can add it below.

 // Note: If your class appears in this list and does

 // not use custom serialization (for example, an

 // implementation of the Token interface described in

 // the Propagation Token Framework), then WebSphere

 // Application Server automatically deserializes the

636 Securing applications and their environment

// Java object for you. You might just return here if

 // it is found in the list.

 if (tokenHolder.getName().startsWith("com.acme.CustomObject"))

 return true;

 }

 }

 // If you get to this point, then your custom object has not propagated

 myCustomObject = new com.acme.CustomObject();

 myCustomObject.put("mykey", "mydata");

 }

 public boolean commit() throws LoginException

 {

 try

 {

 // Assigns a reference to a final variable so it can be used in

 // the doPrivileged block

 final com.acme.CustomObject myCustomObjectFinal = myCustomObject;

 // Prevents your applications from needing a JAAS getPrivateCredential

 // permission.

 java.security.AccessController.doPrivileged(new java.security.

 PrivilegedExceptionAction()

 {

 public Object run() throws java.lang.Exception

 {

 // Try not to add a null object to the Subject or an object

 // that already exists.

 if (myCustomObjectFinal != null && !subject.getPrivateCredentials().

 contains(myCustomObjectFinal))

 {

 // This call requires a special Java 2 Security permission,

 // see the JAAS application programming interface (API)

 // documentation.

 subject.getPrivateCredentials().add(myCustomObjectFinal);

 }

 return null;

 }

 });

 }

 catch (java.security.PrivilegedActionException e)

 {

 // Wraps the exception in a WSLoginFailedException

 java.lang.Throwable myException = e.getException();

 throw new WSLoginFailedException (myException.getMessage(), myException);

 }

 }

 // Defines your login module variables

 com.acme.CustomObject myCustomObject = null;

}

2. Verify that your custom Java class implements the java.io.Serializable interface. An object that is added

to the Subject must be serialized if you want the object to propagate. For example, the object must

implement the java.io.Serializable interface. If the object is not serialized, the request does not fail, but

the object does not propagate. To make sure an object that is added to the Subject is propagated,

implement one of the token interfaces that is defined in “Security attribute propagation” on page 191 or

add attributes to one of the following existing default token implementations:

AuthorizationToken

Add attributes if they are user-specific. For more information, see “Default authorization token”

on page 201.

PropagationToken

Add attributes that are specific to an invocation. For more information, see “Default

propagation token” on page 195.

Chapter 8. Developing extensions to the WebSphere security infrastructure 637

If you are careful adding custom objects and follow all the steps to make sure that WebSphere

Application Server can serialize and deserialize the object at each hop, then it is sufficient to use

custom Java objects only.

3. Verify that your custom Java class exists on all of the systems that might receive the request.

When you add a custom object into the Subject and expect WebSphere Application Server to

propagate the object, make sure that the class definition for that custom object exists in the

install_root/classes directory on all of the nodes where serialization or deserialization might occur.

Also, verify that the Java class versions are the same.

4. Verify that your custom login module is configured in all of the login configurations used in your

environment where you need to add your custom object during a login. Any login configuration that

interacts with WebSphere Application Server generates a Subject that might be propagated outbound

for an Enterprise JavaBeans (EJB) request. If you want WebSphere Application Server to propagate a

custom object in all cases, make sure that the custom login module is added to every login

configuration that is used in your environment. For more information, see “Custom login module

development for a system login configuration” on page 579.

5. Verify that security attribute propagation is enabled on all of the downstream servers that receive the

propagated information. When an EJB request is sent to a downstream server and security attribute

propagation is disabled on that server, only the authentication token is sent for backwards compatibility.

Therefore, you must review the configuration to verify that propagation is enabled in all of the cells that

might receive requests. You must check several places in the administrative console to make sure

propagation is fully enabled. For more information, see “Propagating security attributes among

application servers” on page 267.

6. Add any custom objects to the propagation exclude list that you do not want to propagate. You can

configure a property to exclude the propagation of objects that match specific class names, package

names, or both. For example, you can have a custom object that is related to a specific process. If the

object is propagated, it does not contain valid information. You must tell WebSphere Application Server

not to propagate this object. Complete the following steps to specify the object in the propagation

exclude list, using the administrative console:

a. Click Security > Secure administration, applications, and infrastructure > Custom properties

> New.

b. Add com.ibm.ws.security.propagationExcludeList in the Name field.

c. Add the name of the custom object in the Value field. You can add a list of custom objects to the

propagation exclude list, separated by a colon (:). For example, you might enter

com.acme.CustomLocalObject:com.acme.private.*. You can enter a class name such as

com.acme.CustomLocalObject or a package name such as com.acme.private.*. In this example,

WebSphere Application Server does not propagate any class that equals

com.acme.CustomLocalObject or begins with com.acme.private.

Although you can add custom objects to the propagation exclude list, you must be aware of a side

effect. WebSphere Application Server stores the opaque token, or the serialized Subject contents,

in a local cache for the life of the single sign-on (SSO) token. The life of the SSO token, which has

a default of two hours, is configured in the SSO properties on the administrative console. The

information that is added to the opaque token includes only the objects not in the exclude list.

If your authentication cache does not match your SSO token timeout, configure the authentication

cache properties. See “Configuring the authentication cache” on page 269. It is recommended that

you make your authentication cache timeout value equal to the SSO token timeout.

As a result of this task, custom Java serializable objects are propagated horizontally or downstream. For

more information on the differences between horizontal and downstream propagation, see “Security

attribute propagation” on page 191.

638 Securing applications and their environment

Developing a custom interceptor for trust associations

You can define the interceptor class method that you want to use. WebSphere Application Server supports

two trust association interceptor interfaces: com.ibm.websphere.security.TrustAssociationInterceptor and

com.ibm.wsspi.security.tai.TrustAssociationInterceptor.

If you are using a third party reverse proxy server other than Tivoli WebSEAL, you must provide an

implementation class for the product interceptor interface for your proxy server. This article describes the

com.ibm.websphere.security.TrustAssociationInterceptor.java interface that you must implement.

WebSphere Application Server version 4 and WebSphere Application Server version 5.x support the

com.ibm.websphere.security.TrustAssociationInterceptor.java interface described in this article. WebSphere

Application Server version 6.0 and later support the com.ibm.wsspi.security.tai.TrustAssociationInterceptor

interface described in Developing a custom trust association interceptor.

Note: The Trust Association Interceptor (TAI) interface

(com.ibm.wsspi.security.tai.TrustAssociationInterceptor) supports several new features and is

different from the existing com.ibm.websphere.security.TrustAssociationInterceptor interface.

1. Define the interceptor class method. WebSphere Application Server provides the interceptor Java

interface, com.ibm.websphere.security.TrustAssociationInterceptor, which defines the following

methods:

v public boolean isTargetInterceptor(HttpServletRequest req) creates

WebTrustAssociationException;.

The isTargetInterceptor method determines whether the request originated with the proxy server

associated with the interceptor. The implementation code must examine the incoming request object

and determine if the proxy server forwarding the request is a valid proxy server for this interceptor.

The result of this method determines whether the interceptor processes the request or not.

v public void validateEstablishedTrust (HttpServletRequest req) creates

WebTrustAssociationException;.

The validateEstablishedTrust method determines if the proxy server from which the request

originated is trusted or not. This method is called after the isTargetInterceptor method. The

implementation code must authenticate the proxy server. The authentication mechanism is

proxy-server specific. For example, in the product implementation for the WebSEAL server, this

method retrieves the basic authentication information from the HTTP header and validates the

information against the user registry used by WebSphere Application Server. If the credentials are

invalid, the code creates the WebTrustAssociationException, indicating that the proxy server is not

trusted and the request is to be denied.

v public String getAuthenticatedUsername(HttpServletRequest req) creates

WebTrustAssociationException;.

The getAuthenticatedUsername method is called after trust is established between the proxy server

and WebSphere Application Server. The product has accepted the proxy server authentication of the

request and must now authorize the request. To authorize the request, the name of the original

requestor must be subjected to an authorization policy to determine if the requestor has the

necessary privilege. The implementation code for this method must extract the user name from the

HTTP request header and determine if that user is entitled to the requested resource. For example,

in the product implementation for the WebSEAL server, the method looks for an iv-user attribute in

the HTTP request header and extracts the user ID associated with it for authorization.

2. Configuring the interceptor. To make an interceptor configurable, the interceptor must extend

com.ibm.websphere.security.WebSphereBaseTrustAssociationInterceptor. Implement the following

methods:

public int init (java.util.Properties props);

The init(Properties) method accepts a java.util.Properties object, which contains the set of

properties required to initialize the interceptor. All the properties set for an interceptor (by using

the Custom Properties link for that interceptor or using scripting) is sent to this method. The

interceptor then can use these properties to initialize itself. For example, in the product

Chapter 8. Developing extensions to the WebSphere security infrastructure 639

implementation for the WebSEAL server, this method reads the hosts and ports so that a

request coming in can be verified to originate from trusted hosts and ports. A return value of 0

implies that the interceptor initialization is successful. Any other value implies that the

initialization is not successful and the interceptor is ignored.

 Applicability of the following list

 If a previous implementation of the trust association interceptor returns a different error status

you can either change your implementation to match the expectations or make one of the

following changes:

v Add the com.ibm.websphere.security.trustassociation.initStatus property in the trust

association interceptor custom properties. Set the property to the value that indicates that

the interceptor is successfully initialized. All of the other possible values imply failure. In

case of failure, the corresponding trust association interceptor is not used.

v Add the com.ibm.websphere.security.trustassociation.ignoreInitStatus property in the trust

association interceptor custom properties. Set the value of this property to true, which tells

WebSphere Application Server to ignore the status of this method. If you add this property

to the custom properties, WebSphere Application Server does not check the return status,

which is similar to previous versions of WebSphere Application Server.
public void cleanup ();

This method is called when the application server is stopped. It is used to prepare the

interceptor for termination.

public void setVersion (String s);

This method is optional. The method is used to set the version and is for informational purpose

only. The default value is Unspecified.

You must configure the following methods implemented by the custom interceptor implementation. This

listing only shows the methods and does not include any implementation.

**

import java.util.*;

import javax.servlet.http.HttpServletRequest;

import com.ibm.websphere.security.*;

public class myTAIImpl extends WebSphereBaseTrustAssociationInterceptor

 implements TrustAssociationInterceptor

{

 public myTAIImpl ()

 {

 }

 public boolean isTargetInterceptor (HttpServletRequest req)

 creates WebTrustAssociationException

 {

 //return true if this is the target interceptor, else return false.

 }

 public void validateEstablishedTrust (HttpServletRequest req)

 creates WebTrustAssociationFailedException

 {

 //validate if the request is from the trusted proxy server.

 //throw exception if the request is not from the trusted server.

 }

 public String getAuthenticatedUsername (HttpServletRequest req)

 creates WebTrustAssociationUserException

 {

 //Get the user name from the request and if the user is

640 Securing applications and their environment

//entitled to the requested resource

 //return the user. Otherwise, throw the exception

 }

 public int init (Properties props)

 {

 //initialize the implementation. If successful return 0, else return -1.

 }

 public void cleanup ()

 {

 //Cleanup code.

 }

}

**

Note: If the init(Properties) method is implemented as described previously in your custom interceptor,

this note does not apply to your implementation, and you can move on to the next step.

Previous versions of com.ibm.websphere.security.WebSphereBaseTrustAssociationInterceptor

include the public int init (String propsfile) method. This method is no longer required since the

interceptor properties are not read from a file. The properties are now entered in the

administrative console Custom Properties link of the interceptor using the administrative

console or scripts. These properties then are made available to your implementation in the

init(Properties) method. However, for backward compatibility, the init(String) method still is

supported. The init(String) method is called by the default implementation of init(Properties) as

shown in the following example.

// Default implementation of init(Properties props) method. A Custom

 // implementation should override this.

 public int init (java.util.Properties props)

 {

 String type =

 props.getProperty("com.ibm.websphere.security.trustassociation.types");

 String classfile=

 props.getProperty("com.ibm.websphere.security.trustassociation."

 +type+".config");

 if (classfile != null && classfile.length() > 0) {

 return init(classfile);

 } else {

 return -1;

 }

 }

Change your implementation to implement the init(Properties) method instead of relying on init(String

propsfile) method. As shown in the previous example, this default implementation reads the properties

to load the property file. The com.ibm.websphere.security.trustassociation.types property gets the file

containing the properties by concatenating .config to its value.

Note: The init(String) method still works if you want to use it instead of implementing the

init(Properties) method. The only requirement is that the file name containing the custom trust

association properties should now be entered using the Custom Properties link of the

interceptor in the administrative console or by using scripts. You can enter the property using

either of the following methods. The first method is used for backward compatibility with

previous versions of WebSphere Application Server.

Method 1:

The same property names used in the previous release are used to obtain the file

name. The file name is obtained by concatenating the .config to the

com.ibm.websphere.security.trustassociation.types property value.

Chapter 8. Developing extensions to the WebSphere security infrastructure 641

If the file name is called myTAI.properties and is located in the app_server_root/
properties directory, set the following properties:

v com.ibm.websphere.security.trustassociation.types = myTAItype

v com.ibm.websphere.security.trustassociation.myTAItype.config =

app_server_root/properties/myTAI.properties
Method 2:

You can set the com.ibm.websphere.security.trustassociation.initPropsFile property in

the trust association custom properties to the location of the file. For example, set the

following property:

v com.ibm.websphere.security.trustassociation.initPropsFile=

app_server_root/properties/myTAI.properties

Type the previous code as one continuous line.

The location of the properties file is fully qualified (for example, app_server_root/properties/
myTAI.properties). Because the location can be different in a Network Deployment environment, use

variables such as ${USER_INSTALL_ROOT} to refer to the WebSphere Application Server installation

directory. For example, if the file name is called myTAI.properties and it is located in the

app_server_root/properties directory, then set the following properties:

3. Compile the implementation once you have implemented it. For example, app_server_root/java/bin/
javac -classpath install_root/lib/wssec.jar;<install_root>/lib/j2ee.jar myTAIImpl.java

a. Copy the class file to a location in the class path (preferably the app_server_root/lib/ext

directory).

b. Restart all the servers.

4. Delete the default WebSEAL interceptor in the administrative console and click New to add your

custom interceptor. Verify that the class name is dot separated and appears in the class path.

5. Click the Custom Properties link to add additional properties that are required to initialize the custom

interceptor. These properties are passed to the init(Properties) method of your implementation when it

extends the com.ibm.websphere.security.WebSphereBaseTrustAssociationInterceptor as described in

the previous step.

6. Save and synchronize (if applicable) the configuration.

7. Restart the servers for the custom interceptor to take effect.

Refer to the Security: Resources for Learning article, which references the WebSphere Application Server

version 5 Redbook to view an example of a custom interceptor.

Trust association interceptor support for Subject creation

The trust association interceptor (TAI) com.ibm.wsspi.security.tai.TrustAssociationInterceptor interface

supports several features that are different from the existing

com.ibm.websphere.security.TrustAssociationInterceptor interface.

The TAI interface supports a multiphase, negotiated authentication process. For example, some systems

require a challenge response protocol back to the client. The two key methods in this interface are:

Key method name

public boolean isTargetInterceptor (HttpServletRequest req)

 The isTargetInterceptor method determines whether the request originated with the proxy server

that is associated with the interceptor. The implementation code must examine the incoming

request object and determine if the proxy server that forwards the request is a valid proxy server

for this interceptor. The result of this method determines whether the interceptor processes the

request.

Method result

 A true value tells WebSphere Application Server to have the TAI handle the request.

 A false value, tells WebSphere Application Server to ignore the TAI.

642 Securing applications and their environment

Key method name

public TAIResult negotiateValidateandEstablishTrust (HttpServletRequest req, HttpServletResponse

res)

 The negotiateValidateandEstablishTrust method determines whether to trust the proxy server from

which the request originated. The implementation code must authenticate the proxy server. The

authentication mechanism is proxy-server specific. For example, in the product implementation for

the WebSEAL server, this method retrieves the basic authentication information from the HTTP

header and validates the information against the user registry that WebSphere Application Serve

uses. If the credentials are not valid, the code creates the WebTrustAssociationException

exception, which indicates that the proxy server is not trusted and the request is denied. If the

credentials are valid, the code returns a TAIResult result, which indicates the status of the request

processing with the client identity (Subject and principal name) to use for authorizing the Web

resource.

Method result

Returns a TAIResult result, which indicates the status of the request processing. You can query

the Request object and modify the Response object can be modified.

The TAIResult class has three static methods for creating a TAIResult result. The TAIResult create

methods take an int type as the first parameter. WebSphere Application Server expects the result to be a

valid HTTP request return code and is interpreted in one of the following ways:

v If the value is HttpServletResponse.SC_OK, this response tells WebSphere Application Server that the

TAI completed its negotiation. The response also tells WebSphere Application Server to use the

information in the TAIResult result to create a user identity.

v Other values tell WebSphere Application Server to return the TAI output, which is placed into the

HttpServletResponse response, to the Web client. Typically, the Web client provides additional

information and then places another call to the TAI.

The created TAIResults results have the following meanings:

 TAIResult Explanation

public static TAIResult create(int

status);

Indicates a status to WebSphere Application Server. The status cannot be

SC_OK because the identity information is provided.

public static TAIResult create(int

status, String principal);

Indicates a status to WebSphere Application Server and provides the user ID

or the unique ID for this user. WebSphere Application Server creates

credentials by querying the user registry.

public static TAIResult create(int

status, String principal, Subject

subject);

Indicates a status to WebSphere Application Server, the user ID or the unique

ID for the user, and a custom Subject. If the Subject contains a hashtable, the

principal is ignored. The contents of the Subject become part of the eventual

user Subject.

All of the following examples are within the negotiateValidateandEstablishTrust method of a TAI.

The following code sample indicates that additional negotiation is required:

// Modify the HttpServletResponse object

 // The response code is meaningful only on the client

 return TAIResult.create(HttpServletResponse.SC_CONTINUE);

The following code sample indicates that the TAI determined the user identity. WebSphere Application

Server receives the user ID only and queries the user registry for additional information:

// modify the HttpServletResponse object

 return TAIResult.create(HttpServletResponse.SC_OK, userid);

Chapter 8. Developing extensions to the WebSphere security infrastructure 643

The following code sample indicates that the TAI determined the user identity. WebSphere Application

Server receives the complete user information that is contained in the hashtable. For more information on

the hashtable, see “Configuring inbound identity mapping” on page 294. In this code sample, the hashtable

is placed in the public credential portion of the Subject:

// create Subject and place Hashtable in it

 Subject subject = new Subject;

 subject.getPublicCredentials().add(hashtable);

 //the response code is meaningful only the client

 return TAIResult.create(HttpServletResponse.SC_OK, ″ignored″, subject);

The following code sample indicates that an authentication failure occured. WebSphere Application Server

fails the authentication request:

//log error message

 //

 throw new WebTrustAssociationFailedException(″TAI failed for this reason″);

The following methods are additional methods on the TrustAssociationInterceptor interface. These methods

are used for initialization, for shutdown, and for identifying the TAI to WebSphere Application Server. For

more information, see the Java documentation.

Method name

public int initialize(Properties props)

 Method result

This method is called during TAI initialization and is called only if custom properties are configured

for the interceptor.

Method name

public String getVersion()

Method result

This method returns the version of the TAI.

Method name

public String getType()

Method result

This method returns the type of the TAI.

Method name

public void cleanup()

Method result

This method is called when stopping the WebSphere Application Server process. Stopping the

WebSphere Application Server process provides an opportunity for the TAI to perform any

necessary cleanup. This method is not necessary if cleanup is not required.

Plug point for custom password encryption

A plug point for custom password encryption can be created to encrypt and decrypt all passwords in

WebSphere Application Server that are currently encoded or decoded using Base64-encoding.

The implementation class of this plug point has the responsibility for managing keys, determining the

encryption algorithm to use, and for protecting the master secret. The WebSphere Application Server

runtime stores the encrypted passwords in their existing locations, preceded with {custom:alias} tags

instead of {xor} tags. The custom part of the tag indicates that it is a custom algorithm. The alias part of

644 Securing applications and their environment

the tag is specified by the custom implementation, which helps to indicate how the password is encrypted.

The implementation can include the key alias, encryption algorithm, encryption mode, or encryption

padding.

A custom provider of this plug point must implement an interface that is designed to encrypt and decrypt

passwords. The interface is called by the WebSphere Application Server runtime whenever the custom

plug point is enabled. The custom algorithm becomes one of the supported algorithms when the plug point

is enabled. Other supported algorithms include {xor} (standard base64 encoding) and {os400} which is

used on the iSeries platform.

The following example illustrates the com.ibm.wsspi.security.crypto.CustomPasswordEncryption interface:

package com.ibm.wsspi.security.crypto;

public interface CustomPasswordEncryption

{

 /**

 * The encrypt operation takes a UTF-8 encoded String in the form of a byte[].

 * The byte[] is generated from String.getBytes("UTF-8").

 * An encrypted byte[] is returned from the implementation in the EncryptedInfo

 * object. Additionally, a logical key alias is returned in the EncryptedInfo

 * objectwhich is passed back into the decrypt method to determine which key was

 * used to encrypt this password. The WebSphere Application Server runtime has

 * no knowledge of the algorithm or the key used to encrypt the data.

 *

 * @param byte[]

 * @return com.ibm.wsspi.security.crypto.EncryptedInfo

 * @throws com.ibm.wsspi.security.crypto.PasswordEncryptException

 **/

 public EncryptedInfo encrypt (byte[] decrypted_bytes) throws PasswordEncryptException;

 /**

 * The decrypt operation takes the EncryptedInfo object containing a byte[]

 * and the logical key alias and converts it to the decrypted byte[]. The

 * WebSphere Application Server runtime converts the byte[] to a String

 * using new String (byte[], "UTF-8");

 *

 * @param com.ibm.wsspi.security.crypto.EncryptedInfo

 * @return byte[]

 * @throws com.ibm.wsspi.security.crypto.PasswordDecryptException

 **/

 public byte[] decrypt (EncryptedInfo info) throws PasswordDecryptException;

 /**

 * The following is reserved for future use and is currently not

 * called by the WebSphere Application Server runtime.

 *

 * @param java.util.HashMap

 **/

 public void initialize (java.util.HashMap initialization_data);

}

The com.ibm.wsspi.security.crypto.EncryptedInfo class contains the encrypted bytes with the user-defined

alias that is associated with the encrypted bytes. This information is passed back into the encryption

method to help determine how the password was originally encrypted.

package com.ibm.wsspi.security.crypto;

public class EncryptedInfo

{

 private byte[] bytes;

 private String alias;

/**

 * This constructor takes the encrypted bytes and a keyAlias as parameters.

 * This constructor is used to pass to or from the WebSphere Application Server

Chapter 8. Developing extensions to the WebSphere security infrastructure 645

* runtime to enable the runtime to associate the bytes with a specific key that

 * is used to encrypt the bytes.

 */

 public EncryptedInfo (byte[] encryptedBytes, String keyAlias)

 {

 bytes = encryptedBytes;

 alias = keyAlias;

 }

/**

 * This command returns the encrypted bytes.

 *

 * @return byte[]

 */

 public byte[] getEncryptedBytes()

 {

 return bytes;

 }

/**

 * This command returns the key alias. The key alias is a logical string that is

 * associated with the encrypted password in the model. The format is

 * {custom:keyAlias}encrypted_password. Typically, just the key alias is placed

 * here, but algorithm information can also be returned.

 *

 * @return String

 */

 public String getKeyAlias()

 {

 return alias;

 }

}

The encryption method is called for password processing whenever the custom class is configured and

custom encryption is enabled. The decryption method is called whenever the custom class is configured

and the password contains the {custom:alias} tag . The custom:alias tag is stripped prior to decryption.

For more information, see Enabling custom password encryption.

Enabling custom password encryption

To view an example code sample that illustrates the

com.ibm.wsspi.security.crypto.CustomPasswordEncryption interface, see Plug point for custom password

encryption.

The encryption method is called for password processing whenever the custom class is configured and

custom encryption is enabled. The decryption method is called whenever the custom class is configured

and the password contains the {custom:alias} tag. The custom:alias tag is stripped prior to decryption.

1. To enable custom password encryption, you must configure two properties:

v property com.ibm.wsspi.security.crypto.customPasswordEncryptionClass - Defines the custom

class that implements the com.ibm.wsspi.security.crypto.CustomPasswordEncryption password

encryption interface.

v com.ibm.wsspi.security.crypto.customPasswordEncryptionEnabled - Defines when the custom

class is used for default password processing. When the passwordEncryptionEnabled option is not

specified or set to false, and the passwordEncryptionClass class is specified, the decryption

method is called whenever a {custom:alias} tag still exists in the configuration repository.

2. If the custom implementation class defaults to the

com.ibm.wsspi.security.crypto.CustomPasswordEncryptionImpl interface, and this class is present in

the class path, then encryption is enabled by default. This simplifies the enablement process for all

646 Securing applications and their environment

nodes. It is not necessary to define any other properties except for those that the custom

implementation requires. To disable encryption, but still use this class for decryption, specify the

following class.

v com.ibm.wsspi.security.crypto.customPasswordEncryptionEnabled=false

3. To configure custom password encryption, configure both of these properties in the security.xml file.

The custom encryption class (com.acme.myPasswordEncryptionClass) must be placed in a Java

archive (JAR) file in the ${WAS_INSTALL_ROOT}/classes directory in all WebSphere Application Server

processes. Every configuration document that contains a password (security.xml and any application

bindings that contain RunAs passwords), must be saved before all of the passwords become

encrypted with the custom encryption class.

Whenever a custom encryption class encryption operation is called, and it creates a run-time exception or

a defined PasswordEncryptException exception, the WebSphere Application Server runtime uses the {xor}

algorithm to encode the password. This encoding prevents the storage of the password in plain text. After

the problem with the custom class has been resolved, it automatically encrypts the password the next time

the configuration document is saved.

When a RunAs role is assigned a user ID and password, it currently is encoded using the WebSphere

Application Server encoding function. Therefore, after the custom plug point is configured to encrypt the

passwords, it encrypts the passwords for the RunAs bindings as well. If the deployed application is moved

to a cell that does not have the same encryption keys, or the custom encryption is not yet enabled, a login

failure results because the password is not readable.

One of the responsibilities of the custom password encryption implementation is to manage the encryption

keys. This class must decrypt any password that it encrypted. Any failure to decrypt a password renders

that password to be unusable, and the password must be changed in the configuration. All encryption keys

must be available for decryption there no passwords are left using those keys. The master secret must be

maintained by the custom password encryption class to protect the encryption keys.

You can manage the master secret by using a stash file for the keystore, or by using a password locator

that enables the custom encryption class to locate the password so that it can be locked down.

Chapter 8. Developing extensions to the WebSphere security infrastructure 647

648 Securing applications and their environment

Chapter 9. Configuring security with scripting

You can configure security with scripting and the wsadmin tool.

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

If you enable security for a WebSphere Application Server cell, supply authentication information to

communicate with servers.

The sas.client.props and the soap.client.props files are located in the properties directory for each

WebSphere Application Server profile, profilePath/properties.

v The nature of the properties file updates required for running in secure mode depend on whether you

connect with a Remote Method Invocation (RMI) connector, or a SOAP connector:

– If you use a Remote Method Invocation (RMI) connector, set the following properties in the

sas.client.props file with the appropriate values:

com.ibm.CORBA.loginUserid=

com.ibm.CORBA.loginPassword=

Also, set the following property:

com.ibm.CORBA.loginSource=properties

The default value for this property is prompt in the sas.client.props file. If you leave the default

value, a dialog box appears with a password prompt. If the script is running unattended, it appears to

hang.

– If you use a SOAP connector, set the following properties in the soap.client.props file with the

appropriate values:

com.ibm.SOAP.securityEnabled=true

com.ibm.SOAP.loginUserid=

com.ibm.SOAP.loginPassword=

Optionally, set the following property:

com.ibm.SOAP.loginSource=none

The default value for this property is prompt in the soap.client.props file. If you leave the default

value, a dialog box appears with a password prompt. If the script is running unattended, it appears to

hang.

v To specify user and password information, choose one of the following methods:

– Specify user name and password on a command line, using the -user and -password commands.

For example:

wsadmin -conntype RMI -port 2809 -user u1 -password secret1

– Specify user name and password in the sas.client.props file for a RMI connector or the

soap.client.props file for a SOAP connector.

If you specify user and password information on a command line and in the sas.client.props file or the

soap.client.props file, the command line information overrides the information in the props file.

Note: On UNIX system, the use of -password option may result in security exposure as the password

information becomes visible to the system status program such as ps command which can be

invoked by other user to display all the running processes. Do not use this option if security

exposure is a concern. Instead, specify user and password information in the soap.client.props

file for SOAP connector or sas.client.props file for RMI connector. The soap.client.props and

sas.client.props files are located in the properties directory of your WebSphere Application Server

profile.

© Copyright IBM Corp. 2006 649

Enabling and disabling administrative security using scripting

You can use scripting to enable or disable administrative security.

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

The default profile sets up procedures so that you can enable and disable administrative security based on

LocalOS registry.

v To determine if application security is enabled or disabled by looking at the value of the appEnabled

field in the WCCM security model, use the isAppEnabled command, for example:

– Using Jacl:

$AdminTask isAppSecurityEnabled {-interactive}

– Using Jython:

AdminTask.isAppSecurityEnabled (’[-interactive]’)

This command returns a value of true if appEnabled is set to true. Otherwise, returns a value of false.

v To determine if administrative security is enabled or disabled by looking at the value of the enabled field

in the WCCM security model, use the isGlobalSecurity command, for example:

– Using Jacl:

$AdminTask isGlobalSecurity {-interactive}

– Using Jython:

AdminTask.isGlobalSecurity (’[-interactive]’)

Returns a value of true if enabled is set to true. Otherwise, returns a value of false.

v To set administrative security based on the passed in value, use the setGlobalSecurity command. For

example:

– Using Jacl:

$AdminTask setGlobalSecurity {-interactive}

– Using Jython:

AdminTask.setGlobalSecurity (’[-interactive]’)

Returns a value of true if the enabled field in the WCCM security model is successfully updated.

Otherwise, returns a value of false.

v You can use the help command to find out the arguments that you need to provide with this call, for

example:

– Using Jacl:

securityon help

Example output:

Syntax: securityon user password

– Using Jython:

securityon()

Example output:

Syntax: securityon(user, password)

v To enable administrative security based on the LocalOS registry, use the following procedure call and

arguments:

– Using Jacl:

securityon user1 password1

– Using Jython:

securityon(’user1’, ’password1’)

v To disable administrative security based on the LocalOS registry, use the following procedure call:

650 Securing applications and their environment

– Using Jacl:

securityoff

– Using Jython:

securityoff()

Enabling and disabling LTPA authentication

There are sample scripts located in the <WAS_ROOT>/bin directory on how to enable and disable LTPA

authentication. The scripts are:

– LTPA_LDAPSecurityProcs.py (python script)

– LTPA_LDAPSecurityProcs.jacl (jacl script)

Note: The scripts hard code the type of LDAP server and base distinguished name (baseDN). The

LDAP server type is hardcoded as IBM_DIRECTORY_SERVER and the baseDN is hardcoded

as o=ibm,cn=us.

Enabling and disabling Java 2 security using scripting

You can enable or disable Java 2 security with scripting and the wsadmin tool.

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

Perform the following steps to enable or disable Java 2 security:

1. Identify the security configuration object and assign it to the security variable:

v Using Jacl:

set security [$AdminConfig list Security]

v Using Jython:

security = AdminConfig.list(’Security’)

print security

Example output:

(cells/mycell|security.xml#Security_1)

2. Modify the enforceJava2Security attribute to enable or disable Java 2 security. For example:

v To enable Java 2 security:

– Using Jacl:

$AdminConfig modify $security {{enforceJava2Security true}}

– Using Jython:

AdminConfig.modify(security, [[’enforceJava2Security’, ’true’]])

v To disable Java 2 security:

– Using Jacl:

$AdminConfig modify $security {{enforceJava2Security false}}

– Using Jython:

AdminConfig.modify(security, [[’enforceJava2Security’, ’false’]])

3. Save the configuration changes. See the Saving configuration changes with the wsadmin tool article

for more information.

4. In a network deployment environment only, synchronize the node. See the Synchronizing nodes with

the wsadmin tool article for more information.

Enabling authentication in the file transfer service using scripting

You can enable authentication in the file transfer service using scripting and the wsadmin tool.

Chapter 9. Configuring security with scripting 651

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

In WebSphere Application Server Network Deployment, V5.0.1 or later, the file transfer service is

enhanced to provide role-based authentication. Two versions of the file transfer Web application are

provided. By default, the version that does not authenticate its caller is installed. This default supports

compatibility between the WebSphere Application Server Network Deployment, V5.0 and V5.0.1 or later.

Turning the file transfer authentication on is recommended to prevent unauthorized use of the file transfer

application; however, if you have any V5.0 clients in your Network Deployment environment, they cannot

communicate with the secured file transfer application if global security is turned on.

In WebSphere Application Server V6.x, mixed cells are supported and file transfer has become a system

application. If all of the nodes in the cell are of V5.0.1 or later, you can activate authentication in the file

transfer service by redeploying the file transfer application at the deployment manager. The compatible

version is shipped in the app_server_root/systemApps/filetransfer.ear directory. The secured version is

provided in the app_server_root/systemApps/filetransferSecured.ear directory.

v A wsadmin Jacl script is provided to help you redeploy the file transfer. The script is called

redeployFileTransfer.jacl and is located in the app_server_root/bin directory. After the deployment

manager and all the nodes are upgraded to WebSphere Application Server Network Deployment,

version 5.0.1 or later, you can deploy the secured file transfer service by running the script. The syntax

for running the script from the bin directory is the following:

–

wsadmin -profile redeployFileTransfer.jacl -c "fileTransferAuthenticationXxx cellName nodeName serverName"

where Xxx is On or Off.

For Windows systems, use wsadmin or wsadmin.bat. For Linux and UNIX systems, use wsadmin.sh.

For OS/400 systems, use wsadmin.

– For example, when running the script to enable use of the filetransferSecured.ear file, the syntax is

similar to the following example:

wsadmin -profile redeployFileTransfer.jacl -c "fileTransferAuthenticationOn managedCell managedCellManager dmgr"

or

wsadmin -profile redeployFileTransfer.jacl -c "fileTransferAuthenticationOn baseCell base server1"

v If you want to go return to running the file transfer service without authentication, you can run the script

as shown in the following example:

wsadmin -profile redeployFileTransfer.jacl -c "fileTransferAuthenticationOff baseNodeCell baseNode server1"

or

wsadmin -profile redeployFileTransfer.jacl -c "fileTransferAuthenticationOff managedCell managedCellManager dmgr"

You must restart the server for the change to take affect.

Propagating security policy of installed applications to a JACC

provider using wsadmin scripting

It is possible that you have applications installed prior to enabling the Java Authorization Contract for

Containers (JACC)-based authorization. You can start with default authorization and then move to an

external provider-based authorization using JACC later.

Also, during application installation or modification you might have had problems propagating the security

policy information to the JACC provider. For example, network problems might occur, the JACC provider

might not be available, and so on. For these cases, the security policy of the previously installed

652 Securing applications and their environment

applications does not exist in the JACC provider to make the access decisions. One choice is to reinstall

the applications involved. However, you can avoid reinstalling by using the wsadmin scripting tool. Use this

tool to propagate information to the JACC provider independent of the application installation process. The

tool eliminates the need for reinstalling the applications.

The tool uses the SecurityAdmin MBean to propagate the policy information in the deployment descriptor

of any installed application to the JACC provider. You can invoke this tool using wsadmin at the base

application server for base and deployment manager level for Network Deployment. Note that the

SecurityAdmin MBean is available only when the server is running.

Use propagatePolicyToJACCProvider(String appNames) to propagate the policy information in the

deployment descriptor of the enterprise archive (EAR) files to the JACC provider. If the

RoleConfigurationFactory and the RoleConfiguration interfaces are implemented by the JACC provider, the

authorization table information in the binding file of the EAR files is also propagated to the provider. See

the Securing applications and their environment PDF for more information about these interfaces.

The appNames String contains the list of application names, delimited by a colon (:), whose policy

information must be stored in the provider. If a null value is passed, the policy information of the deployed

applications is propagated to the provider.

Also, be aware of the following items:

v Before migrating applications to the Tivoli Access Manager JACC provider, create or import the users

and groups that are in the applications to Tivoli Access Manager.

v Depending on the application or the number of applications that are propagated, you might have to

increase the request time-out period either in the soap.client.props file in the directory

profile_root/properties (if using SOAP) or in the sas.client.props file (if using RMI) for the

command to complete. You can set the request time-out value to 0 to avoid the timeout problem, and

change it back to the original value after the command is run.

1. Configure your JACC provider in WebSphere Application Server.

See the Securing applications and their environment PDF for more information.

2. Restart the server.

3. Enter the following commands:

//use the SecurityAdmin MBean at the Deployment Manager or the unmanaged base

//application server connect to the appropriate process (Deployment Manager or

//base application server)

wsadmin -user serverID -password serverPWD

// To get the SecurityAdmin MBean for Deployment Manager

wsadmin> set secadm [$AdminControl queryNames type=SecurityAdmin,process=dmgr,*]

// or to get the SecurityAdmin MBean for a unmanaged base application server

//(replace the process name to match your configuration)

wsadmin> set secadm [$AdminControl queryNames

 type=SecurityAdmin,process=server1,*]

// to propagate specific applications security policy information

wsadmin>set appNames [list app1:app2]

// or to propagate all applications installed

wsadmin>set appNames [list null]

// Run the command to propagate

wsadmin>$AdminControl invoke $secadm propagatePolicyToJACCProvider $appNames

Chapter 9. Configuring security with scripting 653

Configuring the JACC provider for Tivoli Access Manager using the

wsadmin utility

You can use the wsadmin utility to configure Tivoli Access Manager security for WebSphere Application

Server.

1. Start WebSphere Application Server.

2. Start the wsadmin command-line utility.

Run the wsadmin command from the app_server_root/bin directory.

3. At the wsadmin prompt, enter the following command:

$AdminTask configureTAM -interactive

You are prompted to enter the following information:

 Option Description

WebSphere Application Server node name Specify a single node.

Tivoli Access Manager Policy Server Enter the name of the Tivoli Access Manager policy

server and the connection port. Use the format,

policy_server : port. The policy server communication port

is set at the time of Tivoli Access Manager configuration.

The default port is 7135.

Tivoli Access Manager Authorization Server Enter the name of the Tivoli Access Manager

authorization server. Use the format auth_server : port :

priority. The authorization server communication port is

set at the time of Tivoli Access Manager configuration.

The default port is 7136. More than one authorization

server can be specified by separating the entries with

commas. Having more than one authorization server

configured is useful for failover and performance. The

priority value is the order of authorization server use. For

example: auth_server1:7136:1,auth_server2:7137:2. A

priority of 1 is still required when configuring against a

single authorization server.

WebSphere Application Server administrator’s

distinguished name

Enter the full distinguished name of the WebSphere

Application Server security administrator ID, as created in

the ″Creating the security administrative user″ topic in the

Securing applications and their environment PDF. For

example: cn=wasadmin,o=organization,c=country

Tivoli Access Manager user registry distinguished

name suffix

For example: o=organization,c=country

Tivoli Access Manager administrator’s user name Enter the Tivoli Access Manager administration user ID,

as created at the time of Tivoli Access Manager

configuration. This ID is usually, sec_master.

Tivoli Access Manager administrator’s user password Enter the password for the Tivoli Access Manager

administrator.

Tivoli Access Manager security domain Enter the name of the Tivoli Access Manager security

domain that is used to store users and groups. If a

security domain is not already established at the time of

Tivoli Access Manager configuration, click Return to

accept the default.

654 Securing applications and their environment

Option Description

Embedded Tivoli Access Manager listening port set WebSphere Application Server needs to listen on a

TCP/IP port for authorization database updates from the

policy server. More than one process can run on a

particular node and machine so a list of ports is required

for the processes. Enter the ports that are used as

listening ports by Tivoli Access Manager clients,

separated by a comma. If you specify a range of ports,

separate the lower and higher values by a colon. For

example, 7999, 9990:9999.

Defer Set to yes, this option defers the configuration of the

management server until the next restart. Set to no,

configuration of the management server occurs

immediately. Managed servers are configured on their

next restart.

4. When all information is entered, select F to save the configuration properties or C to cancel from the

configuration process and discard entered information.

Now enable the JACC provider for Tivoli Access Manager- Enabling the JACC provider for Tivoli Access

Manager topic in the Securing applications and their environment PDF.

Disabling embedded Tivoli Access Manager client using wsadmin

Follow these steps to unconfigure the Java Authorization Contract for Containers (JACC) provider for Tivoli

Access Manager.

1. Start the wsadmin command-line utility. The wsadmin command is found in theinstall_dir/bin

directory

2. From the wsadmin prompt, enter the following command:

WSADMIN>$AdminTask unconfigureTAM -interactive

You are prompted to enter the following information:

 Option Description

WebSphere Application Server node name Enter an asterisk (*) to select all nodes.

Tivoli Access Manager administrator user name Enter the Tivoli Access Manager administration user ID,

as created at the time of Tivoli Access Manager

configuration. This name is usually, sec_master.

Tivoli Access Manager administrator user password Enter the password for the Tivoli Access Manager

administrator.

Force Enter yes, if you want to ignore errors when unconfiguring

the JACC provider for Tivoli Access Manager. Enter this

option as yes only when the Tivoli Access Manager

domain is in an irreparable state.

Defer Enter no, to force the unconfiguration of the connected

server. Enter No for the unconfiguration to proceed

correctly.

3. When all information is entered, enter F to save the properties or C to cancel from the unconfiguration

process and discard the entered information.

4. Restart all WebSphere Application Server instances for the changes to take effect.

Chapter 9. Configuring security with scripting 655

Creating an SSL configuration at the node scope using scripting

An Secure Socket Layer (SSL) configuration references many other configuration objects. To help you

make valid selections for the new SSL configuration before you create it, view information about existing

configuration objects. Information about existing objects is also useful when you create a node scoped

SSL configuration using the createSSLConfig command of the AdminTask object.

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

To use the information in this task effectively, familiarize yourself with the instructions in the Creating a

Secure Sockets Layer configuration topic in the Securing applications and their environment PDF. Perform

the following task to create an Secure Socket Layer (SSL) configuration at the node scope:

1. List the existing configuration objects. Perform any of the following:

v List some of the configuration objects that you may need when you create a new SSL configuration.

For example, you want to see which management scopes have already been defined. If the one you

need does not exist you will need to create it.

– Using Jacl:

$AdminTask listManagementScopes {-scopeName (cell):BIRKT40Cell02:(node):BIRKT40Node02}

– Using Jython:

AdminTask.listManagementScopes (’[-scopeName (cell):BIRKT40Cell02:(node):BIRKT40Node02]’)

This shows an existing cell scope and existing node scope that you can use. If you want to create a

different scope, use the createManagementScope command of the AdminTask object to define a

different one. The valid scope parameters are cell, nodegroup, node, server, cluster, and endpoint.

See the Central management of Secure Sockets Layer configurations topic in the Securing

applications and their environment PDF for more information on scope definitions.

v List the key stores that exist in the configuration including key stores and trust stores.

– Using Jacl:

$AdminTask listKeyStores

– Using Jython:

AdminTask.listKeyStores()

Example output:

CellDefaultKeyStore(cells/BIRKT40Cell02|security.xml#KeyStore_1)

CellDefaultTrustStore(cells/BIRKT40Cell02|security.xml#KeyStore_2)

CellLTPAKeys(cells/BIRKT40Cell02|security.xml#KeyStore_3)

The previous example only lists the key stores for the default management scope which is also

known as the cell scope. To obtain key stores for other scopes, specify the scopeName parameter, for

example:

– Using Jacl:

$AdminTask listKeyStores {-scopeName (cell):BIRKT40Cell02:(node):BIRKT40Node02 }

– Using Jython:

$AdminTask listKeyStores (’[-scopeName (cell):BIRKT40Cell02:(node):BIRKT40Node02]’)

Example output:

CellDefaultKeyStore(cells/BIRKT40Cell02|security.xml#KeyStore_1)

CellDefaultTrustStore(cells/BIRKT40Cell02|security.xml#KeyStore_2)

CellLTPAKeys(cells/BIRKT40Cell02|security.xml#KeyStore_3)

NodeDefaultKeyStore(cells/BIRKT40Cell02|security.xml#KeyStore_1134610924357)

NodeDefaultTrustStore(cells/BIRKT40Cell02|security.xml#KeyStore_1134610924377)

v List specific trust or key managers. Be sure to display the object name for the trust managers. You

will need the object name for the SSL configuration because you can specify multiple trust manager

instances.

656 Securing applications and their environment

– Using Jacl:

$AdminTask listTrustManagers {-scopeName (cell):BIRKT40Cell02:(node):BIRKT40Node02 -displayObjectName true }

– Using Jython:

AdminTask.listTrustManagers (’[-scopeName (cell):BIRKT40Cell02:(node):BIRKT40Node02 -displayObjectName true]’)

Example output:

IbmX509(cells/BIRKT40Cell02|security.xml#TrustManager_1)

IbmPKIX(cells/BIRKT40Cell02|security.xml#TrustManager_2)

IbmX509(cells/BIRKT40Cell02|security.xml#TrustManager_1134610924357)

IbmPKIX(cells/BIRKT40Cell02|security.xml#TrustManager_1134610924377)

2. Create the node-scoped SSL configuration in interactive mode. Now that we have the information we

need to choose from, we need to decide if these objects are sufficient or if we need to create new

ones. For now, we will reuse what we’ve already got in the configuration and save creating new

instances to task documents specific to those objects.

v Using Jacl:

$AdminTask createSSLConfig -interactive

v Using Jython:

AdminTask.createSSLConfig (’[-interactive]’)

Example output:

Create a SSL Configuration.

*SSL Configuration Alias (alias): BIRKT40Node02SSLConfig

Management Scope Name (scopeName): (cell):BIRKT40Cell02:(node):BIRKT40Node02

Client Key Alias (clientKeyAlias): default

Server Key Alias (serverKeyAlias): default

SSL Type (type): [JSSE]

Client Authentication (clientAuthentication): [false]

Security Level of the SSL Configuration (securityLevel): [HIGH]

Enabled Ciphers SSL Configuration (enabledCiphers):

JSSE Provider (jsseProvider): [IBMJSSE2]

Client Authentication Support (clientAuthenticationSupported): [false]

SSL Protocol (sslProtocol): [SSL_TLS]

Trust Manager Object Names (trustManagerObjectNames): (cells/BIRKT40Cell02|security.xml#TrustManager_1)

*Trust Store Name (trustStoreName): NodeDefaultTrustStore

Trust Store Scope (trustStoreScopeName): (cell):BIRKT40Cell02:(node):BIRKT40Node02

*Key Store Name (keyStoreName): NodeDefaultKeyStore

Key Store Scope Name (keyStoreScopeName): (cell):BIRKT40Cell02:(node):BIRKT40Node02

Key Manager Name (keyManagerName): IbmX509

Key Manager Scope Name (keyManagerScopeName): (cell):BIRKT40Cell02:(node):BIRKT40Node02

Create SSL Configuration

F (Finish)

C (Cancel)

Select [F, C]: [F] F

WASX7278I: Generated command line: $AdminTask createSSLConfig {-alias BIRKT40Node02SSLConfig -scopeName

(cell):BIRKT40Cell02:(node):BIRKT40Node02 -clientKeyAlias default -serverKeyAlias default

-trustManagerObjectNames (cells/BIRKT40Cell02|security.xml#TrustManager_1) -trustStoreName

NodeDefaultTrustStore -trustStoreScopeName (cell):BIRKT40Cell02:(node):BIRKT40Node02 -keyStoreName

NodeDefaultKeyStore -keyStoreScopeName (cell):BIRKT40Cell02:(node):BIRKT40Node02 -keyManagerName

IbmX509 -keyManagerScopeName (cell):BIRKT40Cell02:(node):BIRKT40Node02 }

3. Save the configuration changes. See the Saving configuration changes with the wsadmin tool article

for more information.

4. In a network deployment environment only, synchronize the node. See the Synchronizing nodes with

the wsadmin tool article for more information.

The name of the SSL configuration object that you created, for example, (cells/
BIRKT40Cell02|security.xml#SSLConfig_1136652770753), appears in the security.xml file.

Chapter 9. Configuring security with scripting 657

Example security.xml file output:

<repertoire xmi:id="SSLConfig_1136652770753" alias="BIRKT40Node02SSLConfig" type="JSSE"

managementScope="ManagementScope_1134610924357">

<setting xmi:id="SecureSocketLayer_1136652770924" clientKeyAlias="default" serverKeyAlias="default"

clientAuthentication="false" securityLevel="HIGH" jsseProvider="IBMJSSE2" sslProtocol="SSL_TLS"

keyStore="KeyStore_1134610924357" trustStore="KeyStore_1134610924377" trustManager="TrustManager_1"

keyManager="KeyManager_1134610924357"/>

</repertoire>

Once you create the SSL configuration object, the next step is to use it. There are several different ways

that you can associate SSL configurations with protocols, for example:

v Set the SSL configuration on the thread programmatically.

v Associate the SSL configuration with an outbound protocol or a target host and port.

v Directly associating the SSL configuration using the alias.

v Centrally managing the SSL configurations by associating them with SSL configuration groups or zones

so that they are used based upon the group from where the end point exists.

Creating self-signed certificates using scripting

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

You can create self-signed certificates using the scripting and the AdminTask object. You can run the

commands in interactive or batch mode. Interactive mode provides a way to discover the flags that you

need to run the task in batch mode.

Certificates reside inside of key stores. To run the commands, you will need the name of the key store to

be supplied. Use the listKeyStore command of the AdminTask object to get a list of key stores. If you

need a new key store, use the createKeyStore command of the AdminTask object.

To create a personal key store, use the following examples:

v Interactive mode:

– Using Jacl:

$AdminTask createSelfSignedCertificate -interactive

– Using Jython:

AdminTask.createSelfSignedCertificate (’[-interactive]’)

Example output:

*Key Store Name (keyStoreName): keyStore

Key Store Scope Name (keyStoreScope):

*Certificate Alias (certificateAlias): newCert

"Certificate Version" (certificateVersion): 3

*Key Size (certificateSize): [1024]

*Common Name (certificateCommonName): localhost

*Organization (certificateOrganization): workgroup

Organizational Unit (certificateOrganizationalUnit): testing

certLocality (certificateLocality): austin

State (certificateState): Texas

Zip (certificateZip): 78757

Country (certificateCountry): [US]

Validity Period (certificateValidDays): [365]

Create Self-Signed Certificate

F (Finish)

C (Cancel)

Select [F, C]: [F]

658 Securing applications and their environment

WASX7278I: Generated command line: $AdminTask createSelfSignedCertificate

{-keyStoreName keyStore -certificateAlias newCert -certificateVersion 3

-certificateCommonName localhost -certificateOrganization ibm

-certificateOrganizationalUnit testing -certificateLocality austin

-certificateState Texas -certificateZip 78757 }

true

At the end of the output, the batch mode parameters are provided.

v Batch mode:

– Using Jacl:

$AdminTask createSelfSignedCertificate {-keyStoreName keyStore

-certificateAlias newCert -certificateVersion 3 -certificateCommonName localhost

-certificateOrganization ibm -certificateOrganizationalUnit testing

-certificateLocality austin -certificateState Texas -certificateZip 78757 }

– Using Jython:

AdminTask.createSelfSignedCertificate (’[-keyStoreName keyStore

-certificateAlias newCert -certificateVersion 3 -certificateCommonName localhost

-certificateOrganization ibm -certificateOrganizationalUnit testing

-certificateLocality austin -certificateState Texas -certificateZip 78757]’)

Automating SSL configurations using scripting

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

SSL configuration is needed for WebSphere to perform SSL connections with other servers. A SSL

configuration can be configured through the Admin Console. But if an automated way to create a SSL

configuration is desired then AdminTask should be used.

AdminTask can be used in a interactive mode and batch mode. For automation the batch mode options

should be used. AdminTask batch mode can be called in a JACL or Python script. Interactive mode will

step through all the parameter the task needs, requires ones are marked with a ‘*’. Before the interactive

task executes the task it echoes the batch mode syntax of the task to the screen. This can be helpful

when writing batch mode scripts.

There attributes needed to create an ssl configurations:

v A key store

v Default client certificate alias

v Default server certificate alias

v Trust store

v The handshake protocol

v The ciphers needed during handshake

v Supporting client authentication or not

If automating the creation of a SSL Configuration it may be needed to create some of the attribute values

needed like the key store, trust store, key manager, and trust managers.

v To create a SSL configuration the createSSLConfig AdminTask can be used. To make changes to the

SSL configurations use the modifySSLConfig AdminTask.

– Interactive mode:

Interactive mode steps you through all attributes and tell you the default value of the attribute if there

is one. The default value is in ‘[]’ on the prompt line. The actual flag used in batch mode is in ‘()’ on

each prompt line. If you are using the default value then the flag will not show up on the batch

command line.

Using Jacl:

$AdminTask createSSLConfig -interactive

Chapter 9. Configuring security with scripting 659

– Using Jython:

AdminTask.createSSLConfig (’[interactive]’)

Example output:

*SSL Configuration Alias (alias): testSSLConfig

Management Scope Name (scopeName): (cell):HOSTNode01Cell:(node):HOSTNode01

Client Key Alias (clientKeyAlias): clientCert

Server Key Alias (serverKeyAlias): serverCert

SSL Type (type): [JSSE]

Client Authentication (clientAuthentication): [false]

Security Level of the SSL Configuration (securityLevel): [HIGH] HIGH

Enabled Ciphers SSL Configuration (enabledCiphers):

JSSE Provider (jsseProvider): [IBMJSSE2]

Client Authentication Support (clientAuthenticationSupported): [false]

SSL Protocol (sslProtocol): [SSL_TLS] SSL_TLS

Trust Manager Object Names (trustManagerObjectNames):

*Trust Store Name (trustStoreName): testTrustStore

Trust Store Scope (trustStoreScopeName): (cell):HOSTNode01Cell:(node):HOSTNode01

*Key Store Name (keyStoreName): testKeyStore

Key Store Scope Name (keyStoreScopeName): (cell):HOSTNode01Cell:(node):HOSTNode01

Key Manager Name (keyManagerName): IbmX509

Key Manager Scope Name (keyManagerScopeName): (cell):HOSTNode01Cell:(node):HOSTNode01

Create SSL Configuration

F (Finish)

C (Cancel)

Select [F, C]: [F]

WASX7278I: Generated command line: $AdminTask createSSLConfig {-alias testSSLConfig

-scopeName (cell):HOSTNode01Cell:(node):HOSTNode01 -clientKeyAlias clientCert

-serverKeyAlias serverCert -trustStoreName testTrustStore

-trustStoreScopeName (cell):HOSTNode01Cell:(node):HOSTNode01

-keyStoreName testKeyStore -keyStoreScopeName (cell):HOSTNode01Cell:(node):HOSTNode01

-keyManagerName IbmX509 -keyManagerScopeName (cell):HOSTNode01Cell:(node):HOSTNode01 }

(cells/HOSTNode01Cell|security.xml#SSLConfig_1137687301834)

At the end of the output, the batch mode parameters are provided.

– Batch mode:

Using Jacl:

$AdminTask createSSLConfig {-alias testSSLConfig

-scopeName (cell):HOSTNode01Cell:(node):HOSTNode01 -clientKeyAlias clientCert

-serverKeyAlias serverCert -trustStoreName testTrustStore

-trustStoreScopeName (cell):HOSTNode01Cell:(node):HOSTNode01

-keyStoreName testKeyStore -keyStoreScopeName (cell):HOSTNode01Cell:(node):HOSTNode01

-keyManagerName IbmX509 -keyManagerScopeName (cell):HOSTNode01Cell:(node):HOSTNode01}

– Using Jython:

AdminTask.createSSLConfig (’[-alias testSSLConfig

-scopeName (cell):HOSTNode01Cell:(node):HOSTNode01 -clientKeyAlias clientCert

-serverKeyAlias serverCert -trustStoreName testTrustStore

-trustStoreScopeName (cell):HOSTNode01Cell:(node):HOSTNode01

-keyStoreName testKeyStore -keyStoreScopeName (cell):HOSTNode01Cell:(node):HOSTNode01

-keyManagerName IbmX509 -keyManagerScopeName (cell):HOSTNode01Cell:(node):HOSTNode01]’)

Example output:

(cells/HOSTNode01Cell|security.xml#SSLConfig_1137687301834)

v Key Stores and Trust Stores The key store and trust store may already exist or a new one may need to

be created. To create a new key store or trust store use the createKeyStore AdminTask. It will create a

key store file and store the configuration object in the system configuration. A trust store is just a key

store that usually only has signer certificates in it. To create a key store enter:

– Using Jacl:

660 Securing applications and their environment

$AdminTask createKeyStore {-keyStoreName testKeyStore -keyStoreType PKCS12

-keyStoreLocation $(USER_INSTALL_ROOT)\testKeyStore.p12 -keyStorePassword abcd

-keyStorePasswordVerify abcd -keyStoreIsFileBased true -keyStoreReadOnly false}

– Using Jython:

AdminTask.createKeyStore (’[-keyStoreName testKeyStore -keyStoreType PKCS12

-keyStoreLocation $(USER_INSTALL_ROOT)\testKeyStore.p12 -keyStorePassword abcd

-keyStorePasswordVerify abcd -keyStoreIsFileBased true -keyStoreReadOnly false]’)

To populate the key store with certificates see “Managing Certificates using AdminConsole and Admin

Task” The key store and trust store are required to create a SSL configuration. Use the ‘-keyStoreName’

and ‘-trustStoreName’ flags on the createSSLConfig. There scopes can be added with the

‘-keyStoreScope’ flag and ‘-trustStoreScope’ flags.

v Key Manager Key manager are used to determine how a certificate is selected. The IbmX509 key

manager is in the security configuration by default. If a different key manager is needed then use

createKeyManager AdminTask to create it. To create a key manager enter:

– Using Jacl:

$AdminTask createKeyManager {-name testKeyManager

-scopeName (cell):HOSTNode01Cell:(node):HOSTNode01

-provider IBMJSSE2 -algorithm specialAlgorithm }

– Using Jython:

AdminTask.createKeyManager (’[-name testKeyManager

-scopeName (cell):HOSTNode01Cell:(node):HOSTNode01

-provider IBMJSSE2 -algorithm specialAlgorithm]’)

To supply a key manager on the createSSLConfig AdminTask use the ‘-keyManagerName’ along with

the ‘-keyManagerScope’ flag.

v Trust Manager Trust managers are use to determine how trust is established during ssl communication.

The IbmX509 and IbmPKIX are trust managers are in the security configuration by default. If a different

or additional trust manager is needed then use the createTrustManger AdminTask to create it. To create

a trust manager enter:

– Using Jacl:

$AdminTask createTrustManager {-name testTrustManager

-scopeName (cell):HOSTNode01Cell:(node):HOSTNode01

-provider IBMJSSE2 -algorithm specialAlgorithm }

– Using Jython:

AdminTask.createTrustManager (’[-name testTrustManager

-scopeName (cell):HOSTNode01Cell:(node):HOSTNode01

-provider IBMJSSE2 -algorithm specialAlgorithm]’)

The SSL Configuration can have multiple trust managers. To supply multiple trust managers give a

comma separated list of the trust managers configuration IDs with the -trustManagerObjectNames flag.

When you create a trust manager the configuration object ID is returned. To get a list of trust managers

object IDs use the listTrustManagers command of the AdminTask object with the -displayObjectName

true flag. For example:

wsadmin>$AdminTask listTrustManagers -interactive

List Trust Managers

List trust managers.

Management Scope Name (scopeName):

Display list in ObjectName Format (displayObjectName): [false] true

List Trust Managers

F (Finish)

C (Cancel)

Select [F, C]: [F]

Inside generate script command

Chapter 9. Configuring security with scripting 661

WASX7278I: Generated command line: $AdminTask listTrustManagers {-displayObjectName true }

IbmX509(cells/IBM-0AF8DABCF16Node01Cell|security.xml#TrustManager_IBM-0AF8DABCF16Node01_1)

IbmPKIX(cells/IBM-0AF8DABCF16Node01Cell|security.xml#TrustManager_IBM-0AF8DABCF16Node01_2)

Updating default key store passwords using scripting

Before starting this task, the wsadmin tool must be running. See the Starting the wsadmin scripting client

article for more information.

When you install WebSphere Application Server, each server creates a key store and trust store for the

default SSL configuration with the default password WebAS. To protect the security of the key store files and

the SSL configuration, you must change the password. The following examples update the default

password:

v Change multiple key stores passwords. The changeMultipleKeyStorePasswords command updates

all of the key stores that have the same password. For example:

– Using Jacl:

$AdminTask changeMultipleKeyStorePasswords {-keyStorePassword WebAS

-newKeyStorePassword secretPwd -newKeyStorePasswordVerify secretPwd}

– Using Jython:

AdminTask.changeMultipleKeyStorePasswords [’(-keyStorePassword WebAS

-newKeyStorePassword secretPwd -newKeyStorePasswordVerify secretPwd]’)

v Change the password of a single key store. The changeKeyStorePassword command updates the

password of an individual key store. For example:

– Using Jacl:

$AdminTask changeKeyStorePassword {-keyStoreName testKS

-keyStoreScope (cell):localhost:(server):server1

-keyStorePassword WebAS -newKeyStorePassword secretPwd

-newKeyStorePasswordVerify secretPwd}

– Using Jython:

AdminTask.changeKeyStorePassword (’[-keyStoreName testKS

-keyStoreScope (cell):localhost:(server):server1

-keyStorePassword WebAS -newKeyStorePassword secretPwd

-newKeyStorePasswordVerify secretPwd]’)

Commands for the IdMgrConfig group of the AdminTask object

Use the commands in the IdMgrConfig group to configure the virtual member manager. The commands for

this group do not require a target object. To see the additional commands related to the virtual member

manager, see the Commands for the IdMgrRepositoryConfig group of the AdminTask object and the

Commands for the IdMgrRealmConfig group of the AdminTask object articles.

For more information about the AdminTask object, see the Commands for the AdminTask object article.

The following commands are available for the IdMgrConfig group of the AdminTask object:

662 Securing applications and their environment

Table 16.

Command name: Description: Parameters and return

values:

Examples:

createIdMgr

Supported

EntityType

The createIdMgr

Supported

EntityType

command creates

a supported entity

type configuration.

To validate the

result, check for

duplicate entity

type names.

v Parameters:

- name

The name of the

supported entity

type. (String,

required)

- defaultParent

The default parent

node for the

supported entity

type. (String,

required)

- rdnProperties

The RDN attribute

name for the

supported entity

type in the entity

domain name.

Separate the RDN

properties with

semicolons (;).

(String, required)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask createIdMgrSupported

EntityType {-name entity1

-defaultParent node1}

v Using Jython string:

AdminTask.createIdMgrSupported

EntityType (’[-name entity1

-defaultParent node1]’)

v Using Jython list:

AdminTask.createIdMgrSupported

EntityType ([’-name’, ’entity1’,

’-defaultParent’, ’node1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask createIdMgrSupported

EntityType {-interactive}

v Using Jython string:

AdminTask.createIdMgrSupported

EntityType (’[-interactive]’)

v Using Jython list:

AdminTask.createIdMgrSupported

EntityType ([’-interactive’])

Chapter 9. Configuring security with scripting 663

Table 16. (continued)

Command name: Description: Parameters and return

values:

Examples:

deleteIdMgr

Supported

EntityType

The deleteIdMgr

Supported

EntityType

command deletes

the supported

entity type

configuration that

you specify.

v Parameters:

- name

The name of the

supported entity

type. The value of

this parameter

must be one of

the supported

entity types.

(String, required)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask deleteIdMgrSupported

EntityType {-name entity1}

v Using Jython string:

AdminTask.deleteIdMgrSupported

EntityType (’[-name entity1]’)

v Using Jython list:

AdminTask.deleteIdMgr

SupportedEntityType ([’

-name’, ’entity1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask deleteIdMgr

SupportedEntityType

{-interactive}

v Using Jython string:

AdminTask.deleteIdMgr

SupportedEntityType

(’[-interactive]’)

v Using Jython list:

AdminTask.deleteIdMgr

SupportedEntityType

([’-interactive’])

getIdMgr Supported

EntityType

The getIdMgr

Supported

EntityType

command returns

the configuration

of the supported

entity type that

you specify.

v Parameters:

- name

The name of the

supported entity

type. The value of

this parameter

must be one of

the supported

entity types.

(String, required)

v Returns: A hash map

that has the

parameters of the

createIdMgrSupport

edEntityType

command as keys.

Since the

rdnProperties

parameter has multiple

values, its values are

returned in a list.

Batch mode example usage:

v Using Jacl:

$AdminTask getIdMgrSupported

EntityType {-name entity1}

v Using Jython string:

AdminTask.getIdMgrSupported

EntityType (’[-name entity1]’)

v Using Jython list:

AdminTask.getIdMgrSupported

EntityType ([’-name’, ’entity1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask getIdMgrSupported

EntityType {-interactive}

v Using Jython string:

AdminTask.getIdMgrSupported

EntityType (’[-interactive]’)

v Using Jython list:

AdminTask.getIdMgrSupported

EntityType ([’-interactive’])

664 Securing applications and their environment

Table 16. (continued)

Command name: Description: Parameters and return

values:

Examples:

listIdMgr Supported

EntityTypes

The listIdMgr

Supported

EntityTypes

command lists all

of the supported

entity types that

are configured.

v Parameters: None

v Returns: A list that

contains the names of

the supported entity

types.

Batch mode example usage:

v Using Jacl:

$AdminTask listIdMgr

SupportedEntityTypes

v Using Jython string:

AdminTask.listIdMgr

SupportedEntityTypes()

v Using Jython list:

AdminTask.listIdMgr

SupportedEntityTypes()

Interactive mode example usage:

v Using Jacl:

$AdminTask listIdMgrSupported

EntityTypes {-interactive}

v Using Jython string:

AdminTask.listIdMgrSupported

EntityTypes (’[-interactive]’)

v Using Jython list:

AdminTask.listIdMgrSupported

EntityTypes ([’-interactive’])

resetId MgrConfig The resetId

MgrConfig

command resets

the current

configuration to

the last

configuration that

was saved.

v Parameters: None

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask resetIdMgrConfig

v Using Jython string:

AdminTask.resetIdMgrConfig()

v Using Jython list:

AdminTask.resetIdMgrConfig()

Interactive mode example usage:

v Using Jacl:

$AdminTask resetIdMgrConfig

{-interactive}

v Using Jython string:

AdminTask.resetIdMgrConfig

(’[-interactive]’)

v Using Jython list:

AdminTask.resetIdMgrConfig

([’-interactive’])

Chapter 9. Configuring security with scripting 665

Table 16. (continued)

Command name: Description: Parameters and return

values:

Examples:

showId MgrConfig The showId

MgrConfig

command returns

the current

configuration XML

in string format.

v Parameters: None

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask showIdMgrConfig

v Using Jython string:

AdminTask.showIdMgrConfig()

v Using Jython list:

AdminTask.showIdMgrConfig()

Interactive mode example usage:

v Using Jacl:

$AdminTask showIdMgrConfig

{-interactive}

v Using Jython string:

AdminTask.showIdMgrConfig

(’[-interactive]’)

v Using Jython list:

AdminTask.showIdMgrConfig

([’-interactive’])

updateIdMgr

Supported

EntityType

The updateIdMgr

Supported

EntityType

command updates

the configuration

that you specify

for a supported

entity type.

v Parameters:

- name

The name of the

supported entity

type. The value of

this parameter

must be one of

the supported

entity types.

(String, required)

- defaultParent

The default parent

node for the

supported entity

type. (String,

optional)

- rdnProperties

The RDN attribute

name for the

supported entity

type in the entity

domain name. To

reset all the

values of the

rdnProperties

parameter, specify

a blank string (″″).

(String, optional)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask updateIdMgrSupported

EntityType {-name entity1}

v Using Jython string:

AdminTask.updateIdMgrSupported

EntityType (’[-name entity1]’)

v Using Jython list:

AdminTask.updateIdMgrSupported

EntityType ([’-name’, ’entity1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask updateIdMgrSupported

EntityType {-interactive}

v Using Jython string:

AdminTask.updateIdMgrSupported

EntityType (’[-interactive]’)

v Using Jython list:

AdminTask.updateIdMgrSupported

EntityType ([’-interactive’])

666 Securing applications and their environment

Commands for the IdMgrRepositoryConfig group of the AdminTask

object

Use the commands in the IdMgrRepositoryConfig to configure the virtual member manager. The

commands for this group do not require a target object. To see the additional commands related to the

virtual member manager, see the “Commands for the IdMgrConfig group of the AdminTask object” on page

662 and the “Commands for the IdMgrRealmConfig group of the AdminTask object” on page 756 articles.

For more information about the AdminTask object, see the Commands for the AdminTask object article.

The following commands are available for the IdMgrRepositoryConfig group of the AdminTask object:

 Table 17.

Command name: Description: Parameters and

return values:

Examples:

addIdMgrLDAP

BackupServer

The addIdMgrLDAP

BackupServer

command adds or

updates backup LDAP

servers.

v Parameters:

- id

The ID of the

repository.

(String,

required)

- primary_host

The host name

for the primary

LDAP server.

(String,

required)

- host

The host name

for the LDAP

server. (String,

required)

- port

The port

number for the

LDAP server.

(Integer,

optional)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask addIdMgrLDAPBackup

Server {-id id1 -primary_

host myprimaryhost -host

myhost.ibm.com}

v Using Jython string:

AdminTask.addIdMgrLDAPBackup

Server (’[-id id1

-primary_host myprimaryhost

-host myhost.ibm.com]’)

v Using Jython list:

AdminTask.addIdMgrLDAPBackup

Server ([’-id’, ’id1’,

’-primary_host’, ’myprimary

host’, ’-host’, ’myhost.

ibm.com’])

Interactive mode example usage:

v Using Jacl:

$AdminTask addIdMgrLDAP

BackupServer {-interactive}

v Using Jython string:

AdminTask.addIdMgrLDAPBack

upServer (’[-interactive]’)

v Using Jython list:

AdminTask.addIdMgrLDAPBack

upServer ([’-interactive’])

Chapter 9. Configuring security with scripting 667

Table 17. (continued)

Command name: Description: Parameters and

return values:

Examples:

addIdMgr LDAPEntity

Type

The addIdMgr

LDAPEntity Type

command adds an

LDAP entity type

definition.

v Parameters:

- id

The ID of the

repository.

(String,

required)

- name

The name of

the entity type.

(String,

required)

- searchFilter

The search

filter that you

want to use to

search the

entity type.

(String,

optional)

- objectClasses

One or more

object classes

for the entity

type. (String,

required)

-

objectClassesForCreate

The object

class to use

when an entity

type is created.

If the value of

this parameter

is the same as

the objectClass

parameter, you

do not need to

specify this

parameter.

(String,

optional)

- searchBases

The search

base or bases

to use while

searching the

entity type.

(String,

optional)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask addIdMgrLDAPEntity

Type {-id id1 -name

name1 -objectClasses

objectclass}

v Using Jython string:

AdminTask.addIdMgrLDAPEntity

Type (’[-id id1 -name

name1 -objectClasses

objectclass]’)

v Using Jython list:

AdminTask.addIdMgrLDAPEntity

Type ([’-id’, ’id1’,

’-name’, ’name1’, ’-obje

ctClasses’, ’objectclass’])

Interactive mode example usage:

v Using Jacl:

$AdminTask addIdMgrLDAP

EntityType {-interactive}

v Using Jython string:

AdminTask.addIdMgrLDAP

EntityType (’[-interactive]’)

v Using Jython list:

AdminTask.addIdMgrLDAP

EntityType ([’-interactive’])

668 Securing applications and their environment

Table 17. (continued)

Command name: Description: Parameters and

return values:

Examples:

addId MgrLDAP

EntityType RDNAttr

The addId MgrLDAP

EntityType RDNAttr

command adds RDN

attribute configuration to

an LDAP entity type

definition.

v Parameters:

- id

The ID of the

repository.

(String,

required)

- entityTypeName

The name of

the entity type.

(String,

required)

- name

The attribute

name that is

used to build

the relative

distinguished

name (RDN)

for the entity

type. (String,

required)

- objectClass

The object

class to use for

the entity type

for the relative

distinguished

name (RDN)

attribute name

that you

specify. Use

this parameter

to map one

entity type to

multiple

structural

object classes.

(String,

optional)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask addIdMgrLDAPEntity

TypeRDNAttr {-id id1

-entityTypeName entitytype

-name name1}

v Using Jython string:

AdminTask.addIdMgrLDAPEntity

TypeRDNAttr (’[-id id1

-entityTypeName entitytype

-name name1]’)

v Using Jython list:

AdminTask.addIdMgrLDAPEntity

TypeRDNAttr ([’-id’, ’id1’,

’-entityTypeName’, ’entity

type’, ’-name’, ’name1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask addIdMgrLDAPEntity

TypeRDNAttr {-interactive}

v Using Jython string:

AdminTask.addIdMgrLDAPEntity

TypeRDNAttr (’[-interactive]’)

v Using Jython list:

AdminTask.addIdMgrLDAPEntity

TypeRDNAttr ([’-interactive’])

Chapter 9. Configuring security with scripting 669

Table 17. (continued)

Command name: Description: Parameters and

return values:

Examples:

addIdMgr LDAPGroup

Dynamic Member Attr

The addIdMgr

LDAPGroup Dynamic

Member Attr command

adds a dynamic

member attribute

configuration to an

LDAP group

configuration.

v Parameters:

- id

The ID of the

repository.

(String,

required)

- name

The name of

the LDAP

attribute that is

used as the

group member

attribute. For

example,

member or

uniqueMember.

(String,

required)

- objectClass

The group

object class

that contains

the member

attribute. For

example,

groupOfNames

or

groupOfUnqiueNames.

If you do not

define this

parameter, the

member

attribute

applies to all

group object

classes.

(String,

optional)

Batch mode example usage:

v Using Jacl:

$AdminTask addIdMgrLDAPGroup

DynamicMemberAttr {-id id1

-name name1 -objectClass

objectclass}

v Using Jython string:

AdminTask.addIdMgrLDAPGroup

DynamicMemberAttr (’[-id

id1 -name name1

-objectClass objectclass]’)

v Using Jython list:

AdminTask.addIdMgrLDAPGroup

DynamicMemberAttr ([’-id’,

’id1’, ’-name’, ’name1’,

’-objectClass’, ’objectclass’])

Interactive mode example usage:

v Using Jacl:

$AdminTask addIdMgrLDAPGroup

DynamicMemberAttr {-interactive}

v Using Jython string:

AdminTask.addIdMgrLDAPGroup

DynamicMemberAttr (’[-interactive]’)

v Using Jython list:

AdminTask.addIdMgrLDAPGroup

DynamicMemberAttr ([’-interactive’])

670 Securing applications and their environment

Table 17. (continued)

Command name: Description: Parameters and

return values:

Examples:

- scope

The scope of the

member attribute.

The valid values

for this parameter

include the

following:

v direct - The

member

attribute only

contains direct

members,

therefore, this

value refers to

the member

directly

contained by

the group and

not contained

through the

nested group.

For example, if

Group1

contains

Group2 and

Group2

contains

User1, then

Group2 is a

direct member

of Group1 but

User1 is not a

direct member

of Group1.

Both member

and

uniqueMember

are direct

member

attributes.

v nested - The

member

attribute that

contains the

direct members

and the nested

members.

Chapter 9. Configuring security with scripting 671

Table 17. (continued)

Command name: Description: Parameters and

return values:

Examples:

v all - The member

attribute that

contains the direct

members, the

nested members,

and the dynamic

members. For

example, the

ibm-allMembers

attribute which is

supported by the

IBM Tivoli Directory

Server. (String,

optional)

- dummyMember

Indicates that if

you create a

group without

specifying a

member, a

dummy member

will be filled in to

avoid creating an

exception about

missing a

mandatory

attribute. (String,

optional)

v Returns: None

672 Securing applications and their environment

Table 17. (continued)

Command name: Description: Parameters and

return values:

Examples:

addIdMgr LDAPGroup

MemberAttr

The addIdMgr

LDAPGroup

MemberAttr command

adds a member

attribute configuration to

an LDAP group

configuration.

v Parameters:

- id

The ID of the

repository.

(String,

required)

- name

The name of

the LDAP

attribute that is

used as the

group member

attribute. For

example,

member or

uniqueMember.

(String,

required)

- objectClass

The group

object class

that contains

the member

attribute. For

example,

groupOfNames

or

groupOfUnqiueNames.

If you do not

define this

parameter, the

member

attribute

applies to all

group object

classes.

(String,

optional)

Batch mode example usage:

v Using Jacl:

$AdminTask addIdMgrLDAPGroup

MemberAttr {-id id1

-name name1}

v Using Jython string:

AdminTask.addIdMgrLDAPGroup

MemberAttr (’[-id id1

-name name1]’)

v Using Jython list:

AdminTask.addIdMgrLDAPGroup

MemberAttr ([’-id’, ’id1’,

’-name’, ’name1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask addIdMgrLDAPGroup

MemberAttr {-interactive}

v Using Jython string:

AdminTask.addIdMgrLDAPGroup

MemberAttr (’[-interactive]’)

v Using Jython list:

AdminTask.addIdMgrLDAPGroup

MemberAttr ([’-interactive’])

Chapter 9. Configuring security with scripting 673

Table 17. (continued)

Command name: Description: Parameters and

return values:

Examples:

- scope

The scope of the

member attribute.

The valid values

for this parameter

include the

following:

v direct - The

member

attribute only

contains direct

members,

therefore, this

value refers to

the member

directly

contained by

the group and

not contained

through the

nested group.

For example, if

Group1

contains

Group2 and

Group2

contains

User1, then

Group2 is a

direct member

of Group1 but

User1 is not a

direct member

of Group1.

Both member

and

uniqueMember

are direct

member

attributes.

v nested - The

member

attribute that

contains the

direct members

and the nested

members.

674 Securing applications and their environment

Table 17. (continued)

Command name: Description: Parameters and

return values:

Examples:

v all - The member

attribute that

contains the direct

members, the

nested members,

and the dynamic

members. For

example, the

ibm-allMembers

attribute which is

supported by the

IBM Tivoli Directory

Server. (String,

optional)

- dummyMember

Indicates that if

you create a

group without

specifying a

member, a

dummy member

will be filled in to

avoid creating an

exception about

missing a

mandatory

attribute. (String,

optional)

v Returns: None

Chapter 9. Configuring security with scripting 675

Table 17. (continued)

Command name: Description: Parameters and

return values:

Examples:

addId MgrLDAP Server The addId MgrLDAP

Server command adds

an LDAP server to the

LDAP repository ID that

you specify.

v Parameters:

- id

The ID of the

repository.

(String,

required)

- host

The host name

for the primary

LDAP server.

(String,

required)

- port

The port

number for the

LDAP server.

(Integer,

optional)

- bindDN

The binding

distinguished

name for the

LDAP server.

(String,

optional)

- bindPassword

The binding

password.

(String,

optional)

- authentication

Indicates the

authentication

method to use.

The default

value is

simple. Valid

values include:

none or strong.

(String,

optional)

- referal

The LDAP

referral. The

default value is

ignore. Valid

values include:

follow, throw,

or false.

(String,

optional)

Batch mode example usage:

v Using Jacl:

$AdminTask addIdMgrLDAPServer

{-id id1 -host myhost.ibm.com}

v Using Jython string:

AdminTask.addIdMgrLDAPServer

(’[-id id1 -host myhost.ibm.com]’)

v Using Jython list:

AdminTask.addIdMgrLDAPServer

([’-id’, ’id1’, ’-host’,

’myhost.ibm.com’])

Interactive mode example usage:

v Using Jacl:

$AdminTask addIdMgrLDAP

Server {-interactive}

v Using Jython string:

AdminTask.addIdMgrLDAP

Server (’[-interactive]’)

v Using Jython list:

AdminTask.addIdMgrLDAP

Server ([’-interactive’])

676 Securing applications and their environment

Table 17. (continued)

Command name: Description: Parameters and

return values:

Examples:

- derefAliases

Controls how

aliases are

dereferenced.

The default value

is always. Valid

values include:

v never - never

deference

aliases

v finding -

deferences

aliases only

during name

resolution

v searching -

deferences

aliases only

after name

resolution

(String, optional)

- sslEnabled

Indicates to

enable SSL or

not. The default

value is false.

(Boolean,

optional)

- connectionPool

The connection

pool. The default

value is false.

(Boolean,

optional)

- connectTimeout

The connection

timeout in

seconds. The

default value is 0.

(Integer, optional)

Chapter 9. Configuring security with scripting 677

Table 17. (continued)

Command name: Description: Parameters and

return values:

Examples:

- ldapServerType

The type of LDAP

server being

used. The default

value is IDS51.

(String, optional)

- sslConfiguration

The SSL

configuration.

(String, optional)

-

certificateMapMode

Specifies whether

to map X.509

certificates into a

LDAP directory by

exact

distinguished

name or by

certificate filter.

The default value

is exactdn. To use

the certificate

filter for the

mapping, specify

certificatefilter.

(String, optional)

- certificateFilter

If

certificateMapMode

has the value

certificatefilter,

then this property

specifies the

LDAP filter which

maps attributes in

the client

certificate to

entries in LDAP.

(String, optional)

v Returns: None

678 Securing applications and their environment

Table 17. (continued)

Command name: Description: Parameters and

return values:

Examples:

addIdMgr Repository

BaseEntry

The addIdMgr

Repository

BaseEntrycommand

adds a base entry to

the specified repository.

v Parameters:

- id

The ID of the

repository.

(String,

required)

- name

The

distinguished

name of a

base entry.

(String,

required)

-

nameInRepository

The

distinguished

name in the

repository that

uniquely

identifies the

base entry

name. (String,

optional)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask addIdMgrRepository

BaseEntry {-id id1

-name name1}

v Using Jython string:

AdminTask.addIdMgrRepository

BaseEntry (’[-id id1

-name name1]’)

v Using Jython list:

AdminTask.addIdMgrRepository

BaseEntry ([’-id’, ’id1’,

’-name’, ’name1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask addIdMgrRepository

BaseEntry {-interactive}

v Using Jython string:

AdminTask.addIdMgrRepository

BaseEntry (’[-interactive]’)

v Using Jython list:

AdminTask.addIdMgrRepository

BaseEntry ([’-interactive’])

Chapter 9. Configuring security with scripting 679

Table 17. (continued)

Command name: Description: Parameters and

return values:

Examples:

createId MgrDB

Repository

The createId MgrDB

Repository command

creates a database

repository configuration.

v Parameters:

- id

The ID of the

repository.

(String,

required)

-

dataSourceName

The name of

the data

source. The

default value is

jdbc/wimDS.

(String,

required)

- databaseType

The type of the

database. The

default value is

DB2. (String,

required)

- dbURL

The URL of the

database.

(String,

required)

- dbAdminId

The database

administrator

ID. (String,

required if

database type

is not

Cloudscape.)

-

dbAdminPassword

The database

administrator

password.

(String,

required if

database type

is not

Cloudscape.)

-

adapterClassName

The default

value is

com.ibm.ws.wim.adapter.db.DBAdapter.

(String,

optional)

Batch mode example usage:

v Using Jacl:

$AdminTask createIdMgrDB

Repository {-id id1

-dataSourceName datasource

name -databaseType DB2}

v Using Jython string:

AdminTask.createIdMgrDB

Repository (’[-id id1

-dataSourceName data

sourcename -databaseType

DB2]’)

v Using Jython list:

AdminTask.createIdMgrDB

Repository ([’-id’, ’id1’,

’-dataSourceName’, ’data

sourcename’, ’-databaseType’,

’DB2’])

Interactive mode example usage:

v Using Jacl:

$AdminTask createIdMgrDB

Repository {-interactive}

v Using Jython string:

AdminTask.createIdMgrDB

Repository (’[-interactive]’)

v Using Jython list:

AdminTask.createIdMgrDB

Repository ([’-interactive’])

680 Securing applications and their environment

Table 17. (continued)

Command name: Description: Parameters and

return values:

Examples:

- JDBCDriverClass

The JDBC driver

class name.

(String, optional)

- supportSorting

Indicates if

sorting is

supported or not.

The default value

is false.

(Boolean,

optional)

-

supportTransaction

Indicates if

transactions are

supported or not.

The default value

is false.

(Boolean,

optional)

- isExtIdUnique

Specifies if the

external ID is

unique. The

default value is

true. (Boolean,

optional)

-

supportExternalName

Indicates if

external names

are supported or

not. The default

value is false.

(Boolean,

optional)

Chapter 9. Configuring security with scripting 681

Table 17. (continued)

Command name: Description: Parameters and

return values:

Examples:

-

entityRetrievalLimit

Indicates the

value of the

retrieval limit on

database entries.

The default value

is 200. (Integer,

optional)

- saltLength

The salt length in

bits. The default

value is 12.

(Integer, optional)

- encryptionKey

The default value

is

rZ15ws0ely9yHk3zCs3sTMv/ho8fY17s.

(String, optional)

v Returns: None

682 Securing applications and their environment

Table 17. (continued)

Command name: Description: Parameters and

return values:

Examples:

createId MgrFile

Repository

The createId MgrFile

Repository command

creates a file repository

configuration.

v Parameters:

- id

The ID of the

repository.

(String,

required)

- messageDigest

Algorithm

The message

digest

algorithm that

will be used for

hashing the

password. The

default value is

SHA-1. Valid

values include

the following:

SHA-245,

SHA-384, or

SHA-
512.(String,

required)

-

adapterClassName

The default

value is

com.ibm.ws.

wim.adapter.

file.was.

FileAdapter.

(String,

optional)

- supportPaging

Indicates if

paging is

supported or

not. The

default value is

false.

(Boolean,

optional)

- supportSorting

Indicates if

sorting is

supported or

not. The

default value is

false.

(Boolean,

optional)

Batch mode example usage:

v Using Jacl:

$AdminTask createIdMgrFile

Repository {-id id1

-messageDigestAlgorithm

SHA-245}

v Using Jython string:

AdminTask.createIdMgrFile

Repository (’[-id id1

-messageDigestAlgorithm

SHA-245]’)

v Using Jython list:

AdminTask.createIdMgrFile

Repository ([’-id’, ’id1’,

’-messageDigestAlgorithm’,

’SHA-245’])

Interactive mode example usage:

v Using Jacl:

$AdminTask createIdMgrFile

Repository {-interactive}

v Using Jython string:

AdminTask.createIdMgrFile

Repository (’[-interactive]’)

v Using Jython list:

AdminTask.createIdMgrFile

Repository ([’-interactive’])

Chapter 9. Configuring security with scripting 683

Table 17. (continued)

Command name: Description: Parameters and

return values:

Examples:

-

supportTransaction

Indicates if

transaction is

supported or not.

The default value

is false.

(Boolean,

optional)

- isExtIdUnique

Specifies if the

external ID is

unique or not.

The default value

is true. (Boolean,

optional)

-

supportExternalName

Indicates if

external names

are supported or

not. The default

value is false.

(Boolean,

optional)

- baseDirectory

The base

directory where

the fill will be

created in order

to store the data.

The default is to

be dynamically

built during run

time using

user.install.root

and cell name.

(String, optional)

- fileName

The file name of

the repository.

The default value

is

fileRegistry.xml.

(String, optional)

684 Securing applications and their environment

Table 17. (continued)

Command name: Description: Parameters and

return values:

Examples:

- saltLength

The salt length of

the randomly

generated salt for

password

hashing. The

default value is

12. (Integer,

optional)

v Returns: None

Chapter 9. Configuring security with scripting 685

Table 17. (continued)

Command name: Description: Parameters and

return values:

Examples:

createId MgrLDAP

Repository

The create IdMgrLDAP

Repository command

creates an LDAP

repository configuration.

v Parameters:

- id

The unique

identifier for

the repository.

(String,

required)

- ldapServerType

The type of

LDAP server

that is being

used. The

default value is

IDS51. (String,

required)

-

adapterClassName

The default

value is

com.ibm.ws.

wim.adapter.

db.DBAda pter.

(String,

optional)

- supportSorting

Indicates if

sorting is

supported or

not. The

default value is

false.

(Boolean,

optional)

- supportPaging

Indicates if

paging is

supported or

not. The

default value is

false.

(Boolean,

optional)

-

supportTransaction

Indicates if

transactions

are supported

or not. The

default value is

false.

(Boolean,

optional)

Batch mode example usage:

v Using Jacl:

$AdminTask createIdMgrLDAP

Repository {-id id1

-ldapServerType IDS51}

v Using Jython string:

AdminTask.createIdMgrLDAP

Repository (’[-id id1

-ldapServerType IDS51]’)

v Using Jython list:

AdminTask.createIdMgrLDAP

Repository ([’-id’, ’id1’,

’-ldapServerType’, ’IDS51’])

Interactive mode example usage:

v Using Jacl:

$AdminTask createIdMgrLDAP

Repository {-interactive}

v Using Jython string:

AdminTask.createIdMgrLDAP

Repository (’[-interactive]’)

v Using Jython list:

AdminTask.createIdMgrLDAP

Repository ([’-interactive’])

686 Securing applications and their environment

Table 17. (continued)

Command name: Description: Parameters and

return values:

Examples:

- isExtIdUnique

Specifies if the

external ID is

unique. The

default value is

true. (Boolean,

optional)

-

supportExternalName

Indicates if

external names

are supported or

not. The default

value is false.

(Boolean,

optional)

- authentication

Indicates the

authentication

method to use.

The default value

is simple. Valid

values include:

none or strong.

(String, optional)

- referal

The LDAP

referral. The

default value is

ignore. Valid

values include:

follow, throw, or

false. (String,

optional)

- sslEnabled

Indicates to

enable SSL or

not. The default

value is false.

(Boolean,

optional)

- sslConfiguration

The SSL

configuration.

(String, optional)

Chapter 9. Configuring security with scripting 687

Table 17. (continued)

Command name: Description: Parameters and

return values:

Examples:

- connectionPool

The connection

pool. The default

value is false.

(Boolean,

optional)

- translateRDN

Indicates to

translate RDN or

not. The default

value is false.

(Boolean,

optional)

- searchTimeLimit

The value of

search time limit.

(Integer, optional)

- searchCountLimit

The value of

search count

limit. (Integer,

optional)

- searchPageSize

The value of

search page size.

(Integer, optional)

-

returnToPrimaryServer

(Integer, optional)

-

primaryServerQueryTimeInterval

(Integer, optional)

- default

If you set this

parameter to

true, the default

values will be set

for the remaining

configuration

properties of the

LDAP repository.

(Boolean,

optional)

v Returns: None

688 Securing applications and their environment

Table 17. (continued)

Command name: Description: Parameters and

return values:

Examples:

deleteId MgrLDAP

EntityType

The deleteId MgrLDAP

EntityType command

deletes the LDAP entity

type configuration data

for a specified entity

type for a specific LDAP

repository.

v Parameters:

- id

The ID of the

repository.

(String,

required)

- name

The name of

the entity type.

(String,

required)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask deleteIdMgrLDAP

EntityType {-id id1

-name name1}

v Using Jython string:

AdminTask.deleteIdMgrLDAP

EntityType (’[-id id1

-name name1]’)

v Using Jython list:

AdminTask.deleteIdMgrLDAP

EntityType ([’-id’, ’id1’,

’-name’, ’name1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask deleteIdMgrLDAP

EntityType {-interactive}

v Using Jython string:

AdminTask.deleteIdMgrLDAP

EntityType (’[-interactive]’)

v Using Jython list:

AdminTask.deleteIdMgrLDAP

EntityType ([’-interactive’])

Chapter 9. Configuring security with scripting 689

Table 17. (continued)

Command name: Description: Parameters and

return values:

Examples:

deleteId MgrLDAP

EntityType RDNAttr

The deleteId MgrLDAP

EntityType RDNAttr

command deletes the

relative distinguished

name (RDN) attribute

configuration from an

LDAP entity type

configuration.

v Parameters:

- id

The ID of the

repository.

(String,

required)

- entityTypeName

The name of

the entity type.

(String,

required)

- name

The attribute

name that is

used to build

the relative

distinguished

name (RDN)

for the entity

type. (String,

required)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask deleteIdMgrLDAPEntity

TypeRDNAttr {-id id1

-name name1 -entityTypeName

entityType}

v Using Jython string:

AdminTask.deleteIdMgrLDAP

EntityTypeRDNAttr (’[-id id1

-name name1 -entityType

Name entityType]’)

v Using Jython list:

AdminTask.deleteIdMgrLDAPEntity

TypeRDNAttr ([’-id’, ’id1’,

’-name’, ’name1’, ’-entity

TypeName’, ’entityType’])

Interactive mode example usage:

v Using Jacl:

$AdminTask deleteIdMgrLDAPEntity

TypeRDNAttr {-interactive}

v Using Jython string:

AdminTask.deleteIdMgrLDAPEntity

TypeRDNAttr (’[-interactive]’)

v Using Jython list:

AdminTask.deleteIdMgrLDAPEntity

TypeRDNAttr ([’-interactive’])

690 Securing applications and their environment

Table 17. (continued)

Command name: Description: Parameters and

return values:

Examples:

deleteId MgrLDAP

GroupConfig

The deleteId MgrLDAP

GroupConfig command

deletes the LDAP group

configuration.

v Parameters:

- id

The ID of the

repository.

(String,

required)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask deleteIdMgrLDAP

GroupConfig {-id id1}

v Using Jython string:

AdminTask.deleteIdMgrLDAP

GroupConfig (’[-id id1]’)

v Using Jython list:

AdminTask.deleteIdMgrLDAP

GroupConfig ([’-id’, ’id1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask deleteIdMgrLDAP

GroupConfig {-interactive}

v Using Jython string:

AdminTask.deleteIdMgrLDAP

GroupConfig (’[-interactive]’)

v Using Jython list:

AdminTask.deleteIdMgrLDAP

GroupConfig ([’-interactive’])

deleteIdMgr LDAPGroup

MemberAttr

The deleteIdMgr

LDAPGroup

MemberAttr command

deletes a member

attribute configuration

from an LDAP group

configuration.

v Parameters:

- id

The ID of the

repository.

(String,

required)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask deleteIdMgrLDAP

GroupMemberAttr {-id id1}

v Using Jython string:

AdminTask.deleteIdMgrLDAP

GroupMemberAttr (’[-id id1]’)

v Using Jython list:

AdminTask.deleteIdMgrLDAP

GroupMemberAttr ([’-id’, ’id1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask deleteIdMgrLDAP

GroupMemberAttr {-interactive}

v Using Jython string:

AdminTask.deleteIdMgrLDAP

GroupMemberAttr (’[-interactive]’)

v Using Jython list:

AdminTask.deleteIdMgrLDAP

GroupMemberAttr ([’-interactive’])

Chapter 9. Configuring security with scripting 691

Table 17. (continued)

Command name: Description: Parameters and

return values:

Examples:

deleteIdMgr LDAPGroup

Dynamic MemberAttr

The deleteIdMgr

LDAPGroup Dynamic

MemberAttr command

deletes a dynamic

member attribute

configuration from an

LDAP group

configuration.

v Parameters:

- id

The ID of the

repository.

(String,

required)

- name

The name of

the LDAP

attribute that is

used as the

group member

attribute. For

example,

memberURL.

(String,

required)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask deleteIdMgrLDAP

GroupDynamicMemberAttr {-id

id1 -name name1}

v Using Jython string:

AdminTask.deleteIdMgrLDAP

GroupDynamicMemberAttr (’[

-id id1 -name name1]’)

v Using Jython list:

AdminTask.deleteIdMgrLDAP

GroupDynamicMemberAttr ([’

-id’, ’id1’, ’-name’,

’name1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask deleteIdMgrLDAPGroup

DynamicMemberAttr {-interactive}

v Using Jython string:

AdminTask.deleteIdMgrLDAPGroup

DynamicMemberAttr (’[-interactive]’)

v Using Jython list:

AdminTask.deleteIdMgrLDAPGroup

DynamicMemberAttr ([’-interactive’])

692 Securing applications and their environment

Table 17. (continued)

Command name: Description: Parameters and

return values:

Examples:

deleteId MgrLDAP Server The deleteId MgrLDAP

Server command

deletes the

configuration for the

LDAP server that you

specify from the LDAP

repository ID that you

specify.

v Parameters:

- id

The ID of the

repository.

(String,

required)

- host

The host name

for the primary

LDAP server.

(String,

required)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask deleteIdMgrLDAP

Server {-id id1 -host

myhost.ibm.com}

v Using Jython string:

AdminTask.deleteIdMgrLDAP

Server (’[-id id1 -host

myhost.ibm.com]’)

v Using Jython list:

AdminTask.deleteIdMgrLDAP

Server ([’-id’, ’id1’,

’-host’, ’myhost.ibm.com’])

Interactive mode example usage:

v Using Jacl:

$AdminTask deleteIdMgrLDAP

Server {-interactive}

v Using Jython string:

AdminTask.deleteIdMgrLDAP

Server (’[-interactive]’)

v Using Jython list:

AdminTask.deleteIdMgrLDAP

Server ([’-interactive’])

deleteIdMgr Repository The deleteIdMgr

Repository command

deletes a repository that

you specify.

v Parameters:

- id

The ID of the

repository.

Valid values

include existing

repository IDs.

(String,

required)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask deleteIdMgr

Repository {-id id1}

v Using Jython string:

AdminTask.deleteIdMgr

Repository (’[-id id1]’)

v Using Jython list:

AdminTask.deleteIdMgr

Repository ([’-id’, ’id1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask deleteIdMgrRepos

itory {-interactive}

v Using Jython string:

AdminTask.deleteIdMgrReposi

tory (’[-interactive]’)

v Using Jython list:

AdminTask.deleteIdMgrReposi

tory ([’-interactive’])

Chapter 9. Configuring security with scripting 693

Table 17. (continued)

Command name: Description: Parameters and

return values:

Examples:

deleteIdMgr Repository

BaseEntry

The deleteIdMgr

Repository BaseEntry

command deletes a

base entry from the

specified repository.

v Parameters:

- id

The ID of the

repository.

(String,

required)

- name

The

distinguished

name of a

base entry.

(String,

required)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask deleteIdMgrRepository

BaseEntry {-id id1 -name

name1}

v Using Jython string:

AdminTask.deleteIdMgrRepository

BaseEntry (’[-id id1 -name

name1]’)

v Using Jython list:

AdminTask.deleteIdMgrRepository

BaseEntry ([’-id’, ’id1’,

’-name’, ’name1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask deleteIdMgrRepository

BaseEntry {-interactive}

v Using Jython string:

AdminTask.deleteIdMgrRepository

BaseEntry (’[-interactive]’)

v Using Jython list:

AdminTask.deleteIdMgrRepository

BaseEntry ([’-interactive’])

getIdMgr LDAPAttr Cache The getIdMgr

LDAPAttr Cache

command returns the

LDAP attribute cache

configuration.

v Parameters:

- id

The ID of the

repository.

(String,

required)

v Returns: A hash

map with the

parameters of the

setIdMgr LDAPAttr

Cache command

as keys.

Batch mode example usage:

v Using Jacl:

$AdminTask getIdMgrLDAPAttr

Cache {-id id1}

v Using Jython string:

AdminTask.getIdMgrLDAPAttr

Cache (’[-id id1]’)

v Using Jython list:

AdminTask.getIdMgrLDAPAttr

Cache ([’-id’, ’id1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask getIdMgrLDAP

AttrCache {-interactive}

v Using Jython string:

AdminTask.getIdMgrLDAPAttr

Cache (’[-interactive]’)

v Using Jython list:

AdminTask.getIdMgrLDAPAttr

Cache ([’-interactive’])

694 Securing applications and their environment

Table 17. (continued)

Command name: Description: Parameters and

return values:

Examples:

getIdMgr LDAP

ContextPool

The getIdMgr LDAP

Context Pool command

returns the LDAP

context pool

configuration.

v Parameters:

- id

The ID of the

repository.

(String,

required)

v Returns: A hash

map that includes

the parameters of

the

setIdMgrLDAPContextPool

command as the

keys.

Batch mode example usage:

v Using Jacl:

$AdminTask getIdMgrLDAPContext

Pool {-id id1}

v Using Jython string:

AdminTask.getIdMgrLDAPContext

Pool (’[-id id1]’)

v Using Jython list:

AdminTask.getIdMgrLDAPContext

Pool ([’-id’, ’id1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask getIdMgrLDAPCon

textPool {-interactive}

v Using Jython string:

AdminTask.getIdMgrLDAPCon

textPool (’[-interactive]’)

v Using Jython list:

AdminTask.getIdMgrLDAPCon

textPool ([’-interactive’])

getIdMgr LDAP

EntityType

The getIdMgr LDAP

EntityType command

returns the LDAP entity

type configuration data.

v Parameters:

- id

The ID of the

repository.

(String,

required)

- name

The name of

the entity type.

(String,

required)

v Returns: A hash

map with the keys

the same as the

property name of

the addIdMgr

LDAP EntityType

command.

Multi-valued

parameters are

returned as list.

Batch mode example usage:

v Using Jacl:

$AdminTask getIdMgrLDAPEntity

Type {-id id1 -name name1}

v Using Jython string:

AdminTask.getIdMgrLDAPEntity

Type (’[-id id1 -name

name1]’)

v Using Jython list:

AdminTask.getIdMgrLDAPEntity

Type ([’-id’, ’id1’,

’-name’, ’name1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask getIdMgrLDAPEn

tityType {-interactive}

v Using Jython string:

AdminTask.getIdMgrLDAPEn

tityType (’[-interactive]’)

v Using Jython list:

AdminTask.getIdMgrLDAPEn

tityType ([’-interactive’])

Chapter 9. Configuring security with scripting 695

Table 17. (continued)

Command name: Description: Parameters and

return values:

Examples:

getIdMgr LDAPEntity

TypeRDNAttr

The getIdMgr

LDAPEntity

TypeRDNAttr command

returns the relative

distinguished name

(RDN) attribute

configuration for an

LDAP entity type

definition.

v Parameters:

- id

The ID of the

repository.

(String,

required)

- entityTypeName

The name of

the entity

name. (String,

required)

v Returns: A hash

map with the RDN

attribute names as

the key. If the

object class is set,

the value of the key

will be set to the

value of the object

class. Otherwise,

the value will be

null.

Batch mode example usage:

v Using Jacl:

$AdminTask getIdMgrLDAPEntity

TypeRDNAttr {-id id1

-entityTypeName name1}

v Using Jython string:

AdminTask.getIdMgrLDAPEntity

TypeRDNAttr (’[-id id1

-entityTypeName name1]’)

v Using Jython list:

AdminTask.getIdMgrLDAPEntity

TypeRDNAttr ([’-id’, ’id1’,

’-entityTypeName’, ’name1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask getIdMgrLDAPEntity

TypeRDNAttr {-interactive}

v Using Jython string:

AdminTask.getIdMgrLDAPEntity

TypeRDNAttr (’[-interactive]’)

v Using Jython list:

AdminTask.getIdMgrLDAPEntity

TypeRDNAttr ([’-interactive’])

getIdMgr LDAPGrou

pConfig

The getIdMgr LDAPG

roupConfig command

returns the LDAP group

configuration.

v Parameters:

- id

The ID of the

repository.

(String,

required)

v Returns: A hash

map that contains

the parameters of

the setIdMgr

LDAPGroup

Config command

as the keys.

Batch mode example usage:

v Using Jacl:

$AdminTask getIdMgrLDAPGroup

Config {-id id1}

v Using Jython string:

AdminTask.getIdMgrLDAPGroup

Config (’[-id id1]’)

v Using Jython list:

AdminTask.getIdMgrLDAPGroup

Config ([’-id’, ’id1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask getIdMgrLDAPGroup

Config {-interactive}

v Using Jython string:

AdminTask.getIdMgrLDAPGroup

Config (’[-interactive]’)

v Using Jython list:

AdminTask.getIdMgrLDAPGroup

Config ([’-interactive’])

696 Securing applications and their environment

Table 17. (continued)

Command name: Description: Parameters and

return values:

Examples:

getIdMgr LDAPGroup

Dynamic Member Attrs

The getIdMgr

LDAPGroup Dynamic

Member Attrs

command returns the

dynamic member

attribute configuration

from the LDAP group

configuration.

v Parameters:

- id

The ID of the

repository.

(String,

required)

v Returns: A hash

map list that

contains the

parameters of the

addIdMgr

LDAPGroup

Dynamic

MemberAttr

command as the

keys.

Batch mode example usage:

v Using Jacl:

$AdminTask getIdMgrLDAPGroupDynamic

MemberAttrs {-id id1}

v Using Jython string:

AdminTask.getIdMgrLDAPGroupDynamic

MemberAttrs (’[-id id1]’)

v Using Jython list:

AdminTask.getIdMgrLDAPGroupDynamic

MemberAttrs ([’-id’, ’id1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask getIdMgrLDAPGroup

DynamicMemberAttrs {-interactive}

v Using Jython string:

AdminTask.getIdMgrLDAPGroup

DynamicMemberAttrs (’[-interactive]’)

v Using Jython list:

AdminTask.getIdMgrLDAPGroup

DynamicMemberAttrs ([’-interactive’])

getIdMgr LDAPGroup

MemberAttrs

The getIdMgr

LDAPGroup

MemberAttrs command

returns the member

attribute configuration

for the LDAP group

configuration.

v Parameters:

- id

The ID of the

repository.

(String,

required)

v Returns: A hash

map list that

contains the

parameters of the

addIdMgr

LDAPGroup

MemberAttr

command as the

keys.

Batch mode example usage:

Interactive mode example usage:

v Using Jacl:

$AdminTask getIdMgrLDAPGroup

MemberAttrs {-interactive}

v Using Jython string:

AdminTask.getIdMgrLDAPGroup

MemberAttrs (’[-interactive]’)

v Using Jython list:

AdminTask.getIdMgrLDAPGroup

MemberAttrs ([’-interactive’])

Chapter 9. Configuring security with scripting 697

Table 17. (continued)

Command name: Description: Parameters and

return values:

Examples:

getIdMgr LDAPSearch

ResultCache

The getIdMgr

LDAPSearch

ResultCache command

returns the LDAP

search result cache

configuration.

v Parameters:

- id

The ID of the

repository.

(String,

required)

v Returns: A hash

map with the

parameters of the

setIdMgr

LDAPSearch

ResultCache

command as the

keys.

Batch mode example usage:

v Using Jacl:

$AdminTask getIdMgrLDAP

SearchResultCache {-id id1}

v Using Jython string:

AdminTask.getIdMgrLDAP

SearchResultCache (’[-id id1]’)

v Using Jython list:

AdminTask.getIdMgrLDAPSear

chResultCache ([’-id’, ’id1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask getIdMgrLDAPSea

rchResultCache {-interactive}

v Using Jython string:

AdminTask.getIdMgrLDAPSear

chResultCache (’[-interactive]’)

v Using Jython list:

AdminTask.getIdMgrLDAPSe

archResultCache ([’-interactive’])

getIdMgr LDAPServer The getIdMgr

LDAPServer command

returns the configuration

for the LDAP server that

you specify for the

LDAP repository ID that

you specify.

v Parameters:

- id

The ID of the

repository.

(String,

required)

- host

The host name

for the primary

LDAP server.

(String,

required)

v Returns: A hash

map with the keys

the same as the

parameter names

for the addIdMgr

LDAPServer

command.

Batch mode example usage:

v Using Jacl:

$AdminTask getIdMgrLDAPServer

{-id id1 -host myhost.ibm.com}

v Using Jython string:

AdminTask.getIdMgrLDAPServer

(’[-id id1 -host myhost.ibm.com]’)

v Using Jython list:

AdminTask.getIdMgrLDAPServer

([’-id’, ’id1’, ’-host’,

’myhost.ibm.com’])

Interactive mode example usage:

v Using Jacl:

$AdminTask getIdMgrLDAPServer

{-interactive}

v Using Jython string:

AdminTask.getIdMgrLDAPServer

(’[-interactive]’)

v Using Jython list:

AdminTask.getIdMgrLDAPServer

([’-interactive’])

698 Securing applications and their environment

Table 17. (continued)

Command name: Description: Parameters and

return values:

Examples:

getIdMgr Repository The getIdMgr

Repository command

returns the configuration

of the specified

repository.

v Parameters:

- id

The ID of the

repository.

(String,

required)

v Returns: A hash

map. The keys will

vary depending on

the type of

repository.

Batch mode example usage:

v Using Jacl:

$AdminTask getIdMgrRepos

itory {-id id1}

v Using Jython string:

AdminTask.getIdMgrReposi

tory (’[-id id1]’)

v Using Jython list:

AdminTask.getIdMgrReposi

tory ([’-id’, ’id1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask getIdMgrRepos

itory {-interactive}

v Using Jython string:

AdminTask.getIdMgrReposi

tory (’[-interactive]’)

v Using Jython list:

AdminTask.getIdMgrReposi

tory ([’-interactive’])

listIdMgr Custom

Properties

The listIdMgr Custom

Propertiescommand

returns a list of custom

properties for the

repository that you

specify.

v Parameters:

- id

The ID of the

repository.

(String,

required)

v Returns: A hash

map that contains

keys as the custom

property names

and values as

custom property

values.

Batch mode example usage:

v Using Jacl:

$AdminTask listIdMgrCustomPro

perties {-id id1}

v Using Jython string:

AdminTask.listIdMgrCustom

Properties (’[-id id1]’)

v Using Jython list:

AdminTask.listIdMgrCustom

Properties ([’-id’, ’id1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask listIdMgrCustom

Properties {-interactive}

v Using Jython string:

AdminTask.listIdMgrCustom

Properties (’[-interactive]’)

v Using Jython list:

AdminTask.listIdMgrCustom

Properties ([’-interactive’])

Chapter 9. Configuring security with scripting 699

Table 17. (continued)

Command name: Description: Parameters and

return values:

Examples:

listIdMgr LDAPBa

ckupServers

The listIdMgr

LDAPBack

upServerscommand

returns a list of the

backup LDAP server or

servers.

v Parameters:

- id

The ID of the

repository.

(String,

required)

- primary_host

The host name

for the primary

LDAP server.

(String,

required)

v Returns: A list of

hash maps. The

hash maps

contains the names

of the backup

servers as the key

and the port

numbers as the

value. Returning all

the data in a hash

map does not

maintain the order

of backup servers.

Batch mode example usage:

v Using Jacl:

$AdminTask listIdMgrLDAP

BackupServer {-id id1

-primary_host hostname}

v Using Jython string:

AdminTask.listIdMgrLDAPBack

upServer (’[-id id1

-primary_host hostname]’)

v Using Jython list:

AdminTask.listIdMgrLDAPBack

upServer ([’-id’, ’id1’,

’-primary_host’, ’hostname’])

Interactive mode example usage:

v Using Jacl:

$AdminTask listIdMgrLDAP

BackupServer {-interactive}

v Using Jython string:

AdminTask.listIdMgrLDAP

BackupServer (’[-interactive]’)

v Using Jython list:

AdminTask.listIdMgrLDAP

BackupServer ([’-interactive’])

listIdMgr LDAPEn

tityTypes

The listIdMgr LDAPEn

tityTypes command

lists the name of all of

the configured LDAP

entity type definitions.

v Parameters:

- id

The ID of the

repository.

(String,

required)

v Returns: A list that

contains the names

of the configured

LDAP entity types.

Batch mode example usage:

v Using Jacl:

$AdminTask listIdMgrLDAP

EntityType {-id id1}

v Using Jython string:

AdminTask.listIdMgrLDAP

EntityType (’[-id id1]’)

v Using Jython list:

AdminTask.listIdMgrLDAPEntity

Type ([’-id’, ’id1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask listIdMgrLDAP

EntityType {-interactive}

v Using Jython string:

AdminTask.listIdMgrLDAP

EntityType (’[-interactive]’)

v Using Jython list:

AdminTask.listIdMgrLDAP

EntityType ([’-interactive’])

700 Securing applications and their environment

Table 17. (continued)

Command name: Description: Parameters and

return values:

Examples:

listIdMgr LDAP Servers The listIdMgr LDAP

Servers command lists

all of the configured

primary LDAP servers.

v Parameters:

- id

The ID of the

repository.

(String,

required)

v Returns: A list that

contains the

primary LDAP

server names.

Batch mode example usage:

v Using Jacl:

$AdminTask listIdMgrLDAP

Servers {-id id1}

v Using Jython string:

AdminTask.listIdMgrLDAP

Servers (’[-id id1]’)

v Using Jython list:

AdminTask.listIdMgrLDAP

Servers ([’-id’, ’id1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask listIdMgrLDAP

Servers {-interactive}

v Using Jython string:

AdminTask.listIdMgrLDAP

Servers (’[-interactive]’)

v Using Jython list:

AdminTask.listIdMgrLDAP

Servers ([’-interactive’])

Chapter 9. Configuring security with scripting 701

Table 17. (continued)

Command name: Description: Parameters and

return values:

Examples:

listIdMgr Repositories The listIdMgr

Repositories command

lists names and types of

all configured

repositories.

v Parameters: None

v Returns: A hash

map with key as

the name of the

repository and

value as another

hash map that

includes the

following keys:

– repositoryType -

The type of

repository. For

example, File,

LDAP, DB, and

so on.

–

 specificRepositoryType

- The specific type

of repository. For

example, LDAP,

IDS51, NDS, and

so on.

– host - The host

name where the

repository

resides. For File,

it is LocalHost

and for DB it is

dataSourceName.

This command will

not return the

Property Extension

and Entry Mapping

repository data.

Batch mode example usage:

v Using Jacl:

$AdminTask listIdMgrRepositories

v Using Jython string:

AdminTask.listIdMgrRepositories()

v Using Jython list:

AdminTask.listIdMgrRepositories()

Interactive mode example usage:

v Using Jacl:

$AdminTask listIdMgrReposi

tories {-interactive}

v Using Jython string:

AdminTask.listIdMgrReposit

ories (’[-interactive]’)

v Using Jython list:

AdminTask.listIdMgrReposi

tories ([’-interactive’])

702 Securing applications and their environment

Table 17. (continued)

Command name: Description: Parameters and

return values:

Examples:

listIdMgr Repository

BaseEntries

The listIdMgr

Repository

BaseEntries command

lists the base entries for

a specified repository.

v Parameters:

- id

The ID of the

repository.

(String,

required)

v Returns: A hash

map that contains

base entry name as

key and

nameInRepository

as value.

Batch mode example usage:

v Using Jacl:

$AdminTask listIdMgrRepository

BaseEntries {-id id1}

v Using Jython string:

AdminTask.listIdMgrRepository

BaseEntries (’[-id id1]’)

v Using Jython list:

AdminTask.listIdMgrRepository

BaseEntries ([’-id’, ’id1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask listIdMgrRepository

BaseEntries {-interactive}

v Using Jython string:

AdminTask.listIdMgrRepository

BaseEntries (’[-interactive]’)

v Using Jython list:

AdminTask.listIdMgrRepository

BaseEntries ([’-interactive’])

listIdMgr Supported

DBTypes

The listIdMgr

Supported DBTypes

command returns a list

of supported database

types.

v Parameters: None

v Returns: A list of

supported database

types.

Batch mode example usage:

v Using Jacl:

$AdminTask listIdMgrSupportedDBTypes

v Using Jython string:

AdminTask.listIdMgrSupportedDBTypes()

v Using Jython list:

AdminTask.listIdMgrSupportedDBTypes()

Interactive mode example usage:

v Using Jacl:

$AdminTask listIdMgrSupported

DBTypes {-interactive}

v Using Jython string:

AdminTask.listIdMgrSupported

DBTypes (’[-interactive]’)

v Using Jython list:

AdminTask.listIdMgrSupported

DBTypes ([’-interactive’])

Chapter 9. Configuring security with scripting 703

Table 17. (continued)

Command name: Description: Parameters and

return values:

Examples:

listIdMg rSupported

Message Digest

Algorithms

The listIdMgr

Supported Message

Digest Algorithms

command returns a list

of supported message

digest algorithms.

v Parameters: None

v Returns: A list of

supported message

digest algorithms.

Batch mode example usage:

v Using Jacl:

$AdminTask listIdMgrSupported

MessageDigestAlgorithms

v Using Jython string:

AdminTask.listIdMgrSupported

MessageDigestAlgorithms()

v Using Jython list:

AdminTask.listIdMgrSupported

MessageDigestAlgorithms()

Interactive mode example usage:

v Using Jacl:

$AdminTask listIdMgrSupportedMes

sageDigestAlgorithms {-interactive}

v Using Jython string:

AdminTask.listIdMgrSupportedMessage

DigestAlgorithms (’[-interactive]’)

v Using Jython list:

AdminTask.listIdMgrSupportedMessage

DigestAlgorithms ([’-interactive’])

listIdMgr Supported

LDAPSe rverTypes

The listIdMgr

Supported LDAP

ServerTypes command

returns a list of

supported LDAP server

types.

v Parameters: None

v Returns: A list of

supported LDAP

server types.

Batch mode example usage:

v Using Jacl:

$AdminTask listIdMgrSupported

LDAPServerTypes

v Using Jython string:

AdminTask.listIdMgrSupported

LDAPServerTypes()

v Using Jython list:

AdminTask.listIdMgrSupported

LDAPServerTypes()

Interactive mode example usage:

v Using Jacl:

$AdminTask listIdMgrSupported

LDAPServerTypes {-interactive}

v Using Jython string:

AdminTask.listIdMgrSupported

LDAPServerTypes (’[-interactive]’)

v Using Jython list:

AdminTask.listIdMgrSupported

LDAPServerTypes ([’-interactive’])

704 Securing applications and their environment

Table 17. (continued)

Command name: Description: Parameters and

return values:

Examples:

removeIdMgr LDAPBac

kupServer

The removeIdMgr

LDAPBack

upServercommand

removes the backup

LDAP server or servers.

v Parameters:

- id

The ID of the

repository.

(String,

required)

- primary_host

The host name

for the primary

LDAP server.

(String,

required)

- host

The name of

the backup

host name.

Use a asterisk

(*) if you want

to remove all

backup

servers.

(String,

required)

- port

The port

number of the

LDAP server.

(Integer,

optional)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask removeIdMgrLDAP

BackupServer {-id id1

-primary_host myprimaryhost.

ibm.com -host myhost.ibm.com}

v Using Jython string:

AdminTask.removeIdMgrLDAPBackup

Server (’[-id id1 -primary_host

myprimaryhost.ibm.com -host

myhost.ibm.com]’)

v Using Jython list:

AdminTask.removeIdMgrLDAPBack

upServer ([’-id’, ’id1’,

’-primary_host’, ’myprimary

host.ibm.com’, ’-host’,

’myhost.ibm.com’])

Interactive mode example usage:

v Using Jacl:

$AdminTask removeIdMgrLDAP

BackupServer {-interactive}

v Using Jython string:

AdminTask.removeIdMgrLDAP

BackupServer (’[-interactive]’)

v Using Jython list:

AdminTask.removeIdMgrLDAP

BackupServer ([’-interactive’])

Chapter 9. Configuring security with scripting 705

Table 17. (continued)

Command name: Description: Parameters and

return values:

Examples:

setIdMgr Custom

Property

The setIdMgr Custom

Property command

adds the custom

properties to a

repository configuration.

v Parameters:

- id

The ID of the

repository.

Valid values

include the

existing

repository IDs.

(String,

required)

- name

The name of

the additional

property for the

repository that

are not defined

OOTB.(String,

required)

- value

If this

parameter is

an empty

string, the

property will be

deleted from

the repository

configuration. If

this parameter

is not an empty

string and

name does not

exist, it will be

added. If name

is an empty

string, all the

custom

properties will

be deleted.

(String,

required)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask setIdMgrCustomProperty

{-id id1 -name name1

-value value}

v Using Jython string:

AdminTask.setIdMgrCustomProperty

(’[-id id1 -name name1

-value value]’)

v Using Jython list:

AdminTask.setIdMgrCustomProperty

([’-id’, ’id1’, ’-name’,

’name1’, ’-value’, ’value’])

Interactive mode example usage:

v Using Jacl:

$AdminTask setIdMgrCustom

Property {-interactive}

v Using Jython string:

AdminTask.setIdMgrCustom

Property (’[-interactive]’)

v Using Jython list:

AdminTask.setIdMgrCustom

Property ([’-interactive’])

706 Securing applications and their environment

Table 17. (continued)

Command name: Description: Parameters and

return values:

Examples:

setIdMgr LDAPA ttrCache The setIdMgr LDAPA

ttrCache command

configures the LDAP

attribute cache

configuration.

v Parameters:

- id

The ID of the

repository.

(String,

required)

-

cachesDiskOffLoad

(String,

optional)

- enabled

Indicates if you

want to enable

attribute

caching. The

default value is

true. (Boolean,

optional)

- cacheSize

The maximum

size of the

attribute cache

defined by the

number of

attribute

objects that are

permitted in

the attribute

cache. The

minimum value

of this

parameter is

100. The

default value is

4000. (Integer,

optional)

Batch mode example usage:

v Using Jacl:

$AdminTask setIdMgrLDAPAttr

Cache {-id id1}

v Using Jython string:

AdminTask.setIdMgrLDAPAttr

Cache (’[-id id1]’)

v Using Jython list:

AdminTask.setIdMgrLDAPAttr

Cache ([’-id’, ’id1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask setIdMgrLDAPAttr

Cache {-interactive}

v Using Jython string:

AdminTask.setIdMgrLDAPAttr

Cache (’[-interactive]’)

v Using Jython list:

AdminTask.setIdMgrLDAPAttr

Cache ([’-interactive’])

Chapter 9. Configuring security with scripting 707

Table 17. (continued)

Command name: Description: Parameters and

return values:

Examples:

- cacheTimeOut

The amount of

time in seconds

before the cached

entries that are

located in the

attributes cache

can be not valid.

The minimum

value of this

parameter is 0.

The attribute

objects that are

cached will

remain in the

attributes cache

until the virtual

member manager

changes the

attribute objects.

The default value

is 1200. (Integer,

optional)

- attributeSizeLimit

An integer that

represents the

maximum number

of attribute object

values that can

cache in the

attributes cache.

 Some attributes,

for example, the

member attribute,

contain many

values. The

attributeSizeLimit

parameter

prevents the

attributes cache

to cache large

attributes. The

default value is

2000. (Integer,

optional)

708 Securing applications and their environment

Table 17. (continued)

Command name: Description: Parameters and

return values:

Examples:

- serverTTLAttribute

The name of the

ttl attribute that is

supported by the

LDAP server. The

attributes cache

uses the value of

this attribute to

determine when

the cached

entries in the

attributes cache

will time out.

 The ttl attribute

contains the time,

in seconds, that

any information

from the entry

should be kept by

a client before it

is considered

stale and a new

copy is fetched. A

value of 0 implies

that the object will

not be cached.

For more

information about

this attribute, go

to:

http://
www.ietf.org/
proceedings/
98aug/I-D/draft-
ietf-asid-ldap-
cache-01.txt.

 The ttl attribute is

not supported by

all LDAP servers.

If this attribute is

supported by an

LDAP server, you

can set the value

of the

serverTTLAttribute

parameter to the

name of the ttl

attribute in order

to allow the value

of the ttyl attribute

to determine

when cached

entries will time

out. The time out

value for different

entries in

attributes cache

can be different.

Chapter 9. Configuring security with scripting 709

http://http://www.ietf.org/proceedings/98aug/I-D/draft-ietf-asid-ldap-cache-01.txt
http://http://www.ietf.org/proceedings/98aug/I-D/draft-ietf-asid-ldap-cache-01.txt
http://http://www.ietf.org/proceedings/98aug/I-D/draft-ietf-asid-ldap-cache-01.txt
http://http://www.ietf.org/proceedings/98aug/I-D/draft-ietf-asid-ldap-cache-01.txt
http://http://www.ietf.org/proceedings/98aug/I-D/draft-ietf-asid-ldap-cache-01.txt
http://http://www.ietf.org/proceedings/98aug/I-D/draft-ietf-asid-ldap-cache-01.txt

Table 17. (continued)

Command name: Description: Parameters and

return values:

Examples:

For example, if the

value of the

serverTTLAttribute

parameter is ttl and

the attributes cache

retrieves attributes of

a user from an LDAP

server, it will also

retrieve the value of

the ttl attribute of this

user. If the value is

200, the WMM uses

this value to set the

time out for the

attributes of the user

in the attributes cache

instead of using the

value of

cacheTimeout. You

can set different ttl

attribute values for

different users.

(String, optional)

v Returns: None

710 Securing applications and their environment

Table 17. (continued)

Command name: Description: Parameters and

return values:

Examples:

setIdMgrLDAP

ContextPool

The setIdMgr LDAPCo

ntextPoolcommand

sets up the LDAP

context pool

configuration.

v Parameters:

- id

The ID of the

repository.

(String,

required)

- enabled

By default, the

context pool is

enabled. If you

set this

parameter to

false, the

context pool is

disabled. When

the context

pool is

disabled, new

context

instances will

be created for

each request.

The default

value is true.

(Boolean,

optional)

- initPoolSize

The number of

context

instances that

the the virtual

member

manager LDAP

adapter

creates when it

creates the

pool. The valid

range for this

parameter is 1

to 50. The

default value is

1. (Integer,

optional)

Batch mode example usage:

v Using Jacl:

$AdminTask setIdMgrLDAPCon

textPool {-id id1}

v Using Jython string:

AdminTask.setIdMgrLDAPCon

textPool (’[-id id1]’)

v Using Jython list:

AdminTask.setIdMgrLDAPCon

textPool ([’-id’, ’id1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask setIdMgrLDAPCon

textPool {-interactive}

v Using Jython string:

AdminTask.setIdMgrLDAPCon

textPool (’[-interactive]’)

v Using Jython list:

AdminTask.setIdMgrLDAPCon

textPool ([’-interactive’])

Chapter 9. Configuring security with scripting 711

Table 17. (continued)

Command name: Description: Parameters and

return values:

Examples:

- maxPoolSize

The maximum

number of context

instances that the

context pool will

maintain. Context

instances that are

in use and those

that are idle

contribute to this

number. When

the pool size

reaches this

number, new

context instances

cannot be created

for new requests.

The new request

is blocked until a

context instance

is released by

another request

or is removed.

The request

checks

periodically if

there are context

instances

available in the

pool according to

the amount of

time that you

specify using the

poolWaitTime

parameter.

 The minimum

value for this

parameter is 0.

There is no

maximum value.

Setting the value

of this parameter

to 0 means that

there is no

maximum size

and a request for

a pooled context

instance will use

an existing

pooled idle

context instance

or a newly

created pooled

context instance.

The default value

is 20.(Integer,

optional)

712 Securing applications and their environment

Table 17. (continued)

Command name: Description: Parameters and

return values:

Examples:

- prefPoolSize

The preferred

number of context

instances that the

context pool will

maintain. Context

instances that are

in use and those

that are idle

contribute to this

number. When

there is a request

for the use of a

pooled context

instance and the

pool size is less

than the preferred

size, the context

pool creates and

uses a new

pooled context

instance

regardless of

whether an idle

connection is

available. When a

request finishes

with a pooled

context instance

and the pool size

is greater than

the preferred

size, the context

pool closes and

removes the

pooled context

instance from the

pool.

 The valid range

for this parameter

is from 0 to 100.

Setting the value

of this parameter

to 0 means that

there is no

preferred size

and a request for

a pooled context

instance results in

a newly created

context instance

only if no idle

ones are

available. The

default value is

3.(Integer,

optional)

Chapter 9. Configuring security with scripting 713

Table 17. (continued)

Command name: Description: Parameters and

return values:

Examples:

- poolTimeOut

An integer that

represents the

number of

milliseconds that

an idle context

instance may

remain in the pool

without being

closed and

removed from the

pool. When a

context instance

is requested from

the pool, if this

context already

exists in the pool

for more than the

time defined by

poolTimeout, this

connection will be

closed no matter

this context

instance is stale

or active. A new

context instance

will be created

and put back to

the pool after it

has been

released from the

request.

 The minimum

value for this

parameter is 0.

There is no

maximum value.

Setting the value

of this parameter

to 0 means that

the context

instances in the

pool will remain in

the pool until they

are staled. The

context pool

catches the

communication

exception and

recreates a new

context instance.

The default value

is 0.(Integer,

optional)

714 Securing applications and their environment

Table 17. (continued)

Command name: Description: Parameters and

return values:

Examples:

- poolWaitTime

The time interval

in milliseconds

that the request

waits until the

context pool

rechecks if there

are idle context

instances

available in the

pool when the

number of context

instances reaches

the maximum

pool size. If no

idle context

instance, the

request will

continue waiting

for the same

period of time

until next

checking.

 The minimum

value for the

poolWaitout

parameter is 0.

There is no

maximum value.

A value of 0 for

this parameter

means that the

context pool will

not check if idle

context exists.

The request will

be notified when

a context

instance releases

from other

requests. The

default value is

3000.(Integer,

optional)

v Returns: None

Chapter 9. Configuring security with scripting 715

Table 17. (continued)

Command name: Description: Parameters and

return values:

Examples:

setIdMgr LDAPG

roupConfig

The setIdMgr LDAPGr

oupConfig command

sets up the LDAP group

configuration.

v Parameters:

- id

The ID of the

repository.

(String,

required)

- updateGroup

Membership

Updates the

group

membership if

the member is

deleted or

renamed.

Some LDAP

servers, for

example,

Domino server,

do not clean

up the

membership of

the user when

a user is

deleted or

renamed. If

you choose

these LDAP

server types in

the

ldapServerType

property, the

value of this

parameter is

set to true.

Use this

parameter to

change the

value. The

default value is

false.

(Boolean,

optional)

- name

The name of

the

membership

attribute. For

example,

memberOf in an

active directory

server and

ibm-allGroups

in IDS. (String,

optional)

Batch mode example usage:

v Using Jacl:

$AdminTask setIdMgrLDAP

GroupConfig {-id id1}

v Using Jython string:

AdminTask.setIdMgrLDAP

GroupConfig (’[-id id1]’)

v Using Jython list:

AdminTask.setIdMgrLDAP

GroupConfig ([’-id’, ’id1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask setIdMgrLDAPGr

oupConfig {-interactive}

v Using Jython string:

AdminTask.setIdMgrLDAPGr

oupConfig (’[-interactive]’)

v Using Jython list:

AdminTask.setIdMgrLDAPGroup

Config ([’-interactive’])

716 Securing applications and their environment

Table 17. (continued)

Command name: Description: Parameters and

return values:

Examples:

- scope

The scope of the

membership

attribute. The

following are the

possible values

for this

parameter:

v direct - The

membership

attribute only

contains direct

groups. Direct

groups contain

the member

and are not

contained

through a

nested group.

For example, if

group1

contains

group2, group2

contains user1,

then group2 is

a direct group

of user1, but

group1 is not a

direct group of

user1.

v nested - The

membership

attribute

contains both

direct groups

and nested

groups.

v all - The

membership

attribute

contains direct

groups, nested

groups, and

dynamic

members.

The default value

is direct. (String,

optional)

v Returns: None

Chapter 9. Configuring security with scripting 717

Table 17. (continued)

Command name: Description: Parameters and

return values:

Examples:

setIdMgr LDAPSearch

ResultCache

The setIdMgr

LDAPSearch

ResultCache command

sets up the LDAP

search result cache

configuration.

v Parameters:

- id

The ID of the

repository.

(String,

required)

-

cachesDiskOffLoad

Loads the

attributes

caches and the

search results

onto hard disk.

By default,

when the

number of

cache entries

reaches the

maximum size

of the cache,

cache entries

are evicted to

allow new

entries to enter

the caches. If

you enable this

parameter, the

evicted cache

entries will be

copied to disk

for future

access. The

default value is

false.

(Boolean,

optional)

- enabled

Enables the

search results

cache. The

default value is

true. (Boolean,

optional)

Batch mode example usage:

v Using Jacl:

$AdminTask setIdMgrLDAPSearch

ResultCache {-id id1}

v Using Jython string:

AdminTask.setIdMgrLDAPSearch

ResultCache (’[-id id1]’)

v Using Jython list:

AdminTask.setIdMgrLDAPSearch

ResultCache ([’-id’, ’id1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask setIdMgrLDAPSearch

ResultCache {-interactive}

v Using Jython string:

AdminTask.setIdMgrLDAPSearch

ResultCache (’[-interactive]’)

v Using Jython list:

AdminTask.setIdMgrLDAPSearch

ResultCache ([’-interactive’])

718 Securing applications and their environment

Table 17. (continued)

Command name: Description: Parameters and

return values:

Examples:

- cacheSize

The maximum

size of the search

results cache.

The number of

naming

enumeration

objects that can

be put into the

search results

cache. The

minimum value of

this parameter is

100. The default

value is 2000.

(Integer, optional)

- cacheTimeOut

The amount of

time in seconds

before the cached

entries in the

search results

cache can be not

valid. The

minimum value

for this parameter

is 0. A value of 0

means that the

cached naming

enumeration

objects will stay

in the search

results cache until

there are

configuration

changes. The

default value is

600. (Integer,

optional)

Chapter 9. Configuring security with scripting 719

Table 17. (continued)

Command name: Description: Parameters and

return values:

Examples:

-

searchResultSizeLimit

The maximum

number of entries

contained in the

naming

enumeration

object that can be

cached in the

search results

cache.For

example, if the

results from a

search contains

2000 users, the

search results will

not cache in the

search results

cache if the value

of the of this

property is set to

1000. The default

value is 1000.

(Integer, optional)

v Returns: None

720 Securing applications and their environment

Table 17. (continued)

Command name: Description: Parameters and

return values:

Examples:

setIdMgr Entry Mapping

Repository

The setIdMgr Entry

Mapping Repository

command sets or

updates an entry

mapping repository

configuration.

v Parameters:

-

dataSourceName

The name of

the data

source. The

default value is

jdbc/wimDS.

The parameter

is required if

the property

extension is

not set. The

parameter is

not required if

the command

is used to

update the

existing

configuration.

(String)

- databaseType

The type of the

database. The

default value is

DB2. The

parameter is

required if the

property

extension is

not set. The

parameter is

not required if

the command

is used to

update the

existing

configuration.

(String)

- dbURL

The URL of the

database. The

parameter is

required if the

property

extension is

not set. The

parameter is

not required if

the command

is used to

update the

existing

configuration.

(String)

Batch mode example usage:

v Using Jacl:

$AdminTask setIdMgrEntry

MappingRepository {-dbAdminId

dbid1 -dbAdminPassword

pw1}

v Using Jython string:

AdminTask.setIdMgrEntry

MappingRepository (’[-dbAdminId

dbid1 -dbAdminPassword

pw1]’)

v Using Jython list:

AdminTask.setIdMgrEntry

MappingRepository ([’-dbAdminId’,

’dbid1’, ’-dbAdmin

Password’, ’pw1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask setIdMgrEntryMapping

Repository {-interactive}

v Using Jython string:

AdminTask.setIdMgrEntryMapping

Repository (’[-interactive]’)

v Using Jython list:

AdminTask.setIdMgrEntryMapping

Repository ([’-interactive’])

Chapter 9. Configuring security with scripting 721

Table 17. (continued)

Command name: Description: Parameters and

return values:

Examples:

- dbAdminId

The database

administrator ID.

(String, required if

database type is

not Cloudscape.)

- dbAdminPassword

The database

administrator

password. (String,

required if

database type is

not Cloudscape.)

- JDBCDriverClass

The JDBC driver

class name.

(String, optional)

v Returns: None

722 Securing applications and their environment

Table 17. (continued)

Command name: Description: Parameters and

return values:

Examples:

setIdMgr Property

Extension Repository

The setIdMgr Property

Extension Repository

command sets or

updates the property

extension repository

configuration.

v Parameters:

-

dataSourceName

The name of

the data

source. The

default value is

jdbc/wimDS.

The parameter

is required if

the property

extension is

not set. The

parameter is

not required if

the command

is used to

update the

existing

configuration.

(String)

- databaseType

The type of the

database. The

default value is

DB2. The

parameter is

required if the

property

extension is

not set. The

parameter is

not required if

the command

is used to

update the

existing

configuration.

(String)

- dbURL

The URL of the

database. The

parameter is

required if the

property

extension is

not set. The

parameter is

not required if

the command

is used to

update the

existing

configuration.

(String)

Batch mode example usage:

v Using Jacl:

$AdminTask setIdMgrProperty

ExtensionRepository {-entity

RetrievalLimit 10 -JDBC

DriverClass classname}

v Using Jython string:

AdminTask.setIdMgrProperty

ExtensionRepository (’[-entity

RetrievalLimit 10 -JDBC

DriverClass classname]’)

v Using Jython list:

AdminTask.setIdMgrProperty

ExtensionRepository ([’-entity

RetrievalLimit’, ’10’,

’-JDBCDriverClass’, ’classname’])

Interactive mode example usage:

v Using Jacl:

$AdminTask setIdMgrProperty

ExtensionRepository {-interactive}

v Using Jython string:

AdminTask.setIdMgrProperty

ExtensionRepository (’[-interactive]’)

v Using Jython list:

AdminTask.setIdMgrPropertyExt

ensionRepository ([’-interactive’])

Chapter 9. Configuring security with scripting 723

Table 17. (continued)

Command name: Description: Parameters and

return values:

Examples:

- dbAdminId

The database

administrator ID.

(String, required if

database type is

not Cloudscape.)

- dbAdminPassword

The database

administrator

password. (String,

required if

database type is

not Cloudscape.)

-

entityRetrievalLimit

The limit for the

retrieval of

entities. (Integer,

required)

- JDBCDriverClass

The JDBC driver

class name.

(String, required)

v Returns: None

724 Securing applications and their environment

Table 17. (continued)

Command name: Description: Parameters and

return values:

Examples:

updateId MgrDB

Repository

The updateId MgrDB

Repository command

updates the

configuration for the

database repository that

you specify.

v Parameters:

- id

The ID of the

repository.

(String,

required)

-

dataSourceName

The name of

the data

source. The

default value is

jdbc/wimDS.

(String,

optional)

- databaseType

The type of the

database. The

default value is

DB2. (String,

optional)

- dbURL

The URL of the

database.

(String,

optional)

- dbAdminId

The database

administrator

ID. (String,

optional)

-

dbAdminPassword

The database

administrator

password.

(String,

optional)

-

entityRetrievalLimit

Indicates the

value of the

retrieval limit

on database

entries. The

default value is

200. (Integer,

optional)

Batch mode example usage:

v Using Jacl:

$AdminTask updateIdMgrDB

Repository {-id id1}

v Using Jython string:

AdminTask.updateIdMgrDB

Repository (’[-id id1]’)

v Using Jython list:

AdminTask.updateIdMgrDB

Repository ([’-id’, ’id1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask updateIdMgrDB

Repository {-interactive}

v Using Jython string:

AdminTask.updateIdMgrDB

Repository (’[-interactive]’)

v Using Jython list:

AdminTask.updateIdMgrDB

Repository ([’-interactive’])

Chapter 9. Configuring security with scripting 725

Table 17. (continued)

Command name: Description: Parameters and

return values:

Examples:

- JDBCDriverClass

The JDBC driver

class name.

(String, optional)

- saltLength

The salt length in

bits. The default

value is 12.

(Integer, optional)

- encryptionKey

The default value

is

rZ15ws0ely9yHk3zCs3sTMv/ho8fY17s.

(String, optional)

v Returns: None

726 Securing applications and their environment

Table 17. (continued)

Command name: Description: Parameters and

return values:

Examples:

updateId MgrFile

Repository

The updateId MgrFile

Repository command

updates the

configuration for the file

repository that you

specify. To update other

properties of the file

repository use the

update IdMgr

Repositorycommand.

v Parameters:

- id

The ID of the

repository.

(String,

required)

- messageDigest

Algorithm

The message

digest

algorithm that

will be used for

hashing the

password. The

default value is

SHA-1. Valid

values include

the following:

SHA-245,

SHA-384, or

SHA-
512.(String,

optional)

- baseDirectory

The base

directory where

the fill will be

created in

order to store

the data. The

default is to be

dynamically

built during run

time using

user.install.root

and cell name.

(String,

optional)

- fileName

The file name

of the

repository. The

default value is

fileRegistry.xml.

(String,

optional)

- saltLength

The salt length

of the

randomly

generated salt

for password

hashing. The

default value is

12. (Integer,

optional)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask updateIdMgrFile

Repository {-id id1}

v Using Jython string:

AdminTask.updateIdMgrFile

Repository (’[-id id1]’)

v Using Jython list:

AdminTask.updateIdMgrFile

Repository ([’-id’, ’id1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask updateIdMgrFile

Repository {-interactive}

v Using Jython string:

AdminTask.updateIdMgrFile

Repository (’[-interactive]’)

v Using Jython list:

AdminTask.updateIdMgrFile

Repository ([’-interactive’])

Chapter 9. Configuring security with scripting 727

Table 17. (continued)

Command name: Description: Parameters and

return values:

Examples:

updateId MgrLDAP

AttrCache

The updateId

MgrLDAP AttrCache

command updates the

LDAP attribute cache

configuration.

v Parameters:

- id

The ID of the

repository.

(String,

required)

-

cachesDiskOffLoad

(String,

optional)

- enabled

Indicates if you

want to enable

attribute

caching. The

default value is

true. (Boolean,

optional)

- cacheSize

The maximum

size of the

attribute cache

defined by the

number of

attribute

objects that are

permitted in

the attribute

cache. The

minimum value

of this

parameter is

100. The

default value is

4000. (Integer,

optional)

Batch mode example usage:

v Using Jacl:

$AdminTask updateIdMgrLDAP

AttrCache {-id id1}

v Using Jython string:

AdminTask.updateIdMgrLDAP

AttrCache (’[-id id1]’)

v Using Jython list:

AdminTask.updateIdMgrLDAP

AttrCache ([’-id’, ’id1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask updateIdMgrLDAP

AttrCache {-interactive}

v Using Jython string:

AdminTask.updateIdMgrLDAP

AttrCache (’[-interactive]’)

v Using Jython list:

AdminTask.updateIdMgrLDAP

AttrCache ([’-interactive’])

728 Securing applications and their environment

Table 17. (continued)

Command name: Description: Parameters and

return values:

Examples:

- cacheTimeOut

The amount of

time in seconds

before the cached

entries that are

located in the

attributes cache

can be not valid.

The minimum

value of this

parameter is 0.

The attribute

objects that are

cached will

remain in the

attributes cache

until the virtual

member manager

changes the

attribute objects.

The default value

is 1200. (Integer,

optional)

- attributeSizeLimit

An integer that

represents the

maximum number

of attribute object

values that can

cache in the

attributes cache.

 Some attributes,

for example, the

member attribute,

contain many

values. The

attributeSizeLimit

parameter

prevents the

attributes cache

to cache large

attributes. The

default value is

2000. (Integer,

optional)

Chapter 9. Configuring security with scripting 729

Table 17. (continued)

Command name: Description: Parameters and

return values:

Examples:

- serverTTLAttribute

The name of the

ttl attribute that is

supported by the

LDAP server. The

attributes cache

uses the value of

this attribute to

determine when

the cached

entries in the

attributes cache

will time out.

 The ttl attribute

contains the time,

in seconds, that

any information

from the entry

should be kept by

a client before it

is considered

stale and a new

copy is fetched. A

value of 0 implies

that the object will

not be cached.

For more

information about

this attribute, go

to:

http://
www.ietf.org/
proceedings/
98aug/I-D/draft-
ietf-asid-ldap-
cache-01.txt.

 The ttl attribute is

not supported by

all LDAP servers.

If this attribute is

supported by an

LDAP server, you

can set the value

of the

serverTTLAttribute

parameter to the

name of the ttl

attribute in order

to allow the value

of the ttyl attribute

to determine

when cached

entries will time

out. The time out

value for different

entries in

attributes cache

can be different.

730 Securing applications and their environment

http://http://www.ietf.org/proceedings/98aug/I-D/draft-ietf-asid-ldap-cache-01.txt
http://http://www.ietf.org/proceedings/98aug/I-D/draft-ietf-asid-ldap-cache-01.txt
http://http://www.ietf.org/proceedings/98aug/I-D/draft-ietf-asid-ldap-cache-01.txt
http://http://www.ietf.org/proceedings/98aug/I-D/draft-ietf-asid-ldap-cache-01.txt
http://http://www.ietf.org/proceedings/98aug/I-D/draft-ietf-asid-ldap-cache-01.txt
http://http://www.ietf.org/proceedings/98aug/I-D/draft-ietf-asid-ldap-cache-01.txt

Table 17. (continued)

Command name: Description: Parameters and

return values:

Examples:

For example, if the

value of the

serverTTLAttribute

parameter is ttl and

the attributes cache

retrieves attributes of

a user from an LDAP

server, it will also

retrieve the value of

the ttl attribute of this

user. If the value is

200, the WMM uses

this value to set the

time out for the

attributes of the user

in the attributes cache

instead of using the

value of

cacheTimeout. You

can set different ttl

attribute values for

different users.

(String, optional)

v Returns: None

Chapter 9. Configuring security with scripting 731

Table 17. (continued)

Command name: Description: Parameters and

return values:

Examples:

updateId MgrLDAP

ContextPool

The updateId

MgrLDAP ContextPool

command updates the

LDAP context pool

configuration.

v Parameters:

- id

The ID of the

repository.

(String,

required)

- enabled

By default, the

context pool is

enabled. If you

set the value of

this parameter

to false, the

context pool is

disabled which

means that a

new context

instance will be

created for

each request.

The default

value is true.

(Boolean,

optional)

- initPoolSize

The number of

context

instances that

the virtual

member

manager LDAP

adapter

creates when it

creates the

pool. The valid

range for this

parameter is 1

to 50. The

default value is

1. (Integer,

optional)

Batch mode example usage:

v Using Jacl:

$AdminTask updateIdMgrLDAP

ContextPool {-id id1}

v Using Jython string:

AdminTask.updateIdMgrLDAP

ContextPool (’[-id id1]’)

v Using Jython list:

AdminTask.updateIdMgrLDAP

ContextPool ([’-id’, ’id1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask updateIdMgrLDAP

ContextPool {-interactive}

v Using Jython string:

AdminTask.updateIdMgrLDAP

ContextPool (’[-interactive]’)

v Using Jython list:

AdminTask.updateIdMgrLDAP

ContextPool ([’-interactive’])

732 Securing applications and their environment

Table 17. (continued)

Command name: Description: Parameters and

return values:

Examples:

- maxPoolSize

The maximum

number of context

instances that

can be

maintained

concurrently by

the context pool.

Both in-use and

idle context

instances

contribute to this

number. When

the pool size

reaches this

number, new

context instances

cannot created

for new request.

The new request

is blocked until a

context instance

is released by

another request

or is removed.

The request

checks

periodically if

there are context

instances

available in the

pool according to

the value defined

for the

poolWaitTime

parameter. The

minimum value of

the maxPoolSize

parameter is 0.

There is no

maximum value.

A maximum pool

size of 0 means

that there is no

maximum size

and that a

request for a

pooled context

instance will use

an existing

pooled idle

context instance

or a newly

created pooled

context instance.

The default value

is 20. (Integer,

optional)

Chapter 9. Configuring security with scripting 733

Table 17. (continued)

Command name: Description: Parameters and

return values:

Examples:

- prefPoolSize

The preferred

number of context

instances that the

Context Pool

should maintain.

Both in-use and

idle context

instances

contribute to this

number. When

there is a request

for the use of a

pooled context

instance and the

pool size is less

than the preferred

size, Context

Pool will create

and use a new

pooled context

instance

regardless of

whether an idle

connection is

available. When a

request is

finished with a

pooled context

instance and the

pool size is

greater than the

preferred size,

the Context Pool

will close and

remove the

pooled context

instance from the

pool. The valid

range of the

prefPoolSize

parameter is 0 to

100. A preferred

pool size of 0

means that there

is no preferred

size: A request for

a pooled context

instance will

result in a newly

created context

instance only if

no idle ones are

available. The

default value is 3.

(Integer, optional)

734 Securing applications and their environment

Table 17. (continued)

Command name: Description: Parameters and

return values:

Examples:

- poolTimeOut

An integer that

represents the

number of

milliseconds that

an idle context

instance may

remain in the pool

without being

closed and

removed from the

pool. When a

context instance

is requested from

the pool, if this

context already

exists in the pool

for more than the

time defined by

poolTimeout, this

connection will be

closed no matter

this context

instance is stale

or active. A new

context instance

will be created

and put back to

the pool after it

has been

released from the

request.The

minimum value of

poolTimeout is 0.

There is no

maximum value.A

poolTimeout of 0

means that the

context instances

in the pool will

remain in the pool

until they are

staled. In this

case, Context

Pool will catch

the

communication

exception and

recreate a new

context instance.

The default value

is 0. (Integer,

optional)

Chapter 9. Configuring security with scripting 735

Table 17. (continued)

Command name: Description: Parameters and

return values:

Examples:

- poolWaitTime

The time interval

(in milliseconds)

that the request

will wait until the

Context Pool

checks again if

there are idle

context instance

available in the

pool when the

number of context

instances reaches

the maximum

pool size. If there

is still no idle

context instance,

the request will

continue waiting

for the same

period of time

until next

checking. The

minimum value of

poolWaitout is 0.

There is no

maximum value.

A poolWaitTime of

0 means the

Context Pool will

not check if there

are idle context.

Instead, the

request will be

notified when

there is a context

instance is

released from

other requests.

The default value

is 3000. (Integer,

optional)

v Returns: None

736 Securing applications and their environment

Table 17. (continued)

Command name: Description: Parameters and

return values:

Examples:

updateId MgrLDAP

EntityType

The updateId

MgrLDAP EntityType

command updates an

existing LDAP entity

type definition to LDAP

repository configuration.

You can use this

command to add more

values to multi-valued

parameters. If the

property already exists,

the value of the

property will be

replaced. If the property

does not exist, it will be

added.

v Parameters:

- id

The ID of the

repository.

(String,

required)

- name

The name of

the entity type.

(String,

required)

- searchFilter

The search

filter that you

want to use to

search the

entity type.

(String,

optional)

- objectClasses

One or more

object classes

for the entity

type. (String,

optional)

-

objectClassesForCreate

The object

class that will

be when you

create an entity

type object.

You do not

have to specify

the value of

this parameter

if it is the same

as the value of

the

objectClasses

parameter.

(String,

optional)

- searchBases

The search

base or bases

to use while

searching the

entity type.

(String,

optional)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask updateIdMgrLDAPEntity

Type {-id id1 -name name1}

v Using Jython string:

AdminTask.updateIdMgrLDAPEntity

Type (’[-id id1 -name

name1]’)

v Using Jython list:

AdminTask.updateIdMgrLDAPEntity

Type ([’-id’, ’id1’, ’-name’,

’name1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask updateIdMgrLDAP

EntityType {-interactive}

v Using Jython string:

AdminTask.updateIdMgrLDAP

EntityType (’[-interactive]’)

v Using Jython list:

AdminTask.updateIdMgrLDAP

EntityType ([’-interactive’])

Chapter 9. Configuring security with scripting 737

Table 17. (continued)

Command name: Description: Parameters and

return values:

Examples:

updateIdMgr LDAPGroup

Dynamic MemberAttr

The updateIdMgr

LDAPGroup Dynamic

MemberAttr command

updates a dynamic

member attribute

configuration to an

LDAP group

configuration.

v Parameters:

- id

The ID of the

repository.

(String,

required)

- name

The name of

the LDAP

attribute that is

used as the

group member

attribute. For

example,

memberURL.

(String,

required)

- objectClass

The group

object class

that contains

the dynamic

member

attribute. For

example

groupOfURLs. If

you do not

define this

parameter, the

dynamic

member

attribute will

apply to all

group object

classes.

(String,

required)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask updateIdMgrLDAPGroup

DynamicMemberAttr {-id id1

-name name1 -objectClass

groupOfURLs}

v Using Jython string:

AdminTask.updateIdMgrLDAPGroup

DynamicMemberAttr (’[-id id1

-name name1 -objectClass

groupOfURLs]’)

v Using Jython list:

AdminTask.updateIdMgrLDAPGroup

DynamicMemberAttr ([’-id’,

’id1’, ’-name’, ’name1’,

’-objectClass’, ’groupOfURLs’])

Interactive mode example usage:

v Using Jacl:

$AdminTask updateIdMgrLDAPGroup

DynamicMemberAttr {-interactive}

v Using Jython string:

AdminTask.updateIdMgrLDAPGroup

DynamicMemberAttr (’[-interactive]’)

v Using Jython list:

AdminTask.updateIdMgrLDAPGroup

DynamicMemberAttr ([’-interactive’])

738 Securing applications and their environment

Table 17. (continued)

Command name: Description: Parameters and

return values:

Examples:

updateIdMgr LDAPGroup

MemberAttr

The updateIdMgr

LDAPGroup

MemberAttr command

updates a member

attribute configuration of

an LDAP group

configuration.

v Parameters:

- id

The ID of the

repository.

(String,

required)

- name

The name of

the LDAP

attribute that is

used as the

group member

attribute. For

example,

member or

uniqueMember.

(String,

required)

- objectClass

The group

object class

that contains

the member

attribute. For

example,

groupOfNames

or

groupOfUnqiueNames.

If you do not

define this

parameter, the

member

attribute

applies to all

group object

classes.

(String,

optional)

Batch mode example usage:

v Using Jacl:

$AdminTask updateIdMgrLDAP

GroupMemberAttr {-id id1

-name name1}

v Using Jython string:

AdminTask.updateIdMgrLDAP

GroupMemberAttr (’[-id id1

-name name1]’)

v Using Jython list:

AdminTask.updateIdMgrLDAP

GroupMemberAttr ([’-id’,

’id1’, ’-name’, ’name1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask updateIdMgrLDAPGroup

MemberAttr {-interactive}

v Using Jython string:

AdminTask.updateIdMgrLDAPGroup

MemberAttr (’[-interactive]’)

v Using Jython list:

AdminTask.updateIdMgrLDAPGroup

MemberAttr ([’-interactive’])

Chapter 9. Configuring security with scripting 739

Table 17. (continued)

Command name: Description: Parameters and

return values:

Examples:

- scope

The scope of the

member attribute.

The following are

the valid values:

v direct - The

member

attribute only

contains direct

members

whereby the

member is

directly

contained by

the group and

not contained

in a nested

group. For

example, if

group1

contains

group2, group2

contains user1,

then group2 is

a direct

member of

group1 but

user1 is not a

direct member

of group1. Both

member and

uniqueMember

are direct

member

attributes.

v nested - The

member

attribute

contains both

direct members

and nested

members.

740 Securing applications and their environment

Table 17. (continued)

Command name: Description: Parameters and

return values:

Examples:

v all - The member

attribute contains

direct members,

nested members

and dynamic

members. One

example is the

ibm-allMembers

attribute that IBM

Tivoli Directory

Server supports.

The default value is

direct. (String,

optional)

- dummyMember

When you create

a group without

specifying a

member, a

dummy member

will be filled in

automatically to

avoid receiving

an exception that

indicates that

there is a

mandatory

attribute missing.

(String, optional)

v Returns: None

Chapter 9. Configuring security with scripting 741

Table 17. (continued)

Command name: Description: Parameters and

return values:

Examples:

updateId MgrLDAP

Repository

The updateId

MgrLDAP Repository

command updates an

LDAP repository

configuration.

v Parameters:

- id

The ID of the

repository.

(String,

required)

- ldapServerType

The type of

LDAP server

that is being

used. The

default value is

IDS51. (String,

optional)

-

adapterClassName

The default

value is

com.ibm.ws.

wim.adapter.

ldap.LdapA

dapter. (String,

optional)

-

certificateMapMode

Specifies

whether to

map X.509

certificates into

a LDAP

directory by

exact

distinguished

name or by

certificate filter.

The default

value is

exactdn. To

use the

certificate filter

for the

mapping,

specify

certificatefilter.

(String,

optional)

Batch mode example usage:

v Using Jacl:

$AdminTask updateIdMgrLDAP

Repository {-id id1}

v Using Jython string:

AdminTask.updateIdMgrLDAP

Repository (’[-id id1]’)

v Using Jython list:

AdminTask.updateIdMgrLDAP

Repository ([’-id’, ’id1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask updateIdMgrLDAP

Repository {-interactive}

v Using Jython string:

AdminTask.updateIdMgrLDAP

Repository (’[-interactive]’)

v Using Jython list:

AdminTask.updateIdMgrLDAP

Repository ([’-interactive’])

742 Securing applications and their environment

Table 17. (continued)

Command name: Description: Parameters and

return values:

Examples:

- certificateFilter

If

certificateMapMode

has the value

certificatefilter,

then this property

specifies the

LDAP filter which

maps attributes in

the client

certificate to

entries in LDAP.

(String, optional)

- isExtIdUnique

Specifies if the

external ID is

unique. The

default value is

true. (Boolean,

optional)

- loginProperties

Indicates the

property name

used for login.

(String , optional)

-

primaryServerQueryTimeInterval

Indicates the

polling interval for

testing the

primary server

availability. The

value of this

parameter is

specified in

minutes. The

default value is

15. (Integer,

optional)

Chapter 9. Configuring security with scripting 743

Table 17. (continued)

Command name: Description: Parameters and

return values:

Examples:

-

returnToPrimaryServer

Indicates to return

to the primary

LDAP server

when it is

available. The

default value is

true. (Boolean,

optional)

-

supportAsyncMode

Indicates if the

async mode is

supported or not.

The default value

is false.

(Boolean,

optional)

- supportSorting

Indicates if

sorting is

supported or not.

The default value

is false.

(Boolean,

optional)

- supportPaging

Indicates if

paging is

supported or not.

The default value

is false.

(Boolean,

optional)

-

supportTransaction

Indicates if

transactions are

supported or not.

The default value

is false.

(Boolean,

optional)

744 Securing applications and their environment

Table 17. (continued)

Command name: Description: Parameters and

return values:

Examples:

-

supportExternalName

Indicates if

external names

are supported or

not. The default

value is false.

(Boolean,

optional)

- sslConfiguration

The SSL

configuration.

(String, optional)

- translateRDN

Indicates to

translate RDN or

not. The default

value is false.

(Boolean,

optional)

- searchTimeLimit

The value of

search time limit.

(Integer, optional)

- searchCountLimit

The value of

search count

limit. (Integer,

optional)

- searchPageSize

The value of

search page size.

(Integer, optional)

v Returns: None

Chapter 9. Configuring security with scripting 745

Table 17. (continued)

Command name: Description: Parameters and

return values:

Examples:

updateIdMgr LDAPSearch

ResultCache

The updateIdMgr

LDAPSearch

ResultCache command

updates the LDAP

search result cache

configuration.

v Parameters:

- id

The ID of the

repository.

(String,

required)

-

cachesDiskOffLoad

Loads the

attributes

caches and the

search results

onto hard disk.

By default,

when the

number of

cache entries

reaches the

maximum size

of the cache,

cache entries

are evicted to

allow new

entries to enter

the caches. If

you enable this

parameter, the

evicted cache

entries will be

copied to disk

for future

access. The

default value is

false.

(Boolean,

optional)

- enabled

Enables the

search results

cache. The

default value is

true. (Boolean,

optional)

Batch mode example usage:

v Using Jacl:

$AdminTask updateIdMgrLDAP

SearchResultCache {-id id1}

v Using Jython string:

AdminTask.updateIdMgrLDAPSearch

ResultCache (’[-id id1]’)

v Using Jython list:

AdminTask.updateIdMgrLDAPSearch

ResultCache ([’-id’, ’id1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask updateIdMgrLDAP

SearchResultCache {-interactive}

v Using Jython string:

AdminTask.updateIdMgrLDAPSearch

ResultCache (’[-interactive]’)

v Using Jython list:

AdminTask.updateIdMgrLDAPSearch

ResultCache ([’-interactive’])

746 Securing applications and their environment

Table 17. (continued)

Command name: Description: Parameters and

return values:

Examples:

- cacheSize

The maximum

size of the search

results cache.

The number of

naming

enumeration

objects that can

be put into the

search results

cache. The

minimum value of

this parameter is

100. The default

value is 2000.

(Integer, optional)

- cacheTimeOut

The amount of

time in seconds

before the cached

entries in the

search results

cache can be not

valid. The

minimum value

for this parameter

is 0. A value of 0

means that the

cached naming

enumeration

objects will stay

in the search

results cache until

there are

configuration

changes. The

default value is

600. (Integer,

optional)

Chapter 9. Configuring security with scripting 747

Table 17. (continued)

Command name: Description: Parameters and

return values:

Examples:

-

searchResultSizeLimit

The maximum

number of entries

contained in the

naming

enumeration

object that can be

cached in the

search results

cache.For

example, if the

results from a

search contains

2000 users, the

search results will

not cache in the

search results

cache if the value

of the of this

property is set to

1000. The default

value is 1000.

(Integer, optional)

v Returns: None

748 Securing applications and their environment

Table 17. (continued)

Command name: Description: Parameters and

return values:

Examples:

updateIdMgr LDAPServer The updateIdMgr

LDAPServercommand

updates an LDAP

server configuration for

the LDAP repository ID

that you specify.

v Parameters:

- id

The ID of the

repository.

(String,

required)

- host

The host name

for the LDAP

server that

contains the

properties that

you want to

modify. (String,

required)

- port

The port

number for the

LDAP server.

(Integer,

optional)

- authentication

Indicates the

authentication

method to use.

The default

value is

simple. Valid

values include:

none or strong.

(String,

optional)

- bindDN

The binding

domain name

for the LDAP

server. (String,

optional)

- bindPassword

The binding

password. The

password is

encrypted

before it is

stored.(String,

optional)

Batch mode example usage:

v Using Jacl:

$AdminTask updateIdMgrLDAPServer

{-id id1 -host myhost.ibm.com}

v Using Jython string:

AdminTask.updateIdMgrLDAPServer

(’[-id id1 -host

myhost.ibm.com]’)

v Using Jython list:

AdminTask.updateIdMgrLDAPServer

([’-id’, ’id1’, ’-host’,

’myhost.ibm.com’])

Interactive mode example usage:

v Using Jacl:

$AdminTask updateIdMgrLDAP

Server {-interactive}

v Using Jython string:

AdminTask.updateIdMgrLDAP

Server (’[-interactive]’)

v Using Jython list:

AdminTask.updateIdMgrLDAP

Server ([’-interactive’])

Chapter 9. Configuring security with scripting 749

Table 17. (continued)

Command name: Description: Parameters and

return values:

Examples:

-

certificateMapMode

Specifies whether

to map X.509

certificates into a

LDAP directory by

exact

distinguished

name or by

certificate filter.

The default value

is exactdn. To use

the certificate

filter for the

mapping, specify

certificatefilter.

(String, optional)

- certificateFilter

If

certificateMapMode

has the value

certificatefilter,

then this property

specifies the

LDAP filter which

maps attributes in

the client

certificate to

entries in LDAP.

(String, optional)

- connectTimeout

The connection

timeout measured

in seconds. The

default value is 0.

(Integer, optional)

- connectionPool

The connection

pool. The default

value is false.

(Boolean,

optional)

750 Securing applications and their environment

Table 17. (continued)

Command name: Description: Parameters and

return values:

Examples:

- derefAliases

Controls how

aliases are

dereferenced.

The default value

is always. Valid

values include:

v never - never

deference

aliases

v finding -

deferences

aliases only

during name

resolution

v searching -

deferences

aliases only

after name

resolution

(String, optional)

- ldapServerType

The type of LDAP

server being

used. The default

value is IDS51.

(String, optional)

- primary_host

The host name

for the primary

LDAP server.

(String, optional)

- referal

The LDAP

referral. The

default value is

ignore. Valid

values include:

follow, throw, or

false. (String,

optional)

Chapter 9. Configuring security with scripting 751

Table 17. (continued)

Command name: Description: Parameters and

return values:

Examples:

- sslConfiguration

The SSL

configuration.

(String, optional)

- sslEnabled

Indicates to

enable SSL or

not. The default

value is false.

(Boolean,

optional)

v Returns: None

752 Securing applications and their environment

Table 17. (continued)

Command name: Description: Parameters and

return values:

Examples:

updateIdMgr Repository The updateIdMgr

Repositorycommand

updates the common

repository configuration.

v Parameters:

- id

The ID of the

repository.

(String,

required)

-

adapterClassName

The

implementation

class name for

the repository

adapter.

(String,

optional)

- EntityTypesNot

AllowCreate

The name of

the entity type

that should not

be created in

this repository.

(String,

optional)

-

EntityTypesNotAllowUpdate

The name of

the entity type

that should not

be updated in

this repository.

(String,

optional)

-

EntityTypesNotAllowRead

The name of

the entity type

that should not

be read from

this repository.

(String,

optional)

Batch mode example usage:

v Using Jacl:

$AdminTask updateIdMgrRe

pository {-id id1}

v Using Jython string:

AdminTask.updateIdMgrRe

pository (’[-id id1]’)

v Using Jython list:

AdminTask.updateIdMgr

Repository ([’-id’, ’id1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask updateIdMgrRe

pository {-interactive}

v Using Jython string:

AdminTask.updateIdMgrRe

pository (’[-interactive]’)

v Using Jython list:

AdminTask.updateIdMgrRe

pository ([’-interactive’])

Chapter 9. Configuring security with scripting 753

Table 17. (continued)

Command name: Description: Parameters and

return values:

Examples:

-

EntityTypesNotAllowDelete

The name of the

entity type that

should not be

deleted from this

repository. (String,

optional)

- loginProperties

(String, optional)

- readOnly

Indicates if this is

a read only

repository. The

default value is

false. (Boolean,

optional)

-

repositoriesForGroups

The repository ID

where group data

is stored. (String,

optional)

- supportPaging

Indicates if the

repository

supports paging

or not. (Boolean,

optional)

- supportSorting

Indicates if the

repository

supports sorting

or not. (Boolean,

optional)

754 Securing applications and their environment

Table 17. (continued)

Command name: Description: Parameters and

return values:

Examples:

-

supportTransaction

Indicates if the

repository

supports

transaction or not.

(Boolean,

optional)

- isExtIdUnique

Specifies if the

external ID is

unique or not.

(Boolean,

optional)

-

supportedExternalName

Indicates if the

repository

supports external

names or not.

(Boolean,

optional)

-

supportAsyncMode

Indicates if the

adapter supports

async mode or

not. The default

value is false.

(Boolean,

optional)

v Returns: None

Chapter 9. Configuring security with scripting 755

Table 17. (continued)

Command name: Description: Parameters and

return values:

Examples:

updateIdMgr Repository

BaseEntry

The updateIdMgr

Repository BaseEntry

command updates a

base entry to the

specified repository.

v Parameters:

- id

The ID of the

repository.

(String,

required)

- name

The

distinguished

name of a

base entry.

(String,

required)

-

nameInRepository

The

distinguished

name in the

repository that

uniquely

identifies the

base entry

name. (String,

optional)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask updateIdMgrReposi

toryBaseEntry {-id id1

name name1}

v Using Jython string:

AdminTask.updateIdMgrRepository

BaseEntry (’[-id id1 name

name1]’)

v Using Jython list:

AdminTask.updateIdMgrReposi

toryBaseEntry ([’-id’, ’id1’,

’name’, ’name1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask updateIdMgrReposi

toryBaseEntry {-interactive}

v Using Jython string:

AdminTask.updateIdMgrReposi

toryBaseEntry (’[-interactive]’)

v Using Jython list:

AdminTask.updateIdMgrReposi

toryBaseEntry ([’-interactive’])

Commands for the IdMgrRealmConfig group of the AdminTask object

Use the commands in the IdMgrConfig group to configure the member manager realm and realms. The

commands for this group do not require a target object. To see the additional commands related to the

member manager, see the `Commands for the IdMgrRepositoryConfig group of the AdminTask object and

the Commands for the IdMgrConfig group of the AdminTask object articles.

For more information about the AdminTask object, see the Commands for the AdminTask object article.

The following commands are available for the IdMgrRealmConfig group of the AdminTask object:

756 Securing applications and their environment

Table 18.

Command name: Description: Parameters and

return values:

Examples:

addIdMgrRealmBaseEntry The

addIdMgrRealmBaseEntry

command adds a base

entry to a specified

realm configuration.

v Parameters:

- name

The realm

name. (String,

required)

- baseEntry

The name of a

base entry.

(String,

required)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask addIdMgrRealmBaseEntry

{-name realm1 -baseEntry

entry1}

v Using Jython string:

AdminTask addIdMgrRealmBaseEntry

(’[-name realm1 -baseEntry

entry1]’)

v Using Jython list:

AdminTask addIdMgrRealmBaseEntry

([’-name’, ’realm1’, ’-base

Entry’, ’entry1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask addIdMgrRealm

BaseEntry {-interactive}

v Using Jython string:

AdminTask.addIdMgrRealmBase

Entry (’[-interactive]’)

v Using Jython list:

AdminTask.addIdMgrRealmBase

Entry ([’-interactive’])

Chapter 9. Configuring security with scripting 757

Table 18. (continued)

Command name: Description: Parameters and

return values:

Examples:

createIdMgrRealm The

createIdMgrRealm

command creates a

realm configuration.

v Parameters:

- name

The realm

name. (String,

required)

- securityUse

A string that

indicates if this

virtual realm

will be used in

security now,

later, or never.

The default

value is

active.

Additional

values

includes:

inactive and

nonSelectable.

(String,

optional)

- delimiter

The delimiter

used for this

realm. The

default value is

@. (String,

optional)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask createIdMgrRealm

{-name realm1}

v Using Jython string:

AdminTask.createIdMgrRealm

(’[-name realm1]’)

v Using Jython list:

AdminTask.createIdMgrRealm

([’-name’, ’realm1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask createIdMgrRealm {-interactive}

v Using Jython string:

AdminTask.createIdMgrRealm (’[-interactive]’)

v Using Jython list:

AdminTask.createIdMgrRealm ([’-interactive’])

deleteIdMgrRealm The

deleteIdMgrRealm

command deletes the

realm configuration that

you specified.

v Parameters:

- name

The realm

name. (String,

required)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask deleteIdMgrRealm

{-name realm1}

v Using Jython string:

AdminTask.deleteIdMgrRealm

(’[-name realm1]’)

v Using Jython list:

AdminTask.deleteIdMgrRealm

([’-name’, ’realm1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask deleteIdMgrRealm {-interactive}

v Using Jython string:

AdminTask.deleteIdMgrRealm (’[-interactive]’)

v Using Jython list:

AdminTask.deleteIdMgrRealm ([’-interactive’])

758 Securing applications and their environment

Table 18. (continued)

Command name: Description: Parameters and

return values:

Examples:

deleteIdMgr

RealmBaseEntry

The deleteIdMgr

RealmBaseEntry

command deletes a

base entry from a

realm configuration that

you specified.

The realm must always

contain at least one

base entry, thus you

cannot remove every

entry.

v Parameters:

- name

The realm

name. (String,

required)

- baseEntry

The name of a

base entry.

(String,

required)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask deleteIdMgrRealmBaseEntry

{-name realm1 -baseEntry

entry1}

v Using Jython string:

AdminTask.deleteIdMgrRealmBaseEntry

(’[-name realm1 -baseEntry

entry1]’)

v Using Jython list:

AdminTask.deleteIdMgrRealmBaseEntry

([’-name’, ’realm1’, ’-base

Entry’, ’entry1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask deleteIdMgrRealm

BaseEntry {-interactive}

v Using Jython string:

AdminTask.deleteIdMgrRealm

BaseEntry (’[-interactive]’)

v Using Jython list:

AdminTask.deleteIdMgrRealm

BaseEntry ([’-interactive’])

getIdMgrDefaultRealm The

getIdMgrDefaultRealm

command returns the

default realm name.

v Parameters: None

v Returns: The name

of the default

realm.

Batch mode example usage:

v Using Jacl:

$AdminTask getIdMgrDefaultRealm

v Using Jython string:

AdminTask.getIdMgrDefaultRealm()

v Using Jython list:

AdminTask.getIdMgrDefaultRealm()

Interactive mode example usage:

v Using Jacl:

$AdminTask getIdMgrDefault

Realm {-interactive}

v Using Jython string:

AdminTask.getIdMgrDefault

Realm (’[-interactive]’)

v Using Jython list:

AdminTask.getIdMgrDefault

Realm ([’-interactive’])

Chapter 9. Configuring security with scripting 759

Table 18. (continued)

Command name: Description: Parameters and

return values:

Examples:

getIdMgrRepositories

ForRealm

The

getIdMgrRepositories

ForRealm command

returns repository

specific details for the

repositories configured

for a specified realm.

v Parameters:

- name

The realm

name. (String,

required)

v Returns: A hash

map with the

following keys:

– id - The

repository ID.

– repositoryType -

The type of

repository, for

example, File,

LDAP, DB, and

so on.

–

 specificRepositoryType

- The specific type

of repository, for

example, for

LDAP, IDS51,

NDS, and so on.

– host - The host

name where the

repository

resides. For

example, for

File, LocalHost

or for DB,

dataSourceName.

– port - The port

number. This

only applies to

LDAP.

– name - The

name of the

base entry.

–

 nameInRepository

- The name in

repository for the

base entry.

This command will

not return the

property extension

and entry mapping

repository data.

Batch mode example usage:

v Using Jacl:

$AdminTask getIdMgrRepositories

ForRealm {-name realm1}

v Using Jython string:

AdminTask.getIdMgrRepositories

ForRealm (’[-name realm1]’)

v Using Jython list:

AdminTask.getIdMgrRepositories

ForRealm ([’-name’, ’realm1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask getIdMgrRepositories

ForRealm {-interactive}

v Using Jython string:

AdminTask.getIdMgrRepositories

ForRealm (’[-interactive]’)

v Using Jython list:

AdminTask.getIdMgrRepositories

ForRealm ([’-interactive’])

760 Securing applications and their environment

Table 18. (continued)

Command name: Description: Parameters and

return values:

Examples:

getIdMgrRealm The getIdMgrRealm

command returns the

configuration

parameters for the

realm that you

specified.

v Parameters:

- name

The realm

name. (String,

required)

v Returns: A hash

map that contains

keys as the

parameters of the

createIdMgrRealm

command.

Batch mode example usage:

v Using Jacl:

$AdminTask getIdMgrRealm {-name realm1}

v Using Jython string:

AdminTask.getIdMgrRealm (’[-name realm1]’)

v Using Jython list:

AdminTask.getIdMgrRealm ([’-name’, ’realm1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask getIdMgrRealm {-interactive}

v Using Jython string:

AdminTask.getIdMgrRealm (’[-interactive]’)

v Using Jython list:

AdminTask.getIdMgrRealm ([’-interactive’])

listIdMgrRealms The listIdMgrRealms

command returns all of

the names of the

configured realms.

v Parameters: None

v Returns: A list that

contains the name

of the configured

realms.

Batch mode example usage:

v Using Jacl:

$AdminTask listIdMgrRealms

v Using Jython string:

AdminTask.listIdMgrRealms()

v Using Jython list:

AdminTask.listIdMgrRealms()

Interactive mode example usage:

v Using Jacl:

$AdminTask listIdMgrRealms {-interactive}

v Using Jython string:

AdminTask.listIdMgrRealms (’[-interactive]’)

v Using Jython list:

AdminTask.listIdMgrRealms ([’-interactive’])

Chapter 9. Configuring security with scripting 761

Table 18. (continued)

Command name: Description: Parameters and

return values:

Examples:

listIdMgrRealm

BaseEntries

The listIdMgrRealm

BaseEntries command

returns all of the

names of the

configured realms.

v Parameters:

- name

The realm

name. (String,

required)

v Returns: A list of all

the base entries of

the specified realm.

Batch mode example usage:

v Using Jacl:

$AdminTask listIdMgrRealmBase

Entries {-name realm1}

v Using Jython string:

AdminTask.listIdMgrRealmBase

Entries (’[-name realm1]’)

v Using Jython list:

AdminTask.listIdMgrRealmBase

Entries ([’-name’, ’realm1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask listIdMgrRealmBase

Entries {-interactive}

v Using Jython string:

AdminTask.listIdMgrRealmBase

Entries (’[-interactive]’)

v Using Jython list:

AdminTask.listIdMgrRealmBase

Entries ([’-interactive’])

renameIdMgrRealm The

renameIdMgrRealm

command renames the

name of the realm that

you specified.

v Parameters:

- name

The realm

name. (String,

required)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask renameIdMgrRealm

{-name realm1}

v Using Jython string:

AdminTask.renameIdMgrRealm

(’[-name realm1]’)

v Using Jython list:

AdminTask.renameIdMgrRealm

([’-name’, ’realm1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask renameIdMgrRealm

{-interactive}

v Using Jython string:

AdminTask.renameIdMgrRealm

(’[-interactive]’)

v Using Jython list:

AdminTask.renameIdMgrRealm

([’-interactive’])

762 Securing applications and their environment

Table 18. (continued)

Command name: Description: Parameters and

return values:

Examples:

setIdMgrDefaultRealm The

setIdMgrDefaultRealm

command sets up the

default realm

configuration.

v Parameters:

- name

The name of

the realm that

is used as a

default realm

when the caller

does not

specify any in

context.

(String,

required)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask setIdMgrDefaultRealm

{-name realm1}

v Using Jython string:

AdminTask.setIdMgrDefaultRealm

(’[-name realm1]’)

v Using Jython list:

AdminTask.setIdMgrDefaultRealm

([’-name’, ’realm1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask setIdMgrDefault

Realm {-interactive}

v Using Jython string:

AdminTask.setIdMgrDefault

Realm (’[-interactive]’)

v Using Jython list:

AdminTask.setIdMgrDefault

Realm ([’-interactive’])

Chapter 9. Configuring security with scripting 763

Table 18. (continued)

Command name: Description: Parameters and

return values:

Examples:

updateIdMgrRealm The

updateIdMgrRealm

command updates the

configuration for a

realm that you specify.

v Parameters:

- name

The realm

name. (String,

required)

- securityUse

A string that

indicates if this

realm will be

used in

security now,

later, or never.

The default

value is

active.

Additional

values

includes:

inactive and

nonSelectable.

(String,

optional)

- delimiter

The delimiter

used for this

realm. The

default value is

@. (String,

optional)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask updateIdMgrRealm

{-name realm1}

v Using Jython string:

AdminTask.updateIdMgrRealm

(’[-name realm1]’)

v Using Jython list:

AdminTask.updateIdMgrRealm

([’-name’, ’realm1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask updateIdMgrRealm

{-interactive}

v Using Jython string:

AdminTask.updateIdMgrRealm

(’[-interactive]’)

v Using Jython list:

AdminTask.updateIdMgrRealm

([’-interactive’])

Commands for the WIMManagementCommands group of the

AdminTask object

Use the commands in the WIMManagementCommands group to configure the virtual member manager.

The commands for this group do not require a target object. For more information about the AdminTask

object, see the Commands for the AdminTask object article.

The following commands are available for the WIMManagementCommands group of the AdminTask object:

764 Securing applications and their environment

Table 19.

Command name: Description: Parameters and return

values:

Examples:

addMemberToGroup The

addMemberToGroup

command adds a user

or a group to a group.

v Parameters:

- memberUniqueName

Specifies the

unique name value

for the user or

group that you want

to add to the

specified group.

This parameter

maps to the

uniqueName

property in the

virtual member

manager. (String,

required)

- groupUniqueName

Specifies the

unique name value

for the group to

which you want to

add the user or

group that you

specified in the

memberUniqueName

parameter. This

parameter maps to

the uniqueName

property in virtual

member manager.

(String, required)

v Returns: Void if the

command is successful.

Returns an exception if

the command fails.

Batch mode example usage:

v Using Jacl:

$AdminTask addMemberToGroup

{-memberUniqueName uid=

meyersd,cn=users,dc=yourco,

dc=com -groupUniqueName

cn=admins,cn=groups,

dc=yourco,dc=com}

v Using Jython string:

AdminTask.addMemberToGroup

(’[-memberUniqueName

uid=meyersd,cn=users,

dc=yourco,dc=com -group

UniqueName cn=admins,

cn=groups,dc=yourco,

dc=com]’)

v Using Jython list:

AdminTask.addMemberToGroup

([’-memberUniqueName’,

’uid=meyersd,cn=users,dc=

yourco,dc=com’, ’-group

UniqueName’, ’cn=admins,

cn=groups,dc=yourco,dc=com’])

Interactive mode example usage:

v Using Jacl:

$AdminTask addMemberToGroup

{-interactive}

v Using Jython string:

AdminTask.addMemberToGroup

(’[-interactive]’)

v Using Jython list:

AdminTask.addMemberToGroup

([’-interactive’])

Chapter 9. Configuring security with scripting 765

Table 19. (continued)

Command name: Description: Parameters and return

values:

Examples:

createGroup The createGroup

command creates a new

group in the virtual

member manager. After

the command

completes, the new

group will appear in the

repository. For LDAP, a

group must contain a

member. The

memberUniqueName

parameter is optional in

this case. If you set the

memberUniqueName

parameter to the unique

name of a group or a

user, the group or user

will be added as a

member of the group.

v Parameters:

- cn

Specifies the

common name for

the group that you

want to create. This

parameter maps to

the cn property in

virtual member

manager. (String,

required)

- description

Specifies additional

information about

the group that you

want to create. This

parameter maps to

the description

property in a virtual

member manager

object. (String,

optional)

- parent

Specifies the

repository in which

you want to create

the group. This

parameter maps to

the parent property

in the virtual

member manager.

(String, optional)

- memberUniqueName

Specifies the

unique name value

for the user or

group that you want

to add to the new

group. This

parameter maps to

the uniqueName

property in the

virtual member

manager. (String,

optional)

v Returns: The unique

name of the group that

you created.

Batch mode example usage:

v Using Jacl:

$AdminTask createGroup

{-cn groupA -description

a group of admins}

v Using Jython string:

AdminTask.createGroup

(’[-cn groupA -description

a group of admins]’)

v Using Jython list:

AdminTask.createGroup

([’-cn’, ’groupA’,

’-description’, ’a group

of admins’])

Interactive mode example usage:

v Using Jacl:

$AdminTask createGroup

{-interactive}

v Using Jython string:

AdminTask.createGroup

(’[-interactive]’)

v Using Jython list:

AdminTask.createGroup

([’-interactive’])

766 Securing applications and their environment

Table 19. (continued)

Command name: Description: Parameters and return

values:

Examples:

createUser The createUser

command creates a new

user in the default

repository or a repository

that the parent

command parameter

specifies. This command

creates a person entity

and a login account

entity in the virtual

member manager.

v Parameters:

- uid

Specifies the

unique ID for the

user that you want

to create. Virtual

member manager

then creates a

uniqueId value and

a uniqueName

value for the user.

This parameter

maps to the uid

property in the

virutal member

manager. (String,

required)

- password

Specifies the

password for the

user. This

parameter maps to

the password

property in the

virtual member

manager. (String,

required)

- confirmPassword

Specifies the

password again to

validate how it was

entered for the

password

parameter. This

parameter maps to

the password

property in virtual

member manager.

(String, optional)

- cn

Specifes the first

name or given

name of the user.

This parameter

maps to the cn

property in virutal

member manager.

(String, optional)

Batch mode example usage:

v Using Jacl:

$AdminTask createUser {-uid

123 -password tempPass

-confirmPassword tempPass

-cn Jane -surname Doe

-ibm-primaryEmail janedoe@

acme.com}

v Using Jython string:

AdminTask.createUser (’[-uid

123 -password tempPass

-confirmPassword tempPass

-cn Jane -surname Doe

-ibm-primaryEmail janedoe@

acme.com]’)

v Using Jython list:

AdminTask.createUser ([’-uid’,

’123’, ’-password’,

’tempPass’, ’-confirmPassword’,

’tempPass’, ’-cn’, ’Jane’,

’-surname’, ’Doe’, ’-ibm-

primaryEmail’, ’janedoe@

acme.com’])

Interactive mode example usage:

v Using Jacl:

$AdminTask createUser

{-interactive}

v Using Jython string:

AdminTask.createUser

(’[-interactive]’)

v Using Jython list:

AdminTask.createUser

([’-interactive’])

Chapter 9. Configuring security with scripting 767

Table 19. (continued)

Command name: Description: Parameters and return

values:

Examples:

- surname

Specifies the last

name or family name

of the user. This

parameter maps to

the sn property in

virtual member

manager. (String,

optional)

- ibm-primaryEmail

Specifies the e-mail

address of the user.

This parameter maps

to the

ibm-PrimaryEmail

property in the virtual

member manager.

(String, optional)

- parent

Specifies the

repository in which

you want to create the

user. This parameter

maps to the parent

property in the virtual

member manager.

(String, optional)

v Returns: The unique

name of the user that

you created.

768 Securing applications and their environment

Table 19. (continued)

Command name: Description: Parameters and return

values:

Examples:

deleteGroup The deleteGroup

command deletes a

group in the virtual

member manager. You

cannot use this

command to delete

descendants. When this

command completes,

the group will be deleted

from the repository.

v Parameters:

- uniqueName

Specifies the

unique name value

for the group that

you want to delete.

This parameter

maps to the

uniqueName

property in virtual

member manager.

(String, required)

v Returns: Void if the

command is successful.

Returns an error if the

command fails.

Batch mode example usage:

v Using Jacl:

$AdminTask deleteGroup

{-uniqueName cn=opera

tors,cn=users,dc=yourco,

dc=com}

v Using Jython string:

AdminTask.deleteGroup

(’[-uniqueName cn=ope

rators,cn=users,dc=you

rco,dc=com]’)

v Using Jython list:

AdminTask.deleteGroup

([’-uniqueName’, ’cn

=operators,cn=users,dc

=yourco,dc=com’])

Interactive mode example usage:

v Using Jacl:

$AdminTask deleteGroup

{-interactive}

v Using Jython string:

AdminTask.deleteGroup

(’[-interactive]’)

v Using Jython list:

AdminTask.deleteGroup

([’-interactive’])

Chapter 9. Configuring security with scripting 769

Table 19. (continued)

Command name: Description: Parameters and return

values:

Examples:

deleteUser The deleteUser

command deletes a user

from the virtual member

manager. This includes

a person object and an

account object in the

non-merged repositories.

v Parameters:

- uniqueName

Specifies the

unique name value

for the user that

you want to delete.

This parameter

maps to the

uniqueName

property in virtual

member manager.

(String, required)

v Returns: Void if the

command is successful

and an exception if the

command fails.

Batch mode example usage:

v Using Jacl:

$AdminTask deleteUser

{-uniqueName uid=dmey

ers,cn=users,dc=yourco,

dc=com}

v Using Jython string:

AdminTask.deleteUser

(’[-uniqueName uid=

dmeyers,cn=users,dc=

yourco,dc=com]’)

v Using Jython list:

AdminTask.deleteUser ([’

-uniqueName’, ’uid=dm

eyers,cn=users,dc=yourco,

dc=com’])

Interactive mode example usage:

v Using Jacl:

$AdminTask deleteUser

{-interactive}

v Using Jython string:

AdminTask.deleteUser

(’[-interactive]’)

v Using Jython list:

AdminTask.deleteUser

([’-interactive’])

770 Securing applications and their environment

Table 19. (continued)

Command name: Description: Parameters and return

values:

Examples:

duplicate Membership

OfGroup

Use the duplicate

Membership OfGroup

command to make a one

group a member of all of

the same groups as

another group. For

example, group A is in

group B and group C. To

add group D to the

same groups as group

A, use the duplicate

Membership OfGroup

command.

v Parameters:

- copyToName

Specifies the name

of the group to

which you want to

add the

memberships of the

group specified in

the copyFromName

parameter. (String,

required)

- copyFromName

Specifies the name

of the group from

which you want to

copy the group

memberships for

another group to

use. (String,

required)

v Returns: Void if the

command is successful.

Returns an exception if

the command fails.

Batch mode example usage:

v Using Jacl:

$AdminTask duplicateMember

shipOfGroup {-copyToName

cn=operators,cn=groups,

dc=yourco,dc=com -copy

FromName cn=admins,cn=

groups,dc=yourco,dc=com}

v Using Jython string:

AdminTask.duplicateMembers

hipOfGroup (’[-copyToName

cn=operators,cn=groups,

dc=yourco,dc=com -copy

FromName cn=admins,cn=gr

oups,dc=yourco,dc=com]’)

v Using Jython list:

AdminTask.duplicateMember

shipOfGroup ([’-copyToName’,

’cn=operators,cn=groups,

dc=yourco,dc=com’, ’-copy

FromName’, ’cn=admins,cn

=groups,dc=yourco,dc=com’])

Interactive mode example usage:

v Using Jacl:

$AdminTask duplicateMember

shipOfGroup {-interactive}

v Using Jython string:

AdminTask.duplicateMember

shipOfGroup (’[-interactive]’)

v Using Jython list:

AdminTask.duplicateMember

shipOfGroup ([’-interactive’])

Chapter 9. Configuring security with scripting 771

Table 19. (continued)

Command name: Description: Parameters and return

values:

Examples:

duplicate Membership

OfUser

Use the duplicate

Membership OfUser

command to make a one

user a member of all of

the same groups as

another user. For

example, user 1 is in

group B and group C. To

add user 2 to the same

groups as user 1, use

the duplicate

Membership OfUser

command.

v Parameters:

- copyToName

Specifies the name

of the user to which

you want to add the

memberships of the

user specified in

the copyFromName

parameter. (String,

required)

- copyFromName

Specifies the name

of the user from

which you want to

copy the group

memberships for

another user to

use. (String,

required)

v Returns: Void if the

command is successful.

Returns an exception if

the command fails.

Batch mode example usage:

v Using Jacl:

$AdminTask duplicateMember

shipOfUser {-copyToName

uid=meyersd,cn=users,dc

=yourco,dc=com -copy

FromName uid=jhart,cn=

users,dc=yourco,dc=com}

v Using Jython string:

AdminTask.duplicateMember

shipOfUser (’[-copyToName

uid=meyersd,cn=users,d

c=yourco,dc=com -copy

FromName uid=jhart,cn

=users,dc=yourco,dc=com]’)

v Using Jython list:

AdminTask.duplicateMember

shipOfUser ([’-copyToName’,

’uid=meyersd,cn=users,

dc=yourco,dc=com’,

’-copyFromName’, ’uid=

jhart,cn=users,dc=yourco,

dc=com’])

Interactive mode example usage:

v Using Jacl:

$AdminTask duplicateMember

shipOfUser {-interactive}

v Using Jython string:

AdminTask.duplicateMember

shipOfUser (’[-interactive]’)

v Using Jython list:

AdminTask.duplicateMember

shipOfUser ([’-interactive’])

772 Securing applications and their environment

Table 19. (continued)

Command name: Description: Parameters and return

values:

Examples:

getGroup The getGroup

command retrieves the

common name and

description of a group.

v Parameters:

- uniqueName

Specifies the

unique name value

for the group that

you want to view.

This parameter

maps to the

uniqueName

property in virtual

member manager.

(String, required)

v Returns: A map of

common name and

description properties.

Batch mode example usage:

v Using Jacl:

$AdminTask getGroup

{-uniqueName cn=operators,

cn=groups,dc=yourco,dc=com}

v Using Jython string:

AdminTask.getGroup (’[

-uniqueName cn=operators,

cn=groups,dc=yourco,

dc=com]’)

v Using Jython list:

AdminTask.getGroup ([’

-uniqueName’, ’cn=opera

tors,cn=groups,dc=your

co,dc=com’])

Interactive mode example usage:

v Using Jacl:

$AdminTask getGroup

{-interactive}

v Using Jython string:

AdminTask.getGroup

(’[-interactive]’)

v Using Jython list:

AdminTask.getGroup

([’-interactive’])

Chapter 9. Configuring security with scripting 773

Table 19. (continued)

Command name: Description: Parameters and return

values:

Examples:

getMembership OfGroup The getMembership

OfGroup command

retrieves the groups of

which a group is a

member.

v Parameters:

- uniqueName

Specifies the

unique name value

for the group whose

group memberships

you want to view.

This parameter

maps to the

uniqueName

property in virtual

member manager.

(String, required)

v Returns: A list of unique

names of each of the

groups of which the

group is a member.

Batch mode example usage:

v Using Jacl:

$AdminTask getMebmership

OfGroup {-uniqueName

uid=dmeyers,cn=users,

dc=yourco,dc=com}

v Using Jython string:

AdminTask.getMebmership

OfGroup (’[-uniqueName

uid=dmeyers,cn=users,

dc=yourco,dc=com]’)

v Using Jython list:

AdminTask.getMebmership

OfGroup ([’-uniqueName’,

’uid=dmeyers,cn=users,

dc=yourco,dc=com’])

Interactive mode example usage:

v Using Jacl:

$AdminTask getMembership

OfGroup {-interactive}

v Using Jython string:

AdminTask.getMembership

OfGroup (’[-interactive]’)

v Using Jython list:

AdminTask.getMembership

OfGroup ([’-interactive’])

774 Securing applications and their environment

Table 19. (continued)

Command name: Description: Parameters and return

values:

Examples:

getMem bership OfUser The getMem bership

OfUser command

retrieves the groups of

which a user is a

member.

v Parameters:

- uniqueName

Specifies the

unique name value

for the user whose

group memberships

you want to view.

This parameter

maps to the

uniqueName

property in virtual

member manager.

(String, required)

v Returns: A list of unique

names for each group

of which the user is a

member.

Batch mode example usage:

v Using Jacl:

$AdminTask getMebmer

shipOfUser {-uniqueName

uid=dmeyers,cn=users,

dc=yourco,dc=com}

v Using Jython string:

AdminTask.getMebmership

OfUser (’[-uniqueName

uid=dmeyers,cn=users,

dc=yourco,dc=com]’)

v Using Jython list:

AdminTask.getMebmership

OfUser ([’-uniqueName’,

’uid=dmeyers,cn=users

,dc=yourco,dc=com’])

Interactive mode example usage:

v Using Jacl:

$AdminTask getMembership

OfUser {-interactive}

v Using Jython string:

AdminTask.getMembership

OfUser (’[-interactive]’)

v Using Jython list:

AdminTask.getMembership

OfUser ([’-interactive’])

Chapter 9. Configuring security with scripting 775

Table 19. (continued)

Command name: Description: Parameters and return

values:

Examples:

getMembers OfGroup The getMembers

OfGroup command

retrieves the members of

a group.

v Parameters:

- uniqueName

Specifies the

unique name value

for the group whose

members you want

to view. This

parameter maps to

the uniqueName

property in virtual

member manager.

(String, required)

v Returns: The unique

name of each of the

members of the group

and the type of each

member.

Batch mode example usage:

v Using Jacl:

$AdminTask getMembersOf

Group {-uniqueName

cn=operators,cn=groups

,dc=yourco,dc=com}

v Using Jython string:

AdminTask.getMembersOf

Group [’(-uniqueName

cn=operators,cn=groups

,dc=yourco,dc=com]’)

v Using Jython list:

AdminTask.getMembersOf

Group [(’-uniqueName’,

’cn=operators,cn=groups

,dc=yourco,dc=com’])

Interactive mode example usage:

v Using Jacl:

$AdminTask getMembersOfGroup

{-interactive}

v Using Jython string:

AdminTask.getMembersOfGroup

(’[-interactive]’)

v Using Jython list:

AdminTask.getMembersOfGroup

([’-interactive’])

776 Securing applications and their environment

Table 19. (continued)

Command name: Description: Parameters and return

values:

Examples:

getUser The getUser command

retrieves information

about a user in the

virtual member manager.

v Parameters:

- uniqueName

Specifies the

unique name value

for the user that

you want to view.

This parameter

maps to the

uniqueName

property in the

virtual member

manager. (String,

required)

v Returns: A map that

contains the following

properties: uniqueName,

cn, sn, uid, and

ibm-primaryEmail.

These attributes are

fixed and you cannot

change them.

Batch mode example usage:

v Using Jacl:

$AdminTask getUser {-user

Name uid=dmeyers,cn=us

ers,dc=yourco,dc=com}

v Using Jython string:

AdminTask.getUser (’[-use

rName uid=dmeyers,cn=

users,dc=yourco,dc=com]’)

v Using Jython list:

AdminTask.getUser ([’-use

rName’, ’uid=dmeyers,c

n=users,dc=yourco,dc=com’])

Interactive mode example usage:

v Using Jacl:

$AdminTask getUser

{-interactive}

v Using Jython string:

AdminTask.getUser

(’[-interactive]’)

v Using Jython list:

AdminTask.getUser

([’-interactive’])

Chapter 9. Configuring security with scripting 777

Table 19. (continued)

Command name: Description: Parameters and return

values:

Examples:

removeMember

FromGroup

The removeMember

FromGroup command

removes a user or a

group from a group.

v Parameters:

- memberUniqueName

Specifies the

unique name value

for the user or

group that you want

to remove from the

specified group.

This parameter

maps to the

uniqueName

property in virtual

member manager.

(String, required)

- groupUniqueName

Specifies the

unique name value

for the group from

which you want to

remove the user or

group that you

specified with the

memberUniqueName

paramter. This

parameter maps to

the uniqueName

property in virtual

member manager.

(String, required)

v Returns: Void if the

command is successful.

Returns an exception if

the command fails.

Batch mode example usage:

v Using Jacl:

$AdminTask removeMember

FromGroup {-memberUnique

Name uid=meyersd,cn=

users,dc=yourco,dc=com

-groupUniqueName cn=

admins,cn-groups,dc=

yourco,dc=com}

v Using Jython string:

AdminTask.removeMemberF

romGroup (’[-memberUnique

Name uid=meyersd,cn=

users,dc=yourco,dc=com

-groupUniqueName cn=a

dmins,cn-groups,dc=your

co,dc=com]’)

v Using Jython list:

AdminTask.removeMemberFrom

Group ([’-memberUniqueName’,

’uid=meyersd,cn=users,

dc=yourco,dc=com’,

’-groupUniqueName’,

’cn=admins,cn-groups,dc=

yourco,dc=com’])

Interactive mode example usage:

v Using Jacl:

$AdminTask removeMember

FromGroup {-interactive}

v Using Jython string:

AdminTask.removeMemberFr

omGroup (’[-interactive]’)

v Using Jython list:

AdminTask.removeMemberFr

omGroup ([’-interactive’])

778 Securing applications and their environment

Table 19. (continued)

Command name: Description: Parameters and return

values:

Examples:

searchGroups Use the searchGroups

command to find groups

in the virtual member

manager that match

criteria that you provide.

For example, you can

use the searchGroups

command to find all of

the groups with a

common name that

begins with IBM. You can

search for any virtual

member manager

property because the

command is generic.

v Parameters:

- cn

The first name or

given name of the

user. This

parameter maps to

the cn property in

the virtual member

manager. You must

set this parameter

or the description

parameter, but not

both. (String,

optional)

- description

Specifies

information about

the group. This

parameter maps to

the description

entity in a virtual

member manager

object. You must

set this parameter

or the cn

parameter, but not

both. (String,

optional)

- timeLimit

Specifies the

maximum amount

of time in

milliseconds that

the search can run.

The default value is

no time limit.

(String, optional)

- countLimit

Specifies the

maximum number

of results that you

want returned from

the search. By

default, all groups

found in the search

are returned.

(String, optional)

v Returns: A list of unique

names of all of the

groups that match the

search criteria that you

provided.

Batch mode example usage:

v Using Jacl:

$AdminTask searchGroups

{cn *IBM*}

v Using Jython string:

AdminTask.searchGroups

(’[cn *IBM*]’)

v Using Jython list:

AdminTask.searchGroups

([’cn’, ’*IBM*’])

Interactive mode example usage:

v Using Jacl:

$AdminTask searchGroups

{-interactive}

v Using Jython string:

AdminTask.searchGroups

(’[-interactive]’)

v Using Jython list:

AdminTask.searchGroups

([’-interactive’])

Chapter 9. Configuring security with scripting 779

Table 19. (continued)

Command name: Description: Parameters and return

values:

Examples:

searchUsers Use the searchUsers

command to find users

in the virtual member

manager that match

criteria that you provide.

For example, you can

use the searchUsers

command to find all of

the telephone numbers

that contain 919. You

can search for any

virtual member manager

property because the

command is generic.

v Parameters:

- principalName

Specifies the

principal name oft

he user that is used

as the logon ID for

the user in the

system. This

parameter maps to

the principalName

property in virtual

member manager.

You must specify

only one of the

following

parameters:

principalName, uid,

cn, sn, or

ibm-primaryEmail.

(String, optional)

- uid

Specifies the

unique ID value for

the user for whom

you want to search.

This parameter

maps to the uid

property in virtual

member manage.

You must specify

only one of the

following

parameters:

principalName, uid,

cn, sn, or

ibm-primaryEmail.

(String, optional)

- cn

Specifies the first

name or given

name of the user.

This parameter

maps to the cn

property in virtual

member manager.

You must specify

only one of the

following

parameters:

principalName, uid,

cn, sn, or

ibm-primaryEmail.

(String, optional)

Batch mode example usage:

v Using Jacl:

$AdminTask searchUsers

{-principalName */IBM/US*}

v Using Jython string:

AdminTask.searchUsers (’

[-principalName */IBM/US*]’)

v Using Jython list:

AdminTask.searchUsers

([’-principalName’,

’*/IBM/US*’])

Interactive mode example usage:

v Using Jacl:

$AdminTask searchUsers

{-interactive}

v Using Jython string:

AdminTask.searchUsers

(’[-interactive]’)

v Using Jython list:

AdminTask.searchUsers

([’-interactive’])

780 Securing applications and their environment

Table 19. (continued)

Command name: Description: Parameters and return

values:

Examples:

- sn

Specifies the last

name or family name

of the user. This

parameter maps to

the sn property in

virtual member

manager. You must

specify only one of the

following parameters:

principalName, uid,

cn, sn, or

ibm-primaryEmail.

(String, optional)

- ibm-primaryEmail

Specifies the email

address of the user.

This parameter maps

to the

ibm-PrimaryEmail

property in the virtual

member manager. You

must specify only one

of the following

parameters:

principalName, uid,

cn, sn, or

ibm-primaryEmail.

(String, optional)

- timeLimit

Specifies the

maximum amount of

time in milliseconds

that the search can

run. The default is not

time limit. (String,

optional)

- countLimit

Specifies the

maximum number of

results that you want

returned from the

search. By default, all

users found int he

search are returned.

(String, optional)

v Returns: A list of unique

names of all of the

users that match the

search criteria that you

provided.

Chapter 9. Configuring security with scripting 781

Table 19. (continued)

Command name: Description: Parameters and return

values:

Examples:

updateGroup The updateGroup

command updates the

common name or the

description of a group.

v Parameters:

- uniqueName

Specifies the

unique name value

for the group for

which you want to

modify the

properties. This

parameter maps to

the uniqueName

property in virtual

member manager.

(String, required)

- cn

Specifies the new

common name

used for the group.

This parameter

maps to the cn

property in virtual

member manager.

(String, optional)

- description

Specifies the new

information about

the group. This

parameter maps to

the description

entity in a virtual

member manager

object. (String,

optional)

v Returns: Void if the

command is successful.

Returns an exception if

the command fails.

Batch mode example usage:

v Using Jacl:

$AdminTask updateGroup

{-uniqueName cn=opera

tors,cn=groups,dc=yourco

,dc=com -cn groupA}

v Using Jython string:

AdminTask.updateGroup

(’[-uniqueName cn=oper

ators,cn=groups,dc=your

co,dc=com -cn groupA]’)

v Using Jython list:

AdminTask.updateGroup ([’

-uniqueName’, ’cn=oper

ators,cn=groups,dc=yourco,

dc=com’, ’-cn’,

’groupA’])

Interactive mode example usage:

v Using Jacl:

$AdminTask updateGroup

{-interactive}

v Using Jython string:

AdminTask.updateGroup

(’[-interactive]’)

v Using Jython list:

AdminTask.updateGroup

([’-interactive’])

782 Securing applications and their environment

Table 19. (continued)

Command name: Description: Parameters and return

values:

Examples:

updateUser The updateUser

command updates the

following properties:

uniqueName, uid,

password, cn, sn, or

ibm-primaryEmail.

v Parameters:

- uniqueName

Specifies the

unique name value

for the user for

which you want to

modify the

properties. This

parameter maps to

the uniqueName

property in virtual

member manager.

(String, required)

- uid

Specifies the new

unique ID value for

the user. This

parameter maps to

the uid property in

virtual member

manager. (String,

optional)

- password

Specifies the new

password for the

user. This

parameter maps to

the password

property in virtual

member manager.

(String, optional)

- confirmPassword

Specifies the

password again to

validate how it was

entered on the

password

parameter. This

parameter maps to

the password

property in virtual

member manager.

(String, optional)

- cn

Specifies the new

first name or given

name of the user.

This parameter

maps to the cn

property in virtual

member manager.

(String, optional)

Batch mode example usage:

v Using Jacl:

$AdminTask updateUser

{-uniqueName uid=dmey

ers,cn=users,dc=yourco,

dc=com -uid 123}

v Using Jython string:

AdminTask.updateUser

(’[-uniqueName uid=

dmeyers,cn=users,dc=

yourco,dc=com -uid

123]’)

v Using Jython list:

AdminTask.updateUser

([’-uniqueName’, ’uid

=dmeyers,cn=users,dc=

yourco,dc=com’, ’-uid’,

’123’])

Interactive mode example usage:

v Using Jacl:

$AdminTask updateUser

{-interactive}

v Using Jython string:

AdminTask.updateUser

(’[-interactive]’)

v Using Jython list:

AdminTask.updateUser

([’-interactive’])

Chapter 9. Configuring security with scripting 783

Table 19. (continued)

Command name: Description: Parameters and return

values:

Examples:

- surname

Specifies the new last

name or family name

of the user. This

parameter maps to

the sn property in

virtual member

manager. (String,

optional)

- ibm-primaryEmail

Specifies the new

e-mail address of the

user. This parameter

maps to the mail

property in virtual

member manager.

(String, optional)

v Returns: Void if the

command is successful.

Returns an exception if

the command fails.

Commands for the KeyStoreCommands group of the AdminTask object

Use the commands in the KeyStoreCommands group to create or delete key stores. The commands for

this group do not require a target object. For more information about the AdminTask object, see the

Commands for the AdminTask object article.

The following commands are available for the KeyStoreCommands group of the AdminTask object:

784 Securing applications and their environment

Table 20.

Command name: Description: Parameters and return

values:

Examples:

changeKey Store

Password

The changeKey Store

Password command

changes the password

on the key store.

v Parameters:

- keyStoreName

The name that

uniquely identifies

the key store

configuration object.

(String, required)

- keyStoreScope

The scope name of

the key store.

(String, optional)

- keyStorePassword

The password that

protects the key

store that you want

to change. (String,

required)

-

newkeyStorePassword

The new password

that protects the

key store. (String,

required)

-

newkeyStorePassword

Verify

The new password

that protects the

key store. (String,

required)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask changeKeyStore

Password {-keyStoreName testKS

–keyStorePassword testpwd

–newKeyStorePassword keyPWD

–newKeyStorePasswordVerify

keyPWD}

v Using Jython string:

AdminTask.changeKeyStore

Password (’[-keyStoreName

testKS –keyStorePassword

testpwd –newKeyStorePassword

keyPWD –newKeyStorePassword

Verify keyPWD]’)

v Using Jython list:

AdminTask.changeKeyStore

Password ([’-keyStoreName’,

’testKS’, ’–keyStorePassword’,

’testpwd’, ’–newKeyStore

Password’, ’keyPWD’, ’–new

KeyStorePasswordVerify’,

’keyPWD’])

Interactive mode example usage:

v Using Jacl:

$AdminTask changeKeyStore

Password {-interactive}

v Using Jython string:

AdminTask.changeKeyStore

Password (’[-interactive]’)

v Using Jython list:

AdminTask.changeKeyStore

Password ([’-interactive’])

Chapter 9. Configuring security with scripting 785

Table 20. (continued)

Command name: Description: Parameters and return

values:

Examples:

change Multiple

KeyStore Passwords

The change Multiple

KeyStore Passwords

command updates all of

the key stores in the

configuration that have a

give password and

changed them to a new

password. This is useful

because when you

create key store files on

the system, they will

have WebAS as a

password by default.

v Parameters:

- keyStorePassword

Specifies the name

of the password

that you want to

change. (String,

required)

-

newKeyStorePassword

Specifies the new

password that you

will use to access

the key store.

(String, required)

-

newKeyStorePassword

Verify

Confirms the new

key store password.

(String, required)

v Returns: A list of key

store aliases that where

changed

Batch mode example usage:

v Using Jacl:

$AdminTask changeMultiple

KeyStorePasswords {-key

StorePassword WebAS -new

KeyStorePassword newpwd

-newKeyStorePassword

Verify newpwd}

v Using Jython string:

AdminTask.changeMultiple

KeyStorePasswords (’[-key

StorePassword WebAS -new

KeyStorePassword newpwd

-newKeyStorePasswordVerify

newpwd]’)

v Using Jython list:

AdminTask.changeMultiple

KeyStorePasswords ([’-key

StorePassword’, ’WebAS’,

’-newKeyStorePassword’,

’newpwd’, ’-newKeyStore

PasswordVerify’, ’newpwd’])

Interactive mode example usage:

v Using Jacl:

$AdminTask changeMul

tipleKeyStorePasswords

{-interactive}

v Using Jython string:

AdminTask.changeMulti

pleKeyStorePasswords

(’[-interactive]’)

v Using Jython list:

AdminTask.changeMulti

pleKeyStorePasswords

([’-interactive’])

786 Securing applications and their environment

Table 20. (continued)

Command name: Description: Parameters and return

values:

Examples:

createKeyStore The createKeyStore

command creates the

key store settings in the

configuration and the

key store database.

v Parameters:

- keyStoreName

The name that

uniquely identifies

the key store

configuration object.

(String, required)

- keyStoreType

The implementation

of the key store

management.

(String, required)

- keyStoreLocation

The location of the

key store. For file

based, the location

is the files system

path to the key

store database. For

hardware key store,

the location is the

path to the token

library. (String,

required)

- keyStorePassword

The password that

protects the key

store. (String,

required)

-

keyStorePasswordVerify

The password that

protects the key

store. (String,

required)

- keyStoreProvider

The provider used

to implement the

key store. (String,

optional)

- isKeyStoreFileBased

Set the value of this

parameter to true if

the key store is file

based. Set the

value of this

parameter to false

for hardware crypto

key stores.

(Boolean, optional)

Batch mode example usage:

v Using Jacl:

$AdminTask createKeyStore

{-keyStoreName testKS

–location c:\temp\test

KeyFile.p12 keyStorePass

word testpwd –keyStore

PasswordVerify testpwd

–isKeyStoreFileBased true

–keyStoreInitAtStartup

true –keyStoreReadOnly false}

v Using Jython string:

AdminTask.createKeyStore

(’[-keyStoreName testKS

–location c:\temp\testKey

File.p12 keyStorePassword

testpwd –keyStorePass

wordVerify testpwd –isKey

StoreFileBased true –key

StoreInitAtStartup true

–keyStoreReadOnly false]’)

v Using Jython list:

AdminTask.createKeyStore

([’-keyStoreName’, ’testKS’,

’–location’, ’c:\temp\test

KeyFile.p12’, ’keyStorePass

word’, ’testpwd’, ’–keySto

rePasswordVerify’, ’testpwd’,

’–isKeyStoreFileBased’,

’true’, ’–keyStoreInitAt

Startup’, ’true’, ’–key

StoreReadOnly’, ’false’])

Interactive mode example usage:

v Using Jacl:

$AdminTask createKey

Store {-interactive}

v Using Jython string:

AdminTask.createKeySt

ore (’[-interactive]’)

v Using Jython list:

AdminTask.createKeyS

tore ([’-interactive’])

Chapter 9. Configuring security with scripting 787

Table 20. (continued)

Command name: Description: Parameters and return

values:

Examples:

- keyStoreHostList

A list of host names

that indicate from

where the key store is

remotely managed,

separated by

commas. (String,

optional)

- keyStoreInitAtStartup

Set the value of this

parameter to true if

the key store is

initialized at startup.

Otherwise, set the

value of this

parameter to false.

(Boolean, optional)

- keyStoreReadOnly

Set the value of this

parameter to true if

you cannot write to

the key store.

Otherwise, set the

value of this

parameter to false.

(Boolean, optional)

- keyStoreStashFile

Set the value of this

parameter to true if

you want to create

stash files for CMS

type key store.

Otherwise, set the

value of this

parameter to false.

(Boolean, optional)

- scopeName

The name of the

scope. (String,

optional)

-

enableCryptoOperations

Specifies if the key

store object will be

used for hardware

cryptographic

operations or not. The

default value is false.

(Boolean, optional)

v Returns: The

configuration object

name of the key store

object that you created.

788 Securing applications and their environment

Table 20. (continued)

Command name: Description: Parameters and return

values:

Examples:

createCMSKeyStore The

createCMSKeyStore

command creates a

CMS key store database

and the key store

settings in the

configuration.

v Parameters:

- cmsKeyStoreURI

The URI of the

CMS key store.

(String, required)

- pluginHostName

The host name of

the plug-in. (String,

required)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask createCMSKeyStore

v Using Jython:

AdminTask.createCMSKeyStore()

Interactive mode example usage:

v Using Jacl:

$AdminTask createCMSKeyStore

{-interactive}

v Using Jython string:

AdminTask.createCMSKeyStore

(’[-interactive]’)

v Using Jython list:

AdminTask.createCMSKeyStore

([’-interactive’])

deleteKeyStore The deleteKeyStore

command deletes the

settings of a key store

from the configuration

and the key store file.

v Parameters:

- name

The name that

uniquely identifies

the key store that

you want to delete.

(String, required)

- scopeName

The name of the

scope. (String,

optional)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask deleteKeyStore

{-name testKS}

v Using Jython string:

AdminTask.deleteKeyStore

(’[-name testKS]’)

v Using Jython list:

AdminTask.deleteKeyStore

([’-name’, ’testKS’])

Interactive mode example usage:

v Using Jacl:

$AdminTask deleteKeyStore

{-interactive}

v Using Jython string:

AdminTask.deleteKeyStore

(’[-interactive]’)

v Using Jython list:

AdminTask.deleteKeyStore

([’-interactive’])

Chapter 9. Configuring security with scripting 789

Table 20. (continued)

Command name: Description: Parameters and return

values:

Examples:

exchangeSigners The exchangeSigners

command exchange

signer certificate

between key stores.

v Parameters:

- keyStoreName1

The name that

uniquely identifies a

key store. You must

specify a second

key store name

using the

keyStoreName2

parameter. (String,

required)

- keyStoreScope1

The scope name of

the key store that

you specified with

the keyStoreName1

parameter. (String,

required)

- certificateAlaisList1

A list of aliases

separated by a

comma. (String,

optional)

- keyStoreName2

The name that

uniquely identifies a

key store. You must

specify a second

key store name

using the

keyStoreName1

parameter. (String,

required)

- keyStoreScope2

The scope name of

the key store that

you specified with

the keyStoreName2

parameter. (String,

required)

- certificateAliasList2

A list of aliases

separated by a

comma. (String,

optional)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask exchangeSigners

{-keyStoreName1 testKS

–certificateAliasList1

testCert1 –keyStoreName2

secondKS –certificate

AlaisList2 certAlis}

v Using Jython string:

AdminTask.exchangeSigners

(’[-keyStoreName1 testKS

–certificateAliasList1

testCert1 –keyStoreName2

secondKS –certificateAlais

List2 certAlis]’)

v Using Jython list:

AdminTask.exchangeSigners

([’-keyStoreName1’, ’testKS’,

’–certificateAliasList1’,

’testCert1’, ’–keyStoreName

2’, ’secondKS’, ’–certifica

teAlaisList2’, ’certAlis’])

Interactive mode example usage:

v Using Jacl:

$AdminTask exchangeSigners

{-interactive}

v Using Jython string:

AdminTask.exchangeSigners

(’[-interactive]’)

v Using Jython list:

AdminTask.exchangeSigners

([’-interactive’])

790 Securing applications and their environment

Table 20. (continued)

Command name: Description: Parameters and return

values:

Examples:

getKeyStoreInfo The getKeyStoreInfo

command displays the

settings of a particular

key store.

v Parameters:

- name

The name that

uniquely identifies

the key store.

(String, required)

- scopeName

The name of the

scope. (String,

optional)

v Returns: The settings of

the key store that you

specified.

Batch mode example usage:

v Using Jacl:

$AdminTask getKeyStore

{-name testKS}

v Using Jython string:

AdminTask.getKeyStore

(’[-name testKS]’)

v Using Jython list:

AdminTask.getKeyStore

([’-name’, ’testKS’])

Interactive mode example usage:

v Using Jacl:

$AdminTask getKeyStore

Info {-interactive}

v Using Jython string:

AdminTask.getKeyStore

Info (’[-interactive]’)

v Using Jython list:

AdminTask.getKeyStore

Info ([’-interactive’])

Chapter 9. Configuring security with scripting 791

Table 20. (continued)

Command name: Description: Parameters and return

values:

Examples:

listKeyFileAliases The listKeyFileAliases

command lists the

certificates in a key store

file.

v Parameters:

- keyFilePath

The path of the key

file. (String,

required)

- keyFilePassword

The password for

the key file. (String,

required)

- keyFileType

The key file type.

(String, required)

v Returns: A list of

certificate aliases.

Batch mode example usage:

v Using Jacl:

$AdminTask listKeyFile

Aliases {-keyFilePaht

c:\temp\testKeyFile.p12

–keyFilePassword testPwd

–keyFileType PKCS12}

v Using Jython string:

AdminTask.listKeyFile

Aliases (’[-keyFilePaht

c:\temp\testKeyFile.p12

–keyFilePassword testPwd

–keyFileType PKCS12]’)

v Using Jython list:

AdminTask.listKeyFile

Aliases ([’-keyFilePaht’,

’c:\temp\testKeyFile.p12’,

’–keyFilePassword’, ’test

Pwd’, ’–keyFileType’,

’PKCS12’])

Interactive mode example usage:

v Using Jacl:

$AdminTask listKeyFileA

liases {-interactive}

v Using Jython string:

AdminTask.listKeyFileA

liases (’[-interactive]’)

v Using Jython list:

AdminTask.listKeyFileA

liases ([’-interactive’])

792 Securing applications and their environment

Table 20. (continued)

Command name: Description: Parameters and return

values:

Examples:

listKeyStores The listKeyStores

command lists the key

store for a particular

scope.

v Parameters:

- displayObjectName

Set the value of this

parameter to true

to list the key store

configuration

objects within a

scope. Set the

value of this

parameter to false

to list the strings

that contain the key

store name and

management

scope. (String,

optional)

- scopeName

The name of the

scope. (String,

optional)

v Returns: A list of key

stores.

Batch mode example usage:

v Using Jacl:

$AdminTask listKeyStores

v Using Jython:

AdminTask.listKeyStores()

Interactive mode example usage:

v Using Jacl:

$AdminTask listKeyStores

{-interactive}

v Using Jython string:

AdminTask.listKeyStores

(’[-interactive]’)

v Using Jython list:

AdminTask.listKeyStores

([’-interactive’])

listKeyStoresTypes The

listKeyStoresTypes

command lists all valid

key store types.

v Parameters: None

v Returns: A list of key

store types.

Batch mode example usage:

v Using Jacl:

$AdminTask listKeyStoreTypes

v Using Jython:

AdminTask.listKeyStoreTypes()

Interactive mode example usage:

v Using Jacl:

$AdminTask listKeyStores

Types {-interactive}

v Using Jython string:

AdminTask.listKeyStores

Types (’[-interactive]’)

v Using Jython list:

AdminTask.listKeyStores

Types ([’-interactive’])

Commands for the SSLConfigCommands group of the AdminTask

object

Use the commands in the SSLConfigCommands group to create and delete SSL configurations. For more

information about the AdminTask object, see the Commands for the AdminTask object article.

The following commands are available for the SSLConfigCommands group of the AdminTask object:

Chapter 9. Configuring security with scripting 793

Table 21.

Command name: Description: Target

object:

Parameters and return

values:

Examples:

createSSLConfig The

createSSLConfig

command creates an

SSL configuration that

is based on key store

and trust store

settings. You can use

the SSL configuration

settings to make the

SSL connections.

None v Parameters:

- alias

The name of the

alias. (String,

required)

- scopeName

The name of the

scope. (String,

optional)

- clientKeyAlias

The certificate

alias name for

the client.

(String, optional)

- serverKeyAlias

The certificate

alias name for

the server.

(String, optional)

- type

The type of SSL

configuration.

(String, optional)

-

clientAuthentication

Set the value of

this parameter to

true to request

client

authentication.

Otherwise, set

the value of this

parameter to

false. (Boolean,

optional)

- securityLevel

The cipher

group that you

want to use.

Valid values

include: HIGH,

MEDIUM, LOW, and

CUSTOM. (String,

optional)

- enabledCiphers

A list of ciphers

used during SSL

handshake.

(String, optional)

- jsseProvider

One of the JSSE

providers.

(String, optional)

Batch mode example usage:

v Using Jacl:

$AdminTask createSSLConfig

{-alias testSSLCfg -client

KeyAlias key1 -serverKey

Alias key2 -trustStoreName

trustKS –keyStoreName test

KS -keyManagerName testKeyMgr}

v Using Jython string:

AdminTask.createSSLConfig

(’[-alias testSSLCfg -cl

ientKeyAlias key1 -server

KeyAlias key2 -trustStore

Name trustKS –keyStoreName

testKS -keyManagerName

testKeyMgr]’)

v Using Jython list:

AdminTask.createSSLConfig

([’-alias’, ’testSSLCfg’,

’-clientKeyAlias’, ’key1’,

’-serverKeyAlias’, ’key2’,

’-trustStoreName’, ’trustKS’,

’–keyStoreName’, ’testKS’,

’-keyManagerName’,

’testKeyMgr’])

Interactive mode example

usage:

v Using Jacl:

$AdminTask createSSLConfig

{-interactive}

v Using Jython string:

AdminTask.createSSLConfig

(’[-interactive]’)

v Using Jython list:

AdminTask.createSSLConfig

([’-interactive’])

794 Securing applications and their environment

Table 21. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

-

clientAuthenticationSupported

Set the value of

this parameter to

true to support

client

authentication.

Otherwise, set the

value of this

parameter to

false. (Boolean,

optional)

- sslProtocol

The protocol type

for the SSL

handshake. Valid

values include:

SSL_TLS, SSL,

SSLv2, SSLv3, TLS,

TLSv1. (String,

optional)

-

trustManagerObjectName

A list of trust

managers

separated by

commas. (String,

optional)

- trustStoreNames

The key store that

holds trust

information used to

validate the trust

from remote

connections.

(String, required)

-

trustStoreScopeName

The management

scope name of the

trust store. (String,

optional)

Chapter 9. Configuring security with scripting 795

Table 21. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

- keyStoreName

The key store that

holds the personal

certificates that

provide identity for

the connection.

(String, required)

-

keyStoreScopeName

The management

scope name of the

key store. (String,

optional)

- ssslKeyRingName

Specifies a system

SSL (SSSL) key

ring name. The

value for this

parameter has no

affect unless the

SSL configuration

type is SSSL.

(String, optional)

v Returns: The

configuration object

name of the SSL

configuration object

that you created.

796 Securing applications and their environment

Table 21. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

createSSL Config

Property

The createSSL

Config Property

command creates a

property for an SSL

configuration. Use

this command to set

SSL configuration

settings that are

different than the

settings in the SSL

configuration object.

None v Parameters:

-

sslConfigAliasName

The alias name

of the SSL

configuration.

(String, required)

- scopeName

The name of the

scope. (String,

optional)

- propertyName

The name of the

property. (String,

required)

- propertyValue

The value of the

property. (String,

required)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask createSSLConfig

Property {-sslConfigAlias

Name NodeDefaultSSLSettings

-scopeName (cell):localhost

Node01Cell:(node):localhost

Node01 -propertyName test.

property -propertyValue

testValue}

v Using Jython string:

AdminTask.createSSLConfig

Property (’[-sslConfig

AliasName NodeDefaultSSL

Settings -scopeName (cell)

:localhostNode01Cell:(node)

:localhostNode01 -property

Name test.property -property

Value testValue]’)

v Using Jython list:

AdminTask.createSSLConfig

Property ([’-sslConfigAlias

Name’, ’NodeDefaultSSL

Settings’, ’-scopeName’,

’(cell):localhostNode01Cell:

(node):localhostNode01’,

’-propertyName’, ’test.

property’, ’-propertyValue’,

’testValue’])

Interactive mode example

usage:

v Using Jacl:

$AdminTask createSSLConfig

Property {-interactive}

v Using Jython string:

AdminTask.createSSLConfig

Property (’[-interactive]’)

v Using Jython list:

AdminTask.createSSLConfig

Property ([’-interactive’])

Chapter 9. Configuring security with scripting 797

Table 21. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

deleteSSLConfig The

deleteSSLConfig

command deletes the

SSL configuration

object that you

specify from the

configuration.

None v Parameters:

- alias

The name of the

alias. (String,

required)

- scopeName

The name of the

scope. (String,

optional)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask deleteSSLConfig

{-alias NodeDefaultSSL

Settings -scopeName (cell

):localhostNode01Cell:(

node):localhostNode01}

v Using Jython string:

AdminTask.deleteSSLConfig

(’[-alias NodeDefaultSSL

Settings -scopeName (cell)

:localhostNode01Cell:(no

de):localhostNode01]’)

v Using Jython list:

AdminTask.deleteSSLConfig

([’-alias’, ’NodeDefault

SSLSettings’, ’-scopeName’,

’(cell):localhostNode01

Cell:(node):localhost

Node01’])

Interactive mode example

usage:

v Using Jacl:

$AdminTask deleteSSLConfig

{-interactive}

v Using Jython string:

AdminTask.deleteSSLConfig

(’[-interactive]’)

v Using Jython list:

AdminTask.deleteSSLConfig

([’-interactive’])

798 Securing applications and their environment

Table 21. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

getSSLConfig The getSSLConfig

command obtains

information about an

SSL configuration and

displays the settings.

None v Parameters:

- alias

The name of the

alias. (String,

required)

- scopeName

The name of the

scope. (String,

optional)

v Returns: Information

about the SSL

configuration that

you specified.

Batch mode example usage:

v Using Jacl:

$AdminTask getSSLConfig

{-alias NodeDefaultSSL

Settings -scopeName

(cell):localhostNode01

Cell:(node):localhost

Node01 }

v Using Jython string:

AdminTask.getSSLConfig

(’[-alias NodeDefault

SSLSettings -scopeName

(cell):localhostNode01

Cell:(node):localhost

Node01]’)

v Using Jython list:

AdminTask.getSSLConfig

([’-alias’, ’Node

DefaultSSLSettings’,

’-scopeName’, ’(cell):

localhostNode01Cell:

(node):localhostNode01’])

Interactive mode example

usage:

v Using Jacl:

$AdminTask getSSLConfig

{-interactive}

v Using Jython string:

AdminTask.getSSLConfig

(’[-interactive]’)

v Using Jython list:

AdminTask.getSSLConfig

([’-interactive’])

Chapter 9. Configuring security with scripting 799

Table 21. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

getSSLConfig

Properties

The getSSLConfig

Properties command

obtains information

about SSL

configuration

properties.

None v Parameters:

- alias

The name of the

alias. (String,

required)

- scopeName

The name of the

scope. (String,

optional)

v Returns: Information

about SSL

configuration

properties.

Batch mode example usage:

v Using Jacl:

$AdminTask getSSLConfig

Properties {-sslConfig

AliasName NodeDefault

SSLSettings -scopeName

(cell):localhostNode01

Cell:(node):localhost

Node01}

v Using Jython string:

AdminTask.getSSLConfig

Properties (’[-sslCon

figAliasName NodeDefa

ultSSLSettings -scope

Name (cell):localhost

Node01Cell:(node):loc

alhostNode01]’)

v Using Jython list:

AdminTask.getSSLConfig

Properties ([’-sslCon

figAliasName’, ’NodeDe

faultSSLSettings’,

’-scopeName’, ’(cell):

localhostNode01Cell:

(node):localhostNode01’])

Interactive mode example

usage:

v Using Jacl:

$AdminTask getSSLConfig

Properties {-interactive}

v Using Jython string:

AdminTask.getSSLConfig

Properties (’[-intera

ctive]’)

v Using Jython list:

AdminTask.getSSLConfig

Properties ([’-intera

ctive’])

800 Securing applications and their environment

Table 21. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

listSSLCiphers The listSSLCiphers

command lists the

SSL ciphers.

None v Parameters:

-

sslConfigAliasName

The alias name

of the SSL

configuration.

(String, required)

- scopeName

The name of the

scope. (String,

optional)

- securityLevel

The cipher

group that you

want to use.

Valid values

include: HIGH,

MEDIUM, LOW, and

CUSTOM. (String,

required)

- provider

(String, optional)

v Returns: A list of SSL

ciphers.

Batch mode example usage:

v Using Jacl:

$AdminTask listSSLCiphers

{-sslConfigAliasName test

SSLCfg -securityLevel HIGH}

v Using Jython string:

AdminTask.listSSLCiphers

(’[-sslConfigAliasName

testSSLCfg -security

Level HIGH]’)

v Using Jython list:

AdminTask.listSSLCiphers

([’-sslConfigAliasName’,

’testSSLCfg’, ’-security

Level’, ’HIGH’])

Interactive mode example

usage:

v Using Jacl:

$AdminTask listSSLCiphers

{-interactive}

v Using Jython string:

AdminTask.listSSLCiphers

(’[-interactive]’)

v Using Jython list:

AdminTask.listSSLCiphers

([’-interactive’])

Chapter 9. Configuring security with scripting 801

Table 21. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

listSSLConfig The listSSLConfig

command lists the

defined SSL

configurations within

a management

scope.

None v Parameters:

- scopeName

The name of the

scope. (String,

optional)

-

displayObjectName

Set the value of

this parameter to

true to list the

SSL

configuration

objects within

the scope. Set

the value of this

parameter to

false to list the

strings that

contain the SSL

configuration

alias and

management

scope. (Boolean,

optional)

v Returns: A list of the

defined SSL

configurations.

Batch mode example usage:

v Using Jacl:

$AdminTask listSSLConfig

{-scopeName (cell): loc

alhostNode01Cell:(node):

localhostNode01 -display

ObjectName true}

v Using Jython string:

AdminTask.listSSLConfig

(’[-scopeName (cell):

localhostNode01Cell:

(node):localhostNode01

-displayObjectName true]’)

v Using Jython list:

AdminTask.listSSLConfig

([’-scopeName’, ’(cell)

:localhostNode01Cell:

(node):localhostNode01’,

’-displayObjectName’,

’true’])

Interactive mode example

usage:

v Using Jacl:

$AdminTask listSSLConfig

{-interactive}

v Using Jython string:

AdminTask.listSSLConfig

(’[-interactive]’)

v Using Jython list:

AdminTask.listSSLConfig

([’-interactive’])

802 Securing applications and their environment

Table 21. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

listSSLConfig

Properties

The listSSLConfig

Properties command

lists the properties for

a SSL configuration.

None v Parameters:

-

sslConfigAliasName

The alias name

of the SSL

configuration.

(String, required)

- scopeName

The name of the

scope. (String,

optional)

-

displayObjectName

Set the value of

this parameter to

true to list the

SSL

configuration

objects within

the scope. Set

the value of this

parameter to

false to list the

strings that

contain the SSL

configuration

alias and

management

scope. (Boolean,

optional)

v Returns: A list of

properties.

Batch mode example usage:

v Using Jacl:

$AdminTask listSSLConfig

Property {-alias No deDe

faultSSLSettings -scope

Name (cell):localhostNo

de01Cell:(node):localho

stNode01 -displayObject

Name true}

v Using Jython string:

AdminTask.listSSLConfig

Property (’[-alias No

deDefaultSSLSettings

-scopeName (cell):local

hostNode01Cell:(node):

localhostNode01 -disp

layObjectName true]’)

v Using Jython list:

AdminTask.listSSLConfi

gProperty ([’-alias’,

’No’, ’deDefaultSSLSet

tings’, ’-scopeName’,

’(cell):localhostNode

01Cell:(node):localho

stNode01’, ’-displayOb

jectName’, ’true’])

Interactive mode example

usage:

v Using Jacl:

$AdminTask listSSLConfig

Properties {-interactive}

v Using Jython string:

AdminTask.listSSLConfig

Properties (’[-intera

ctive]’)

v Using Jython list:

AdminTask.listSSLConfig

Properties ([’-intera

ctive’])

Chapter 9. Configuring security with scripting 803

Table 21. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

modifySSLConfig The

modifySSLConfig

command modifies

the settings of an

existing SSL

configuration.

None v Parameters:

- alias

The name of the

alias. (String,

required)

- scopeName

The name of the

scope. (String,

optional)

- clientKeyAlias

The certificate

alias name for

the client.

(String, optional)

- serverKeyAlias

The certificate

alias name for

the server.

(String, optional)

- type

The type of SSL

configuration.

(String, optional)

-

clientAuthentication

Set the value of

this parameter to

true to request

client

authentication.

Otherwise, set

the value of this

parameter to

false. (Boolean,

optional)

- securityLevel

The cipher

group that you

want to use.

Valid values

include: HIGH,

MEDIUM, LOW, and

CUSTOM. (String,

optional)

- enabledCiphers

A list of ciphers

used during SSL

handshake.

(String, optional)

- jsseProvider

One of the JSSE

providers.

(String, optional)

Batch mode example usage:

v Using Jacl:

$AdminTask modifySSL

Config {-alias test

SSLCfg -clientKeyAli

as tstKey1 -serverKey

Alias tstKey2 -secur

ityLevel LOW}

v Using Jython string:

AdminTask.modifySSL

Config (’[-alias te

stSSLCfg -clientKey

Alias tstKey1 -serv

erKeyAlias tstKey2

-securityLevel LOW]’)

v Using Jython list:

AdminTask.modifySSL

Config ([’-alias’,

’testSSLCfg’, ’-cli

entKeyAlias’, ’tst

Key1’, ’-serverKey

Alias’, ’tstKey2’,

’-securityLevel’,

’LOW’])

Interactive mode example

usage:

v Using Jacl:

$AdminTask modifySSL

Config {-interactive}

v Using Jython string:

AdminTask.modifySSL

Config (’[-interact

ive]’)

v Using Jython list:

AdminTask.modifySSL

Config ([’-interact

ive’])

804 Securing applications and their environment

Table 21. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

-

clientAuthenticationSupported

Set the value of

this parameter to

true to support

client

authentication.

Otherwise, set the

value of this

parameter to

false. (Boolean,

optional)

- sslProtocol

The protocol type

for the SSL

handshake. Valid

values include:

SSL_TLS, SSL,

SSLv2, SSLv3, TLS,

TLSv1. (String,

optional)

-

trustManagerObjectNames

A list of trust

managers

separated by

commas. (String,

optional)

- trustStoreName

The key store that

holds trust

information used to

validate the trust

from remote

connections.

(String, optional)

-

trustStoreScopeName

The management

scope name of the

trust store. (String,

optional)

Chapter 9. Configuring security with scripting 805

Table 21. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

- keyStoreName

The key store that

holds the personal

certificates that

provide identity for

the connection.

(String, optional)

-

keyStoreScopeName

The management

scope name of the

key store. (String,

optional)

- ssslKeyRingName

Specifies a system

SSL (SSSL) key

ring name. The

value for this

parameter has no

affect unless the

SSL configuration

type is SSSL.

(String, optional)

v Returns: None

Commands for the DescriptivePropCommands group of the AdminTask

object

For more information about the AdminTask object, see the Commands for the AdminTask object article.

The following commands are available for the DescriptivePropCommands group of the AdminTask object:

806 Securing applications and their environment

Table 22.

Command name: Description: Target

object:

Parameters and return

values:

Examples:

createDescriptiveProp The

createDescriptiveProp

command creates key

manager settings in

the configuration. Use

this command during

SSL handshake to

determine which

certificate to use.

None v Parameters:

- parentDataType

(String, required)

- parentClassName

(String, required)

-

parentScopeName

(String, optional)

- name

(String, required)

- value

(String, required)

- type

(String, required)

- displayNameKey

(String, required)

- nlsRangeKey

(String, optional)

- hoverHelpKey

(String, optional)

- range

(String, optional)

- inclusive

(Boolean,

optional)

- firstClass

(Boolean,

optional)

v Returns: The

configuration object

name of the key

manager object that

you created.

Batch mode example usage:

v Using Jacl:

$AdminTask createKeyManager

{-name testKM –keyManager

Class com.ibm.ws.security.

ltpa.LTPAKeyPairGenerator}

v Using Jython string:

AdminTask.createKeyManager

(’[-name testKM –keyManag

erClass com.ibm.ws.securi

ty.ltpa.LTPAKeyPairGenera

tor]’)

v Using Jython list:

AdminTask.createKeyManager

([’-name’, ’testKM’, ’–key

ManagerClass’, ’com.ibm.ws

.security.ltpa.LTPAKeyPair

Generator’])

Interactive mode example

usage:

v Using Jacl:

$AdminTask createDescrip

tiveProp {-interactive}

v Using Jython string:

AdminTask.createDescripti

veProp (’[-interactive]’)

v Using Jython list:

AdminTask.createDescripti

veProp ([’-interactive’])

deleteDescriptiveProp The

deleteDescriptiveProp

command deletes key

manager settings

from the

configuration.

None v Parameters:

- parentDataType

(String, required)

- parentClassName

(String, required)

-

parentScopeName

(String, optional)

- name

(String, required)

v Returns: None

Interactive mode example

usage:

v Using Jacl:

$AdminTask deleteDescrip

tiveProp {-interactive}

v Using Jython string:

AdminTask.deleteDescrip

tiveProp (’[-interactive]’)

v Using Jython list:

AdminTask.deleteDescrip

tiveProp ([’-interactive’])

Chapter 9. Configuring security with scripting 807

Table 22. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

getDescriptiveProp The

getDescriptiveProp

command obtains

information about key

manager settings.

None v Parameters:

- parentDataType

(String, required)

- parentClassName

(String, required)

-

parentScopeName

(String, optional)

- name

(String, required)

v Returns: Information

about key manager

settings.

Interactive mode example

usage:

v Using Jacl:

$AdminTask getDescripti

veProp {-interactive}

v Using Jython string:

AdminTask.getDescriptiv

eProp (’[-interactive]’)

v Using Jython list:

AdminTask.getDescriptive

Prop ([’-interactive’])

listDescriptiveProp The

listDescriptiveProp

command lists the

key managers within

a particular

management scope.

None v Parameters:

- parentDataType

(String, required)

- parentClassName

(String, required)

-

parentScopeName

(String, optional)

-

displayObjectName

Set the value of

this parameter to

true to list the

key manager

objects within

the scope. Set

the value of this

parameter to

false to list the

strings that

contain the key

manager name

and

management

scope. (Boolean,

optional)

v Returns: A list of key

managers.

Interactive mode example

usage:

v Using Jacl:

$AdminTask listDescrip

tiveProp {-interactive}

v Using Jython string:

AdminTask.listDescrip

tiveProp (’[-interact

ive]’)

v Using Jython list:

AdminTask.listDescrip

tiveProp ([’-interact

ive’])

808 Securing applications and their environment

Table 22. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

modifyDescriptiveProp The

modifyDescriptiveProp

command modifies

the settings of an

existing key manager.

None v Parameters:

- parentDataType

(String, required)

- parentClassName

(String, required)

-

parentScopeName

(String, optional)

- name

(String, required)

- value

(String, optional)

- type

(String, optional)

- displayNameKey

(String, optional)

- nlsRangeKey

(String, optional)

- hoverHelpKey

(String, optional)

- range

(String, optional)

- inclusive

(Boolean,

optional)

- firstClass

(Boolean,

optional)

v Returns: None

Interactive mode example

usage:

v Using Jacl:

$AdminTask modifyDescrip

tiveProp {-interactive}

v Using Jython string:

AdminTask.modifyDescrip

tiveProp (’[-interacti

ve]’)

v Using Jython list:

AdminTask.modifyDescrip

tiveProp ([’-interactiv

e’])

Commands for the TrustManagerCommands group of the AdminTask

object

Use the commands in the TrustManagerCommands group to create and delete a trust manager. For more

information about the AdminTask object, see the Commands for the AdminTask object article.

The following commands are available for the TrustManagerCommands group of the AdminTask object:

Chapter 9. Configuring security with scripting 809

Table 23.

Command name: Description: Target

object:

Parameters and return

values:

Examples:

createTrustManager The createTrust

ManagerInfo

command creates

trust manager

settings in the

configuration. Use

this command during

SSL handshake to

make trust decisions

about remote

endpoints.

None v Parameters:

- name

The name that

uniquely

identifies the

trust manager.

(String, required)

- scopeName

The name of the

scope. (String,

optional)

- provider

The provider

name of the

trust manager.

(String, optional)

- algorithm

The algorithm

name of the

trust manager.

(String, optional)

-

trustManagerClass

Specifies a class

that implements

the javax.net.

sslX509Tru

stManager

interface. You

cannot use this

parameter with

the provider or

algorithm

parameters.

(String, optional)

v Returns: The

configuration object

name of the trust

manager object that

you created.

Batch mode example usage:

v Using Jacl:

$AdminTask createTrust

Manager {-name testTM

–provider IBMJSSE2

–algorithm IbmX509}

v Using Jython string:

AdminTask.createTrust

Manager (’[-name testTM

–provider IBMJSSE2

–algorithm IbmX509]’)

v Using Jython list:

AdminTask.createTrust

Manager ([’-name’,

’testTM’, ’–provider’,

’IBMJSSE2’, ’–algorit

hm’, ’IbmX509’])

Interactive mode example

usage:

v Using Jacl:

$AdminTask createTrust

Manager {-interactive}

v Using Jython string:

AdminTask.createTrust

Manager (’[-interactive]’)

v Using Jython list:

AdminTask.createTrust

Manager ([’-interactive’])

810 Securing applications and their environment

Table 23. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

deleteTrustManager The

deleteTrustManager

command deletes the

trust manager

settings from the

configuration.

None v Parameters:

- name

The name that

uniquely

identifies the

trust manager.

(String, optional)

- scopeName

The name of the

scope. (String,

optional)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask deleteTrust

Manager {-name testTM}

v Using Jython string:

AdminTask.deleteTrust

Manager (’[-name testTM]’)

v Using Jython list:

AdminTask.deleteTrust

Manager ([’-name’,

’testTM’])

Interactive mode example

usage:

v Using Jacl:

$AdminTask deleteTrust

Manager {-interactive}

v Using Jython string:

AdminTask.deleteTrust

Manager (’[-interactive]’)

v Using Jython list:

AdminTask.deleteTrust

Manager ([’-interactive’])

getTrustManager The

getTrustManager

command obtains the

setting of a trust

manager.

None v Parameters:

- name

The name that

uniquely

identifies the

trust manager.

(String, optional)

- scopeName

The name of the

scope. (String,

optional)

v Returns: The settings

of the trust manager

group that you

specified.

Batch mode example usage:

v Using Jacl:

$AdminTask getTrustManager

{-name testTM}

v Using Jython string:

AdminTask.getTrustManager

(’[-name testTM]’)

v Using Jython list:

AdminTask.getTrustManager

([’-name’, ’testTM’])

Interactive mode example

usage:

v Using Jacl:

$AdminTask getTrustMana

ger {-interactive}

v Using Jython string:

AdminTask.getTrustMana

ger (’[-interactive]’)

v Using Jython list:

AdminTask.getTrustMana

ger ([’-interactive’])

Chapter 9. Configuring security with scripting 811

Table 23. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

listTrustManagers The

listTrustManagers

command lists the

trust managers within

a particular

management scope.

None v Parameters:

- scopeName

The name of the

scope. (String,

optional)

-

displayObjectName

Set the value of

this parameter to

true to list the

trust manager

objects within a

scope. Set the

value of this

parameter to

false to list the

strings that

contain the trust

manager name

and

management

scope. (Boolean,

optional)

v Returns: A list of

trust managers that

are found within the

management scope

that you specified.

Batch mode example usage:

v Using Jacl:

$AdminTask listTrustMana

gers {-displayObjectName true}

v Using Jython string:

AdminTask.listTrustMan

agers (’[-displayObje

ctName true]’)

v Using Jython list:

AdminTask.listTrustMan

agers ([’-displayObject

Name’, ’true’])

Interactive mode example

usage:

v Using Jacl:

$AdminTask listTrustMan

agers {-interactive}

v Using Jython string:

AdminTask.listTrustMana

gers (’[-interactive]’)

v Using Jython list:

AdminTask.listTrustMana

gers ([’-interactive’])

812 Securing applications and their environment

Table 23. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

modifyTrustManager The

modifyTrustManager

command changes

existing trust manager

settings.

None v Parameters:

- name

The name that

uniquely

identifies the

trust manager.

(String, required)

- scopeName

The name of the

scope. (String,

optional)

- provider

The provider

name of the

trust manager.

(String, optional)

- algorithm

The algorithm

name of the

trust manager.

(String, optional)

-

trustManagerClass

Specifies a class

that implements

the javax.net.

sslX509Tr

ustManager

interface. You

cannot use this

parameter with

the provider or

algorithm

parameters.

(String, optional)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask modifyTrust

Manager {-name testTM

–trustManagerClass test

.trust.manager}

v Using Jython string:

AdminTask.modifyTrust

Manager (’[-name test

TM –trustManagerClass

test.trust.manager]’)

v Using Jython list:

AdminTask.modifyTrust

Manager ([’-name’,

’testTM’, ’–trustMana

gerClass’, ’test.trust

.manager’])

Interactive mode example

usage:

v Using Jacl:

$AdminTask modifyTrust

Manager {-interactive}

v Using Jython string:

AdminTask.modifyTrust

Manager (’[-interactive]’)

v Using Jython list:

AdminTask.modifyTrust

Manager ([’-interactive’])

Commands for the keyManagerCommands group of the AdminTask

object

Use the commands in the keyManagerCommands group to manage key managers. You can use these

commands to create, modify, list, or obtain information about key managers. For more information about

the AdminTask object, see the Commands for the AdminTask object article.

The following commands are available for the keyManagerCommands group of the AdminTask object:

Chapter 9. Configuring security with scripting 813

Table 24.

Command name: Description: Target

object:

Parameters and return

values:

Examples:

createKeyManager The

createKeyManager

command creates the

key manager settings

in the configuration.

Use this command

during SSL

handshake to

determine which

certificate alias to

use.

None v Parameters:

- name

The name that

uniquely

identifies the key

manager.

(String, required)

- scopeName

The name of the

scope. (String,

optional)

- provider

The provider

name of the key

manager.

(String, optional)

- algorithm

The algorithm

name of the key

manager.

(String, optional)

- keyManagerClass

The name of the

key manager

implementation

class. You can

not use this

parameter with

the provider or

the algorithm

parameter.

(String, optional)

v Returns: The

configuration object

name of the key

manager object that

you created.

Batch mode example usage:

v Using Jacl:

$AdminTask createKeyMa

nager {-name testKM –ke

yManagerClass com.ibm.

ws.security.ltpa.LTPA

KeyPairGenerator}

v Using Jython string:

AdminTask.createKeyMa

nager (’[-name testKM

–keyManagerClass com.

ibm.ws.security.ltpa.

LTPAKeyPairGenerator]’)

v Using Jython list:

AdminTask.createKeyM

anager ([’-name’, ’te

stKM’, ’–keyManagerCl

ass’, ’com.ibm.ws.sec

urity.ltpa.LTPAKeyPai

rGenerator’])

Interactive mode example

usage:

v Using Jacl:

$AdminTask createKeyMa

nager {-interactive}

v Using Jython string:

AdminTask.createKeyMa

nager (’[-interactive]’)

v Using Jython list:

AdminTask.createKeyMa

nager ([’-interactive’])

814 Securing applications and their environment

Table 24. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

deleteKeyManager The

deleteKeyManager

command deletes the

key manager settings

from the

configuration.

None v Parameters:

- name

The name that

uniquely

identifies the key

manager.

(String, optional)

- scopeName

The name of the

scope. (String,

optional)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask deleteKeyMa

nager {-name testKM}

v Using Jython string:

AdminTask.deleteKeyMa

nager (’[-name testKM]’)

v Using Jython list:

AdminTask.deleteKeyMa

nager ([’-name’, ’testKM’])

Interactive mode example

usage:

v Using Jacl:

$AdminTask deleteKeyM

anager {-interactive}

v Using Jython string:

AdminTask.deleteKeyMa

nager (’[-interactive]’)

v Using Jython list:

AdminTask.deleteKeyM

anager ([’-interactive’])

getKeyManager The getKeyManager

command obtains the

settings of a key

manager.

None v Parameters:

- name

The name that

uniquely

identifies the key

manager.

(String, optional)

- scopeName

The name of the

scope. (String,

optional)

v Returns: The settings

of the key manager

that you specified.

Batch mode example usage:

v Using Jacl:

$AdminTask getKeyMana

ger {-name testKM}

v Using Jython string:

AdminTask.getKeyMana

ger (’[-name testKM]’)

v Using Jython list:

AdminTask.getKeyMana

ger ([’-name’, ’testKM’])

Interactive mode example

usage:

v Using Jacl:

$AdminTask getKeyManag

er {-interactive}

v Using Jython string:

AdminTask.getKeyManag

er (’[-interactive]’)

v Using Jython list:

AdminTask.getKeyManag

er ([’-interactive’])

Chapter 9. Configuring security with scripting 815

Table 24. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

listKeyManagers The

listKeyManagers

command lists the

key managers within

a particular

management scope.

None v Parameters:

- scopeName

The name of the

scope. (String,

optional)

-

displayObjectName

Set the value of

this parameter to

true to list the

key manager

objects within

the scope. Set

the value of this

parameter to

false to list the

strings that

contain the key

manager name

and the

management

scope. (Boolean,

optional)

v Returns: A list of key

managers.

Batch mode example usage:

v Using Jacl:

$AdminTask listKeyManagers

v Using Jython:

AdminTask.listKeyManagers()

Interactive mode example

usage:

v Using Jacl:

$AdminTask listKeyManagers

{-interactive}

v Using Jython string:

AdminTask.listKeyManagers

(’[-interactive]’)

v Using Jython list:

AdminTask.listKeyManagers

([’-interactive’])

816 Securing applications and their environment

Table 24. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

modifyKeyManagers The

modifyKeyManagers

command changes

existing key manager

settings.

None v Parameters:

- name

The name that

uniquely

identifies the key

manager.

(String, required)

- scopeName

The name of the

scope. (String,

optional)

- provider

The provider

name of the key

manager.

(String, optional)

- algorithm

The algorithm

name of the key

manager.

(String, optional)

- keyManagerClass

The name of the

key manager

implementation

class. You can

not use this

parameter with

the provider or

the algorithm

parameter.

(String, optional)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask modifyKeyManager

{-name testKM –provider

IBMJSSE2 –algorithm IbmX509}

v Using Jython string:

AdminTask.modifyKeyManager

(’[-name testKM –provider

IBMJSSE2 –algorithm IbmX509]’)

v Using Jython list:

AdminTask.modifyKeyManager

([’-name’, ’testKM’, ’–pro

vider’, ’IBMJSSE2’, ’–alg

orithm’, ’IbmX509’])

Interactive mode example

usage:

v Using Jacl:

$AdminTask modifyKeyManag

ers {-interactive}

v Using Jython string:

AdminTask.modifyKeyManag

ers (’[-interactive]’)

v Using Jython list:

AdminTask.modifyKeyManag

ers ([’-interactive’])

Commands for the SSLConfigGroupCommands group of the

AdminTask object

Use the commands in the SSLConfigGroupCommands group to create or delete a SSL configuration

group. For more information about the AdminTask object, see the Commands for the AdminTask object

article.

The following commands are available for the SSLConfigGroupCommands group of the AdminTask object:

Chapter 9. Configuring security with scripting 817

Table 25.

Command name: Description: Target

object:

Parameters and return

values:

Examples:

createSSLConfigGroup The

createSSLConfigGroup

command creates a

SSL configuration

group.

None v Parameters:

- name

The name that

uniquely

identifies the

SSL

configuration

group. (String,

required)

- direction

The direction to

which the SSL

configuration

applies. Valid

values include

inbound or

outbound.

(String, required)

- certificateAlias

(String, required)

- scopeName

The name of the

scope. (String,

optional)

-

sslConfigAliasName

The alias that

uniquely

identifies the

SSL

configurations in

the group.

(String, required)

-

sslConfigScopeName

The scope that

uniquely

identifies the

SSL

configurations in

the group.

(String, optional)

v Returns: The

configuration object

name of the SSL

configuration group

object that you

created.

Batch mode example usage:

v Using Jacl:

$AdminTask createSSLConfig

Group { -name testSSLCfgGrp

–direction inbound –certif

icateAlias alias1 –sslConf

igAliasName testSSLCfg}

v Using Jython string:

AdminTask.createSSLConfig

Group [’(-name testSSLCfg

Grp –direction inbound

–certificateAlias alias1

–sslConfigAliasName test

SSLCfg)’]

v Using Jython list:

AdminTask.createSSLConfig

Group [(’-name’, ’testSSL

CfgGrp’, ’–direction’,

’inbound’, ’–certificate

Alias’, ’alias1’, ’–ssl

ConfigAliasName’, ’test

SSLCfg’)]

Interactive mode example

usage:

v Using Jacl:

$AdminTask createSSLConf

igGroup {-interactive}

v Using Jython string:

AdminTask.createSSLConfi

gGroup (’[-interactive]’)

v Using Jython list:

AdminTask.createSSLConfi

gGroup ([’-interactive’])

818 Securing applications and their environment

Table 25. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

deleteSSLConfigGroup The

deleteSSLConfigGroup

command deletes a

SSL configuration

group from the

configuration.

None v Parameters:

- name

The name that

uniquely

identifies the

SSL

configuration

group. (String,

required)

- direction

The direction to

which the SSL

configuration

applies. Valid

values include

inbound or

outbound.

(String, required)

- scopeName

The name of the

scope. (String,

optional)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask deleteSSLCon

figGroup {-name createS

SLCfgGrp –direction inb

ound}

v Using Jython string:

AdminTask.deleteSSLConf

igGroup [’(-name create

SSLCfgGrp –direction in

bound)’]

v Using Jython list:

AdminTask.deleteSSLConf

igGroup [(’-name’, ’cre

ateSSLCfgGrp’, ’–direct

ion’, ’inbound’)]

Interactive mode example

usage:

v Using Jacl:

$AdminTask deleteSSLCon

figGroup {-interactive}

v Using Jython string:

AdminTask.deleteSSLCon

figGroup (’[-interactive]’)

v Using Jython list:

AdminTask.deleteSSLConfi

gGroup ([’-interactive’])

Chapter 9. Configuring security with scripting 819

Table 25. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

getSSLConfigGroup The

getSSLConfigGroup

command returns

information about a

SSL configuration

setting.

None v Parameters:

- name

The name that

uniquely

identifies the

SSL

configuration

group. (String,

required)

- direction

The direction to

which the SSL

configuration

applies. Valid

values include

inbound or

outbound.

(String, required)

- scopeName

The name of the

scope. (String,

optional)

v Returns: The settings

of the SSL

configuration group

that you specified.

Batch mode example usage:

v Using Jacl:

$AdminTask getSSLConfig

Group {-name createSSL

CfgGrp –direction inbound}

v Using Jython string:

AdminTask.getSSLConfig

Group [’(-name create

SSLCfgGrp –direction

inbound)’]

v Using Jython list:

AdminTask.getSSLConfig

Group [(’-name’, ’create

SSLCfgGrp’, ’–direction’,

’inbound’)]

Interactive mode example

usage:

v Using Jacl:

$AdminTask getSSLConfig

Group {-interactive}

v Using Jython string:

AdminTask.getSSLConfig

Group (’[-interactive]’)

v Using Jython list:

AdminTask.getSSLConfig

Group ([’-interactive’])

820 Securing applications and their environment

Table 25. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

listSSLConfigGroups The

listSSLConfigGroups

command lists the

SSL configuration

groups within a scope

and a direction.

None v Parameters:

- direction

The direction to

which the SSL

configuration

applies. Valid

values include

inbound or

outbound.

(String, optional)

- scopeName

The name of the

scope. (String,

optional)

-

displayObjectName

If you set this

parameter to

true, the

command

returns a list of

all of the SSL

configuration

group objects

within the scope.

If you set this

parameter to

false, the

command

returns a list of

strings that

contain the SSL

configuration

name and

management

scope. (Boolean,

optional)

v Returns: A list of SSL

configuration groups.

Batch mode example usage:

v Using Jacl:

$AdminTask –listSSLConfi

gGroups {-displayObject

Name true}

v Using Jython string:

AdminTask.listSSLConfig

Groups [’(-displayObject

Name true)’]

v Using Jython list:

AdminTask.listSSLConfig

Groups [(’-displayObject

Name’ ’true’)]

Interactive mode example

usage:

v Using Jacl:

$AdminTask listSSLConfig

Groups {-interactive}

v Using Jython string:

AdminTask.listSSLConfig

Groups (’[-interactive]’)

v Using Jython list:

AdminTask.listSSLConfig

Groups ([’-interactive’])

Chapter 9. Configuring security with scripting 821

Table 25. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

modifySSLConfigGroup The

modifySSLConfigGroup

command modifies

the setting of an

existing SSL

configuration group.

None v Parameters:

- name

The name that

uniquely

identifies the

SSL

configuration

group. (String,

required)

- direction

The direction to

which the SSL

configuration

applies. Valid

values include

inbound or

outbound.

(String, required)

- certificateAlias

(String, optional)

- scopeName

The name of the

scope. (String,

optional)

-

sslConfigAliasName

The alias that

uniquely

identifies the

SSL

configurations in

the group.

(String, optional)

-

sslConfigScopeName

The scope that

uniquely

identifies the

SSL

configurations in

the group.

(String, optional)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask modifySSLConfig

Group {-name createSSLCfg

Grp –direction inbound

–certificateAlias alias2}

v Using Jython string:

AdminTask.modifySSLConfig

Group [’(-name createSSL

CfgGrp –direction inbound

–certificateAlias alias2)’]

v Using Jython list:

AdminTask.modifySSLConfig

Group [(’-name’, ’create

SSLCfgGrp’, ’–direction’,

’inbound’, ’–certificate

Alias’, ’alias2’)]

Interactive mode example

usage:

v Using Jacl:

$AdminTask modifySSLConf

igGroup {-interactive}

v Using Jython string:

AdminTask.modifySSLConf

igGroup (’[-interactive]’)

v Using Jython list:

AdminTask.modifySSLConf

igGroup ([’-interactive’])

Commands for the DynamicSSLConfigSelections group of the

AdminTask object

Use the commands in the DynamicSSLConfigSelections group to create or delete a dynamic SSL

configuration selection. For more information about the AdminTask object, see the Commands for the

AdminTask object article.

822 Securing applications and their environment

The following commands are available for the DynamicSSLConfigSelections group of the AdminTask

object:

Chapter 9. Configuring security with scripting 823

Table 26.

Command name: Description: Target

object:

Parameters and return

values:

Examples:

createDynamic

SSLConfig Selection

The createDynamic

SSLConfig Selection

command creates the

configuration settings

for the dynamic SSL

configuration

selection.

None v Parameters:

-

dynSSLConfigSelec

tionName

The name that

uniquely

identifies the

dynamic SSL

configuration

selection.

(String, required)

- scopeName

The name of the

scope. (String,

optional)

-

dynSSLConfigSelec

tionDescription

The description

of the dynamic

SSL

configuration

selection.

(String, optional)

-

dynSSLConfigSelec

tionInfo

The information

for the dynamic

SSL

configuration

selection.

(String, required)

- sslConfigName

The name of the

SSL

configuration.

(String, required)

- sslConfigScope

The scope of the

SSL

configuration.

(String, optional)

- certificateAlias

The alias name

to identify the

certificate.

(String, required)

v Returns: The

configuration object

name of the dynamic

SSL configuration

selection object that

you created.

Batch mode example usage:

v Using Jacl:

$AdminTask createDyn

amicSSLConfigSelection

v Using Jython:

AdminTask.createDynam

icSSLConfigSelection()

Interactive mode example

usage:

v Using Jacl:

$AdminTask createDy

namicSSLConfigSelection

{-interactive}

v Using Jython string:

AdminTask.createDyna

micSSLConfigSelection

(’[-interactive]’)

v Using Jython list:

AdminTask.createDyna

micSSLConfigSelection

([’-interactive’])

824 Securing applications and their environment

Table 26. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

deleteDynamic

SSLConfig Selection

The deleteDynamic

SSLConfig Selection

command deletes the

dynamic SSL

configuration

selection from the

configuration.

None v Parameters: None

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask deleteDynamic

SSLConfigSelection

v Using Jython:

AdminTask.deleteDynamic

SSLConfigSelection()

v

Interactive mode example

usage:

v Using Jacl:

$AdminTask deleteDynamic

SSLConfigSelection {-inte

ractive}

v Using Jython string:

AdminTask.deleteDynamicS

SLConfigSelection (’[-in

teractive]’)

v Using Jython list:

AdminTask.deleteDynamic

SSLConfigSelection ([’

-interactive’])

getDynamic

SSLConfig Selection

The getDynamic

SSLConfig

Selectioncommand

obtains information

about a particular

dynamic SSL

configuration

selection.

None v Parameters: None

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask getDynamicSSL

ConfigSelection

v Using Jython:

AdminTask.getDynamicSSL

ConfigSelection()

Interactive mode example

usage:

v Using Jacl:

$AdminTask getDynamicSSL

ConfigSelection {-interactive}

v Using Jython string:

AdminTask.getDynamicSSL

ConfigSelection (’[-inter

active]’)

v Using Jython list:

AdminTask.getDynamicSSL

ConfigSelection ([’-int

eractive’])

Chapter 9. Configuring security with scripting 825

Table 26. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

listDynamic

SSLConfig Selections

The listDynamic

SSLConfig

Selectionscommand

lists the configuration

objects name for a

dynamic SSL

configuration

selection.

None v Parameters: None

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask listDynamic

SSLConfigSelection

v Using Jython:

AdminTask.listDynamic

SSLConfigSelection()

Interactive mode example

usage:

v Using Jacl:

$AdminTask listDynamicSSL

ConfigSelections {-intera

ctive}

v Using Jython string:

AdminTask.listDynamicSSL

ConfigSelections (’[-inte

ractive]’)

v Using Jython list:

AdminTask.listDynamicSSL

ConfigSelections ([’-int

eractive’])

Commands for the ManagementScopeCommands group of the

AdminTask object

Use the commands in the ManagementScopeCommands group to create or delete a management scope.

For more information about the AdminTask object, see the Commands for the AdminTask object article.

The following commands are available for the ManagementScopeCommands group of the AdminTask

object:

826 Securing applications and their environment

Table 27.

Command name: Description: Target

object:

Parameters and return

values:

Examples:

createMana

gementScope

The createManag

ementScope

command creates a

management scope

setting in the

configuration.

None v Parameters:

- scopeName

The name that

uniquely

identifies the

management

scope. (String,

required)

- scopeType

The type of the

management

scope. Valid

types include

cell, node,

nodegroup,

cluster, server,

and endpoint.

(String, optional)

v Returns: The

configuration object

name of the

management scope

object that you

created.

Batch mode example usage:

v Using Jacl:

$AdminTask createManag

ementScope {-name (cell)

:localhostNode01Cell

–scopeType cell}

v Using Jython string:

AdminTask.createManage

mentScope [’(-name (ce

ll):localhostNode01Cell

–scopeType cell)’]

v Using Jython list:

AdminTask.createManageme

ntScope [(’-name’, ’(ce

ll):localhostNode01Cell’,

’–scopeType’, ’cell’)]

Interactive mode example

usage:

v Using Jacl:

$AdminTask createManage

mentScope {-interactive}

v Using Jython string:

AdminTask.createManagem

entScope (’[-interactive]’)

v Using Jython list:

AdminTask.createManagem

entScope ([’-interactive’])

Chapter 9. Configuring security with scripting 827

Table 27. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

deleteManage

mentScope

The deleteManage

mentScope

command deletes a

management object

from the

configuration.

None v Parameters:

- scopeName

The name that

uniquely

identifies the

management

scope. (String,

required)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask deleteManage

mentScope {-scopeName

(cell):localhostNode01Cell}

v Using Jython string:

AdminTask.deleteManagem

entScope (’[-scopeName

(cell):localhostNode01

Cell]’)

v Using Jython list:

AdminTask.deleteManagem

entScope ([’-scopeName’,

’(cell):localhostNode01Cell’])

Interactive mode example

usage:

v Using Jacl:

$AdminTask deleteManage

mentScope {-interactive}

v Using Jython string:

AdminTask.deleteManage

mentScope (’[-interactive]’)

v Using Jython list:

AdminTask.deleteManage

mentScope ([’-interactive’])

828 Securing applications and their environment

Table 27. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

getManagementScope The

getManagementScope

command displays

the setting of a

management scope

object.

None v Parameters:

- scopeName

The name that

uniquely

identifies the

management

scope. (String,

required)

v Returns: The settings

of the management

scope object.

Batch mode example usage:

v Using Jacl:

$AdminTask getManageme

ntScope {-scopeName (ce

ll):localhostNode01Cell}

v Using Jython string:

AdminTask.getManagement

Scope (’[-scopeName (ce

ll):localhostNode01Cell]’)

v Using Jython list:

AdminTask.getManagement

Scope ([’-scopeName’,

’(cell):localhostNode01

Cell’])

Interactive mode example

usage:

v Using Jacl:

$AdminTask getManagement

Scope {-interactive}

v Using Jython string:

AdminTask.getManagement

Scope (’[-interactive]’)

v Using Jython list:

AdminTask.getManagement

Scope ([’-interactive’])

Chapter 9. Configuring security with scripting 829

Table 27. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

listManagementScopes The

listManagementScopes

command lists the

management scopes

in the configuration.

None v Parameters:

-

displayObjectName

Set the value to

true to display

the object

names of the

management

scope. (Boolean,

optional)

v Returns: A list that

contains all of the

management scope

names.

Batch mode example usage:

v Using Jacl:

$AdminTask listManagem

entScopes { -name testKM

–provider IBMJSSE2 –alg

orithm IbmX509}

v Using Jython string:

AdminTask.listManageme

ntScopes (’[-name test

KM –provider IBMJSSE2

–algorithm IbmX509]’)

v Using Jython list:

AdminTask.listManageme

ntScopes ([’-name’,

’testKM’, ’–provider’,

’IBMJSSE2’, ’–algorithm’,

’IbmX509’])

Interactive mode example

usage:

v Using Jacl:

$AdminTask listManagem

entScopes {-interactive}

v Using Jython string:

AdminTask.listManagem

entScopes (’[-interac

tive]’)

v Using Jython list:

AdminTask.listManagem

entScopes ([’-interac

tive’])

Commands for the WSCertExpMonitorCommands group of the

AdminTask object

Use the commands in the WSCertExpMonitorCommands group to start or update the certificate expiration

monitor. For more information about the AdminTask object, see the Commands for the AdminTask object

article.

The following commands are available for the WSCertExpMonitorCommands group of the AdminTask

object:

830 Securing applications and their environment

Table 28.

Command name: Description: Target

object:

Parameters and return

values:

Examples:

createWSCert

ExpMonitor

The createWSCert

ExpMonitor

command creates the

certificate expiration

monitor settings in the

configuration.

None v Parameters:

- name

The name that

uniquely

identifies the

certificate

expiration

monitor. (String,

required)

- autoReplace

Set the value of

this parameter to

true if you want

to replace a

certificate within

a certificate

expiration date.

If not, set the

value of this

parameter to

false. (Boolean,

required)

- deleteOld

Set the value of

this parameter to

true if you want

to delete an old

certificate during

certificate

expiration

monitoring. If

not, set the

value of this

parameter to

false. (Boolean,

required)

-

daysBeforeNotification

The number of

days before a

certificate

expires that you

want to be

notified of the

expiration.

(Integer,

required)

- wsScheduleName

The name of the

scheduler to use

for certificate

expiration.

(String, required)

Batch mode example usage:

v Using Jacl:

$AdminTask createWSCert

ExpMonitor {-name test

CertMon –autoReplace true

–deleteOld true –days

BeforeNotification 30

–wsScheduleName testSch

edule –wsNotificationName

testNotifier –isEnabled

false}

v Using Jython string:

AdminTask.createWSCert

ExpMonitor (’[-name tes

tCertMon –autoReplace

true –deleteOld true

–daysBeforeNotification

30 –wsScheduleName test

Schedule –wsNotificati

onName testNotifier

–isEnabled false]’)

v Using Jython list:

AdminTask.createWSCert

ExpMonitor ([’-name’,

’testCertMon’, ’–autoRe

place’, ’true’, ’–delete

Old’, ’true’, ’–daysBe

foreNotification’, ’30’,

’–wsScheduleName’, ’te

stSchedule’, ’–wsNotifi

cationName’, ’testNotif

ier’, ’–isEnabled’,

’false’])

Interactive mode example

usage:

v Using Jacl:

$AdminTask createWSCert

ExpMonitor {-interactive}

v Using Jython string:

AdminTask.createWSCert

ExpMonitor (’[-interac

tive]’)

v Using Jython list:

AdminTask.createWSCert

ExpMonitor ([’-interac

tive’])

Chapter 9. Configuring security with scripting 831

Table 28. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

- wsNotificationName

The name of the

notifier to use for

certificate

expiration. (String,

required)

- isEnabled

Set the value of

this parameter to

true if the

certificate

expiration monitor

is enabled. If not,

set the value of

this parameter to

false. (Boolean,

optional)

v Returns: The

configuration object

name of the

certificate expiration

monitor object that

you created.

deleteWSCert

ExpMonitor

The deleteWSCert

ExpMonitorcommand

deletes the settings of

a scheduler from the

configuration.

None v Parameters:

- name

The name that

uniquely

identifies the

certificate

expiration

monitor. (String,

required)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask deleteWSCert

ExpMonitor {-name test

CertMon}

v Using Jython string:

AdminTask.deleteWSCertE

xpMonitor (’[-name test

CertMon]’)

v Using Jython list:

AdminTask.deleteWSCert

ExpMonitor ([’-name’,

’testCertMon’])

Interactive mode example

usage:

v Using Jacl:

$AdminTask deleteWSCert

ExpMonitor {-interactive}

v Using Jython string:

AdminTask.deleteWSCert

ExpMonitor (’[-interac

tive]’)

v Using Jython list:

AdminTask.deleteWSCert

ExpMonitor ([’-interac

tive’])

832 Securing applications and their environment

Table 28. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

getWSCertExpMonitor The

getWSCertExpMonitor

command displays

the settings of a

particular scheduler.

None v Parameters:

- name

The name that

uniquely

identifies the

certificate

expiration

monitor. (String,

required)

v Returns: The settings

of the scheduler that

you specified.

Batch mode example usage:

v Using Jacl:

$AdminTask getWSCertExp

Monitor {-name testCertMon}

v Using Jython string:

AdminTask getWSCertExp

Monitor (’[-name testCe

rtMon]’)

v Using Jython list:

AdminTask getWSCertExpM

onitor ([’-name’, ’test

CertMon’])

Interactive mode example

usage:

v Using Jacl:

$AdminTask getWSCertExp

Monitor {-interactive}

v Using Jython string:

AdminTask.getWSCertExp

Monitor (’[-interactive]’)

v Using Jython list:

AdminTask.getWSCertExp

Monitor ([’-interactive’])

Chapter 9. Configuring security with scripting 833

Table 28. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

listWSCertExpMonitor The

listWSCertExpMonitor

command lists the

scheduler in the

configuration.

None v Parameters:

-

displayObjectNames

If you set the

value of this

parameter to

true, the

command

returns the

certificate

expiration

monitor

configuration

object. If you set

the value of this

parameter to

false, the

command

returns the

name of the

certificate

expiration

monitor.

(Boolean,

optional)

v Returns: The

scheduler in the

configuration.

Batch mode example usage:

v Using Jacl:

$AdminTask listWSCertExp

Monitor {-displayObject

Name false}

v Using Jython string:

AdminTask.listWSCertExp

Monitor (’[-displayObject

Name false]’)

v Using Jython list:

AdminTask.listWSCertExp

Monitor ([’-displayObject

Name’, ’false’])

Interactive mode example

usage:

v Using Jacl:

$AdminTask listWSCert

ExpMonitor {-interactive}

v Using Jython string:

AdminTask.listWSCertExp

Monitor (’[-interactive]’)

v Using Jython list:

AdminTask.listWSCertExp

Monitor ([’-interactive’])

834 Securing applications and their environment

Table 28. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

modifyWSCert

ExpMonitor

The modifyWSCert

ExpMonitorcommand

changes the setting of

an existing scheduler.

None v Parameters:

- name

The name that

uniquely

identifies the

certificate

expiration

monitor. (String,

required)

- autoReplace

Set the value of

this parameter to

true if you want

to replace a

certificate within

a certificate

expiration date.

If not, set the

value of this

parameter to

false. (Boolean,

required)

- deleteOld

Set the value of

this parameter to

true if you want

to delete an old

certificate during

certificate

expiration

monitoring. If

not, set the

value of this

parameter to

false. (Boolean,

required)

-

daysBeforeNotification

The number of

days before a

certificate

expires that you

want to be

notified of the

expiration.

(Integer,

required)

- wsScheduleName

The name of the

scheduler to use

for certificate

expiration.

(String, required)

Batch mode example usage:

v Using Jacl:

$AdminTask modifyWSCert

ExpMonitor {-name testC

ertMon –autoReplace fal

se –deleteOld false –d

aysBeforeNotification

20 –isEnabled true}

v Using Jython string:

AdminTask.modifyWSCert

ExpMonitor (’[-name t

estCertMon –autoReplac

e false –deleteOld fal

se –daysBeforeNotifica

tion 20 –isEnabled true]’)

v Using Jython list:

AdminTask.modifyWSCert

ExpMonitor ([’-name’,

’testCertMon’, ’–autoR

eplace’, ’false’, ’–de

leteOld’, ’false’, ’–d

aysBeforeNotification’,

’20’, ’–isEnabled’, ’tr

ue’])

Interactive mode example

usage:

v Using Jacl:

$AdminTask modifyWSCert

ExpMonitor {-interactive}

v Using Jython string:

AdminTask.modifyWSCert

ExpMonitor (’[-interac

tive]’)

v Using Jython list:

AdminTask.modifyWSCert

ExpMonitor ([’-intera

ctive’])

Chapter 9. Configuring security with scripting 835

Table 28. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

- wsNotificationName

The name of the

notifier to use for

certificate

expiration. (String,

required)

- isEnabled

Set the value of

this parameter to

true if the

certificate

expiration monitor

is enabled. If not,

set the value of

this parameter to

false. (Boolean,

optional)

v Returns: None

startCertificate

ExpMonitor

The startCertificate

ExpMonitorcommand

performs certificate

monitoring. This

command visits all

key stores and

checks to see if they

are within certificate

expiration range.

None v Parameters: None

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask startCertif

icateExpMonitor

v Using Jython:

AdminTask.startCertifi

cateExpMonitor()

Interactive mode example

usage:

v Using Jacl:

$AdminTask startCertific

ateExpMonitor {-interactive}

v Using Jython string:

AdminTask.startCertific

ateExpMonitor (’[-inter

active]’)

v Using Jython list:

AdminTask.startCertific

ateExpMonitor ([’-inter

active’])

Commands for the KeySetGroupCommands group of the AdminTask

object

For more information about the AdminTask object, see the Commands for the AdminTask object article.

The following commands are available for the KeySetGroupCommands group of the AdminTask object:

836 Securing applications and their environment

Table 29.

Command name: Description: Target

object:

Parameters and return

values:

Examples:

createKeySetGroup The

createKeySetGroup

command creates the

key set group settings

in the configuration.

Use this command to

manage groups of

public, private, and

shared keys.

None v Parameters:

- name

The name that

uniquely

identifies the key

set group.

(String, required)

- scopeName

The name of the

scope. (String,

optional)

- autoGenerate

Set the value of

this parameter to

true if you want

to automatically

generate keys. If

not, set the

value to false.

(Boolean,

optional)

- wsScheduleName

The name of the

scheduler to use

to perform key

generation.

(String, required)

-

keySetObjectNames

A list of key set

configuration

names

separated by

colons (:).

(String, required)

v Returns: The

configuration object

name of the key set

group object that you

created.

Batch mode example usage:

v Using Jacl:

$AdminTask createKeySet

Group {-name keySetGrp

–autoGenerate true –wsS

cheduleName testSchedule

–keySetObjectNames test

KeySet(cells/localhost

Node01Cell|security.xml#

KeySet_1130354347825)}

v Using Jython string:

AdminTask.createKeySetGr

oup(’[-name keySetGrp –

autoGenerate true –wsSch

eduleName testSchedule

–keySetObjectNames test

KeySet(cells/localhostN

ode01Cell|security.xml#

KeySet_1130354347825)]’)

v Using Jython list:

AdminTask.createKeySetGr

oup([’-name’, ’keySetGrp’,

 ’–autoGenerate’, ’true’,

’–wsScheduleName’, ’test

Schedule’, ’–keySetObject

Names’, ’testKeySet(cells

/localhostNode01Cell|sec

urity.xml#KeySet_1130354

347825)’])

Interactive mode example

usage:

v Using Jacl:

$AdminTask createKey

SetGroup {-interactive}

v Using Jython string:

AdminTask.createKeySet

Group (’[-interactive]’)

v Using Jython list:

AdminTask.createKeySet

Group ([’-interactive’])

Chapter 9. Configuring security with scripting 837

Table 29. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

deleteKeySetGroup The

deleteKeySetGroup

command deletes the

settings of a key set

group from the

configuration.

None v Parameters:

- name

The name that

uniquely

identifies the key

set group.

(String, required)

- scopeName

The name of the

scope. (String,

optional)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask deleteKeySet

Group {-name keySetGrp }

v Using Jython string:

AdminTask.deleteKeySet

Group (’[-name keySetGrp]’)

v Using Jython list:

AdminTask.deleteKeySet

Group ([’-name’, ’key

SetGrp’])

Interactive mode example

usage:

v Using Jacl:

$AdminTask deleteKey

SetGroup {-interactive}

v Using Jython string:

AdminTask.deleteKeySet

Group (’[-interactive]’)

v Using Jython list:

AdminTask.deleteKeySet

Group ([’-interactive’])

838 Securing applications and their environment

Table 29. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

generateKeys ForKey

SetGroup

The generateKeys

ForKey

SetGroupcommand

generates keys for all

of the keys in the key

sets that make up the

key set group.

None v Parameters:

-

keySetGroupName

The name of the

key set group.

(String, required)

-

keySetGroupScope

The scope of the

key set group.

(String, optional)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask generateKey

ForKeySetGroup {-keySet

GroupName keySetGrp}

v Using Jython string:

AdminTask.generateKey

ForKeySetGroup (’[-key

SetGroupName keySetGrp]’)

v Using Jython list:

AdminTask.generateKey

ForKeySetGroup ([’-key

SetGroupName’, ’keySetGrp’])

Interactive mode example

usage:

v Using Jacl:

$AdminTask generateKeys

ForKeySetGroup {-intera

ctive}

v Using Jython string:

AdminTask.generateKeys

ForKeySetGroup (’[-int

eractive]’)

v Using Jython list:

AdminTask.generateKeys

ForKeySetGroup ([’-inte

ractive’])

Chapter 9. Configuring security with scripting 839

Table 29. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

getKeySetGroups The

getKeySetGroups

command displays

the settings of a

particular key set

group.

None v Parameters:

- name

The name that

uniquely

identifies the key

set group.

(String, required)

- scopeName

The name of the

scope. (String,

optional)

v Returns: The settings

of the specified key

set group.

Batch mode example usage:

v Using Jacl:

$AdminTask getKeySetGr

oup { -name keySetGrp }

v Using Jython string:

AdminTask.getKeySetGro

up (’[-name keySetGrp]’)

v Using Jython list:

AdminTask.getKeySetGro

up ([’-name’, ’keySet

Grp’])

Interactive mode example

usage:

v Using Jacl:

$AdminTask getKeySetGr

oups {-interactive}

v Using Jython string:

AdminTask.getKeySetGr

oups (’[-interactive]’)

v Using Jython list:

AdminTask.getKeySetGr

oups ([’-interactive’])

840 Securing applications and their environment

Table 29. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

listKeySetGroups The

listKeySetGroups

command lists the

key set groups for a

particular scope.

None v Parameters:

- scopeName

The name of the

scope. (String,

optional)

-

displayObjectNames

If you set the

value of this

parameter to

true, the

command

returns a list of

all of the key set

group objects

within a scope. If

you set the

value of this

parameter to

false, the

command

returns a list of

strings that

contain the key

set group name

and

management

scope. (Boolean,

optional)

v Returns: A list of key

set groups.

Batch mode example usage:

v Using Jacl:

$AdminTask listKeySetGr

oup {-displayObjectName

true}

v Using Jython string:

AdminTask.listKeySetGro

up (’[-displayObjectName

true]’)

v Using Jython list:

AdminTask.listKeySetGroup

([’-displayObjectName’,

’true’])

Interactive mode example

usage:

v Using Jacl:

$AdminTask listKeySetG

roups {-interactive}

v Using Jython string:

AdminTask.listKeySetGr

oups (’[-interactive]’)

v Using Jython list:

AdminTask.listKeySetGr

oups ([’-interactive’])

Chapter 9. Configuring security with scripting 841

Table 29. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

modifyKeySetGroup The

modifyKeySetGroup

command changes

the settings of an

existing key set

group.

None v Parameters:

- name

The name that

uniquely

identifies the key

set group.

(String, required)

- scopeName

The name of the

scope. (String,

optional)

- autoGenerate

Set the value of

this parameter to

true if you want

to automatically

generate keys. If

not, set the

value to false.

(Boolean,

optional)

- wsScheduleName

The name of the

scheduler to use

to perform key

generation.

(String, optional)

-

keySetObjectNames

A list of key set

configuration

names

separated by

colons (:).

(String, optional)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask modifyKeySet

Group {-name keySetGrp

–autoGenetate false}

v Using Jython string:

AdminTask.modifyKeySet

Group (’[-name keySetGrp

–autoGenetate false]’)

v Using Jython list:

AdminTask.modifyKeySet

Group ([’-name’, ’key

SetGrp’, ’–autoGenetate’,

’false’])

Interactive mode example

usage:

v Using Jacl:

$AdminTask modifyKeySet

Group {-interactive}

v Using Jython string:

AdminTask.modifyKeySet

Group (’[-interactive]’)

v Using Jython list:

AdminTask.modifyKeySet

Group ([’-interactive’])

Commands for the KeySetCommands group of the AdminTask object

For more information about the AdminTask object, see the Commands for the AdminTask object article.

The following commands are available for the KeySetCommands group of the AdminTask object:

842 Securing applications and their environment

Table 30.

Command name: Description: Target

object:

Parameters and return

values:

Examples:

createKeySet The createKeySet

command creates the

key set settings in the

configuration. Use

this command to

control key instances

that have the same

type.

None v Parameters:

- name

The name that

uniquely

identifies the key

set. (String,

required)

- scopeName

The name of the

scope. (String,

optional)

- aliasPrefix

The prefix for

the key alias

when a new key

generates.

(String, required)

- password

The password

that protects the

key in the key

store. (String,

required)

-

maxKeyReferences

The maximum

number of key

references

returned keys

from this key

set. (Integer,

required)

- deleteOldKeys

Set the value of

this parameter to

true to delete

old keys when

new keys are

generated.

Otherwise, set

the value of this

parameter to

false. (Boolean,

optional)

-

keyGenerationClass

The class that is

used to generate

new keys in the

key set. (String,

optional)

Batch mode example usage:

v Using Jacl:

$AdminTask createKeySet

{-name testKeySet –alias

Prefix test –password pwd

–maxKeyReferences 2 –del

eteOldKeys true –keyStor

eName testKeyStore –isK

eyPair false}

v Using Jython string:

AdminTask.createKeySet(’

[-name testKeySet –alias

Prefix test –password

pwd –maxKeyReferences 2

–deleteOldKeys true –key

StoreName testKeyStore

–isKeyPair false]’)

v Using Jython list:

AdminTask.createKeySet

([’-name’, ’testKeySet’,

’–aliasPrefix’, ’test’,

’–password’, ’pwd’, ’–max

KeyReferences’, ’2’,

’–deleteOldKeys’, ’true’,

’–keyStoreName’, ’test

KeyStore’, ’–isKeyPair’,

’false’])

Interactive mode example

usage:

v Using Jacl:

$AdminTask createKeySet

{-interactive}

v Using Jython string:

AdminTask.createKeySet

(’[-interactive]’)

v Using Jython list:

AdminTask.createKeySet

([’-interactive’])

Chapter 9. Configuring security with scripting 843

Table 30. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

- keyStoreName

The key store that

contains the keys.

(String, required)

-

keyStoreScopeName

The management

scope where the

key store is

located. (String,

optional)

- isKeyPair

Set the value of

this parameter to

true if the keys in

the key set are key

pairs. Otherwise,

set the value of

this parameter to

false. (Boolean,

optional)

v Returns: The

configuration object

name of the key set

object that you

created.

deleteKeySet The deleteKeySet

command deletes the

settings of a key set

from the

configuration.

None v Parameters:

- name

The name that

uniquely

identifies the key

set. (String,

required)

- scopeName

The name of the

scope. (String,

optional)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask deleteKeySet

{-name testKeySet}

v Using Jython string:

AdminTask.deleteKeySet

(’[-name testKeySet]’)

v Using Jython list:

AdminTask.deleteKeySet

([’-name’, ’testKeySet’])

Interactive mode example

usage:

v Using Jacl:

$AdminTask deleteKeySet

{-interactive}

v Using Jython string:

AdminTask.deleteKeySet

(’[-interactive]’)

v Using Jython list:

AdminTask.deleteKeySet

([’-interactive’])

844 Securing applications and their environment

Table 30. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

generateKey

ForKeySet

The generateKey

ForKeySet command

generates keys for

the keys in the key

set.

None v Parameters:

- keySetName

The name of the

key set. (String,

required)

- keySetScope

The scope of the

key set. (String,

optional)

-

keySetSaveConfig

Set the value of

this parameter to

true to save the

configuration of

the key set.

Otherwise, set

the value of this

parameter to

false. (Boolean,

optional)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask generateKey

ForKeySet{ -keySetName

testKeySet }

v Using Jython string:

AdminTask.generateKeyFor

KeySet(’[-keySetName

testKeySet]’)

v Using Jython list:

AdminTask.generateKeyFor

KeySet([’-keySetName’,

’testKeySet’])

Interactive mode example

usage:

v Using Jacl:

$AdminTask generateKeyFor

KeySet {-interactive}

v Using Jython string:

AdminTask.generateKeyFo

rKeySet (’[-interactive]’)

v Using Jython list:

AdminTask.generateKeyFo

rKeySet ([’-interactive’])

getKeySet The getKeySet

command displays

the settings of a

particular key set.

None v Parameters:

- name

The name that

uniquely

identifies the key

set. (String,

required)

- scopeName

The name of the

scope. (String,

optional)

v Returns: The settings

of the specified key

set group.

Batch mode example usage:

v Using Jacl:

$AdminTask getKeySet

{-name testKeySet}

v Using Jython string:

AdminTask.getKeySet

(’[-name testKeySet]’)

v Using Jython list:

AdminTask.getKeySet

([’-name’, ’testKeySet’])

Interactive mode example

usage:

v Using Jacl:

$AdminTask getKeySet

{-interactive}

v Using Jython string:

AdminTask.getKeySet

(’[-interactive]’)

v Using Jython list:

AdminTask.getKeySet

([’-interactive’])

Chapter 9. Configuring security with scripting 845

Table 30. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

listKeySets The listKeySets

command lists the

key sets in a

particular scope.

None v Parameters:

- scopeName

The name of the

scope. (String,

optional)

-

displayObjectNames

Set the value of

this parameter to

true to list the

key set

configuration

objects within

the scope. Set

the value of this

parameter to

false if you

want to list the

strings that

contain the key

set group name

and

management

scope. (Boolean,

optional)

v Returns: The key

sets for the scope

that you specified.

Batch mode example usage:

v Using Jacl:

$AdminTask listKeySets

{-displayObjectName true}

v Using Jython string:

AdminTask.listKeySets

(’[-displayObjectName

true]’)

v Using Jython list:

AdminTask.listKeySets

([’-displayObjectName’,

’true’])

Interactive mode example

usage:

v Using Jacl:

$AdminTask listKeySets

{-interactive}

v Using Jython string:

AdminTask.listKeySets

(’[-interactive]’)

v Using Jython list:

AdminTask.listKeySets

([’-interactive’])

846 Securing applications and their environment

Table 30. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

modifyKeySet The modifyKeySet

command changes

the settings of an

existing key set.

None v Parameters:

- name

The name that

uniquely

identifies the key

set. (String,

required)

- scopeName

The name of the

scope. (String,

optional)

- aliasPrefix

The prefix for

the key alias

when a new key

generates.

(String, optional)

- password

The password

that protects the

key in the key

store. (String,

optional)

-

maxKeyReferences

The maximum

number of key

references

returned keys

from this key

set. (Integer,

optional)

- deleteOldKeys

Set the value of

this parameter to

true to delete

old keys when

new keys are

generated.

Otherwise, set

the value of this

parameter to

false. (Boolean,

optional)

-

keyGenerationClass

The class that is

used to generate

new keys in the

key set. (String,

optional)

Batch mode example usage:

v Using Jacl:

$AdminTask modifyKeySet

{-name testKeySet -maxKey

References 3 –deleteOld

Keys false}

v Using Jython string:

AdminTask.modifyKeySet

(’[-name testKeySet -max

KeyReferences 3 –delete

OldKeys false]’)

v Using Jython list:

AdminTask.modifyKeySet

([’-name’, ’testKeySet’,

’-maxKeyReferences’,

’3’, ’–deleteOldKeys’,

’false’])

Interactive mode example

usage:

v Using Jacl:

$AdminTask modifyKeySet

{-interactive}

v Using Jython string:

AdminTask.modifyKeySet

(’[-interactive]’)

v Using Jython list:

AdminTask.modifyKeySet

([’-interactive’])

Chapter 9. Configuring security with scripting 847

Table 30. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

- keyStoreName

The key store that

contains the keys.

(String, optional)

-

keyStoreScopeName

The management

scope where the

key store is

located. (String,

optional)

- isKeyPair

Set the value of

this parameter to

true if the keys in

the key set are key

pairs. Otherwise,

set the value of

this parameter to

false. (Boolean,

optional)

v Returns: None

Commands for the KeyReferenceCommands group of the AdminTask

object

For more information about the AdminTask object, see the Commands for the AdminTask object article.

The following commands are available for the KeyReferenceCommands group of the AdminTask object:

848 Securing applications and their environment

Table 31.

Command name: Description: Target

object:

Parameters and return

values:

Examples:

createKeyReference The

createKeyReference

command creates the

key reference setting

in the configuration

for key set objects.

None v Parameters:

- keySetName

The name that

uniquely

identifies the key

set to which the

key reference

belongs. (String,

required)

- keySetScope

The

management

scope of the key

set. (String,

optional)

- keyAlias

The alias name

that identifies

the key for the

key set that you

specify. (String,

required)

- keyPassword

The password

used for

encrypting the

key. (String,

optional)

-

keyPasswordVerify

The password

used for

encrypting the

key. (String,

optional)

- version

The version of

the key

reference.

(String, optional)

-

keyReferenceSaveConfig

Set the value of

this parameter to

true to save the

key reference to

the

configuration.

Otherwise, set

the value to

false. (String,

optional)

Batch mode example usage:

v Using Jacl:

$AdminTask createKeyReference

{-keySetName testKeySet -key

Alias testKey –password test

PWD –passwordVerify testPWD

–keyReferenceSaveConfig true}

v Using Jython string:

AdminTask.createKeyReference

(’[-keySetName testKeySet

-keyAlias testKey –password

testPWD –passwordVerify test

PWD –keyReferenceSaveConfig

true]’)

v Using Jython list:

AdminTask.createKeyReference

([’-keySetName’, ’testKeySet’,

’-keyAlias’, ’testKey’, ’–pa

ssword’, ’testPWD’, ’–passw

ordVerify’, ’testPWD’, ’–key

ReferenceSaveConfig’, ’true’])

Interactive mode example

usage:

v Using Jacl:

$AdminTask createKeyRe

ference {-interactive}

v Using Jython string:

AdminTask.createKeyRef

erence (’[-interactive]’)

v Using Jython list:

AdminTask.createKeyRef

erence ([’-interactive’])

Chapter 9. Configuring security with scripting 849

Table 31. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

v Returns: The

configuration object

name of the key

reference scope

object that you

created.

deleteKeyReference The

deleteKeyReference

command deletes a

key reference object

from the key set

object in the

configuration.

None v Parameters:

- keySetName

The name that

uniquely

identifies the key

set to which the

key reference

belongs. (String,

required)

- keySetScope

The

management

scope of the key

set. (String,

optional)

- keyAlias

The alias name

that identifies

the key for the

key set that you

specify. (String,

required)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask deleteKeyRef

erence { -keySetName tes

tKeySet –keyAlias testKey }

v Using Jython string:

AdminTask.deleteKeyRefe

rence (’[-keySetName tes

tKeySet –keyAlias test

Key]’)

v Using Jython list:

AdminTask.deleteKeyRefe

rence ([’-keySetName’,

’testKeySet’, ’–keyAlias’,

’testKey’])

Interactive mode example

usage:

v Using Jacl:

$AdminTask deleteKeyRe

ference {-interactive}

v Using Jython string:

AdminTask.deleteKeyRef

erence (’[-interactive]’)

v Using Jython list:

AdminTask.deleteKeyRef

erence ([’-interactive’])

850 Securing applications and their environment

Table 31. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

getKeyReference The

getKeyReference

command displays

the setting of a key

reference object.

None v Parameters:

- keySetName

The name that

uniquely

identifies the key

set to which the

key reference

belongs. (String,

required)

- keySetScope

The

management

scope of the key

set. (String,

optional)

- keyAlias

The alias name

that identifies

the key for the

key set that you

specify. (String,

required)

v Returns: The settings

of the key reference

object.

Batch mode example usage:

v Using Jacl:

$AdminTask getKeyRefere

nce { -keySetName test

KeySet –keyAlias testKey }

v Using Jython string:

AdminTask.getKeyRefere

nce (’[-keySetName test

KeySet –keyAlias testKey]’)

v Using Jython list:

AdminTask.getKeyRefere

nce ([’-keySetName’,

’testKeySet’, ’–keyAlias’,

’testKey’])

Interactive mode example

usage:

v Using Jacl:

$AdminTask getKeyRefer

ence {-interactive}

v Using Jython string:

AdminTask.getKeyRefer

ence (’[-interactive]’)

v Using Jython list:

AdminTask.getKeyRefere

nce ([’-interactive’])

Chapter 9. Configuring security with scripting 851

Table 31. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

listKeyReferences The

listKeyReferences

command lists the

key references for a

particular key set in

the configuration.

None v Parameters:

- keySetName

The name that

uniquely

identifies the key

set to which the

key reference

belongs. (String,

required)

- keySetScope

The

management

scope of the key

set. (String,

optional)

v Returns: The

configuration object

name of the key

reference scope

object that you

created.

Batch mode example usage:

v Using Jacl:

$AdminTask listKeyRef

ereces { -keySetName

testKeySet}

v Using Jython string:

AdminTask.listKeyRefere

ces (’[-keySetName test

KeySet]’)

v Using Jython list:

AdminTask.listKeyRefere

ces ([’-keySetName’,

’testKeySet’])

Interactive mode example

usage:

v Using Jacl:

$AdminTask listKeyRef

erences {-interactive}

v Using Jython string:

AdminTask.listKeyRefer

ences (’[-interactive]’)

v Using Jython list:

AdminTask.listKeyRefer

ences ([’-interactive’])

Commands for the securityEnablement group of the AdminTask object

For more information about the AdminTask object, see the Commands for the AdminTask object article.

The following commands are available for the securityEnablement group of the AdminTask object:

852 Securing applications and their environment

Table 32.

Command name: Description: Target

object:

Parameters and return

values:

Examples:

GlobalSettings None v Parameters:

- secureApps

Enables

application

security. The

default value is

true. (Boolean,

required)

-

secureLocalResources

Enables Java 2

Security. The

default value is

true. (Boolean,

required)

- ltpaPassword

Defines the LTPA

password. Valid

values include the

password used by

LTPA. (String,

required)

- userRegistryType

Defines the type of

user registry to

use. Valid values

include: Embedded,

LDAP, LocalOS, or

Custom. (String,

required)

v Returns: None

Interactive mode example

usage:

v Using Jacl:

$AdminTask GlobalSettings

{-interactive}

v Using Jython string:

AdminTask.GlobalSettings

(’[-interactive]’)

v Using Jython list:

AdminTask.GlobalSettings

([’-interactive’])

Chapter 9. Configuring security with scripting 853

Table 32. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

CustomRegistry The

CustomRegistry

command

checks that the

specified name

for the primary

administrator

does not

already exist in

the custom

registry.

None v Parameters:

- primaryAdminName

Represents a

name of the

primary

administrator. The

value must be a

valid administrator

name. (String,

required)

- serverUserName

Represents the

user name used to

connect to internal

security routines.

The value must be

a valid user name.

(String, required)

-

customRegistryClass

Represents the

class name of the

custom user

registry

implementation of

the UserRegistry.

The value must be

a valid class name

for a custom

registry. (String,

required)

- customProperties

Custom user

registry properties.

An array or

name-value

properties. (String,

required)

- customName

The custom user

registry property

name. (String,

required)

- customValue

The custom user

registry property

value that is

associated with the

property name.

(String, required)

v Returns: A value of

true if the primary

administrator does not

already exist in the

custom registry.

Otherwise, returns a

value of false.

Interactive mode example

usage:

v Using Jacl:

$AdminTask CustomRegistry

{-interactive}

v Using Jython string:

AdminTask.CustomRegistry

(’[-interactive]’)

v Using Jython list:

AdminTask.CustomRegistry

([’-interactive’])

854 Securing applications and their environment

Table 32. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

EmbeddedRegistry The

EmbeddedRegistry

command

checks that the

specified name

for the primary

administrator

does not

already exist in

the WIM

file-based

registry.

Returns true if

it does not;

false,

otherwise.

None v Parameters:

- primaryAdminName

This string

represents a name

of the primary

administrator. The

value must be a

valid administrator

name. (String,

required)

- adminPassword

The password

associated with the

primary

administrator. The

value must be a

valid administrator

password. (String,

required)

- serverUserName

This string

represents the

user name used to

connect to internal

security routines.

The value must be

a valid user name.

(String, required)

v Returns: A value of

true if the specified

name for the primary

administrator does not

already exist in the

WIM file-based registry.

Otherwise, returns a

value of false.

Interactive mode example

usage:

v Using Jacl:

$AdminTask EmbeddedRegistry

{-interactive}

v Using Jython string:

AdminTask.EmbeddedRegistry

(’[-interactive]’)

v Using Jython list:

AdminTask.EmbeddedRegistry

([’-interactive’])

Chapter 9. Configuring security with scripting 855

Table 32. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

LDAPRegistry The

LDAPRegistry

command

checks, after all

the inputs for

the LDAP

registry have

been defined,

that a

connection can

be made

successfully to

the LDAP

server. An SSL

connection test

to LDAP is also

supported

using this

command.

None v Parameters:

- ldapServerType

The type of LDAP

user registry to be

connected to

WebSphere

Application Server.

Valid values

include: IBM

Tivoli Directory

Server, SecureWay,

Sun ONE, Domino,

Active Directory,

eDirectory,

Custom. (String,

required)

- ldapHostname

The host name for

the LDAP server.

(String, required)

- ldapPort

The port to

connect to the

LDAP server.

(Integer, required)

- ldapBaseDN

The base

distinguished

name of the

directory service,

the starting point

for searches.

(String, required)

- ldapBindDN

The bind

distinguished

name, used to

bind to the

directory server.

(String, required)

Interactive mode example

usage:

v Using Jacl:

$AdminTask LDAPRegistry

{-interactive}

v Using Jython string:

AdminTask.LDAPRegistry

(’[-interactive]’)

v Using Jython list:

AdminTask.LDAPRegistry

([’-interactive’])

856 Securing applications and their environment

Table 32. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

- ldapBindPassword

The password for the

application server,

used to bind to the

directory service

(String, required)

- ldapServerUserName

The user ID that is

used to run

WebSphere

Application Server for

security purposes.

(String, required)

v Returns: A value of

true if the connection

was successful.

Otherwise, returns a

value of false.

LocalOSRegistry The

LocalOSRegistry

command

checks that the

specified name

for the primary

administrator

does not

already exist in

the LocalOS

registry.

None v Parameters:

- primaryAdminName

This string

represents a name

of the primary

administrator. The

value must be a

valid administrator

name. (String,

required)

- serverUserName

This string

represents the

user name used to

connect to internal

security routines.

The value must be

a valid user name.

(String, required)

v Returns: A value of

true if the specified

name for the primary

administrator does not

already exist in the

LocalOS registry.

Otherwise, returns a

value of false.

Interactive mode example

usage:

v Using Jacl:

$AdminTask LocalOSRegist

ry {-interactive}

v Using Jython string:

AdminTask.LocalOSRegist

ry (’[-interactive]’)

v Using Jython list:

AdminTask.LocalOSRegist

ry ([’-interactive’])

Chapter 9. Configuring security with scripting 857

Table 32. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

CurrentSettings The

CurrentSettings

command

returns a string

that represents

all of the

existing

settings set by

the wizard that

will be read

from the

workspace

instead of from

the

configuration

repository of

the

security.xml

file.

None v Parameters:

-

currentWizardSettings

A properties object

that contains all

the current settings

selected through

the wizard.

(Properties,

required)

v Returns: A string of

security settings as

name-value pairs.

Interactive mode example

usage:

v Using Jacl:

$AdminTask CurrentSettings

{-interactive}

v Using Jython string:

AdminTask.CurrentSettings

(’[-interactive]’)

v Using Jython list:

AdminTask.CurrentSettings

([’-interactive’])

Commands for the CertificateRequestCommands group of the

AdminTask object

For more information about the AdminTask object, see the Commands for the AdminTask object article.

The following commands are available for the CertificateRequestCommands group of the AdminTask

object:

858 Securing applications and their environment

Table 33.

Command name: Description: Target

object:

Parameters and return

values:

Examples:

createCertificate

Request

The createCertificate

Request command

creates a certificate

request that is

associated with a

particular key store.

None v Parameters:

- keyStoreName

The name that

uniquely

identifies the key

store

configuration

object. (String,

required)

- keyStoreScope

The scope name

of the key store.

(String, optional)

- certificateAlias

The name that

uniquely

identifies the

certificate

request in a key

store. (String,

required)

- certificateVersion

The certificate

version. (String,

required)

- certificateSize

(Integer,

required)

-

certificateCommonName

(String, required)

-

certificateOrganization

(String, optional)

-

certificateOrganizationUnit

(String, optional)

- certificateLocality

(String, optional)

- certificateState

The state code

for the

certificate.

(String, optional)

- certificateZip

The zip code for

the certificate.

(String, optional)

Batch mode example usage:

v Using Jacl:

$AdminTask createCertificateRequest

{-keyStoreName testKeyStore

-certificateAlias certReq

-certificateSize 1024 -certificate

CommonName localhost -certificate

Organization testing -certificate

RequestFilePath c:\temp\testCertReq.arm}

v Using Jython string:

AdminTask.createCertificateRequest

(’[-keyStoreName testKeyStore

-certificateAlias certReq

-certificateSize 1024 -certificate

CommonName localhost -certificate

Organization testing -certificate

RequestFilePath c:\temp\testCertReq.arm]

v Using Jython list:

AdminTask.createCertificateRequest

([’-keyStoreName’, ’testKeyStore’,

’-certificateAlias’, ’certReq’,

’-certificateSize’, ’1024’,

 ’-certificateCommonName’,

 ’localhost’,

 ’-certificateOrganization’,

 ’testing’,

 ’-certificateRequestFilePath’,

 ’c:\temp\testCert

Req.arm’])

Interactive mode example

usage:

v Using Jacl:

$AdminTask createCertific

ateRequest {-interactive}

v Using Jython string:

AdminTask.createCertific

ateRequest (’[-interactive]’)

v Using Jython list:

AdminTask.createCertifica

teRequest ([’-interactive’])

Chapter 9. Configuring security with scripting 859

Table 33. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

- certificateCountry

The country for the

certificate. (String,

optional)

- certificateValidDays

The amount of time

in days for which

the certificate is

valid. (Integer,

optional)

-

certificateRequestFilePath

The file location of

the certificate

request that can be

sent to a certificate

authority. (String,

required)

v Returns: The

configuration object

name of the key

store object that you

created.

deleteCertificate

Request

The deleteCertificate

Request command

deletes a certificate

request from a key

store.

None v Parameters:

- keyStoreName

The name that

uniquely

identifies the key

store

configuration

object. (String,

required)

- keyStoreScope

The scope name

of the key store.

(String, optional)

- certificateAlias

The name that

uniquely

identifies the

certificate

request in a key

store. (String,

required)

v Returns: None

Interactive mode example

usage:

v Using Jacl:

$AdminTask deleteCertifi

cateRequest {-interactive}

v Using Jython string:

AdminTask.deleteCertifi

cateRequest (’[-interac

tive]’)

v Using Jython list:

AdminTask.deleteCertifi

cateRequest ([’-interac

tive’])

860 Securing applications and their environment

Table 33. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

extractCertificate

Request

The

extractCertificate

Requestcommand

extracts a certificate

request to a file.

None v Parameters:

- keyStoreName

The name that

uniquely

identifies the key

store

configuration

object. (String,

required)

- keyStoreScope

The scope name

of the key store.

(String, optional)

- certificateAlias

The name that

uniquely

identifies the

certificate

request in a key

store. (String,

required)

-

certificateRequestFilePath

The file location

of the certificate

request that can

be sent to a

certificate

authority. (String,

required)

v Returns: A certificate

request file is

created that contains

the extracted

certificate.

Interactive mode example

usage:

v Using Jacl:

$AdminTask extractCertifi

cateRequest {-interactive}

v Using Jython string:

AdminTask.extractCertific

ateRequest (’[-interactive]’)

v Using Jython list:

AdminTask.extractCertific

ateRequest ([’-interactive’])

Chapter 9. Configuring security with scripting 861

Table 33. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

getCertificateRequest The

getCertificateRequest

command obtains

information about a

particular certificate

request in a key

store.

None v Parameters:

- keyStoreName

The name that

uniquely

identifies the key

store

configuration

object. (String,

required)

- keyStoreScope

The scope name

of the key store.

(String, optional)

- certificateAlias

The name that

uniquely

identifies the

certificate

request in a key

store. (String,

required)

v Returns: Information

about the certificate

request.

Interactive mode example

usage:

v Using Jacl:

$AdminTask getCertificate

Request {-interactive}

v Using Jython string:

AdminTask.getCertificate

Request (’[-interactive]’)

v Using Jython list:

AdminTask.getCertificate

Request ([’-interactive’])

listCertificateRequest The

listCertificateRequest

command lists all the

certificate requests

associated with a

particular key store.

None v Parameters:

- keyStoreName

The name that

uniquely

identifies the key

store

configuration

object. (String,

required)

- keyStoreScope

The scope name

of the key store.

(String, optional)

v Returns: An attribute

list for each

certificate request in

a key store.

Interactive mode example

usage:

v Using Jacl:

$AdminTask listCertifica

teRequest {-interactive}

v Using Jython string:

AdminTask.listCertifica

teRequest (’[-interactive]’)

v Using Jython list:

AdminTask.listCertificat

eRequest ([’-interactive’])

Commands for the SignerCertificateCommands group of the

AdminTask object

For more information about the AdminTask object, see the Commands for the AdminTask object article.

The following commands are available for the SignerCertificateCommands group of the AdminTask object:

862 Securing applications and their environment

Table 34.

Command name: Description: Target

object:

Parameters and return

values:

Examples:

addSignerCertificate The

addSignerCertificate

command adds a

signer certificate from

a certificate file to a

key store.

None v Parameters:

- keyStoreName

The name of the

key store where

the signer

certificate is

located. (String,

required)

- keyStoreScope

The

management

scope of the key

store. (String,

optional)

- certificateFilePath

The full path

name of the file

that contains the

signer certificate.

(String, required)

- certificateAlias

The alias name

of the signer

certificate in the

key store.

(String, required)

- base64Encoded

Set the value of

this parameter to

true if the

certificate is

ascii base 64

encoded. Set

the value of this

parameter to

false if the

certificate is

binary. (String,

required)

v Returns: The

configuration object

name of the key

store object that you

created.

Interactive mode example

usage:

v Using Jacl:

$AdminTask addSignerCert

ificate {-interactive}

v Using Jython string:

AdminTask.addSignerCert

ificate (’[-interactive]’)

v Using Jython list:

AdminTask.addSignerCert

ificate ([’-interactive’])

Chapter 9. Configuring security with scripting 863

Table 34. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

deleteSignerCertificate The

deleteSignerCertificate

command deletes a

signer certificate from

a key store.

None v Parameters:

- keyStoreName

The name of the

key store where

the signer

certificate is

located. (String,

required)

- keyStoreScope

The

management

scope of the key

store. (String,

optional)

- certificateAlias

The alias name

of the signer

certificate in the

key store.

(String, required)

v Returns: None

Interactive mode example

usage:

v Using Jacl:

$AdminTask deleteSignerC

ertificate {-interactive}

v Using Jython string:

AdminTask.deleteSignerCe

rtificate (’[-interactive]’)

v Using Jython list:

AdminTask.deleteSignerCe

rtificate ([’-interactive’])

864 Securing applications and their environment

Table 34. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

extractSignerCertificate The

extractSignerCertificate

command extracts a

signer certificate from

a key store to a file.

None v Parameters:

- keyStoreName

The name of the

key store where

the signer

certificate is

located. (String,

required)

- keyStoreScope

The

management

scope of the key

store. (String,

optional)

- certificateAlias

The alias name

of the signer

certificate in the

key store.

(String, required)

- certificateFilePath

The full path

name of the file

that contains the

signer certificate.

(String, required)

- base64Encoded

Set the value of

this parameter to

true if the

certificate is

ascii base 64

encoded. Set

the value of this

parameter to

false if the

certificate is

binary. (String,

required)

v Returns: The

certificate file is

created and contains

the signer certificate.

Interactive mode example

usage:

v Using Jacl:

$AdminTask extractSigner

Certificate {-interactive}

v Using Jython string:

AdminTask.extractSignerC

ertificate (’[-interactive]’)

v Using Jython list:

AdminTask.extractSignerCe

rtificate ([’-interactive’])

Chapter 9. Configuring security with scripting 865

Table 34. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

getSignerCertificate The

getSignerCertificate

command obtains

information about a

signer certificate from

a key store.

None v Parameters:

- keyStoreName

The name of the

key store where

the signer

certificate is

located. (String,

required)

- keyStoreScope

The

management

scope of the key

store. (String,

optional)

- certificateAlias

The alias name

of the signer

certificate in the

key store.

(String, required)

v Returns: Information

about a signer

certificate.

Interactive mode example

usage:

v Using Jacl:

$AdminTask getSignerCert

ificate {-interactive}

v Using Jython string:

AdminTask.getSignerCert

ificate (’[-interactive]’)

v Using Jython list:

AdminTask.getSignerCert

ificate ([’-interactive’])

listSignerCertificates The

listSignerCertificates

command lists all

signer certificates in a

particular key store.

None v Parameters:

- keyStoreName

The name of the

key store where

the signer

certificate is

located. (String,

required)

- keyStoreScope

The

management

scope of the key

store. (String,

optional)

v Returns: A list of

signer certificate

aliases.

Interactive mode example

usage:

v Using Jacl:

$AdminTask listSignerCer

tificates {-interactive}

v Using Jython string:

AdminTask.listSignerCer

tificates (’[-interactive]’)

v Using Jython list:

AdminTask.listSignerCer

tificates ([’-interactive’])

866 Securing applications and their environment

Table 34. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

retrieveSignerFromPort The

retrieveSignerFromPort

command retrieves a

signer from a remote

host and stores the

signer in a key store.

None v Parameters:

- host

The host name

of the system

from where the

signer certificate

will be retrieved.

(String, required)

- port

The port of the

remote system

from where the

signer certificate

will be retrieved.

(Integer,

required)

- keyStoreName

The name of the

key store where

the signer

certificate is

located. (String,

required)

- keyStoreScope

The

management

scope of the key

store. (String,

required)

- sslConfigName

The name of the

SSL

configuration

object. (String,

optional)

-

sslConfigScopeName

The

management

scope where the

SSL

configuration

object is located.

(String, optional)

v Returns: The signer

certificate is created

in the key store file.

Batch mode example usage:

v Using Jacl:

$AdminTask retrieveSigner

FromPort {-host serverHost

-port 443 -keyStoreName

testKeyStore -certificate

Alias serverHostSigner}

v Using Jython string:

AdminTask.retrieveSigner

FromPort (’[-host server

Host -port 443 -keyStore

Name testKeyStore -certi

ficateAlias serverHost

Signer]’)

v Using Jython list:

AdminTask.retrieveSigner

FromPort ([’-host’,

’serverHost’, ’-port’,

’443’, ’-keyStoreName’,

’testKeyStore’, ’-certi

ficateAlias’, ’serverHost

Signer’])

Interactive mode example

usage:

v Using Jacl:

$AdminTask retrieveSigner

FromPort {-interactive}

v Using Jython string:

AdminTask.retrieveSigner

FromPort (’[-interactive]’)

v Using Jython list:

AdminTask.retrieveSigner

FromPort ([’-interactive’])

Chapter 9. Configuring security with scripting 867

Table 34. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

retrieveSigner

InfoFromPort

The retrieveSigner

InfoFromPort

command retrieves

signer information

from a port on a

remote host.

None v Parameters:

- host

The host name

of the system

from where the

signer certificate

will be retrieved.

(String, required)

- port

The port of the

remote system

from where the

signer certificate

will be retrieved.

(Integer,

required)

- sslConfigName

The name of the

SSL

configuration

object. (String,

optional)

-

sslConfigScopeName

The

management

scope where the

SSL

configuration

object is located.

(String, optional)

v Returns: Information

about the signer

certificate from the

remote host port.

Interactive mode example

usage:

v Using Jacl:

$AdminTask retrieveSigner

InfoFromPort {-interactive}

v Using Jython string:

AdminTask.retrieveSigner

InfoFromPort (’[-interactive]’)

v Using Jython list:

AdminTask.retrieveSigner

InfoFromPort ([’-interactive’])

Commands for the PersonalCertificateCommands group of the

AdminTask object

For more information about the AdminTask object, see the Commands for the AdminTask object article.

The following commands are available for the personalCertificateCommands group of the AdminTask

object:

868 Securing applications and their environment

Table 35.

Command name: Description: Target

object:

Parameters and return

values:

Examples:

createSelfSigned

Certificate

The

createSelfSigned

Certificate command

creates a personal

certificate in a key

store.

None v Parameters:

- keyStoreName

The name that

uniquely

identifies the key

store

configuration

object. (String,

required)

- keyStoreScope

The scope name

of the key store.

(String, optional)

- certificateAlias

The name that

uniquely

identifies the

certificate

request in a key

store. (String,

required)

- certificateVersion

The version of

the certificate.

(String, required)

- certificateSize

The size of the

certificate.

(Integer,

required)

-

certificateCommonName

The common

name of the

certificate.

(String, required)

-

certificateOrganization

The organization

of the certificate.

(String, optional)

-

certificateOrganizationUnit

The

organizational

unit of the

certificate.

(String, optional)

Batch mode example usage:

v Using Jacl:

$AdminTask createSelfSignedCertificate

{-keyStoreName testKeyStore

-certificateAlias default

-certificateCommonName localhost

-certificateOrganization ibm}

v Using Jython string:

AdminTask.createSelfSignedCertificate

(’[-keyStoreName testKeyStore

-certificateAlias default

-certificateCommonName localhost

-certificateOrganization ibm]’)

v Using Jython list:

AdminTask.createSelfSignedCertificate

([’-keyStoreName’, ’testKeyStore’,

’-certificateAlias’, ’default’,

’-certificateCommonName’, ’localhost’,

’-certificateOrganization’, ’ibm’])

Interactive mode example

usage:

v Using Jacl:

$AdminTask createSelfSigned

Certificate {-interactive}

v Using Jython string:

AdminTask.createSelfSigned

Certificate (’[-interactive]’)

v Using Jython list:

AdminTask.createSelfSigned

Certificate ([’-interactive’])

Chapter 9. Configuring security with scripting 869

Table 35. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

- certificateLocality

The locality of the

certificate. (String,

optional)

- certificateState

The state of the

certificate. (String,

optional)

- certificateZip

The zip code of the

certificate. (String,

optional)

- certificateCountry

The country of the

certificate. (String,

optional)

- certificateValidDays

The amount of time

in days for which

the certificate is

valid. (Integer,

optional)

v Returns: None

deleteCertificate The deleteCertificate

command deletes a

personal certificate

from a key store.

None v Parameters:

- keyStoreName

The name that

uniquely

identifies the key

store

configuration

object. (String,

required)

- keyStoreScope

The scope name

of the key store.

(String, optional)

- certificateAlias

The name that

uniquely

identifies the

certificate

request in a key

store. (String,

required)

v Returns: None

Interactive mode example

usage:

v Using Jacl:

$AdminTask deleteCertif

icate {-interactive}

v Using Jython string:

AdminTask.deleteCertif

icate (’[-interactive]’)

v Using Jython list:

AdminTask.deleteCertif

icate ([’-interactive’])

870 Securing applications and their environment

Table 35. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

exportCertificate The

exportCertificate

command exports a

personal certificate

from one key store to

another.

None v Parameters:

- keyStoreName

The name that

uniquely

identifies the key

store

configuration

object. (String,

required)

- keyStoreScope

The scope name

of the key store.

(String, optional)

-

keyStorePassword

The password to

the key store.

(String, required)

- keyFilePath

The full path to

a key store file

that is located in

a file system.

The store from

where a

certificate will be

imported or

exported.

(String, required)

- keyFilePassword

The password to

the key store

file. (String,

required)

- keyFileType

The type of the

key file. (String,

required)

- certificateAlias

The name that

uniquely

identifies the

certificate

request in a key

store. (String,

required)

- aliasInKeyStore

(String, optional)

v Returns: None

Interactive mode example

usage:

v Using Jacl:

$AdminTask exportCerti

ficate {-interactive}

v Using Jython string:

AdminTask.exportCerti

ficate (’[-interactive]’)

v Using Jython list:

AdminTask.exportCertif

icate ([’-interactive’])

Chapter 9. Configuring security with scripting 871

Table 35. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

extractCertificate The

extractCertificate

command extracts the

signer part of a

personal certificate to

a file.

None v Parameters:

- keyStoreName

The name that

uniquely

identifies the key

store

configuration

object. (String,

required)

- keyStoreScope

The scope name

of the key store.

(String, optional)

- certificateAlias

The name that

uniquely

identifies the

certificate

request in a key

store. (String,

required)

- certificateRequest

FilePath

The full path of

the request file

that contains the

certificate.

(String, required)

- base64Encoded

Set the value of

this parameter to

true if the

certificate is

ascii base 64

encoded. Set

the value of this

parameter to

false if the

certificate is

binary. (Boolean,

required)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask extractCertificate

{-keyStoreName testKeyStore

-certificateFilePath c:\temp\

CertFile.arm -certificateAlias

testCertificate}

v Using Jython string:

AdminTask.extractCertificate

(’[-keyStoreName testKeyStore

-certificateFilePath c:\temp\

CertFile.arm -certificateAlias

testCertificate]’)

v Using Jython list:

AdminTask.extractCertificate

([’-keyStoreName’, ’testKeyStore’,

’-certificateFilePath’, ’c:\temp\

CertFile.arm’, ’-certificateAlias’,

’testCertificate’])

Interactive mode example

usage:

v Using Jacl:

$AdminTask extractCertifi

cate {-interactive}

v Using Jython string:

AdminTask.extractCertifi

cate (’[-interactive]’)

v Using Jython list:

AdminTask.extractCertifi

cate ([’-interactive’])

872 Securing applications and their environment

Table 35. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

getCertificate The getCertificate

command obtains

information about a

particular personal

certificate in a key

store.

None v Parameters:

- keyStoreName

The name that

uniquely

identifies the key

store

configuration

object. (String,

required)

- keyStoreScope

The scope name

of the key store.

(String, optional)

- certificateAlias

The name that

uniquely

identifies the

certificate

request in a key

store. (String,

required)

v Returns: Information

about the certificate

request.

Interactive mode example

usage:

v Using Jacl:

$AdminTask getCertificate

{-interactive}

v Using Jython string:

AdminTask.getCertificate

(’[-interactive]’)

v Using Jython list:

AdminTask.getCertificate

([’-interactive’])

Chapter 9. Configuring security with scripting 873

Table 35. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

importCertificate The

importCertificate

command imports a

personal certificate

from a key store.

None v Parameters:

- keyStoreName

The name that

uniquely

identifies the key

store

configuration

object. (String,

required)

- keyStoreScope

The scope name

of the key store.

(String, optional)

- keyFilePath

The full path to

a key store file

that is located in

a file system.

The store from

where a

certificate will be

imported or

exported.

(String, required)

- keyFilePassword

The password to

the key store

file. (String,

required)

- keyFileType

The type of the

key file. (String,

required)

-

certificateAliasFromKeyFile

The certificate

alias in the key

file from which

the certificate is

being imported.

(String, required)

- certificateAlias

The name that

uniquely

identifies the

certificate

request in a key

store. (String,

required)

v Returns: None

Interactive mode example

usage:

v Using Jacl:

$AdminTask importCertificate

{-interactive}

v Using Jython string:

AdminTask.importCertificate

(’[-interactive]’)

v Using Jython list:

AdminTask.importCertificate

([’-interactive’])

874 Securing applications and their environment

Table 35. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

listPersonalCertificates The

listPersonalCertificates

command lists the

personal certificates

in a particular key

store.

None v Parameters:

- keyStoreName

The name that

uniquely

identifies the key

store

configuration

object. (String,

required)

- keyStoreScope

The scope name

of the key store.

(String, optional)

v Returns: A list of

attributes for each

personal certificate in

a key store.

Interactive mode example

usage:

v Using Jacl:

$AdminTask listPersonalCer

tificates {-interactive}

v Using Jython string:

AdminTask.listPersonalCer

tificates (’[-interactive]’)

v Using Jython list:

AdminTask.listPersonalCer

tificates ([’-interactive’])

Chapter 9. Configuring security with scripting 875

Table 35. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

receiveCertificate The

receiveCertificate

command receives a

signer certificate from

a file to a personal

certificate.

None v Parameters:

- keyStoreName

The name that

uniquely

identifies the key

store

configuration

object. (String,

required)

- keyStoreScope

The scope name

of the key store.

(String, optional)

- certificateAlias

The name that

uniquely

identifies the

certificate

request in a key

store. (String,

required)

- certificateFilePath

The full path of

the file that

contains the

certificate.

(String, required)

- base64Encoded

Set the value of

this parameter to

true if the

certificate is

ascii base 64

encoded. Set

the value of this

parameter to

false if the

certificate is

binary. (Boolean,

required)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask receiveCertificate

{-keyStoreName testKeyStore

-certificateFilePath c:\temp\

CertFile.arm}

v Using Jython string:

AdminTask.receiveCertificate

(’[-keyStoreName testKeyStore

-certificateFilePath c:\temp\

CertFile.arm]’)

v Using Jython list:

AdminTask.receiveCertificate

([’-keyStoreName’, ’testKeyStore’,

’-certificateFilePath’, ’c:\

temp\CertFile.arm’])

Interactive mode example

usage:

v Using Jacl:

$AdminTask receiveCertif

icate {-interactive}

v Using Jython string:

AdminTask.receiveCerti

ficate (’[-interactive]’)

v Using Jython list:

AdminTask.receiveCertif

icate ([’-interactive’])

876 Securing applications and their environment

Table 35. (continued)

Command name: Description: Target

object:

Parameters and return

values:

Examples:

replaceCertificate The

replaceCertificate

command replaces a

personal certificate

with a new one.

Replaces all signer

certificates from the

personal certificate.

None v Parameters:

- keyStoreName

The name that

uniquely

identifies the key

store

configuration

object. (String,

required)

- keyStoreScope

The scope name

of the key store.

(String, optional)

- certificateAlias

The name that

uniquely

identifies the

certificate

request in a key

store. (String,

required)

- replacementCertifi

cateAlias

The alias of the

certificate that is

used to replace

a different

certificate.

(String, required)

- deleteOldCert

Set the value of

this parameter to

true if you want

to delete the old

signer

certificates

during certificate

replacement.

Otherwise, set

the value of this

parameter to

false. (Boolean,

optional)

- deleteOldSigners

Set the value of

this parameter to

true if you want

to delete the old

certificates

during certificate

replacement.

Otherwise, set

the value of this

parameter to

false. (Boolean,

optional)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask replaceCertificate

{-keyStoreName testKeyStore

-certificateAlias default

-replacementCertificateAlias

replaceCert -deleteOldCert

true -deleteOldSigners true}

v Using Jython string:

AdminTask.replaceCertificate

(’[-keyStoreName testKeyStore

-certificateAlias default

-replacementCertificateAlias

replaceCert -deleteOldCert

true -deleteOldSigners true]’)

v Using Jython list:

AdminTask.replaceCertificate

([’-keyStoreName’, ’testKeyStore’,

’-certificateAlias’, ’default’,

’-replacementCertificateAlias’,

’replaceCert’, ’-deleteOldCert’,

’true’, ’-deleteOldSigners’,

’true’])

Interactive mode example

usage:

v Using Jacl:

$AdminTask replaceCerti

ficate {-interactive}

v Using Jython string:

AdminTask.replaceCertif

icate (’[-interactive]’)

v Using Jython list:

AdminTask.replaceCertif

icate ([’-interactive’])

Chapter 9. Configuring security with scripting 877

Commands for the SPNEGO TAI group of the AdminTask object

For more information about the AdminTask object, see the Commands for the AdminTask object article.

The following commands are available for the SPNEGO TAI group of the AdminTask object:

 Command

name:

Description: Target

object:

Parameters and return

values:

Examples:

addSpnego

TAI

Properties

The

addSpnego

TAI

Properties

command

adds

properties in

the

configuration

of the Simple

and Protected

GSS-API

Negotiation

Mechanism

(SPNEGO)

trust

association

interceptor

(TAI) for

WebSphere

Application

Server.

None v Parameters:

- spnId

This is the SPN

identifier for the group

of custom properties

that are to be defined

with this command. If

you do not specify this

parameter, an unused

SPN identifier is

assigned. (String,

optional)

- host

Specifies the host

name portion in the

SPN used by the

SPNEGO TAI to

establish a Kerberos

secure context. (String,

required)

- filter

Defines the filtering

criteria used by the

class specified with the

above attribute. If no

filter is specified, all

HTTP requests are

subject to SPNEGO

authentication. (String,

optional)

- filterClass

Specifies the name of

the Java class used by

the SPNEGO TAI to

select which HTTP

requests will be subject

to SPNEGO

authentication. If no

filter class is specified,

the default filter class,

com.ibm.ws.security.spnego.HTTPHeaderFilter,

is used. (String,

optional)

Batch mode example usage:

v Using Jacl:

$AdminTask addSpnegoTAIProp

erties -host myhost.ibm.com

-filter user-agent%=IE 6

v Using Jython string:

AdminTask.addSpnegoTAIProp

erties (’[-host myhost.ibm.

com -filter user-agent%=IE 6]’)

v Using Jython list:

AdminTask.addSpnegoTAIProp

erties ([’-host’, ’myhost.

ibm.com’, ’-filter’, ’user

-agent%=IE’, ’6’])

Interactive mode example usage:

v Using Jacl:

$AdminTask addSpnegoTAI

Properties -interactive

v Using Jython string:

AdminTask.addSpnegoTAIPro

perties (’[-interactive]’)

v Using Jython list:

AdminTask.addSpnegoTAIPro

perties [’-interactive’])

878 Securing applications and their environment

- noSpnegoPage

Specifies the URL of a

resource that contains the

content the SPNEGO TAI

will include in the HTTP

response to be displayed

by the (browser) client

application if it does not

support SPNEGO

authentication. (String,

optional).

 If you do not specify the

noSpnegoPage attribute

then the default is used:

"<html><head><title>

SPNEGO authentication

is not supported.

</title></head>" +

"<body>SPNEGO authe

ntication is not

supported on this

client.</body>

</html>";

- ntlmTokenPage

Specifies the URL of a

resource that contains the

content the SPNEGO TAI

will include in the HTTP

response to be displayed

by the (browser) client

application when the

SPNEGO token received

by the interceptor after

the challenge-response

handshake contains a NT

LAN manager (NTLM)

token instead of the

expected SPNEGO token.

(String, optional).

 If you do not specify the

ntlmTokenPage attribute

then the default is used:

"<html><head><title>

An NTLM Token was

received.</title>

</head>"

+ "<body>Your bro

wser configuration

is correct, but

you have not logged

into a supported

Windows Domain."

+ "<p>Please login

to the application

using the normal

login page.</html>";

Chapter 9. Configuring security with scripting 879

- trimUserName

Specifies whether (true)

or not (false) the

SPNEGO TAI is to

remove the suffix of the

principal user name,

starting from the @ that

precedes the Kerberos

realm name. If this

attribute is set to true, the

suffix of the principal user

name is removed. If this

attribute is set to false,

the suffix of the principal

name is retained. The

default value used is

true. (String, optional)

v Returns: None

880 Securing applications and their environment

createKrb

ConfigFile

The

createKrb

ConfigFile

command

creates the

Kerberos

configuration

file for use

with the

Simple and

Protected

GSS-API

Negotiation

Mechanism

(SPNEGO)

trust

association

interceptor

(TAI) for

WebSphere

Application

Server.

None v Parameters:

- krbPath

Provides the fully

qualified file system

location of the

Kerberos configuration

(krb5.ini or krb5.conf)

file. (String, required)

- realm

Provides the Kerberos

realm name. The value

of this attribute is used

by the SPNEGO TAI to

form the Kerberos

service principal name

for each of the hosts

specified with the

property

com.ibm.ws.security.spnego.SPN<id>.hostname

(String, required)

- kdcHost

Provides the host name

of the Kerberos Key

Distribution Center

(KDC). (String,

required)

- kdcPort

Provides the port

number of the KDC.

The default value, if not

specified, is 88. (String,

optional)

- dns

Provides the default

domain name service

(DNS) that is used to

produce a fully qualified

host name. (String,

required)

- keytabPath

Provides the file

system location of the

Kerberos keytab file.

(String, required)

- encryption

Identifies the list of

supported encryption

types, separated by a

space. The specified

value is used for the

default_tkt_enctypes

and

default_tgs_enctypes.

The default encryption

types, if not specified,

are des-cbc-md5 and

rc4-hmac. (String,

optional)

v Returns: None

Interactive mode example usage:

v Using Jacl:

$AdminTask createKrbCo

nfigFile -interactive

v Using Jython string:

AdminTask.createKrbCon

figFile (’[-interactive]’)

v Using Jython list:

AdminTask.createKrbCon

figFile [’-interactive’])

Chapter 9. Configuring security with scripting 881

deleteSpnego

TAIProperties

The

deleteSpnego

TAIProperties

command

deletes

properties in

the

configuration

of the Simple

and Protected

GSS-API

Negotiation

Mechanism

(SPNEGO)

trust

association

interceptor

(TAI) for

WebSphere

Application

Server.

None v Parameters:

- spnId

The SPN identifier for

the group of custom

properties that are to

be deleted with this

command. If you do not

specify this parameter,

all SPNEGO TAI

custom properties are

deleted. (String,

optional)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask deleteSpnegoT

AIProperties {-spnId 2}

v Using Jython string:

AdminTask.deleteSpnegoT

AIProperties (’[-spnId 2]’)

v Using Jython list:

AdminTask.deleteSpnegoTAI

Properties ([’-spnId’, ’2’])

Interactive mode example usage:

v Using Jacl:

$AdminTask deleteSpnegoTAI

Properties -interactive

v Using Jython string:

AdminTask.deleteSpnegoTAI

Properties (’[-interactive]’)

v Using Jython list:

AdminTask.deleteSpnegoTAI

Properties [’-interactive’])

882 Securing applications and their environment

modifySpnego

TAIPro

perties

The

modifySpnego

TAIProperties

command

modifies the

properties in

the

configuration

of the Simple

and Protected

GSS-API

Negotiation

Mechanism

(SPNEGO)

trust

association

interceptor

(TAI) for

WebSphere

Application

Server.

None v Parameters:

- spnId

The SPN identifier for

the group of custom

properties that are to

be defined with this

command. (String,

required)

- host

Specifies the host

name portion in the

SPN used by the

SPNEGO TAI to

establish a Kerberos

secure context. (String,

optional)

- filter

Defines the filtering

criteria used by the

class specified with the

above attribute. (String,

optional)

- filterClass

Specifies the name of

the Java class used by

the SPNEGO TAI to

select which HTTP

requests will be subject

to SPNEGO

authentication. If no

class is specified, all

HTTP requests will be

subject to SPNEGO

authentication. (String,

optional)

- noSpnegoPage

Specifies the URL of a

resource that contains

the content the

SPNEGO TAI will

include in the HTTP

response to be

displayed by the

(browser) client

application if it does not

support SPNEGO

authentication. (String,

optional)

Batch mode example usage:

v Using Jacl:

$AdminTask modifySpnegoTAI

PROPERTIES -spnId 1 -filter

host==myhost.company.com

v Using Jython string:

AdminTask.modifySpnegoTAI

PROPERTIES (’[-spnId 1

-filter host==myhost.com

pany.com]’)

v Using Jython list:

AdminTask.modifySpnegoTAI

PROPERTIES ([’-spnId’,

’1’, ’-filter’, ’host==my

host.company.com’])

Interactive mode example usage:

v Using Jacl:

$AdminTask modifySpnegoTAI

Properties -interactive

v Using Jython string:

AdminTask.modifySpnegoTAI

Properties (’[-interactive]’)

v Using Jython list:

AdminTask.modifySpnegoTAI

Properties [’-interactive’])

Chapter 9. Configuring security with scripting 883

- ntlmTokenPage

Specifies the URL of a

resource that contains the

content the SPNEGO TAI

will include in the HTTP

response to be displayed

by the (browser) client

application when the

SPNEGO token received

by the interceptor after

the challenge-response

handshake contains a NT

LAN manager (NTLM)

token instead of the

expected SPNEGO token.

(String, optional)

- trimUserName

Specifies whether (true)

or not (false) the

SPNEGO TAI is to

remove the suffix of the

principal user name,

starting from the ″@″ that

precedes the Kerberos

realm name. If this

attribute is set to true, the

suffix of the principal user

name is removed. If this

attribute is set to false,

the suffix of the principal

name is retained. The

default value used is

true. (String, optional)

v Returns: None

884 Securing applications and their environment

showSpnego

TAI

Properties

The

showSpnego

TAI

Properties

command

displays the

properties in

the

configuration

of the Simple

and Protected

GSS-API

Negotiation

Mechanism

(SPNEGO)

trust

association

interceptor

(TAI) for

WebSphere

Application

Server.

None v Parameters:

- spnId

The service principal

name (SPN) identifier

for the group of custom

properties that are to

be displayed with this

command. If you do not

specify this parameter,

all SPNEGO TAI

custom properties are

displayed. (String,

optional)

v Returns: A list of properties.

Batch mode example usage:

v Using Jacl:

$AdminTask showSpnegoTAI

Properties -spnId 1

v Using Jython string:

AdminTask.showSpnegoTAI

Properties (’[-spnId 1]’)

v Using Jython list:

AdminTask.showSpnegoTAI

Properties ([’-spnId’, ’1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask showSpnegoTAI

Properties -interactive

v Using Jython string:

AdminTask.showSpnegoTAI

Properties (’[-interact

ive]’)

v Using Jython list:

AdminTask.showSpnegoTAI

Properties [’-interact

ive’])

Commands for the AuthorizationGroupCommands group of the

AdminTask object

For more information about the AdminTask object, see the Commands for the AdminTask object article.

The following commands are available for the AuthorizationGroupCommands group of the AdminTask

object:

 Command

name:

Description: Target

object:

Parameters and return

values:

Examples:

Chapter 9. Configuring security with scripting 885

addResource

ToAuthoriza

tionGroup

The

addResource

ToAuthoriza

tionGroup

command

adds a

resource

instance to an

existing

authorization

group. A

resource

instance

cannot belong

to more than

one

authorization

group.

None v Parameters:

- authorization

GroupName

The name of the

authorization group.

(String, required)

- resourceName

The name of the

resource instance that

you want to add to an

authorization group.

(String, required)

 The resourceName

parameter should be in

the following format:

ResourceType= ResourceName

where ResourceType is

one of the following

values: Application,

Server, ServerCluster,

Node, NodeGroup

 ResourceName is the

name of the resource

instance, for example,

server1.

 The following are

example uses of the

resourceName

parameter:

–

Node=node1:Se rver=server1

This example

uniquely identifies

server1. node1 is

required if another

server1 exists on a

different node.

– Application=app1

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask addResourceToAuth

orizationGroup {-authorizati

onGroupName groupName -resou

rceName Application=app1}

v Using Jython string:

AdminTask.addResourceToAuth

orizationGroup(’[-authoriza

tionGroupName groupName

-resourceName Application

=app1]’)

v Using Jython list:

AdminTask.addResourceToAuth

orizationGroup([’-authoriza

tionGroupName’, ’groupName’,

’-resourceName’, ’Applicati

on=app1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask addResourceToAuth

orizationGroup {-interactive}

v Using Jython string:

AdminTask.addResourceToAuth

orizationGroup (’[-interac

tive]’)

v Using Jython list:

AdminTask.addResourceToAuth

orizationGroup ([’-interact

ive’])

886 Securing applications and their environment

createAuth

orization

Group

The

createAuth

orization

Group

command

creates a new

authoirzation

group. When

you create a

new

authorization

group, no

members are

associated

with it. Also,

no user to

administrative

role mapping

for the

authorization

table is

associated

with the

authorization

group.

None v Parameters:

- authorization

GroupName

The name of the

authorization group that

you want to create.

(String, required)

v Returns: The configuration

ID of the authorization

group that you created.

Batch mode example usage:

v Using Jacl:

$AdminTask createAuthori

zationGroup {-authorizat

ionGroupName groupName}

v Using Jython string:

AdminTask.createAuthori

zationGroup(’[-authori

zationGroupName

groupName]’)

v Using Jython list:

AdminTask.createAuthor

izationGroup([’-author

izationGroupName’,

’groupName’])

Interactive mode example usage:

v Using Jacl:

$AdminTask createAuthori

zationGroup -interactive

v Using Jython string:

AdminTask.createAuthori

zationGroup (’[-interac

tive]’)

v Using Jython list:

AdminTask.createAuthori

zationGroup ([’-interac

tive’])

Chapter 9. Configuring security with scripting 887

deleteAuthor

izationGroup

The deletes

an existing

authorization

group. When

you delete an

authorization

group, the

authorization

table that

corresponds

is also

deleted.

None v Parameters:

- authorizationGroup

Name

The name of the

authorization group that

you want to delete.

(String, required)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask deleteAuthori

zationGroup {-authorizat

ionGroupName groupName}

v Using Jython string:

AdminTask.deleteAuthoriz

ationGroup(’[-authorizat

ionGroupName groupName]’)

v Using Jython list:

AdminTask.deleteAuthori

zationGroup([’-authoriz

ationGroupName’, ’gr

oupName’])

Interactive mode example usage:

v Using Jacl:

$AdminTask deleteAuthori

zationGroup {-interactive}

v Using Jython string:

AdminTask.deleteAuthoriz

ationGroup (’[-interactive]’)

v Using Jython list:

AdminTask.deleteAuthoriz

ationGroup ([’-interactive’])

The

command

lists the

existing

authorization

groups.

None v Parameters: None

v Returns: A list of short

names of all existing

authorization groups. (String

[])

Batch mode example usage:

v Using Jacl:

$AdminTask listAuthorizationGroups

v Using Jython:

AdminTask.listAuthorizationGroups()

Interactive mode example usage:

v Using Jacl:

$AdminTask listAuthoriz

ationGroups {-interactive}

v Using Jython string:

AdminTask.listAuthoriza

tionGroups (’[-interactive]’)

v Using Jython list:

AdminTask.listAuthoriz

ationGroups ([’-intera

ctive’])

888 Securing applications and their environment

listAuthoriz

ationGroups

ForGroupID

The

listAuthoriz

ationGroups

ForGroupID

command

lists all of the

authorization

groups to

which a given

user group

has access.

This

command

lists the

authorization

groups and

the granted

roles for each

authorization

group. The

group ID can

be a short

name or a

fully qualified

domain name

if the LDAP

user registry

is being used.

This

command will

list cell as a

group if the

user has cell

level access.

None v Parameters:

- groupid

The ID of the user

group. (String,

required)

v Returns: The map of the

authorization group and

granted roles.

(Map[String=String[]])

Batch mode example usage:

v Using Jacl:

$AdminTask listAuthoriza

tionGroupsForGroupID

{-groupid userGroupName}

v Using Jython string:

AdminTask.listAuthorizat

ionGroupsForGroupID(’[-

groupid userGroupName]’)

v Using Jython list:

AdminTask.listAuthorizat

ionGroupsForGroupID([’

-groupid’, ’userGroup

Name’])

Interactive mode example usage:

v Using Jacl:

$AdminTask listAuthoriza

tionGroupsForGroupID

{-interactive}

v Using Jython string:

AdminTask.listAuthorizat

ionGroupsForGroupID (’[

-interactive]’)

v Using Jython list:

AdminTask.listAuthorizat

ionGroupsForGroupID ([’

-interactive’])

Chapter 9. Configuring security with scripting 889

listAuthoriz

ationGroup

sForUser ID

The

listAuthoriz

ationGroup

sForUser ID

command

lists all of the

authorization

groups to

which a given

user has

access. This

command

lists the

authorization

groups and

the granted

roles for each

authorization

group. The

user ID and

the group ID

can be a

short name or

a fully

qualified

domain name

if the LDAP

user registry

is being used.

This

command will

list cell as a

group if the

user has cell

level access.

None v Parameters:

- userid

The ID of the user.

(String, required)

v Returns: The map of the

authorization group and

granted roles.

(Map[String=String[]])

Batch mode example usage:

v Using Jacl:

$AdminTask listAuthorizat

ionGroupsForUserID{-userid

userName}

v Using Jython string:

AdminTask.listAuthorizat

ionGroupsForUserID(’[-us

erid userName]’)

v Using Jython list:

AdminTask.listAuthorizat

ionGroupsForUserID([’-us

erid’, ’userName’])

Interactive mode example usage:

v Using Jacl:

$AdminTask listAuthorizat

ionGroupsForUserID {-inte

ractive}

v Using Jython string:

AdminTask.listAuthorizat

ionGroupsForUserID (’[-

interactive]’)

v Using Jython list:

AdminTask.listAuthoriza

tionGroupsForUserID ([’

-interactive’])

890 Securing applications and their environment

listAuthori

zationGroups

OfResource

The

listAuthori

zationGroups

OfResource

command

lists

authorization

groups for a

given

resource. If

the value of

the

traverseContainedObjects

parameter is

false, only the

authorization

group of the

resource is

returned. If

the value of

the

traverseContainedObjects

parameter is

true, it returns

the

authorization

group of the

resource and

the

authorization

groups of all

the parent

resources in

the

containment

tree.

None v Parameters:

- resourceName

The name of the

resource. (String,

required)

 The resourceName

parameter must be in

the following format:

ResourceType=

ResourceName

where ResourceType

can be any one of the

following values:

Application, Server,

ServerCluster, Node, or

NodeGroup.

 ResourceName is the

name of the resource

instance, for example,

server1.

 The following are

examples of the

resourceName

parameter:

Node=node1: Server=server

This example uniquely

identifies server1. The

name of the node is

required if a server on

a different node uses

the same server name.

Application=app1

Batch mode example usage:

v Using Jacl:

$AdminTask listAuthoriz

ationGroupsOfResource

{-resourceName Applicat

ion=app1}

v Using Jython string:

AdminTask.listAuthorizat

ionGroupsOfResource(’[-

resourceName Application

=app1]’)

v Using Jython list:

AdminTask.listAuthoriza

tionGroupsOfResource([’

-resourceName’, ’Applic

ation=app1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask listAuthoriza

tionGroupsOfResource

{-interactive}

v Using Jython string:

AdminTask.listAuthoriz

ationGroupsOfResource

(’[-interactive]’)

v Using Jython list:

AdminTask.listAuthoriz

ationGroupsOfResource

([’-interactive’])

Chapter 9. Configuring security with scripting 891

- traverseContained

Resources

Finds the authorization

groups of all the parent

resources by traversing

the resource containment

tree upwards. The default

value is false. (Boolean,

optional)

v Returns: The short names

of all of the authorization

groups for which the

resource belongs. If the you

do not specify the

traverseContainedResources

parameter, the result of this

command will only contain

one value because a

resource instance can only

belong to one authorization

group. (String[])

listResources

OfAuthoriz

ationGroup

The

listResources

OfAuthorizat

ionGroup

command

lists all of the

resources

within the

given

authorization

group.

None v Parameters:

-

authorizationGroupName

The name of the

authorization group.

(String, required)

v Returns: The configuration

IDs of all of the resource

instances within the

authorization group.

(String[])

Batch mode example usage:

v Using Jacl:

$AdminTask listResourcesOf

AuthorizationGroup {-autho

rizationGroupName groupName}

v Using Jython string:

AdminTask.listResourcesOf

AuthorizationGroup(’[-auth

orizationGroupName groupName]’)

v Using Jython list:

AdminTask.listResourcesOfAu

thorizationGroup([’-authori

zationGroupName’, ’groupName’])

Interactive mode example usage:

v Using Jacl:

$AdminTask listResourcesOfAu

thorizationGroup {-interactive}

v Using Jython string:

AdminTask.listResourcesOfAu

thorizationGroup (’[-intera

ctive]’)

v Using Jython list:

AdminTask.listResourcesOfA

uthorizationGroup ([’-inte

ractive’])

892 Securing applications and their environment

listResources

ForGroupID

The

listResources

ForGroupID

command

lists all the

objects that a

given group

has access

to. This

command

lists the

resources and

the granted

roles for each

resource. The

resources that

this command

returns

include the

resources

from the

authorization

groups to

which the

user group is

granted roles

and the

resources that

are

descendants

of the

resources

with in

authorization

groups to

which the

user group is

granted

access to any

role. The

group ID can

be a short

name or fully

qualified

domain name

if a LDAP

user registry

is used.

None v Parameters:

- groupid

The ID of the user

group. (String,

required)

v Returns: The map of the

granted role and resources.

(Map[String=String[]])

Batch mode example usage:

v Using Jacl:

$AdminTask listResourcesFor

GroupID {-groupid userGr

oupName}

v Using Jython string:

AdminTask.listResourcesFor

GroupID(’[-groupid userGro

upName]’)

v Using Jython list:

AdminTask.listResourcesFor

GroupID([’-groupid’, ’user

GroupName’])

Interactive mode example usage:

v Using Jacl:

$AdminTask listResourcesFor

GroupID {-interactive}

v Using Jython string:

AdminTask.listResourcesFor

GroupID (’[-interactive]’)

v Using Jython list:

AdminTask.listResourcesFor

GroupID ([’-interactive’])

Chapter 9. Configuring security with scripting 893

listResources

ForUserID

The

listResources

ForUserID

command

lists all the

objects that a

given user

has access

to. This

command

lists the

resources and

the granted

roles for each

resource. The

resources that

this command

returns

include the

resources

from the

authorization

groups to

which the

user is

granted roles

and the

resources that

are

descendants

of the

resources

with in

authorization

groups to

which the

user is

granted

access to any

role. The user

ID can be a

short name or

fully qualified

domain name

if a LDAP

user registry

is used.

None v Parameters:

- userid

The ID of the user.

(String, required).

v Returns: The map of

granted role and resources.

(Map[String=String[]])

Batch mode example usage:

v Using Jacl:

$AdminTask listResourcesFor

UserID {-userid userName }

v Using Jython string:

AdminTask.listResourcesFor

UserID(’[-userid userName]’)

v Using Jython list:

AdminTask.listResourcesFor

UserID([’-userid’, ’userName’])

Interactive mode example usage:

v Using Jacl:

$AdminTask listResources

ForUserID {-interactive}

v Using Jython string:

AdminTask.listResources

ForUserID (’[-interactive]’)

v Using Jython list:

AdminTask.listResources

ForUserID ([’-interactive’])

Example output:

{deployer=[], operator=[],

administrator=[cells/IBM-LP1

6L31HVE8Cell07/clusters/C1|

cluster.xml, cells/IBM-LP16L

31HVE8Cell07/nodes/IBM-LP16L

31HVE8Node05/servers/cm1|ser

ver.xml], monitor=[], confi

gurator=[]}

894 Securing applications and their environment

mapGroupsTo

AdminRole

The

mapGroupsTo

AdminRole

command

maps group

IDs to one or

more

administrative

roles in an

authorization

group. The

name of the

authorization

group that

you provide

determines

which

authorization

table will be

used. If you

do not specify

an

authorization

group name,

the mapping

is done to the

cell level

authorization

table. The

group ID can

be a short

name or a

fully qualified

domain name

if the LDAP

user registry

is used.

None v Parameters:

- authorizationGroup

Name

The name of the

authorization group. If

you do not specify this

parameters, the cell

level authorization

group is assumed.

(String, optional)

- roleName

The name of the

administrative role.

(String, required)

- groupids

The list of group IDs

that will mapped to the

administrative role.

(String[], required)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask mapGroupsToAdminRole

{-authorizationGroupName group

Name - roleName administrator

-groupids group1}

v Using Jython string:

AdminTask.mapGroupsToAdminRole

(’[-authorizationGroupName group

Name -roleName administrator

-groupids group1]’)

v Using Jython list:

AdminTask.mapGroupsToAdminRole

([’-authorizationGroupName’,

’groupName’, ’-roleName’,

’administrator’, ’-groupids’,

’group1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask mapGroupsToAdm

inRole {-interactive}

v Using Jython string:

AdminTask.mapGroupsToAdmin

Role (’[-interactive]’)

v Using Jython list:

AdminTask.mapGroupsToAdmin

Role ([’-interactive’])

Chapter 9. Configuring security with scripting 895

mapUsersTo

AdminRole

The

mapUsersTo

AdminRole

command

maps user

IDs to one or

more

administrative

roles in the

authorization

group. The

name of the

authorization

group that

you provide

determines

the

authorization

table. If you

do not specify

the name of

the

authorization

group, the

mapping is

done to the

cell level

authorization

table. The

user ID can

be a short

name or fully

qualified

domain name

in case LDAP

user registry

is used.

None v Parameters:

- authorizationGroup

Name

The name of the

authorization group. If

you do not specify this

parameter, the cell

level authorization

group is assumed.

(String, optional)

- roleName

The name of the

administrative role.

(String, required)

- userids

The list of user IDs that

will be mapped to the

administrative role

(String[], required)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask mapUsersToAdminRole

{-authorizationGroupName group

Name - roleName administrator

-userids user1}

v Using Jython string:

AdminTask.mapUsersToAdminRole

(’[-authorizationGroupName

groupName -roleName administ

rator -userids user1]’)

v Using Jython list:

AdminTask.mapUsersToAdminRole

([’-authorizationGroupName’,

’groupName’, ’-roleName’,

’administrator’, ’-userids’,

’user1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask mapUsersToAdmin

Role {-interactive}

v Using Jython string:

AdminTask.mapUsersToAdmin

Role (’[-interactive]’)

v Using Jython list:

AdminTask.mapUsersToAdmin

Role ([’-interactive’])

896 Securing applications and their environment

removeGrou

psFromAdm

inRole

The

removeGrou

psFromAdm

inRole

command

removes

previously

mapped

group IDs

from

administrative

roles in the

authorization

group. The

name of the

authorization

group that

you provide

determines

which

authorization

table is

involved. If

you do not

specify an

authorization

group name,

the group IDs

are removed

from the cell

level

authorization

table. The

group ID can

be a short

name or fully

qualified

domain name

if a LDAP

user registry

is used.

None v Parameters:

- authorizationGroup

Name

The name of the

authorization group. If

you do not specify this

parameter, the cell

level authorization

group is assumed.

(String, optional)

- roleName

The name of the

administrative role.

(String, required)

- userids

A list of group IDs that

you want to remove

from the administrative

role. (String[], required)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask removeGroupsFromAdmin

Role {-authorizationGroupName

groupName - roleName administra

tor -groupids group1}

v Using Jython string:

AdminTask.removeGroupsFromAdmin

Role(’[-authorizationGroupName

groupName -roleName administrat

or -groupids group1]’)

v Using Jython list:

AdminTask.removeGroupsFromAdmin

Role([’-authorizationGroupName’,

’groupName’, ’-roleName’, ’admin

istrator’, ’-groupids’, ’group1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask removeGroupsFrom

AdminRole {-interactive}

v Using Jython string:

AdminTask.removeGroupsFrom

AdminRole (’[-interactive]’)

v Using Jython list:

AdminTask.removeGroupsFrom

AdminRole ([’-interactive’])

Chapter 9. Configuring security with scripting 897

remove

Resource

From

Authoriza

tionGroup

The

removeResource

FromAuthoriz

ationGroup

command

removes

resources

from an

existing

authorization

group. If you

do not specify

the

authorization

group, it will

be

determined

and the

resource will

be removed

from that

authorization

group.

None v Parameters:

- authorizationGroup

Name

The name of the

authorization group.

(String, optional)

- resourceName

The name of the

resource instance that

you want to remove

from the authorization

group. (String,

required)

 The resourceName

parameter must be in

the following format:

ResourceType=

ResourceName

where the

ResourceType can be

any of the following:

Application, Server,

ServerCluster, Node, or

NodeGroup.

 The ResourceName is

the name of the

resource instance, for

example, server1.

 The following are

examples of the

resourceName

parameter:

Node=node1:

Server=server1

This example uniquely

identifies server1.

node1 is required if the

name of the server

exists on multiple

nodes.

Application=app1

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask removeResourceFromAuth

orizationGroup {-authorizationGroup

Name groupName -resourceName App

lication=app1}

v Using Jython string:

AdminTask.removeResourceFromAuthori

zationGroup(’[-authorizationGroup

Name groupName -resourceName Appli

cation=app1]’)

v Using Jython list:

AdminTask.removeResourceFromAuth

orizationGroup([’-authorization

GroupName’, ’groupName’, ’-res

ourceName’, ’Application=app1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask removeResourceFrom

AuthorizationGroup {-interactive}

v Using Jython string:

AdminTask.removeResourceFrom

AuthorizationGroup (’[-inter

active]’)

v Using Jython list:

AdminTask.removeResourceFrom

AuthorizationGroup ([’-inter

active’])

898 Securing applications and their environment

removeUsers

FromAdmin

Role

The

removeUsers

FromAdmin

Role

command

removes

previously

mapped user

IDs from

administrative

roles in the

authorization

group. The

name of the

authorization

group that

you provide

determines

which

authorization

table is

involved. If

you do not

specify an

authorization

group name,

the user ID

from the cell

level

authorization

table will be

used. The

user ID can

be a short

name or a

fully qualified

domain name

if a LDAP

user registry

is used.

None v Parameters:

- authorizationGroup

Name

The name of the

authorization group. If

you do not specify this

parameter, the cell

level authorization

group is assumed.

(String, optional)

- roleName

The name of the

administrative role.

(String, required)

- userids

A list of user IDs that

you want to remove

from the administrative

role. (String[], required)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask removeUsersFromAdmin

Role {-authorizationGroupName

groupName - roleName administra

tor -userids user1}

v Using Jython string:

AdminTask.removeUsersFromAdmin

Role(’[-authorizationGroupName

groupName -roleName administra

tor -userids user1]’)

v Using Jython list:

AdminTask.removeUsersFromAdmin

Role([’-authorizationGroupName’,

’groupName’, ’-roleName’, ’adm

inistrator’, ’-userids’, ’user1’])

Interactive mode example usage:

v Using Jacl:

$AdminTask removeUsersFrom

AdminRole {-interactive}

v Using Jython string:

AdminTask.removeUsersFrom

AdminRole (’[-interactive]’)

v Using Jython list:

AdminTask.removeUsersFrom

AdminRole ([’-interactive’])

Commands for the ChannelFrameworkManagement group of the

AdminTask object

For more information about the AdminTask object, see the Commands for the AdminTask object article.

The following commands are available for the ChannelFrameworkManagement group of the AdminTask

object:

 Command

name:

Description: Target

object:

Parameters and return

values:

Examples:

Chapter 9. Configuring security with scripting 899

createChain The

createChain

command

creates a new

chain of

transport

channels that

are based on

a chain

template.

The

instance

of the

transport

channel

service

under

which the

new

chain is

created.

(ObjectName,

required)

v Parameters:

- template

The chain template on

which to base the new

chain. (ObjectName,

required)

- name

The name of the new

chain. (String, required)

- endPoint

The name of the end

point to be used by the

instance of the TCP

inbound channel in the

new chain if the chain

is an inbound chain.

(ObjectName, optional)

v Returns: The object name

of the channel chain that

was created.

Batch mode example usage:

v Using Jacl:

$AdminTask createChain (cells/

rohitbuildCell01/nodes/rohit

buildCellManager01/servers/

dmgr|server.xml#TransportCha

nnelService_1) {-template

WebContainer(templates/

chains|webcontainer-chains.xml

#Chain_1) -name trialChain1}

$AdminTask createChain (cells/

rohitbuildCell01/nodes/rohitb

uildCellManager01/servers/dmgr

|server.xml#TransportChannel

Service_1) {-template

WebContainer(templates/

chains|webcontainer-chains.xml#

Chain_1) -name trialChain1

-endPoint (cells/rohitbuild

Cell01/nodes/rohitbuildCellMa

nager01|serverindex.xml#End

Point_3) }

v Using Jython string:

 AdminTask.createChain(’cells/

rohitbuildCell01/nodes/rohitbu

ildCellManager01/servers/dmgr|

server.xml#TransportChannelSer

vice_1’, ’[-template "WebConta

iner(templates/chains|webconta

iner-chains.xml#Chain_1)" -name

trialChain]’)

AdminTask.createChain(’cells/

rohitbuildCell01/nodes/rohit

buildCellManager01/servers/dmgr

|server.xml#TransportChannel

Service_1’, ’[-template "WebCo

ntainer(templates/chains|webc

ontainer-chains.xml#Chain_1)"

-name trialChain -endPoint

"(cells/rohitbuildCell01/nodes/

rohitbuildCellManager01|server

index.xml#EndPoint_3)"]’)

v Using Jython list:

AdminTask.createChain(’cells/

rohitbuildCell01/nodes/

rohitbuildCellManager01/serve

rs/dmgr|server.xml#

TransportChannelService_1’,

[’-template’, "WebContainer

(templates/chains|webcontaine

r-chains.xml#Chain_1)",

’-name’, ’trialChain’])

AdminTask.createChain(’cells/

rohitbuildCell01/nodes/rohit

buildCellManager01/servers/

dmgr|server.xml#TransportCha

nnelService_1’, [’-template’,

"WebContainer(templates/chains

|webcontainer-chains.xml#Cha

in_1)", ’-name’, ’trialChain’,

’-endPoint’, "(cells/rohitbu

ildCell01/nodes/rohitbuildCe

llManager01|serverindex.xml#

EndPoint_3)"])

900 Securing applications and their environment

Interactive mode example usage:

v Using Jacl:

$AdminTask createChain {-interactive}

v Using Jython string:

AdminTask.createChain (’[-interactive]’)

v Using Jython list:

AdminTask.createChain ([’-interactive’])

deleteChain The

deleteChain

command

deletes an

existing chain

and,

optionally, the

transport

channels in

the chain.

The

chain to

be

deleted.

(Object

name,

required)

v Parameters:

- deleteChannels

If the value of this

attribute is true,

non-shared transport

channels used by the

specified chain will be

deleted. (Boolean,

optional)

v Returns: None

Batch mode example usage:

v Using Jacl:

$AdminTask deleteChain trialChain1

(cells/rohitbuildCell01/nodes/roh

itbuildCellManager01/servers/dmgr|

server.xml#Chain_1093554462922)

$AdminTask deleteChain trialChain

(cells/rohitbuildCell01/nodes/roh

itbuildCellManager01/servers/dmgr

|server.xml#Chain_1093554378078)

{-deleteChannels true}

v Using Jython string:

 AdminTask.deleteChain(’trialChain

1(cells/rohitbuildCell01/nodes/roh

itbuildCellManager01/servers/dmgr|

server.xml#TransportChannelSer

vice_1)’)

AdminTask.deleteChain(’trialChain1

(cells/rohitbuildCell01/nodes/rohi

tbuildCellManager01/servers/dmgr|

server.xml#TransportChannelService

_1)’, ’[-deleteChannels true]’)

v Using Jython list:

AdminTask.deleteChain(’trialChain1

(cells/rohitbuildCell01/nodes/roh

itbuildCellManager01/servers/dmgr|

server.xml#TransportChannelService

_1)’)

AdminTask.deleteChain(’trialChain1

(cells/rohitbuildCell01/nodes/rohi

tbuildCellManager01/servers/dmgr|

server.xml#TransportChannelServic

e_1)’, [’-deleteChannels’, ’true’])

Interactive mode example usage:

v Using Jacl:

$AdminTask deleteChain {-interactive}

v Using Jython string:

AdminTask.deleteChain (’[-interactive]’)

v Using Jython list:

AdminTask.deleteChain ([’-interactive’])

Chapter 9. Configuring security with scripting 901

listChain

Templates

The listChain

Templates

command

displays a list

of templates

that you can

use to create

chains in this

configuration.

All templates

have a certain

type of

transport

channel as

the last

transport

channel in the

chain.

None v Parameters:

- acceptorFilter

The templates returned

by this method all have

a transport channel

instance of the

specified type as the

last transport channel

in the chain. (String,

optional)

v Returns: A list of all the

chain template object

names. If you specify the

acceptorFilter parameter,

the list that returns is

filtered to match the filter

that you specified.

Batch mode example usage:

v Using Jacl:

$AdminTask listChainTemplates {}

$AdminTask listChainTemplates

"-acceptorFilter WebContainer

InboundChannel"

v Using Jython string:

AdminTask.listChainTemplates()

AdminTask.listChainTemplates

(’[-acceptorFilter WebCont

ainerInboundChannel]’)

v Using Jython list:

AdminTask.listChainTemplates()

AdminTask.listChainTemplates

([’-acceptorFilter’, ’WebC

ontainerInboundChannel’])

Interactive mode example usage:

v Using Jacl:

$AdminTask listChainTemplates {-interactive}

v Using Jython string:

AdminTask.listChainTemplates (’[-interactive]’)

v Using Jython list:

AdminTask.listChainTemplates ([’-interactive’])

902 Securing applications and their environment

listChains The

listChains

command

lists all the

chains that

are

configured

under a

particular

instance of

the transport

channel

service.

The

instance

of the

transport

channel

service

under

which the

chains

are

configured.

(ObjectName,

required)

v Parameters:

- acceptorFilter

The chains that are

returned by this

parameter will have a

transport channel

instance of the type

that you specify as the

last transport channel

in the chain. (String,

optional)

- endPointFilter:

The chains returned by

this parameter will have

a TCP inbound channel

using an end point with

the name that you

specify.(String,

optional)

v Returns: A list of all the

channel chain object names

that match the specified

filters. If no you do not

specify any parameters, all

of the channel chains that

are configured under the

particular instance of

transport channel service

are returned.

Batch mode example usage:

v Using Jacl:

$AdminTask listChains (cells/

rohitbuildCell01/nodes/rohit

buildNode01/servers/server2|

server.xml#TransportChannel

Service_1093445762328)

$AdminTask listChains (cells/

rohitbuildCell01/nodes/rohit

buildNode01/servers/server2|

server.xml#TransportChannel

Service_1093445762328)

{-acceptorFilter WebConta

inerInboundChannel}

$AdminTask listChains (cells/

rohitbuildCell01/nodes/rohit

buildNode01/servers/server2|

server.xml#TransportChannel

Service_1093445762328) {-end

PointFilter WC_adminhost}

v Using Jython string:

AdminTask.listChains(’(cells/

rohitbuildCell01/nodes/rohit

buildNode01/servers/server2|

server.xml#TransportChannel

Service_1093445762328)’)

AdminTask.listChains(’(cells/

rohitbuildCell01/nodes/rohit

buildNode01/servers/server2|

server.xml#TransportChannel

Service_1093445762328)’,

’[-acceptorFilter WebContai

nerInboundChannel]’)

AdminTask.listChains(’(cells/

rohitbuildCell01/nodes/rohit

buildNode01/servers/server2|

server.xml#TransportChannel

Service_1093445762328)’,

’[-endPointFilter WC_adminhost]’)

v Using Jython list:

AdminTask.listChains(’(cells/

rohitbuildCell01/nodes/rohit

buildNode01/servers/server2|

server.xml#TransportChannel

Service_1093445762328)’)

AdminTask.listChains(’(cells

/rohitbuildCell01/nodes/roh

itbuildNode01/servers/server

2|server.xml#TransportChanne

lService_1093445762328)’,

[’-acceptorFilter’, ’WebCon

tainerInboundChannel’])

AdminTask.listChains(’(cells

/rohitbuildCell01/nodes/roh

itbuildNode01/servers/server

2|server.xml#TransportChanne

lService_1093445762328)’,

[’-endPointFilter’, ’WC_admi

nhost’])

Chapter 9. Configuring security with scripting 903

Interactive mode example usage:

v Using Jacl:

$AdminTask listChains {-interactive}

v Using Jython string:

AdminTask.listChains (’[-interactive]’)

v Using Jython list:

AdminTask.listChains ([’-interactive’])

904 Securing applications and their environment

Chapter 10. Web applications

Securing Web applications using an assembly tool

You can use three types of Web login authentication mechanisms to configure a Web application: basic

authentication, form-based authentication and client certificate-based authentication. Protect Web

resources in a Web application by assigning security roles to those resources.

To secure Web applications, determine the Web resources that need protecting and determine how to

protect them.

Note: This procedure might not match the steps that are required when using your assembly tool, or

match the version of the assembly tool that you are using. You should follow the instructions for the

tool and version that you are using.

The following steps detail securing a Web application using an assembly tool:

1. In an assembly tool, import your Web archive (WAR) file or an application archive (EAR) file that

contains one or more Web modules.

For more information, see ″Importing Web archive (WAR) files″ and ″Importing an enterprise

application EAR file″ in the Application Server Toolkit documentation.

2. In the Project Explorer folder, locate your Web application.

3. Right-click the deployment descriptor and click Open With > Deployment Descriptor Editor. The

Deployment Descriptor window opens. To see online information about the editor, press F1 and click

the editor name. If you select a Web archive (WAR) file, a Web deployment descriptor editor opens. If

you select an enterprise application (EAR) file, an application deployment descriptor editor opens.

4. Create security roles either at the application level or at the Web module level. If a security role is

created at the Web module level, the role also displays in the application level. If a security role is

created at the application level, the role does not display in all of the Web modules. You can copy and

paste a security role at the application level to one or more Web module security roles.

v Create a role at a Web-module level. In a Web deployment descriptor editor, click the Security tab.

Under Security Roles, click Add.. Enter the security role name, describe the security role, and click

Finish.

v Create a role at the application level. In an application deployment descriptor editor, click the

Security tab. Under the list of security roles, click Add. In the Add Security Role wizard, name and

describe the security role and then click Finish.

5. Create security constraints. Security constraints are a mapping of one or more Web resources to a set

of roles.

a. On the Security tab of a Web deployment descriptor editor, click Security Constraints. On the

Security Constraints tab, you can do the following actions:

v Add or remove security constraints for specific security roles.

v Add or remove Web resources and their HTTP methods.

v Define which security roles are authorized to access the Web resources.

v Specify None, Integral, or Confidential constraints on user data.

None The application does not require transport guarantees.

Integral

Data cannot be changed in transit between the client and the server.

Confidential

Data content cannot be observed while it is in transit.

Integral and Confidential usually require the use of SSL.

b. Under Security Constraints, click Add.

c. Under Constraint name, specify a display name for the security constraint and click Next.

d. Type a name and description for the Web resource collection.

© Copyright IBM Corp. 2006 905

e. Select one or more HTTP methods. The HTTP method options are: GET, PUT, HEAD, TRACE,

POST, DELETE, and OPTIONS.

f. Beside the Patterns field, click Add.

g. Specify a URL Pattern. For example, type - /*, *.jsp, /hello. Consult the Servlet specification

Version 2.4 for instructions on mapping URL patterns to servlets. The security runtime uses the

exact match first to map the incoming URL with URL patterns. If the exact match is not present, the

security runtime uses the longest match. The wild card (*.,*.jsp) URL pattern matching is used

last.

h. Click Finish.

i. Repeat these steps to create multiple security constraints.

6. Map security-role-ref and role-name elements to the role-link element. During the development of a

Web application, you can create the security-role-ref element. The security-role-ref element contains

only the role-name field. The role-name field contains the name of the role that is referenced in the

servlet or JavaServer Pages (JSP) code to determine if the caller is in a specified role. Because

security roles are created during the assembly stage, the developer uses a logical role name in the

Role-name field and provides enough description in the Description field for the assembler to map the

role actual. The Security-role-ref element is at the servlet level. A servlet or JavaServer Pages (JSP)

file can have zero or more security-role-ref elements.

a. Go to the References tab of a Web deployment descriptor editor. On the References tab, you can

add or remove the name of an enterprise bean reference to the deployment descriptor. You can

define five types of references on this tab:

v EJB reference

v Service reference

v Resource reference

v Message destination reference

v Security role reference

v Resource environment reference

b. Under the list of Enterprise JavaBeans (EJB) references, click Add.

c. Specify a name and a type for the reference in the Name and Ref Type fields.

d. Select either Enterprise Beans in the workplace or Enterprise Beans not in the workplace.

e. Optional: If you select Enterprise Beans not in the workplace, select the type of enterprise bean

in the Type field. You can specify either an entity bean or a session bean.

f. Optional: Click Browse to specify values for the local home and local interface in the Local home

and Local fields before you click Next.

g. Map every role-name that is used during development to the role using the previous steps. Every

role name that is used during development maps to the actual role.

7. Specify the RunAs identity for servlets and JSP files. The RunAs identity of a servlet is used to invoke

enterprise beans from within the servlet code. When enterprise beans are invoked, the RunAs identity

is passed to the enterprise bean for performing an authorization check on the enterprise beans. If the

RunAs identity is not specified, the client identity is propagated to the enterprise beans. The RunAs

identity is assigned at the servlet level.

a. On the Servlets tab of a Web deployment descriptor editor, under Servlets and JSP, click Add.

The Add Servlet or JSP wizard opens.

b. Specify the servlet or JavaServer Pages (JSP) file settings, including the name, initialization

parameters, and URL mappings and click Next.

c. Specify the class file destination.

d. Click Next to specify additional settings or click Finish.

e. Click Run As on the Servlets tab, select the security role and describe the role.

f. Specify a RunAs identity for each servlet and JSP file that is used by your Web application.

8. Configure the login mechanism for the Web module. This configured login mechanism applies to all the

servlets, JavaServer Pages (JSP) files and HTML resources in the Web module.

906 Securing applications and their environment

a. Click the Pages tab of a Web deployment descriptor editor and click Login. Select the required

authentication method. Available method values include: Unspecified, Basic, Digest, Form, and

Client-Cert.

b. Specify a realm name.

c. If you select the Form authentication method, select a login page and an error page Web address.

For example, you might use /login.jsp or /error.jsp. The specified login and error pages are

present in the .war file.

d. Install the client certificate on the browser or Web client and place the client certificate in the server

trust keyring file, if ClientCert is selected.

9. Close the deployment descriptor editor and, when prompted, click Yes to save the changes.

After securing a Web application, the resulting Web archive (WAR) file contains security information in its

deployment descriptor. The Web module security information is stored in the web.xml file. When you work

in the Web deployment descriptor editor, you also can edit other deployment descriptors in the Web

project, including information on bindings and IBM extensions in the ibm-web-bnd.xmi and

ibm-web-ext.xmi files.

After using an assembly tool to secure a Web application, you can install the Web application using the

administrative console. During the Web application installation, complete the steps in “Deploying secured

applications” on page 919 to finish securing the Web application.

Security constraints

Security constraints determine how Web content is to be protected.

These properties associate security constraints with one or more Web resource collections. A constraint

consists of a Web resource collection, an authorization constraint and a user data constraint.

v A Web resource collection is a set of resources (URL patterns) and HTTP methods on those resources.

All requests that contain a request path that matches the URL pattern described in the Web resource

collection are subject to the constraint. If no HTTP methods are specified, then the security constraint

applies to all HTTP methods.

v An authorization constraint is a set of roles that users must be granted in order to access the resources

described by the Web resource collection. If a user who requests access to a specified Uniform

Resource Identifier (URI) is not granted at least one of the roles specified in the authorization constraint,

the user is denied access to that resource.

v A user data constraint indicates that the transport layer of the client or server communications process

must satisfy the requirement of either guaranteeing content integrity (preventing tampering in transit) or

guaranteeing confidentiality (preventing reading while in transit).

Security settings

Use the administrative console to modify the security settings for all applications. You can enable security

for applications by enabling the Enable application security option on the Secure administration,

applications, and infrastructure panel.

Note that:

v Global settings apply to existing and future applications and cannot be customized.

v Default settings apply only to future applications and can be customized.

The default settings are used as a template or starting point for configuring individual applications. The

administrator should still explicitly configure security settings for each application.

The following security settings are specified during application assembly:

Chapter 10. Web applications 907

Security role settings

When using the Assembly Toolkit at an application level (Enterprise Archive (EAR) file), security

roles are synchronized with the security roles defined for the embedded modules of the

application.

 If a security role is manually added to the EAR file, it can be automatically removed when the file

is saved if an embedded module does not reference the role, or the role is in conflict with an

existing role. In this case, remove the manually added role, but then all roles with the same name

are removed.

 The role is automatically added again when the file is saved if it is still referenced in an embedded

module file. If a duplicate role is added in an embedded module file, delete all roles with the same

name and manually read the correct role.

Security constraints

Security constraints declare how to protect Web content. These properties associate security

constraints with one or more Web resource collections. A constraint consists of a Web resource

collection, an authorization constraint, and a user data constraint.

 Security constraints are set when configuring a Web application in the Assembly Toolkit.

Security role references

Web application developers or Enterprise JavaBeans (EJB) providers must use a role-name in the code

when using the available programmatic security Java 2 Platform, Enterprise Edition (J2EE) application

programming interfaces (APIs) isUserInRole(String roleName) and isCallerInRole(String roleName).

The roles used in the deployed run-time environment might not be known until the Web application and

EJB components (for example, Web archive (WAR) files and ejb-jar.xml files) are assembled into an

enterprise archive (EAR) file. Therefore, the role names used in the Web application or EJB component

code are logical role names which the application assembler maps to the actual run-time environment

roles during application assembly. The security role references provide a level of indirection that insulate

Web application component and EJB developers from having to know the actual roles in the run-time

environment.

The definition of the logical roles and the mapping to the actual run-time environment roles are specified in

the security-role-ref element of both the Web application and the EJB JAR file deployment descriptors,

web.xml and ejb-jar.xml respectively. Use the assembly tools to define the role names and map them to

the actual run-time roles in the environment with the role-link element.

The following code sample is an example of a security-role-ref from an EJB ejb-jar.xml deployment

descriptor.

... <enterprise-beans>

... <entity>

<ejb-name>AardvarkPayroll</ejb-name>

<ejb-class>com.aardvark.payroll.PayrollBean</ejb-class>

...

<security-role-ref>

<description>

This role should be assigned to the employees of the payroll department. Members of this role have

access to the payroll record of everyone. The role has been linked to the payroll-department role. This role

should be assigned to the employees of the payroll department. Members of this role have access to all

payroll records. The role has been linked to the payroll-department role.

</description> <role-name>payroll</role-name>

<role-link>payroll-department</role-link>

</security-role-ref>

 ...

</entity>

 ...

</enterprise-beans>

908 Securing applications and their environment

In the previous example, the string payroll, which appears in the <role-name> element, is what the EJB

provider uses as the argument to the isCallerInRole() API. The <role-link> element is what ties the logical

role to the actual role used in the run-time environment.

Note that for enterprise beans, the security-role-ref element must appear in the deployment descriptor

even if the logical role name is the same as the actual role name in the environment.

The rules Web application components are slightly different. If no security-role-ref element matching a

security-role element is declared, the container must default to checking the role-name element argument

against the list of security-role elements for the Web application. The isUserInRole method references the

list to determine whether the caller is mapped to a security role. The developer must be aware that the

use of this default mechanism can limit the flexibility in changing role names in the application without

having to recompile the servlet making the call.

See the EJB Version 2.0 and Servlet Version 2.3 specification in the Security: Resources for Learning

article for complete details on this specification.

Securing applications during assembly and deployment

Several assembly tools exist that are graphical user interfaces for assembling enterprise or Java 2

Platform, Enterprise Edition (J2EE) applications. You can use these tools to assemble an application and

secure Enterprise JavaBeans (EJB) and Web modules in that application.

An EJB module consists of one or more beans. You can enforce security at the EJB method level. A Web

module consists of one or more Web resources: an HTML page, a JavaServer Pages (JSP) file, or a

servlet. You can also enforce security for each Web resource.

Note: For information about the tools that WebSphere Application Server supports, see Assembly tools.

To secure an EJB module, a Java archive (JAR) file, a Web module, a Web archive (WAR) file, or an

application enterprise archive (EAR) file, you can use an assembly tool You can create an application, an

EJB module, or a Web module and secure them using an assembly tool or development tools such as the

IBM Rational Application Developer.

1. Secure EJB applications using an assembly tool. For more information, see “Securing enterprise bean

applications” on page 925.

2. Secure Web applications using an assembly tool. For more information, see “Securing Web

applications using an assembly tool” on page 905.

3. Add users and groups-to-roles while assembling a secured application using an assembly tool. For

more information, see “Adding users and groups to roles using an assembly tool” on page 911.

4. Map users to RunAs roles using an assembly tool. For more information, see “Mapping users to

RunAs roles using an assembly tool” on page 915.

5. “Adding the was.policy file to applications” on page 525.

6. Assemble the application components that you secured using an assembly tool. For more information,

see Assembling applications.

After securing an application, the resulting .ear file contains security information in its deployment

descriptor. The EJB module security information is stored in the ejb-jar.xml file and the Web module

security information is stored in the web.xml file. The application.xml file of the application EAR file

contains all the roles that are used in the application. The user and group-to-roles mapping is stored in the

ibm-application-bnd.xmi file of the application EAR file.

The was.policy file of the application EAR contains the permissions granted for the application to access

system resources protected by Java 2 security.

Chapter 10. Web applications 909

This task is required to secure EJB modules and Web modules in an application. This task is also required

for applications to run properly when Java 2 security is enabled. If the was.policy file is not created and it

does not contain required permissions, the application might not be able to access system resources.

After securing an application, you can install an application using the administrative console. When you

install a secured application, refer to “Deploying secured applications” on page 919 to complete this task.

Assigning users and groups to roles

This topic describes how to assign users and groups to roles if you are using WebSphere Application

Server authorization for Java 2 Platform, Enterprise Edition (J2EE) roles.

Before you perform this task:

v Secure the Web applications and Enterprise JavaBeans (EJB) applications where new roles are created

and assigned to Web and enterprise bean resources.

v Create all the roles in your application.

v Verify that you have properly configured the user registry that contains the users that you want to

assign. It is preferable to have security turned on with the user registry of your choice before beginning

this process.

v Make sure that if you change anything in the security configuration you save the configuration and

restart the server before the changes become effective. For example, enable security or change the

user registry.

These steps are common for both installing an application and modifying an existing application. If the

application contains roles, you see the Security role to user/group mapping link during application

installation and also during application management, as a link in the Additional properties section.

 1. Access the administrative console.

Type http://localhost:port_number/ibm/console in a Web browser.

 2. Click Applications > Enterprise applications > application_name .

 3. Under Detail properties, click Security role to user/group mapping. A list of all the roles that belong

to this application is displayed. If the roles already have users or All Authentication or Everyone

special subjects assigned, they display here.

 4. To assign the special subjects, select either the Everyone or the All Authenticated option for the

appropriate roles.

 5. To assign users or groups, select the role. You can select multiple roles at the same time, if the same

users or groups are assigned to all the roles.

 6. Click Look up users or Look up groups.

 7. Get the appropriate users and groups from the user registry by completing the Limit and the Search

string fields and by clicking Search. The Limit field limits the number of users that are obtained and

displayed from the user registry. The pattern is a searchable pattern matching one or more users and

groups. For example, user* lists users like user1, user2. A pattern of asterisk (*) indicates all users or

groups.

Use the limit and the search strings cautiously so as not to overwhelm the user registry. When you

use large user registries such as Lightweight Directory Access Protocol (LDAP) where information on

thousands of users and groups resides, a search for a large number of users or groups can make the

system slow and can make it fail. When more entries exist than requests for entries, a message

displays on top of the panel. You can refine your search until you have the required list.

 8. Select the users and groups to include as members of these roles from the Available field and click

>> to add them to the roles.

 9. To remove existing users and groups, select them from the Selected field and click <<. When

removing existing users and groups from roles, use caution if those same roles are used as RunAs

roles.

910 Securing applications and their environment

For example, if the user1 user is assigned to the role1 RunAs role and you try to remove the user1

user from the role1 role, the administrative console validation does not delete the user. A user can

only be part of a RunAs role if the user is already in a role either directly or indirectly through a

group. In this case, the user1 user is in the role1 role. For more information on the validation checks

that are performed between RunAs role mapping and user and group mapping to roles, see

“Assigning users to RunAs roles” on page 914.

10. Click OK. If any validation problems exist between the role assignments and the RunAs role

assignments, the changes are not committed and an error message that indicates the problem

displays at the top of the panel. If a problem exists, make sure that the user in the RunAs role is also

a member of the regular role. If the regular role contains a group that contains the user in the RunAs

role, make sure that the group is assigned to the role using the administrative console. Follow steps 4

and 5. Avoid using the Application Server Toolkit or any other manual process where the complete

name of the group, host name, group name, or distinguished name (DN) is not used.

The user and group information is added to the binding file in the application. This information is used later

for authorization purposes.

This task is required to assign users and groups to roles, which enables the correct users and groups to

access a secured application. If you are installing an application, complete your installation. After the

application is installed and running you can access your resources according to the user and group

mapping that you did in this task. If you manage applications and modify the users and groups to role

mapping, make sure you save, stop, and restart the application so that the changes become effective. Try

accessing the J2EE resources in the application to verify that the changes are effective.

Adding users and groups to roles using an assembly tool

After creating new roles and assigning them to enterprise bean and Web resources, use this task to add

users and groups to roles with an assembly tool.

Before you perform this task, you already completed the steps in “Securing Web applications using an

assembly tool” on page 905 and “Securing enterprise bean applications” on page 925 where you created

new roles and assigned those roles to enterprise bean and Web resources. Complete these steps during

application installation. The environment user registry under which the application is running is not known

until deployment.

If you already know the environment in which the application is running and the user registry that is used,

you can use an assembly tool to assign users and groups to roles. Using the administrative console to

assign users and groups to roles is recommended.

Note: This procedure might not match the steps that are required when using your assembly tool, or

match the version of the assembly tool that you are using. You should follow the instructions for the

tool and version that you are using.

To add users and groups to roles using an assembly tool, follow these steps:

1. In the Project Explorer view of an assembly tool, right-click an enterprise application project, or

Enterprise Archive (EAR) file, and click Open With > Deployment Descriptor Editor. An application

deployment descriptor editor opens on the EAR file. To access information about the editor, press F1

and click Application deployment descriptor editor.

2. Click the Security tab and, under the main panel, click Add.

3. In the Add Security Role wizard, name and describe the security role. Click Finish.

4. Under WebSphere Bindings, select the user or group extension properties for the security role.

Available values include: Everyone, All authenticated users, and Users/Groups.

5. If you selected Users/Groups, click Add beside the Users or Groups panes. In the wizard that opens,

specify a user or group name and click Finish. Repeat this step until you added all the users and

groups to which the security role applies.

Chapter 10. Web applications 911

6. Close the application deployment descriptor editor and, when prompted, click Yes to save the changes.

The ibm-application-bnd.xmi file in the application contains the users and groups-to-roles mapping table,

which is the authorization table.

After securing an application, install the application using the administrative console.

Mapping users to roles

Use this page to specify the users and groups that are mapped to the security roles that are used with the

enterprise application.

To view this administrative console page, click Application > Install new application.

While using the Install New Application Wizard, prompts appear to help you map security roles to users.

You also can configure security roles to user mappings of deployed applications. Different roles can have

different security authorizations. Mapping users or groups to a role authorizes those users or groups to

access applications defined by the role. Users, groups, and roles are defined when an application is

installed or configured.

You also can select role to user and group mappings while you are deploying applications. After

deployment, click Security role to user/group mapping under Detailed properties to change user and

group mappings to a role.

Look up users:

Enables the server to locate the users that you can define for a particular security role.

 Select the check box beside the role and click Look up users. Complete the Limit and the Search string

fields. The Limit field contains the number of entries that the search function returns. The Search string

field contains the search pattern used for searching entries. For example, bob* searches all users or

groups starting with bob. A limit of zero returns all the entries that match the pattern. Use this value only

when a small number of users or groups match this pattern in the registry. If the registry contains more

entries that match the pattern than requested, a message appears in the console to indicate that there are

more entries in the registry. You can either increase the limit or refine the search pattern to get all the

entries.

Look up groups:

Enables the server to locate the groups that you can define for a particular security role.

 Select the check box beside the role and click Look up groups. Complete the Limit and the Search string

fields. The Limit field contains the number of entries that the search function returns. The Search string

field contains the search pattern used for searching entries. For example, bob* searches all users or

groups starting with bob. A limit of zero returns all the entries that match the pattern. Use this value only

when a small number of users or groups match this pattern in the registry. If the registry contains more

entries that match the pattern than requested, a message appears in the console to indicate that there are

more entries in the registry. You can either increase the limit or refine the search pattern to get all the

entries.

Role:

Maps specific capabilities to a user. Role privileges give users and groups permission to run as specified.

 Select the check boxes to choose a role or a set of roles. Click Look up users to map users to the roles

that you have selected. Click Look up groups to map groups to the selected roles. Use the check boxes

to map roles to EVERYONE or ALL AUTHENTICATED special subject.

912 Securing applications and their environment

For example, you might map the user Joe to the administrator role, which enables user Joe to perform all

of the tasks associated with the administrator role.

The authorization policy is only enforced when global security is enabled.

Everyone:

Specifies whether to map everyone to a specified role. When you map everyone to a role, anyone can

access the resources that are protected by this role and, essentially, there is no security.

All authenticated:

Specifies whether to map all of the authenticated users to a specified role. When you map all

authenticated users to a specified role, all of the valid users in the current registry who have been

authenticated can access resources that are protected by this role.

Mapped users:

Lists the users that are mapped to the specified role within this application.

Mapped groups:

Lists the groups that are mapped to this specified role within this application.

Look up users and groups settings

Use this page to select users and groups for security roles.

To view this administrative console page, complete the following steps:

1. Click Applications > Enterprise applications > application_name.

2. Under Detail properties, click Security role to user/group mapping.

3. Select the role and click either Look up users or Look up groups.

Different roles can have different security authorizations. Mapping users or groups to a role authorizes

those users or groups to access applications defined by the role. Users and groups are associated with

roles defined in an application when the application is installed or configured. Use the Search pattern field

to display users in the Available list. Click >> to add users from the Available list to the Selected list.

Limit:

Specifies the maximum number of users or groups that can be returned when assigning users/groups to

roles.

 A value of 0 implies a return of all users or groups that match the pattern. You can either increase the limit

or refine the search pattern to get all the entries.

 Data type Integer

Units User name

Default 20

Range 0 or more

Search string:

Indicates the search pattern used to search for the entries in a user registry.

Chapter 10. Web applications 913

The Search string field contains the search pattern that is used to search for the user or group entries. For

example, bob* will search all users or groups starting with bob. A limit of zero (0) retrieves all of the entries

that match the pattern. Use a limit of zero (0) only when a small number users or groups match that

pattern in the user registry. If the user registry contains more entries that match the pattern than requested

for, a message shows in the administrative console to indicate that there are more entries in the user

registry.

 Data type String

Units Number of users

Default 20

Range A-Z with *

Assigning users to RunAs roles

This article explains how to assign users to the RunAs roles for your application.

Complete the following tasks:

v Secure the Web applications and the EJB applications where new RunAs roles are created and

assigned to Web and EJB resources.

v Create all the RunAs roles in your application. The user in the RunAs role can only be entered if that

user or a group to which that user belongs is already part of the regular role.

v Assign users and groups to security roles. Refer to “Assigning users and groups to roles” on page 910

for more information.

v Verify that the user registry requirements are met. These requirements are the same as those discussed

in “Assigning users and groups to roles” on page 910. For example, if the role1 role is a role that is also

used as a RunAs role, then the user1 user can be added to the RunAs role. The administrative console

checks this logic when Apply or OK is clicked. If the check fails, the change is not made and an error

message is displayed at the top of the panel.

When a user ID and password is assigned to a RunAs role, validation occurs using the current active user

registry that is configured. By default, the local operating system registry is set as the active user registry.

Therefore, when an application is installed and security is disabled on the server, the local operating

system registry is used to validate the user ID and password that is assigned to the RunAs Role. If the

intended registry for the application is not local operative system, the validation fails. Therefore, map

RunAs roles to users when the security is enabled on the server. However, if the active user registry and

the intended registry after enabling security are the same, you can assign the user to a RunAs role when

security is disabled.

If the Everyone or All Authenticated special subjects are assigned to a role, validation does not occur for

that role.

Validation is done every time you click Apply in this panel or when you click OK in the Security role to

user/group mapping panel. The check verifies that all the users in all the RunAs roles do exist directly or

indirectly through a group in those roles in the Security role to user/group mappings panel. If a role is

assigned both a user and a group to which that user belongs, you can delete either the user or the group

from the Security role to user/group mapping panel.

If the RunAs role user belongs to a group and if that group is assigned to that role, make sure that the

assignment of this group to the role is done through the administrative console and not through an

assembly tool or other method. When using the administrative console, the full name of the group is used

(for example, hostname\groupName in Windows systems and distinguished names (DN) in Lightweight

Directory Access Protocol (LDAP)). During the check, all the groups to which the RunAs role user belongs

are obtained from the user registry. Because the list of groups that are obtained from the user registry are

the full names of the groups, the check works correctly. If the short name of a group is entered using an

assembly tool, for example group1 instead of CN=group1, o=myCompany.com, this check fails.

914 Securing applications and their environment

These steps are common to both installing an application and modifying an existing application. If the

application contains RunAs roles, you see the User RunAs roles link during application installation and

also during managing applications as a link in the Additional properties section.

1. Click Applications > Enterprise Applications > application_name .

2. Under Additional properties, click User RunAs roles. A list of all the RunAs roles that belong to this

application display. If the roles already have users assigned, they display here.

3. To assign a user, select the role. You can select multiple roles at the same time if the same user is

assigned to all the roles.

4. Enter the user’s name and password in the designated fields. The user name entered can be either

the short name, which is preferred, or the full name, as seen when getting users and groups from the

user registry.

5. Click Apply. The user is authenticated using the active user registry. If authentication is successful, a

check is made to verify that this user or group is mapped to the role in the Map security roles to users

and groups panel. If authentication fails, verify that the user and password are correct and that the

active registry configuration is correct.

6. To remove a user from a RunAs role, select the roles and click Remove.

The RunAs role user is added to the binding file in the application. This file is used for delegation

purposes when accessing J2EE resources. This step is required to assign users to RunAs roles so that

during delegation the appropriate user is used to invoke the EJB methods.

If you are installing the application, complete installation. After the application is installed and running, you

can access your resources according to the RunAS role mapping. Save the configuration.

If you manage applications and modify User RunAs roles, make sure you save, stop, and restart the

application so that the changes become effective. Try accessing your Java 2 Platform, Enterprise Edition

(J2EE) resources to verify that the new changes are in effect.

Mapping users to RunAs roles using an assembly tool:

RunAs roles are used for delegation. A servlet or enterprise bean component uses the RunAs role to

invoke another enterprise bean by impersonating that role.

 Before you perform this task:

v Secure the Web application and enterprise bean applications, including creating and assigning new

roles to enterprise bean and Web resources. For more information, see “Securing Web applications

using an assembly tool” on page 905 and “Securing enterprise bean applications” on page 925.

v Assign users and groups to roles. For more information, see “Adding users and groups to roles using an

assembly tool” on page 911. Complete this step during the installation of the application. The

environment or user registry under which the application is going to run is not known until deployment. If

you already know the environment in which the application is going to run and you know the user

registry, then you can use an assembly tool to assign users to RunAs roles.

Note: This procedure might not match the steps that are required when using your assembly tool, or

match the version of the assembly tool that you are using. You should follow the instructions for the

tool and version that you are using.

To define RunAs roles when a servlet or an enterprise bean in an application is configured with RunAs

settings, perform these steps:

1. In the Project Explorer view of an assembly tool, right-click an enterprise application project or

Enterprise Archive (EAR) file and click Open With > Deployment Descriptor Editor. An application

deployment descriptor editor opens on the EAR file. To access information about the editor, press F1

and click Application deployment descriptor editor.

2. On the Security tab, under Security Role Run As Bindings, click Add.

Chapter 10. Web applications 915

3. Click Add under RunAs Bindings.

4. In the Security Role wizard, select one or more roles and click Finish.

5. Repeat steps 3 through 5 for all the RunAs roles in the application.

6. Close the application deployment descriptor editor and, when prompted, click Yes to save the changes.

The ibm-application-bnd.xmi file in the application contains the user to RunAs role mapping table.

After securing an application, you can install the application using the administrative console. You can

change the RunAs role mappings of an installed application. For more information, see “User RunAs

collection” on page 918.

Ensure all unprotected 1.x methods have the correct level of protection:

Use this page to verify that the unprotected Enterprise JavaBeans (EJB) Version 1.x methods have the

correct level of protection before you map users to roles.

 This administrative console panel is displayed during the application deployment process. To access the

administrative console panel, click Application > Install new application > application_name. The panel

is displayed as Ensure all unprotected 1.x methods have the correct level of protection in the application

deployment steps. On this administrative console panel, you can specify whether users can access

specific EJB modules.

EJB module:

Specifies the EJB module name.

URI:

Specifies the Uniform Resource Identifier (URI) that is used to locate the Java archive (JAR) file for the

EJB module.

Deny all access:

Select this option to protect this EJB module by making it inaccessible to users regardless of their access

permissions.

 Default: Cleared

Ensure all unprotected 2.x methods have the correct level of protection:

Use this page to verify that the unprotected Enterprise JavaBeans (EJB) Version 2.x methods have the

correct level of protection before you map users to roles.

 This administrative console panel is displayed during the application deployment process. To access the

administrative console panel, click Application > Install new application > application_name. The panel

is displayed as Ensure all unprotected 2.x methods have the correct level of protection in the application

deployment steps. On this administrative console panel, you can specify whether users can access

specific EJB modules.

To use this administrative console page, select the Uncheck, Exclude, or Role option, the check box next

to the EJB module, and click Apply. If you select Role option, select the appropriate role for the EJB

module before you click Apply.

Uncheck:

916 Securing applications and their environment

Select this option if you do not want the application server to verify the access permissions for the EJB

module. Everyone can access the EJB module.

 Default: Selected

Exclude:

Select this option to protect this EJB module by making it inaccessible to users regardless of their access

permissions.

 Default: Deselected

Role:

Specifies the EJB level of protection based on the security role.

 The roles listed in this menu are obtained from the application scope. If the selected role is not in the

module, then it is added to the modules or Java archive (JAR) files.

 Default: Deselected

EJB module:

Specifies the name of the module.

 If a module name appears in this list, then the module contains unprotected EJB methods.

URI:

Specifies the Uniform Resource Identifier (URI) that is used to locate the Java archive (JAR) file for the

EJB module.

Protection type:

Specifies the level of protection that is assigned to a particular module name.

 After you select the Uncheck, Exclude, or Role option and click Apply, the selected protection option is

displayed in this column.

Correct use of the system identity:

Use this page to manage the system identity properties for the Enterprise JavaBeans (EJB) method in

your application.

 This administrative console panel is displayed during the application deployment process. To access the

administrative console panel, click Applications > Install new application > application_name. The panel

is displayed as Correct use of System Identity in the application deployment steps.

To use this panel, complete the following steps:

1. Select the check box next to the EJB method.

2. Select a role that is defined for this enterprise bean.

3. Specify a user name and password for the RunAs role. The user name must be defined in your user

registry.

4. Click Apply.

Chapter 10. Web applications 917

The specified user will be assigned to the specified RunAs role for the EJB method that you selected.

Role:

Specifies the RunAs role that is used for this EJB method.

Username:

Specifies the user name that is assigned to the RunAs role for this EJB method.

 The user name is used in conjunction with the RunAs role that you select for the Role.

Password:

Specifies the password that is associated with the user name in the user registry.

User RunAs collection:

Use this page to map a specified user identity and password to a RunAs role. This panel enables you to

specify application-specific privileges for individual users to run specific tasks using another user identity.

 To view this administrative console page, complete the following steps:

1. Click Applications > Enterprise applications > application_name.

2. Under Detail properties, click User RunAs roles.

The enterprise beans that you install contain predefined RunAs roles. RunAs roles are used by enterprise

beans that need to run as a particular role for recognition while interacting with another enterprise bean.

Username:

Specifies a user name for the RunAs role user.

 This user already maps to the role specified in the Mapping users and groups to roles panel. You can map

the user to its appropriate role by either mapping the user to that role directly or mapping a group that

contains the user to that role. After you specify the user name and password for the user and select a

RunAs role, click Apply.

 Data type: String

Password:

Specifies the password for the RunAs user.

 Data type: String

Role:

Maps specific capabilities to a user.

 The authorization policy is only enforced when global security is enabled.

Updating and redeploying secured applications

This section addresses the way to update existing applications.

918 Securing applications and their environment

Before you perform this task, secure Web applications, secure Enterprise JavaBeans (EJB) applications,

and deploy them in WebSphere Application Server.

1. Use the administrative console to modify the existing users and groups mapping to roles. For

information on the required steps, see “Assigning users and groups to roles” on page 910.

2. Use the administrative console to modify the users for the RunAs roles. For information on the required

steps, see “Assigning users to RunAs roles” on page 914.

3. Complete and save the changes.

4. Stop and restart the application for the changes to become effective.

5. Use an assembly tool. For more information, see Assembling applications.

6. Use an assembly tool to modify roles, method permissions, auth-constraints, data-constraints and so

on. For more information, see Assembling applications.

7. Save the enterprise archive (EAR) file, uninstall the old application, deploy the modified application and

start the application to make the changes effective.

The applications are modified and redeployed. This step is required to modify existing secured

applications.

If information about roles is modified, make sure that you update the user and group information using the

administrative console. After the secured applications are modified and either restarted or redeployed,

verify that the changes are effective by accessing the resources in the application.

Deploying secured applications

Deploying applications that have security constraints (secured applications) is not much different than

deploying applications that do not contain any security constraints. The only difference is that you might

need to assign users and groups to roles for a secured application. The secured application requires that

you have the correct active user registry.

Before you perform this task, verify that you already designed, developed, and assembled an application

with all the relevant security configurations. For more information on these tasks refer to “Developing

applications that use programmatic security” on page 510 and “Securing applications during assembly and

deployment” on page 909. In this context, deploying and installing an application are considered the same

task.

To deploy a newly secured application click Applications > Install New Application and follow the

prompts to complete the installation steps. One of the required steps to deploy secured applications is to

assign users and groups to roles that are defined in the application.

v If you are installing a secured application, roles will be defined in the application.

v If delegation is required in the application, you will be defining RunAs roles also.

During the installation of a new application, the role definition is completed as part of the step that maps

security roles to users and groups. If this assignment has already been completed by using an assembly

tool, you can still confirm the mapping by going through this installation step. You can add new users and

groups and modify existing information during this step.

If the application supports delegation, a RunAs role will already be defined in the application. If the

delegation policy is set to Specified Identity during assembly, the intermediary invokes a method by

using an identity setup during deployment. Use the RunAs role to specify the identity under which the

downstream invocations are made. For example, if the RunAs role is assigned user bob and the client

alice is invoking a servlet, with delegation set that calls the enterprise beans, the method on the

enterprise beans is invoked with bob as the identity.

Chapter 10. Web applications 919

As part of the new application installation and deployment process, one of the steps is to map or modify

users to the RunAs roles. Use this step to assign new users or modify existing users to RunAs roles when

the delegation policy is set to Specified Identity.

Note that the steps are common whether you are installing an application or modifying an existing

application.

To install and deploy the application, complete the following steps.

1. Click Applications > Install New Application. Complete the required steps until you see the step for

mapping security roles to users and groups.

2. If the application contains roles, assign users and groups to roles. At this step during the installation,

under Additional Properties, click Map security roles to users and groups. For more information, see

“Assigning users and groups to roles” on page 910.

3. If RunAs roles exist in the application, assign users to RunAs roles. At this step during the installation,

under Additional Properties, click Map RunAs roles to users. For more information, see “Assigning

users to RunAs roles” on page 914.

4. Optional: Click Correct use of System Identity to specify RunAs roles, if needed. Complete this

action if the application has delegation set to use system identity, which is applicable to enterprise

beans only. System identity uses the WebSphere Application Server security server ID to invoke

downstream methods. Using system identity is not recommended as this ID has more privileges than

other identities in accessing WebSphere Application Server internal methods. This task is provided to

make sure that the deployer is aware that the methods listed in the panel have system identity set up

for delegation and to correct them if necessary. When the internalServerId feature is used, runAs with

system identity is not supported; you must specify RunAs roles here.

5. Complete the remaining non-security related steps to finish installing and deploying the application.

After a secured application is deployed, verify that you can access the resources in the application with the

correct credentials. For example, if your application has a protected Web module, make sure only the

users that you assigned to the roles can use the application.

920 Securing applications and their environment

Chapter 11. SIP applications

Securing SIP applications

You can apply digest authentication and Trust Association Interceptor (TAI) for a SIP application by

applying Lightweight Directory Access Protocol (LDAP) security to the application.

Before you can apply security, you must first deploy an application that has been developed to support

security (with the web.xml file configured for security) and roles. The following software must also be

installed:

1. Install Tivoli Directory Server version 5.2

2. Set up and activate Lightweight Third Party Authentication. For more information, see the Lightweight

Third Party Authentication section.

To apply LDAP security to a SIP application, click Applications → Enterprise Applications →

applicationName and complete the following steps:

1. Click Detail Properties → Security role to user/group mapping.

2. Check All Authenticated.

3. Save all changes.

4. Restart the server.

Configuring security for the SIP container

This section provides instructions specific to security for the SIP container, employed with software such

as Tivoli Directory Server or Oracle Internet Directory.

Before you can configure security for your SIP container, you will need to:

1. Set up and activate Lightweight Third Party Authentication. For more information, see the Lightweight

Third Party Authentication section.

2. Install Oracle Internet Directory or Tivoli Directory Server.

You may also need to:

v Adjust key group settings. Refer to Lightweight Third Party Authentication key sets and key set groups

for LTPA key information.

v Establish and configure Trust Association Interceptor (TAI) settings. Refer to Trust association

interceptor settings.

You must know the name of the key set group and the management scope where the key set group is

defined in order to activate and secure LTPA with keys. Refer to Activating Lightweight Third Party

Authentication key versions for the setup and activation procedures.

To configure security based on the Lightweight Directory Access Protocol (LDAP), you can configure digest

authentication by using either Tivoli Directory Server or Oracle Internet Directory.

v To configure digest authentication and TAI on WebSphere Application Server for Tivoli, select

“Configuring digest authentication and TAI for Tivoli Directory Server” on page 922.

v For configuring digest authentication on WebSphere Application Server for Oracle Internet Directory,

select “Configuring digest authentication for Oracle Internet Directory” on page 923.

If setting up a TAI you will need to specify the trust information for any reverse security proxy servers. See

“Trust association interceptor settings” on page 228 to configure TAI settings.

© Copyright IBM Corp. 2006 921

csec_sslltpakeysetgroup.dita
usec_tainterceptordetail.dita
usec_tainterceptordetail.dita
tsec_sslltpakeyversions.dita
tsec_sslltpakeyversions.dita

Configuring digest authentication and TAI for Tivoli Directory Server

You can configure digest authentication and Trust Association Interceptor (TAI) for IBM Tivoli Directory

Server.

To configure digest authentication and TAI on WebSphere Application Server, you will need to:

v Install Tivoli Directory Server version 5.2

v Set up and activate Lightweight Third Party Authentication. For more information, see the Lightweight

Third Party Authentication section.

v You also may want to refer to the section Configuring a custom trust association interceptor for more

TAI information.

Complete the following procedure to configure digest authentication and TAI on WebSphere Application

Server:

1. To set up digest authentication, verify that Lightweight Third Party Authentication (LTPA) is

configured for use on your server by selecting Security → Secure administration, applications, and

infrastructure → Authentication mechanisms. In the Configuration tab on the Authentication

mechanisms and expiration page you should see the Password field already filled in.

2. In the administrative console, click Security → Secure administration, applications, and

infrastructure.

a. Under Authentication, expand Web security and click on Trust association.

b. On the Configuration tab, under General properties, make sure the Enable trust association

box is checked. Then click Apply.

3. On the Interceptors page of the administration console look for

com.ibm.ws.sip.security.digest.DigestTAI in the Interceptor class name list:

a. If this class name in not present, click New to open the Configuration tab and enter

com.ibm.ws.sip.security.digest.DigestTAI in the Interceptor class name field and click Apply.

Then proceed to the following steps.

b. If this interceptor class is present, you may proceed to set up a realm in digest authentication. To

do this, click com.ibm.ws.sip.security.digest.DigestTAI → Custom Properties:

c. Click OK.

4. Navigate through Security → Secure administration, applications, and infrastructure →

Authentication mechanisms and expirationto the Configuration tab.

a. In the Key generation section, click Generate Keys. (No import or export of the key is necessary.)

b. Under the Cross-cell single sign-on section fill in the Password fields.

c. Fill in the Internal server ID field.

d. Click OK.

5. Click to Security → Secure administration, applications, and infrastructure.

a. If the box Use Java 2 security to restrict application access to local resources is checked,

click to deselect it.

b. In the User account repository section of the page, select your LDAP registry from the Available

realm definitions drop-down box.

c. Click Set as current and then clickApply.

6. Save all changes.

7. Restart the server.

8. Be sure you see the following message appear in the SystemOut.log after the server has restarted:

SECJ0121I: Trust Association Init class com.ibm.ws.sip.security.digest.DigestTAI loaded successfully

If this message does not appear in the log, digest authentication has not been activated.

922 Securing applications and their environment

Configuring digest authentication for Oracle Internet Directory

You can configure digest authentication for Oracle Internet Directory, an implementation of the Lightweight

Directory Access Protocol (LDAP) that uses the Oracle database as a repository for directory entries.

To configure digest authentication for Oracle Internet Directory, you will need to:

v Install Oracle Internet Directory version 9.0.2.

v Set up and activate Lightweight Third Party Authentication. For more information, see the Lightweight

Third Party Authentication section.

v You also may want to refer to the section Configuring a custom trust association interceptor for more

TAI information.

Complete the following procedure to configure digest authentication for Oracle Internet Directory on

WebSphere Application Server:

1. To set up digest authentication, verify that Lightweight Third Party Authentication (LTPA) is

configured for use on your server by selecting Security → Secure administration, applications, and

infrastructure → Authentication mechanisms. In the Configuration tab on the Authentication

mechanisms and expiration page you should see the Password field already filled in.

2. In the administrative console, click Security → Secure administration, applications, and

infrastructure.

a. Under Authentication, expand Web security and click on Trust association.

b. On the Configuration tab, under General properties, make sure the Enable trust association

box is checked. Then click Apply.

3. On the Interceptors page of the administration console look for

com.ibm.ws.sip.security.digest.SIPDigestOID in the Interceptor class name list:

a. If this class name in not present, click New to open the Configuration tab and enter

com.ibm.ws.sip.security.digest.SIPDigestOID in the Interceptor class name field and click

Apply. Then proceed to the following steps.

b. If this interceptor class is present, you may set up custom properties for it. To do this, click

com.ibm.ws.sip.security.digest.SIPDigestOID → Custom Properties:

c. Click OK.

4. Navigate through Security → Secure administration, applications, and infrastructure →

Authentication mechanisms and expirationto the Configuration tab.

a. In the Key generation section, click Generate Keys. (No import or export of the key is necessary.)

b. Under the Cross-cell single sign-on section fill in the Password fields.

c. Fill in the Internal server ID field.

d. Click OK.

5. Click to Security → Secure administration, applications, and infrastructure.

a. If the box Use Java 2 security to restrict application access to local resources is checked,

click to deselect it.

b. In the User account repository section of the page, select your LDAP registry from the Available

realm definitions drop-down box.

c. Click Set as current and then clickApply.

6. Save all changes.

7. Restart the server.

8. Be sure you see the following message appear in the SystemOut.log after the server has restarted:

SECJ0121I: Trust Association Init class

 com.ibm.ws.sip.security.digest.SIPDigestOID loaded successfully

If this message does not appear in the log, digest authentication has not been activated.

Chapter 11. SIP applications 923

Configuring a custom trust association interceptor

How to configure a custom trust association interceptor (TAI).

Before you can configure a custom TAI, you must enable global security after you install the following

software:

1. WebSphere Application Server version 6.1

2. Tivoli Directory Server version 5.2

3. Verify that Lightweight Third Party Authentication (LTPA) is configured for use on your server by

selecting Security → Secure administration, applications, and infrastructure → Authentication

mechanisms. In the Configuration tab on the Authentication mechanisms and expiration page

you should see the Password field already filled in.

To configure a custom TAI, you may want to familiarize yourself with the general TAI information contained

in the Trust Associations documentation. You also may want to refer to the Developing a custom trust

association interceptor topic for information about the Java class extensions.

The JAR file that contains your custom TAI should be deployed in the application server environment in a

location that is accessible by the security portions of the application server runtime. They reside in the

WASProductDir/plugins directory for the application server nodes. You may encounter problems if you try

to place your TAI under a shared library for just the application server.

To configure your custom TAI, complete the following steps (for more details, see the “TAI usage” section

of IBM WebSphere Developer Technical Journal: Advanced authentication in WebSphere Application

Server):

1. Install your TAI JAR file in the WASProductDir/plugins directory.

2. From the WebSphere Application Server administrative console, navigate to Security → Secure

administration, applications, and infrastructure

3. Under Authentication, expand Web security and click on Trust association.

4. On the Configuration tab, under General properties, make sure the Enable trust association box is

checked. Then click Apply.

5. To create the new custom class, navigate to Trust association → Configuration tab (see step 4

above) and under Additional properties, click Interceptors.

6. Click New and enter the fully qualified class name to your custom TAI class, and click Apply.

7. If your TAI depends on custom properties, navigate to Trust association → Configuration tab (see

step 4 above) and under Additional properties, click Interceptors. Select your Interceptor class

name list. In the Configuration tab that opens, click on Custom properties Type the name and value

pairs for the properties on which your TAI depends, and click Apply.

8. Save your configuration, and then restart your server to make your TAI fully operational.

924 Securing applications and their environment

http://www-128.ibm.com/developerworks/websphere/techjournal/0508_benantar/0508_benantar.html
http://www-128.ibm.com/developerworks/websphere/techjournal/0508_benantar/0508_benantar.html

Chapter 12. EJB applications

Securing enterprise bean applications

You can protect enterprise bean methods by assigning security roles to them. Before you assign security

roles, you need to know which Enterprise JavaBeans (EJB) methods need protecting and how to protect

them.

Note: This procedure might not match the steps that are required when using your assembly tool, or

match the version of the assembly tool that you are using. You should follow the instructions for the

tool and version that you are using.

To secure enterprise bean applications, follow these steps:

1. In an assembly tool, import your Enterprise JavaBean (EJB) Java Archive (JAR) file or an application

archive (EAR) file that contains one or more Web modules.

See the information about importing an EJB JAR file or importing an enterprise application EAR file in

the Application Server Toolkit (AST) documentation.

2. In the Project Explorer, click EJB Projects directory and click the name of your application.

3. Right-click the deployment descriptor and click Open with > Deployment Descriptor Editor. If you

selected an enterprise bean .jar file, an EJB deployment descriptor editor opens. If you select an

application .ear file, an application deployment descriptor editor opens. To see online information

about the editor, press F1 and click the editor name.

4. Create security roles. You can create security roles at the application level or at the EJB module level.

If you create a security role at the EJB module level, the role displays in the application level. If a

security role is created at the application level, the role does not display in all the EJB modules. You

can copy and paste one or more EJB module security roles that you create at application level:

v Create a role at an EJB module level. In an EJB deployment descriptor editor, click the Assembly

tab. Under Security Roles, click Add. In the Add Security Role wizard, name and describe the

security role and click Finish.

v Create a role at the application level. In an application deployment descriptor editor, select the

Security tab. Under the list of security roles, click Add. In the Add Security Role wizard, name and

describe the security role; then click Finish.

5. Create method permissions. Method permissions map one or more methods to a set of roles. An

enterprise bean has four types of methods: home methods, remote methods, LocalHome methods and

local methods. You can add permissions to enterprise beans on the method level. You cannot add a

method permission to an enterprise bean unless you already have one or more security roles defined.

For Version 2.0 EJB projects, an unselected option specifies that the selected methods from the

selected beans do not require authorization to run. To add a method permission to an enterprise bean:

a. On the Assembly tab of an EJB deployment descriptor editor, under Method Permissions, click

Add. The Add Method Permission wizard is opened.

b. Select a security role from the list of roles found and click Next.

c. Select one or more enterprise beans from the list of beans found. You can click Select All or

Deselect All to select or clear all of the enterprise beans in the list. Click Next.

d. Select the methods that you want to bind to your security role. The Method elements page lists all

the methods that are associated with the enterprise beans. You can click Apply to All or Deselect

All to quickly select or clear multiple methods. The selection affects the default (*) method for each

bean only. Creating a method permission for the exact method signature overrides the default (*)

method permission setting. The default (*) method represents all the methods within the bean.

There are default (*) methods for each interface as well. By not selecting all of the individual

methods in the tree, you can set other permissions on the remaining methods.

e. Click Finish.

© Copyright IBM Corp. 2006 925

After the method permission is created, you can see the new method permission in the tree. Expand

the tree to see the bean and the methods that are defined in the method permission.

6. Exclude user access to methods. Users cannot access excluded methods. Any method in the

enterprise beans that is not assigned to a role or that is not excluded, is cleared during the application

installation by the deployer.

a. On the Assembly tab of an EJB deployment descriptor editor, under Excludes List, click Add.

The Exclude List wizard is opened.

b. Select one or more enterprise beans from the list of beans found and click Next.

c. Select one or more of the method elements for the security identity and click Finish.

7. Map the security-role-ref and role-name to the role-link. When developing enterprise beans, you can

create the security-role-ref element. The security-role-ref element contains only the role-name field.

The role-name field determines if the caller is in a specified role(isCallerInRole()) role and contains the

name of the role that is referenced in the code. Because you create security roles during the assembly

stage, the developer uses a logical role name in the role-name field and provides enough information

in the Description field for the assembler to map the actual role (role-link). The security-role-ref

element is located at the EJB level. Enterprise beans can have zero or more security-role-ref elements.

a. On the Reference tab of an EJB deployment descriptor editor, under the list of references, click

Add. The Add Reference wizard is opened.

b. Select Security role reference and click Next.

c. Name the security role reference, select a security role to link the reference to, describe the

security role reference, and click Finish.

d. Map every role-name that is used during development to the role (role-link) using the previous

steps.

8. Specify the RunAs identity for enterprise bean components. The RunAs identity of the enterprise bean

is used to invoke the next enterprise beans in the chain of EJB invocations. When the next enterprise

beans are invoked, the RunAsIdentity identity passes to the next enterprise beans for performing an

authorization check on the next enterprise bean. If the RunAs identity is not specified, the client identity

is propagated to the next enterprise bean. The RunAs identity can represent each of the enterprise

beans or can represent each method in the enterprise beans.

a. On the Access tab of an EJB deployment descriptor editor, next to the Security Identity (Bean

Level) field, click Add. The Add Security Identity wizard is opened.

b. Select the appropriate run as mode, describe the security identity, and click Next. Select the Use

identity of caller mode to instruct the security service to not make changes to the credential

settings for the principal. Select the Use identity assigned to specific role (below) mode to use

a principal that is assigned to the specified security role for running the bean methods. This

association is part of the application binding in which the role is associated with the user ID and

password of a user who is granted that role. If you select the Use identity assigned to specific

role (below) mode , you must specify a role name and role description.

c. Select one or more enterprise beans from the list of beans found and click Next. If Next is

unavailable, click Finish.

d. Optional: On the Method elements page, select one or more of the method elements for the

security identity and click Finish.

9. Close the deployment descriptor editor and, when prompted, click Yes to save the changes.

After securing an EJB application, the resulting .jar file contains security information in its deployment

descriptor. The security information of the EJB modules is stored in the ejb-jar.xml file.

After securing an EJB application using an assembly tool, you can install the EJB application using the

administrative console. During the installation of a secured EJB application, follow the steps in the

“Deploying secured applications” on page 919 article to complete the task of securing the EJB application.

926 Securing applications and their environment

Configuring security for EJB 2.1 message-driven beans

Use this task to configure resource security and security permissions for Enterprise JavaBeans (EJB)

Version 2.1 message-driven beans.

The association between connection factories, destinations, and message-driven beans is provided by

listener ports. A listener port allows a deployed message-driven bean associated with the port to retrieve

messages from the associated destination. You create listener ports by specifying their administrative

name, the connection factory JNDI name, and the destination name (other optional properties are also

configurable). Listener ports provide simplified administration of the associations between connection

factories, destinations and message-driven beans, and are managed by a listener manager. The listener

manager is provided by the message listener service to control and monitor the JMS listeners that are

monitoring JMS destinations on behalf of deployed message-driven beans. For more information about

listener ports, see Message-driven beans - listener port components

Messages handled by message-driven beans have no client credentials associated with them. The

messages are anonymous.

To call secure enterprise beans from a message-driven bean, the message-driven bean needs to be

configured with a RunAs Identity deployment descriptor. Security depends on the role specified by the

RunAs Identity for the message-driven bean as an EJB component.

For more information about EJB security, see EJB component security. For more information about

configuring security for your application, see Assembling secured applications.

Connections used by message-driven beans can benefit from the added security of using J2C

container-managed authentication. To enable the use of J2C container authentication aliases and mapping,

define an authentication alias on the J2C activation specification that the message-driven bean is

configured with. If defined, the message-driven bean uses the authentication alias for its JMSConnection

security credentials instead of any application-managed alias.

To set the authentication alias, you can use the administrative console to complete the following steps.

This task description assumes that you have already created an activation specification. If you want to

create a new activation specification, see the related tasks.

v For a message-driven bean listening on a JMS destination of the default messaging provider, set the

authentication alias on a JMS activation specification.

1. To display the JMS activation specification settings, click Resources → JMS Providers → Default

messaging → [Activation Specifications] JMS activation specification

2. If you have already created a JMS activation specification, click its name in the list displayed.

Otherwise, click New to create a new JMS activation specification.

3. Set the Authentication alias property.

4. Click OK

5. Save your changes to the master configuration.

v For a message-driven bean listening on a destination (or endpoint) of another JCA provider, set the

authentication alias on a J2C activation specification.

1. To display the J2C activation specification settings, click Resources → Resource Adapters →

adapter_name → J2C Activation specifications → activation specification_name

2. Set the Authentication alias property.

3. Click OK

4. Save your changes to the master configuration.

Chapter 12. EJB applications 927

928 Securing applications and their environment

Chapter 13. Client applications

Accessing secure resources using SSL and applet clients

By default, the applet client is configured to have security enabled. If you have administrative security

turned on at the server from which you are accessing resources, then you can use secure sockets layer

(SSL) when needed.

If you decide that the security requirements for the applet differ from other application client types, then

create a new version of the sas.client.props and ssl.client.props files.

1. Make a copy of the following files so that you can use them for an applet:

v <app_client_root>\properties\sas.client.props

v <app_client_root>\properties\ssl.client.props

2. Edit the copies of the sas.client.props and ssl.client.props files that you made with your changes.

3. Click Start > Control panel > select the product Java plug-in to open the Java control panel. To use

the files you created in step 1, modify the following values:

v -Dcom.ibm.CORBA.ConfigURL=file:<app_client_root>\properties\sas.client.props

v -Dcom.ibm.SSL.ConfigURL=file:<app_client_root>\properties\ssl.client.props

For more information on the sas.client.props and ssl.client.props files and WebSphere Application

Server security, see the Security section of the information center.

Applet client security requirements

When code is loaded, it is assigned permissions based on the security policy in effect. This policy

specifies the permissions that are available for code from various locations. You can initialize this policy

from an external policy file.

By default, the client uses the <app_server_root>/properties/client.policy file. You must update this file

with the following permission:

SocketPermission grants permission to open a port and make a connection to a host machine, which is

your WebSphere Application Server. In the following example, yourserver.yourcompany.com is the

complete host name of your WebSphere Application Server:

permission java.util.PropertyPermission "*", "read";

permission java.net.SocketPermission "yourserver.yourcompany.com ,"connect";

© Copyright IBM Corp. 2006 929

930 Securing applications and their environment

Chapter 14. Web services

Configuring HTTP outbound transport level security with the

administrative console

This topic explains how to configure HTTP outbound transport level security with the administrative

console.

This task is one of several ways that you can configure the HTTP outbound transport level security for a

Web service acting as a client to another Web service server. You can also configure the HTTP outbound

transport level security with an assembly tool or by using the Java properties. If you do not configure the

HTTP outbound transport level security, the Web services runtime defers to the Java 2 Platform,

Enterprise Edition (J2EE) security runtime in the WebSphere product for an effective Secure Sockets

Layer (SSL) configuration. If there is no SSL configuration with the J2EE security runtime in the

WebSphere product, the Java Secure Socket Extension (JSSE) system properties are used.

If you choose to configure the HTTP outbound transport level security with the administrative console or

an assembly tool, the Web services security binding information is modified. You can use the

administrative console to configure the Web services client security bindings if you have deployed or

installed the Web services application into WebSphere Application Server. If you have not installed the

Web services application, you can configure the HTTP SSL configuration with an assembly tool. This task

assumes that you have deployed the Web services application into the WebSphere product.

If you configure the HTTP outbound transport level security using the standard Java properties for JSSE,

the properties are configured as system properties. The configuration specified in the binding takes

precedence over the Java properties. However, the configurations that are specified by the J2EE security

programming model , or that are associated the Dynamic selection, have higher precedence.

Review the topic Secure communications using Secure Sockets Layer for more information.

Configure the HTTP outbound transport level security with the following steps provided in this task section.

1. Open the administrative console.

2. Click Applications > Enterprise Applications > application_instance > Manage Modules >

module_instance > Web Services Client Security Bindings.

3. Click HTTP SSL Configuration to access the HTTP SSL configuration panel. Select the

Centrally-managed radio button so that the system runtime chooses the SSL configuration that is

based on the current context. Select the Specific to this Web service port radio button if you want to

choose the SSL configuration in the HTTP SSL configuration drop down box.

You have configured the HTTP outbound transport level security for a Web service acting as a client to

another Web service with the administrative console.

HTTP SSL Configuration collection

Use this page to configure transport-level Secure Sockets Layer (SSL) security. You can use this

configuration when a Web service is a client to another Web service.

You can use transport-level security to enable HTTP SSL (or HTTPS). Transport-level security can be

enabled or disabled independently from message-level security. Because transport-level security provides

minimal security, use message-level security when security is essential to the Web service application.

To view this administrative console page, complete the following steps:

1. Click Applications > Enterprise Applications > application_instance.

2. Click Manage modules > URI_file_name > Web Services: Client Security Bindings.

© Copyright IBM Corp. 2006 931

3. Under HTTP SSL Configuration, click Edit.

SSL configuration

Select the Centrally-managed radio button so that the system runtime chooses the SSL configuration that

is based on the current context. Select the Specific to this Web service port radio button if you want to

choose the SSL configuration in the HTTP SSL configuration drop down box.

HTTP SSL configuration

The HTTP SSL configuration drop down box lists the SSL configurations used with the HTTP transport

for a port. Use this drop down box if you want to select the SSL configuration rather than using the SSL

configuration that the runtime automatically selects. To use the drop down box, select the Specific to the

Web service port radio button that is located in the SSL configuration field. After you select the radio

button, you can click the drop down box to view and select an SSL configuration.

Configuring HTTP outbound transport level security with an assembly

tool

This topic explains how to configure the HTTP outbound transport level security with an assembly tool.

You can configure HTTP outbound transport level security with assembly tools provided with WebSphere

Application Server.

This task is one of several ways that you can configure the HTTP outbound transport level security for a

Web Service acting as a client to another Web service server. You can also configure the HTTP outbound

transport level security with the administrative console or by using the Java properties. If you do not

configure the HTTP outbound transport level security, the Web services runtime defers to the Java 2

Platform, Enterprise Edition (J2EE) security runtime in the WebSphere product for an effective Secure

Sockets Layer (SSL) configuration. If there is no SSL configuration with the J2EE security runtime in the

WebSphere product, the Java Secure Socket Extension (JSSE) system properties are used.

If you configure the HTTP outbound transport level security with assembly tool or with the administrative

console, the Web services security binding information is modified. If you have not yet installed the Web

services application into WebSphere Application Server, you can configure the HTTP SSL configuration

with an assembly tool. This task assumes that you have not deployed the Web services application into

the WebSphere product.

If you configure the HTTP outbound transport level security using the standard Java properties for JSSE,

the properties are configured as system properties. The configuration that is specified in the binding takes

precedence over the Java properties. However, the configurations that are specified by the J2EE security

programming model, or are associated with the Dynamic selection, have a higher precedence.

Review the topic Secure communications using Secure Sockets Layer for more information.

Configure the HTTP outbound transport level security with the following steps provided in this task section.

1. Start an assembly tool. See ″Starting WebSphere Application Server Toolkit″ in the Application Server

Toolkit documentation for more information.

2. If you have not done so already, configure the assembly tool to work on J2EE modules. Make sure

that the J2EE and Web categories are enabled. See ″Configuring WebSphere Application Server

Toolkit″ in the Application Server Toolkit documentation for more information.

3. Migrate the Web archive (WAR) files that are created with the Assembly Toolkit, Application Assembly

Tool (AAT) or a different tool to an AST or Rational Web Developer assembly tool. To migrate files,

import your WAR files to the assembly tool. See ″Importing Web archive (WAR) files″ in the Application

Server Toolkit documentation for more information.

4. Configure the HTTP outbound transport level security. See ″Enabling Web service endpoints″ in the

Application Server Toolkit documentation for more information.

932 Securing applications and their environment

You have configured the HTTP outbound transport level security for a Web Service acting as a client to

another Web service with an assembly tool.

Configuring HTTP outbound transport-level security using Java

properties

This topic explains how to configure the HTTP outbound transport level security for a Web service using

Java properties

This task is one of three ways that you can configure HTTP outbound transport-level security for a Web

service that is acting as a client to another Web service. You can also configure the HTTP outbound

transport level security with the administrative console or an assembly tool. However, you can also use

this task to configure the HTTP outbound transport-level security for a Web service client.

If you choose to configure the HTTP outbound transport-level security with the administrative console or

an assembly tool, the Web services security binding information is modified.

If you configure the HTTP outbound transport-level security using Java properties, the properties are

configured as system properties. However, the configuration specified in the binding takes precedence

over the Java properties.

You can configure the HTTP outbound transport-level security using WebSphere SSL properties or JSSE

SSL properties. However, the WebSphere SSL properties take precedence over the JSSE SSL properties.

Configure the HTTP outbound transport-level security with the following steps provided in this task section.

1. Create a property file that includes the following properties:

com.ibm.ssl.protocol

com.ibm.ssl.keyStoreType

com.ibm.ssl.keyStore

com.ibm.ssl.keyStorePassword

com.ibm.ssl.trustStoreType

com.ibm.ssl.trustStore

com.ibm.ssl.trustStorePassword

2. Set the com.ibm.webservices.sslConfigURL Java system property to the absolute path of the created

property file. If no WebSphere SSL properties are defined, the JSSE SSL properties are used. Set the

JSSE SSL properties as JVM custom properties. See “Secure transports with JSSE and JCE

programming interfaces” on page 593 for more information about setting the JSSE SSL properties.

You have configured the HTTP outbound transport-level security for a Web service acting as a client to

another Web service.

Transport level security

Transport level security is based on Secure Sockets Layer (SSL) or Transport Layer Security (TLS) that

runs beneath HTTP.

Transport level security can be used to secure Web services messages. However, transport-level security

functionality is independent from functionality that is provided by WS-Security or HTTP Basic

Authentication.

SSL and TLS provide security features including authentication, data protection, and cryptographic token

support for secure HTTP connections. To run with HTTPS, the service port address must be in the form

https://.

The integrity and confidentiality of transport data, including SOAP messages and HTTP basic

authentication, is confirmed when you use SSL and TLS.

Chapter 14. Web services 933

Web services applications can also use Federal Information Processing Standard (FIPS) approved ciphers

for more secure TLS connections.

WebSphere Application Server uses the Java Secure Sockets Extension (JSSE) package to support SSL

and TLS.

HTTP basic authentication

HTTP basic authentication uses a user name and password to authenticate a service client to a secure

endpoint.

WebSphere Application Server can have several resources, including Web services, protected by a Java 2

Platform, Enterprise Edition (J2EE) security model.

HTTP basic authentication is orthogonal to the security support provided by WS-Security or HTTP Secure

Sockets Layer (SSL) configuration.

A simple way to provide authentication data for the service client is to authenticate to the protected service

endpoint using HTTP basic authentication. The basic authentication is encoded in the HTTP request that

carries the SOAP message. When the application server receives the HTTP request, the user name and

password are retrieved and verified using the authentication mechanism specific to the server.

Although the basic authentication data is base64-encoded, sending data over HTTPS is recommended.

The integrity and confidentiality of the data can be protected by the SSL protocol.

In some cases, a firewall is present using a pass-thru HTTP proxy server. The HTTP proxy server

forwards the basic authentication data into the J2EE application server. The proxy server can also be

protected. Applications can specify the proxy data by setting properties in a stub object.

Configuring HTTP basic authentication with the administrative console

This topic explains how to configure HTTP basic authentication with the administrative console.

This task is one of three ways that you can configure HTTP basic authentication. You can also configure

HTTP basic authentication with an assembly tool or by modifying the HTTP properties programmatically.

If you choose to configure HTTP basic authentication with the administrative console or an assembly tool,

the Web services security binding information is modified. You can use the administrative console to

configure HTTP basic authentication if you have deployed or installed the Web services application into

WebSphere Application Server. If you have not installed the Web services application, then you can

configure the security bindings with an assembly tool. This task assumes that you have deployed the Web

services application into the WebSphere product.

If you configure HTTP basic authentication programmatically, the properties are configured in the Stub or

Call instance. The values set programmatically take precedence over the values defined in the binding.

However, you only can programmatically configure HTTP proxy authentication.

The HTTP basic authentication that is discussed in this topic is orthogonal to WS-Security and is distinct

from basic authentication that WS-Security supports. WS-Security supports basic authentication token, not

HTTP basic authentication.

Configure HTTP basic authentication with the following steps provided in this task section.

Open the administrative console.

1. Click Applications > Enterprise Applications > application_instance > Manage Modules >

module_instance > Web services: Client security bindings.

934 Securing applications and their environment

2. Click HTTP Basic Authentication to access the HTTP basic authentication panel. Enter the values in

the HTTP Basic Authentication panel.

You have configured the HTTP basic authentication.

HTTP basic authentication collection

Use this page to specify a user name and password for transport-level basic authentication security for this

port. You can use this configuration when a Web service is a client to another Web service.

You can use transport-level security to enable basic authentication. Transport-level security can be

enabled or disabled independently from message-level security. Because transport-level security provides

minimal security, use message-level security when security is essential to the Web service application.

To view this administrative console page, complete the following steps:

1. Click Applications > Enterprise Applications > application_instance.

2. Click Manage modules > URI_file_name > Web Services: Client Security Bindings.

3. Under HTTP basic authentication, click Edit.

Basic authentication ID

The user name for the HTTP basic authentication for this port is set in this field.

Basic authentication password

The password for the HTTP basic authentication for this port is set in this field.

Configuring HTTP basic authentication with an assembly tool

This topic explains how to configure HTTP basic authentication with an assembly tool.

You can configure HTTP basic authentication with assembly tools provided with WebSphere Application

Server.

This task is one of three ways that you can configure HTTP basic authentication. You can also configure

HTTP basic authentication with the administrative console or by modifying the HTTP properties

programmatically.

If you choose to configure the HTTP basic authentication with an assembly tool or with the administrative

console , the Web services security binding information is modified. You can use an assembly tool to

configure HTTP basic authentication before you deploy or install the Web services application into

WebSphere Application Server. This task assumes that you have not deployed the Web services

application into the WebSphere product.

If you configure HTTP basic authentication programmatically, the properties are configured in the Stub or

Call instance. The values set programmatically take precedence over the values defined in the binding.

However, you only can programmatically configure HTTP proxy authentication.

The HTTP basic authentication that is discussed in this topic is orthogonal to WS-Security and is distinct

from basic authentication that WS-Security supports. WS-Security supports basic authentication token, not

HTTP basic authentication.

To configure HTTP basic authentication, use the WebSphere Application Server tools to modify the binding

information.

1. Start an assembly tool. See ″Starting WebSphere Application Server Toolkit″ in the Application Server

Toolkit documentation for more information.

Chapter 14. Web services 935

2. If you have not done so already, configure the assembly tool to work on J2EE modules. Make sure

that the J2EE and Web categories are enabled. See ″Configuring WebSphere Application Server

Toolkit″ in the Application Server Toolkit documentation for more information.

3. Migrate the Web archive (WAR) files that are created with the Assembly Toolkit, Application Assembly

Tool (AAT) or a different tool to an AST or Rational Web Developer assembly tool. To migrate files,

import your WAR files to the assembly tool. See ″Importing Web archive (WAR) files″ in the Application

Server Toolkit documentation for more information.

4. Configure the HTTP basic authentication in the Web Services Client Port Binding page for a Web

service or a Web service client. The Web Services Client Port Binding page is available after

double-clicking the client deployment descriptor file.

Configuring HTTP basic authentication programmatically

This topic explains how to configure HTTP basic authentication by programmatically modifying HTTP

properties.

This task is one of three ways that you can configure HTTP basic authentication. You can also configure

HTTP basic authentication with an assembly tool or with the administrative console.

If you programmatically configure HTTP basic authentication, the properties are configured in the Stub or

Call instance. If you choose to configure HTTP basic authentication with the administrative console or an

assembly tool, the Web services security binding information is modified. The values that are set

programmatically take precedence over the values defined in the binding. However, you can only configure

HTTP proxy authentication programmatically.

The HTTP basic authentication that is discussed in this topic is orthogonal to WS-Security and is distinct

from basic authentication that WS-Security supports. WS-Security supports basic authentication token, not

HTTP basic authentication.

Configure HTTP basic authentication programmatically with the following steps provided in this task

section.

1. Set the properties in the Stub or Call instance for a Web service or a Web service client You can set

the following properties:

javax.xml.rpc.Call.USERNAME_PROPERTY

javax.xml.rpc.Call.PASSWORD_PROPERTY

javax.xml.rpc.Stub.USERNAME_PROPERTY

javax.xml.rpc.Stub.PASSWORD_PROPERTY

2. Set the properties in the Stub or Call instance to configure the HTTP proxy authentication.

a. You can set the following properties for HTTP:

com.ibm.wsspi.webservices.HTTP_PROXYHOST_PROPERTY

com.ibm.wsspi.webservices.HTTP_PROXYPORT_PROPERTY

com.ibm.wsspi.webservices.HTTP_PROXYUSER_PROPERTY

com.ibm.wsspi.webservices.HTTP_PROXYPASSWORD_PROPERTY

3. You can set the following properties for HTTPS:

com.ibm.wsspi.webservices.HTTPS_PROXYHOST_PROPERTY

com.ibm.wsspi.webservices.HTTPS_PROXYPORT_PROPERTY

com.ibm.wsspi.webservices.HTTPS_PROXYUSER_PROPERTY

com.ibm.wsspi.webservices.HTTPS_PROXYPASSWORD_PROPERTY

Configuring additional HTTP transport properties using the JVM

custom property panel in the administrative console

This topic explains how to configure additional HTTP transport properties with the JVM custom properties

panel in the administrative console.

936 Securing applications and their environment

This task is one of three ways that you can configure additional HTTP transport properties for a Web

Service acting as a client to another Web service. You can also configure the additional HTTP transport

properties in the following ways:

v Configure the properties with an assembly tool

v Configure the properties using the wsadmin command-line tool

If you want to programmatically configure the properties using the Java API XML-based Remote Procedure

Call (JAX-RPC) programming model, review the JAX-RPC specification that is available through Web

services: Resources for learning.

See Additional HTTP transport properties for Web services applications for more information about the

following properties that you can configure:

v com.ibm.websphere.webservices.http.requestContentEncoding

v com.ibm.websphere.webservices.http.responseContentEncoding

v com.ibm.websphere.webservices.http.connectionKeepAlive

v com.ibm.websphere.webservices.http.requestResendEnabled

v http.proxyHost

v http.proxyPort

v https.proxyHost

v https.proxyPort

These additional properties are configured for Web services applications that use the HTTP protocol. The

properties affect the content encoding of the message in the HTTP request, the HTTP response, the HTTP

connection persistence and the behavior of an HTTP request that is resent after a

java.net.ConnectException error occurs when there is a read time-out.

Configure the additional HTTP properties with the administrative console with the following steps provided

in this task section:

1. Open the administrative console.

a. Click Servers > Application Servers > server > Java and Process Management > Process

Definition > Java Virtual Machine > Custom Properties.

2. (Optional) If the property is not listed, create a new property name.

3. Enter the name and value.

4. (Optional) Accept the redirection of the HTTP request to a different URI in HTTPS.

A redirection of the HTTP request to a different URI in HTTPS can occur if the transport guarantee of

CONFIDENTIAL or INTEGRAL is configured in the application. To accept the redirection, you can do

either of the following tasks:

v Set the com.ibm.ws.webservices.HttpRedirectEnabled Java system property to true.

v Programmatically set the com.ibm.wsspi.webservices.Constants.HTTP_REDIRECT_ENABLED property to

true in the stub or call object before invoking the service.

You have configured HTTP transport properties for a Web services application.

Configuring additional HTTP transport properties with an assembly

tool

This topic explains how to configure additional HTTP transport properties with an assembly tool. The

assembly tool is used to configure the ibm-webservicesclient-bnd.xmi deployment descriptor binding file.

You can configure additional HTTP transport properties with assembly tools provided with WebSphere

Application Server.

Chapter 14. Web services 937

This task is one of three ways that you can configure additional HTTP transport properties for a Web

Service acting as a client to another Web service. You can also configure the additional HTTP transport

properties in the following ways:

v Configuring additional HTTP transport properties using the JVM custom property panel in the

administrative console

v Configure the properties using the wsadmin command-line tool.

If you want to programmatically configure the properties using the Java API XML-based Remote Procedure

Call (JAX-RPC) programming model, review the JAX-RPC specification that is available through Web

services: Resources for learning.

See Additional HTTP transport properties for Web services applications for more information about the

following properties that you can configure:

v com.ibm.websphere.webservices.http.requestContentEncoding

v com.ibm.websphere.webservices.http.responseContentEncoding

v com.ibm.websphere.webservices.http.connectionKeepAlive

v com.ibm.websphere.webservices.http.requestResendEnabled

v http.proxyHost

v http.proxyPort

v https.proxyHost

v https.proxyPort

These additional properties are configured for Web services applications that use the HTTP protocol. The

properties affect the content encoding of the message in the HTTP request, the HTTP response, the HTTP

connection persistence and the behavior of an HTTP request that is resent after a

java.net.ConnectException error occurs when there is a read time-out.

Configure the additional HTTP properties with an assembly tool with the following steps provided in this

task section:

1. The assembly tools, Application Server Toolkit (AST) and Rational Web Developer, provide a graphical

interface for developing code artifacts, assembling the code artifacts into various archives (modules)

and configuring related Java 2 Platform, Enterprise Edition (J2EE) Version 1.2, 1.3 or 1.4 compliant

deployment descriptors.

2. Start an assembly tool. See ″Starting WebSphere Application Server Toolkit″ in the Application Server

Toolkit documentation for more information.

3. If you have not done so already, configure the assembly tool to work on J2EE modules. Make sure

that the J2EE and Web categories are enabled. See ″Configuring WebSphere Application Server

Toolkit″ in the Application Server Toolkit documentation for more information.

4. Migrate the Web archive (WAR) files that are created with the Assembly Toolkit, Application Assembly

Tool (AAT) or a different tool to an AST or Rational Web Developer assembly tool. To migrate files,

import your WAR files to the assembly tool. See ″Importing Web archive (WAR) files″ in the Application

Server Toolkit documentation for more information.

5. Configure the additional HTTP transport properties. Create and specify the name/value pair in the Web

Services Client Port Binding page for a Web service client. The Web Services Client Port Binding

page is available after double-clicking the client deployment descriptor file.

You have configured additional HTTP transport properties for a Web services application.

938 Securing applications and their environment

Configuring additional HTTP transport properties using the wsadmin

command-line tool

This topic explains how to configure additional HTTP transport properties with the wsadmin command-line

tool.

The WebSphere Application Server wsadmin tool provides the ability to run scripts. You can use the

wsadmin tool to manage a WebSphere Application Server installation, as well as configuration, application

deployment, and server run-time operations. The WebSphere Application Server only supports the Jacl

and Jython scripting languages. For more information about the wsadmin tool options, review Options for

the AdminApp object install, installInteractive, edit, editInteractive, update, and updateInteractive

commands

This task is one of three ways that you can configure additional HTTP transport properties for a Web

Service acting as a client to another Web service. You can also configure the additional HTTP transport

properties in the following ways:

v Configure the properties with an assembly tool

v Configuring additional HTTP transport properties using the JVM custom property panel in the

administrative console

If you want to programmatically configure the properties using the Java API XML-based Remote Procedure

Call (JAX-RPC) programming model, review the JAX-RPC specification that is available through Web

services: Resources for learning.

See Additional HTTP transport properties for Web services applications for more information about the

following properties that you can configure:

v com.ibm.websphere.webservices.http.requestContentEncoding

v com.ibm.websphere.webservices.http.responseContentEncoding

v com.ibm.websphere.webservices.http.connectionKeepAlive

v com.ibm.websphere.webservices.http.requestResendEnabled

v http.proxyHost

v http.proxyPort

v https.proxyHost

v https.proxyPort

These additional properties are configured for Web services applications that use the HTTP protocol. The

properties affect the content encoding of the message in the HTTP request, the HTTP response, the HTTP

connection persistence and the behavior of an HTTP request that is resent after a

java.net.ConnectException error occurs when there is a read time-out.

Configure the additional HTTP properties with the wsadmin tool by following steps provided in this task

section:

1. Launch a scripting command.

2. At the wsadmin command prompt, enter the command syntax. You can use install, installInteractive,

edit, editInteractive, update, and updateInteractive commands.

3. If you are configuring the com.ibm.websphere.webservices.http.responseContentEncoding property,

use the WebServicesServerCustomProperty command option.

4. Configure all other properties using the WebServicesClientCustomProperty command option.

5. Save the configuration changes with the $AdminConfig save command.

You have configured HTTP transport properties for a Web services application.

Chapter 14. Web services 939

The following illustrates an example of the Jython script syntax:

AdminApp.edit (’PlantsByWebSphere’, ’[-WebServicesClientCustomProperty [[PlantsByWebSphere.war ""

service/FrontGate_SEIService FrontGate http.proxyHost+http.proxyPort myhost+80]]]’)

AdminConfig.save()

AdminApp.edit (’WebServicesSamples’, ’[-WebServicesServerCustomProperty

[[AddressBookW2JE.jarAddressBookService AddressBook http.proxyHost+http.proxyPort myhost+80]]]’)

AdminConfig.save()

The following illustrates an example of the Jacly script syntax:

$AdminApp edit PlantsByWebSphere { -WebServicesClientCustomProperty {{PlantsByWebSphere.war {}

service/FrontGate_SEIService FrontGate http.proxyHost+http.proxyPort myhost+80 }}}

$AdminConfig save

$AdminApp edit WebServicesSamples {-WebServicesServerCustomProperty {{AddressBookW2JE.jar

AddressBookService AddressBook http.proxyHost+http.proxyPort myhost+80}}}

$AdminConfig save

To convert these examples from edit to install, add .ear to form a file name, and add any extra keywords

for deployment, like -usedefaultbindings and -deployejb.

Provide HTTP endpoint URL information

Use this page to specify endpoint URL prefix information for Web services accessed by HTTP. Prefixes are

used to form complete endpoint addresses included in published Web Services Description Language

(WSDL) files.

To view this administrative console page, click Applications >Enterprise Applications >

application_instance > Provide HTTP endpoint URL information.

You can specify a portion of the endpoint URL to be used in each Web service module. In a published

WSDL file, the URL defining the target endpoint address is found in the location attribute of the port’s

soap:address element.

Specify endpoint URL prefixes for Web services

Specifies the protocol (either http or https), host_name, and port_number to be used in the endpoint URL.

You can select a prefix from a predefined list using the HTTP URL prefix or Custom HTTP URL prefix

field.

The URL prefix format is protocol://host_name:port_number, for example, http://myHost:9045. The actual

endpoint URL that appears in a published WSDL file consists of the prefix followed by the module’s

context-root and the Web service url-pattern, for example, http://myHost:9045/services/myService.

Select default HTTP URL prefix

Specifies the drop down list associated with a default list of URL prefixes. This list is the intersection of the

set of ports for the module’s virtual host and the set of ports for the module’s application server. Use items

from this list if the Web services application server is accessed directly.

To set an HTTP endpoint URL prefix, select Select default HTTP URL prefix and select a value from the

drop down list. Select the check box of the modules that are to use the prefix and click Apply. When you

click Apply, the entry in the Select default HTTP URL prefix or Select custom HTTP URL prefix fields,

depending on which is selected, is copied into the HTTP URL prefix field of any module whose check box

is selected.

940 Securing applications and their environment

Select custom HTTP URL prefix

Specifies the protocol, host, and port_number of the intermediate service if the Web services in a module

are accessed through an intermediate node, for example the Web services gateway or an IHS server.

To set a custom HTTP endpoint URL prefix, select Select custom HTTP URL prefix and enter a value.

Select the check box of the modules that are to use the prefix and click Apply. When you click Apply, the

entry in the Select default HTTP URL prefix or Select custom HTTP URL prefix fields, depending on

which is selected, is copied into the HTTP endpoint URL prefix field of any module whose check box is

selected.

Publish WSDL zip files settings

Use this page to publish Web Services Description Language (WSDL) files.

To view this administrative console page, click Applications >Enterprise Applications >

application_instance > Publish WSDL zip files.

When you click OK, a panel showing one or several zip file names displays. Each zip file contains a

WSDL file that represents the Web services-enabled modules in the application. When you select a zip file

to publish, a dialogue displays from which you can choose where to create the zip file. Within the

published zip files, the directory structure is application_name/module_name/[META-INF|WEB-INF]/wsdl/
wsdl_file_name.

In a published WSDL file, the location attribute of a port’s soap:address element contains the endpoint

URL through which the Web service is accessed. Using the Provide HTTP endpoint URL information

and the Provide JMS and EJB endpoint URL information panels, configure the endpoint URLs to be

used for the Web services in each module.

application_name_WSDLFiles.zip

Specifies the application_name_WSDLFiles.zip file containing the WSDL that describes Web services that

are accessible by standard SOAP-based ports.

application_name_ExtendedWSDLFiles.zip

Specifies the application_name_ExtendedWSDLFiles.zip file containing the WSDL file that describes the

Web services available, including SOAP-based and non-SOAP based (for example, EJB) ports.

If there are no Web services configured for direct EJB access, this zip file name does not appear. Do not

use this zip file if you want to produce a WSDL file compliant to standards.

Securing Web services for Version 6 and later applications based on

WS-Security

Web services security for WebSphere Application Server is based on standards included in the

Organization for the Advancement of Structured Information Standards (OASIS) Web services security

(WSS) Version 1.0 specification, the Username token Version 1.0 profile, and the X.509 token Version 1.0

profile.

These standards and profiles address how to provide protection for messages exchanged in a Web

service environment. The specification defines the core facilities for protecting the integrity and

confidentiality of a message and provides mechanisms for associating security-related claims with the

message. Web services security is a message-level standard based on securing SOAP messages through

XML digital signature, confidentiality through XML encryption, and credential propagation through security

tokens.

Chapter 14. Web services 941

To secure Web services, you must consider a broad set of security requirements, including authentication,

authorization, privacy, trust, integrity, confidentiality, secure communications channels, federation,

delegation, and auditing across a spectrum of application and business topologies. One of the key

requirements for the security model in today’s business environment is the ability to inter-operate between

formerly incompatible security technologies (such as public key infrastructure, Kerberos and so on) in

heterogeneous environments (such as Microsoft .NET and Java 2 Platform, Enterprise Edition (J2EE)).

The complete Web services security protocol stack and technology roadmap is described in Security in a

Web Services World: A Proposed Architecture and Roadmap.

The Web Services Security: SOAP Message Security 1.0 specification outlines a standard set of SOAP

extensions that you can use to build secure Web services. These standards confirm integrity and

confidentiality, which are generally provided with digital signature and encryption technologies. In addition,

Web services security provides a general purpose mechanism for associating security tokens with

messages. A typical example of the security token is a username token, in which a user name and

password are included as text. Web services security defines how to encode binary security tokens using

methods such as X.509 certificates and Kerberos tickets. However, the required security tokens are not

defined in the Web service security Version 1.0 specification. Instead, the tokens are defined in separate

profiles such as the Username token profile, the X.509 token profile, the Security Assertion Markup

Language (SAML) profile, the Kerberos profile, the eXtensible rights Markup Language (XrML) profile and

so on.

Web service security is supported in the managed Web service container. To establish a managed

environment and to enforce constraints for Web services security, you must perform a Java Naming and

Directory Interface (JNDI) lookup on the client to resolve the service reference.

Compatibility between WebSphere Application Server Version 6.1 and Version 5.x

In WebSphere Application Server Version 6.1, you can run a Version 5.x Web services-secured application

on a Version 6.1 application server. However, when you use a Web services-secured application, the client

and the server must use the same version of the application server. For example, a Web services-secured

application does not work properly when the client uses WebSphere Application Server Version 6.1 and

the server uses Version 5.x. Conversely, a Web services-secured application does not work properly when

the client uses WebSphere Application Server Version 5.x and the server uses Version 6.1. This issue

occurs because the SOAP message format is different between a Version 5.x application and a Version 6

or later application.

Configurations

To secure Web services with WebSphere Application Server, you must specify several different

configurations. Although there is not a specific sequence in which you must specify these different

configurations, some configurations reference other configurations. You can configure Web services

security on the application level, server level, and the cell level. The following table shows an example of

the relationships between each of the configurations that apply to just the application, to an entire server,

or to the entire cell. However, the requirements for the bindings depend upon the deployment descriptor.

Some binding information depends upon other information in the binding or server and cell-level

configuration. Within the table, the configurations in the Referenced configurations column are referenced

by the configuration listed in the Configuration name column. For example, the token generator on the

application-level for the request generator references the collection certificate store, the nonce, time stamp,

and callback handler configurations.

942 Securing applications and their environment

http://www.ibm.com/developerworks/webservices/library/ws-secmap/
http://www.ibm.com/developerworks/webservices/library/ws-secmap/
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf

Table 36. The relationship between the configurations.

Configuration level Configuration name Referenced configurations

Application-level request generator Token generator v Collection certificate store

v Nonce

v Timestamp

v Callback handler

Application-level request generator Key information v Key locator

v Key name

v Token

Application-level request generator Signing information v Key information

Application-level request generator Encryption information v Key information

Application-level request consumer Token consumer v Trust anchor

v Collection certificate store

v Trusted ID evaluators

v Java Authentication and

Authorization Service (JAAS)

configuration

Application-level request consumer Key information v Key locator

v Token

Application-level request consumer Signing information v Key information

Application-level request consumer Encryption information v Key information

Application-level response generator Token generator v Collection certificate store

v Callback handler

Application-level response generator Key information v Key locator

v Token

Application-level response generator Signing information v Key information

Application-level response generator Encryption information v Key information

Application-level response consumer Token consumer v Trust anchor

v Collection certificate store

v JAAS configuration

Application-level response consumer Key information v Key locator

v Key name

v Token

Application-level response consumer Signing information v Key information

Application-level response consumer Encryption information v Key information

Server-level default generator

bindings

Token generator v Collection certificate store

v Callback handler

Server-level default generator

bindings

Key information v Key locator

v Token

Server-level default generator

bindings

Signing information v Key information

Chapter 14. Web services 943

Table 36. The relationship between the configurations. (continued)

Configuration level Configuration name Referenced configurations

Server-level default generator

bindings

Encryption information v Key information

Server-level default consumer

bindings

Token consumer v Trust anchor

v Collection certificate store

v Trusted ID evaluator

v JAAS configuration

Server-level default consumer

bindings

Key information v Key locator

v Token

Server-level default consumer

bindings

Signing information v Key information

Server-level default consumer

bindings

Encryption information v Key information

Cell-level default generator bindings Token generator v Collection certificate store

v Callback handler

Cell-level default generator bindings Key information v Key locator

v Token

When multiple applications will use the same binding information, consider configuring the binding

information on the server level. For example, you might have a global key locator configuration that is

used by multiple applications. Configuration information for the application-level precedes similar

configuration information on the server-level.

Because of the relationship between the different Web services security configurations, it is recommended

that you specify the configurations on each level of the configuration in following order. You can choose to

configure Web services security for the application level or the server level as it depends upon your

environment and security needs.

v Assemble your Web services security-enabled application using an assembly tool. Prior to modifying a

Web services security-enabled application in the WebSphere Application Server administrative console,

you must assemble your application using an assembly tool. Although you can modify some of the

application settings using the administrative console, you must configure the generator and the

consumer security constraints using an assembly tool such as the Application Server Toolkit or the

Rational Application Developer. For information on the assembly tools, see Assembly tools. For

information on how to add Web services security to an application using an assembly tool, see

“Configuring an application for Web services security with an assembly tool” on page 995. Return to this

article after you have assembled your application and imported it into the administrative console.

v Modify the application-level configurations in the administrative console.

 1. Configure the trust anchors for the generator binding. For more information, see “Configuring trust

anchors for the generator binding on the application level” on page 1089.

 2. Configure the collection certificate store for the generator binding. For more information, see

“Configuring the collection certificate store for the generator binding on the application level” on

page 1093.

 3. Configure the token for the generator binding. For more information, see “Configuring the token

generator on the application level” on page 1104.

 4. Configure the key locators for the generator binding. For more information, see “Configuring the

key locator for the generator binding on the application level” on page 1121.

 5. Configure the key information for the generator binding. For more information, see “Configuring the

key information for the generator binding on the application level” on page 1127.

944 Securing applications and their environment

6. Configure the signing information for the generator binding. For more information, see “Configuring

the signing information for the generator binding on the application level” on page 1138.

 7. Configure the encryption information for the generator binding. For more information, see

“Configuring the encryption information for the generator binding on the application level” on page

1152.

 8. Configure the trust anchors for the consumer binding. For more information, see “Configuring trust

anchors for the consumer binding on the application level” on page 1163.

 9. Configure the collection certificate store for the consumer binding. For more information, see

“Configuring the collection certificate store for the consumer binding on the application level” on

page 1165.

10. Configure the token for the consumer binding. For more information, see “Configuring token

consumer on the application level” on page 1167.

11. Configure the key locators for the consumer binding. For more information, see “Configuring the

key locator for the consumer binding on the application level” on page 1176.

12. Configure the key information for the consumer binding. For more information, see “Configuring the

key information for the consumer binding on the application level” on page 1177.

13. Configure the signing information for the consumer binding. For more information, see “Configuring

the signing information for the consumer binding on the application level” on page 1179.

14. Configure the encryption information for the consumer binding. For more information, see

“Configuring the encryption information for the consumer binding on the application level” on page

1184.

v Specify the server-level configurations.

 1. Configure the trust anchors for the server level. For more information, see “Configuring trust

anchors on the server or cell level” on page 1190

 2. Configure the collection certificate store for the server level. For more information, see “Configuring

the collection certificate store for the server or cell-level bindings” on page 1191

 3. Configure a token generator. For more information, see “Configuring token generators on the

server or cell level” on page 1194.

 4. Configure a nonce for the server level. For more information, see “Configuring a nonce on the

server or cell level” on page 1193.

 5. Configure the key locators for the generator binding. For more information, see “Configuring the

key locator on the server or cell level” on page 1204.

 6. Configure the key information for the generator binding. For more information, see “Configuring the

key information for the generator binding on the server or cell level” on page 1206.

 7. Configure the signing information for the generator binding. For more information, see “Configuring

the signing information for the generator binding on the server or cell level” on page 1208.

 8. Configure the encryption inform.ation for the generator binding. For more information, see

“Configuring the encryption information for the generator binding on the server or cell level” on

page 1211.

 9. Configure the trusted ID evaluators for the server level. For more information, see “Configuring

trusted ID evaluators on the server or cell level” on page 1212.

10. Configure a token consumer. For more information, see “Configuring token consumers on the

server or cell level” on page 1216.

11. Configure the key information for the consumer binding. For more information, see “Configuring the

key information for the consumer binding on the server or cell level” on page 1224.

12. Configure the signing information for the consumer binding. For more information, see “Configuring

the signing information for the consumer binding on the server or cell level” on page 1225.

13. Configure the encryption information for the consumer binding. For more information, see

“Configuring the encryption information for the consumer binding on the server or cell level” on

page 1227.

Chapter 14. Web services 945

After completing these steps on the appropriate level of WebSphere Application Server, you have secured

Web services.

What is new for securing Web services

In WebSphere Application Server Version 6.0.x, and later there are many security enhancements for Web

services. The enhancements include supporting sections of the Web services security specifications and

providing architectural support for plugging in and extending the capabilities of security tokens.

Enhancements from the supported Web services security specifications

Since September 2002, the Organization for the Advancement of Structured Information Standards

(OASIS) has been developing the Web Services Security (WSS) for SOAP message standard. In April

2004, OASIS released the Web Services security Version 1.0 specification, which is a major milestone for

securing Web services. This specification is the foundation for other Web services security specifications

and is also the basis for the Basic Security Profile (WS-I BSP) Version 1.0 work, which is a working draft.

See Basic Security Profile for more information. Web services security Version 1.0 is a strategic move

towards Web services security interoperability, and it is the first step in the Web services security roadmap.

For more information on the Web services security roadmap, see Security in a Web Services World: A

Proposed Architecture and Roadmap.

WebSphere Application Server Version 6.0.x and later support the following specifications and profiles:

v OASIS: Web Services Security: SOAP Message Security 1.0 (WS-Security 2004)

v OASIS: Web Services Security: UsernameToken Profile 1.0

v OASIS: Web Services Security X.509 Certificate Token Profile 1.0

v New in Version 6.1: Basic Security Profile (WS-I BSP)

For details on what parts of the previous specifications are supported in WebSphere Application Server

Version 6.0.x and later, see “Supported functionality from OASIS specifications” on page 955.

High level features overview in WebSphere Application Server Version 6.0.x and

later

The Web Services Security for SOAP Message Version 1.0 specification is designed to be flexible and

accommodate the requirements of Web services. For example, the specification does not have a

mandatory security token definition in the Web services security Version 1.0 specification. Rather the

specification defines a generic mechanism to associate the security token with a SOAP message. The use

of security tokens is defined in the various security token profiles such as:

v The username token profile

v The X.509 token profile

v The WS-Security Kerberos token profile

v The Security Assertion Markup Language (SAML) token profile

v The Rights Express Language (REL) token profile

For more information on security token profile development at OASIS, see Organization for the

Advancement of Structured Information Standards.

Important: The wire format in the Web services security Version 1.0 specification changed and is not

compatible with the previous drafts of the Web services security specification. It is not possible

to make an implementation of the wire format using a previous draft of the Web services

security specification to interoperate with the Web Services Security Version 1.0 specification.

Support for pluggable security tokens has been available since WebSphere Application Server Version

5.0.2. However, in WebSphere Application Server Version 6.0.x and later, the pluggable architecture is

946 Securing applications and their environment

http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html
http://www.ibm.com/developerworks/webservices/library/ws-secmap/
http://www.ibm.com/developerworks/webservices/library/ws-secmap/
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0.pdf
http://www.oasis-open.org/committees/download.php/1049/WSS-Kerberos-03.pdf
http://www.oasis-open.org/committees/download.php/1048/WSS-SAML-06.pdf
http://www.oasis-open.org/committees/download.php/7347/oasis-____-wss-REL-token-profile-1.0-draft08-clean.pdf
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss

enhanced to support the Web services security Version 1.0 specification, other profiles, and other Web

services security specifications. WebSphere Application Server Version 6 and later include the following

key enhancements:

v Support for the client (sender or generator) to send multiple security tokens in a SOAP message.

v Ability to derive keys from a security token for digital signature (verification) and encryption (decryption).

v Support to sign or encrypt any element in a SOAP message. However, some limitations exist. For

example, encrypting some parts of a message might break the SOAP message format. If you encrypt

the SOAP body element, the SOAP message format breaks.

v Support for signing the SOAP envelope, the SOAP header, and the Web services security header.

v Ability to configure the order of the digital signature and encryption.

v Support for various mechanisms to reference the security tokens such as direct references, key

identifiers, key names, and embedded references.

v Support for the PKCS#7 format certificate revocation list (CRL) encoding for an X.509 security token.

v Support for CRL verification.

v Ability to insert nonce and time stamps into elements within the Web services security header, into

signed elements, or into encrypted elements.

v Support for identity assertion using the Run As (invocation) identity in the current security context for

WebSphere Application Server.

v Support for a default binding, which is a set of default Web services security bindings for applications.

v Ability to use pluggable digital signature (verification) and encryption (decryption) algorithms.

v Support for the acceleration of hardware cryptographic devices.

v Support for secure keys.

v Support for the Basic Security Profile (WS-I BSP).

For more information on some of these enhancements, see “Web services security enhancements” on

page 960.

Configuration

WebSphere Application Server Version 6 uses the deployment model for implementing the Web services

security Version 1.0 specification, the Username token Version 1.0 profile, and the X.509 token Version 1.0

profile. The deployment model is an extension of the Web services deployment model for Java 2 Platform,

Enterprise Edition (J2EE). The Web services security constraints are defined in the IBM extension

deployment descriptor and the binding file based on the Web service port.

The format of the deployment descriptor and the binding file is IBM proprietary material and is not

available. However, WebSphere Application Server provides the following tools that you can use to edit the

deployment descriptor and the binding file:

Rational Application Developer Version 6.0.x

You can use Rational Application Developer Version 6.0.x to develop Web services and configure

the deployment descriptor and the binding file for Web services security. The Rational Application

Developer enables you to assemble both Web and Enterprise JavaBeans™ (EJB) modules.

Rational Web Developer Version 6.0.x

You can use Rational Web Developer Version 6.0.x to develop Web services and configure the

deployment descriptor and the binding file for Web services security. However, you cannot

assemble Enterprise JavaBeans modules using this tool. Instead, use the Application Server

Toolkit or the Rational Application Developer.

Application Server Toolkit

You can use the Application Server Toolkit (AST), which is an assembly tool designer for

WebSphere Application Server Version 6.0.x and later, to specify the deployment descriptor and

the binding file for Web services security.

Chapter 14. Web services 947

WebSphere Application Server administrative console

You can use the administrative console to configure the Web services security binding of a

deployed application with Web services security constraints that are defined in the deployment

descriptor.

Important: The format of the deployment descriptor and the binding file for Web services security in

WebSphere Application Server Version 6.0.x and later is different from WebSphere Application

Server Versions 5.0.2, 5.1, and 5.1.1. Web services security support in WebSphere Application

Server Versions 5.0.2, 5.1, and 5.1.1 is based on the Web services security draft 13

specification and the Username token draft 2 profile. Thus, this support is deprecated.

However, applications that you configured using the Web service security Versions 5.0.2, 5.1,

and 5.1.1 deployment descriptor and binding file can work with WebSphere Application Server

Version 6 and later. These applications use a deployment descriptor and binding file that emit

SOAP message security using the draft 13 specification format. The Web services security

deployment descriptor and binding file for WebSphere Application Server Version 6.0.x and

later is available for a J2EE Version 1.4 application only. Therefore, the Web services security

Version 1.0 specification is supported for a J2EE Version 1.4 application only.

To take advantage of implementations associated with the Web services security Version 1.0 specification,

you must:

v Migrate existing applications to J2EE Version 1.4

v Re-configure the Web services security constraints in the new deployment descriptor and binding format

Important: An automatic process does not exist for migrating the deployment descriptor and the binding

file for Web services security from the Version 5.0.2, 5.1, and 5.1.1 format to the new Version

6.0.x and later format using the Rational Web Developer and Application Server Toolkit. You

must migrate the configuration manually.

Important: The Web services security support in WebSphere Application Server Version 6.0 is based in

part on the OASIS specification titled Web Services Security: X.509 Token Profile 1.0 plus the

first errata (Errata 1.0).

In the first errata, the URIs for the X.509 token type and the X.509 Subject Key Identifier value

type were modified. WebSphere Application Server Version 6.0 was based on these modified

URIs. After WebSphere Application Server Version 6.0 shipped, the OASIS Technical

Committee reversed those changes, reverting back to the original 1.0 profile URIs.

There could be interoperability problems between WebSphere Application Server Version 6.0

and other vendor’s Web services products that are based on the current version of the profile.

WebSphere Application Server was fixed in Versions 6.0.2 and 6.0.1.2 to comply with the

latest version of the profile. If WebSphere Application Server Version 6.0 is used in a

heterogeneous environment with other vendor’s Web services products, it is recommended

that the server be upgraded to Version 6.0.1.2, 6.0.2, or later, or to install a service fix that

includes APAR PK03507.

FIPS support in WebSphere Application Server

In WebSphere Application Server, Federal Information Processing Standard (FIPS) compliant algorithms

for key encryption, data encryption, signature and digest are supported. To enable this mode, select Use

the Federal Information Processing Standard (FIPS) on the Global security panel of the WebSphere

administrative console.

After this option has been selected, and the WebSphere Application Server has been restarted, the lists of

available algorithms that are displayed in the Web services security binding configuration panels of the

administrative console are then FIPS compliant algorithms.

948 Securing applications and their environment

If a previously deployed application was configured to use a noncompliant algorithm, that application no

longer starts after the FIPS mode has been enabled in WebSphere Application Server. The error message

Unauthorized data encryption method appears in the case of a noncompliant data encryption algorithm.

Similar errors are displayed for unauthorized key encryption, digest and signature methods.

FIPS support in WebSphere Application Server

In WebSphere Application Server, Federal Information Processing Standard (FIPS) compliant algorithms

for key encryption, data encryption, signature and digest are supported. To enable this mode, select Use

the United States Federal Information Processing Standard (FIPS) algorithms on the SSL certificate

and key management panel of the WebSphere administrative console.

After this option has been selected, and the WebSphere Application Server has been restarted, the lists of

available algorithms that are displayed in the Web services security binding configuration panels of the

administrative console are then FIPS compliant algorithms.

If a previously deployed application was configured to use a noncompliant algorithm, that application no

longer starts after the FIPS mode has been enabled in WebSphere Application Server. The error message

Unauthorized data encryption method appears in the case of a noncompliant data encryption algorithm.

Similar errors are displayed for unauthorized key encryption, digest and signature methods.

What is not supported

Web service security is still fairly new and some of the standards are still being defined or standardized.

The following functionality is not supported in WebSphere Application Server Versions 6.0.x and later:

v Application programming interfaces (API) do not exist for Web services security in WebSphere

Application Server Versions 6.0.x and later. The following standards exist for the Java application

programming interface for XML security and Web services security:

– JSR-105 (Java API for XML-Signature XPath Filter Version 2.0

W3C Recommendation, November 2002

– JSR-106 (Java API for XML Encryption Syntax and Processing)

W3C Recommendation, December 2002

– JSR-183 (Java API for Web Services Security: SOAP Message Security 1.0 specification)

v SAML token profile is not supported out of the box.

v WS-SecuredConversation is not supported out of the box.

v WS-Trust is not supported out of the box.

v WS-SecurityKerberos token profile is not supported out of the box.

v REL token profile is not supported.

v Web services security SOAP messages with an attachments profile (SwA) is not supported.

v WS-I Basic Security Profile Version 1.0 is not supported.

v Non-Web services container managed client is not supported out of the box.

For information on what is supported for Web services security in WebSphere Application Server Version

6.0.x and later, see “Supported functionality from OASIS specifications” on page 955.

Web services security specification for Version 6 and later- a chronology

This article describes the development of the Web services security specification. The article provides

information on the Organization for the Advancement of Structured Information Standards (OASIS) Web

services security Version 1.0 specification, which is the specification that serves as a basis for securing

Web services in WebSphere Application Server Version 6 and later.

Chapter 14. Web services 949

http://www.w3.org/TR/xmldsig-filter2
http://www.w3.org/TR/xmlenc-core
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf

Non-OASIS activities

Web services is gaining rapid acceptance as a viable technology for interoperability and integration.

However, securing Web services is one of the paramount quality of services that makes the adoption of

Web services a viable industry and commercial solution for businesses. IBM and Microsoft jointly

published a security white paper on Web services entitled Security in a Web Services World: A Proposed

Architecture and Roadmap. The white paper discusses the following initial and subsequent specifications

in the proposed Web services security roadmap:

Web service security

This specification defines how to attach a digital signature, use encryption, and use security tokens

in SOAP messages.

WS-Policy

This specification defines the language that is used to describe security constraints and the policy

of intermediaries or endpoints.

WS-Trust

This specification defines a framework for trust models to establish trust between Web services.

WS-Privacy

This specification defines a model of how to express a privacy policy for a Web service and a

requester.

WS-SecureConversation

This specification defines how to exchange and establish a secured context, which derives session

keys between Web services.

WS-Federation

This specification defines a model for trust relationships in a heterogeneous, federated

environment, including federated identities management.

WS-Authorization

 This specification defines the authorization policy for a Web service. However, the

WS-Authorization specification has not been published. The existing implementation of Web

services security is based upon the Web Services for Java 2 Platform, Enterprise Edition (J2EE)

or Java Specification Requirements (JSR) 109 specification. The implementation of Web services

security leverages the J2EE role-based authorization checks. For conceptual information on

role-based authorization, see “Role-based authorization” on page 324. If you develop a Web

service that requires method-level authorization checks, then you must use stateless session

beans to implement your Web service. For more information on using stateless session beans to

implement a Web service, see Developing a Web service from an enterprise bean and “Securing

enterprise bean applications” on page 925. If you develop a Web service that is implemented as a

servlet, you can use coarse-grained or URL-based authorization in the Web container. However, in

this situation, you cannot use the identity from Web services security for authorization checks.

Instead, you can use the identity from the transport. If you use SOAP over HTTP, then the identity

is in the HTTP transport.

This following figure shows the relationship between these specifications:

950 Securing applications and their environment

http://www.ibm.com/developerworks/webservices/library/ws-secmap/
http://www.ibm.com/developerworks/webservices/library/ws-secmap/

WS-SecureConversation

WS-Policy

WS-Federation

WS-Trust

WS-Authorization

WS-Privacy

Web service security: SOAP message security

SOAP messaging

In April 2002, IBM, Microsoft, and VeriSign proposed the Web Services Security (WS-Security)

specification on their Web sites as depicted by the green box in the previous figure. This specification

included the basic ideas of a security token, XML digital signature, and XML encryption. The specification

also defined the format for user name tokens and encoded binary security tokens. After some discussion

and an interoperability test based on the specification, the following issues were noted:

v The specification requires that the Web services security processors understand the schema correctly

so that the processor distinguishes between the ID attribute for XML digital signature and XML

encryption.

v The freshness of the message, which indicates whether the message complies with predefined time

constraints, cannot be determined.

v Digested password strings do not strengthen security.

In August 2002, IBM, Microsoft, and VeriSign published the Web Services Security Addendum, which

attempted to address the previously listed issues. The following solutions were addressed in the

addendum:

v Require a global ID attribute for XML signature and XML encryption.

v Use time stamp header elements that indicate the time of the creation, receipt, or expiration of the

message.

v Use password strings that are digested with a time stamp and nonce, which is a randomly generated

token.

The specifications for the blue boxes in the previous figure have been proposed by various industry

vendors and various interoperability events have been organized by the vendors to verify and refine the

proposed specifications.

OASIS activities

In June 2002, OASIS received a proposed Web services security specification from IBM, Microsoft, and

Verisign. The Web Services Security Technical Committee (WSS TC) was organized at OASIS soon after

the submission. The technical committee included many companies including IBM, Microsoft, VeriSign,

Sun Microsystems, and BEA Systems.

In September 2002, WSS TC published its first specification, Web Services Security Core Specification,

Working Draft 01. This specification included the contents of both the original Web services security

specification and its addendum.

The coverage of the technical committee became larger as the discussion proceeded. Because the Web

Services Security Core Specification allows arbitrary types of security tokens, proposals were published as

profiles. The profiles described the method for embedding tokens, including Security Assertion Markup

Chapter 14. Web services 951

Language (SAML) tokens and Kerberos tokens embedded into the Web services security messages.

Subsequently, the definitions of the usage for user name tokens and X.509 binary security tokens, which

were defined in the original Web Services Security Specification, were divided into the profiles.

WebSphere Application Server Versions 5.0.2, 5.1, and 5.1.1 support the following specifications:

v Web Services Security: SOAP Message Security Draft 13 (formerly Web Services Security Core

Specification)

v Web Services Security: Username Token Profile Draft 2

In April 2004, the Web service security specification (officially called Web Services Security: SOAP

Message Security Version 1.0) became the Version 1.0 OASIS standard. Also, the Username token and

X.509 token profiles are Version 1.0 specifications.

WebSphere Application Server 6 and later support the following Web services security specifications from

OASIS:

v Web Services Security: SOAP Message Security 1.0 specification

v Web Services Security: Username Token 1.0 Profile

v Web Services Security: X.509 Token 1.0 Profile

The following figure shows the various Web services security-related specifications.

April 2002 WS-Security

August 2002 WS-
Security Addendum

September 2002 WS-
Core Draft 1

May 2003
Web Services Security:

SOAP Message Security
Draft 13

February 2003
Web Services Security:
Username Token Public

Draft 2

April 2004
Web Services Security:

SOAP Message Security
Version 1.0

April 2004
Web Services Security:
Username Token Public

Version 1.0

April 2004
Web Services Security:

X.509 Token Public
Version 1.0

OASIS activities

WebSphere Application Server Version 6 and later also extend and provide plug-in capability to enable

security providers to extend the run-time capability and implement some of the higher level specifications

in the Web service security stack. The plug-in points are exposed as Service Provider Programming

Interfaces (SPI). For more information on these SPIs, see “Default implementations of the Web services

security service provider programming interfaces” on page 985.

Web services security specification development

The OASIS Web services security Version 1.0 specification defines the enhancements that are used to

provide message integrity and confidentiality. It also provides a general framework for associating the

security tokens with a SOAP message. The specification is designed to be extensible to support multiple

952 Securing applications and their environment

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0.pdf

security token formats. The particular security token usage is addressed with the security token profile.

The OASIS Web services security specification is based upon the following World Wide Web Consortium

(W3C) specifications. Most of the W3C specifications are in the standard body recommended status.

v XML-Signature Syntax and Processing

W3C recommendation, February 2002 (Also, IETF RFC 3275, March 2002)

v Canonical XML Version 1.0

W3C recommendation, March 2001

v Exclusive XML Canonicalization Version 1.0

W3C recommendation, July 2002

v XML-Signature XPath Filter Version 2.0

W3C Recommendation, November 2002

v XML Encryption Syntax and Processing

W3C Recommendation, December 2002

v Decryption Transform for XML Signature

W3C Recommendation, December 2002

These specifications are supported in WebSphere Application Server Version 6 and later in the context of

Web services security. For example, you can sign a SOAP message by specifying the integrity option in

the deployment descriptors. However, there is no application programming interface (API) that an

application can use for XML signature on an XML element in a SOAP message.

The OASIS Web services security Version 1.0 specification defines the enhancements that are used to

provide message integrity and confidentiality. It also provides a general framework for associating the

security tokens with a SOAP message. The specification is designed to be extensible to support multiple

security token formats. The particular security token usage is addressed with the security token profile.

Specification and profile support in WebSphere Application Server Version 6 and later

OASIS is working on various profiles. For more information, see Organization for the Advancement of

Structured Information Standards Committees. WebSphere Application Server Versions 6 and later do not

support these profiles. The following list is some of the published draft profiles and OASIS Web services

security technical committee work in progress:

v Web Services Security: SAML token profile

v Web Services Security: REL token profile

v Web Services Security: Kerberos token profile

v Web Services Security: SOAP Messages with Attachments (SwA) profile

Because WebSphere Application Server Version 6 and later support the following specifications, support

for Web services security draft 13 and Username token profile draft 2 in WebSphere Application 5.0.2,

5.1.0 and 5.1.1 is deprecated:

v OASIS Web Services Security Version 1.0 specification

v Web Services Security Username token profile

v X.509 token profile

The wire format of the SOAP message with Web services security in Web services security Version 1.0

has changed and is not compatible with previous drafts of the OASIS Web services security specification.

Interoperability between OASIS Web services security Version 1.0 and previous Web services security

drafts is not supported. However, it is possible to run an application that is based on Web services security

draft 13 on WebSphere Application Server Version 6 and later. The application can interoperate with an

application that is based on Web services security draft 13 on WebSphere Application Server Version

5.0.2, 5.1 or 5.1.1.

Chapter 14. Web services 953

http://www.w3.org/TR/xmldsig-core
http://www.w3.org/TR/xml-c14n
http://www.w3.org/TR/xml-exc-c14n
http://www.w3.org/TR/xmldsig-filter2
http://www.w3.org/TR/xmlenc-core
http://www.w3.org/TR/xmlenc-decrypt
http://www.oasis-open.org/committees/
http://www.oasis-open.org/committees/

WebSphere Application Server Version 6 and later support both the OASIS Web services security draft 13

and the OASIS Web services security 1.0 specification. But in WebSphere Application Server Version 6

and later, the support of OASIS Web services security draft 13 is deprecated. However, applications that

were developed using OASIS Web services security draft 13 on WebSphere Application Server 5.0.2,

5.1.0 and 5.1.1 can run on WebSphere Application Server Version 6 and later. OASIS Web services

security Version 1.0 support is available only for Java 2 Platform, Enterprise Edition (J2EE) Version 1.4

applications. The configuration format for the deployment descriptor and the binding is different from

previous versions of WebSphere Application Server. You must migrate the existing applications to J2EE

1.4 and migrate the Web services security configuration to the WebSphere Application Server Version 6

format. For migration information, see “Migrating Version 5.x applications with Web services security to

Version 6.1 applications” on page 972.

Web Services Interoperability Organization (WS-I) activities

Web Services Interoperability Organization (WS-I) is an open industry effort to promote Web services

interoperability across vendors, platforms, programming languages and applications. The organization is a

consortium of companies across many industries including IBM, Microsoft, Oracle, Sun, Novell, VeriSign,

and Daimler Chrysler. WS-I began working on the basic security profile (BSP) in the spring of 2003. BSP

consists of a set of non-proprietary Web services specifications that clarifies and amplifies those

specifications to promote Web services security interoperability across different vendor implementations.

As of June 2004, BSP is a public draft. For more information, see the Web Services Interoperability

Organization.

Specifically, see Basic Security Profile Version 1.0 for details about the BSP. WebSphere Application

Server supports compliance with the BSP. See “Basic Security Profile compliance” on page 994 for the

details to configure your application in compliance with the BSP.

XML token

XML tokens are offered in two well-known formats called Security Assertion Markup Language (SAML) and

eXtensible rights Markup Language (XrML).

In WebSphere Application Server Versions 6 and later, you can plug in your own implementation. By using

extensibility of the <wsse:Security> header in XML-based security tokens, you can directly insert these

security tokens into the header. SAML assertions are attached to Web services security messages using

Web services by placing assertion elements inside the <wsse:Security> header. The following example

illustrates a Web services security message with a SAML assertion token.

<S:Envelope xmlns:S="...">

<S:Header>

 <wsse:Security xmlns:wsse="...">

 <saml:Assertion

 MajorVersion="1"

 MinorVersion="0"

 AssertionID="SecurityToken-ef375268"

 Issuer="elliotw1"

 IssueInstant="2002-07-23T11:32:05.6228146-07:00"

 xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion">

 ...

 </saml:Assertion>

 </wsse:Security>

 </S:Header>

 <S:Body>

 ...

 </S:Body>

</S:Envelope>

For more information on SAML and XrML, see Web services: Resources for learning.

954 Securing applications and their environment

http://www.ws-i.org
http://www.ws-i.org
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html

Supported functionality from OASIS specifications

WebSphere Application Server Version 6 and later support the following Web services security

specifications and profiles.

v OASIS: Web Services Security: SOAP Message Security 1.0 (WS-Security 2004)

v OASIS: Web Services Security: UsernameToken Profile 1.0

v OASIS: Web Services Security X.509 Certificate Token Profile 1.0

v Basic Security Profile Version 1.0

OASIS: Web Services Security: SOAP Message Security 1.0 (WS-Security 2004)

The following list shows the aspects of the OASIS: Web Services Security: SOAP Message Security 1.0

(WS-Security 2004) specification that is supported in WebSphere Application Server Versions 6 and later.

 Supported topic Specific aspect that is supported

Security header v @S11 :actor (for an intermediary)

v @S11:mustUnderstand

Security tokens v Username token (user name and password)

v Binary security token (X.509 and Lightweight Third Party Authentication (LTPA))

v Custom token

– Other binary security token

– XML token

Note: WebSphere Application Server does not provide an implementation, but you can

use an XML token with plug-in point.

Token references v Direct reference

v Key identifier

v Key name

v Embedded reference

Chapter 14. Web services 955

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0.pdf
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html

Supported topic Specific aspect that is supported

Signature

algorithms

v Digest

SHA1 http://www.w3.org/2000/09/xmldsig#sha1

SHA256

http://www.w3.org/2001/04/xmlenc#sha256

SHA512

http://www.w3.org/2001/04/xmlenc#sha512

v MAC

HMAC-SHA1

http://www.w3.org/2000/09/xmldsig#hmac-sha1

v Signature

DSA with SHA1

http://www.w3.org/2000/09/xmldsig#dsa-sha1

 Do not use this algorithm if you want your configured application to be in compliance

with the Basic Security Profile (BSP)

RSA with SHA1

http://www.w3.org/2000/09/xmldsig#rsa-sha1

v Canonicalization

Canonical XML (with comments)

http://www.w3.org/TR/2001/REC-xml-c14n-20010315#WithComments

Canonical XML (without comments)

http://www.w3.org/TR/2001/REC-xml-c14n-20010315

Exclusive XML canonicalization (with comments)

http://www.w3.org/2001/10/xml-exc-c14n#WithComments

Exclusive XML canonicalization (without comments)

http://www.w3.org/2001/10/xml-exc-c14n#

v Transform

STR transform

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-
1.0#STR-Transform

 http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soapmessage-

security-1.0#STR-Transform

XPath http://www.w3.org/TR/1999/REC-xpath-19991116

 Do not use the original XPATH transform if you want your configured application to

be in compliance with the Basic Security Profile (BSP).

Note: When referring to an element in a SECURE_ENVELOPE that does not carry

an attribute of type ID from a ds:Reference in a SIGNATURE, you must use the

XPATH Filter 2.0 Transform, http://www.w3.org/2002/06/xmldsig-filter2

Enveloped signature

http://www.w3.org/2000/09/xmldsig#enveloped-signature

XPath Filter2

http://www.w3.org/2002/06/xmldsig-filter2

Note: When referring to an element in a SECURE_ENVELOPE that does not carry

an ID attribute type from a ds:Reference in a SIGNATURE, you must use the

XPATH Filter 2.0 Transform, http://www.w3.org/2002/06/xmldsig-filter2

Decryption transform

http://www.w3.org/2002/07/decrypt#XML

956 Securing applications and their environment

Supported topic Specific aspect that is supported

Signature signed

parts

v WebSphere Application Server key words:

– body, which signs the SOAP message body

– timestamp, which signs all of the time stamps

– securitytoken, which signs all of the security tokens

– dsigkey, which signs the signing key

– enckey, which signs the encryption key

– messageid, which signs the wsa :MessageID element in WS-Addressing.

– to, which signs the wsa:To element in WS-Addressing

– action, which signs the wsa:Action element in WS-Addressing

– relatesto, which signs the wsa:RelatesTo element in WS-Addressing

wsa is the namespace prefix of http://schemas.xmlsoap.org/ws/2004/08/addressing

– wscontext, which specifies the WS-Context header for the SOAP header. For more

information, see Propagating work area context over Web services.

– wsafrom, which specifies the <wsa:From> WS-Addressing From element in the SOAP

header.

– wsareplyto, which specifies the <wsa:ReplyTo> WS-Addressing ReplyTo element in the

SOAP header.

– wsafaultto, which specifies the <wsa:FaultTo> WS-Addressing FaultTo element in the

SOAP header.

– wsaall, which specifies all of the WS-Addressing elements in the SOAP header.

v XPath expression to select an XML element in a SOAP message. For more information, see

http://www.w3.org/TR/1999/REC-xpath-19991116.

Chapter 14. Web services 957

http://www.w3.org/TR/1999/REC-xpath-19991116

Supported topic Specific aspect that is supported

Encryption

algorithms

v Data encryption

– Triple DES in CBC: http://www.w3.org/2001/04/xmlenc#tripledes-cbc

– AES128 in CBC: http://www.w3.org/2001/04/xmlenc#aes128-cbc

– AES192 in CBC: http://www.w3.org/2001/04/xmlenc#aes192-cbc

This algorithm requires the unrestricted JCE policy file. For more information, see the Key

encryption algorithm description in the “Encryption information configuration settings” on

page 1155.

Do not use the 192-bit data encryption algorithm if you want your configured application to

be in compliance with the Basic Security Profile (BSP).

– AES256 in CBC: http://www.w3.org/2001/04/xmlenc#aes256-cbc

This algorithm requires the unrestricted JCE policy file. For more information, see the Key

encryption algorithm description in the “Encryption information configuration settings” on

page 1155.

v Key encryption

– Key transport (public key cryptography)

- http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p.

Note:

v When running with Software Development Kit (SDK) Version 1.4, the list of

supported key transport algorithms does not include this one. This algorithm appears

in the list of supported key transport algorithms when running with SDK Version 1.5.

v Use of the Federal Information Processing Standard (FIPS)-compliant Java

cryptography engine does not support this transport algorithm.

- RSA Version 1.5: http://www.w3.org/2001/04/xmlenc#rsa-1_5

– Symmetric key wrap (private key cryptography)

- Triple DES key wrap: http://www.w3.org/2001/04/xmlenc#kw-tripledes

- AES key wrap (aes128): http://www.w3.org/2001/04/xmlenc#kw-aes128

- AES key wrap (aes192): http://www.w3.org/2001/04/xmlenc#kw-aes192

This algorithm requires the unrestricted JCE policy file. For more information, see the

Key encryption algorithm description in the “Encryption information configuration

settings” on page 1155.

Do not use the 192-bit data encryption algorithm if you want your configured application

to be in compliance with the Basic Security Profile (BSP).

- AES key wrap (aes256): http://www.w3.org/2001/04/xmlenc#kw-aes256

This algorithm requires the unrestricted JCE policy file. For more information, see the

Key encryption algorithm description in the “Encryption information configuration

settings” on page 1155.

v Manifests-xenc is the namespace prefix of http://www.w3.org/TR/xmlenc-core

– xenc:ReferenceList

– xenc:EncryptedKey

Advanced Encryption Standard (AES) is designed to provide stronger and better performance

for symmetric key encryption over Triple-DES (data encryption standard). Therefore, it is

recommended that you use AES, if possible, for symmetric key encryption.

958 Securing applications and their environment

http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p

Supported topic Specific aspect that is supported

Encryption

message parts

v WebSphere Application Server keywords

– bodycontent, which is used to encrypt the SOAP body content

– usernametoken, which is used to encrypt the username token

– digestvalue, which is used to encrypt the digest value of the digital signature

– signature, which is used to encrypt the entire digital signature

– wscontextcontent, which encrypts the content in the WS-Context header for the SOAP

header. For more information, see Propagating work area context over Web services.

v XPath expression to select the XML element in the SOAP message

– XML elements

– XML element contents

Time stamp v Within Web services security header

v WebSphere Application Server is extended to allow you to insert time stamps into other

elements so that the age of those elements can be determined.

Error handling SOAP faults

OASIS: Web Services Security: UsernameToken Profile 1.0

The following list shows the aspects of the OASIS: Web Services Security: UsernameToken Profile 1.0

specification that is supported in WebSphere Application Server Versions 6 and later.

 Supported topic Specific aspect that is supported

Password types Text

Token references Direct reference

OASIS: Web Services Security X.509 Certificate Token Profile

The following list shows the aspects of the OASIS: Web Services Security X.509 Certificate Token Profile

specification that is supported in WebSphere Application Server Versions 6 and later.

 Supported topic Specific aspect that is supported

Token types v X.509 Version 3: Single certificate

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509- token-profile-1.0#X509v3

v X.509 Version 3: X509PKIPathv1 without certificate revocation lists (CRL)

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509- token-profile-
1.0#X509PKIPathv1

v X.509 Version 3: PKCS7 with or without CRLs. The IBM software development kit (SDK)

supports both. The Sun Java Development Kit (JDK) supports PKCS7 without CRL only.

Token references v Key identifier – subject key identifier

v Direct reference

v Custom reference – issuer name and serial number

Functionality that is not supported

The following list shows the functionality that is supported in the Organization for the Advancement of

Structured Information (OASIS) specifications, OASIS drafts, and other recommendations, but is not

supported by WebSphere Application Server Versions 6 and later:

Chapter 14. Web services 959

v Non-managed client with Web services security. For example, a Java 2 Platform, Standard Edition

(J2SE) client or a Dynamic Invocation Interface (DII) client

v The Web services security binding is not collected during the application installation process. It can be

configured after the application is deployed.

v Web services security for SOAP attachment

v Security Assertion Markup Language (SAML) token profile, WS-SecurityKerberos token profile, and

XrML token profile

v XML enveloping digital signature

v XML enveloping digital encryption

v Security header

– @S12:role

S12 is the namespace prefix of http://www.w3.org/2003/05/soap-envelope

v The following transport algorithms for digital signatures are not supported:

– XSLT: http://www.w3.org/TR/1999/REC-xslt-19991116

– SOAP Message Normalization

For more information, see SOAP Version 1.2 Message Normalization.

v The following key agreement algorithm for encryption is not supported:

– Diffie-Hellman: http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/Overview.html#sec-
DHKeyValue

v The following canonicalization algorithm for encryption, which is optional in the XML encryption

specification, is not supported:

– Canonical XML with or without comments

– Exclusive XML canonicalization with or without comments

v In the Username Token Version 1.0 Profile specification, the digest password type is not supported.

Web services security enhancements

WebSphere Application Server Version 6 include a number of enhancements for securing Web services.

These enhancements are explained in detail within this article.

Building your applications

To assemble your applications and to specify the security constraints for Web services security in the

deployment descriptor and bindings, it is recommended that you use Rational Web Developer and the

Application Server Toolkit. For more information on these tools, see Assembly tools. You can also use the

WebSphere Application Server administrative console to edit the application binding file.

Using identity assertion

In a secured environment such as an intranet, a secure sockets layer (SSL) connection or through a

Virtual Private Network (VPN), it is useful to send the requester identity only without credentials, such as

password, with other trusted credentials, such as the server identity. WebSphere Application Server

Version 6 and later support the following types of identity assertions:

v A username token without a password

v An X.509 Token for a X.509 certificate

For the X.509 certificate, WebSphere Application Server uses the distinguished name in the certificate as a

requester identity. There are two trust modes for validating the trust of the upstream server:

Basic authentication (username token)

The upstream server sends a username token with a user name and password to a downstream

server. The consumer or receiver of the message authenticates the username token and validates

960 Securing applications and their environment

http://www.w3.org/TR/2003/NOTE-soap12-n11n-20031008/
http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/Overview.html#sec-DHKeyValue
http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/Overview.html#sec-DHKeyValue

the trust based upon the TrustedIDEvaluator implementation. The TrustedIDEvaluator

implementation must implement the com.ibm.wsspi.wssecurity.id.TrustedIDEvaluator Java

interface.

Signature

The upstream server signs the message, which can be any message part such as the SOAP

body. The upstream server sends the X.509 token to a downstream server. The consumer or

receiver of the message verifies the signature and validates the X.509 token. The identity or the

distinguished name from the X.509 token that is used in the digital signature is validated based on

the TrustedIDEvaluator implementation. The TrustedIDEvaluator implementation must implement

the com.ibm.wsspi.wssecurity.id.TrustedIDEvaluator Java interface.

The following figure demonstrates the identity assertion trust process.

Server s1

Web services
security run time

Request
generator

Response
consumer

Server s2

Web services
security run time

Request
consumer

Response
generator

Secured SOAP message

JAAS login
configuration Trusted ID evaluator

Identity/Password Identity

bob

Identity (username token): bob
Trust mode (username token):
Identity/Password

Secured SOAP message

Downstream
call

In this figure, server s1 is the upstream server and identity assertion is set up between server s1 and

server s2. The s1 server authenticates the identity called bob. Server s1 wants to send bob to the s2

server with a password. The trust mode is an s1 credential that contains the identity and a password.

Server s2 receives the request, authenticates the user using a Java Authentication and Authorization

Service (JAAS) login module, and uses the trusted ID evaluator to determine whether to trust the identity.

If the identity is trusted, bob is used as the caller that invokes the service. If authorization is required, bob

is the identity that is used for authorization verification.

In WebSphere Application Server Version 6 and later, the identity can be asserted as the RunAs

(invocation) identity of the current security context. For example, the Web services gateway authenticates

a requester using a secure method such as password authentication and then sends the requester identity

only to a back-end server. You might also use identity assertion for interoperability with another Web

services security implementation.

Using the pluggable token framework

The Organization for the Advancement of Structured Information Standards (OASIS) Web Services

Security Version 1.0 specification defines a generic mechanism to associate security tokens with a SOAP

message. In WebSphere Application Server Versions 6 and later, the pluggable token framework is

enhanced to handle this flexible mechanism. The following figure shows this pluggable framework.

Chapter 14. Web services 961

Client

Web services
security run time

Request
generator

Response
consumer

Server

Web services
security run time

Request
consumer

Response
generator

Secured SOAP message

TokenConsumer user1/password

user1

<wsse:UsernameToken>
<wsse:Username>user1</wsse:Username>
<wsse:Password>password</wsse:Password>

</wsse:UsernameToken>

Secured SOAP message

Downstream
call

JAAS login
configuration

<wsse:UsernameToken>
<wsse:Username>user1</wsse:Username>
<wsse:Password>password</wsse:Password>

</wsse:UsernameToken>

TokenGenerator CallbackHandlerTokenConsumer
JAAS login

configuration

TokenGenerator

CallbackHandler
user1/password

<wsse:UsernameToken>
<wsse:Username>user1</wsse:Username>
<wsse:Password>password</wsse:Password>

</wsse:UsernameToken>

The following terms are used in the previous figure:

TokenGenerator

The token generator, or the com.ibm.wsspi.wssecurity.token.TokenGeneratorComponent Java

interface, is responsible for the following actions:

v Marshalling the token into the correct XML representation for the SOAP message. In this case,

marshalling is the process of converting a token to a standardized format before transmitting it

over the network.

v Setting the token to the local JAAS Subject.

v Generating the correct token identifier based on the key information type.

The token generator invokes the CallbackHandler or the

javax.security.auth.callback.CallbackHandler Java interface for token acquisition. The

javax.security.auth.callback.Callback Java interface is used to pass information from the callback

handler to the token generator.

CallbackHandler

The callback handler, or the javax.security.auth.callback.CallbackHandler Java interface, is

responsible for acquiring the token using a method such as GUI prompt, a standard-in prompt,

talking to external token service, and so on.

TokenConsumer

The token consumer, or the com.ibm.wsspi.wssecurity.token.TokenConsumerComponent Java

interface, is responsible for the following actions:

v Unmarshalling the token from the XML format within the SOAP message. In this case,

unmarshalling is the process of converting the token from the standard network format to the

local or native format.

v Calling the JAAS login configuration to validate the token

962 Securing applications and their environment

v Setting the correct WSSToken, or com.ibm.wsspi.wssecurity.auth.token.WSSToken Java

abstract class, to the local JAAS Subject.

At the final stage of Web services security processing, the local JAAS Subject content is used to

create the WebSphere credentials and principals. The Caller Subject is created based on the

content of the local JAAS Subject.

JAAS login configuration

The JAAS login configuration is responsible for validating the token. The validation process might

involve making a call to the WebSphere Application Server authentication module or calling a

third-party token service.

Signing or encrypting data with a custom token

The key locator, or the com.ibm.wsspi.wssecurity.keyinfo.KeyLocator Java interface, is enhanced to

support the flexibility of the specification. The key locator is responsible for locating the key. The local

JAAS Subject is passed into the KeyLocator.getKey() method in the context. The key locator

implementation can derive the key from the token, which is created by the token generator or the token

consumer, to sign a message, to verify the signature within a message, to encrypt a message, or to

decrypt a message.

Important: The com.ibm.wsspi.wssecurity.keyinfo.KeyLocator Java interface is different from the version

in WebSphere Application Server Version 5.x. The com.ibm.wsspi.wssecurity.config.KeyLocator

interface from Version 5.x is deprecated. There is no automatic migration for the key locator

from Version 5.x to Version 6 or later. You must migrate the source code for the Version 5.x

key locator implementation to the key locator programming model for Version 6 and later.

Signing or encrypting any XML element

The deployment descriptor supports the XPath expression for selecting which XML element to sign or

encrypt. However, an envelope signature is used when you sign the SOAP envelope, SOAP header, or

Web services security header.

Supporting LTPA

Lightweight Third Party Authentication (LTPA) is supported as a binary security token in Web services

security. The token type is http://www.ibm.com/websphere/appserver/tokentype/5.0.2/LTPA.

Extending the support for time stamps

You can insert a time stamp in other elements during the signing process besides the Web services

security header. This time stamp provides a mechanism for adding a time limit to an element. However,

this support is an extension for WebSphere Application Server Versions 6 and later. Other vendor

implementations might not have the ability to consume a message that is generated with an additional time

stamp that is inserted in the message.

Extending the support for nonce

You can insert a nonce, which is a randomly generated value, in other elements beside the username

token. The nonce is used to reduce the chance of a replay attack. However, this support is an extension

for WebSphere Application Server Versions and later. Other vendor implementations might not have the

ability to consume messages with a nonce that is inserted into elements other than a username token.

Supporting distributed nonce caching

Distributed nonce caching is a new feature for Web services in WebSphere Application Server Versions 6

and later that enables you to replicate nonce data between servers in a cluster. For example, you might

Chapter 14. Web services 963

have application server A and application server B in cluster C. If application server A accepts a nonce

with a value of X, then application server B creates a SoapSecurityException if it receives the nonce with

the same value within a specified period of time. For more information, see the information that explains

nonce cache timeout, nonce maximum age and nonce clock skew in “Web services: Default bindings for

the Web services security collection” on page 1240. However, if application server B receives another

nonce with a value of Y, then it does not throw an exception, but caches the nonce and copies it into the

other application servers within the same cluster.

Important: The distributed nonce caching feature uses the WebSphere Application Server Distributed

Replication Service (DRS). The data in the local cache is pushed to the cache in other servers

in the same replication domain. The replication is an out-of-process call and, in some cases, is

a remote call. Therefore, there is a possible delay in replication while the content of the cache

in each application server within the cluster is updated. The delay might be due to network

traffic, network workload, machine workload, and so on.

Caching the X.509 certificate

WebSphere Application Server Version 6 and later cache the X.509 certificates it receives, by default, to

avoid certificate path validation and improve its performance. However, this change might lead to security

exposure. You can disable X.509 certificate caching using the following steps:

On the server level:

v Click Servers > Application servers > server_name .

v Under Security, click Web services: Default bindings for Web services security.

v Under Additional properties, click Properties > New.

v In the Property name field, type com.ibm.ws.wssecurity.config.token.certificate.useCache.

v In the Property value field, type false.

Providing support for a certificate revocation list

The certificate revocation list (CRL) in WebSphere Application Server Version 6 and later is used to

enhance certificate path validation. You can specify a CRL in the collection certificate store for validation.

You can also encode a CRL in an X.509 token using PKCS#7 encoding. However, WebSphere Application

Server Version 6 and later do not support X509PKIPathv1 CRL encoding in a X.509 token.

Important: The PKCS#7 encoding was tested with the IBM certificate path (IBM CertPath) provider only.

The encoding is not supported for other certificate path providers.

High-level architecture for Web services security

The Web services security constraints are specified in the IBM extension of the Web services deployments

descriptors and bindings. The Web services security run time enforces the security constraints specified in

the deployment descriptors.

WebSphere Application Server Version 6 and later use the Java 2 Platform, Enterprise Edition (J2EE)

Version 1.4 Web services deployment model to implement Web services security. One of the advantages

of deployment model is that you can define the Web services security requirements outside of the

application business logic. With the separation of roles, the application developer can focus on the

business logic and the security expert can specify the security requirement.

The following figure shows the high-level architecture model that is used to secure Web services in

WebSphere Application Server Version 6.

964 Securing applications and their environment

Client run time

Web services
security run time

Request
generator

Response
consumer

Server run time

Web services
security run time

Request
consumer

Response
generator

Secured
SOAP

message

Secured
SOAP

message

Deployment
descriptor

Deployment
descriptor

Web
service

Client

The deployment descriptor and binding for Web services security is based on Web service ports. Each

Web service port can have its own unique Web services security constraints defined. For example, you

might configure Web service port A to sign the SOAP body and the Username token. You might configure

Web service port B to encrypt the SOAP body content and so on.

As shown in the previous figure, there are 2 sets of configurations on both the client side and the server

side:

Request generator

This client-side configuration defines the Web services security requirements for the outgoing

SOAP message request. These requirements might involve generating a SOAP message request

that uses a digital signature, incorporates encryption, and attaches security tokens. In WebSphere

Application Server Versions 5.0.2, 5.1, and 5.1.1, the request generator was known as the request

sender.

Request consumer

This server-side configuration defines the Web services security requirements for the incoming

SOAP message request. These requirements might involve verifying that the required integrity

parts are digitally signed; verifying the digital signature; verifying that the required confidential parts

were encrypted by the request generator; decrypting the required confidential parts; validating the

security tokens, and verifying that the security context is set up with the appropriate identity. In

WebSphere Application Server Versions 5.0.2, 5.1, and 5.1.1, the request consumer was known as

the request receiver.

Response generator

This server-side configuration defines the Web services security requirements for the outgoing

SOAP message response. These requirements might involve generating the SOAP message

response with Web services security; including digital signature; and encrypting and attaching the

security tokens, if necessary. In WebSphere Application Server Versions 5.0.2, 5.1, and 5.1.1, the

response generator was known as the response sender.

Response consumer

This client-side configuration defines the Web services security requirements for the incoming

SOAP response. The requirements might involve verifying that the integrity parts are signed and

the signature is verified; verifying that the required confidential parts are encrypted and that the

parts are decrypted; and validating the security tokens. In WebSphere Application Server Versions

5.0.2, 5.1, and 5.1.1, the response consumer was known as the response receiver.

Chapter 14. Web services 965

WebSphere Application Server Versions 6 and later do not include security policy negotiation or exchange

between the client and server. This security policy negotiation is defined by the WS-Policy,

WS-PolicyAssertion, and WS-SecurityPolicy specifications and are not supported in WebSphere

Application Server Version 6 and later.

Note: The Web services security requirements that are defined in the request generator must match the

request consumer. The requirements that are defined in the response generator must match the

response consumer. Otherwise, the request or response is rejected because the Web services

security constraints can not be met by the request consumer and response consumer.

The format of the Web services security deployment descriptors and bindings are IBM proprietary.

However, the following tools are available to edit the deployment descriptors and bindings:

Rational Application Developer Version 6.0.x

Use this tool to edit the Web services security deployment descriptor and binding. You can use

this tool to assemble both Web and Enterprise JavaBeans (EJB) modules.

Rational Web Developer Version 6.0.x

Use this tool to edit the Web services security deployment descriptor and binding. You can use

this tool to assemble Web modules only.

Application Server Toolkit

Use this tool to edit the Web services security deployment descriptor and binding.

WebSphere Application Server Administrative Console Version 6 and later

Use this tool to edit the Web services security binding of a deployed application.

Overview of platform configuration and default bindings

The Web services security constraints are defined in an IBM extension of the Web services deployment

descriptor for Java 2 Platform, Enterprise Edition (J2EE). The IBM extension deployment descriptor and

binding for Web services security are IBM proprietary. Due to the complexity of these files, it is not

recommended that you edit the deployment descriptor and binding files manually with a text editor

because they might cause errors. It is recommended, however, that you use the tools provided by IBM to

configure the Web services security constraints for an application. These tools are the Rational Application

Developer, Rational Web Developer, the Application Server Toolkit, and the WebSphere Application Server

administrative console.

The following table provides the names of the deployment descriptor and binding files for the client and the

server.

 File type Client side Server side

Deployment descriptor ibm-webservicesclient-ext.xmi ibm-webservices-ext.xmi

Binding file ibm-webservicesclient-bnd.xmi ibm-webservices-bnd.xmi

The “what” is specified in the deployment descriptor such as what message part to sign and which token

to encrypt. The “how” is specified in the binding file such as how the message is signed, how to generate

and consume the security token.

In addition to the application deployment descriptor and binding files, WebSphere Application Server

Versions 6 and later have a server level Web Security Services configuration. These configurations are

global for all applications. Because WebSphere Application Server Version 6 and later support 5.x

applications, some of the configurations are valid for Version 5.x applications only and some are valid for

Version 6 and later applications only.

The following figure represents the relationship of the application deployment descriptor and binding files

to the cell or server level configuration.

966 Securing applications and their environment

Deployment descriptor:
Signs the body
Encrypts the body content
…..

Binding:
X.509 for signing
Key for encryption
…..

–

–

–

–

–

Application A

Platform configuration (cell or server):
Key information (key locator)
Nonce cache timeout
…..

–

–

–

WebSphere Application Server

Platform configuration

The following options are available in the administrative console:

Nonce cache timeout

This option, which is found on the cell level (Network Deployment only) and server level, specifies

the cache timeout value for a nonce in seconds.

Nonce maximum age

This option, which is found on the cell level (Network Deployment only) and server level, specifies

the default life span for the nonce in seconds.

Nonce clock skew

This option, which is found on the cell level (Network Deployment only) and server level, specifies

the default clock skew to account for network delay, processing delay, and so on. It is used to

calculate when the nonce expires. Its unit of measurement is seconds.

Distribute nonce caching

This feature enables you to distribute the cache for the nonce to different servers in a cluster. It is

a new feature for WebSphere Application Server Version 6.0.x.

The following features can be referenced in the application binding:

Key locator

This feature specifies how the keys are retrieved for signing, encryption, and decryption. The

implementation classes for the key locator are different in WebSphere Application Server Versions

6 and later and Version 5.x.

Collection certificate store

This feature specifies the certificate store for certificate path validation. It is typically used for

validating X.509 tokens during signature verification or constructing the X.509 token with a

certificate revocation list that is encoded in the PKCS#7 format. The certificate revocation list is

supported for WebSphere Application Server Version 6 and later applications only.

Trust anchors

This feature specifies the trust level for the signer certificate and is typically used in the X.509

token validation during signature verification.

Chapter 14. Web services 967

Trusted ID evaluators

This feature specifies how to verify the trust level for the identity. The feature is used with identity

assertion.

Login mappings

This feature specifies the login configuration binding to the authentication methods. This feature is

used by WebSphere Application Server Version 5.x applications only and it is deprecated.

Default bindings

There is only one set of default bindings and they can be shared by multiple applications. This feature is

available for WebSphere Application Server Version 6 and later applications only.

The following figure shows the relationship between the application enterprise archive (EAR) file and the

ws-security.xml file.

Default consumer binding

Default generator binding

Deployment descriptor

Binding

Deployment descriptor

Binding

Enterprise archive (EAR) 1

EAR 2

Deployment descriptor

EAR 3

Deployment descriptor

EAR 4

ws-security.xml

Application EAR 1 and EAR 2 have specific bindings in the application binding file. However, application

EAR 3 and EAR 4 do not have a binding in the application binding file, it must be referenced to use the

default bindings defined in the ws-security.xml file. The configuration is resolved by nearest configuration

in the hierarchy. For example, there might be three key locators named mykeylocator defined in the

application binding file, the server level, and the cell level. If mykeylocator is referenced in the application

binding, then the key locator defined in the application binding is used. The visibility scope of the data

depends upon where the data is defined. If the data is defined in the application binding, then its visibility

is scoped to that particular application. If the data is defined on the server level, then the visibility scope is

all of the applications deployed on that server. If the data is defined on the cell level, then the visibility

scope is all of the applications deployed on servers in the cell. In general, if data is not meant to be

shared by other applications, define the configuration in the application binding level.

The following figure shows the relationship of the bindings on the application, server, and cell levels.

968 Securing applications and their environment

ws-security.xml

MyCell

MyNodel

server1l

ws-security.xml

Binding

Enterprise archive (EAR) 2

Deployment descriptor

Overrides

Overrides

Security model mixture

There can be multiple protocols and channels in the WebSphere Application Server Version 6 and later

programming environments. Each of these applications serve different business needs.

For example, you might access:

v A Web-based application through the HTTP transport such as a servlet, JavaServer Pages (JSP) file,

HTML and so on.

v An enterprise application through the Remote Method Invocation (RMI) over the Internet Inter-ORB

(RMI/IIOP) protocol.

v A Web service application through the SOAP over HTTP, SOAP over the Java Message Service (JMS),

or SOAP over the RMI/IIOP protocol.

More importantly, Web services are often implemented as servlets with a Enterprise JavaBeans (EJB) file.

Therefore, you can mix and match the Web services security model with the Java 2 Platform, Enterprise

Edition (J2EE) security model for Web and EJB components. It is intended that Web service security

compliment the J2EE role-based security and the security run time for WebSphere Application Server

Version 6 and later.

Web services security also can take advantage of the security features in J2EE and the security run time

for WebSphere Application Server Version 6 and later. For example, Web services security can use the

following security features to provide an end-to-end security deployment:

v Use the local OS, Lightweight Directory Access Protocol (LDAP), and custom user registries for

authenticating the username token

v Propagate the Lightweight Third Party Authentication (LTPA) security token in the SOAP message

v Use identity assertion

v Use a trust association interceptor (TAI)

v Enable security attribute propagation

v Use J2EE role-based authorization

v Use a Java Authorization Contract for Containers (JACC) authorization provider, such as Tivoli Access

Manager

The following figure shows that different security protocols are used to send authentication information to

the application server. For a Web service, you might use either HTTP basic authentication with Secure

Chapter 14. Web services 969

Sockets Layer (SSL) or a Web services security username token with encryption. In the following figure,

when identity bob from Web services security is authenticated and set as the caller identity of the SOAP

message request, the J2EE Enterprise JavaBeans container performs authorization using bob before the

call is dispatched to the service implementation, which, in this case, is the enterprise bean.

SOAP
run time

Servlet

Enterprise bean

J2EE
container

bob

joe

joe

SOAP

WebSphere
Application
Server

wsse:UsernameToken
<bob:password>

bob

RMI/IIOP request
Authentication by the ORB
is based on CSIv2

Authentication
is based on Web
services security

authentication by HTTP
end point based on HTTP
basic authentication

alice

CSIv2 protocol:
<alice:password>

https://www.fabrikam456.com/travelServices

HTTP request

HTTP basic
authentication:
<joe:password>
with SSL

SOAP

http://www.fabrikam456.com/travelServices

You can secure a Web service using the transport layer security. For example, when you are using SOAP

over HTTP, HTTPS can be used to secure the Web service. However, transport layer security provides

point-to-point security only. This layer of security might be adequate for certain scenarios. However, when

the SOAP message must travel through intermediary servers (multi-hop) before it is consumed by the

target endpoint, you might use SOAP over the Java Message Service (JMS). The usage scenarios and

security requirements dictate how to secure Web services. The requirements depend upon the operating

environment and the business needs. However, one key advantage of using Web services security is that

it is transport layer independent; the same Web services security constraints can be used for SOAP over

HTTP, SOAP over JMS, or SOAP over RMI/IIOP.

Security considerations for Web services

When you configure Web services security, you must make every effort to verify that the result is not

vulnerable to a wide range of attack mechanisms. This article provides some information about the

possible security concerns that arise when you are securing Web services.

In WebSphere Application Server Version 6 and later, when you enable integrity, confidentiality, and the

associated tokens within a SOAP message, security is not guaranteed. This list of security concerns is not

complete. You must conduct your own security analysis for your environment.

v Ensuring the message freshness

Message freshness involves protecting resources from a replay attack in which a message is captured

and resent. Digital signatures, by themselves, cannot prevent a replay attack because a signed

message can be captured and resent. It is recommended that you allow message recipients to detect

message replay attacks when messages are exchanged through an open network. You can use the

following elements, which are described in the Web services security specifications, for this purpose:

970 Securing applications and their environment

Timestamp

You can use the timestamp element to keep track of messages and to detect replays of

previous messages. The WS-Security 2004 specification recommends that you cache time

stamps for a given period of time. As a guideline, you can use five minutes as a minimum

period of time to detect replays. Messages that contain an expired timestamp are rejected.

Nonce

A nonce is a child element of UsernameToken in the UsernameToken profile. Because each

Nonce element has a unique value, recipients can detect replay attacks with relative ease.

Important: Both the time stamp and nonce element must be signed. Otherwise, these elements can be

altered easily and therefore cannot prevent replay attacks.

v Using XML digital signature and XML encryption properly to avoid a potential security hole

The WS-Security 2004 specification defines how to use XML digital signature and XML encryption in

SOAP headers. Therefore, users must understand XML digital signature and XML encryption in the

context of other security mechanisms and their possible threats to an entity. For XML digital signature,

you must be aware of all of the security implications resulting from the use of digital signatures in

general and XML digital signature in particular. When you build trust into an application based on a

digital signature, you must incorporate other technologies such as certification trust validation based

upon the Public Key Infrastructure (PKI). For XML encryption, the combination of digital signing and

encryption over a common data item might introduce some cryptographic vulnerabilities. For example,

when you encrypt digitally signed data, you might leave the digital signature in plain text and leave your

message vulnerable to plain text guessing attacks. As a general practice, when data is encrypted,

encrypt any digest or signature over the data. For more information, see http://www.w3.org/TR/xmlenc-
core/#sec-Sign-with-Encrypt.

v Protecting the integrity of security tokens

The possibility of a token substitution attack exists. In this scenario, a digital signature is verified with a

key that is often derived from a security token and is included in a message. If the token is substituted,

a recipient might accept the message based on the substituted key, which might not be what you

expect. One possible solution to this problem is to sign the security token (or the unique identifying data

from which the signing key is derived) together with the signed data. In some situations, the token that

is issued by a trusted authority is signed. In this case, there might not be an integrity issue. However,

because application semantics and the environment might change over time, the best practice is to

prevent this attack. You must assess the risk assessment based upon the deployed environment.

v Verifying the certificate to leverage the certificate path verification and the certificate revocation list

It is recommended that you verify that the authenticity or validity of the token identity that is used for

digital signature is properly trusted. Especially for an X.509 token, this issue involves verifying the

certificate path and using a certificate revocation list (CRL). In the Web services security implementation

in WebSphere Application Server Version 6 and later, the certificate is verified by the TokenConsumer

element. WebSphere Application Server provides a default implementation for the X.509 certificate that

uses the Java CertPath library to verify and validate the certificate. In the implementation, there is no

explicit concept of a CRL. Rather, proper root certificates and intermediate certificates are prepared in

files only. For a sophisticated solution, you might develop your own TokenConsumer implementation that

performs certificate and CRL verification using the online CRL database or the Online Certificate Status

Protocol (OCSP).

v Protecting the username token with a password

It is recommended that you do not send a password in a UsernameToken to a downstream server

without protection. You can use transport-level security such as SSL (for example, HTTPS) or use XML

encryption within Web services security to protect the password. The preferred method of protection

depends upon your environment. However, you might be able to send a password to a downstream

server as plain text in some special environments where you are positive that you are not vulnerable to

an attack.

Chapter 14. Web services 971

http://www.w3.org/TR/xmlenc-core/#sec-Sign-with-Encrypt
http://www.w3.org/TR/xmlenc-core/#sec-Sign-with-Encrypt

Securing Web services involves more work than just enabling XML digital signature and XML encryption.

To properly secure a Web service, you must have knowledge about the Public Key Infrastructure (PKI).

The amount of security that you need depends upon the deployed environment and the usage patterns.

However, there are some basic rules and best practices for securing Web services. It is recommended that

you read some books on PKI and read information on the Web Services Interoperability Organization

(WS-I) Basic Security Profile (BSP). See Basic Security Profile Version 1.0 for more information.

Migrating Version 5.x applications with Web services security to

Version 6.1 applications

Migration of a Java 2 Platform, Enterprise Edition (J2EE) Version 1.3 application that uses Web services

security to a Java 2 Platform, Enterprise Edition Version 1.4 application is possible.

You can install Java 2 Platform, Enterprise Edition Version 1.3 applications that use Web services security

on a WebSphere Application Server Version 6.1 server. However, if you want J2EE Version 1.3

applications to use the Web services security (WSS) Version 1.0 specification and the other new features

added in Version 6.1, you must migrate the J2EE Version 1.3 applications to J2EE Version 1.4.

Complete the following steps to migrate a Version 5.x application, along with the Web services security

configuration information, to a Version 6.1 application:

1. Save the original J2EE Version 1.3 application. You need the Web services security configuration files

of the J2EE Version 1.3 application to recreate the configuration in the new format for the J2EE

Version 1.4 application.

2. Use the Java 2 Platform, Enterprise Edition (J2EE) Migration Wizard in an assembly tool to migrate the

J2EE Version 1.3 application to J2EE Version 1.4.

Important: After you migrate to J2EE Version 1.4 using the J2EE Migration Wizard, you cannot view

the J2EE Version 1.3 extension and binding information within an assembly tool. You can

view the J2EE Version 1.3 Web services security extension and binding information using

a text editor. However, do not edit the extension and binding information using a text

editor. The J2EE Migration Wizard does not migrate the Web services security

configuration files to the new format in the J2EE Version 1.4 application. Rather the wizard

is used to migrate your files from J2EE Version 1.3 to Version 1.4.

To access the J2EE Migration Wizard, complete the following steps:

a. Right-click the name of your application.

b. Click Migrate > J2EE Migration Wizard.

3. Manually delete all of the Web services security configuration information from the binding and

extension files of the application that is migrated to J2EE Version 1.4.

a. Delete the <securityRequestReceiverServiceConfig> and

<securityResponseSenderServiceConfig> sections from the server-side ibm-webservices-ext.xmi

extension file.

b. Delete the <securityRequestReceiverBindingConfig> and

<securityResponseSenderBindingConfig> sections from the server-side ibm-webservices-bnd.xmi

binding file.

c. Delete the <securityRequestSenderServiceConfig> and

<securityResponseReceiverServiceConfig> sections from the client-side ibm-webservicesclient-
ext.xmi extension file.

d. Delete the <securityRequestSenderBindingConfig> and

<securityResponseReceiverBindingConfig> sections from client-side ibm-webservicesclient-
bnd.xmi binding file.

4. Recreate the Web services security configuration information in the new J2EE Version 1.4 format. At

this stage, because the application is already migrated to the J2EE Version 1.4, you can use the

Application Server Toolkit to configure the original Web services security information in the new Version

6.1 format.

972 Securing applications and their environment

http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html

This task provides general information about how to migrate J2EE Version 1.3 applications to J2EE

Version 1.4.

The following articles contain some general scenarios that map some of the basic Web services security

information specified in a J2EE Version 1.3 application to a J2EE Version 1.4 application and specify this

information using the Application Server Toolkit. The Web services security configuration information is

contained in four configuration files: two server-side configuration files and two client-side configuration

files. The migration of all of the configuration information is divided into four sections; one for each

configuration file. When you recreate the Web services security information in the new J2EE Version 1.4

format, it is recommended that you configure the extensions and binding files in the following order:

1. Configure the ibm-webservices-ext.xmi server-side extensions file. For more information, see

“Migrating the server-side extensions configuration.”

2. Configure the ibm-webservicesclient-ext.xmi client-side extensions file. For more information, see

“Migrating the client-side extensions configuration” on page 975.

3. Configure the ibm-webservices-bnd.xmi server-side bindings file. For more information, see “Migrating

the server-side bindings file” on page 976.

4. Configure the ibm-webservicesclient-bnd.xmi client-side bindings file. For more information, see

“Migrating the client-side bindings file” on page 978.

Migrating the server-side extensions configuration

This article provides general information about migrating the Web services security server-side extensions

configuration for a Java 2 Platform, Enterprise Edition (J2EE) Version 1.3 application to a J2EE Version

1.4 application. The steps are based on typical scenarios, but the steps are not all-inclusive.

The following table lists the mappings for the top-level sections under the server-side Security

Extensions tab within an assembly tool from a J2EE Version 1.3 application to a J2EE Version 1.4

application.

 Table 37. The mapping of the configuration sections

J2EE Version 1.3 extensions configuration J2EE Version 1.4 extensions configuration

Request Receiver Service Configuration Details Request Consumer Service Configuration Details

Response Sender Service Configuration Details Response Generator Service Configuration Details

For information about the assembly tools that are available for WebSphere Application Server Version

6.0.x, see Assembly tools.

Consider the following steps to migrate the server-side extensions from a J2EE Version 1.3 application to

a J2EE Version 1.4 application. These steps are dependent upon your specific configuration.

v Import the J2EE Version 1.3 application into an assembly tool and identify all the message parts that

are required to be signed and encrypted. The message parts are listed in the Required Integrity and

Required Confidentiality sections under the Request Receiver Service Configuration Details section. In a

J2EE Version 1.4 application, these message parts map to the Message parts field of the Required

integrity and Required confidentiality dialogs windows within the assembly tool. To specify these

message parts within an assembly tool, complete the following steps in the Web Services editor:

1. Click the Extensions tab.

2. Navigate to the Required integrity subsection within the Request Consumer Service Configuration

Details section.

3. Specify each message part to be signed in the Message Parts field.

For example, if the message part in the J2EE Version 1.3 application is body, you need to specify body

in the Message parts keyword field. Similarly, on the Extensions tab, configure the message parts to be

encrypted using the Required Confidentiality dialog. Also, for all the message parts that are migrated

Chapter 14. Web services 973

from a J2EE Version 1.3 application, you must select http://www.ibm.com/websphere/webservices/
wssecurity/dialect-was in the Message parts dialect field and Required in the Usage type field.

v Optional: Configure the Required Security Token and Caller Part sections on the Extensions tab if the

authentication method of BasicAuth is configured under the Login Config section of the J2EE Version

1.3 application. When you configure the Required Security Token section, select Username in the name

field and Required in the Usage type field within the Required Security Token Dialog window. The

following table shows how the authentication method values for a J2EE Version 1.3 application map to

the token type values within the J2EE Version 1.4 application.

 Table 38. Authentication method to token type mappings

Login Config Authentication method values in the

J2EE Version 1.3 extensions configuration

Token type values in the J2EE Version 1.4 extensions

configuration

BasicAuth UsernameToken

Signature X509 certificate

LTPA LTPAToken

If the authentication method value is IDAssertion within the Login Config section, the token type that you

must specify in the J2EE Version 1.4 application depends upon the IDType value within the IDAssertion

section. The following table shows how the IDType values for J2EE Version 1.3 application map to the

token type values in the J2EE Version 1.4 application.

 Table 39. IDType values to token type mappings

IDType values in the J2EE Version 1.3 application

extensions configuration

Token type values in the J2EE Version 1.4 application

extensions configuration

X509Certificate X509 certificate

Username Username

v Select the appropriate token type in the Name field of the Call Part Dialog window based on the

previous two tables. Select the Username token type when you are configuring the caller part for the

basic authentication method. Configuring the other token types in the Caller part dialog is similar to

configuring token types in the Required Security Token dialog. If you need to map the IDAssertion

authentication method from a J2EE Version 1.3 application to a J2EE Version 1.4 application, select the

Use IDAssertion option and configure the ID assertion section of the Caller Part Dialog window. The

Trust Mode field under the IDAssertion section maps to the Trust method name field of the Trust

method property section in the Caller Part Dialog window. If Signature is selected for the Trust method,

specify the Required Integrity part that specifies the signature of the trusted intermediary certificate.

v Configure a nonce in the Version 6.1 Binding Configurations section if nonce is specified in the Add

Authentication Method dialog under Login Config within the J2EE Version 1.3 application extensions

configuration.

Important: Nonce is configured in the bindings for a J2EE Version 1.4 application and not in the

extensions.

To configure a nonce on the Binding Configurations tab, set the

com.ibm.wsspi.wssecurity.token.Username.verifyNonce property in the Token Consumer configuration

for the Username token.

v Configure the Add Timestamp section to migrate the time stamp information if the

<addReceivedTimestamp> element is configured in the J2EE Version 1.3 extensions. To migrate the

Response Sender Service Configuration Details section in the J2EE Version 1.3 extensions, identify all

of the message parts listed within the Integrity and Confidentiality sections. Configure these message

parts using the Integrity and Confidentiality dialogs under the Response Generator Service

Configuration details section. This configuration is similar to the configuration for Required Integrity and

Required Confidentiality, with the exception of the Order field in the Integrity Dialog. The value of this

974 Securing applications and their environment

Order field specifies the order in which the message parts specified in the Message Parts field are

digitally signed or encrypted in the Simple Object Access Protocol (SOAP) message. For example, the

extensions contain the following information:

– One integrity entry called int_part1 with a value of 1 in the Order field

– One confidentiality entry called conf_part1 with a value of 2 in the Order field

In this example, the message parts that are specified by the int_part1 integrity entry are signed before

the message parts specified by the conf_part1 confidentiality entry are encrypted. The same rule for the

order attribute applies for multiple integrity or confidentiality elements.

This set of steps describe the types of information that you need to migrate the Web services security

server-side extensions for a J2EE Version 1.3 application to a J2EE Version 1.4 application.

Migrate the client-side extensions for a J2EE Version 1.3 application to a J2EE Version 1.4 application. For

more information, see “Migrating the client-side extensions configuration.”

Migrating the client-side extensions configuration

This article provides general information about migrating the Web services security client-side extensions

configuration for a Java 2 Platform, Enterprise Edition (J2EE) Version 1.3 application to a J2EE Version

1.4 application. The steps are based on typical scenarios, but the steps are not all-inclusive.

The following table lists the mappings of the top-level sections under the client-side Security Extensions

tab for Web services security from a J2EE Version 1.3 application to a J2EE Version 1.4 application.

 Table 40. The mapping of the configuration sections

J2EE Version 1.3 security extensions for Web

services security

J2EE Version 1.4 extensions for Web services

security

Request Sender Configuration Request Generator Configuration

Response Receiver Configuration Response Consumer Configuration

Consider the following steps to migrate the client-side extensions configuration from a J2EE Version 1.3

application to a J2EE Version 1.4 application. These steps are dependent upon your specific configuration.

v Migrate the message parts that you need to sign or encrypt from the Integrity and Confidentiality

sections in the J2EE Version 1.3 application to the Integrity and Confidentiality sections on the WS

Extensions tab in an assembly tool for a J2EE Version 1.4 application.

v Configure the Security Token section under the Request Generator Configuration on the WS

Extensions tab if Login Config section is configured in the J2EE Version 1.3 extensions configuration.

When you configure the security token, select the token type in the Token type field that matches the

authentication method value of the Login Config in the J2EE Version 1.3 application. For example, if the

authentication method in the J2EE Version 1.3 extensions configuration is BasicAuth, then select

Username in the Token type field within the assembly tool. For more information on how the

authentication methods for Web services security map from a J2EE Version 1.3 application to a J2EE

Version 1.4 application, see Table 38 on page 974. If the authentication method is IDAssertion, there is

no action required because in a J2EE Version 1.4 application the identity assertion configuration is not

required in the client-side extensions configuration. In a J2EE Version 1.4 application, the identity

assertion configuration is specified in the server-side extensions configuration and in the client-side

bindings configuration.

v Migrate the Required Integrity and Required Confidentiality sections by configuring the Required

Integrity and Required Confidentiality sections in an assembly tool. Migrating the Response Receiver

Configuration section is similar to migrating the Request Receiver Service Configuration Details section

of the server-side extensions configuration. For more information, see “Migrating the server-side

extensions configuration” on page 973.

Chapter 14. Web services 975

v Migrate the nonce configuration in the Login Config section in a J2EE Version 1.3 extensions

configuration for Web services security to a J2EE Version 1.4 application.

Important: Nonce is not configured in a J2EE Version 1.4 extension file for Web services security.

Rather, it is configured in the binding file for Web services security.

To configure a nonce in the binding file, define the com.ibm.wsspi.wssecurity.token.username.addNonce

property in the token generator of the username token.

v Configure the Add Timestamp section under the Request Generator Configuration in the assembly tool if

the Add Created Time Stamp option is configured in the J2EE Version 1.3 extensions.

This set of steps describe the types of information that you need to migrate the client-side extensions

configuration for Web services security for a J2EE Version 1.3 application to a J2EE Version 1.4

application.

Migrate the server-side bindings configuration for a J2EE Version 1.3 application to a J2EE Version 1.4

application. For more information, see “Migrating the server-side bindings file.”

Migrating the server-side bindings file

This article provides general information about migrating the server-side bindings configuration for a Java

2 Platform, Enterprise Edition (J2EE) Version 1.3 application to a J2EE Version 1.4 application. The steps

are based on typical scenarios, but the steps are not all-inclusive.

The following table lists the mappings of the top-level sections under the server-side Binding

Configurations tab from a J2EE Version 1.3 application to a J2EE Version 1.4 application.

 Table 41. The mapping of the configuration sections

J2EE Version 1.3 Binding Configurations J2EE Version 1.4 Binding Configurations

Request Receiver Binding Configuration Details Request Consumer Service Binding Configuration Details

Response Sender Binding Configuration Details Response Generator Binding Configuration Details

Consider the following steps to migrate the server-side bindings from J2EE Version 1.3 to J2EE Version

1.4. These steps are dependent upon your specific configuration.

v Migrate the configuration information under the Request Receiver Binding Configuration Details section

of a J2EE Version 1.3 application.

1. Migrate any trust anchor information that is specified in the J2EE Version 1.3 application to J2EE

Version 1.4 using the Trust Anchor dialog.

2. Migrate the information under the certificate store list that is specified in the J2EE Version 1.3

application to J2EE Version 1.4 by configuring the Certificate Store List section in the J2EE Version

1.4 application.

3. Configure the key locator and token consumer information that is referenced from the Key

Information dialog window. The configuration of the key locator and the token consumer depends

upon the key information type. For example, if an X.509 certificate that is embedded in the

<wsse:Security> security header is used for digital signature, complete the following steps:

a. For configuring the key locator, specify the

com.ibm.wsspi.wssecurity.keyinfo.X509TokenKeyLocator class as the key locator class and do

not specify a key store.

b. For configuring the token consumer, select the

com.ibm.wsspi.wssecurity.token.509TokenConsumer class, specify X509 certificate token for

the value type Uniform Resource Identifier (URI), and specify system.wssecurity.X509BST in the

jaas.config.name field. Also, you must specify the certificate path settings (the trust anchor

reference and the certificate store reference) as part of the token consumer configuration.

976 Securing applications and their environment

4. Explicitly specify the key information type in the Key Information Dialog window. In a J2EE Version

1.3 application, the key information type, such as the security token reference and the key identifier,

is not explicitly specified. The key information type is implied by the configuration. In a J2EE Version

1.4 application, you must specify the key information type explicitly using the Key Information Dialog

when you have digital signature or encryption information in the binding file. Before you configure

the key information, make sure that you have configured the key locator and token consumer

information that is referenced from the Key Information dialog.

When you configure the key information for either digital signature or encryption, you need to specify

the correct key information type. The value of the key information type depends upon the type of

mechanism that is used to reference the security token that is used for digitally signing or

encrypting. The following information describes the Security token reference (or Direct reference)

and the Key identifier, which are the most common, recommended key information types that are

used for digitally signing and encrypting:

Security token reference (or Direct reference)

The security token is directly referenced using the Uniform Resource Identifiers (URIs). The

following <KeyInfo> element is generated in the Simple Object Access Protocol (SOAP)

message for this key information type:

<ds:KeyInfo>

 <wsse:SecurityTokenReference>

 <wsse:Reference URI="#mytoken" />

 </wsse:SecurityTokenReference>

</ds:KeyInfo>

Key identifier

The security token is referenced using an opaque value that uniquely identifies the token.

The algorithm that is used for generating the KeyIdentifier value depends upon the token

type. For example, a hash of the important elements of the security token is used for

generating the KeyIdentifier value. The following <KeyInfo> element is generated in the

SOAP message for this key information type:

<ds:KeyInfo xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

 <wsse:SecurityTokenReference>

 <wsse:KeyIdentifier ValueType="wsse:X509v3">/62wXO...</wsse:KeyIdentifier>

 </wsse:SecurityTokenReference>

</ds:KeyInfo>

In the Key Information Dialog window, specify the names of the key locator and the token consumer

that you configured previously. The Key name field is optional for the consumer side.

5. Migrate the information in the Signing Information section by configuring the Signing Information,

Part References, and Transforms sections.

– Specify the Signature method and Canonicalization method algorithms in the Signing Information

Dialog window.

– Specify the Digest method algorithm in the Part Reference Dialog window.

6. Migrate the information under the Encryption Information section. In the Encryption Information

Dialog window, select the name of the Key Information element that is configured for encryption, and

specify the RequiredConfidentiality part. Verify that the value for the selected

RequiredConfidentiality part is the same name as the Required Confidentiality part that is

configured in the extension file.

The Login Mapping section in the J2EE Version 1.3 application maps to the Token Consumer

configuration for the type of token that is specified by the authentication method. For example, to

migrate a Login Mappings configuration that uses the BasicAuth authentication method, configure a

token consumer for the username token. To configure a token consumer for a username token,

complete the following steps:

a. Select the com.ibm.wsspi.wssecurity.UsernameTokenConsumer token consumer class.

b. Specify the name of the Required Security Token configuration from the Extensions within in the

Security Token field.

Chapter 14. Web services 977

c. Select Username Token for value type.

d. Specify the system.wssecurity.UsernameToken value in the jaas.config.name field.

v Migrate the configuration information in the Response Sender Binding Configuration Details section of

the J2EE Version 1.3 bindings file to the Response Generator Binding Configuration Details section of

the J2EE Version 1.4 application. Configuring the Response Generator section is very similar to

configuring the Request Consumer section.

1. Migrate the information from the Key Locators section by using the Key Locator Dialog window in an

assembly tool.

2. Configure a token generator, which is referenced in the Key Information Dialog window. You must

configure a token generator for every security token that is generated in the SOAP message. If the

token generator is for an X.509 certificate that is used for digital signature or encryption, complete

the following steps:

a. For configuring the key locator, specify the

com.ibm.wsspi.wssecurity.keyinfo.X509TokenKeyLocator class as the key locator class and do

not specify a key store.

b. For configuring the token generator, select the com.ibm.wsspi.wssecurity.X509TokenGenerator

class and specify X509 certificate token for the value type Uniform Resource Identifier (URI).

The key store information that is specified for the token generator is the same information that is

used for configuring the key locator. Therefore, the keystore information from the Key Locators

configuration in a J2EE Version 1.3 application is used to configure the key locator and the

token generator in a J2EE Version 1.4 application.

c. In the Token Generator Dialog window, specify the key store information that is required by the

callback handler to obtain the key information that is required for generating the token.

d. For the callback handler, select the

com.ibm.wsspi.wssecurity.auth.callback.X509CallbackHandler class.

3. Specify the names of the key locator and the token generator in the Key Information Dialog window

that you configured previously. The Key name is required for the generator side. The key that is

specified in the Key Information Dialog window must exist in the list of keys that is specified in the

key locator configuration. Also, migrating the Signing Information and the Encryption Information

configurations is similar to migrating the Signing Information and the Encryption Information

configurations for the Request Receiver Binding Configuration section. Configuring the key

information for the response generator section is similar to configuring the key information for the

request consumer section.

This set of steps describse the types of information that you need to migrate the server-side bindings

configuration for a J2EE Version 1.3 application to a J2EE Version 1.4 application.

Migrate the client-side binding configuration for a J2EE Version 1.3 application to a J2EE Version 1.4

application. For more information, see “Migrating the client-side bindings file.”

Migrating the client-side bindings file

This article provides general information about migrating the Web services security client-side binding

configuration for a Java 2 Platform, Enterprise Edition Version 1.3 application to a J2EE Version 1.4

application. The steps are based on typical scenarios, but the steps are not all-inclusive.

The following table lists the mapping of the top-level sections under the client-side Port Bindings tab

within a J2EE Version 1.3 application to a J2EE Version 1.4 application.

 Table 42. The mapping of the configuration sections

J2EE Version 1.3 binding configuration for Web

services security

J2EE Version 1.4 binding configuration for Web

services security

Security Request Sender Binding Configuration Security Request Generator Binding Configuration

978 Securing applications and their environment

Table 42. The mapping of the configuration sections (continued)

J2EE Version 1.3 binding configuration for Web

services security

J2EE Version 1.4 binding configuration for Web

services security

Security Response Receiver Binding Configuration Security Response Consumer Binding Configuration

Consider the following steps to migrate the client-side binding configuration from a J2EE Version 1.3

application to a J2EE Version 1.4 application. These steps are dependent upon your specific configuration.

v Migrate the information in the Security Request Sender Binding Configuration section in a J2EE Version

1.3 application to a J2EE Version 1.4 application. The migrations process for the Security Request

Sender Binding Configuration section is similar to the process for the Response Sender Binding

Configuration Details section in the server-side binding configuration. For more information, see

“Migrating the server-side bindings file” on page 976.

v Migrate the information in the Key Locators, Signing Information, and the Encryption Information

sections of the J2EE Version 1.3 application to a J2EE Version 1.4 application. The migration process

for these elements on the client side is similar to migration process on the server side. For more

information, see “Migrating the server-side bindings file” on page 976.

v Migrate the information in the Login Bindings section in a J2EE Version 1.3 application to a J2EE

Version 1.4 application. The migration of the Login Bindings section depends upon the value of the

authentication method. If the authentication method is BasicAuth or IDAssertion, configure a token

generator for the username token. If the authentication method is LTPA, select the

com.ibm.wsspi.wssecurity.token.LTPATokenGenerator class as the token generator class. If the

client-side bindings for the Web service uses IDAssertion, complete the following steps:

1. Configure a token generator for the authentication token of the original client.

2. Define the com.ibm.wsspi.wssecurity.token.IDAssertion.isUsed property and set its value to true in

the Token Generator Dialog window within an assembly tool. If the original client is using a

username token for authentication and if the target Web service is using BasicAuth for

authentication, configure the following token generators in the client-side binding file:

– The username token of the original client. You must set the

com.ibm.wsspi.wssecurity.token.IDAssertion.isUsed property in the token generator of the

original client.

– The username token of the intermediary Web service.

v Migrate the Security Response Receiver Binding Configuration section from a J2EE Version 1.3

application to a J2EE Version 1.4 application. Migrating the Security Response Receiver Binding

Configuration section is similar to migrating the Request Receiver Binding Configuration Details section

of the server-side bindings configuration. Migrate this information under the Security Response

Consumer Binding Configuration section. For more information, see “Migrating the server-side bindings

file” on page 976.

To configure a nonce in the binding file, define the com.ibm.wsspi.wssecurity.token.username.addNonce

property in the token generator of the username token.

This set of steps describe the types of information that you need to migrate the Web services security

client-side bindings configuration for a J2EE Version 1.3 application to a J2EE Version 1.4 application.

Verify that you have migrated both the server-side and the client-side extension and binding configurations

for a J2EE Version 1.3 application to a J2EE Version 1.3 application. For more information, see “Migrating

Version 5.x applications with Web services security to Version 6.1 applications” on page 972.

View Web services client deployment descriptor

Use this page to view your client deployment descriptor.

Before you begin this task, the Web services application must be installed.

Chapter 14. Web services 979

By completing this task, you can gather information that enables your to maintain or configure binding

information. After the Web services application is installed, you can view the Web services deployment

descriptors.

To view this administrative console page, complete the following steps:

1. Click Applications > Enterprise applications > application_name.

2. Under Related Items, click EJB modules or Web modules > URI_file_name.

3. Under Additional properties, click View Web services client deployment descriptor extension.

Application-level and server-level bindings are the two levels of bindings that WebSphere Application

Server offers. The information in the following implementation descriptions indicates how to configure your

application-level bindings. If the Web server is acting as a client, the default bindings are used. To

configure the server-level bindings, which are the defaults, complete the following steps:

1. Click Servers > Application servers > server_name.

2. Under Security, click Web Services: Default bindings for Web services security.

If you are using any of the following configurations, verify that the deployment descriptor is configured

properly:

v Request signing

v Request encryption

v BasicAuth authentication

v Identity (ID) assertion authentication

v Identity (ID) assertion authentication with the signature TrustMode

v Response digital signature verification

v Response decryption

Request signing

If the integrity constraints (digital signature) are specified, verify that you configured the signing information

in the binding files.

To configure the signing parameters, complete the following steps:

1. Click Applications > Enterprise applications > application_name.

2. Under Related Items, click Web modules > URI_file_name

3. Under Additional properties, click Web Services: Client security bindings.

4. In the Response receiver binding column, click Edit > Signing information > New.

To configure the key locators, complete the following steps:

1. Click Servers > Application servers > server_name.

2. Under Additional properties, click Web Services: Default bindings for Web services security > Key

locators.

Request encryption

If the confidentiality constraints (encryption) are specified, verify that you configured the encryption

information in the binding files.

To configure the encryption parameters, complete the following steps:

1. Click Applications > Enterprise applications > application_name.

2. Under Related Items, click EJB modules or Web modules > URI_file_name > Web services: Client

security bindings .

3. In the Response receiver binding column, click Edit > Encryption Information > New.

980 Securing applications and their environment

To configure the key locators, complete the following steps:

1. Click Servers > Application servers > server_name.

2. Under Additional properties, click Web Services: Default bindings for Web services security > Key

locators.

BasicAuth authentication

If BasicAuth authentication is configured as the required security token, specify the callback handler in the

binding file to collect the basic authentication data. The following list contains the CallBack support

implementations:

com.ibm.wsspi.wssecurity.auth.callback.GuiPromptCallbackHandler

This implementation prompts for basic authentication information, the user name and password, in

an interface.

com.ibm.wsspi.wssecurity.auth.callback.NonPromptCallbackHandler

This implementation reads the basic authentication information from the binding file.

com.ibm.wsspi.wssecurity.auth.callback.StdPromptCallbackHandler

This implementation prompts for a user name and password using the standard in (stdin) prompt.

To configure the login binding information, complete the following steps:

1. Click Applications > Enterprise applications > application_name.

2. Under Related items, click EJB modules or Web modules > URI_file_name > Web services: Client

security bindings.

3. Under Request sender bindings, click Edit > Login binding.

Identity (ID) Assertion authentication with BasicAuth TrustMode

Configure a login binding in the bindings file with a

com.ibm.wsspi.wssecurity.auth.callback.NonPromptCallbackHandler implementation. Specify a BasicAuth

user name and password that a trusted ID evaluator on a downstream server trusts.

To configure the login binding information, complete the following steps:

1. Click Applications > Enterprise applications > application_name.

2. Under Related items, click EJB modules or Web modules > URI_file_name > Web services: Client

security bindings.

3. Under Request sender bindings, click Edit > Login binding.

Identity (ID) Assertion authentication with the Signature TrustMode

Configure the signing information in the bindings file with a signing key pointing to a key locator. The key

locator contains the X.509 certificate that is trusted by the downstream server.

To configure ID assertion, complete the following steps:

1. Click Servers > Application servers > server_name.

2. Under Additional properties, click Web services: Default bindings for Web services security >

Login mappings > IDAssertion.

To configure the login binding information, complete the following steps:

1. Click Applications > Enterprise applications > application_name.

2. Under Related items, click EJB modules or Web modules > URI_file_name > Web services: Client

security bindings.

3. Under Request sender bindings, click Edit > Login binding.

Chapter 14. Web services 981

Response digital signature verification

If the integrity constraints, which require a signature, are defined, verify that you configured the signing

information in the binding files.

To configure the signing parameters, complete the following steps:

1. Click Applications > Enterprise applications > application_name.

2. Under Related Items, click EJB modules or Web modules > URI_file_name > Web services: Client

security bindings.

3. In the Response receiver binding column, click Edit > Signing information > New.

To configure the trust anchors, complete the following steps:

1. Click Servers > Application servers > server_name.

2. Under Additional properties, click Web Services: Default bindings for Web services security >

Trust anchors > New.

To configure the collection certificate store, complete the following steps:

1. Click Servers > Application servers > server_name.

2. Under Additional properties, click Web Services: Default bindings for Web services security >

Collection certificate store > New.

Response decryption

If the confidentiality constraints (encryption) are specified, verify that you defined the encryption

information.

To configure the encryption information, complete the following steps:

1. Click Applications > Enterprise applications > application_name.

2. Click Manage modules >URI_file_name > Web services: Client security bindings.

3. In the Response receiver binding column, click Edit > Encryption information > New.

To configure the key locators, complete the following steps:

1. Click Servers > Application servers > server_name.

2. Under Additional properties, click Web Services: Default bindings for Web services security > Key

locators.

View Web services server deployment descriptor

Use this page to view your server deployment descriptor settings.

Before you begin this task, the Web services application must be installed.

By completing this task, you can gather information that enables you to maintain or configure binding

information. After the Web services application is installed, you can view the Web services deployment

descriptors.

To view this administrative console page, complete the following steps:

1. Click Applications > Enterprise applications > application_name.

2. Under Related items, click EJB modules or Web modules > URI_file_name > View Web services

server deployment descriptor.

WebSphere Application Server has two levels of bindings: application-level and server-level. The

information in the following implementation descriptions indicate how to configure your application-level

bindings. To configure the server-level bindings, which are the defaults, complete the following steps:

982 Securing applications and their environment

1. Click Servers > Application servers > server_name.

2. Under Security, click Web services: Default bindings for Web services security.
v Request digital signature verification

v Request decryption

v Basic authentication

v Identity (ID) assertion authentication

v Identity (ID) assertion authentication with the signature TrustMode

v Response signing

v Response encryption

Request digital signature verification

If the integrity constraints, which require a signature, are defined, verify that you configured the signing

information in the binding files.

To configure the signing parameters, complete the following steps:

1. Click Applications > Enterprise applications > application_name.

2. Under Related items, click EJB modules or Web modules > URI_file_name > Web services: Server

security bindings.

3. Under Request consumer (receiver) binding, click Edit custom > Signing information.

To configure the trust anchor, complete the following steps:

1. Click Servers > Application servers > server_name.

2. Under Security, click Web services: Default bindings for Web services security.

3. Under Additional properties, click Trust anchors.

To configure the collection certificate store, complete the following steps:

1. Click Servers > Application servers > server_name.

2. Under Security, click Web services: Default bindings for Web services security.

3. Under Additional properties, click Collection certificate store.

To configure the key locators, complete the following steps:

1. Click Servers > Application servers > server_name.

2. Under Security, click Web Services: Default bindings for Web services security.

3. Under Additional properties, click Key locators.

Request decryption

If the confidentiality constraints (encryption) are specified, verify that the encryption information is defined.

To configure the encryption information parameters, complete the following steps:

1. Click Enterprise applications > application_name.

2. Under Related items, click EJB modules or Web modules > URI_name.

3. Under Additional properties, click Web services: Server security bindings.

4. Under Request consumer (receiver) binding, click Edit custom > Encryption information.

To configure the key locators, complete the following steps:

1. Click Servers > Application servers > server_name.

2. Under Security, click Web Services: Default bindings for Web services security.

3. Under Additional properties, click Key locators.

Chapter 14. Web services 983

Basic authentication

If BasicAuth authentication is configured as the required security token, specify the callback handler in the

binding file to collect the basic authentication data. The following list contains callback support

implementations:

com.ibm.wsspi.wssecurity.auth.callback.GuiPromptCallbackHandler

The implementation prompts for BasicAuth information (user name and password) in an interface

panel.

com.ibm.wsspi.wssecurity.auth.callback.NonPromptCallbackHandler

This implementation reads the BasicAuth information from the binding file.

com.ibm.wsspi.wssecurity.auth.callback.StdPromptCallbackHandler

This implementation prompts for a user name and password using the standard in (stdin) prompt.

To configure the login mapping information, complete the following steps:

1. Click Server > Application Servers > server_name.

2. Under Security, click Web Services: Default bindings for Web services security.

3. Under Additional properties, click Login mappings.

Identity (ID) assertion authentication with the BasicAuth TrustMode

Configure a login binding in the bindings file with a

com.ibm.wsspi.wssecurity.auth.callback.NonPromptCallbackHandler implementation. Specify a user name

and password for basic authentication that a TrustedIDEvaluator on a downstream server trusts.

To configure the login mapping information, complete the following steps:

1. Click Server > Application servers > server_name.

2. Under Security, click Web services: Default bindings for Web services security.

3. Under Additional properties, click Login mappings.

Identity (ID) assertion authentication with the signature TrustMode

Configure the signing information in the bindings file with a signing key that points to a key locator. The

key locator contains the X.509 certificate that is trusted by the downstream server.

To configure the login mapping information, complete the following steps:

1. Click Server > Application servers > server_name.

2. Under Security, click Web services: Default bindings for Web services security.

3. Under Additional properties, click Login mappings.

The Java Authentication and Authorization Service (JAAS) uses WSLogin as the name of the login

configuration. To configure JAAS, complete the following steps:

1. Click Security > Secure administration, applications, and infrastructure.

2. Under Authentication, click Java Authentication and Authorization Service > Application logins.

The value of the <TrustedIDEvaluatorRef> tag in the binding must match the value of the

<TrustedIDEvaluator> name.

To configure the trusted ID evaluators, complete the following steps:

1. Click Servers > Application servers > server_name.

2. Under Security, click Web services: Default bindings for Web services security.

3. Under Additional properties, click Trusted ID evaluators.

984 Securing applications and their environment

Response signing

If the integrity constraints (digital signature) are defined, verify that you have the signing information

configured in the binding files.

To specify the signing information, complete the following steps:

1. Click Applications > Enterprise applications > application_name.

2. Under Related items, click EJB modules or Web modules > URI_file_name > Web services: Server

security bindings.

3. In the Request receiver binding column, click Edit > Signing information.

To configure the key locators, complete the following steps:

1. Click Servers > Application servers > server_name.

2. Under Security, click Web services: Default bindings for Web services security.

3. Under Additional properties, click Key locators.

Response encryption

If the confidentiality constraints (encryption) are specified, verify that the encryption information is defined.

To specify the encryption information, complete the following steps:

1. Click Enterprise applications > application_name.

2. Under Related items, click EJB modules or Web modules.

3. Under Additional properties, click Web services: Server security bindings.

4. Under Request consumer (receiver) binding, click Edit custom > Encryption information.

To configure the key locators, complete the following steps:

1. Click Servers > Application servers > server_name.

2. Under Security, click Web services: Default bindings for Web services security.

3. Under Additional properties, click Key locators.

Default implementations of the Web services security service provider

programming interfaces

This information describes the default implementations of the service provider interfaces (SPI) for Web

services security within WebSphere Application Server Version 6 and later.

The default implementations of the service provider interfaces for WebSphere Application Server Version

5.x are not described in this document. Instead, see “Securing Web services for Version 5.x applications

based on WS-Security” on page 1230 for the Version 5.x implementations that are deprecated in Version

6.0.x and later.

com.ibm.wsspi.wssecurity.token.X509TokenGenerator

This class implements the com.ibm.wsspi.wssecurity.token.TokenGeneratorComponent interface. It

is responsible for creating the X.509 token object from the X.509 certificate, which is returned by

the com.ibm.wsspi.wssecurity.auth.callback.{X509,PKCS7,PkiPath}CallbackHandler interface.

Encode the token using the base 64 format and insert its XML representation into the Simple

Object Access Protocol (SOAP) message, if necessary.

com.ibm.wsspi.wssecurity.auth.callback.X509CallbackHandler

This class implements the javax.security.auth.callback.CallbackHandler interface and it retrieves

the X.509 certificate from the keystore file.

Chapter 14. Web services 985

com.ibm.wsspi.wssecurity.token.UsernameTokenGenerator

This class implements the com.ibm.wsspi.wssecurity.token.TokenGeneratorComponent interface. It

is responsible for creating the username token object from user name and password that is

returned by a javax.security.auth.callback.CallbackHandler implementation such as the following

callback handlers:

 com.ibm.wsspi.wssecurity.auth.callback.{GUIPrompt,NonPrompt,StdinPrompt}CallbackHandler

 It also inserts the XML representation of the token into the SOAP message, if necessary.

com.ibm.wsspi.wssecurity.keyinfo.KeyStoreKeyLocator

This class implements the com.ibm.wsspi.wssecurity.keyinfo.KeyLocator interface and it retrieves

the keys from the keystore files for digital signature and encryption.

com.ibm.wsspi.wssecurity.token.X509TokenConsumer

This class implements the com.ibm.wsspi.wssecurity.token.TokenConsumerComponent interface

and processes the X.509 token from the binary security token. This class decodes the Base64

encryption within the X.509 token and then invokes the system.wssecurity.X509BST Java

Authentication and Authorization Service (JAAS) Login Configuration with the

com.ibm.wsspi.wssecurity.auth.module.X509LoginModule login module to validate the X.509 token.

An object of the com.ibm.wsspi.wssecurity.auth.token.X509Token is created for the validated X.509

token and stored in JAAS Subject.

com.ibm.wsspi.wssecurity.token.IDAssertionUsernameTokenConsumer

This class implements com.ibm.wsspi.wssecurity.token.TokenConsumerComponent interface and

processes the username token for identity assertion (IDAssertion), which does not have a

password element. This interface invokes the system.wssecurity.IDAssertionUsernameToken JAAS

login configuration with the

com.ibm.wsspi.wssecurity.auth.module.IDAssertionUsernameLoginModule login module to validate

the IDAssertion user name token. An object of the

com.ibm.wsspi.wssecurity.auth.token.UsernameToken class is created for the validated username

token and stored in the JAAS Subject.

com.ibm.wsspi.wssecurity.auth.module.IDAssertionUsernameLoginModule

This class implements the javax.security.auth.spi.LoginModule interface and checks whether the

username value is not empty. The login module assumes that the UsernameToken is valid if the

username value is not empty.

com.ibm.wsspi.wssecurity.token.LTPATokenGenerator

This class implements the com.ibm.wsspi.wssecurity.token.TokenGeneratorComponent interface

and is responsible for Base 64 encoding the LTPA token object obtained from the

com.ibm.wsspi.wssecurity.auth.callback.LTPATokenCallbackHandler callback handler. The object is

inserted into the Web services security header within the SOAP message, if necessary.

com.ibm.wsspi.wssecurity.token.LTPATokenConsumer

This class implements the com.ibm.wsspi.wssecurity.token.TokenConsumerComponent interface,

processes the LTPA token from the binary security token, and decodes the Base64 encoding

within the LTPA token. An object of the com.ibm.wsspi.wssecurity.auth.token.LTPAToken class is

created for the validated LTPA token and stored in the JAAS Subject.

com.ibm.wsspi.wssecurity.auth.module.X509LoginModule

This class implements the javax.security.auth.spi.LoginModule interface and validates the X.509

Certificate based on the trust anchor and the collection certification store configuration.

com.ibm.wsspi.wssecurity.token.UsernameTokenConsumer

This class implements the com.ibm.wsspi.wssecurity.token.TokenConsumerComponent interface,

processes the username token, extracts the user name and password, and then invokes the

system.wssecurity.UsernameToken JAAS login configuration using the

com.ibm.wsspi.wssecurity.auth.module.UsernameLoginModule login module to validate the user

name and password. An object of the com.ibm.wsspi.wssecurity.auth.token.UsernameToken class

is created for the validated username token and stored in the JAAS Subject.

986 Securing applications and their environment

com.ibm.wsspi.wssecurity.keyinfo.X509TokenKeyLocator

This class implements the com.ibm.wsspi.wssecurity.keyinfo.KeyLocator interface and it is used to

retrieve a public key from a X.509 certificate. The X.509 certificate is stored in the X.509 token

(com.ibm.wsspi.wssecurity.auth.token.X509Token) in the JAAS Subject. The X.509 token is

created by the X.509 Token Consumer (com.ibm.wsspi.wssecurity.tokenX509TokenConsumer).

com.ibm.wsspi.wssecurity.keyinfo.SignerCertKeyLocator

This class implements the com.ibm.wsspi.wssecurity.keyinfo.KeyLocator interface, which is used to

retrieve a public key from the X.509 certificate of the request signer and encrypt the response. You

can use this key locator in the response generator binding configuration only.

Important: This implementation assumes that only one signer certificate is used in the request.

com.ibm.wsspi.wssecurity.auth.token.UsernameToken

This implementation extends the com.ibm.wsspi.wssecurity.auth.token.WSSToken abstract class to

represent the username token.

com.ibm.wsspi.wssecurity.auth.token.X509Token

This implementation extends the com.ibm.wsspi.wssecurity.auth.token.WSSToken abstract class to

represent the X.509 binary security token (X.509 certificate).

com.ibm.wsspi.wssecurity.auth.token.LTPAToken

This implementation extends the com.ibm.wsspi.wssecurity.auth.token.WSSToken abstract class as

a wrapper to the LTPA token that is extracted from the binary security token.

com.ibm.wsspi.wssecurity.auth.callback.PKCS7CallbackHandler

This class implements the javax.security.auth.callback.CallbackHandler interface and is responsible

for creating a certificate and binary data with or without a certificate revocation list (CRL) using the

PKCS#7 encoding. The certificate and the binary data is passed back to the

com.ibm.wsspi.wssecurity.token.X509TokenGenerator implementation through the

com.ibm.wsspi.wssecurity.auth.callback.X509BSCallback callback handler.

com.ibm.wsspi.wssecurity.auth.callback.PkiPathCallbackHandler

This class implements the javax.security.auth.callback.CallbackHandler interface and it is

responsible for creating a certificate and binary data without a CRL using the PkiPath encoding.

The certificate and binary data is passed back to the

com.ibm.wsspi.wssecurity.token.X509TokenGenerator implementation through the

com.ibm.wsspi.wssecurity.auth.callback.X509BSCallback callback handler.

com.ibm.wsspi.wssecurity.auth.callback.X509CallbackHandler

This class implements the javax.security.auth.callback.CallbackHandler interface and it is

responsible for creating a certificate from the keystore file. The X.509 token certificate is passed

back to the com.ibm.wsspi.wssecurity.token.X509TokenGenerator implementation through the

com.ibm.wsspi.wssecurity.auth.callback.X509BSCallback callback handler.

com.ibm.wsspi.wssecurity.auth.callback.LTPATokenCallbackHandler

This implementation generates a Lightweight Third Party Authentication (LTPA) token in the Web

services security header as a binary security token. If basic authentication data is defined in the

application binding file, it is used to perform a login, to extract the LTPA token from the

WebSphere Application Server credentials, and to insert the token in the Web services security

header. Otherwise, it extracts the LTPA security token from the invocation credentials (run as

identity) and inserts the token in the Web services security header.

com.ibm.wsspi.wssecurity.auth.callback.NonPromptCallbackHandler

This implementation reads the basic authentication data from the application binding file. You

might use this implementation on the server side to generate a username token.

com.ibm.wsspi.wssecurity.auth.callback.GUIPromptCallbackHandler

This implementation presents you with a login prompt to gather the basic authentication data. Use

this implementation on the client side only.

Chapter 14. Web services 987

com.ibm.wsspi.wssecurity.auth.callback.StdinPromptCallbackHandler

This implementation collects the basic authentication data using a standard in (stdin) prompt. Use

this implementation on the client side only.

com.ibm.wsspi.wssecurity.id.TrustedIDEvaluator

This interface is used to evaluate the level of trust for identity assertion. The default

implementation is com.ibm.wsspi.wssecurity.id.TrustedIDEvaluatorImpl, which enables you to

define a list of trusted identities.

com.ibm.wsspi.wssecurity.id.TrustedIDEvaluatorImpl

This default implementation enables you to define a list of trusted identities for identity assertion.

com.ibm.wsspi.wssecurity.id.TrustedIDEvaluatorException

This exception class is used by an implementation of the

com.ibm.wsspi.wssecurity.id.TrustedIDEvaluator to communicate the exception and errors to the

Web services security run time.

Default configuration

WebSphere Application Server Version 6 and later provide a variety of sample configurations that you can

configure through the administrative console. The configurations that you specify are reflected on the cell

or server level.

Do not use these configurations in a production environment as they are for sample and testing purposes

only. To make modifications to these sample configurations, it is recommended that you use the

administrative console provided by WebSphere Application Server.

For a Web services security-enabled application, you must correctly configure a deployment descriptor and

a binding. In WebSphere Application Server Version 6 and later, one set of default bindings is shared by

the applications to make application deployment easier. The default binding information for server level can

be overridden by the binding information on the application level. The Application Server searches for

binding information for an application on the application level before searching the server level.

This article contains information on the sample default bindings, keystores, key locators, collection

certificate store, trust anchors, and trusted ID evaluators.

Default generator binding

WebSphere Application Server Version 6 and later provide a sample set of default generator binding. The

default generator binding contain both signing information and encryption information.

The sample signing information configuration is called gen_signinfo and contains the following

configurations:

v Uses the following algorithms for the gen_signinfo configuration:

– Signature method: http://www.w3.org/2000/09/xmldsig#rsa-sha1

– Canonicalization method: http://www.w3.org/2001/10/xml-exc-c14n#

v References the gen_signkeyinfo signing key information. The following information pertains to the

gen_signkeyinfo configuration:

– Contains a part reference configuration that is called gen_signpart. The part reference is not used in

default binding. The signing information applies to all of the Integrity or Required Integrity elements

within the deployment descriptors and the information is used for naming purposes only. The

following information pertains to the gen_signpart configuration:

- Uses the transform configuration called transform1. The following transforms are configured for

the default signing information:

v Uses the http://www.w3.org/2001/10/xml-exc-c14n# algorithm

v Uses the http://www.w3.org/2000/09/xmldsig#sha1 digest method

988 Securing applications and their environment

– Uses the security token reference, which is the configured default key information.

– Uses the SampleGeneratorSignatureKeyStoreKeyLocator key locator. For more information on this

key locator, see “Sample key locators” on page 991.

– Uses the gen_signtgen token generator, which contains the following configuration:

- Contains the X.509 token generator, which generates the X.509 token of the signer.

- Contains the gen_signtgen_vtype value type URI.

- Contains the http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-
1.0#X509 value type local name value.

– Uses X.509 Callback Handler. The callback handler calls the ${USER_INSTALL_ROOT}/etc/ws-
security/samples/dsig-sender.ks keystore.

- The keystore password is client.

- The alias name of the trusted certificate is soapca.

- The alias name of the personal certificate is soaprequester.

- The key password client issued by intermediary certificate authority Int CA2, which is in turn

issued by soapca.

The sample encryption information configuration is called gen_encinfo and contains the following

configurations:

v Uses the following algorithms for the gen_encinfo configuration:

– Data encryption method: http://www.w3.org/2001/04/xmlenc#tripledes-cbc

– Key encryption method: http://www.w3.org/2001/04/xmlenc#rsa-1_5

v References the gen_enckeyinfo encryption key information. The following information pertains to the

gen_enckeyinfo configuration:

– Uses the key identifier as the default key information.

– Contains a reference to the SampleGeneratorEncryptionKeyStoreKeyLocator key locator. For more

information on this key locator, see “Sample key locators” on page 991.

– Uses the gen_signtgen token generator, which has the following configuration:

- Contains the X.509 token generator, which generates the X.509 token of the signer.

- Contains the gen_enctgen_vtype value type URI.

- Contains the http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-
1.0#X509 value type local name value.

– Uses X.509 Callback Handler. The callback handler calls the ${USER_INSTALL_ROOT}/etc/ws-
security/samples/enc-sender.jceks keystore.

- The keystore password is storepass.

- The secret key CN=Group1 has an alias name of Group1 and a key password of keypass.

- The public key CN=Bob, O=IBM, C=US has an alias name of bob and a key password of keypass.

- The private key CN=Alice, O=IBM, C=US has an alias name of alice and a key password of

keypass.

Default consumer binding

WebSphere Application Server Version 6 and later provide a sample set of default consumer binding. The

default consumer binding contain both signing information and encryption information.

The sample signing information configuration is called con_signinfo and contains the following

configurations:

v Uses the following algorithms for the con_signinfo configuration:

– Signature method: http://www.w3.org/2000/09/xmldsig#rsa-sha1

– Canonicalization method: http://www.w3.org/2001/10/xml-exc-c14n#

Chapter 14. Web services 989

v Uses the con_signkeyinfo signing key information reference. The following information pertains to the

con_signkeyinfo configuration:

– Contains a part reference configuration that is called con_signpart. The part reference is not used in

default binding. The signing information applies to all of the Integrity or RequiredIntegrity elements

within the deployment descriptors and the information is used for naming purposes only. The

following information pertains to the con_signpart configuration:

- Uses the transform configuration called reqint_body_transform1. The following transforms are

configured for the default signing information:

v Uses the http://www.w3.org/2001/10/xml-exc-c14n# algorithm.

v Uses the http://www.w3.org/2000/09/xmldsig#sha1 digest method.

– Uses the security token reference, which is the configured default key information.

– Uses the SampleX509TokenKeyLocator key locator. For more information on this key locator, see

“Sample key locators” on page 991.

– References the con_signtcon token consumer configuration. The following information pertains to the

con_signtcon configuration:

- Uses the X.509 Token Consumer, which is configured as the consumer for the default signing

information.

- Contains the signtconsumer_vtype value type URI.

- Contains the http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-
1.0#X509 value type local name value.

– Contains a JAAS configuration called system.wssecurity.X509BST that references the following

information:

- Trust anchor: SampleClientTrustAnchor

- Collection certificate store: SampleCollectionCertStore

The encryption information configuration is called con_encinfo and contains the following configurations:

v Uses the following algorithms for the con_encinfo configuration:

– Data encryption method: http://www.w3.org/2001/04/xmlenc#tripledes-cbc

– Key encryption method: http://www.w3.org/2001/04/xmlenc#rsa-1_5

v References the con_enckeyinfo encryption key information. This key actually decrypts the message.

The following information pertains to the con_enckeyinfo configuration:

– Uses the key identifier, which is configured as the key information for the default encryption

information.

– Contains a reference to the SampleConsumerEncryptionKeyStoreKeyLocator key locator. For more

information on this key locator, see “Sample key locators” on page 991.

– References the con_enctcon token consumer configuration. The following information pertains to the

con_enctcon configuration:

- Uses the X.509 token consumer, which is configured for the default encryption information.

- Contains the enctconsumer_vtype value type URI.

- Contains the http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-
1.0#X509 value type local name value.

– Contains a JAAS configuration called system.wssecurity.X509BST.

Sample keystore configurations

Windows

WebSphere Application Server provides the following keystores. You can work with these

keystores outside of the Application Server by using the iKeyman utility or the key tool.

Windows

The iKeyman utility is located in the following directory: app_server_root/bin/ikeyman

990 Securing applications and their environment

The iKeyman utility is located in the following directory: app_server_root\bin\ikeyman.sh

Windows

The key tool is located in the following directory: app_server_root/java/jre/bin/keytool

The key tool is located in the following directory: app_server_root\java\jre\bin\keytool.sh

The following sample keystores are for testing purposes only; do not use these keystores in a production

environment:

v ${USER_INSTALL_ROOT}/etc/ws-security/samples/dsig-sender.ks

– The keystore format is JKS.

– The keystore password is client.

– The trusted certificate has a soapca alias name.

– The personal certificate has a soaprequester alias name and a client key password that is issued

by the Int CA2 intermediary certificate authority, which is, in turn, issued by soapca.

v ${USER_INSTALL_ROOT}/etc/ws-security/samples/dsig-receiver.ks

– The keystore format is JKS.

– The keystore password is server.

– The trusted certificate has a soapca alias name.

– The personal certificate has a soapprovider alias name and a server key password that is issued by

the Int CA2 intermediary certificate authority, which is, in turn, issued by soapca.

v ${USER_INSTALL_ROOT}/etc/ws-security/samples/enc-sender.jceks

– The keystore format is JCEKS.

– The keystore password is storepass.

– The CN=Group1 DES secret key has a Group1 alias name and a keypass key password.

– The CN=Bob, O=IBM, C=US public key has a bob alias name and a keypass key password.

– The CN=Alice, O=IBM, C=US private key has a alice alias name and a keypass key password.

v ${USER_INSTALL_ROOT}/etc/ws-security/samples/enc-receiver.jceks

– The keystore format is JCEKS.

– The keystore password is storepass.

– The CN=Group1 DES secret key has a Group1 alias name and a keypass key password.

– The CN=Bob, O=IBM, C=US private key has a bob alias name and a keypass key password.

– The CN=Alice, O=IBM, C=US public key has a alice alias name and a keypass key password.

v ${USER_INSTALL_ROOT}/etc/ws-security/samples/intca2.cer

– The intermediary certificate is signed by soapca and it signs both the soaprequester and the

soapprovider.

Sample key locators

Key locators are used to locate the key for digital signature, encryption, and decryption. For information on

how to modify these sample key locator configurations, see the following articles:

v “Configuring the key locator for the generator binding on the application level” on page 1121

v “Configuring the key locator for the consumer binding on the application level” on page 1176

v “Configuring the key locator on the server or cell level” on page 1204

Version 5.x application

SampleClientSignerKey

This key locator is used by the request sender for a Version 5.x application to sign the Simple

Object Access Protocol (SOAP) message. The signing key name is clientsignerkey, which is

referenced in the signing information as the signing key name.

Chapter 14. Web services 991

Version 5.x application
SampleServerSignerKey

This key locator is used by the response sender for a Version 5.x application to sign the SOAP

message. The signing key name is serversignerkey, which can be referenced in the signing

information as the signing key name.

Version 5.x application

SampleSenderEncryptionKeyLocator

This key locator is used by the sender for a Version 5.x application to encrypt the SOAP message.

It is configured to use the ${USER_INSTALL_ROOT}/etc/ws-security/samples/enc-sender.jceks

keystore and the com.ibm.wsspi.wssecurity.config.KeyStoreKeyLocator keystore key locator. The

implementation is configured for the DES secret key. To use asymmetric encryption (RSA), you

must add the appropriate RSA keys.

Version 5.x application

SampleReceiverEncryptionKeyLocator

This key locator is used by the receiver for a Version 5.x application to decrypt the encrypted

SOAP message. The implementation is configured to use the ${USER_INSTALL_ROOT}/etc/ws-
security/samples/enc-receiver.jceks keystore and the

com.ibm.wsspi.wssecurity.config.KeyStoreKeyLocator keystore key locator. The implementation is

configured for symmetric encryption (DES or TRIPLEDES). To use RSA, you must add the private

key CN=Bob, O=IBM, C=US, alias name bob, and key password keypass.

Version 5.x application

SampleResponseSenderEncryptionKeyLocator

This key locator is used by the response sender for a Version 5.x application to encrypt the SOAP

response message. It is configured to use the ${USER_INSTALL_ROOT}/etc/ws-security/samples/
enc-receiver.jceks keystore and the

com.ibm.wsspi.wssecurity.config.WSIdKeyStoreMapKeyLocator keystore key locator. This key

locator maps an authenticated identity (of the current thread) to a public key for encryption. By

default, WebSphere Application Server is configured to map to public key alice, and you must

change WebSphere Application Server to the appropriate user. The

SampleResponseSenderEncryptionKeyLocator key locator also can set a default key for

encryption. By default, this key locator is configured to use public key alice.

Version 6 and later applications

SampleGeneratorSignatureKeyStoreKeyLocator

This key locator is used by generator to sign the SOAP message. The signing key name is

SOAPRequester, which is referenced in the signing information as the signing key name. It is

configured to use the ${USER_INSTALL_ROOT}/etc/ws-security/samples/dsig-sender.ks keystore

and the com.ibm.wsspi.wssecurity.keyinfo.KeyStoreKeyLocator keystore key locator.

Version 6 and later applications

SampleConsumerSignatureKeyStoreKeyLocator

This key locator is used by the consumer to verify the digital signature in the SOAP message. The

signing key is SOAPProvider, which is referenced in the signing information. It is configured to use

the ${USER_INSTALL_ROOT}/etc/ws-security/samples/dsig-receiver.ks keystore and the

com.ibm.wsspi.wssecurity.keyinfo.KeyStoreKeyLocator keystore key locator.

Version 6 and later applications

SampleGeneratorEncryptionKeyStoreKeyLocator

This key locator is used by the generator to encrypt the SOAP message. It is configured to use

the ${USER_INSTALL_ROOT}/etc/ws-security/samples/enc-sender.jceks keystore and the

com.ibm.wsspi.wssecurity.keyinfo.KeyStoreKeyLocator keystore key locator.

992 Securing applications and their environment

Version 6 and later applications
SampleConsumerEncryptionKeyStoreKeyLocator

This key locator is used by the consumer to decrypt an encrypted SOAP message. It is configured

to use the ${USER_INSTALL_ROOT}/etc/ws-security/samples/enc-receiver.jceks keystore and the

com.ibm.wsspi.wssecurity.keyinfo.KeyStoreKeyLocator keystore key locator.

Version 6 and later applications

SampleX509TokenKeyLocator

This key locator is used by the consumer to verify a digital certificate in an X.509 certificate. It is

configured to use the ${USER_INSTALL_ROOT}/etc/ws-security/samples/enc-receiver.jceks

keystore and the com.ibm.wsspi.wssecurity.keyinfo.KeyStoreKeyLocator keystore key locator.

Sample collection certificate store

Collection certificate stores are used to validate the certificate path. For information on how to modify this

sample collection certificate store, see the following articles:

v “Configuring the collection certificate store for the generator binding on the application level” on page

1093

v “Configuring the collection certificate store for the consumer binding on the application level” on page

1165

v “Configuring the collection certificate store for the server or cell-level bindings” on page 1191

SampleCollectionCertStore

This collection certificate store is used by the response consumer and the request generator to

validate the signer certificate path.

Sample trust anchors

Trust anchors are used to validate the trust of the signer certificate. For information on how to modify the

sample trust anchor configurations, see the following articles:

v “Configuring trust anchors for the generator binding on the application level” on page 1089

v “Configuring trust anchors for the consumer binding on the application level” on page 1163

v “Configuring trust anchors on the server or cell level” on page 1190

Version 5.x application

SampleClientTrustAnchor

This trust anchor is used by the response consumer to validate the signer certificate. This trust

anchor is configure to access the ${USER_INSTALL_ROOT}/etc/ws-security/samples/dsig-
sender.ks keystore.

Version 5.x application

SampleServerTrustAnchor

This trust anchor is used by the request consumer to validate the signer certificate. This trust

anchor is configure to access the ${USER_INSTALL_ROOT}/etc/ws-security/samples/dsig-
sender.ks keystore.

Sample trusted ID evaluators

Trusted ID evaluators are used to establish trust before asserting the identity in identity assertion. For

information on how to modify the sample trusted ID evaluator configuration, see “Configuring trusted ID

evaluators on the server or cell level” on page 1212.

SampleTrustedIDEvaluator

This trusted ID evaluator uses the com.ibm.wsspi.wssecurity.id.TrustedIDEvaluatorImpl

implementation. The default implementation of com.ibm.wsspi.wssecurity.id.TrustedIDEvaluator

contains a list of trusted identities. This list, which is used for identity assertion, defines the key

Chapter 14. Web services 993

name and value pair for the trusted identity. The key name is in the form trustedId_* and the value

is the trusted identity. For more information, see the example in “Configuring trusted ID evaluators

on the server or cell level” on page 1212.

 Complete the following steps to define this information for the server level in the administrative

console:

1. Click Servers > Application servers > server_name.

2. Under Security, click Web services: Default bindings for Web services security.

3. Under Additional properties, click Trusted ID evaluators > SampleTrustedIDEvaluator.

Basic Security Profile compliance

The Web Services Interoperability Organization (WS-I) Basic Security Profile (BSP) 1.0 promotes

interoperability by providing clarifications and amplifications to a set of non-proprietary Web services

specifications. WebSphere Application Server Web Services Security provides configuration options to

ensure that the BSP recommendations and security considerations can be enabled to ensure

interoperability. The degree to which you follow these recommendations is then a measure of how well the

application you are configuring complies with the Basic Security Profile (BSP).

Support for applications to comply to the Basic Security Profile (BSP) is new in WebSphere Application

Server Version 6.1. For more information on the Basic Security Profile, see Web Services Interoperability

Organization (WS-I) Basic Security Profile (BSP), Basic Security Profile Version 1.0.

You can use either a predefined list of keywords or XPath expressions to comply to the BSP. Both the

keywords and the XPath expressions are specified in the deployment descriptor configuration file and are

configured using an assembly tool.

Basic Security Profile recommendations

Follow these recommendations to ensure that your configured applications are Basic Security Profile

(BSP) compliant.

v Do not use the original XPath transform, http://www.w3.org/TR/1999/REC-xpath-19991116

When you refer to an element in a SECURE_ENVELOPE that does not carry an ID attribute type from a

ds:Reference in a SIGNATURE element, you must use the XPath Filter 2.0 transform,

http://www.w3.org/2002/06/xmldsig-filter2 to refer to that element.

Any ds:Transform/@Algorithm attribute in a SIGNATURE element must have one of these values:

– http://www.w3.org/2001/10/xml-exc-c14n#

– http://www.w3.org/2002/06/xmldsig-filter2

– http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#STR-
Transform

– http://www.w3.org/2000/09/xmldsig#enveloped-signature

– http://docs.oasis-open.org/wss/2004/XX/oasis-2004XX-wss-swa-profile-1.0#Attachment-Content-Only-
Transform

– http://docs.oasis-open.org/wss/2004/XX/oasis-2004XX-wss-swa-profile-1.0#Attachment-Complete-
Transform

v Do not use the http://www.w3.org/2000/09/xmldsig#dsa-sha1 signature algorithm.

Any ds:SignatureMethod/@Algorithm element in a SIGNATURE that is based on a symmetric key must

have one of the following values:

– http://www.w3.org/2000/09/xmldsig#rsa-sha1

– http://www.w3.org/2000/09/xmldsig#hmac-sha1

v Do not specify the digestvalue keyword for the message part to encrypt. Instead, use the signature

keyword.

994 Securing applications and their environment

http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html
http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.w3.org/2002/06/xmldsig-filter2
http://www.w3.org/2001/10/xml-exc-c14n#
http://www.w3.org/2002/06/xmldsig-filter2
http://www.w3.org/2000/09/xmldsig#enveloped-signature
http://www.w3.org/2000/09/xmldsig#dsa-sha1
http://www.w3.org/2000/09/xmldsig#rsa-sha1
http://www.w3.org/2000/09/xmldsig#hmac-sha1

If the value of a ds:DigestValue element in a SIGNATURE element requires encryption, the entire parent

ds:Signature element must be encrypted. A SIGNATURE must not have any xenc:EncryptedData

elements among its descendants.

v Do not use the KEYNAME key information type

KEYNAME references can be ambiguous and compliance with the BSP disallows the use of KEYNAME.

A SECURITY_TOKEN_REFERENCE must not use a key name to reference a SECURITY_TOKEN. The

child element of a ds:KeyInfo element in an ENCRYPTED_KEY must be either a

SECURITY_TOKEN_REFERENCE or a ds:MgmtData element. Using a KEYNAME key information type

for an encryption key results in a KeyName child element of a ds:KeyInfo element and is disallowed for

BSP compliance.

v Do not use the http://www.w3.org/2001/04/xmlenc#aes192-cbc bit data encryption algorithm.

Any xenc:EncryptionMethod/@Algorithm attribute in an ENCRYPTED_DATA element must have one of

these values:

– http://www.w3.org/2001/04/xmlenc#tripledes-cbc

– http://www.w3.org/2001/04/xmlenc#aes128-cbc

– http://www.w3.org/2001/04/xmlenc#aes256-cbc

v Do not use the advanced encryption standard (AES) key wrap (aes192): http://www.w3.org/2001/04/
xmlenc#kw-aes192 key encryption algorithm.

When used for key wrap, any xenc:EncryptionMethod/@Algorithm attribute in an ENCRYPTED_KEY

element must have one of these values:

– http://www.w3.org/2001/04/xmlenc#kw-tripledes

– http://www.w3.org/2001/04/xmlenc#kw-aes128

– http://www.w3.org/2001/04/xmlenc#kw-aes256

Configuration Options for BSP Compliance

You achieve BSP compliance when certain configuration choices are made. The assembly tool assists you

in using appropriate choices when configuring the application by issuing warning messages. The following

configuration descriptions comprise these warnings:

v When configuring the ds:Transforms element in a signature, the list of transforms must include as its

last child element http://www.w3.org/2001/10/xml-exc-c14n# or http://docs.oasis-open.org/wss/2004/01/
oasis-200401-wss-soap-message-security-1.0#STR-Transform

v Add a wsse:Nonce or wsse:Created element to a Username token to prevent replay. After the element

is added, sign the Username token to prevent undetected alteration of these fields; otherwise, replay

can occur.

Configuring an application for Web services security with an assembly

tool

There are eight parts of Web services security that you must configure to secure your SOAP messages

using either digital signature or encryption. Four of these parts involve the deployment descriptor

extensions and four parts involve the bindings that correspond to the deployment descriptors.

Prior to completing this task, you must import your application into an assembly tool.

For information on how to import your application, see Importing an enterprise application EAR file.

Decide whether or not you are to configure your application to comply with the Basic Security Profile. For

more information on how to ensure compliance, see “Basic Security Profile compliance” on page 994

The following table illustrates these eight parts that involve both the client and the server or a server acting

as a client. It is recommended that you configure each of these parts in order from left to right in the table.

Chapter 14. Web services 995

http://www.w3.org/2001/04/xmlenc#aes192-cbc
http://www.w3.org/2001/04/xmlenc#tripledes-cbc
http://www.w3.org/2001/04/xmlenc#aes128-cbc
http://www.w3.org/2001/04/xmlenc#aes256-cbc
http://www.w3.org/2001/04/xmlenc#kw-aes192
http://www.w3.org/2001/04/xmlenc#kw-aes192
http://www.w3.org/2001/04/xmlenc#kw-tripledes
http://www.w3.org/2001/04/xmlenc#kw-aes128
http://www.w3.org/2001/04/xmlenc#kw-aes256
http://www.w3.org/2001/10/xml-exc-c14n#

For example, configure the request generator extensions and then the request consumer extensions

because the configurations must match. After you configure the request generator and request consumer

extensions, configure the request generator and the request consumer bindings, and so on.

 Table 43. Client and server extensions and bindings relationship

Client Server

1. Request generator extensions 2. Request consumer extensions

3. Request generator bindings 4. Request consumer bindings

5. Response consumer extensions 6. Request generator extensions

7. Response consumer bindings 8. Response generator bindings

In Web services security for WebSphere Application Server Versions 6 and later, integrity refers to digital

signature and confidentiality refers to encryption. Integrity decreases the risk of data modification when

data is transmitted across a network. Confidentiality reduces the risk of someone intercepting the message

as it moves across a network. With confidentiality, however, the message is encrypted before it is sent and

decrypted when it is received by its target server. The article provides the steps needed to secure your

Web services using either integrity or confidentiality.

In the generator bindings, you can specify which message parts to sign (integrity) or encrypt

(confidentiality) and what method is used. In the consumer bindings, you specify when the message parts

are signed or encrypted. After you verify the digital signature or encryption in the consumer, the consumer

verifies that the specified message parts are actually signed or encrypted. If the digital signature or

encryption is required and the message is not signed or encrypted, the message is rejected by the

consumer.

There are two different methods to specify what needs to be signed (integrity) or encrypted

(confidentiality). You can use either keywords or an XPath expression to configure message parts, a

nonce, or a time stamp. When you use keywords, you can specify only certain elements within a message.

With an XPath expression, you can specify any part of the message.

In addition to securing Web services for integrity and confidentiality, the assembly tools enable you to

complete the following tasks:

v Configure a standalone time stamp for the generator and the consumer extensions. For more

information, see “Adding a stand-alone time stamp to generator security constraints” on page 1080 and

“Adding a stand-alone time stamp in consumer security constraints” on page 1081.

v Configure the security token in the generator and consumer constraints. For more information, see

“Configuring the security token in generator security constraints” on page 1083 and “Configuring the

security token requirement in consumer security constraints” on page 1084.

v Configure a caller part for the consumer security constraints. For more information, see “Configuring the

caller in consumer security constraints” on page 1085.

v Configure identity assertion. For more information, see “Configuring identity assertion” on page 1087.

v Configure the client and the server for integrity. To properly configure Web services security for integrity,

complete the following steps for the request generator and the request consumer and then repeat the

steps for the response generator and the response consumer.

 1. Specify which message elements to sign in the generator security constraints using either

keywords or an XPath expression. For more information, see either “Signing message elements in

generator security constraints with keywords” on page 999 or “Signing message elements in

generator security constraints with an XPath expression” on page 1008. When you sign the

message elements, you can also add a nonce or a time stamp configuration. For more information

on these configurations, see:

– “Adding time stamps for integrity to generator security constraints with keywords” on page 1002

996 Securing applications and their environment

– “Adding time stamps for integrity to generator security constraints with an XPath expression” on

page 1009

– “Adding a nonce for integrity in generator security constraints with keywords” on page 1005

– “Adding a nonce for integrity to generator security constraints with an XPath expression” on

page 1011

 2. Configure a collection certificate store for the generator security constraints. For more information,

see “Configuring the collection certificate store for the generator binding with an assembly tool” on

page 1014.

 3. Configure the token generator. For more information, see “Configuring token generators with an

assembly tool” on page 1015.

 4. Configure the key locators in the generator binding. For more information, see “Configuring key

locators for the generator binding with an assembly tool” on page 1021.

 5. Configure the key information in the generator binding. For more information, see “Configuring key

information for the generator binding with an assembly tool” on page 1023.

 6. Configure the signing information in the generator binding. For more information, see “Configuring

signing information for the generator binding with an assembly tool” on page 1025.

 7. Specify which message elements to sign in the consumer security constraints using either

keywords or an XPath expression. For more information, see either “Signing message elements in

consumer security constraints with keywords” on page 1029 or “Signing message elements in

consumer security constraints with an XPath expression” on page 1035. When you sign the

message elements, you can also add a nonce or a time stamp configuration. For more information

on these configurations, see:

– “Adding time stamps for integrity in consumer security constraints with keywords” on page 1031

– “Adding a nonce for integrity in consumer security constraints with keywords” on page 1033

– “Adding time stamps for integrity in consumer security constraints with an XPath expression” on

page 1036

– “Adding a nonce for integrity in consumer security constraints with an XPath expression” on

page 1038

 8. Configure a collection certificate store for the consumer security constraints. For more information,

see “Configuring the collection certificate store for the consumer binding with an assembly tool” on

page 1039.

 9. Configure a token consumer. For more information, see “Configuring token consumers with an

assembly tool” on page 1041.

10. Configure the key locators in the consumer binding. For more information, see “Configuring the key

locator for the consumer binding with an assembly tool” on page 1044.

11. Configure the key information in the consumer bindings. For more information, see “Configuring

key information for the consumer binding with an assembly tool” on page 1045.

12. Configure the signing information in the consumer binding. For more information, see “Configuring

signing information for the consumer binding with an assembly tool” on page 1048.

v Configure the client and the server for confidentiality. To properly configure Web services security for

confidentiality, complete the following steps for the request generator and the request consumer, and

then repeat the steps for the response generator and the response consumer.

 1. Specify which message elements to encrypt in the generator security constraints using either

keywords or an XPath expression. For more information, see either “Encrypting the message

elements in generator security constraints with keywords” on page 1051 or “Encrypting the

message elements in generator security constraints with an XPath expression” on page 1058.

When you encrypt the message elements, you can also add a nonce or a time stamp

configuration. For more information on these configurations, see:

– “Adding time stamps for confidentiality to generator security constraints with keywords” on page

1053

Chapter 14. Web services 997

– “Adding the nonce for confidentiality to generator security constraints with keywords” on page

1055

– “Adding time stamps for confidentiality to generator security constraints with an XPath

expression” on page 1059

– “Adding the nonce for confidentiality to generator security constraints with an XPath expression”

on page 1061

 2. Configure the token generator. For more information, see “Configuring token generators with an

assembly tool” on page 1015.

 3. Configure the key locators in the generator binding. For more information, see “Configuring key

locators for the generator binding with an assembly tool” on page 1021.

 4. Configure the key information in the generator binding. For more information, see “Configuring key

information for the generator binding with an assembly tool” on page 1023.

 5. Configure the encryption information in the generator binding. For more information, see

“Configuring encryption information for the consumer binding with an assembly tool” on page 1066.

 6. Specify which message elements to encrypt in the consumer security constraints using either

keywords or an XPath expression. For more information, see either “Encrypting message elements

in consumer security constraints with keywords” on page 1068 or “Encrypting message elements in

consumer security constraints with an XPath expression” on page 1073. When you encrypt the

message elements, you can also add a nonce or a time stamp configuration. For more information

on these configurations, see:

– “Adding time stamps for confidentiality in consumer security constraints with keywords” on page

1069

– “Adding a nonce for confidentiality in consumer security constraints with keywords” on page

1071

– “Adding time stamps for confidentiality in consumer security constraints with an XPath

expression” on page 1074

– “Adding the nonce for confidentiality in consumer security constraints with an XPath expression”

on page 1076

 7. Configure a token consumer. For more information, see “Configuring token consumers with an

assembly tool” on page 1041.

Also, the token consumer article provides the steps that are needed to optionally configure a trust

anchor.

 8. Configure the key locators in the consumer binding. For more information, see “Configuring the key

locator for the consumer binding with an assembly tool” on page 1044.

 9. Configure the key information in the consumer bindings. For more information, see “Configuring

key information for the consumer binding with an assembly tool” on page 1045.

10. Configure the encryption information in the consumer binding. For more information, see

“Configuring encryption information for the generator binding with an assembly tool” on page 1078.

By completing the previous steps, you have configured your application for either digital signature

(integrity) or encryption (confidentiality).

XML digital signature

XML-Signature Syntax and Processing (XML digital signature) is a specification that defines XML syntax

and processing rules to sign and verify digital signatures for digital content. The specification was

developed jointly by the World Wide Web Consortium (W3C) and the Internet Engineering Task Force

(IETF).

XML digital signature does not introduce new cryptographic algorithms. WebSphere Application Server

uses XML digital signature with existing algorithms such as RSA, HMAC, and SHA1. XML signature

defines many methods for describing key information and enables the definition of a new method.

998 Securing applications and their environment

XML canonicalization (c14n) is often needed when you use XML signature. Information can be represented

in various ways within serialized XML documents. For example, although their octet representations are

different, the following examples are identical:

v <person first="John" last="Smith"/>

v <person last="Smith" first="John"></person>

C14n is a process that is used to canonicalize XML information. Select an appropriate c14n algorithm

because the information that is canonicalized is dependent upon this algorithm. One of the major c14n

algorithms, Exclusive XML Canonicalization, canonicalizes the character encoding scheme, attribute order,

namespace declarations, and so on. The algorithm does not canonicalize white space outside tags,

namespace prefixes, or data type representation.

XML signature in the Web Services Security-Core specification

The Web Services Security-Core (WSS-Core) specification defines a standard way for Simple Object

Access Protocol (SOAP) messages to incorporate an XML signature. You can use almost all of the XML

signature features in WSS-Core except enveloped signature and enveloping signature. However,

WSS-Core has some recommendations such as exclusive canonicalization for the c14n algorithm and

some additional features such as SecurityTokenReference and KeyIdentifier. The KeyIdentifier is the value

of the SubjectKeyIdentifier field within the X.509 certificate. For more information on the KeyIdentifier, see

″Reference to a Subject Key Identifier″ within the OASIS Web Services Security X.509 Certificate Token

Profile documentation.

By including XML signature in SOAP messages, the following issues are realized:

Message integrity

A message receiver can confirm that attackers or accidents have not altered parts of the message

after these parts are signed by a key.

Authentication

You can assume that a valid signature is proof of possession. A message with a digital certificate

that is issued by a certificate authority and a signature in the message that is validated

successfully by a public key in the certificate, is proof that the signer has the corresponding private

key. The receiver can authenticate the signer by checking the trustworthiness of the certificate.

Signing message elements in generator security constraints with keywords

Prior to completing this task, you must import your application into an assembly tool.

For information on how to import your application, see ″Importing an enterprise application EAR file″ in the

Application Server Toolkit documentation.

Complete the following steps to specify which message parts to digitally sign when you configure the

generator security constraints for either the request generator or the response generator. The request

generator is configured for the client and the response generator is configured for the server. In the

following steps, you must configure either the client-side extensions in step 2 or the server-side extensions

in step 3.

1. Start the assembly tool.

2. Switch to the Java 2 Platform, Enterprise Edition (J2EE) perspective. Click Window > Open

Perspective > J2EE.

3. Optional: Locate the client-side extensions using the Project Explorer window. The Client Deployment

Descriptor window is displayed. This Web service contains the extensions that you need to configure.

a. Expand the Web Services > Client section and double-click the name of the Web service.

b. Click the WS Extension tab and expand the Request Generator Configuration section.

Chapter 14. Web services 999

http://www.oasis-open.org/committees/download.php/5073/oasis-200401-wss-x509-token-profile-1.0.pdf
http://www.oasis-open.org/committees/download.php/5073/oasis-200401-wss-x509-token-profile-1.0.pdf

4. Optional: Locate the server-side extensions using the Project Explorer window. The Web Services

Editor window is displayed. This Web service contains the extensions that you need to configure.

a. Expand the Web Services > Services section and double-click the name of the Web service.

b. Click the Extensions tab and expand the Response Generator Service Configuration Details

section.

5. Expand the Integrity section. Integrity refers to digital signature while confidentiality refers to

encryption. Integrity decreases the risk of data modification when you transmit data across a network.

For more information on digitally signing Simple Object Access Protocol (SOAP) messages, see “XML

digital signature” on page 998.

6. Click Add to indicate which parts of the message to sign. The Integrity Dialog window is displayed.

a. Specify a name for the integrity element in the Integrity Name field. For example, you might specify

int_webskey.

b. Specify an order in the Order field. The value, which must be a positive integer value, specifies the

order in which the digital signature is processed. An order value of 1 specifies that the signing is

done first.

7. Click Add under the Message Parts section and select the Message parts dialect. The

http://www.ibm.com/websphere/webservices/wssecurity/dialect-was dialect specifies the message part

that is signed using keywords. If you select this dialect, you can select one of the following keywords

under the Message parts keyword heading:

action Specifies that the <wsa:Action> element is signed.

body Specifies the user data portion of the message. If you select this keyword, the body is signed.

dsigkey

Specifies that the key information element, which is used for digital signature, is signed.

enckey

Specifies that the key information element, which is used for encryption, is signed.

messageid

Specifies that the <wsa:MessageID> element within the message is signed.

relatesto

Specifies that the <wsa:RelatesTo> element within the message is signed.

securitytoken

Specifies that the UsernameToken in the SOAP message is signed.

timestamp

Specifies that the stand-alone timestamp element within the message is signed. The

timestamp element determines whether the message is valid based upon the time that the

message is sent and then received. If the timestamp option is selected, make sure that there is

a stand-alone timestamp element in the message. If the element does not exist, see “Adding a

stand-alone time stamp to generator security constraints” on page 1080.

to Specifies that the <wsa:To> element within the message is signed.

wsaall Specifies all of the WS-Addressing elements in the SOAP header.

wsafaultto

Specifies the <wsa:FaultTo> WS-Addressing FaultTo element in the SOAP header.

wsafrom

Specifies the <wsa:From> WS-Addressing From element in the SOAP header.

wsareplyto

Specifies the <wsa:ReplyTo> WS-Addressing ReplyTo element in the SOAP header.

1000 Securing applications and their environment

wscontext

Specifies the WS-Context header for the SOAP header. For more information, see Propagating

work area context over Web services.

8. Click OK to save the configuration changes.

Note: These configurations for the generator and the consumer must match.

In addition to the message parts, you also can specify that WebSphere Application Server sign the

nonce and timestamp elements. For more information, see the following articles:

v “Adding time stamps for integrity to generator security constraints with keywords” on page 1002

v “Adding time stamps for integrity to generator security constraints with an XPath expression” on

page 1009

v “Adding a nonce for integrity in generator security constraints with keywords” on page 1005

v “Adding a nonce for integrity to generator security constraints with an XPath expression” on page

1011

The following example is a SOAP message whose body is signed using the body keyword and the

http://www.ibm.com/websphere/webservices/wssecurity/dialect-was dialect:

<soapenv:Envelope xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <soapenv:Header soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

 <wsse:Security soapenv:mustUnderstand="1" xmlns:wsse="http://docs.oasis-open.org/wss/

 2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd">

 <wsse:BinarySecurityToken EncodingType="http://docs.oasis-open.org/wss/2004/01/

 oasis-200401-wss-soap-message-security-1.0#Base64Binary" ValueType=

 "http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#

 X509v3" wsu:Id="x509bst_956396521418196" xmlns:wsu="http://docs.oasis-open.org/

 wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"> MA0GCSqGSIb3DQEBBQUAA4

 GBAHkthdGDgCvdIL9/vXUo74xpfOQd/rr1owBmMdb1TWdOyzwbOHC7lkUlnKrkI7SofwSLSDUP571ii

 MXUx3tRdmAVCoDMMFuDXh9V7212luXccx0s1S5KN0D3xW97LLNegQC0/b+aFD8XKw2U5ZtwbnFTRgs097

 dmz09RosDKkLlM

 </wsse:BinarySecurityToken>

 <ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

 <ds:SignedInfo>

 <ds:CanonicalizationMethod Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#">

 <ec:InclusiveNamespaces PrefixList="wsse ds xsi soapenc xsd soapenv "

 xmlns:ec="http://www.w3.org/2001/10/xml-exc-c14n#"/>

 </ds:CanonicalizationMethod>

 <ds:SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>

 <ds:Reference URI="#wssecurity_signature_id_5945817517184298591">

 <ds:Transforms>

 <ds:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#">

 <ec:InclusiveNamespaces PrefixList="p896 xsi soapenc xsd wsu soapenv "

 xmlns:ec="http://www.w3.org/2001/10/xml-exc-c14n#"/>

 </ds:Transform>

 </ds:Transforms>

 <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

 <ds:DigestValue>vyu0JwXXSAvRCUCi6TPkeH8yUTU=</ds:DigestValue>

 </ds:Reference>

 </ds:SignedInfo>

 <ds:SignatureValue>dtbYA609wwAUAA8BmDmJlVHrWShy6OLJB3n4A6ToU0lI9tJrNhBksGqks17

 cykf+uHTJcgOY18XrRDN4wHTW4zm/tmD5WqQd8K1WpYaGpbwlFoiwKVFNyfQn2K/WbZ2JccmZvJGF

 aOtqStg6TqSUGLQSA5MCSpZUhck545IY2F4=

 </ds:SignatureValue>

 <ds:KeyInfo>

 <wsse:SecurityTokenReference>

 <wsse:Reference URI="#x509bst_956396521418196" ValueType="http://docs.

 oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509v3"/>

 </wsse:SecurityTokenReference>

 </ds:KeyInfo>

 </ds:Signature>

Chapter 14. Web services 1001

</wsse:Security>

 </soapenv:Header>

 <soapenv:Body soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

 wsu:Id="wssecurity_signature_id_5945817517184298591" xmlns:wsu="http://docs.oasis-open.org/

 wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd">

 <p896:getVersion xmlns:p896="http://msgsec.wssecfvt.ws.ibm.com"/>

 </soapenv:Body>

</soapenv:Envelope>

After you specify which message parts to digitally sign, you must specify which method is used to digitally

sign the message. For more information, see “Configuring signing information for the generator binding

with an assembly tool” on page 1025.

Adding time stamps for integrity to generator security constraints with keywords:

You can specify that a time stamp be embedded in a particular element and that the element be signed.

 Prior to completing this task, you must import your application into an assembly tool.

For information on how to import your application, see the article about importing an enterprise application

EAR file in the Application Server Toolkit documentation.

Complete the following steps to specify the time stamp for integrity using keywords when you configure the

generator security constraints for either the request generator or the response generator. The request

generator is configured for the client and the response generator is configured for the server. In the

following steps, you must configure either the client-side extensions in step 2 or the server-side extensions

in step 3.

 1. Start the assembly tool.

 2. Switch to the Java 2 Platform, Enterprise Edition (J2EE) perspective. Click Window > Open

Perspective > J2EE.

 3. Optional: Locate the client-side extensions using the Project Explorer window. The Client

Deployment Descriptor window is displayed. This Web service contains the extensions that you need

to configure. Complete the following steps to locate the client-side extensions:

a. Expand the Web Services > Client section and double-click the name of the Web service.

b. Click the WS Extension tab and expand the Request Generator Configuration section.

 4. Optional: Locate the server-side extensions using the Project Explorer window. The Web Services

Editor window is displayed. This Web service contains the extensions that you need to configure.

Complete the following steps to locate the server-side extensions:

a. Expand the Web Services > Services section and double-click the name of the Web service.

b. Click the Extensions tab and expand the Response Generator Service Configuration Details

section.

 5. Expand the Integrity section. Integrity refers to digital signature while confidentiality refers to

encryption. Integrity decreases the risk of data modification when you transmit data across a network.

For more information on digitally signing SOAP messages, see “XML digital signature” on page 998.

 6. Click Add to specify a time stamp for integrity. The Integrity Dialog window is displayed. Complete the

following steps to specify a configuration:

a. Specify a name for the integrity element in the Integrity Name field.

b. Specify an order in the Order field. The value, which must be a positive integer value, specifies

the order in which the digital signature is processed. An order value of 1 specifies that the signing

is done first.

 7. In the Timestamp section, click Add and select the Timestamp dialect. The http://www.ibm.com/
websphere/webservices/wssecurity/dialect-was dialect specifies the message element to which the

time stamp is added prior to signing the element using the keywords. If you select this dialect, you

can select one of the following keywords under the Timestamp keyword heading:

1002 Securing applications and their environment

body Specifies the user data portion of the message. If you select the body option, a time stamp is

embedded in SOAP body and the body is signed.

timestamp

Specifies that the time stamp is embedded in the standalone timestamp element within the

message and that it is signed. If you select the timestamp option, make sure that there is a

standalone timestamp element in the message. If the element does not exist, see “Adding a

stand-alone time stamp to generator security constraints” on page 1080.

securitytoken

Specifies that the security token authenticates the client. If you select this option, the

timestamp element is embedded in the securitytoken element and the security token is

signed.

dsigkey

Specifies that the time stamp is inserted into the key information element, which is used for

digital signature, and the key information element is signed.

enckey Specifies that the time stamp is inserted into the key information element, which is used for

encryption, and the key information element is signed.

messageid

Specifies that the time stamp is inserted into the <wsa:MessageID> element and the

<wsa:MessageID> element is signed.

to Specifies that the time stamp is inserted into the <wsa:To> element within the message and

that the <wsa:To> element is signed.

action Specifies that the <wsa:Action> element is signed.

relatesto

Specifies that the time stamp is inserted into the <wsa:RelatesTo> element within the

message and the <wsa:RelatesTo> element is signed.

wscontext

Specifies the WS-Context header for the SOAP header.

 For more information, see Propagating work area context over Web services.

wsafrom

Specifies the <wsa:From> WS-Addressing From element in the SOAP header.

wsareplyto

Specifies the <wsa:ReplyTo> WS-Addressing ReplyTo element in the SOAP header

wsafaultto

Specifies the <wsa:FaultTo> WS-Addressing FaultTo element in the SOAP header.

wsaall Specifies all of the WS-Addressing elements in the SOAP header.

 8. Specify an expiration time for the time stamp in the Timestamp expires field. The time stamp helps

defend against replay attacks. The lexical representation for the duration is the [ISO 8601] extended

format PnYnMnDTnHnMnS, where:

P Precedes the date and time values.

nY Represents the number of years in which the time stamp is in effect. Select a value from 0 to

99 years.

nM Represents the number of months in which the time stamp is in effect. Select a value from 0

to 11 months.

nD Represents the number of days in which the time stamp is in effect. Select a value from 0 to

30 days.

T Separates the date and time values.

Chapter 14. Web services 1003

nH Represents the number of hours in which the time stamp is in effect. Select a value from 0 to

23 hours.

nM Represents the number of minutes in which the time stamp is in effect. Select a value from 0

to 59 minutes.

nS Represents the number of seconds in which the time stamp is in effect. The number of

seconds can include decimal digits to aribrary precision. You can select a value from 0 to 59

for the seconds and from 0 to 9 for tenths of a second.

For example, to indicate 1 year, 2 months, 3 days, 10 hours, and 30 minutes, the format is

P1Y2M3DT10H30M. Typically, you might configure a message time stamp for between 10 and 30

minutes. For example, 10 minutes is represented as P0Y0M0DT0H10M0S or PT10M.

 9. In the Message Parts section, click Add and select http://www.ibm.com/websphere/webservices/
wssecurity/dialect-was in the Message parts dialect field.

10. In the Message Parts section, select the message parts keyword.

Important: You must define at least one message part in the Message Parts section in order to

specify a time stamp for integrity.

11. Click OK to save the configuration changes.

Note: These configurations for the generator and the consumer must match.

In addition to the time stamp, you can specify that the nonce is signed. For more information, see the

following articles:

v “Adding a nonce for integrity in generator security constraints with keywords” on page 1005

v “Adding a nonce for integrity to generator security constraints with an XPath expression” on page

1011

The following example shows a time stamp that is inserted in the SOAP message body and signed:

<soapenv:Envelope xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <soapenv:Header soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

 <wsse:Security soapenv:mustUnderstand="1" xmlns:wsse="http://docs.oasis-open.org/wss/

 2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd">

 <wsse:BinarySecurityToken EncodingType="http://docs.oasis-open.org/wss/2004/01/

 oasis-200401-wss-soap-message-security-1.0#Base64Binary" ValueType=

 "http://docs.oasis-open.org/wss/2004/01/

 oasis-200401-wss-x509-token-profile-1.0#X509v3"

 wsu:Id="x509bst_6212871821454005389" xmlns:wsu="http://docs.oasis-open.org/wss

 /2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"> AgBgkqhkiG9w0BCQEWE21hcnV5Y

 W1hQGpwLmlibS5jb22CAgEBMA0GCSqGSIb3DQEBBQUAA4GBAHkthdGDgCvdIL9/vXUo74xpfOQd/rr1owB

 mMdb1TWdOyzwbOHC7lkUlnKrkI7SofwSLSDUP571iiMXUx3tRdmAVCoDMMFuDXh9V7212luXccx0s1S5KN

 0D3xW97LLNegQC0/b+aFD8XKw2U5ZtwbnFTRgs097dmz09RosDKkLlM</wsse:BinarySecurityToken>

 <ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

 <ds:SignedInfo>

 <ds:CanonicalizationMethod Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#">

 <ec:InclusiveNamespaces PrefixList="wsse ds xsi soapenc xsd soapenv "

 xmlns:ec="http://www.w3.org/2001/10/xml-exc-c14n#"/>

 </ds:CanonicalizationMethod>

 <ds:SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>

 <ds:Reference URI="#wssecurity_signature_id_493518228178200731">

 <ds:Transforms>

 <ds:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#">

 <ec:InclusiveNamespaces PrefixList="xsi soapenc xsd wsu soapenv "

 xmlns:ec="http://www.w3.org/2001/10/xml-exc-c14n#"/>

 </ds:Transform>

 </ds:Transforms>

 <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

 <ds:DigestValue>kKrcmc8saJ91JCNiE33UECoNYz8=</ds:DigestValue>

1004 Securing applications and their environment

</ds:Reference>

 </ds:SignedInfo>

 <ds:SignatureValue>XBpPju5+qH4bBFodO1kbBO54kEdBD0Pr5ohnXa3TPrDwXqmr67zDP3ZTk7iBS

 ADnH+dlfKupFhx+NZu2h5/j1/KYWaR2HTTv/KYE6IdqXVz3EFglUIBLzQnJ2Zbn62eBx5Th285Cn2Vr

 xtdb5BvUa1dt6M6k61CvRlz3/nMhQxk=</ds:SignatureValue>

 <ds:KeyInfo>

 <wsse:SecurityTokenReference>

 <wsse:Reference URI="#x509bst_6212871821454005389" ValueType=

 "http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-

 token-profile-1.0#X509v3"/>

 </wsse:SecurityTokenReference>

 </ds:KeyInfo>

 </ds:Signature>

 </wsse:Security>

 </soapenv:Header>

 <soapenv:Body soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

 wsu:Id="wssecurity_signature_id_493518228178200731" xmlns:wsu="

 http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd">

 <getVersion/>

 <wsu:Timestamp wasextention="wedsig">

 <wsu:Created>2004-10-12T15:58:19.201Z</wsu:Created>

 </wsu:Timestamp>

 </soapenv:Body>

</soapenv:Envelope>

After you specify which message parts to digitally sign, you must specify which method is used to digitally

sign the message. For more information, see “Configuring signing information for the generator binding

with an assembly tool” on page 1025.

Adding a nonce for integrity in generator security constraints with keywords:

 Prior to completing this task, you must import your application into an assembly tool.

See the information about Importing an enterprise application EAR file in the Application Server Toolkit

documentation.

Nonce for integrity is used to specify that the nonce is embedded in a particular element and the element

is signed. Nonce is a randomly generated, cryptographic token. When nonce is added to the specific parts

of a message, it might prevent theft and replay attacks because a generated nonce is unique. For

example, without nonce, when a user name token is passed from one machine to another machine using

a non-secure transport, such as HTTP, the token might be intercepted and used in a replay attack. The

user name token can be stolen even if you use XML digital signature and XML encryption. However, it

might be prevented by adding a nonce.

Complete the following steps to specify a nonce for integrity using keywords when you configure the

generator security constraints for either the request generator or the response generator. The request

generator is configured for the client and the response generator is configured for the server. In the

following steps, you must configure either the client-side extensions in step 2 or the server-side extensions

in step 3.

1. Start the assembly tool and click Window > Open Perspective > J2EE.

2. Optional: Locate the client-side extensions using the Project Explorer window. The Client Deployment

Descriptor window is displayed. This Web service contains the extensions that you need to configure.

a. Expand the Web Services > Client section and double-click the name of the Web service.

b. Click the WS Extension tab and expand the Request Generator Configuration section.

3. Optional: Locate the server-side extensions using the Project Explorer window. The Web Services

Editor window is displayed. This Web service contains the extensions that you need to configure.

a. Expand the Web Services > Services section and double-click the name of the Web service.

Chapter 14. Web services 1005

b. Click the Extensions tab and expand the Response Generator Service Configuration Details

section.

4. Expand the Integrity section. Integrity refers to digital signature while confidentiality refers to

encryption. Integrity decreases the risk of data modification when you transmit data across a network.

For more information on digitally signing SOAP messages, see “XML digital signature” on page 998.

5. Click Add to specify a nonce for integrity. The Integrity Dialog window is displayed.

a. Specify a name for the integrity element in the Required Integrity Name field. For example, you

might specify int_nonce.

b. Specify an order in the Order field. The value, which must be a positive integer value, specifies the

order in which the digital signature is processed. An order value of 1 specifies that the signing is

done first.

6. Under Nonce, click Add and select the nonce dialect. The http://www.ibm.com/websphere/webservices/
wssecurity/dialect-was dialect specifies the message part to which a nonce is added and signed. If you

select this dialect, you can select one of the following keywords under Nonce keyword:

body Specifies the user data portion of the message. If this option is selected, a nonce is embedded

in the SOAP body element and the body element is signed.

timestamp

Specifies that the nonce is embedded in the standalone timestamp element within the message

and the element is signed. If timestamp is selected, make sure that there is a standalone

timestamp element in the message. If not, see “Adding a stand-alone time stamp to generator

security constraints” on page 1080.

securitytoken

Specifies that the securitytoken element is signed. The security token authenticates the client.

If this option is selected, the nonce element is embedded in the securitytoken element.

dsigkey

Specifies that the nonce is inserted into the key information element, which is used for digital

signature, and the key information element is signed.

enckey Specifies that the nonce is inserted into the key information element, which is used for

encryption, and the key information element is signed.

messageid

Specifies that the nonce is inserted into the <wsa:MessageID> element and that the

<wsa:MessageID> element is signed.

to Specifies that the nonce is inserted into the <wsa:To> element within the message and that the

<wsa:To> element is signed.

action Specifies that the <wsa:Action> element is signed.

relatesto

Specifies that the nonce is inserted into the <wsa:RelatesTo> element within the message and

that the <wsa:RelatesTo> element is signed.

wscontext

Specifies the WS-Context header for the SOAP header. For more information, see Propagating

work area context over Web services.

wsafrom

Specifies the <wsa:From> WS-Addressing From element in the SOAP header.

wsareplyto

Specifies the <wsa:ReplyTo> WS-Addressing ReplyTo element in the SOAP header.

wsafaultto

Specifies the <wsa:FaultTo> WS-Addressing FaultTo element in the SOAP header.

wsaall Specifies all of the WS-Addressing elements in the SOAP header.

1006 Securing applications and their environment

7. In the Message Parts section, click Add and select http://www.ibm.com/websphere/webservices/
wssecurity/dialect-was in the Message parts dialect field.

8. In the Message Parts section, select the message parts keyword.

Important: You must define at least one message part in the Message Parts section in order to

specify a nonce for integrity. This message part is signed as well as the parent element of

the nonce.

9. Click OK to save the configuration changes.

Note: These configurations on the consumer side and the generator side must match.

In addition to the nonce, you can specify that the timestamp element is signed. For more information,

see the following articles:

v “Adding time stamps for integrity in consumer security constraints with keywords” on page 1031

v “Adding time stamps for integrity in consumer security constraints with an XPath expression” on

page 1036

The following example is a SOAP message that has a nonce that is inserted in the SOAP message body

and signed:

<soapenv:Envelope xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <soapenv:Header soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

 <wsse:Security soapenv:mustUnderstand="1" xmlns:wsse="http://docs.oasis-open.org/

 wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd">

 <wsse:BinarySecurityToken EncodingType="http://docs.oasis-open.org/wss/2004/01/

 oasis-200401-wss-soap-message-security-1.0#Base64Binary" ValueType=

 "http://docs.oasis-open.org/wss/2004/01/

 oasis-200401-wss-x509-token-profile-1.0#X509v3"

 wsu:Id="x509bst_1179110083179840266" xmlns:wsu="http://docs.oasis-open.org/

 wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"> E21hcnV5YW1hQGpwLmlib

 S5jb22CAgEBMA0GCSqGSIb3DQEBBQUAA4GBAHkthdGDgCvdIL9/vXUo74xpfOQd/rr1owBmMdb1TWdO

 yzwbOHC7lkUlnKrkI7SofwSLSDUP571iiMXUx3tRdmAVCoDMMFuDXh9V7212luXccx0s1S5KN0D3xW9

 7LLNegQC0/b+aFD8XKw2U5ZtwbnFTRgs097dmz09RosDKkLlM

 </wsse:BinarySecurityToken>

 <ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

 <ds:SignedInfo>

 <ds:CanonicalizationMethod Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#">

 <ec:InclusiveNamespaces PrefixList="wsse ds xsi soapenc xsd soapenv "

 xmlns:ec="http://www.w3.org/2001/10/xml-exc-c14n#"/>

 </ds:CanonicalizationMethod>

 <ds:SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>

 <ds:Reference URI="#wssecurity_signature_id_8451968259110349556">

 <ds:Transforms>

 <ds:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#">

 <ec:InclusiveNamespaces PrefixList="xsi soapenc xsd wsu soapenv "

 xmlns:ec="http://www.w3.org/2001/10/xml-exc-c14n#"/>

 </ds:Transform>

 </ds:Transforms>

 <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

 <ds:DigestValue>HgfL7FiG/TGECE/L0zg5mJldfgc=</ds:DigestValue>

 </ds:Reference>

 </ds:SignedInfo>

 <ds:SignatureValue>iE2G53VMwCFBI6BwOWiaOLYvemZUJTXJocXpy8loyW1LiR8bBQcFioDOuD

 XXzVj3K+ZD2pYhc0krVYqkYY0IZoRx7xpWt+9qn7aSbxKjuHlMFNCdB1Uxp608zCZcSwvuoCffjl

 O0ltUQ8JTEBnmMB0cfaoiG5bFkUOEpkFo2P9c=</ds:SignatureValue>

 <ds:KeyInfo>

 <wsse:SecurityTokenReference>

 <wsse:Reference URI="#x509bst_1179110083179840266" ValueType="

 http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-

 token-profile-1.0#X509v3"/>

 </wsse:SecurityTokenReference>

Chapter 14. Web services 1007

</ds:KeyInfo>

 </ds:Signature>

 </wsse:Security>

 </soapenv:Header>

 <soapenv:Body soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

 wsu:Id="wssecurity_signature_id_8451968259110349556" xmlns:wsu="http://docs.oasis-open.org/

 wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd">

 <getVersion/>

 <wsse:Nonce wasextention="wedsig" xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/

 oasis-200401-wss-wssecurity-secext-1.0.xsd">1u0otbnjkPiCWDhh25yEyBHD/r3VPSbQ1oZTs0K

 s1GE/iDL4YbKDTwdL+e2Hb7nNZn397nRJQ9ePGgf7PRdEuqATFbfq0/T+6j6Fk/MbSHmZnHHoBscFX8W/dY

 ssyCmWDp99447kRhnJbNg5JxarkFmMLqpxKfm1iP3hKP5DpJY=</wsse:Nonce>

 </soapenv:Body>

</soapenv:Envelope>

After you specify which message parts to digitally sign, you must specify which method is used to digitally

sign the message. For more information, see “Configuring signing information for the consumer binding

with an assembly tool” on page 1048.

Signing message elements in generator security constraints with an XPath

expression

You can specify which message parts to digitally sign when you configure the generator security

constraints for either the request generator or the response generator.

Prior to completing this task, you must import your application into an assembly tool.

For information on how to import your application, see ″Importing an enterprise application EAR file″ in the

Application Server Toolkit documentation.

The following information explains the difference between using an XPath expression and using keywords

to specify which part of the message to sign:

XPath expression

Specify any part of the message using an XPath expression. XPath is a language that is used to

address parts of an XML document. You can find information on XPath syntax at the following

Web site: http://www.w3.org/TR/1999/REC-xpath-19991116.

Keywords

Specify only elements within the message using predefined keywords.

Complete the following steps to specify which message parts to digitally sign when you configure the

generator security constraints for either the request generator or the response generator. The request

generator is configured for the client and the response generator is configured for the server.

In the following steps, you must configure either the client-side extensions in step 2 or the server-side

extensions in step 3.

1. Start the assembly tool.

2. Switch to the Java 2 Platform, Enterprise Edition (J2EE) perspective. Click Window > Open

Perspective > J2EE.

3. Optional: Locate the client-side extensions using the Project Explorer window. The Client Deployment

Descriptor window is displayed. This Web service contains the extensions that you must configure.

a. Expand the Web Services > Client section and double-click the name of the Web service.

b. Click the WS Extension tab and expand the Request Generator Configuration section.

4. Optional: Locate the server-side extensions using the Project Explorer window. The Web Services

Editor window is displayed. This Web service contains the extensions that you must configure.

a. Expand the Web Services > Services section and double-click the name of the Web service.

1008 Securing applications and their environment

http://www.w3.org/TR/1999/REC-xpath-19991116

b. Click the Extensions tab and expand the Response Generator Service Configuration Details

section.

5. Expand the Integrity section. Integrity refers to digital signature and confidentiality refers to encryption.

Integrity decreases the risk of data modification when you transmit data across a network. For more

information on digitally signing SOAP messages, see “XML digital signature” on page 998.

6. Click Add to indicate which parts of the message to sign. The Integrity Dialog window is displayed.

a. Specify a name for the integrity element in the Integrity Name field. For example, you might specify

int_xpath.

b. Specify an order in the Order field. The value, which must be a positive integer value, specifies the

order in which the digital signature is processed. An order value of 1 specifies that the signing is

done first.

7. Click Add under the Message Parts section of the Integrity Dialog window.

a. Select the Message parts dialect from the Message Parts section of the Integrity Dialog window. If

you select the http://www.w3.org/TR/1999/REC-xpath-19991116 dialect, the message part that will

be signed is specified by an XPath expression.

Do not use this transform algorithm if you want your configured application to be compliant with the

Basic Security Profile (BSP). Instead use http://www.w3.org/2002/06/xmldsig-filter2 to ensure

compliance.

b. Specify the message part to be signed using an XPath expression in the Message parts keyword

field. For example, to specify that the body is signed, you might add the following expression in the

Message parts keyword field as one continuous line:

/*[namespace-uri()=’http://schemas.xmlsoap.org/soap/envelope/’

and local-name()=’Envelope’]/*[namespace-uri()=’http://schemas.xmlsoap.org/

soap/envelope/’ and local-name()=’Body’]

8. Click OK to save the configuration changes.

Note: These configurations for the generator and the consumer must match.

In addition to the message parts, you also can specify that WebSphere Application Server sign the

nonce and timestamp elements. For more information, see the following articles:

v “Adding time stamps for integrity to generator security constraints with keywords” on page 1002

v “Adding time stamps for integrity to generator security constraints with an XPath expression”

v “Adding a nonce for integrity in generator security constraints with keywords” on page 1005

v “Adding a nonce for integrity to generator security constraints with an XPath expression” on page

1011

After you specify which message parts to digitally sign, you must specify which method is used to digitally

sign the message. For more information, see “Configuring signing information for the generator binding

with an assembly tool” on page 1025.

Adding time stamps for integrity to generator security constraints with an XPath expression:

Prior to completing this task, you must import your application into an assembly tool.

For information on how to import your application, see ″Importing an enterprise application EAR file″ in the

Application Server Toolkit documentation.

The following information explains the difference between using an XPath expression and using keywords

to specify which part of the message to sign:

XPath expression

Specify any part of the message using an XPath expression. XPath is a language that is used to

address parts of an XML document. You can find information on XPath syntax at the following

Web site: http://www.w3.org/TR/1999/REC-xpath-19991116.

Chapter 14. Web services 1009

http://www.w3.org/TR/1999/REC-xpath-19991116

Keywords

Specify only elements within the message using predefined keywords.

This task is used to specify that a time stamp is embedded in a particular element and that the element is

signed. Complete the following steps to specify the time stamp for integrity using keywords when you

configure the generator security constraints for either the request generator or the response generator. The

request generator is configured for the client and the response generator is configured for the server. In

the following steps, you must configure either the client-side extensions in step 2 or the server-side

extensions in step 3.

 1. Start the assembly tool.

 2. Switch to the Java 2 Platform, Enterprise Edition (J2EE) perspective. Click Window > Open

Perspective > J2EE.

 3. Optional: Locate the client-side extensions using the Project Explorer window. The Client

Deployment Descriptor window is displayed. This Web service contains the extensions that you need

to configure. Complete the following steps to locate the client-side extensions.

a. Expand the Web Services > Client section and double-click the name of the Web service.

b. Click the WS Extension tab and expand the Request Generator Configuration section.

 4. Optional: Locate the server-side extensions using the Project Explorer window. The Web Services

Editor window is displayed. This Web service contains the extensions that you need to configure.

Complete the following steps to locate the server-side extensions.

a. Expand the Web Services > Services section and double-click the name of the Web service.

b. Click the Extensions tab and expand the Response Generator Service Configuration Details

section.

 5. Expand the Integrity section. Integrity refers to digital signature while confidentiality refers to

encryption. Integrity decreases the risk of data modification when you transmit data across a network.

For more information on digitally signing Simple Object Access Protocol (SOAP) messages, see “XML

digital signature” on page 998.

 6. Click Add to specify a time stamp for integrity. The Integrity Dialog window is displayed. Complete the

following steps to specify a configuration:

a. Specify a name for the integrity element in the Integrity Name field. For example, you might

specify int_tmstmp.

b. Specify an order in the Order field. The value, which must be a positive integer value, specifies

the order in which the digital signature is processed. An order value of 1 specifies that the signing

is done first.

 7. Click Add in the Timestamp section of the Integrity Dialog window. Complete the following steps to

specify a time stamp configuration:

a. Select the Timestamp dialect from the Timestamp section. The http://www.w3.org/TR/1999/REC-
xpath-19991116 dialect specifies the message part to which the time stamp is added and signed

using the XPath expression.

b. Select the message part in the Timestamp keyword field to which the time stamp is added and

signed using an XPath expression. For example, to specify that the time stamp is added to the

body and is signed, you might specify the following expression for the Timestamp keyword:

/*[namespace-uri()=’http://schemas.xmlsoap.org/soap/envelope/’

and local-name()=’Envelope’]/*[namespace-uri()=’http://schemas.

xmlsoap.org/soap/envelope/’ and local-name()=’Body’]

c. Specify an expiration time for the time stamp in the Timestamp expires field. The time stamp

helps defend against replay attacks. The lexical representation for the duration is the [ISO 8601]

extended format PnYnMnDTnHnMnS, where:

P Precedes the date and time values.

nY Represents the number of years in which the time stamp is in effect. Select a value from

0 to 99 years.

1010 Securing applications and their environment

nM Represents the number of months in which the time stamp is in effect. Select a value

from 0 to 11 months.

nD Represents the number of days in which the time stamp is in effect. Select a value from 0

to 30 days.

T Separates the date and time values.

nH Represents the number of hours in which the time stamp is in effect. Select a value from

0 to 23 hours.

nM Represents the number of minutes in which the time stamp is in effect. Select a value

from 0 to 59 minutes.

nS Represents the number of seconds in which the time stamp is in effect. The number of

seconds can include decimal digits to arbitrary precision. You can select a value from 0 to

59 for the seconds and from 0 to 9 for tenths of a second.

For example, to indicate 1 year, 2 months, 3 days, 10 hours, and 30 minutes, the format is

P1Y2M3DT10H30M. Typically, you might configure a message time stamp for between 10 and 30

minutes. For example, 10 minutes is represented as P0Y0M0DT0H10M0S or PT10M.

 8. In the Message Parts section, click Add and select http://www.ibm.com/websphere/webservices/
wssecurity/dialect-was in the Message parts dialect field.

 9. In the Message Parts section, select the message parts keyword.

Important: You must define at least one message part in the Message Parts section in order to

specify a time stamp for integrity. This message part is signed as well as the parent

element of the time stamp.

10. Click OK to save the configuration changes.

Note: These configurations for the generator and the consumer must match.

In addition to the time stamp, you can specify that the nonce is signed. For more information, see the

following articles:

v “Adding a nonce for integrity in generator security constraints with keywords” on page 1005

v “Adding a nonce for integrity to generator security constraints with an XPath expression”

After you have specified which message parts to digitally sign, you must specify which method is used to

digitally sign the message. For more information, see “Configuring signing information for the generator

binding with an assembly tool” on page 1025.

Adding a nonce for integrity to generator security constraints with an XPath expression:

Prior to completing this task, you must import your application into an assembly tool.

For information on how to import your application, see ″Importing an enterprise application EAR file″ in the

Application Server Toolkit documentation.

The following information explains the difference between using an XPath expression and using keywords

to specify which part of the message to sign:

XPath expression

Specify any part of the message using an XPath expression. XPath is a language that is used to

address parts of an XML document. You can find information on XPath syntax at the following

Web site: http://www.w3.org/TR/1999/REC-xpath-19991116.

Keywords

Specify only elements within the message using predefined keywords.

Chapter 14. Web services 1011

http://www.w3.org/TR/1999/REC-xpath-19991116

Nonce for integrity is used to specify that the nonce is embedded in a particular element and the element

is signed. Nonce is a randomly generated, cryptographic token. When nonce is added to the specific parts

of a message, it might prevent theft and replay attacks because a generated nonce is unique. For

example, without nonce, when a user name token is passed from one machine to another machine using

a non-secure transport, such as HTTP, the token might be intercepted and used in a replay attack. The

user name token can be stolen even if you use XML digital signature and XML encryption. However, it

might be prevented by adding a nonce.

Complete the following steps to specify a nonce for integrity using an XPath expression when you

configure the generator security constraints for either the request generator or the response generator. The

request generator is configured for the client and the response generator is configured for the server. In

the following steps, you must configure either the client-side extensions in step 2 or the server-side

extensions in step 3.

1. Start the assembly tool and click Window > Open Perspective > J2EE.

2. Optional: Locate the client-side extensions using the Project Explorer window. The Client Deployment

Descriptor window is displayed. This Web service contains the extensions that you need to configure.

Complete the following steps to locate the client-side extensions:

a. Expand the Web Services > Client section and double-click the name of the Web service.

b. Click the WS Extension tab and expand the Request Generator Configuration section.

3. Optional: Locate the server-side extensions using the Project Explorer window. The Web Services

Editor window is displayed. This Web service contains the extensions that you need to configure.

Complete the following steps to locate the server-side extensions:

a. Expand the Web Services > Services section and double-click the name of the Web service.

b. Click the Extensions tab and expand the Response Generator Service Configuration Details

section.

4. Expand the Integrity section. Integrity refers to digital signature while confidentiality refers to

encryption. Integrity decreases the risk of data modification when you transmit data across a network.

For more information on digitally signing Simple Object Access Protocol (SOAP) messages, see “XML

digital signature” on page 998.

5. Click Add to specify a nonce for integrity. The Integrity Dialog window is displayed. Complete the

following steps to specify a configuration:

a. Specify a name for the integrity element in the Integrity Name field.

b. Specify an order in the Order field. The value, which must be a positive integer value, specifies the

order in which the digital signature is processed. An order value of 1 specifies that the signing is

done first.

6. Click Add in the Nonce section of the Integrity Dialog window. Complete the following steps to specify

a nonce dialect and message part:

a. Select the Nonce dialect from the Nonce section. The http://www.w3.org/TR/1999/REC-xpath-
19991116 dialect specifies the message part to which a nonce is added and signed using an XPath

expression.

b. Select the message part in the Nonce keyword field to which a nonce is added and signed using

an XPath expression. For example, to specify that a nonce is added to the body and that it is

signed, you might specify the following expression for the Nonce keyword:

/*[namespace-uri()=’http://schemas.xmlsoap.org/soap/envelope/’

and local-name()=’Envelope’]/*[namespace-uri()=’http://schemas.xmlsoap.org/

soap/envelope/’ and local-name()=’Body’]

7. In the Message Parts section, click Add and select http://www.w3.org/TR/1999/REC-xpath-19991116 in

the Message parts dialect field.

8. In the Message Parts section, select the message parts keyword.

1012 Securing applications and their environment

Important: You must define at least one message part in the Message Parts section in order to

specify a nonce for integrity. This message part is signed as well as the parent element of

the nonce.

9. Click OK to save the configuration changes.

Note: These configurations for the consumer and the generator must match.

In addition to the nonce, you can specify that the timestamp element is signed. For more information,

see the following articles:

v “Adding time stamps for integrity to generator security constraints with keywords” on page 1002

v “Adding time stamps for integrity to generator security constraints with an XPath expression” on

page 1009

After you specify that a nonce is added to the message parts and signed, you must specify which method

is used to digitally sign the message. For more information, see “Configuring signing information for the

generator binding with an assembly tool” on page 1025.

Collection certificate store

A collection certificate store is a collection of non-root, certificate authority (CA) certificates and certificate

revocation lists (CRLs). This collection of CA certificates and CRLs is used to check the signature of a

digitally signed SOAP message.

A collection certificate store is used when WebSphere Application Server is processing a received SOAP

message. This collection is configured in the Request Consumer Service Configuration Details section of

the binding file for servers and in the Response Consumer Configuration section of the binding file for

clients. You can configure these two sections using one of the assembly tools provided by WebSphere

Application Server. For more information on the assembly tools, see Assembly tools.

A collection certificate store is one kind of certificate store. A certificate store is defined as

javax.security.cert.CertStore in the Java CertPath application programming interface (API). The Java

CertPath API defines the following types of certificate stores:

Collection certificate store

A collection certificate store accepts the certificates and CRLs as Java collection objects.

Lightweight Directory Access Protocol certificate store

The Lightweight Directory Access Protocol (LDAP) certificate store accepts certificates and CRLs

as LDAP entries.

The CertPath API uses the certificate store and the trust anchor to validate the incoming X.509 certificate

that is embedded in the SOAP message. The Web services security implementation in the WebSphere

Application Server supports the collection certificate store. Each certificate and CRL is passed as an

encoded file.

Certificate revocation list:

A certificate revocation list is a time-stamped list of certificates that have been revoked by a certificate

authority (CA).

 A certificate that is found in a certificate revocation list (CRL) might not be expired, but is no longer trusted

by the certificate authority that issued the certificate. The certificate authority creates the CRL that contains

the serial number and issuing CA distinguished name of the certificate that has been revoked. The CA

might add the certificate to the certificate revocation list if it believes that the client certificate is

compromised. The certificate revocation list is maintained and issued by the certificate authority.

Chapter 14. Web services 1013

Configuring the collection certificate store for the generator binding with an

assembly tool

Prior to completing this task, you must import your application into an assembly tool.

For information on how to import your application, see ″Importing an enterprise application EAR file″ in the

Application Server Toolkit documentation.

This task describes the steps to specify the collection certificate store for the generator bindings at the

application level using an assembly tool. A collection certificate store is a collection of non-root certificate

authority (CA) certificates and certificate revocation lists (CRLs) that is used for validating an X.509

certificate embedded within the received SOAP message. The request generator is configured for the

client and the response generator is configured for the server. On the generator side, a configuration for

the collection certificate store is required only when you configure CRLs that are embedded in the

PKCS#7 format. Complete the following steps to configure a collection certificate store for the generator.

Specifying either the client-side bindings in step 2 or the server-side bindings in step 3.

 1. Start the assembly tool.

 2. Switch to the Java 2 Platform, Enterprise Edition (J2EE) perspective. Click Window > Open

Perspective > J2EE.

 3. Optional: Locate the client-side bindings using the Project Explorer window. The Client Deployment

Descriptor window is displayed. This Web service contains the bindings that you need to configure.

a. Expand the Web Services > Client section and double-click the name of the Web service.

b. Click the WS Binding tab and expand the Security Request Generator Binding Configuration

section.

 4. Optional: Locate the server-side bindings using the Project Explorer window. The Web Services

Editor window is displayed. This Web service contains the bindings that you need to configure.

a. Expand the Web Services > Services section and double-click the name of the Web service.

b. Click the Binding Configurations tab and expand the Response Generator Binding Configuration

Details section.

 5. Expand the Certificate Store List > Collection Certificate Store section and click Add.

 6. Specify a unique certificate store name in the Name field. For example, specify cert1. The name of

the collection certificate store must be unique on the level in which it is defined. For example, the

name must be unique at the application level. The name specified in the certificate store name field is

used by other configurations to refer to a predefined collection certificate store. WebSphere

Application Server looks up the collection certificate store based on proximity. For example, if an

application binding refers to certificate store cert1, WebSphere Application Server looks first for cert1

at the application level. If it is not found, it looks at the server level, and finally at the cell level.

 7. Specify a certificate store provider in the Provider field. The IBMCertPath certificate path provider is

supported. To use another certificate path provider, you must define the provider implementation in

the provider list within the java.security file in the Software Development Kit (SDK).

 8. Click Add under X509 Certificate to specify a fully qualified path to an X.509 certificate, click the

name of an existing certificate path entry to edit it, or click Remove to delete it. This collection

certificate store is used to validate the certificate path of the incoming X.509-formatted security

tokens.

You can use the USER_INSTALL_ROOT variable as part of the path name. For example, you might

specify ${USER_INSTALL_ROOT}/etc/ws-security/samples/intca2.cer. However, do not use this X.509

certificate path for production use. Obtain your own X.509 certificate from a certificate authority before

putting your WebSphere Application Server environment into production.

In the WebSphere Application Server administrative console, you can click Environment >

WebSphere Variables to configure the USER_INSTALL_ROOT variable.

 9. Click Add under CRL to specify the fully qualified path to a certificate revocation list (CRL), click an

existing CRL entry to edit it or click Remove to delete it.

1014 Securing applications and their environment

For portability reasons, it is recommended that you use the WebSphere Application Server variables

to specify a relative path to the certificate revocation list. For example, you might use the

USER_INSTALL_ROOT variable to define a path such as ${USER_INSTALL_ROOT}/mycertstore/mycrl. For

a list of the supported variables in the WebSphere Application Server administrative console, click

Environment > WebSphere Variables.

The following list provides recommendations for using CRLs:

v If CRLs are added to the collection certificate store, add the CRLs for the root certificate authority

and each intermediate certificate, if applicable. When the CRL is in the certificate collection store,

the certificate revocation status for every certificate in the chain is checked against the CRL of the

issuer.

v When the CRL file is updated, the new CRL does not take effect until you restart the Web service

application.

v Before a CRL expires, you must load a new CRL into the certificate collection store to replace the

old CRL. An expired CRL in the collection certificate store results in a certificate path (CertPath)

build failure.

10. Click OK to save your configuration.

Trust anchor

A trust anchor specifies the keystores that contain trusted root certificates. These certificates are used to

validate the X.509 certificate that is embedded in the SOAP message.

These keystores are used by the following message points to validate the X.509 certificate that is used for

digital signature or XML encryption:

v Request consumer, as defined in the ibm-webservices-bnd.xmi file

v Response consumer, as defined in the ibm-webservicesclient-bnd.xmi file when a Web service is

acting as a client to another Web service

The keystores are critical to the integrity of the digital signature validation. If the keystores are tampered

with, the result of the digital signature verification is doubtful and compromised. Therefore, it is

recommended that you secure these keystores. The binding configuration specified for the request

consumer in the ibm-webservices-bnd.xmi file must match the binding configuration for the request

generator in the ibm-webservicesclient-bnd.xmi file.

The trust anchor is defined as java.security.cert.TrustAnchor in the Java CertPath application programming

interface (API). The Java CertPath API uses the trust anchor and the certificate store to validate the

incoming X.509 certificate that is embedded in the SOAP message. The Web services security

implementation in WebSphere Application Server supports this trust anchor. In WebSphere Application

Server, the trust anchor is represented as a Java keystore object. The type, path, and password of the

keystore are passed to the implementation through the administrative console or by scripting.

Configuring token generators with an assembly tool

Prior to completing this task, you must complete the following steps:

v Import your application into an assembly tool.

For information on how to import your application, see ″Importing an enterprise application EAR file″ in

the Application Server Toolkit documentation.

v Configure the security token in the extensions file. For example, if you are configuring a token generator

for a Lightweight Third Party Authentication (LTPA) token, you must first configure the LTPA token under

the Security Token section on the Extensions tab. For more information, see “Configuring the security

token in generator security constraints” on page 1083.

v Configure a collection certificate store if the token generator uses the PKCS#7 token type and you want

to package the certificate revocation lists (CRL) in the security token. For more information, see

“Configuring the collection certificate store for the generator binding with an assembly tool” on page

1014.

Chapter 14. Web services 1015

A security token represents a set of claims that are made by a client. This set of claims might include a

name, password, identity, key, certificate, group, privilege, and so on. A security token is embedded in the

SOAP message within the SOAP header. The security token within the SOAP header is propagated from

the message sender to the intended message receiver.

Complete the following steps to configure either the client-side bindings for the token generator in step 2

or the server-side bindings for the token generator in step 3:

 1. Start the assembly tool.

 2. Switch to the Java 2 Platform, Enterprise Edition (J2EE) perspective. Click Window > Open

Perspective > J2EE.

 3. Optional: Locate the client-side bindings using the Project Explorer window. The Client Deployment

Descriptor window is displayed. This Web service contains the bindings that you need to configure.

a. Expand the Web Services > Clients section and double-click the name of the Web service.

b. Click the WS Binding tab and expand the Security Request Generator Binding Configuration

section.

 4. Optional: Locate the server-side bindings using the Project Explorer window. The Web Services

Editor window is displayed. This Web service contains the bindings that you need to configure.

a. Expand the Web Services > Services section and double-click the name of the Web service.

b. Click the Binding Configurations tab and expand the Response Generator Binding Configuration

Details section.

 5. Optional: Configure a trust anchor if you are configuring this token consumer for an X.509 security

token.

a. Expand the Trust anchor section and click Add to add a new entry or click Edit to edit a selected

entry. The Trust anchor dialog window is displayed.

b. Specify a name for the trust anchor configuration in the Trust anchor name field.

c. Specify a keystore password in the Key store storepass field. The keystore storepass is the

password that is required to access the keystore file.

d. Specify the path to the keystore file in the Key store path field. The key store path is the directory

where the keystore resides. Make sure that wherever you deploy your application that can locate

your keystore file.

e. Select a key store type from the Key store type field. The key store type that you select must

match the keystore file that is specified in the Key store path field.

 6. Expand the Token generator section and click Add to add a new entry or click Edit to edit a selected

entry. The Token Generator Dialog window is displayed.

 7. Specify a unique name in the Token generator name field. For example, you might specify

gen_signtgen. If this token generator is for an X.509 certificate and is used for signature generation or

encryption, the token generator name is referenced in the Token field of the Key Information dialog

window.

 8. Select a token generator class in the Token generator class field. Select the token generator class

that matches the type of token that you are configuring. This class must implement the

com.ibm.wsspi.wssecurity.token.TokenGeneratorComponent interface. The following default token

generator implementations are supported:

v com.ibm.wsspi.wssecurity.token.LTPATokenGenerator

v com.ibm.wsspi.wssecurity.token.UsernameTokenGenerator

v com.ibm.wsspi.wssecurity.token.X509TokenGenerator

 9. Select a security token reference in the Security token field. The value in this field references the

security token that is configured in the extensions file.

10. Select the Use value type option and select the value type in the Value type field. Select the value

type of the security token that matches the type of token generator that you are configuring. When

you select the value type, the assembly tool automatically enters the correct values in the Local name

1016 Securing applications and their environment

and URI fields depending upon the type of security token that is specified by the value type. If you

select Custom Token, you must specify the local name and the namespace URI of the value type for

the generated token. The following value types are supported:

v Username Token

v X509 certificate token

v X509 certificates in a PKIPath

v A list of X509 certificates and CRLs in a PKCS#7

v LTPA Token

v Custom Token

11. Specify the Callback handler class name in the Call back handler field. This name is the callback

handler implementation class that is used to plug-in a security token framework. The specified

callback handler class must implement the javax.security.auth.callback.CallbackHandler interface. The

implementation of the Java Authentication and Authorization Service (JAAS)

javax.security.auth.callback.CallbackHandler interface must provide a constructor using the following

syntax:

MyCallbackHandler(String username, char[] password, java.util.Map properties)

Where:

v username specifies the user name that is passed into the configuration.

v password specifies the password that is passed into the configuration.

v properties specifies the other configuration properties that are passed into the configuration.

The following default callback handler implementations are supported:

com.ibm.wsspi.wssecurity.auth.callback.GUIPromptCallbackHandler

This callback handler uses a login prompt to gather the user name and password information.

However, if you specify the user name and password on this panel, a prompt is not displayed

and WebSphere Application Server returns the user name and password to the token

generator if it is specified on this panel. Use this implementation for a J2EE application client

only.

com.ibm.wsspi.wssecurity.auth.callback.NonPromptCallbackHandler

This callback handler does not issue a prompt and returns the user name and password if it

is specified on this panel. You can use this callback handler when the Web service is acting

as a client.

com.ibm.wsspi.wssecurity.auth.callback.StdinPromptCallbackHandler

This callback handler uses a standard-in prompt to gather the user name and password.

However, if the user name and password is specified on this panel, WebSphere Application

Server does not issue a prompt, but returns the user name and password to the token

generator. Use this implementation for a J2EE application client only.

com.ibm.wsspi.wssecurity.auth.callback.LTPATokenCallbackHandler

This callback handler is used to obtain the Lightweight Third Party Authentication (LTPA)

security token from the Run As invocation Subject. This token is inserted in the Web services

security header within the SOAP message as a binary security token. However, if the user

name and password are specified on this panel, WebSphere Application Server authenticates

the user name and password to obtain the LTPA security token rather than obtaining it from

the Run As Subject. Use this callback handler only when the Web service is acting as a client

on the application server. It is recommended that you do not use this callback handler on a

J2EE application client.

com.ibm.wsspi.wssecurity.auth.callback.X509CallbackHandler

This callback handler is used to create the X.509 certificate that is inserted in the Web

services security header within the SOAP message as a binary security token. A keystore and

a key definition is required for this callback handler.

Chapter 14. Web services 1017

com.ibm.wsspi.wssecurity.auth.callback.PKCS7CallbackHandler

This callback handler is used to create X.509 certificates encoded with the PKCS#7 format.

The certificate is inserted in the Web services security header in the SOAP message as a

binary security token. A keystore is required for this callback handler. You must specify a

certificate revocation list (CRL) in the collection certificate store. The CRL is encoded with the

X.509 certificate in the PKCS#7 format.

com.ibm.wsspi.wssecurity.auth.callback.PkiPathCallbackHandler

This callback handler is used to create X.509 certificates encoded with the PkiPath format.

The certificate is inserted in the Web services security header within the SOAP message as a

binary security token. A keystore is required for this callback handler. A CRL is not supported

by the callback handler; therefore, the collection certificate store is not required or used.

The callback handler implementation obtains the required security token and passes it to the token

generator. The token generator inserts the security token in the Web services security header within

the SOAP message. Also, the token generator is a plug-in point for the pluggable security token

framework. Service providers can provide their own implementation, but the implementation must use

the com.ibm.wsspi.wssecurity.token.TokenConsumerComponent interface.

12. Specify the basic authentication User ID in the User ID field. This user name is passed to the

constructors of the callback handler implementation. The basic authentication user name and

password are used if you select one of the following default callback handler implementations, as

described in the previous step:

v com.ibm.wsspi.wssecurity.auth.callback.GUIPromptCallbackHandler

v com.ibm.wsspi.wssecurity.auth.callback.LTPATokenCallbackHandler

v com.ibm.wsspi.wssecurity.auth.callback.NonPromptCallbackHandler

v com.ibm.wsspi.wssecurity.auth.callback.StdinPromptCallbackHandler

13. Specify the basic authentication password in the Password field. This password is passed to the

constructors of the callback handler implementation.

14. Optional: Select the Use key store option and complete the following substeps if you previously

selected one of the following callback handlers:

com.ibm.wsspi.wssecurity.auth.callback.PKCS7CallbackHandler.

com.ibm.wsspi.wssecurity.auth.callback.PkiPathCallbackHandler, or

com.ibm.wsspi.wssecurity.auth.callback.X509CallbackHandler.

a. Specify the password for the keystore in the Key store storepass field. This password is used to

access the keystore file.

b. Specify the location of the keystore in the Key store path field.

c. Specify the type of keystore in the Key store type field. The following keystore types are

supported:

JKS Use this option if the keystore uses the Java Keystore (JKS) format.

JCEKS

Use this option if the Java Cryptography Extension is configured in the software

development kit (SDK). The default IBM JCE is configured in WebSphere Application

Server. This option provides stronger protection for stored private keys by using Triple

DES encryption.

JCERACFKS

Use JCERACFKS if the certificates are stored in a SAF key ring (z/OS only).

PKCS11

Use this format if your keystore uses the PKCS#11 file format. Keystores using this format

might contain RSA keys on cryptographic hardware or might encrypt keys that use

cryptographic hardware to ensure protection.

PKCS12

Use this option if your keystore uses the PKCS#12 file format.

1018 Securing applications and their environment

d. In the Keys section, click Add to add a key. You can also click Remove to remove an existing

key.

e. In the Key section, specify an alias for the key in the Alias field. For example, you might specify

bob. The key alias is used by the key locator to locate the key within the keystore file.

f. In the Keys section, specify a password for the key in the Key pass field. This password is needed

to access the key object within the keystore file.

g. In the Keys section, specify a name in the Key name field. The key name must be a fully

qualified, distinguished name. For example, you might specify CN=Bob,O=IBM,C=US.

15. Optional: Select the Use certificate path settings option if the token generator uses the PKCS#7

token type and you want to package the certificate revocation lists (CRL) in the security token.

a. Select the Certificate path reference option and a certificate store reference. This selection

references a certificate store that is configured in the Certificate Store List section. For more

information, see “Configuring the collection certificate store for the generator binding with an

assembly tool” on page 1014.

16. Optional: Click Add and specify additional properties in the Property section.

If the token generator includes a nonce in the user name token, add the following name and value

pair:

Name com.ibm.wsspi.wssecurity.token.username.addNonce

Value true

Nonce is a unique cryptographic number that is embedded in a message to help stop repeat,

unauthorized attacks of user name tokens. A property is valid only when the generated token type is

a user name token. This option is available for the request generator binding only.

If this token generator might include a time stamp in the user name token, add the following name

and value pair:

Name com.ibm.wsspi.wssecurity.token.username.addTimestamp

Value true

This option is valid only when the generated token type is a user name token and it is available for

the request generator binding only.

If you have defined identity assertion in the IBM extended deployment descriptor, add the following

name and value pair:

Name com.ibm.wsspi.wssecurity.token.IDAssertion.isUsed

Value true

This option indicates that only the identity of the initial sender is required and inserted into the Web

services security header within the SOAP message. For example, WebSphere Application Server only

sends the user name of the original caller for a Username token generator. For an X.509 token

generator, the application server sends the original signer certification only.

If you have defined identity assertion in the IBM extended deployment descriptor and you want to use

the Run As identity instead of the initial caller identity for identity assertion for a downstream call, add

the following name and value pair:

Name com.ibm.wsspi.wssecurity.token.IDAssertion.useRunAsIdentity

Value true

This option is valid only when the generated token type is a user name token.

17. Click OK to save your configuration.

Chapter 14. Web services 1019

Configure the key information if this token generator configuration is for an X.509 security token. For more

information, see “Configuring key information for the generator binding with an assembly tool” on page

1023.

Key locator

A key locator or the com.ibm.wsspi.wssecurity.keyinfo.KeyLocator class, is an abstraction of the

mechanism that retrieves the key for digital signature and encryption.

You can use any of the following infrastructure from which to retrieve the keys depending upon the

implementation:

v Java keystore file

v Database

v Lightweight Third Party Authentication (LTPA) server

Key locators search for the key using some type of a clue. The following types of clues are supported:

v A string label of the key, which is explicitly passed through the application programming interface (API).

The relationship between each key and its name (string label) is maintained inside the key locator.

v The implementation context of the key locator; explicit information is not passed to the key locator. A

key locator determines the appropriate key according to the implementation context.

WebSphere Application Server Versions 6 and later support a secret key-based signature called

HMAC-SHA1. If you use HMAC-SHA1, the SOAP message does not contain a binary security token. In

this case, it is assumed that the key information within the message contains the key name that is used to

specify the secret key within the keystore.

Because the key locators support the public key-based signature, the key for verification is embedded in

the X.509 certificate as a <BinarySecurityToken> element in the incoming message. For example, key

locators can obtain the identity of the caller from the context and can retrieve the public key of the caller

for response encryption.

This section describes the usage scenarios for key locators.

Signing

The name of the signing key is specified in the Web services security configuration. This value is passed

to the key locator and the actual key is returned. The corresponding X.509 certificate also can be returned.

Verification

By default, WebSphere Application Server Versions 6 and later supports the following types of key

locators:

KeyStoreKeyLocator

Uses the keystore to retrieve the key that is used for digital signature and verification or encryption

and decryption.

X509CertKeyLocator

Uses an X.509 certificate within a message to retrieve the key for verification or decryption.

SignerCertKeyLocator

Uses the X.509 certificate within the request message to retrieve the key that is used for

encryption in the response message.

Encryption

1020 Securing applications and their environment

The name of the encryption key is specified in the Web services security configuration. This value is

passed to the key locator and the actual key is returned. On the server side, you can use the

SignerCertKeyLocator to retrieve the key for encryption in the response message from the X.509 certificate

in the request message.

Decryption

The Web services security specification recommends using the key identifier instead of the key name.

However, while the algorithm for computing the identifier for the public keys is defined in Internet

Engineering Task Force (IETF) Request for Comment (RFC) 3280, there is no agreed-upon algorithm for

the secret keys. Therefore, the current implementation of Web services security uses the identifier only

when public key-based encryption is performed. Otherwise, the ordinal key name is used.

When you use public key-based encryption, the value of the key identifier is embedded in the incoming

encrypted message. Then, the Web services security implementation searches for all of the keys managed

by the key locator and decrypts the message using the key whose identifier value matches the one in the

message.

When you use secret key-based encryption, the value of the key name is embedded in the incoming

encrypted message. The Web services security implementation asks the key locator for the key with the

name that matches the name in the message and decrypts the message using the key.

Keys:

Keys are used for XML digital signature and encryption.

 There are two predominant kinds of keys used in the current Web services security implementation:

v Public key - such as Rivest Shamir Adleman (RSA) encryption and Digital Signature Algorithm (DSA)

encryption

v Secret key - such as triple-strength DES (3DES) encryption

In public key-based signature, a message is signed using the sender private key and is verified using the

sender public key. In public key-based encryption, a message is encrypted using the receiver public key

and is decrypted using the receiver private key. In secret key-based signature and encryption, the same

key is used by both parties.

While the current implementation of Web services security can support both kinds of keys, the format of

the message differs slightly between public key-based encryption and secret key-based encryption.

Configuring key locators for the generator binding with an assembly tool

Prior to completing this task, you must import your application into an assembly tool.

For information on how to import your application, see ″Importing an enterprise application EAR file″ in the

Application Server Toolkit documentation.

Before configuring a key locator, you should know which key information configuration will reference this

key locator. For example, if you configure this key locator for the STRREF key information type, select the

com.ibm.wsspi.wssecurity.keyinfo.KeyStoreKeyLocator key locator class.

WebSphere Application Server Version 6 and later provide default key locator implementations that you

can choose or you can write your own implementation. Custom key locators must implement the

com.ibm.wsspi.wssecurity.keyinfo.KeyLocator interface. Using this implementation, you can locate keys

within any data source.

Chapter 14. Web services 1021

Complete the following steps to configure a key locator for the generator using an assembly tool. The

purpose of the key locators is to retrieve keys from the keystore for digital signature and encryption. The

request generator is configured for the client and the response generator is configured for the server. In

the following steps, you must configure either the client-side bindings in step 2 or the server-side bindings

in step 3.

1. Start the assembly tool and click Window > Open Perspective > J2EE.

2. Optional: Locate the client-side bindings using the Project Explorer window. The Client Deployment

Descriptor window is displayed. This Web service contains the bindings that you need to configure.

a. Expand the Web Services > Client section and double-click the name of the Web service.

b. Click the WS Binding tab and expand the Security Request Generator Binding Configuration

section.

3. Optional: Locate the server-side bindings using the Project Explorer window. The Web Services Editor

window is displayed. This Web service contains the bindings that you need to configure.

a. Expand the Web Services > Services section and double-click the name of the Web service.

b. Click the Binding Configurations tab and expand the Response Generator Binding Configuration

Details section.

4. Expand the Key locators section and click Add to add a new entry or click Edit to edit a selected

entry.

5. Specify a name for this configuration in the Key locator name field. This configuration name is

referenced in the Key locator field of the Key Information dialog.

6. Select a key locator implementation in the Key locator class field. Select the key locator class that

matches the Key Information configuration that references this key locator. The following default key

locator class implementations are supported for Version 6 and later applications:

com.ibm.wsspi.wssecurity.keyinfo.KeyStoreKeyLocator

This implementation locates and obtains the key from the specified keystore file.

com.ibm.wsspi.wssecurity.keyinfo.SignerCertKeyLocator

This implementation uses the public key from the certificate of the signer. This class

implementation is used by the response generator.

com.ibm.wsspi.wssecurity.keyinfo.X509TokenKeyLocator

This implementation uses the X.509 security token from the sender message for digital

signature validation and encryption. This class implementation is used by the request

consumer and the response consumer.

7. Select the Use key store option if you need to configure a key store for this key locator. Whether you

need to configure the key store information for a key locator depends upon the key locator class and

your application configuration. For example, if you select the

com.ibm.wsspi.wssecurity.keyinfo.KeyStoreKeyLocator key locator class in the previous step, configure

the key store information for this key locator.

a. Specify a keystore password in the Key store storepass field. The keystore storepass is the

password that is required to access the keystore file.

b. Specify the path to the keystore file in the Key store path field. The key store path is the directory

where the keystore resides. Make sure that wherever you deploy your application that can locate

your keystore file. Thus it is recommended that you use ${USER_INSTALL_ROOT} in the path name as

this variable expands to the WebSphere Application Server path on your machine.

c. Select a key store type from the Key store type field. The key store type that you select must

match the keystore file that is specified in the Key store path field. The following keystore types are

supported:

JKS Use this option if you are not using Java Cryptography Extensions (JCE) policy file and if

your keystore file uses the Java Keystore (JKS) format.

JCEKS

Use this option if you are using Java Cryptography Extensions policy file.

1022 Securing applications and their environment

JCERACFKS

Use JCERACFKS if the certificates are stored in a SAF key ring (z/OS only).

PKCS11

Use this format if your keystore uses the PKCS#11 file format. Keystores using this format

might contain RSA keys on cryptographic hardware or might encrypt keys that use

cryptographic hardware to ensure protection.

PKCS12

Use this option if your keystore uses the PKCS#12 file format.

8. Click Add under the Key field to add a key entry from the keystore file that you specified in the

previous step. This key is used for signature generation or encryption. The key that you specify must

match the key that is used for validation or decryption for the consumer.

a. Specify an alias name for the key in the Alias field. The key alias is used by the key locator to find

the key within the keystore file.

b. Specify the password that is associated with the key in the Key pass field. This password is

needed to access the key object within the keystore file.

c. Specify the key name in the Key name field. For digital signatures, the key name is used in the

signing information for the request generator or response generator to determine which key is used

to digitally sign the message. For encryption, the key name is used to determine which key is used

for encryption. You must specify a fully qualified, distinguished name for the key name. For

example, you might specify CN=Bob,O=IBM,C=US.

9. Click OK to save the configuration.

After you configure the key locator and any token generator that you need to configure, you can configure

the key information that references this key locator. For more information, see “Configuring key information

for the generator binding with an assembly tool.”

Configuring key information for the generator binding with an assembly tool

Prior to completing this task, you must complete the following steps:

1. Import your application into an assembly tool.

For information on how to import your application, see ″Importing an enterprise application EAR file″ in

the Application Server Toolkit documentation.

2. Configure the key locator that is referenced by the key information configuration. For more information,

see “Configuring key locators for the generator binding with an assembly tool” on page 1021.

3. Configure the token generator that is referenced by the key information configuration. For more

information, see “Configuring token generators with an assembly tool” on page 1015

Complete the following steps to configure the key information for the server-side and client-side bindings

using an assembly tool. This key information is used to specify the configuration that is needed to

generate the key for digital signature and encryption. The signing information and encryption information

configurations can share the key information. The key information on the consumer side is used for

specifying the information about the key that is used for validating the digital signature in the received

message or for decrypting the encrypted parts of the message. The request generator is configured for the

client and the response generator is configured for the server. In the following steps, you must configure

either the client-side bindings in step 2 or the server-side bindings in step 3.

1. Start the assembly tool.

2. Switch to the Java 2 Platform, Enterprise Edition (J2EE) perspective. Click Window > Open

Perspective > J2EE.

3. Optional: Locate the client-side bindings using the Project Explorer window. The Client Deployment

Descriptor window is displayed. This Web service contains the bindings that you need to configure.

a. Expand the Web Services > Client section and double-click the name of the Web service.

Chapter 14. Web services 1023

b. Click the WS Binding tab and expand the Security Request Generator Binding Configuration

section.

4. Optional: Locate the server-side bindings using the Project Explorer window. The Web Services Editor

window is displayed. This Web service contains the bindings that you need to configure.

a. Expand the Web Services > Services section and double-click the name of the Web service.

b. Click the Binding Configurations tab and expand the Response Generator Binding Configuration

Details section.

5. Expand the Key Information section and click Add to add a new entry or click Edit to edit a selected

entry.

6. Specify a unique name for this configuration in the Key information name field. For example, you might

specify gen_signkeyinfo. This configuration name is referenced by the Key information element within

the Signing Information and Encryption Information dialog windows. For more information, see

“Configuring signing information for the generator binding with an assembly tool” on page 1025 and

“Configuring encryption information for the generator binding with an assembly tool” on page 1078.

7. Select a key information type from the Key information type field. The key information types specify

different mechanisms for referencing security tokens. The assembly tools support the following key

information types:

STRREF

This type is the security token reference. The security token is directly referenced using

Universal Resource Identifiers (URIs). The following <KeyInfo> element is generated in the

SOAP message for this key information type:

<ds:KeyInfo>

 <wsse:SecurityTokenReference>

 <wsse:Reference URI="#mytoken" />

 </wsse:SecurityTokenReference>

</ds:KeyInfo>

EMB This type is the embedded token. The security token is directly embedded within the

<SecurityTokenReference> element. The following <KeyInfo> element is generated in the

SOAP message for this key information type:

<ds:KeyInfo>

 <wsse:SecurityTokenReference>

 <wsse:Embedded wsu:Id="tok1" />

 ...

 </wsse:Embedded>

 </wsse:SecurityTokenReference>

</ds:KeyInfo>

KEYID

This type is a key identifier. The security token is referenced using an opaque value that

uniquely identifies the token. The algorithm that is used for generating the key identifier value

depends upon the token type. The following <KeyInfo> element is generated in the Simple

Object Access Protocol (SOAP) message for this key information type:

<ds:KeyInfo xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

 <wsse:SecurityTokenReference>

 <wsse:KeyIdentifier ValueType="wsse:X509v3">/62wXO...</wsse:KeyIdentifier>

 </wsse:SecurityTokenReference>

</ds:KeyInfo>

KEYNAME

This type is the key name. The security token is referenced using a name that matches an

asserted identity within the token. The following <KeyInfo> element is generated in the SOAP

message for this key information type:

<ds:KeyInfo>

 <ds:KeyName>CN=Group1</ds:KeyName>

</ds:KeyInfo>

1024 Securing applications and their environment

Note: To be compliant with the Basic Security Profile (BSP), do not use the KEYNAME

information type. A SECURITY_TOKEN_REFERENCE must not use a KEYNAME to

reference a SECURITY_TOKEN.

X509ISSUER

This type is the X.509 certificate issuer name and serial number. The security token is

referenced by an issuer name and issuer serial number of an X.509 certificate. The following

<KeyInfo> element is generated in the SOAP message for this key information type:

<ds:KeyInfo>

 <wsse:SecurityTokenReference>

 <ds:X509Data>

 <ds:X509IssuerSerial>

 <ds:X509IssuerName>CN=Jones, O=IBM, C=US</ds:X509IssuerName>

 <ds:X509SerialNumber>1040152879</ds:X509SerialNumber>

 </ds:X509IssuerSerial>

 </ds:X509Data>

 </wsse:SecurityTokenReference>

</ds:KeyInfo>

8. Select the Use key locator option.

a. Select the name of a key locator configuration from the Key locator field. The value of this field is a

reference to a key locator that specifies how to find keys or certificates. For more information, see

“Configuring key locators for the generator binding with an assembly tool” on page 1021.

b. Specify a key name in the Key name field. The value is the name of a key that is used for

generating the digital signature and for encryption. The list of key names come from the key locator

that you specified previously.

9. Optional: Select the Use token option and a token generator configuration in the Token field if a token

generator is required for the key information configuration. The token that you select specifies a

reference to a token generator that is used for processing the security token within the message.

Before you specify a token reference, you must configure a token generator. For more information on

token generator configurations, see “Configuring token generators with an assembly tool” on page

1015.

After completing this task, configure the signing information or encryption information that references the

key information that is specified by this task. For more information, see “Configuring signing information for

the generator binding with an assembly tool” or “Configuring encryption information for the generator

binding with an assembly tool” on page 1078.

Configuring signing information for the generator binding with an assembly tool

You can configure the signing information for the server-side and client-side generator bindings by using

an assembly tool.

Prior to completing this task, you must complete the following steps:

1. Import your application into an assembly tool.

For information on how to import your application, see ″Importing an enterprise application EAR file″ in

the Application Server Toolkit documentation.

2. Specify which message parts to digitally sign. For more information, see “Signing message elements in

generator security constraints with keywords” on page 999 or “Signing message elements in generator

security constraints with an XPath expression” on page 1008.

3. Configure the key information that is referenced by the Key information element within the Signing

information dialog window. For more information, see “Configuring key information for the generator

binding with an assembly tool” on page 1023.

Complete the following steps to configure the signing information for the server-side and client-side

bindings by using an assembly tool. The request generator is configured for the client and the response

generator is configured for the server. In the following steps, you must configure either the client-side

bindings in step 2 or the server-side bindings in step 3.

Chapter 14. Web services 1025

1. Start the assembly tool.

 2. Switch to the Java 2 Platform, Enterprise Edition (J2EE) perspective. Click Window > Open

Perspective > J2EE.

 3. Optional: Locate the client-side bindings using the Project Explorer window. The Client Deployment

Descriptor window is displayed. This Web service contains the bindings that you must configure.

a. Expand the Web Services > Client section and double-click the name of the Web service.

b. Click the WS Binding tab and expand the Security Request Generator Binding Configuration

section.

 4. Optional: Locate the server-side bindings using the Project Explorer window. The Web Services

Editor window is displayed. This Web service contains the bindings that you must configure.

a. Expand the Web Services > Services section and double-click the name of the Web service.

b. Click the Binding Configurations tab and expand the Response Generator Binding Configuration

Details section.

 5. Expand the Signing Information section and click Add to add a new entry or select an existing entry

and click Edit. The Signing Information dialog window is displayed.

a. Specify a name for the signing information configuration in the Signing information name field. For

example, you might specify gen_signinfo.

b. Select a canonicalization method from the Canonicalization method algorithm field. The

canonicalization method algorithm is used to canonicalize the signing information before it is

digested as part of the signature operation. The following pre-configured algorithms are

supported:

v http://www.w3.org/2001/10/xml-exc-c14n#

v http://www.w3.org/2001/10/xml-exc-c14n#WithComments

v http://www.w3.org/TR/2001/REC-xml-c14n-20010315

v http://www.w3.org/TR/2001/REC-xml-c14n-20010315#WithComments

You must specify the same canonicalization algorithm for both the generator and the consumer.

For more information on configuring the signing information for the consumer, see “Configuring

signing information for the consumer binding with an assembly tool” on page 1048.

c. Optional: Select Show only FIPS Compliant Algorithms if you want only the FIPS compliant

algorithms to show in the encryption method algorithm drop-down lists. Use this option if you

expect this application to run on a WebSphere Application Server that has set the Use the United

States Federal Information Processing Standard (FIPS) algorithms option in the SSL

certificate and key management panel of the administrative console for WebSphere Application

Server.

d. Select a signature method algorithm from the Signature method algorithm field. The following

pre-configured algorithms are supported:

v http://www.w3.org/2000/09/xmldsig#rsa-sha1

v http://www.w3.org/2000/09/xmldsig#hmac-sha1

v http://www.w3.org/2000/09/xmldsig#dsa-sha1

Do not use this algorithm if you want the configured application to be compliant with the Basic

Security Profile (BSP). Any ds:SignatureMethod/@Algorithm element in a SIGNATURE based

on a symmetric key must have a value of http://www.w3.org/2000/09/xmldsig#rsa-sha1 or

http://www.w3.org/2000/09/xmldsig#hmac-sha1.

You must specify the same canonicalization algorithm for both the generator and the consumer.

For more information on configuring the signing information for the consumer, see “Configuring

signing information for the consumer binding with an assembly tool” on page 1048.

 6. Click Add in the Signing Key Information section to add a new key information entry or click Remove

to delete a selected entry. Complete the following substeps if you are adding a new key information

entry.

a. Specify a name in the Key information name field. For example, you might specify gen_skeyinfo.

1026 Securing applications and their environment

http://www.w3.org/2000/09/xmldsig#rsa-sha1
http://www.w3.org/2000/09/xmldsig#hmac-sha1
http://www.w3.org/2000/09/xmldsig#dsa-sha1
http://www.w3.org/2000/09/xmldsig#rsa-sha1
http://www.w3.org/2000/09/xmldsig#hmac-sha1

b. Select a key information reference from the list under the Key information element field. The value

in this field references the key information configuration that you specified previously. If you have

a key information configuration called gen_signkeyinfo that you want to use with this signing

information configuration, specify gen_signkeyinfo in the Key information element field. For more

information, see “Configuring key information for the generator binding with an assembly tool” on

page 1023.

c. Optional: Select the Use key information signature option if you want to sign the key

information within the SOAP message.

d. Optional: Select a key information signature type from the Type field if you select the Use key

information signature option. Select the keyinfo value to specify that the entire KeyInfo element

must be signed within the SOAP message. Select the keyinfochildelements value to specify that

the child elements within the KeyInfo element must be signed, but the KeyInfo element itself does

not need to be signed.

 7. Optional: Determine whether to disable the Inclusive namespace prefix list. The Exclusive XML

Canonicalization Version 1.0 specification recommends that you include all of the namespace

declarations that correspond to the namespace prefix in the canonicalization form. For security

reasons, WebSphere Application Server, by default, includes the prefix in the digital signature for Web

services security. However, some implementations of Web services security cannot handle this prefix

list. WebSphere Application Server can handle digitally signed messages that either contain or do not

contain the prefix list. If you experience a signature validation failure when a signed SOAP message

is sent and you are using another vendor in your environment, it is highly recommended that you

check with their Web site for a possible fix to their implementation before you disable this property. To

disable this property, complete the following steps:

a. Under Properties, click Add.

b. In the Name field, enter the com.ibm.wsspi.wssecurity.dsig.inclusiveNamespaces property.

c. In the Value field, enter the false value.

d. Click OK.

 8. Click OK to save your signing information configuration.

 9. Expand the Part References subsection and select the signing information configuration from the

Signing Information section.

10. Click Add in the Part References subsection to add a new entry or select an existing entry and click

Edit. The Part References dialog window is displayed.

a. Specify a name for the part reference configuration in the Part reference name field.

b. Select a integrity part configuration in the Integrity part field. For more information on how to

configure the integrity part, see “Signing message elements in generator security constraints with

keywords” on page 999 or “Signing message elements in generator security constraints with an

XPath expression” on page 1008.

c. Optional: Select Show only FIPS Compliant Algorithms if you want only the FIPS compliant

algorithms to show in the encryption method algorithm drop-down lists. Use this option if you

expect this application to run on a WebSphere Application Server that has set the Use the United

States Federal Information Processing Standard (FIPS) algorithms option in the SSL

certificate and key management panel of the administrative console for WebSphere Application

Server.

d. Select a digest method algorithm in the Digest method algorithm field.

WebSphere Application Server supports the following digest method algorithms:

v http://www.w3.org/2000/09/xmldsig#sha1

v http://www.w3.org/2001/04/xmlenc#sha256

v http://www.w3.org/2001/04/xmlenc#sha512

This digest method algorithm is used to create the digest for each message part that is specified

by this part reference.

Chapter 14. Web services 1027

http://www.w3.org/TR/xml-exc-c14n/
http://www.w3.org/TR/xml-exc-c14n/

e. Expand the Transforms subsection and the part reference configuration from the Part reference

subsection.

f. Click Add in the Transforms subsection to add a new entry or select an existing entry and click

Edit. The Transform dialog window is displayed.

g. Specify a transform name in the Name field. For example, you might specify

reqint_body_transform1.

h. Select a transform algorithm from the Algorithm field. The following transform algorithms are

supported:

http://www.w3.org/2001/10/xml-exc-c14n#

This algorithm specifies the World Wide Web Consortium (W3C) Exclusive

Canonicalization recommendation.

http://www.w3.org/TR/1999/REC-xpath-19991116

This algorithm specifies the W3C XML path language recommendation. If you specify this

algorithm, you must specify the property name and value by clicking Properties, which is

displayed under Additional properties. For example, you might specify the following

information:

Property

com.ibm.wsspi.wssecurity.dsig.XPathExpression

Value not(ancestor-or-self::*[namespace-uri()=’http://www.w3.org/2000/09/
xmldsig#’ and local-name()=’Signature’])

Note: Do not use this transform algorithm if you want your configured application to be

compliant with the Basic Security Profile (BSP). Instead use http://www.w3.org/
2002/06/xmldsig-filter2 to ensure compliance.

http://www.w3.org/2002/06/xmldsig-filter2

This algorithm specifies the XML-Signature XPath Filter Version 2.0 proposed

recommendation.

 When you use this algorithm, you must specify a set of properties in the Transform

property fields. You can use multiple property sets for the XPath Filter Version 2. Thus, it

is recommended that your property names end with the number of the property set, which

is denoted by an asterisk in the following examples:

v To specify an XPath expression for the XPath filter2, you might use:

name com.ibm.wsspi.wssecurity.dsig.XPath2Expression_*

v To specify a filter type for each XPath, you might use:

name com.ibm.wsspi.wssecurity.dsig.XPath2Filter_*

Following this expression, you can have a value, [intersect], [subtract], or [union].

v To specify the processing order for each XPath, you might use:

name com.ibm.wsspi.wssecurity.dsig.XPath2Order_*

Following this expression, indicate the processing order of the XPath.

The following is a list of complete examples:

com.ibm.wsspi.wssecurity.dsign.XPath2Filter_1 = [intersect]

com.ibm.wsspi.wssecurity.dsign.XPath2Order_1 = [1]

com.ibm.wsspi.wssecurity.dsign.XPath2Expression_2 = [XPath expression#2]

com.ibm.wsspi.wssecurity.dsign.XPath2Filter_2 = [subtract]

com.ibm.wsspi.wssecurity.dsign.XPath2Filter_2 = [1]

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#STR-
Transform

1028 Securing applications and their environment

http://www.w3.org/2002/07/decrypt#XML

This algorithm specifies the W3C decryption transform for XML Signature

recommendation.

http://www.w3.org/2000/09/xmldsig#enveloped-signature

This algorithm specifies the W3C recommendation for XML digital signatures.

The transform algorithm that you select for the generator must match the transform algorithm for

the consumer.

11. Click OK.

After you complete this task for the generator binding, you must configure the signing information for

consumer binding.

Signing message elements in consumer security constraints with keywords

You can specify which message parts or elements must be signed when you configure the consumer

security constraints for either the response consumer or the request consumer.

Prior to completing this task, you must import your application into an assembly tool.

See information about importing an enterprise application EAR file in the Application Server Toolkit

documentation.

Complete the following steps to specify which message parts or elements must be signed when you

configure the consumer security constraints for either the response consumer or the request consumer.

The response consumer is configured for the client and the request consumer is configured for the server.

If the required parts are not signed, the request or response is rejected and a SOAP fault is returned to

the caller. In the following steps, you must configure either the client-side extensions in step 2 or the

server-side extensions in step 3.

1. Start the assembly tool.

2. Switch to the Java 2 Platform, Enterprise Edition (J2EE) perspective. Click Window > Open

Perspective > J2EE.

3. Optional: Locate the client-side extensions using the Project Explorer window. The Client Deployment

Descriptor window is displayed. This Web service contains the extensions that you need to configure.

a. Expand the Web Services > Client section and double-click the name of the Web service.

b. Click the WS Extension tab and expand the Response Consumer Configuration section.

4. Optional: Locate the server-side extensions using the Project Explorer window. The Web Services

Editor window is displayed. This Web service contains the extensions that you need to configure.

a. Expand the Web Services > Services section and double-click the name of the Web service.

b. Click the Extensions tab and expand the Request Consumer Service Configuration Details

section.

5. Expand the Required Integrity section. Integrity refers to digital signature while confidentiality refers to

encryption. Integrity decreases the risk of data modification when you transmit data across a network.

For more information on digitally signing SOAP messages, see “XML digital signature” on page 998.

6. Click Add to indicate which message parts or elements the consumer expects to be signed. The

Required Integrity Dialog window is displayed.

a. Specify a name for the integrity element under Required Integrity Name field.

b. Specify a usage type in the Usage type field. This field specifies the requirement for the integrity

element. The following options are available:

Required

If you select Required and the required message parts or elements are not signed, then

the message is rejected with SOAP fault.

Chapter 14. Web services 1029

Optional

If you select Optional, then the digital signature of the selected message parts or elements

is verified if they are signed. However, the consumer does not reject the message if the

selected message parts or elements are not signed.

7. Click Add under the Message Parts section and select the Message parts dialect. The

http://www.ibm.com/websphere/webservices/wssecurity/dialect-was dialect specifies which message

parts or elements are expected to be signed using keywords. If you select this dialect, you can select

one of the following keywords under the Message parts keyword heading:

body Specifies the user data portion of the message. If you select this keyword, the body is checked

to see if it is signed.

timestamp

Specifies that the standalone timestamp element within the message is checked for a digital

signature. The timestamp element determines whether the message is valid based upon the

time that the message is sent and then received. If the timestamp option is selected, make

sure that there is a standalone timestamp element in the message. If the element does not

exist, see “Adding a stand-alone time stamp in consumer security constraints” on page 1081.

securitytoken

Specifies that the security token authenticates the client. If this keyword is selected, the

security token or tokens in the SOAP message are checked to determine if they are signed.

For example, if you are sending a UsernameToken element within the message, you can

specify that it is signed using this keyword.

dsigkey

Specifies that the key information element, which is used for digital signature, is checked to

determine if it is signed.

enckey Specifies that the key information element, which is used for encryption, is checked to

determine if it is signed.

messageid

Specifies that the <wsa:MessageID> element within the message is checked to determine if it is

signed.

to Specifies that the <wsa:To> element within the message is checked to determine if it is signed.

action Specifies that the <wsa:Action> element is checked to determine if it is signed.

relatesto

Specifies that the <wsa:RelatesTo> element within the message is checked to determine if it is

signed.

wscontext

Specifies the WS-Context header for the SOAP header. For more information, see Propagating

work area context over Web services.

wsafrom

Specifies the <wsa:From> WS-Addressing From element in the SOAP header.

wsareplyto

Specifies the <wsa:ReplyTo> WS-Addressing ReplyTo element in the SOAP header.

wsafaultto

Specifies the <wsa:FaultTo> WS-Addressing FaultTo element in the SOAP header.

wsaall Specifies all of the WS-Addressing elements in the SOAP header.

8. Click OK to save the configuration changes.

Note: These configurations for the consumer and the generator must match.

1030 Securing applications and their environment

In addition to specifying the message parts or elements that are expected to be signed, you also can

specify that nonce and timestamp elements are expected to be included in the signed elements. For

more information, see the following articles:

v “Adding time stamps for integrity in consumer security constraints with keywords”

v “Adding time stamps for integrity in consumer security constraints with an XPath expression” on

page 1036

v “Adding a nonce for integrity in consumer security constraints with keywords” on page 1033

v “Adding a nonce for integrity in consumer security constraints with an XPath expression” on page

1038

After you specify which message parts to check for a digital signature, you must specify which signature

algorithm is used to validate the signature. For more information, see “Configuring signing information for

the consumer binding with an assembly tool” on page 1048.

Adding time stamps for integrity in consumer security constraints with keywords:

You can specify that when a time stamp is embedded in a particular element, the parent of the time stamp

is expected to be signed with the message parts.

 Prior to completing this task, you must import your application into an assembly tool.

For information on how to import your application, see ″Importing an enterprise application EAR file″ in the

Application Server Toolkit documentation.

Complete the following steps to specify that the parent element of the time stamp is expected in the

element. Also, the time stamp is included in the signature for the message parts. Configure the consumer

security constraints for either the response consumer or the request consumer. The response consumer is

configured for the client and the request consumer is configured for the server. In the following steps, you

must configure either the client-side extensions in step 2 or the server-side extensions in step 3.

1. Start the assembly tool.

2. Switch to the Java 2 Platform, Enterprise Edition (J2EE) perspective. Click Window > Open

Perspective > J2EE.

3. Optional: Locate the client-side extensions using the Project Explorer window. The Client Deployment

Descriptor window is displayed. This Web service contains the extensions that you need to configure.

Complete the following steps to locate the client-side extensions:

a. Expand the Web Services > Client section and double-click the name of the Web service.

b. Click the WS Extension tab and expand the Response Consumer Configuration section.

4. Optional: Locate the server-side extensions using the Project Explorer window. The Web Services

Editor window is displayed. This Web service contains the extensions that you need to configure.

Complete the following steps to locate the server-side extensions:

a. Expand the Web Services > Services section and double-click the name of the Web service.

b. Click the Extensions tab and expand the Request Consumer Service Configuration Details

section.

5. Expand the Required Integrity section. Integrity refers to digital signature while confidentiality refers to

encryption. Integrity decreases the risk of data modification when you transmit data across a network.

For more information on digitally signing SOAP messages, see “XML digital signature” on page 998.

6. Click Add to specify a time stamp that is expected in the parent element of the keyword. The parent

element of the time stamp is also expected to be included in the signature for the message part. The

Required Integrity Dialog window is displayed. Before you configure the time stamp in the Required

Integrity, you must configure at least one message part or element that is expected to be signed.

Complete the following steps to specify a configuration:

a. Specify a name for the integrity element in the Required Integrity Name field.

Chapter 14. Web services 1031

b. Specify a usage type in the Usage type field. This field specifies the requirement for the integrity

element. The value of this attribute is either Required or Optional. The following options are

available:

Required

If you select Required and the required message parts or elements are not signed, then

the message is rejected with SOAP fault.

Optional

If you select Optional, then the digital signature of the selected message parts or elements

is verified if they are signed. However, the consumer does not reject the message if the

selected message parts or elements are not signed.

7. In the Timestamp section, click Add and select the Timestamp dialect. The http://www.ibm.com/
websphere/webservices/wssecurity/dialect-was dialect specifies the parent element of the expected

time stamp. If you select this dialect, you can select one of the following keywords under the

Timestamp keyword heading:

body Specifies the user data portion of the message. If you select the body option, a time stamp is

embedded in SOAP body. Also, the parent of the time stamp (SOAP body) is expected to be

signed with the message parts in the Required Integrity.

securitytoken

Specifies that a time stamp is expected to be embedded in the security token element. Also,

the parent of the time stamp (security token) is expected to be signed with the message parts

in the Required Integrity.

dsigkey

Specifies that the time stamp is inserted into the key information element, which is used for

digital signature, and the key information element is signed.

enckey Specifies that the time stamp is inserted into the key information element, which is used for

encryption, and the key information element is signed.

messageid

Specifies that the time stamp is inserted into the <wsa:MessageID> element and the

<wsa:MessageID> element is signed.

to Specifies that the time stamp is inserted into the <wsa:To> element within the message and

that the <wsa:To> element is signed.

action Specifies that the <wsa:Action> element is signed.

relatesto

Specifies that the times tamp is inserted into the <wsa:RelatesTo> element within the message

and the <wsa:RelatesTo> element is signed.

wscontext

Specifies the WS-Context header for the SOAP header. For more information, see Propagating

work area context over Web services.

wsafrom

Specifies the <wsa:From> WS-Addressing From element in the SOAP header.

wsareplyto

Specifies the <wsa:ReplyTo> WS-Addressing ReplyTo element in the SOAP header.

wsafaultto

Specifies the <wsa:FaultTo> WS-Addressing FaultTo element in the SOAP header.

wsaall Specifies all of the WS-Addressing elements in the SOAP header.

8. If you have not defined a message part for Required Integrity, you must define at least one message

part to add a time stamp for Required Integrity. Complete the following steps to define a message part:

1032 Securing applications and their environment

a. In the Message Parts section, click Add and select http://www.ibm.com/websphere/webservices/
wssecurity/dialect-was in the Message parts dialect field.

b. In the Message Parts section, select the message parts keyword.

c. Click OK to save the configuration changes.

Note: These configurations for the consumer and the generator must match.

In addition to the time stamp, you can specify that the nonce is signed. For more information, see the

following articles:

v “Adding a nonce for integrity in consumer security constraints with keywords”

v “Adding a nonce for integrity in consumer security constraints with an XPath expression” on page

1038

After you have specified which message parts to digitally sign, you must specify which method is used to

digitally sign the message. For more information, see “Configuring signing information for the consumer

binding with an assembly tool” on page 1048.

Adding a nonce for integrity in consumer security constraints with keywords:

Prior to completing this task, you must import your application into an assembly tool.

For information on how to import your application, see ″Importing an enterprise application EAR file″ in the

Application Server Toolkit documentation.

Nonce for integrity is used to specify that a nonce is embedded in a particular element. The parent

element of the nonce is signed with the message parts in the required integrity. Complete the following

steps to specify a nonce for integrity using keywords when you configure the consumer security

constraints for either the response consumer or the request consumer. The response consumer is

configured for the client and the request consumer is configured for the server. In the following steps, you

must configure either the client-side bindings in step 2 or the server-side bindings in step 3.

1. Start the assembly tool and click Window > Open Perspective > J2EE.

2. Optional: Locate the client-side bindings using the Project Explorer window. The Client Deployment

Descriptor window is displayed. This Web service contains the extensions that you need to configure.

Complete the following steps to locate the client-side bindings:

a. Expand the Web Services > Client section and double-click the name of the Web service.

b. Click the WS Extension tab and expand the Response Consumer Configuration section.

3. Optional: Locate the server-side bindings using the Project Explorer window. The Web Services Editor

window is displayed. This Web service contains the bindings that you need to configure. Complete the

following steps to locate the server-side bindings:

a. Expand the Web Services > Services section and double-click the name of the Web service.

b. Click the Extensions tab and expand the Request Consumer Service Configuration Details

section.

4. Expand the Required Integrity section. Integrity refers to digital signature while confidentiality refers to

encryption. Integrity decreases the risk of data modification when you transmit data across a network.

For more information on digitally signing Simple Object Access Protocol (SOAP) messages, see “XML

digital signature” on page 998.

5. Click Add to specify a nonce for integrity. The Required Integrity Dialog window is displayed. Complete

the following steps to specify a configuration:

a. Specify a name for the integrity element in the Required Integrity Name field.

b. Specify a usage type in the Usage type field. This field specifies the requirement for the integrity

element. The value of this attribute is either Required or Optional.

Chapter 14. Web services 1033

Required

If you select Required and the required message parts or elements are not signed, then

the consumer rejects the message and issues a SOAP fault.

Optional

If you select Optional and the message parts or elements are signed, then the digital

signature is verified. However, the consumer does not reject the message if the selected

message parts or elements are not signed.

6. Under Nonce, click Add and select the nonce dialect. The http://www.ibm.com/websphere/webservices/
wssecurity/dialect-was dialect specifies the message part to which a nonce is added as a child element

and signed with the message parts in the required integrity. If you select this dialect, you can select

one of the following keywords under Nonce keyword:

body Specifies the user data portion of the message. If this option is selected, a nonce is embedded

in the Simple Object Access Protocol (SOAP) body element. Also, the parent of the nonce

(SOAP body) is expected to be signed with the message parts in the required integrity.

timestamp

Specifies that the nonce is embedded in the stand-alone timestamp element within the

message. Also, the parent of the nonce (timestamp) is expected to be signed with the

message parts in the required integrity. If timestamp keyword is selected, make sure that there

is a standalone timestamp element in the message. If not, refer to the “Adding a stand-alone

time stamp in consumer security constraints” on page 1081 article.

securitytoken

Specifies that the nonce element is expected to exist within the security token element. Also,

the parent of the nonce (securitytoken) is expected to be signed with the message parts in the

required integrity.

dsigkey

Specifies that the nonce is inserted into the key information element, which is used for digital

signature, and the key information element is signed.

enckey

Specifies that the nonce is inserted into the key information element, which is used for

encryption, and the key information element is signed.

messageid

Specifies that the nonce is inserted into the <wsa:MessageID> element and that the

<wsa:MessageID> element is signed.

to Specifies that the nonce is inserted into the <wsa:To> element within the message and that the

<wsa:To> element is signed.

action Specifies that the <wsa:Action> element is signed.

relatesto

Specifies that the nonce is inserted into the <wsa:RelatesTo> element within the message and

that the <wsa:RelatesTo> element is signed.

wscontext

Specifies the WS-Context header for the SOAP header. For more information, see Propagating

work area context over Web services.

wsafrom

Specifies the <wsa:From> WS-Addressing From element in the SOAP header.

wsareplyto

Specifies the <wsa:ReplyTo> WS-Addressing ReplyTo element in the SOAP header.

wsafaultto

Specifies the <wsa:FaultTo> WS-Addressing FaultTo element in the SOAP header.

1034 Securing applications and their environment

wsaall Specifies all of the WS-Addressing elements in the SOAP header.

7. If you have not previously specified message part in required integrity, click Add in the Message Parts

section to add the message parts. You must define at least one message part in required integrity to

specify a nonce in required integrity.

8. In the Message Parts section, select the message parts keyword.

9. Click OK to save the configuration changes.

Note: These configurations on the consumer side and the generator side must match.

In addition to the nonce, you can specify that the timestamp element is signed. For more information,

see the following articles:

v “Adding time stamps for integrity in consumer security constraints with keywords” on page 1031

v “Adding time stamps for integrity in consumer security constraints with an XPath expression” on

page 1036

After you specify which message parts to digitally sign, you must specify which method is used to digitally

sign the message. For more information, see “Configuring signing information for the consumer binding

with an assembly tool” on page 1048.

Signing message elements in consumer security constraints with an XPath

expression

You can specify which message parts are expected to be signed using an XPath expression.

Prior to completing this task, you must import your application into an assembly tool.

For information on how to import your application, see ″Importing an enterprise application EAR file″ in the

Application Server Toolkit documentation.

The following information explains the difference between using an XPath expression and using keywords

to specify which part of the message to sign:

XPath expression

Specify any part of the message using an XPath expression. XPath is a language that is used to

address parts of an XML document. You can find information on XPath syntax at the following

Web site: http://www.w3.org/TR/1999/REC-xpath-19991116.

Keywords

Specify only elements within the message using predefined keywords.

Complete the following steps to specify which message parts are expected to be signed using an XPath

expression. In the following steps, you must configure either the client-side extensions in step 2 or the

server-side extensions in step 3.

1. Start the assembly tool.

2. Switch to the Java 2 Platform, Enterprise Edition (J2EE) perspective. Click Window > Open

Perspective > J2EE.

3. Optional: Locate the client-side extensions using the Project Explorer window. The Client Deployment

Descriptor window is displayed. This Web service contains the extensions that you must configure.

Complete the following steps to locate the client-side extensions:

a. Expand the Web Services > Client section and double-click the name of the Web service.

b. Click the WS Extension tab and expand the Response Consumer Configuration section.

4. Optional: Locate the server-side extensions using the Project Explorer window. The Web Services

Editor window is displayed. This Web service contains the extensions that you must configure.

Complete the following steps to locate the server-side extensions:

a. Expand the Web Services > Services section and double-click the name of the Web service.

Chapter 14. Web services 1035

http://www.w3.org/TR/1999/REC-xpath-19991116

b. Click the Extensions tab and expand the Request Consumer Service Configuration Details

section.

5. Expand the Required Integrity section. Integrity refers to digital signature and confidentiality refers to

encryption. Integrity decreases the risk of data modification when you transmit data across a network.

For more information on digitally signing SOAP messages, see “XML digital signature” on page 998.

6. Click Add to indicate which message parts to validate for digital signature. The Required Integrity

Dialog window is displayed. Complete the following steps to specify a configuration:

a. Specify a name for the integrity element under Required Integrity Name field.

b. Specify a usage type in the Usage type field. This field specifies the requirement for the integrity

element. The value of this attribute is either Required or Optional.

Required

If you select Required and the required message parts or elements are not signed, the

message is rejected with SOAP fault.

Optional

If you select Optional, then the digital signature of the selected message parts or elements

is verified if they are signed. However, the consumer does not reject the message if the

selected message parts or elements are not signed.

7. Click Add under the Message Parts section of the Required Integrity Dialog window. Complete the

following steps to specify the message parts dialect and its message part:

a. Select the Message parts dialect from the Message Parts section of the Required Integrity Dialog

window. If you select the http://www.w3.org/TR/1999/REC-xpath-19991116 dialect, the message

part that is validated for digital signature is specified by the XPath expression.

Do not use this transform algorithm if you want your configured application to be compliant with the

Basic Security Profile (BSP). Instead use http://www.w3.org/2002/06/xmldsig-filter2 to ensure

compliance.

b. Specify the message part to be validated for digital signature using an XPath expression in the

Message parts keyword field. For example, to specify that the message body is checked to

determine if it is signed, you might add the following expression in the Message parts keyword field

as one continuous line:

/*[namespace-uri()=’http://schemas.xmlsoap.org/soap/envelope/’

and local-name()=’Envelope’]/*[namespace-uri()=’http://schemas.xmlsoap.org/

soap/envelope/’ and local-name()=’Body’]

Important: Verify that your XPath syntax is correct.

8. Click OK to save the configuration changes.

Note: These configurations for the consumer and the generator must match.

In addition to the message parts, you also can specify that WebSphere Application Server check the

nonce and timestamp elements for a digital signature. For more information, see the following articles:

v “Adding time stamps for integrity in consumer security constraints with keywords” on page 1031

v “Adding time stamps for integrity in consumer security constraints with an XPath expression”

v “Adding a nonce for integrity in consumer security constraints with keywords” on page 1033

v “Adding a nonce for integrity in consumer security constraints with an XPath expression” on page

1038

After you specify which message parts to check for a digital signature, you must specify which method is

used to validate the signature. For more information, see “Configuring signing information for the consumer

binding with an assembly tool” on page 1048.

Adding time stamps for integrity in consumer security constraints with an XPath expression:

Prior to completing this task, you must import your application into an assembly tool.

1036 Securing applications and their environment

For information on how to import your application, see ″Importing an enterprise application EAR file″ in the

Application Server Toolkit documentation.

The following information explains the difference between using an XPath expression and using keywords

to specify which part of the message to sign:

XPath expression

Specify any part of the message using an XPath expression. XPath is a language that is used to

address parts of an XML document. You can find information on XPath syntax at the following

Web site: http://www.w3.org/TR/1999/REC-xpath-19991116.

Keywords

Specify only elements within the message using predefined keywords.

This task is to specify that a time stamp is expected to be added in an element of the SOAP message that

is specified by the XPath language syntax. The element is expected to be signed with the message part

that is specified in the Required Integrity Dialog window. Complete the following steps to specify the time

stamp for integrity using an XPath expression when you configure the consumer security constraints for

either the response consumer or the request consumer. The response consumer is configured for the

client and the request consumer is configured for the server. In the following steps, you must configure

either the client-side extensions in step 2 or the server-side extensions in step 3.

 1. Start the assembly tool.

 2. Switch to the Java 2 Platform, Enterprise Edition (J2EE) perspective. Click Window > Open

Perspective > J2EE.

 3. Optional: Locate the client-side extensions using the Project Explorer window. The Client

Deployment Descriptor window is displayed. This Web service contains the extensions that you need

to configure.

a. Expand the Web Services > Client section and double-click the name of the Web service.

b. Click the WS Extension tab and expand the Response Consumer Configuration section.

 4. Optional: Locate the server-side extensions using the Project Explorer window. The Web Services

Editor window is displayed. This Web service contains the extensions that you need to configure.

a. Expand the Web Services > Services section and double-click the name of the Web service.

b. Click the Extensions tab and expand the Request Consumer Service Configuration Details

section.

 5. Expand the Required Integrity section. Integrity refers to digital signature while confidentiality refers to

encryption. Integrity decreases the risk of data modification when you transmit data across a network.

For more information on digitally signing Simple Object Access Protocol (SOAP) messages, see “XML

digital signature” on page 998.

 6. Click Add to specify a time stamp for integrity. The Required Integrity Dialog window is displayed.

a. Specify a name for the integrity element in the Required Integrity Name field.

b. Specify a usage type in the Usage type field. This field specifies the requirement for the integrity

element. The value of this attribute is either Required or Optional.

 7. Click Add in the Timestamp section of the Required Integrity Dialog window.

a. Select the Timestamp dialect from the Timestamp section. The http://www.w3.org/TR/1999/REC-
xpath-19991116 dialect specifies the message part to which the time stamp is added and signed

using the XPath expression.

b. Select the message part in the Timestamp keyword field to which the time stamp is added and

signed using an XPath expression. For example, to specify that the time stamp is added to the

body and is signed, you might specify the following expression for the Timestamp keyword:

/*[namespace-uri()=’http://schemas.xmlsoap.org/soap/envelope/’

and local-name()=’Envelope’]/*[namespace-uri()=’http://schemas.xmlsoap.org/

soap/envelope/’ and local-name()=’Body’]

Chapter 14. Web services 1037

http://www.w3.org/TR/1999/REC-xpath-19991116

Important: Verify that your XPath expression syntax is correct.

 8. If you have not previously defined a message part in the Required Integrity Dialog window, click Add

under the Message Parts section and define a message part.

 9. In the Message Parts section, select the message parts keyword.

10. Click OK to save the configuration changes.

Note: These configurations for the consumer and the generator must match.

In addition to the time stamp, you can specify that the nonce is signed. For more information, see the

following articles:

v “Adding a nonce for integrity in consumer security constraints with keywords” on page 1033

v “Adding a nonce for integrity in consumer security constraints with an XPath expression”

Important: You must define one message part in the required integrity if you want to use the time

stamp feature for required integrity.

After you have specified which message parts to digitally sign, you must specify which method is used to

digitally sign the message. For more information, see “Configuring signing information for the consumer

binding with an assembly tool” on page 1048.

Adding a nonce for integrity in consumer security constraints with an XPath expression:

You can specify a nonce for integrity using an XPath expression when you configure the consumer

security constraints for either the response consumer or the request consumer.

 Prior to completing this task, you must import your application into an assembly tool.

See information about Importing an enterprise application EAR file in the Application Server Toolkit

documentation.

The following information explains the difference between using an XPath expression and using keywords

to specify which part of the message to sign:

XPath expression

Specify any part of the message using an XPath expression. XPath is a language that is used to

address parts of an XML document. You can find information on XPath syntax at the following

Web site: http://www.w3.org/TR/1999/REC-xpath-19991116.

Keywords

Specify only elements within the message using predefined keywords.

Nonce for integrity is used to specify that a nonce is embedded in a particular element within the message

and that the element is signed.

Complete the following steps to specify a nonce for integrity using an XPath expression when you

configure the consumer security constraints for either the response consumer or the request consumer.

The response consumer is configured for the client and the request consumer is configured for the server.

In the following steps, you must configure either the client-side bindings in step 2 or the server-side

bindings in step 3.

1. Start the assembly tool and click Window > Open Perspective > J2EE.

2. Optional: Locate the client-side bindings using the Project Explorer window. The Client Deployment

Descriptor window is displayed. This Web service contains the extensions that you need to configure.

Complete the following steps to locate the client-side bindings:

a. Expand the Web Services > Client section and double-click the name of the Web service.

b. Click the WS Extension tab and expand the Response Consumer Configuration section.

1038 Securing applications and their environment

http://www.w3.org/TR/1999/REC-xpath-19991116

3. Optional: Locate the server-side bindings using the Project Explorer window. The Web Services Editor

window is displayed. This Web service contains the bindings that you need to configure. Complete the

following steps to locate the server-side bindings:

a. Expand the Web Services > Services section and double-click the name of the Web service.

b. Click the Extensions tab and expand the Request Consumer Service Configuration Details

section.

4. Expand the Required Integrity section. Integrity refers to digital signature while confidentiality refers to

encryption. Integrity decreases the risk of data modification when you transmit data across a network.

For more information on digitally signing SOAP messages, see “XML digital signature” on page 998.

5. Click Add to specify a nonce for integrity. The Required Integrity Dialog window is displayed. Complete

the following steps to specify a configuration:

a. Specify a name for the integrity element in the Required Integrity Name field.

b. Specify a usage type in the Usage type field. This field specifies the requirement for the integrity

element. The value of this attribute is either Required or Optional.

6. Click Add in the Nonce section of the Required Integrity Dialog window. Complete the following steps

to configure the nonce dialect and message part:

a. Select the Nonce dialect from the Nonce section. The http://www.w3.org/TR/1999/REC-xpath-
19991116 dialect specifies the message part to which a nonce is added and signed using an XPath

expression.

b. Select the message part in the Nonce keyword field to which a nonce is added and signed using

an XPath expression. For example, to specify that a nonce is added to the body and that it is

signed, you might specify the following expression for the Nonce keyword:

/*[namespace-uri()=’http://schemas.xmlsoap.org/soap/envelope/’

and local-name()=’Envelope’]/*[namespace-uri()=’http://schemas.xmlsoap.org/

soap/envelope/’ and local-name()=’Body’]

7. In the Message Parts section, click Add and select http://www.w3.org/TR/1999/REC-xpath-19991116 in

the Message parts dialect field.

8. In the Message Parts section, select the message parts keyword.

Important: You must select the same keyword in the Message parts keyword field as the keyword

that you selected in the Nonce keyword field.

9. Click OK to save the configuration changes.

Note: These configurations on the consumer side and the generator side must match.

In addition to the nonce, you can specify that the timestamp element is signed. For more information,

see the following articles:

v “Adding time stamps for integrity in consumer security constraints with keywords” on page 1031

v “Adding time stamps for integrity in consumer security constraints with an XPath expression” on

page 1036

After you specify which message parts to digitally sign, you must specify which method is used to digitally

sign the message. For more information, see “Configuring signing information for the consumer binding

with an assembly tool” on page 1048.

Configuring the collection certificate store for the consumer binding with an

assembly tool

Prior to completing this task, you must import your application into an assembly tool.

For information on how to import your application, see ″Importing an enterprise application EAR file″ in the

Application Server Toolkit documentation.

Chapter 14. Web services 1039

This task describes the steps to specify the collection certificate store for the consumer bindings at the

application level using an assembly tool. A collection certificate store is a collection of non-root certificate

authority (CA) certificates and certificate revocation lists (CRLs) that is used for validating an X.509

certificate embedded within the received SOAP message. The response consumer is configured for the

client and the request consumer is configured for the server. In the following steps, you must configure

either the client-side bindings in step 2 or the server-side bindings in step 3.

 1. Start the assembly tool.

 2. Switch to the Java 2 Platform, Enterprise Edition (J2EE) perspective. Click Window > Open

Perspective > J2EE.

 3. Optional: Locate the client-side bindings using the Project Explorer window. The Client Deployment

Descriptor window is displayed. This Web service contains the bindings that you need to configure.

Complete the following steps to locate the client-side bindings:

a. Expand the Web Services > Client section and double-click the name of the Web service.

b. Click the WS Binding tab and expand the Security Response Consumer Binding Configuration

section.

 4. Optional: Locate the server-side bindings using the Project Explorer window. The Web Services

Editor window is displayed. This Web service contains the bindings that you need to configure.

Complete the following steps to locate the server-side bindings:

a. Expand the Web Services > Services section and double-click the name of the Web service.

b. Click the Binding Configurations tab and expand the Request Consumer Binding Configuration

Details section.

 5. Expand the Certificate Store List > Collection Certificate Store section and click Add.

 6. Specify a unique certificate store name in the Name field. For example, specify cert1. The name of

the collection certificate store must be unique on the level in which it is defined. For example, the

name must be unique at the application level. The name specified in the certificate store name field is

used by other configurations to refer to a predefined collection certificate store. WebSphere

Application Server looks up the collection certificate store based on proximity. For example, if an

application binding refers to certificate store cert1, WebSphere Application Server will look first for

cert1 at the application level. If it is not found, it will look at the server level, and finally at the cell

level.

 7. Specify a certificate store provider in the Provider field. The IBMCertPath certificate path provider is

supported. To use another certificate path provider, you must define the provider implementation in

the provider list within the java.security file in the Software Development Kit (SDK).

 8. Click Add under X509 Certificate to specify a fully qualified path to an X.509 certificate, click the

name of an existing certificate path entry to edit it, or click Remove to delete it. This collection

certificate store is used to validate the certificate path of the incoming X.509-formatted security

tokens.

You can use the USER_INSTALL_ROOT variable as part of the path name. For example you might

specify ${USER_INSTALL_ROOT}/etc/ws-security/samples/intca2.cer. However, do not use this X.509

certificate path for production use. Obtain your own X.509 certificate from a certificate authority before

putting your WebSphere Application Server environment into production.

In the WebSphere Application Server administrative console, you can click Environment >

WebSphere Variables to configure the USER_INSTALL_ROOT variable.

 9. Click Add under CRL to specify the fully qualified path to a certificate revocation list (CRL), click an

existing CRL entry to edit it or click Remove to delete it.

For portability reasons, it is recommended that you use the WebSphere Application Server variables

to specify a relative path to the certificate revocation list. For example, you might use the

USER_INSTALL_ROOT variable to define a path such as ${USER_INSTALL_ROOT}/mycertstore/mycrl. For

a list of the supported variables in the WebSphere Application Server administrative console, click

Environment > WebSphere Variables.

The following list provides recommendations for using CRLs:

1040 Securing applications and their environment

v If CRLs are added to the collection certificate store, add the CRLs for the root certificate authority

and each intermediate certificate, if applicable. When the CRL is in the certificate collection store,

the certificate revocation status for every certificate in the chain is checked against the CRL of the

issuer.

v When the CRL file is updated, the new CRL does not take effect until you restart the Web service

application.

v Before a CRL expires, you must load a new CRL into the certificate collection store to replace the

old CRL. An expired CRL in the collection certificate store results in a certificate path (CertPath)

build failure.

10. Click OK to save your configuration.

Trusted ID evaluator

A trusted ID evaluator (com.ibm.wsspi.wssecurity.id.TrustedIDEvaluatorImpl) is an abstraction of the

mechanism that evaluates whether the given ID name is trusted.

Depending upon the implementation, you can use various types of infrastructure to store a list of the

trusted IDs, such as:

v Plain text file

v Database

v Lightweight Directory Access Protocol (LDAP) server

The trusted ID evaluator is typically used by the eventual receiver in a multi-hop environment. The Web

services security implementation invokes the trusted ID evaluator and passes the identity name of the

intermediary as a parameter. If the identity is evaluated and deemed trustworthy, the procedure continues.

Otherwise, an exception is created and the procedure is stopped.

Configuring token consumers with an assembly tool

Prior to completing this task, you must complete the following steps:

v Import your application into an assembly tool.

For information on how to import your application, see ″Importing an enterprise application EAR file″ in

the Application Server Toolkit documentation.

v Configure the security token in the extension file. For example, if you are configuring a token consumer

for a Lightweight Third Party Authentication (LTPA) token, you must first configure the LTPA token under

the Required Security Token section on the Extensions tab. For more information, see “Configuring the

security token requirement in consumer security constraints” on page 1084

v Configure a collection certificate store if the token consumer uses the PKCS#7 token type and you want

to package the certificate revocation lists (CRL) in the security token. For more information, see

“Configuring the collection certificate store for the consumer binding with an assembly tool” on page

1039.

A security token represents a set of claims that are made by a client. This set of claims might include a

name, password, identity, key, certificate, group, privilege, and so on. A security token is embedded in the

SOAP message within the SOAP header. The security token within the SOAP header is propagated from

the message sender to the intended message receiver. On the receiving side, the security handler for

WebSphere Application Server authenticates the security token and sets up the caller identity on the

running thread.

Complete the following steps to configure a token consumer for either the client-side bindings in step 2 or

the server-side bindings in step 3:

 1. Start the assembly tool.

 2. Switch to the Java 2 Platform, Enterprise Edition (J2EE) perspective. Click Window > Open

Perspective > J2EE.

Chapter 14. Web services 1041

3. Optional: Locate the client-side bindings using the Project Explorer window. The Client Deployment

Descriptor window is displayed. This Web service contains the bindings that you need to configure.

Complete the following steps to locate the client-side bindings:

a. Expand the Web Services > Client section and double-click the name of the Web service.

b. Click the WS Binding tab and expand the Security Response Consumer Configuration section.

 4. Optional: Locate the server-side bindings using the Project Explorer window. The Web Services

Editor window is displayed. This Web service contains the bindings that you need to configure.

Complete the following steps to locate the server-side bindings:

a. Expand the Web Services > Services section and double-click the name of the Web service.

b. Click the Binding Configurations tab and expand the Request Consumer Binding Configuration

Details section.

 5. Optional: Configure a trust anchor if you are configuring this token consumer for an X.509 security

token. Complete the following steps to configure the trust anchors:

a. Expand the Trust anchor section and click Add to add a new entry or click Edit to edit a selected

entry. The Trust anchor dialog window is displayed.

b. Specify a name for the trust anchor configuration in the Trust anchor name field.

c. Specify a keystore password in the Key store storepass field. The keystore storepass is the

password that is required to access the keystore file.

d. Specify the path to the keystore file in the Key store path field. The key store path is the directory

where the keystore resides. Make sure that wherever you deploy your application that the server

can locate your keystore file.

e. Select a key store type from the Key store type field. The key store type that you select must

match the keystore file that is specified in the Key store path field.

f. Click OK to save the trust anchor configuration.

 6. Expand the Token Consumer section and click Add to add a new entry or click Edit to edit a selected

entry. The Token Consumer Dialog window is displayed.

 7. Specify a name in the Token consumer name field. If this token consumer is for an X.509 certificate

and is used for signature validation or decryption, the token consumer name is referenced in the

Token field of the Key Information dialog window.

 8. Select a token consumer class in the Token consumer class field. Select the token consumer class

that matches the type of token that you are configuring. For example, if you are configuring a token

consumer that processes an X.509 security token in the received message, select the

com.ibm.wsspi.wssecurity.token.X509TokenConsumer token consumer class.

 9. Select a security token reference in the Security token field. The value in this field references the

security token that is configured in the extensions file. If you are configuring this token consumer for

an X.509 security token, where the token consumer class is

com.ibm.wsspi.wssecurity.token.X509tokenConsumer, leave this field blank.

10. Select the Use value type option and select the value type in the Value type field. Select the value

type of the security token that matches the type of token consumer that you are configuring. When

you select the value type, the assembly tool automatically enters the correct values in the Local name

and URI fields depending upon the type of security token that is specified by the value type.

11. Optional: Select the Use jaas.config option and specify a Java Authentication and Authorization

Service (JAAS) configuration name in the jaas.config.name field if a JAAS configuration is required for

the security token. The JAAS configuration name that you specify must be for the security token that

is specified for this token consumer. The following table lists the JAAS configuration names for the

different security tokens specified by the value type.

 Table 44. JAAS configuration names and the corresponding value type

jaas.config name Value type

system.wssecurity.UsernameToken Username Token

1042 Securing applications and their environment

Table 44. JAAS configuration names and the corresponding value type (continued)

jaas.config name Value type

system.wssecurity.IDAssertionUsernameToken Username Token (for IDAssertion)

system.wssecurity.X509BST X509 certificate token

system.wssecurity.PkiPath X509 certificates in a PKIPath

system.wssecurity.PKCS7 X509 certificates and CRLs in a PKCS#7

12. Optional: If a trusted ID evaluator is required for this token consumer, select either the Use trusted

ID evaluator option to define a new trusted ID evaluator or select the Use trusted ID evaluator

reference option to select an existing trusted ID evaluator that is defined in a default binding file. A

trusted ID evaluator is typically used by the target Web service in a multi-hop environment to

determine whether to trust the identity of the intermediary Web service. Complete the following steps

if you select the Use trusted ID evaluator option:

a. Specify a trusted ID evaluator implementation in the Trusted ID evaluator class field. The trusted

ID evaluators are implemented by specifying a class that implements the

com.ibm.wsspi.wssecurity.id.TrustedIDEvaluator interface. WebSphere Application Server Version

6.0.x provides the com.ibm.wsspi.wssecurity.id.TrustedIDEvaluatorImpl default implementation of a

trusted ID evaluator.

The implementation is initialized with a list of trusted identity names. The trusted identities are

specified as trustedIDEvaluator properties in the binding file. When a name is evaluated, it is

checked against a list of trusted identity names. If the name is in the list, it is trusted and if the

name is not in the list, it is not trusted.

b. Click Add under the Trusted ID evaluator property section to add a new entry or click Remove to

delete a selected entry. Each property entry represents a trusted identity.

c. Specify trustedId_trustmode in the Name field and the identity of the intermediary in the Value

field.

If you select the Use trusted ID evaluator reference option, specify the name of an existing Trusted

ID evaluator in the Trusted ID evaluator reference field.

13. Optional: Click Add under Property to add a new property for this token consumer or click Remove

to delete a selected property. If this token consumer needs to process a nonce and a time stamp that

is contained in a username token, define the properties in the following table.

 Table 45. Nonce and time stamp properties

Name Value

com.ibm.wsspi.wssecurity.token.username.verifyNonce true

com.ibm.wsspi.wssecurity.token.username.verifyTimestamp true

14. Optional: Select the Use certificate path settings option if you are configuring this token consumer

for an X.509 security token.

15. Select either the Certificate path reference option or the Trust any certificate option if you are

configuring this token consumer for an X.509 security token.

Important: When you configure a token consumer for an X.509 certificate token, use caution when

you select the Trust any certificate option. This option might compromise the security of

your Web service application by allowing the SOAP message to be signed or encrypted

using any certificate. It is recommended that you use the trust anchor and certificate

store list to validate the X.509 certificate embedded in the received SOAP message.

If you select the Certificate path reference option, complete the following steps:

a. Select a trust anchor reference from the list in the Trust anchor reference field. This reference is

the name of the trust anchor that specifies the key store, which contains the trusted root

certificate authority (CA) certificates.

Chapter 14. Web services 1043

b. Select a certificate store from the Certificate store reference field. A certificate store list contains

both non-root CA certificates (or intermediary certificates) and certificate revocation lists (CRLs).

16. Click OK to save your configuration.

Configure the key information if this token consumer configuration is for an X.509 security token. For more

information, see “Configuring key information for the consumer binding with an assembly tool” on page

1045.

Configuring the key locator for the consumer binding with an assembly tool

Prior to completing this task, you must import your application into an assembly tool.

For information on how to import your application, see ″Importing an enterprise application EAR file″ in the

Application Server Toolkit documentation.

Before configuring a key locator, you should know which key information configuration references this key

locator. For example, if you configure this key locator for the STRREF key information type, select the

com.ibm.wsspi.wssecurity.keyinfo.X509TokeyKeyLocator key locator class.

WebSphere Application Server, Version 6.0.x and later provides default key locator implementations that

you can choose or you can write your own implementation. Custom key locators must implement the

com.ibm.wsspi.wssecurity.keyinfo.KeyLocator interface. Using this implementation, you can locate keys

within any data source.

Complete the following steps to configure a key locator for the consumer using an assembly tool. The

purpose of the key locators is to find keys or certificates. The key locator information on the consumer side

is used to find the key for validating the digital signature in the received SOAP message or for decrypting

the encrypted parts of the message. The response consumer is configured for the client and the request

consumer is configured for the server. In the following steps, you must configure either the client-side

bindings in step 2 or the server-side bindings in step 3.

 1. Start the assembly tool.

 2. Switch to the Java 2 Platform, Enterprise Edition (J2EE) perspective. Click Window > Open

Perspective > J2EE.

 3. Optional: Locate the client-side bindings using the Project Explorer window. The Client Deployment

Descriptor window is displayed. This Web service contains the bindings that you need to configure.

Complete the following steps to locate the client-side bindings:

a. Expand the Web Services > Client section and double-click the name of the Web service.

b. Click the WS Binding tab and expand the Security Response Consumer Binding Configuration

section.

 4. Optional: Locate the server-side bindings using the Project Explorer window. The Web Services

Editor window is displayed. This Web service contains the bindings that you need to configure.

Complete the following steps to locate the server-side bindings:

a. Expand the Web Services > Services section and double-click the name of the Web service.

b. Click the Binding Configurations tab and expand the Request Consumer Binding Configuration

Details section.

 5. Expand the Key locators section and click Add to add a new entry or click Edit to edit a selected

entry.

 6. Specify a name for this configuration in the Key locator name field. This configuration name is

referenced in the Key locator field of the Key Information dialog.

 7. Select a key locator implementation in the Key locator class field. Select the key locator class that

matches the Key Information configuration that references this key locator. For example, select the

com.ibm.wsspi.wssecurity.keyinfo.X509TokenKeyLocator key locator class if the received Simple

Object Access Protocol (SOAP) message contains an X.509 certificate that is needed for signature

1044 Securing applications and their environment

validation. Select the com.ibm.wsspi.wssecurity.keyinfo.KeyStoreKeyLocator key locator class if the

key that is required for signature validation or decryption needs to be specified using a keystore file.

The com.ibm.wsspi.wssecurity.keyinfo.SignerCertKeyLocator key locator class is not used on the

consumer side. It is typically used in the response generator configuration for encrypting the response

message using the signer key from the request message.

 8. Select the Use key store option if you need to configure a key store for this key locator. Whether you

need to configure the key store information for a key locator depends upon the key locator class and

your application configuration. For example, if you select the

com.ibm.wsspi.wssecurity.keyinfo.KeyStoreKeyLocator key locator class in the previous step,

configure the key store information for this key locator.

a. Specify a keystore password in the Key store storepass field. The keystore storepass is the

password that is required to access the keystore file.

b. Specify the path to the keystore file in the Key store path field. The key store path is the directory

where the keystore resides. Make sure that wherever you deploy your application that the server

can locate your keystore file.

c. Select a key store type from the Key store type field. The key store type that you select must

match the keystore file that is specified in the Key store path field. The following keystore types

are supported:

JKS Use this option if you are not using Java Cryptography Extensions (JCE) policy file and if

your keystore file uses the Java Keystore (JKS) format.

JCEKS

Use this option if you are using Java Cryptography Extensions policy file.

JCERACFKS

Use JCERACFKS if the certificates are stored in a SAF key ring (z/OS only).

PKCS11

Use this format if your keystore uses the PKCS#11 file format. Keystores using this format

might contain RSA keys on cryptographic hardware or might encrypt keys that use

cryptographic hardware to ensure protection.

PKCS12

Use this option if your keystore uses the PKCS#12 file format.

 9. Click Add under the Key field to add a key entry from the keystore file that you specified in the

previous step. This key is used for signature validation or decryption. The key that you specify must

match the key that is used for digital signing or encryption for the generator. Complete the following

steps to add a key entry:

a. Specify an alias name for the key in the Alias field.

b. Specify the password that is associated with the key in the Key pass field. This password protects

the private key of the key pair that is specified by this key.

c. Specify the key name in the Key name field. The key name specifies the Distinguished Name

(DN) for the owner of the key.

10. Click OK to save the key locator configuration

After you configure the key locator and any token consumer that you need to configure, you can configure

the key information that references this key locator. For more information, see “Configuring key information

for the consumer binding with an assembly tool.”

Configuring key information for the consumer binding with an assembly tool

Prior to completing this task, you must complete the following steps:

1. Import your application into an assembly tool.

For information on how to import your application, see ″Importing an enterprise application EAR file″ in

the Application Server Toolkit documentation.

Chapter 14. Web services 1045

2. Configure the key locator that is referenced by the key information configuration. For more information,

see “Configuring the key locator for the consumer binding with an assembly tool” on page 1044.

3. Configure the token consumer that is referenced by the key information configuration. For more

information, see “Configuring token consumers with an assembly tool” on page 1041

Complete the following steps using an assembly tool to configure the key information for the server-side

and client-side bindings. The key information on the consumer side is used for specifying the information

about the key that is used for validating the digital signature in the received message or for decrypting the

encrypted parts of the message. The response consumer is configured for the client and the request

consumer is configured for the server. In the following steps, you must configure either the client-side

bindings in step 2 or the server-side bindings in step 3.

1. Start the assembly tool and click Window > Open Perspective > J2EE.

2. Optional: Locate the client-side bindings using the Project Explorer window. The Client Deployment

Descriptor window is displayed. This Web service contains the extensions that you must configure.

Complete the following steps to locate the client-side bindings:

a. Expand the Web Services > Client section and double-click the name of the Web service.

b. Click the WS Binding tab and expand the Security Response Consumer Binding Configuration

section.

3. Optional: Locate the server-side bindings using the Project Explorer window. The Web Services Editor

window is displayed. This Web service contains the bindings that you must configure. Complete the

following steps to locate the server-side bindings:

a. Expand the Web Services > Services section and double-click the name of the Web service.

b. Click the Binding Configurations tab and expand the Request Consumer Binding Configuration

Details section.

4. Expand the Key Information section and click Add to add a new entry or click Edit to edit a selected

entry.

5. Specify a name for this configuration in the Key information name field. This configuration name is

referenced by the Key information element within the Signing Information and Encryption Information

Dialog windows. For more information, see “Configuring signing information for the consumer binding

with an assembly tool” on page 1048 and “Configuring encryption information for the consumer binding

with an assembly tool” on page 1066.

6. Select a key information type from the Key information type field. The key information types specify

different mechanisms for referencing security tokens. The assembly tools support the following key

information types:

STRREF

This type is the security token reference. The security token is directly referenced using

Universal Resource Identifiers (URIs). The following <KeyInfo> element is generated in the

SOAP message for this key information type:

<ds:KeyInfo>

 <wsse:SecurityTokenReference>

 <wsse:Reference URI="#mytoken" />

 </wsse:SecurityTokenReference>

 </ds:KeyInfo>

EMB This type is the embedded token. The security token is directly embedded within the

<SecurityTokenReference> element. The following <KeyInfo> element is generated in the

SOAP message for this key information type:

<ds:KeyInfo>

 <wsse:SecurityTokenReference>

 <wsse:Embedded wsu:Id="tok1" />

 ...

 </wsse:Embedded>

 </wsse:SecurityTokenReference>

</ds:KeyInfo>

1046 Securing applications and their environment

KEYID

This type is a key identifier. The security token is referenced using an opaque value that

uniquely identifies the token. The algorithm that is used for generating the key identifier value

depends upon the token type. For example, a hash of the important elements of the security

token is used for generating the KeyIdentifier value. The following <KeyInfo> element is

generated in the SOAP message for this key information type:

<ds:KeyInfo xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

 <wsse:SecurityTokenReference>

 <wsse:KeyIdentifier ValueType="wsse:X509v3">/62wXO...</wsse:KeyIdentifier>

 </wsse:SecurityTokenReference>

</ds:KeyInfo>

KEYNAME

This type is the key name. The security token is referenced using a name that matches an

asserted identity within the token.

Note: Do not use this key type as it might result in multiple security tokens that match the

specified name.
The KEYNAME type does not require a token consumer reference. The following <KeyInfo>

element is generated in the SOAP message for this key information type:

<ds:KeyInfo>

 <ds:KeyName>CN=Group1</ds:KeyName>

</ds:KeyInfo>

Note: To be compliant with the Basic Security Profile (BSP), do not use the KEYNAME

information type. A SECURITY_TOKEN_REFERENCE must not use a KEYNAME to

reference a SECURITY_TOKEN.

X509ISSUER

This type is the X.509 certificate issuer name and serial number. The security token is

referenced by an issuer name and issuer serial number of an X.509 certificate. The following

<KeyInfo> element is generated in the SOAP message for this key information type:

<ds:KeyInfo>

 <wsse:SecurityTokenReference>

 <ds:X509Data>

 <ds:X509IssuerSerial>

 <ds:X509IssuerName>CN=Jones, O=IBM, C=US</ds:X509IssuerName>

 <ds:X509SerialNumber>1040152879</ds:X509SerialNumber>

 </ds:X509IssuerSerial>

 </ds:X509Data>

 </wsse:SecurityTokenReference>

</ds:KeyInfo>

7. Select the Use key locator option. Complete the following steps:

a. Select the name of a key locator configuration from the Key locator field. The value of this field is a

reference to a key locator that specifies how to find keys or certificates. For more information, see

“Configuring the key locator for the consumer binding with an assembly tool” on page 1044.

b. Optional: Specify a key name in the Key name field. You do not need to specify the key name

when you configure the key information for the consumer.

8. Optional: Select the Use token option and a token consumer configuration in the Token field if a

token consumer is required for the key information configuration. The token that you select specifies a

reference to a token consumer that is used for processing the security token within the message. A

token consumer is required for all key information types except the KEYNAME type. Before you specify

a token reference, you must configure a token consumer. For more information on token consumer

configurations, see “Configuring token consumers with an assembly tool” on page 1041.

Chapter 14. Web services 1047

After completing this task, configure the signing information or encryption information that references the

key information that is specified by this task. For more information, see “Configuring signing information for

the consumer binding with an assembly tool” or “Configuring encryption information for the consumer

binding with an assembly tool” on page 1066.

Configuring signing information for the consumer binding with an assembly tool

Prior to completing this task, you must complete the following steps:

1. Import your application into an assembly tool.

For information on how to import your application, see ″Importing an enterprise application EAR file″ in

the Application Server Toolkit documentation.

2. Specify which message parts to digitally sign. For more information, see “Signing message elements in

consumer security constraints with keywords” on page 1029 or “Signing message elements in

consumer security constraints with an XPath expression” on page 1035.

3. Configure the key information that is referenced by the Key information element within the Signing

information dialog window. For more information, see “Configuring key information for the consumer

binding with an assembly tool” on page 1045.

Complete the following steps to configure the signing information for the server-side and client-side

bindings using an assembly tool. The signing information on the consumer side is used to verify the

integrity of the received Simple Object Access Protocol (SOAP) message by validating the message parts

that are signed. The response consumer is configured for the client and the request consumer is

configured for the server. In the following steps, you must configure either the client-side bindings in step 2

or the server-side bindings in step 3.

 1. Start the assembly tool.

 2. Switch to the Java 2 Platform, Enterprise Edition (J2EE) perspective. Click Window > Open

Perspective > J2EE.

 3. Optional: Locate the client-side bindings using the Project Explorer window. The Client Deployment

Descriptor window is displayed. This Web service contains the bindings that you must configure.

Complete the following steps to locate the client-side bindings:

a. Expand the Web Services > Client section and double-click the name of the Web service.

b. Click the WS Binding tab and expand the Security Response Consumer Binding Configuration

section.

 4. Optional: Locate the server-side bindings using the Project Explorer window. The Web Services

Editor window is displayed. This Web service contains the bindings that you must configure.

Complete the following steps to locate the server-side bindings:

a. Expand the Web Services > Services section and double-click the name of the Web service.

b. Click the Binding Configurations tab and expand the Request Consumer Binding Configuration

Details section.

 5. Expand the Signing Information section and click Add to add a new entry or select an existing entry

and click Edit. The Signing Information Dialog window is displayed. Complete the following steps to

specify the signing information:

a. Specify a name for the signing information configuration in the Signing information name field.

b. Select a canonicalization method from the Canonicalization method algorithm field. The

canonicalization method algorithm is used to canonicalize the signing information before it is

integrated as part of the signature operation. The following preconfigured algorithms are

supported:

v http://www.w3.org/2001/10/xml-exc-c14n#

v http://www.w3.org/2001/10/xml-exc-c14n#WithComments

v http://www.w3.org/TR/2001/REC-xml-c14n-20010315

v http://www.w3.org/TR/2001/REC-xml-c14n-20010315#WithComments

1048 Securing applications and their environment

You must specify the same canonicalization algorithm for both the generator and the consumer.

For more information on configuring the signing information for the generator, see “Configuring

signing information for the generator binding with an assembly tool” on page 1025.

c. Optional: Select Show only FIPS Compliant Algorithms if you want only the FIPS compliant

algorithms to show in the Digest method algorithm drop-down list. Use this option if you expect

this application to run on a WebSphere Application Server that has set the Use the United States

Federal Information Processing Standard (FIPS) algorithms option in the SSL certificate and

key management panel of the administrative console for WebSphere Application Server.

d. Select a signature method algorithm from the Signature method algorithm field. The following

preconfigured algorithms are supported:

v http://www.w3.org/2000/09/xmldsig#rsa-sha1

v http://www.w3.org/2000/09/xmldsig#hmac-sha1

v http://www.w3.org/2000/09/xmldsig#dsa-sha1

Do not use this algorithm if you want the configured application to be compliant with the Basic

Security Profile (BSP). Any ds:SignatureMethod/@Algorithm element in a SIGNATURE based

on a symmetric key must have a value of http://www.w3.org/2000/09/xmldsig#rsa-sha1 or

http://www.w3.org/2000/09/xmldsig#hmac-sha1.

You must specify the same signature algorithm for both the generator and the consumer. For

more information on configuring the signing information for the generator, see “Configuring signing

information for the generator binding with an assembly tool” on page 1025.

 6. Click Add in the Signing Key Information section to add a new key information entry or click Remove

to delete a selected entry. Complete the following substeps if you are adding a new key information

entry.

a. Specify a name in the Key information name field.

b. Select a key information reference from the list under the Key information element field. The value

in this field references the key information configuration that you specified previously. If you have

a key information configuration called con_signkeyinfo that you want to use with this signing

information configuration, specify con_signkeyinfo in the Key information element field. For more

information, see “Configuring key information for the consumer binding with an assembly tool” on

page 1045.

 7. Optional: Select the Use key information signature option if you want to sign the key information

within the SOAP message.

 8. Optional: Select a key information signature type from the Type field if you select the Use key

information signature option. Select the keyinfo value to specify that the entire KeyInfo element

must be signed within the SOAP message. Select the keyinfochildelements value to specify that the

child elements within the KeyInfo element must be signed. However, the KeyInfo element itself does

not need to be signed.

 9. Click OK to save your signing information configuration.

10. Expand the Part References subsection and select the signing information configuration from the

Signing Information section.

11. Click Add in the Part References subsection to add a new entry or select an existing entry and click

Edit. The Part References Dialog window is displayed. Complete the following steps to configure a

part reference:

a. Specify a name for the part reference configuration in the Part reference name field.

b. Select a required integrity part configuration in the RequiredIntegrity part field. The required

integrity part configuration specifies the message parts that are required to be signed. For more

information on how to configure the required integrity, see “Signing message elements in

consumer security constraints with keywords” on page 1029 or “Signing message elements in

consumer security constraints with an XPath expression” on page 1035.

c. Optional: Select Show only FIPS Compliant Algorithms if you want only the FIPS compliant

algorithms to show in the Digest method algorithm drop-down list. Use this option if you expect

Chapter 14. Web services 1049

http://www.w3.org/2000/09/xmldsig#rsa-sha1
http://www.w3.org/2000/09/xmldsig#hmac-sha1
http://www.w3.org/2000/09/xmldsig#dsa-sha1
http://www.w3.org/2000/09/xmldsig#rsa-sha1
http://www.w3.org/2000/09/xmldsig#hmac-sha1

this application to run on a WebSphere Application Server that has set the Use the United States

Federal Information Processing Standard (FIPS) algorithms option in the SSL certificate and

key management panel of the administrative console for WebSphere Application Server.

d. Select a digest method algorithm in the Digest method algorithm field.

WebSphere Application Server supports the following digest method algorithms:

v http://www.w3.org/2000/09/xmldsig#sha1

v http://www.w3.org/2001/04/xmlenc#sha256

v http://www.w3.org/2001/04/xmlenc#sha512

This digest method algorithm is used to create the digest for each message part that is specified

by this part reference.

e. Click OK to save your part reference configuration.

12. Expand the Transforms subsection and the part reference configuration from the Part reference

subsection.

13. Click Add in the Transforms subsection to add a new entry or select an existing entry and click Edit.

The Transform dialog window is displayed.

a. Specify a transform name in the Name field.

b. Select a transform algorithm from the Algorithm field. The following transform algorithms are

supported:

http://www.w3.org/2001/10/xml-exc-c14n#

This algorithm specifies the World Wide Web Consortium (W3C) Exclusive

Canonicalization recommendation.

http://www.w3.org/TR/1999/REC-xpath-19991116

This algorithm specifies the W3C XML path language recommendation. If you specify this

algorithm, you must click Add to specify the property name and value, which is displayed

under Transform properties. For example, you might specify the following information:

Name com.ibm.wsspi.wssecurity.dsig.XPathExpression

Value not(ancestor-or-self::*[namespace-uri()=’http://www.w3.org/2000/09/
xmldsig#’ and local-name()=’Signature’])

Note: Do not use this transform algorithm if you want your configured application to be

compliant with the Basic Security Profile (BSP). Instead use http://www.w3.org/
2002/06/xmldsig-filter2 to ensure compliance.

http://www.w3.org/2002/06/xmldsig-filter2

This algorithm specifies the XML-Signature XPath Filter Version 2.0 proposed

recommendation.

 When you use this algorithm, you must specify a set of properties in the Transform

property fields. You can use multiple property sets for the XPath Filter Version 2.

Note: End your property names with the number of the property set, which is denoted by

an asterisk in the following examples:

v To specify an XPath expression for the XPath filter2, you might use:

name com.ibm.wsspi.wssecurity.dsig.XPath2Expression_*

v To specify a filter type for each XPath, you might use:

name com.ibm.wsspi.wssecurity.dsig.XPath2Filter_*

Following this expression, you can have a value, [intersect], [subtract], or

[union].

1050 Securing applications and their environment

v To specify the processing order for each XPath, you might use:

name com.ibm.wsspi.wssecurity.dsig.XPath2Order_*

Following this expression, indicate the processing order of the XPath.

 The following is a list of complete examples:

com.ibm.wsspi.wssecurity.dsign.XPath2Filter_1 = [intersect]

com.ibm.wsspi.wssecurity.dsign.XPath2Order_1 = [1]

com.ibm.wsspi.wssecurity.dsign.XPath2Expression_2 = [XPath expression#2]

com.ibm.wsspi.wssecurity.dsign.XPath2Filter_2 = [subtract]

com.ibm.wsspi.wssecurity.dsign.XPath2Filter_2 = [1]

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#STR-
Transform

http://www.w3.org/2002/07/decrypt#XML

This algorithm specifies the W3C decryption transform for XML Signature

recommendation.

http://www.w3.org/2000/09/xmldsig#enveloped-signature

This algorithm specifies the W3C recommendation for XML digital signatures.

c. Click OK to save your transforms configuration.

After you complete this task for the consumer binding, you must configure the signing information for

generator binding if this task was not previously completed.

Encrypting the message elements in generator security constraints with keywords

Prior to completing this task, you must import your application into an assembly tool.

For information on how to import your application, see ″Importing an enterprise application EAR file″ in the

Application Server Toolkit documentation.

Complete the following steps to specify which message parts to encrypt when you configure the consumer

security constraints for either the request generator or the response generator. The request generator is

configured for the client and the response generator is configured for the server. In the following steps, you

must configure either the client-side extensions in step 2 or the server-side extensions in step 3.

1. Start the assembly tool.

2. Switch to the Java 2 Platform, Enterprise Edition (J2EE) perspective. Click Window > Open

Perspective > J2EE.

3. Optional: Locate the client-side extensions using the Project Explorer window. The Client Deployment

Descriptor window is displayed. This Web service contains the extensions that you must configure.

Complete the following steps to locate the client-side extensions:

a. Expand the Web Services > Client section and double-click the name of the Web service.

b. Click the WS Extension tab and expand the Request Generator Configuration section.

4. Optional: Locate the server-side extensions using the Project Explorer window. The Web Services

Editor window is displayed. This Web service contains the extensions that you must configure.

Complete the following steps to locate the server-side extensions:

a. Expand the Web Services > Services section and double-click the name of the Web service.

b. Click the Extensions tab and expand the Response Generator Service Configuration Details

section.

5. Expand the Required Confidentiality section. Confidentiality refers to encryption while integrity refers to

digital signing. Confidentiality reduces the risk of someone intercepting the message as it moves

Chapter 14. Web services 1051

across a network. With confidentiality specifications, the message is encrypted before it is sent and

decrypted when it is received at the intended target. For more information on encryption, see “XML

encryption” on page 1063.

6. Click Add to specify which parts of the message to encrypt. The Confidentiality Dialog window is

displayed. Complete the following steps to specify the message parts:

a. Specify a name for the confidentiality element in the Confidentiality Name field. For example, you

might specify conf_webskey.

b. Specify an order in the Order field. The value, which must be a positive integer value, specifies the

order in which the encryption is processed. An order value of 1 specifies that the encryption is

done first.

7. Click Add under Message parts and select the Message parts dialect. The http://www.ibm.com/
websphere/webservices/wssecurity/dialect-was dialect specifies which message part is encrypted using

keywords. If you select this dialect, you can select one of the following keywords under Message parts

keyword:

bodycontent

Specifies the user data portion of the message. If you select this keyword, the body is

encrypted.

usernametoken

Specifies a username token that contains the basic authentication information such as a user

name and a password. Usually, the username token is encrypted so that the user information

is secure. If you select this keyword, the username token element is encrypted.

digestvalue

Specifies a unique digest value. When a part of the SOAP message is signed, a unique digest

value is created and is used by the receiving party to check the integrity of the message. You

can encrypt the digestvalue element to secure the digest value.

signature

Specifies an entire signature. You can encrypt the signature element, ds:Signature. by

selecting this message part.

Note: If the value of a ds:DigestValue element in a signature needs to be encrypted, the entire

parent ds:Signature element must be encrypted to ensure that the application complies

to the Basic Security Profile (BSP). You can use the signature keyword to perform the

encryption.

wscontextcontent

Encrypts the content in the WS-Context header for the SOAP header. For more information,

see Propagating work area context over Web services.

Note: You must have a matching configuration for the consumer side.

In addition to the message parts, you also can specify that WebSphere Application Server encrypt the

nonce and timestamp elements. For more information, see the following articles:

v “Adding time stamps for confidentiality to generator security constraints with keywords” on page

1053

v “Adding time stamps for confidentiality to generator security constraints with an XPath expression”

on page 1059

v “Adding the nonce for confidentiality to generator security constraints with keywords” on page 1055

v “Adding the nonce for confidentiality to generator security constraints with an XPath expression” on

page 1061

8. Click OK to save your configuration.

The following sample is a part of a Simple Object Access Protocol (SOAP) message; the message content

is encrypted using the bodycontent keyword and the http://www.ibm.com/websphere/webservices/
wssecurity/dialect-was dialect:

1052 Securing applications and their environment

<soapenv:Body soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

 <EncryptedData Id="wssecurity_encryption_id_8770799378696212005"

 Type="http://www.w3.org/2001/04/xmlenc#Content" xmlns="http://www.w3.org/2001/

 04/xmlenc#">

 <EncryptionMethod Algorithm="http://www.w3.org/2001/04/xmlenc#tripledes-cbc"/>

 <CipherData>

 <CipherValue>nIlF+Uthee0H96HbtRrolJ/tBmOazyryNYRwr/reF4nqtbHqGtNuew==

 </CipherValue>

 </CipherData>

 </EncryptedData>

</soapenv:Body>

After you specify which message parts to encrypt, you must specify which method is used to encrypt the

message parts. For more information, see “Configuring encryption information for the generator binding

with an assembly tool” on page 1078.

Adding time stamps for confidentiality to generator security constraints with keywords:

You can specify that a time stamp is embedded in a particular element and that the element is encrypted.

 Prior to completing this task, you must import your application into an assembly tool.

For information on how to import your application, see ″Importing an enterprise application EAR file″ in the

Application Server Toolkit documentation.

Complete the following steps to specify the time stamp for confidentiality by using keywords when you

configure the generator security constraints for either the request generator or the response generator. The

request generator is configured for the client and the response generator is configured for the server.

In the following steps, you must configure either the client-side extensions in step 2 or the server-side

extensions in step 3.

 1. Start the assembly tool.

 2. Switch to the Java 2 Platform, Enterprise Edition (J2EE) perspective. Click Window > Open

Perspective > J2EE.

 3. Optional: Locate the client-side extensions using the Project Explorer window. The Client

Deployment Descriptor window is displayed. This Web service contains the extensions that you must

configure. Complete the following steps to locate the client-side extensions:

a. Expand the Web Services > Client section and double-click the name of the Web service.

b. Click the WS Extension tab and expand the Request Generator Configuration section.

 4. Optional: Locate the server-side extensions using the Project Explorer window. The Web Services

Editor window is displayed. This Web service contains the extensions that you must configure.

Complete the following steps to locate the server-side extensions:

a. Expand the Web Services > Services section and double-click the name of the Web service.

b. Click the Extensions tab and expand the Response Generator Service Configuration Details

section.

 5. Expand the Confidentiality section. Confidentiality refers to encryption and integrity refers to digital

signing. Confidentiality reduces the risk of someone intercepting the message as it moves across a

network. With confidentiality specifications, the message is encrypted before it is sent and decrypted

when it is received at the intended target. For more information on encryption, see “XML encryption”

on page 1063.

 6. Click Add to specify a time stamp for confidentiality. The Confidentiality Dialog window is displayed.

Complete the following steps to specify a confidentiality configuration:

a. Specify a name for the confidentiality element in the Confidentiality Name field. For example, you

might specify conf_tmstmp.

Chapter 14. Web services 1053

b. Specify an order in the Order field. The value, which must be a positive integer value, specifies

the order in which the encryption is processed. An order value of 1 specifies that the encryption is

done first.

 7. In the Timestamp section, click Add and select the Timestamp dialect. The http://www.ibm.com/
websphere/webservices/wssecurity/dialect-was dialect specifies the message part that is encrypted

using the keywords. If you select this dialect, you can select one of the following keywords under the

Timestamp keyword heading:

bodycontent

Specifies the user data portion of the message. If this keyword is selected, the time stamp is

embedded in the SOAP message body and the body is encrypted.

usernametoken

Specifies a user name token that contains the basic authentication information such as a user

name and a password. Usually, the username token is encrypted so that the user information

is secure. If you select this keyword, the timestamp element is embedded in the username

token element and it is encrypted.

digestvalue

Specifies a unique digest value. When a part of the SOAP message is signed, a unique

digest value is created and is used by the receiving party to check the integrity of the

message. You can encrypt the digestvalue element to secure the digest value. If you select

this keyword, the time stamp is embedded in the digestvalue element and the element is

encrypted.

signature

Specifies an entire signature. You can encrypt the signature element, ds:Signature, by

selecting this message part.

Note: If the value of a ds:DigestValue element in a signature needs to be encrypted, the

entire parent ds:Signature element must be encrypted to ensure that the application

complies to the Basic Security Profile (BSP). You can use the signature keyword to

perform the encryption.

wscontextcontent

Encrypts the content in the WS-Context header for the SOAP header. For more information,

see Propagating work area context over Web services.

 8. Specify an expiration time for the time stamp in the Timestamp expires field. The time stamp helps

defend against replay attacks. The lexical representation for the duration is the [ISO 8601] extended

format PnYnMnDTnHnMnS, where:

P Precedes the date and time values.

nY Represents the number of years in which the time stamp is in effect. Select a value from 0 to

99 years.

nM Represents the number of months in which the time stamp is in effect. Select a value from 0

to 11 months.

nD Represents the number of days in which the time stamp is in effect. Select a value from 0 to

30 days.

T Separates the date and time values.

nH Represents the number of hours in which the time stamp is in effect. Select a value from 0 to

23 hours.

nM Represents the number of minutes in which the time stamp is in effect. Select a value from 0

to 59 minutes.

nS Represents the number of seconds in which the time stamp is in effect. The number of

1054 Securing applications and their environment

seconds can include arbitrary decimal digits. You can select a value from 0 to 59 for the

seconds and from 0 to 9 for tenths of a second.

For example, 1 year, 2 months, 3 days, 10 hours, and 30 minutes is represented as P1Y2M3DT10H30M.

Typically, you might configure a message time stamp for between 10 and 30 minutes. For example,

10 minutes is represented as P0Y0M0DT0H10M0S.

 9. In the Message Parts section, click Add and select http://www.ibm.com/websphere/webservices/
wssecurity/dialect-was in the Message parts dialect field.

10. In the Message Parts section, select the message parts keyword.

Important: You must define at least one message part in Message Parts section in order to specify a

times tamp for confidentiality. When you select the message part, you are encrypting the

message part in addition to the parent element of the time stamp.

11. Click OK to save the configuration changes.

Note: These configurations for the consumer and generator must match.

In addition to the time stamp, you can specify that the nonce is signed. For more information, see the

following articles:

v “Adding the nonce for confidentiality to generator security constraints with keywords”

v “Adding the nonce for confidentiality to generator security constraints with an XPath expression” on

page 1061

For example, the following example is a part of a SOAP message where a time stamp is inserted into the

bodycontent element and is encrypted using bodycontent keyword and the http://www.ibm.com/websphere/
webservices/wssecurity/dialect-was dialect.

Important: You cannot see the time stamp in the message because it is encrypted.
<soapenv:Body soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

 <EncryptedData Id="wssecurity_encryption_id_4349704672508984224" Type=

 "http://www.w3.org/2001/04/xmlenc#Content" xmlns="http://www.w3.org/2001/

 04/xmlenc#">

 <EncryptionMethod Algorithm="http://www.w3.org/2001/04/xmlenc#tripledes-cbc"/>

 <CipherData>

 <CipherValue>IxSuTmF1vAygF/SBLCd8bgu8opPiwHmroIBLzZbENGr9JpxhSFt/0fV0sF

 un0uxg/h/Y+1erE+NaysREuL+E9AQm0lxALNEdBX9zpeVf+ZffUCSzZfXXe9iosQlPe9jG

 7yTp+rhZGdp/KOp26c3DZXCNDr0Wgz31wn3KNm6bGO6RmBzahEOSW8d0wR999DeqSpOY12

 d8iWJa3HZ8gnGnineCiZ3wrHy9rOC58iijcsNv1fP3lExuA5WkHra6rndhbi8P7jDMhkzf

 4Odj2yy1M3XURWalOLNYhNJ9YaWACsaYCY2ukcKtzw==</CipherValue>

 </CipherData>

 </EncryptedData>

</soapenv:Body>

After you specify which message parts to encrypt, you must specify which method is used to encrypt the

message. For more information, see “Configuring encryption information for the generator binding with an

assembly tool” on page 1078.

Adding the nonce for confidentiality to generator security constraints with keywords:

Prior to completing this task, you must import your application into an assembly tool.

For information on how to import your application, see ″Importing an enterprise application EAR file″ in the

Application Server Toolkit documentation.

Nonce for confidentiality is used to specify that the nonce is embedded in a particular element within the

message and that the element is encrypted. Nonce is a randomly generated, cryptographic token. When

you add a nonce to a specific part of a message, it can prevent theft and replay attacks because a

generated nonce is unique. For example, without a nonce, the token might be intercepted and used in a

Chapter 14. Web services 1055

replay attack when a user name token is passed from one machine to another machine using a

non-secure transport, such as HTTP. The user name token can be stolen even if you use XML digital

signature and XML encryption. This situation might be prevented by adding a nonce.

Complete the following steps to specify a nonce for confidentiality using keywords when you configure the

generator security constraints for either the request generator or the response generator. The request

generator is configured for the client and the response generator is configured for the server. In the

following steps, you must configure either the client-side extensions in step 2 or the server-side extensions

in step 3.

 1. Start the assembly tool.

 2. Switch to the Java 2 Platform, Enterprise Edition (J2EE) perspective. Click Window > Open

Perspective > J2EE.

 3. Optional: Locate the client-side extensions using the Project Explorer window. The Client

Deployment Descriptor window is displayed. This Web service contains the extensions that you must

configure. Complete the following steps to locate the client-side extensions:

a. Expand the Web Services > Client section and double-click the name of the Web service.

b. Click the WS Extension tab and expand the Request Generator Configuration section.

 4. Optional: Locate the server-side extensions using the Project Explorer window. The Web Services

Editor window is displayed. This Web service contains the extensions that you must configure.

Complete the following steps to locate the server-side extensions:

a. Expand the Web Services > Services section and double-click the name of the Web service.

b. Click the Extensions tab and expand the Response Generator Service Configuration Details

section.

 5. Expand the Confidentiality section. Confidentiality refers to encryption and integrity refers to digital

signing. Confidentiality reduces the risk of someone intercepting the message as it moves across a

network. With confidentiality specifications, the message is encrypted before it is sent and decrypted

when it is received at the intended target. For more information on encryption, see “XML encryption”

on page 1063.

 6. Click Add to specify a nonce for integrity. The Confidentiality Dialog window is displayed. Complete

the following steps to specify a configuration:

a. Specify a name for the confidentiality element in the Confidentiality Name field. For example, you

might specify conf_nonce.

b. Specify an order in the Order field. The value, which must be a positive integer value, specifies

the order in which the encryption is processed. An order value of 1 specifies that the encryption is

done first.

 7. Under Nonce, click Add and select the Nonce dialect. The http://www.ibm.com/websphere/
webservices/wssecurity/dialect-was dialect specifies the message part to which a nonce is added and

encrypted. If you select this dialect, you can select one of the following keywords under Nonce

keyword:

bodycontent

Specifies the user data portion of the message. If this keyword is selected, the nonce is

embedded in the Simple Object Access Protocol (SOAP) message body and the body is

encrypted.

usernametoken

Specifies a username token that contains the basic authentication information such as a user

name and a password. Usually, the username token is encrypted so that the user information

is secure. If you select this keyword, the nonce element is embedded in the username token

element and it is encrypted.

digestvalue

Specifies a unique digest value. When a part of the SOAP message is signed, a unique

digest value is created and is used by the receiving party to check the integrity of the

1056 Securing applications and their environment

message. You can encrypt the digestvalue element to secure the digest value. If you select

this keyword, the nonce is embedded in the digestvalue element and the element is

encrypted.

signature

Specifies an entire signature. You can encrypt the signature element, ds:Signature. by

selecting this message part.

Note: If the value of a ds:DigestValue element in a signature needs to be encrypted, the

entire parent ds:Signature element must be encrypted to ensure that the application

complies to the Basic Security Profile (BSP). You can use the signature keyword to

perform the encryption.

wscontextcontent

Encrypts the content in the WS-Context header for the SOAP header. For more information,

see Propagating work area context over Web services.

 8. In the Message Parts section, click Add and select http://www.ibm.com/websphere/webservices/
wssecurity/dialect-was in the Message parts dialect field.

 9. In the Message Parts section, select the message parts keyword.

Important: You must define at least one message part in Message Parts section in order to specify a

nonce for confidentiality. When you select the message part, you are encrypting the

message part in addition to the parent element of the nonce.

10. Click OK to save the configuration changes.

Note: These configurations for the generator and the consumer must match.

In addition to the nonce, you can specify that the timestamp element is encrypted. For more

information, see the following articles:

v “Adding time stamps for confidentiality to generator security constraints with keywords” on page

1053

v “Adding time stamps for confidentiality to generator security constraints with an XPath expression”

on page 1059

The following example is a part of a SOAP message where a nonce is inserted into the bodycontent

element and it is encrypted using the bodycontent keyword and the http://www.ibm.com/websphere/
webservices/wssecurity/dialect-was dialect.

Important: You cannot see the nonce in the message because it is encrypted.
<soapenv:Body soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

 <EncryptedData Id="wssecurity_encryption_id_1669600751905274321"

 Type="http://www.w3.org/2001/04/xmlenc#Content" xmlns="http://www.w3.org/2001/

 04/xmlenc#">

 <EncryptionMethod Algorithm="http://www.w3.org/2001/04/xmlenc#tripledes-cbc"/>

 <CipherData>

 <CipherValue>pZpVL6Rs6zhvu8UrC7TH3BA2zvOdpPpLeHnwH0dCpmdc7ETz1tUHDdXLFxy143

 nYu91MxpzspWt1rWx2Lx9vFGRIfblRSX5lEpV8+0LvezvhJYY/cbTA04mTMUzCfv28v2TI09AZ

 Q4TjII4u+cPeh5f0prBVK1E5hLTql4QMcwf/rq9h+tttrJbR7ub3AUgIVo42ucQs5HZbaDijxm

 dSuFboBql4lv1Ep24ZfeoB/p7aHzyeWy7pYtO0bshpks/oBwO/78vxSklVJKu4sUseFvZa+B7s

 ciFneeNnNuRCqB2JXc/vtH83l3AELUZg60ehd4vqvXkyuvSLohZ/kKnF/A5c+BP5Bo1pgvwmDE

 eJItQ5a7LOKkTavLuc2WGtVo1947fnNGm2TN4C6U/cp9ERT7jAB9Lr/1v/8ZqPZYmssyME4pGe

 SWLy232WrPvk6HEu96GHfRt+YXWpVNvSEt/gZw==</CipherValue>

 </CipherData>

 </EncryptedData>

</soapenv:Body>

After you specify which message parts to encrypt, you must specify which method is used to encrypt the

message. For more information, see “Configuring encryption information for the generator binding with an

assembly tool” on page 1078.

Chapter 14. Web services 1057

Encrypting the message elements in generator security constraints with an XPath

expression

Prior to completing this task, you must import your application into an assembly tool.

For information on how to import your application, see ″Importing an enterprise application EAR file″ in the

Application Server Toolkit documentation.

The following information explains the difference between using an XPath expression and using keywords

to specify which part of the message to sign:

XPath expression

Specify any part of the message using an XPath expression. XPath is a language that is used to

address parts of an XML document. You can find information on XPath syntax at the following

Web site: http://www.w3.org/TR/1999/REC-xpath-19991116.

Keywords

Specify only elements within the message using predefined keywords.

Complete the following steps to specify which message parts to encrypt using an XPath expression when

you configure the consumer security constraints for either the request generator or the response generator.

The request generator is configured for the client and the response generator is configured for the server.

In the following steps, you must configure either the client-side extensions in step 2 or the server-side

extensions in step 3.

1. Start the assembly tool.

2. Switch to the Java 2 Platform, Enterprise Edition (J2EE) perspective. Click Window > Open

Perspective > J2EE.

3. Optional: Locate the client-side extensions using the Project Explorer window. The Client Deployment

Descriptor window is displayed. This Web service contains the extensions that you must configure.

Complete the following steps to configure the client-side extensions:

a. Expand the Web Services > Client section and double-click the name of the Web service.

b. Click the WS Extension tab and expand the Request Generator Configuration section.

4. Optional: Locate the server-side extensions using the Project Explorer window. The Web Services

Editor window is displayed. This Web service contains the extensions that you must configure.

Complete the following steps to configure the server-side extensions:

a. Expand the Web Services > Services section and double-click the name of the Web service.

b. Click the Extensions tab and expand the Response Generator Service Configuration Details

section.

5. Expand the Confidentiality section. Confidentiality refers to encryption and integrity refers to digital

signing. Confidentiality reduces the risk of someone intercepting the message as it moves across a

network. With confidentiality specifications, the message is encrypted before it is sent and decrypted

when it is received at the intended target. For more information on encryption, see “XML encryption”

on page 1063.

6. Click Add to specify which parts of the message to encrypt. The Confidentiality Dialog window is

displayed. Complete the following steps to specify a configuration:

a. Specify a name for the confidentiality element in the Confidentiality Name field. For example, you

might specify conf_xpath.

b. Specify an order in the Order field. The value, which must be a positive integer value, specifies the

order in which the encryption is processed. An order value of 1 specifies that the encryption is

done first.

7. Click Add under the Message parts section of the Confidentiality Dialog window. Complete the

following steps to specify the message parts:

1058 Securing applications and their environment

http://www.w3.org/TR/1999/REC-xpath-19991116

a. Select the message parts dialect from the Message parts section. The http://www.w3.org/TR/1999/
REC-xpath-19991116 dialect specifies which message part is encrypted using an XPath

expression.

Do not use this transform algorithm if you want your configured application to be compliant with the

Basic Security Profile (BSP). Instead use http://www.w3.org/2002/06/xmldsig-filter2 to ensure

compliance.

b. Specify the message part to be encrypted using an XPath expression in the Message parts

keyword field. For example, to specify that the body is encrypted, you might add the following

expression in the Message parts keyword field as one continuous line:

/*[namespace-uri()=’http://schemas.xmlsoap.org/soap/envelope/’

and local-name()=’Envelope’]/*[namespace-uri()=’http://schemas.xmlsoap.org/

soap/envelope/’ and local-name()=’Body’]

Note: These configurations for the generator and the consumer must match.

In addition to the message parts, you also can specify that WebSphere Application Server encrypt the

nonce and timestamp elements. For more information, see the following articles:

v “Adding time stamps for confidentiality to generator security constraints with keywords” on page

1053

v “Adding time stamps for confidentiality to generator security constraints with an XPath expression”

v “Adding the nonce for confidentiality to generator security constraints with keywords” on page 1055

v “Adding the nonce for confidentiality to generator security constraints with an XPath expression” on

page 1061

8. Click OK to save your configuration.

After you specify which message parts to encrypt, you must specify which method is used to encrypt the

message parts. For more information, see “Configuring encryption information for the generator binding

with an assembly tool” on page 1078.

Adding time stamps for confidentiality to generator security constraints with an XPath

expression:

Prior to completing this task, you must import your application into an assembly tool.

For information on how to import your application, see ″Importing an enterprise application EAR file″ in the

Application Server Toolkit documentation.

The following information explains the difference between using an XPath expression and using keywords

to specify which part of the message to sign:

XPath expression

Specify any part of the message using an XPath expression. XPath is a language that is used to

address parts of an XML document. You can find information on XPath syntax at the following

Web site: http://www.w3.org/TR/1999/REC-xpath-19991116.

Keywords

Specify only elements within the message using predefined keywords.

This task is used to specify that a time stamp is embedded in a particular element and that the element is

encrypted. Complete the following steps to specify the time stamp for confidentiality using an XPath

expression when you configure the generator security constraints for either the request generator or the

response generator. The request generator is configured for the client and the response generator is

configured for the server. In the following steps, you must configure either the client-side extensions in

step 2 or the server-side extensions in step 3.

 1. Start the assembly tool.

Chapter 14. Web services 1059

http://www.w3.org/TR/1999/REC-xpath-19991116

2. Switch to the Java 2 Platform, Enterprise Edition (J2EE) perspective. Click Window > Open

Perspective > J2EE.

 3. Optional: Locate the client-side extensions using the Project Explorer window. The Client

Deployment Descriptor window is displayed. This Web service contains the extensions that you must

configure. Complete the following steps to locate the client-side extensions:

a. Expand the Web Services > Client section and double-click the name of the Web service.

b. Click the WS Extension tab and expand the Request Generator Configuration section.

 4. Optional: Locate the server-side extensions using the Project Explorer window. The Web Services

Editor window is displayed. This Web service contains the extensions that you must configure.

Complete the following steps to locate the server-side extensions:

a. Expand the Web Services > Services section and double-click the name of the Web service.

b. Click the Extensions tab and expand the Response Generator Service Configuration Details

section.

 5. Expand the Confidentiality section. Confidentiality refers to encryption and integrity refers to digital

signing. Confidentiality reduces the risk of someone intercepting the message as it moves across a

network. With confidentiality specifications, the message is encrypted before it is sent and decrypted

when it is received at the intended target. For more information on encryption, see “XML encryption”

on page 1063.

 6. Click Add to specify a time stamp for confidentiality. The Confidentiality Dialog window is displayed.

Complete the following information to specify a configuration:

a. Specify a name for the confidentiality element in the Confidentiality Name field.

b. Specify an order in the Order field. The value, which must be a positive integer value, specifies

the order in which the encryption is processed. An order value of 1 specifies that the encryption is

done first.

 7. Click Add under the Timestamp section of the Confidentiality Dialog window. Complete the following

steps to configure the time stamp information:

a. Select the timestamp dialect from the Timestamp section. The http://www.w3.org/TR/1999/REC-
xpath-19991116 dialect specifies which message part is encrypted using an XPath expression.

Do not use this transform algorithm if you want your configured application to be compliant with

the Basic Security Profile (BSP). Instead use http://www.w3.org/2002/06/xmldsig-filter2 to ensure

compliance.

b. Specify the message part to which a time stamp is added and encrypted using an XPath

expression in the Timestamp keyword field. For example, to specify that a time stamp is added to

the bodycontent element and it is encrypted, you might add the following expression in the

Timestamp keyword field as one continuous line:

/*[namespace-uri()=’http://schemas.xmlsoap.org/soap/envelope/’

and local-name()=’Envelope’]/*[namespace-uri()=’http://schemas.xmlsoap.org/

soap/envelope/’ and local-name()=’Bodycontent’]

c. Specify an expiration time for the time stamp in the Timestamp expires field. The time stamp

helps defend against replay attacks. The lexical representation for the duration is the [ISO 8601]

extended format PnYnMnDTnHnMnS, where:

P Precedes the date and time values.

nY Represents the number of years in which the time stamp is in effect. Select a value from

0 to 99 years.

nM Represents the number of months in which the time stamp is in effect. Select a value

from 0 to 11 months.

nD Represents the number of days in which the time stamp is in effect. Select a value from 0

to 30 days.

T Separates the date and time values.

1060 Securing applications and their environment

nH Represents the number of hours in which the time stamp is in effect. Select a value from

0 to 23 hours.

nM Represents the number of minutes in which the time stamp is in effect. Select a value

from 0 to 59 minutes.

nS Represents the number of seconds in which the time stamp is in effect. The number of

seconds can include decimal digits to aribrary precision. You can select a value from 0 to

59 for the seconds and from 0 to 9 for tenths of a second.

For example, to indicate 1 year, 2 months, 3 days, 10 hours, and 30 minutes, the format is

P1Y2M3DT10H30M. Typically, you might configure a message time stamp for between 10 and 30

minutes. For example, 10 minutes is represented as P0Y0M0DT0H10M0S.

 8. In the Message Parts section, click Add and select http://www.ibm.com/websphere/webservices/
wssecurity/dialect-was in the Message parts dialect field.

 9. In the Message Parts section, select the message parts keyword.

Important: You must define at least one message part in Message Parts section in order to specify

Timestamp for Confidentiality. The selection of message part here is for encrypting a

message part in addition to the parent element of the timestamp

10. Click OK to save the configuration changes.

Note: These configurations for the consumer and the generator must match.

In addition to the time stamp, you can specify that the nonce is signed. For more information, see the

following articles:

v “Adding the nonce for confidentiality to generator security constraints with keywords” on page 1055

v “Adding the nonce for confidentiality to generator security constraints with an XPath expression”

After you specify which message parts to encrypt, you must specify which method is used to encrypt sign

the message. For more information, see “Configuring encryption information for the generator binding with

an assembly tool” on page 1078.

Adding the nonce for confidentiality to generator security constraints with an XPath expression:

Prior to completing this task, you must import your application into an assembly tool.

For information on how to import your application, see ″Importing an enterprise application EAR file″ in the

Application Server Toolkit documentation.

The following information explains the difference between using an XPath expression and using keywords

to specify which part of the message to sign:

XPath expression

Specify any part of the message using an XPath expression. XPath is a language that is used to

address parts of an XML document. You can find information on XPath syntax at the following

Web site: http://www.w3.org/TR/1999/REC-xpath-19991116.

Keywords

Specify only elements within the message using predefined keywords.

Nonce for confidentiality is used to specify that the nonce is embedded in a particular element within the

message and that the element is encrypted. Nonce is a randomly generated, cryptographic token. When

you add a nonce to a specific part of a message, it can prevent theft and replay attacks because a

generated nonce is unique. For example, without a nonce, the token might be intercepted and used in a

replay attack when a user name token is passed from one machine to another machine using a

non-secure transport, such as HTTP. The user name token can be stolen even if you use XML digital

signature and XML encryption. This situation might be prevented by adding a nonce.

Chapter 14. Web services 1061

http://www.w3.org/TR/1999/REC-xpath-19991116

Complete the following steps to specify a nonce for confidentiality using an XPath expression when you

configure the generator security constraints for either the request generator or the response generator. The

request generator is configured for the client and the response generator is configured for the server. In

the following steps, you must configure either the client-side extensions in step 2 or the server-side

extensions in step 3.

 1. Start the assembly tool.

 2. Switch to the Java 2 Platform, Enterprise Edition (J2EE) perspective. Click Window > Open

Perspective > J2EE.

 3. Optional: Locate the client-side extensions using the Project Explorer window. The Client

Deployment Descriptor window is displayed. This Web service contains the extensions that you must

configure. Complete the following steps to locate the client-side extensions:

a. Expand the Web Services > Client section and double-click the name of the Web service.

b. Click the WS Extension tab and expand the Request Generator Configuration section.

 4. Optional: Locate the server-side extensions using the Project Explorer window. The Web Services

Editor window is displayed. This Web service contains the extensions that you must configure.

Complete the following steps to locate the server-side extensions:

a. Expand the Web Services > Services section and double-click the name of the Web service.

b. Click the Extensions tab and expand the Response Generator Service Configuration Details

section.

 5. Expand the Confidentiality section. Confidentiality refers to encryption and integrity refers to digital

signing. Confidentiality reduces the risk of someone intercepting the message as it moves across a

network. With confidentiality specifications, the message is encrypted before it is sent and decrypted

when it is received at the intended target. For more information on encryption, see “XML encryption”

on page 1063.

 6. Click Add to specify a nonce for integrity. The Confidentiality Dialog window is displayed. Complete

the following steps to specify a configuration:

a. Specify a name for the confidentiality element in the Confidentiality Name field. For example, you

might specify conf_nonce.

b. Specify an order in the Order field. The value, which must be a positive integer value, specifies

the order in which the encryption is processed. An order value of 1 specifies that the encryption is

done first.

 7. Click Add under the Nonce section of the Confidentiality Dialog window. Complete the following steps

to specify the none dialect and the message part:

a. Select the nonce dialect from the Nonce section. The http://www.w3.org/TR/1999/REC-xpath-
19991116 dialect specifies the message part to which a nonce is added and encrypted using an

XPath expression.

Do not use this transform algorithm if you want your configured application to be compliant with

the Basic Security Profile (BSP). Instead use http://www.w3.org/2002/06/xmldsig-filter2 to ensure

compliance.

b. Specify the message part to which a nonce is added and encrypted using an XPath expression in

the Nonce keyword field. For example, to specify that a nonce is added to the bodycontent

element and it is encrypted, you might add the following expression in the Nonce keyword field as

one continuous line:

/*[namespace-uri()=’http://schemas.xmlsoap.org/soap/envelope/’

and local-name()=’Envelope’]/*[namespace-uri()=’http://schemas.xmlsoap.org/

soap/envelope/’ and local-name()=’Bodycontent’]

 8. In the Message Parts section, click Add and select http://www.w3.org/TR/1999/REC-xpath-19991116

in the Message parts dialect field. Do not use this transform algorithm if you want your configured

application to be compliant with the Basic Security Profile (BSP). Instead use http://www.w3.org/2002/
06/xmldsig-filter2 to ensure compliance.

 9. In the Message Parts section, select the message parts keyword.

1062 Securing applications and their environment

Important: You must define at least one message part in the Message Parts section to specify

nonce for Confidentiality. The selection of message part here is for encrypting a message

part in addition to the parent element of the nonce.

10. Click OK to save the configuration changes.

Note: These configurations for the consumer and the generator must match.

In addition to the nonce, you can specify that the timestamp element is signed. For more information,

see the following articles:

v “Adding time stamps for confidentiality to generator security constraints with keywords” on page

1053

v “Adding time stamps for confidentiality to generator security constraints with an XPath expression”

on page 1059

After you specify which message parts to encrypt, you must specify which method is used to encrypt sign

the message. For more information, see “Configuring encryption information for the generator binding with

an assembly tool” on page 1078.

XML encryption

XML encryption is a specification developed by World Wide Web (WWW) Consortium (W3C) in 2002 that

contains the steps to encrypt data, the steps to decrypt encrypted data, the XML syntax to represent

encrypted data, the information used to decrypt the data, and a list of encryption algorithms such as triple

DES, AES, and RSA.

You can apply XML encryption to an XML element, XML element content, and arbitrary data, including an

XML document. For example, suppose that you need to encrypt the CreditCard element shown in the

example 1.

Example 1: Sample XML document

<PaymentInfo xmlns=’http://example.org/paymentv2’>

 <Name>John Smith</Name>

 <CreditCard Limit=’5,000’ Currency=’USD’>

 <Number>4019 2445 0277 5567</Number>

 <Issuer>Example Bank</Issuer>

 <Expiration>04/02</Expiration>

 </CreditCard>

</PaymentInfo>

Example 2: XML document with a common secret key

Example 2 shows the XML document after encryption. The EncryptedData element represents the

encrypted CreditCard element. The EncryptionMethod element describes the applied encryption algorithm,

which is triple DES in this example. The KeyInfo element contains the information to retrieve a decryption

key, which is a KeyName element in this example. The CipherValue element contains the ciphertext

obtained by serializing and encrypting the CreditCard element.

<PaymentInfo xmlns=’http://example.org/paymentv2’>

 <Name>John Smith</Name>

 <EncryptedData Type=’http://www.w3.org/2001/04/xmlenc#Element’

 xmlns=’http://www.w3.org/2001/04/xmlenc#’>

 <EncryptionMethod

 Algorithm=’http://www.w3.org/2001/04/xmlenc#tripledes-cbc’/>

 <KeyInfo xmlns=’http://www.w3.org/2000/09/xmldsig#’>

 <KeyName>John Smith</KeyName>

 </KeyInfo>

 <CipherData>

 <CipherValue>ydUNqHkMrD...</CipherValue>

 </CipherData>

 </EncryptedData>

</PaymentInfo>

Chapter 14. Web services 1063

Example 3: XML document encrypted with the public key of the recipient

In example 2, it is assumed that both the sender and recipient have a common secret key. If the recipient

has a public and private key pair, which is most likely the case, the CreditCard element can be encrypted

as shown in example 3. The EncryptedData element is the same as the EncryptedData element found in

Example 2. However, the KeyInfo element contains an EncryptedKey.

<PaymentInfo xmlns=’http://example.org/paymentv2’>

 <Name>John Smith</Name>

 <EncryptedData Type=’http://www.w3.org/2001/04/xmlenc#Element’

 xmlns=’http://www.w3.org/2001/04/xmlenc#’>

 <EncryptionMethod

 Algorithm=’http://www.w3.org/2001/04/xmlenc#tripledes-cbc’/>

 <KeyInfo xmlns=’http://www.w3.org/2000/09/xmldsig#’>

 <EncryptedKey xmlns=’http://www.w3.org/2001/04/xmlenc#’>

 <EncryptionMethod

 Algorithm=’http://www.w3.org/2001/04/xmlenc#rsa-1_5’/>

 <KeyInfo xmlns=’http://www.w3.org/2000/09/xmldsig#’>

 <KeyName>Sally Doe</KeyName>

 </KeyInfo>

 <CipherData>

 <CipherValue>yMTEyOTA1M...</CipherValue>

 </CipherData>

 </EncryptedKey>

 </KeyInfo>

 <CipherData>

 <CipherValue>ydUNqHkMrD...</CipherValue>

 </CipherData>

 </EncryptedData>

</PaymentInfo>

XML Encryption in the WSS-Core

WSS-Core specification is under development by Organization for the Advancement of Structured

Information Standards (OASIS). The specification describes enhancements to Simple Object Access

Protocol (SOAP) messaging to provide quality of protection through message integrity, message

confidentiality, and single message authentication. The message confidentiality is realized by encryption

based on XML Encryption.

The WSS-Core specification supports encryption of any combination of body blocks, header blocks, their

substructures, and attachments of a SOAP message. The specification also requires that when you

encrypt parts of a SOAP message, you prepend a reference from the security header block to the

encrypted parts of the message. The reference can be a clue for a recipient to identify which encrypted

parts of the message to decrypt.

The XML syntax of the reference varies according to what information is encrypted and how it is

encrypted. For example, suppose that the CreditCard element in example 4 is encrypted with either a

common secret key or the public key of the recipient.

Example 4: Sample SOAP message

<SOAP-ENV:Envelope

 SOAP-ENV:encodingStyle=’http://schemas.xmlsoap.org/soap/encoding/’

 xmlns:SOAP-ENV=’http://schemas.xmlsoap.org/soap/envelope/’>

 <SOAP-ENV:Body>

 <PaymentInfo xmlns=’http://example.org/paymentv2’>

 <Name>John Smith</Name>

 <CreditCard Limit=’5,000’ Currency=’USD’>

 <Number>4019 2445 0277 5567</Number>

 <Issuer>Example Bank</Issuer>

 <Expiration>04/02</Expiration>

1064 Securing applications and their environment

</CreditCard>

 </PaymentInfo>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

The resulting SOAP messages are shown in Examples 5 and 6. In these example, the ReferenceList and

EncryptedKey elements are used as references, respectively.

Example 5: SOAP message encrypted with a common secret key

<SOAP-ENV:Envelope

 SOAP-ENV:encodingStyle=’http://schemas.xmlsoap.org/soap/encoding/’

 xmlns:SOAP-ENV=’http://schemas.xmlsoap.org/soap/envelope/’>

 <SOAP-ENV:Header>

 <Security SOAP-ENV:mustUnderstand=’1’

 xmlns=’http://schemas.xmlsoap.org/ws/2003/06/secext’>

 <ReferenceList xmlns=’http://www.w3.org/2001/04/xmlenc#’>

 <DataReference URI=’#ed1’/>

 </ReferenceList>

 </Security>

 </SOAP-ENV:Header>

 <SOAP-ENV:Body>

 <PaymentInfo xmlns=’http://example.org/paymentv2’>

 <Name>John Smith</Name>

 <EncryptedData Id=’ed1’

 Type=’http://www.w3.org/2001/04/xmlenc#Element’

 xmlns=’http://www.w3.org/2001/04/xmlenc#’>

 <EncryptionMethod

 Algorithm=’http://www.w3.org/2001/04/xmlenc#tripledes-cbc’/>

 <KeyInfo xmlns=’http://www.w3.org/2000/09/xmldsig#’>

 <KeyName>John Smith</KeyName>

 </KeyInfo>

 <CipherData>

 <CipherValue>ydUNqHkMrD...</CipherValue>

 </CipherData>

 </EncryptedData>

 </PaymentInfo>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Example 6: SOAP message encrypted with the public key of the recipient

<SOAP-ENV:Envelope

 SOAP-ENV:encodingStyle=’http://schemas.xmlsoap.org/soap/encoding/’

 xmlns:SOAP-ENV=’http://schemas.xmlsoap.org/soap/envelope/’>

 <SOAP-ENV:Header>

 <Security SOAP-ENV:mustUnderstand=’1’

 xmlns=’http://schemas.xmlsoap.org/ws/2003/06/secext’>

 <EncryptedKey xmlns=’http://www.w3.org/2001/04/xmlenc#’>

 <EncryptionMethod

 Algorithm=’http://www.w3.org/2001/04/xmlenc#rsa-1_5’/>

 <KeyInfo xmlns=’http://www.w3.org/2000/09/xmldsig#’>

 <KeyName>Sally Doe</KeyName>

 </KeyInfo>

 <CipherData>

 <CipherValue>yMTEyOTA1M...</CipherValue>

 </CipherData>

 <ReferenceList>

 <DataReference URI=’#ed1’/>

 </ReferenceList>

 </EncryptedKey>

 </Security>

 </SOAP-ENV:Header>

 <SOAP-ENV:Body>

 <PaymentInfo xmlns=’http://example.org/paymentv2’>

 <Name>John Smith</Name>

 <EncryptedData Id=’ed1’

Chapter 14. Web services 1065

Type=’http://www.w3.org/2001/04/xmlenc#Element’

 xmlns=’http://www.w3.org/2001/04/xmlenc#’>

 <EncryptionMethod

 Algorithm=’http://www.w3.org/2001/04/xmlenc#tripledes-cbc’/>

 <CipherData>

 <CipherValue>ydUNqHkMrD...</CipherValue>

 </CipherData>

 </EncryptedData>

 </PaymentInfo>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Relationship to digital signature

The WSS-Core specification also provides message integrity, which is realized by a digital signature based

on the XML-Signature specification.

A combination of encryption and digital signature over common data introduces cryptographic

vulnerabilities.

Configuring encryption information for the consumer binding with an assembly

tool

Prior to completing this task, you must complete the following steps:

1. Import your application into an assembly tool.

For information on how to import your application, see ″Importing an enterprise application EAR file″ in

the Application Server Toolkit documentation.

2. Specify which message parts to encrypt. For more information, see “Encrypting message elements in

consumer security constraints with keywords” on page 1068 or “Encrypting message elements in

consumer security constraints with an XPath expression” on page 1073.

3. Configure the key information that is referenced by the Key information element within the Encryption

information dialog window. For more information, see “Configuring key information for the consumer

binding with an assembly tool” on page 1045.

Complete the following steps to configure the encryption information for the server-side and client-side

bindings using an assembly tool. The encryption information on the consumer side is used for decrypting

the encrypted message parts in the incoming SOAP message. The response consumer is configured for

the client and the request consumer is configured for the server. In the following steps, you must configure

either the client-side bindings in step 2 or the server-side bindings in step 3.

1. Start the assembly tool.

2. Switch to the Java 2 Platform, Enterprise Edition (J2EE) perspective. Click Window > Open

Perspective > J2EE.

3. Optional: Locate the client-side bindings using the Project Explorer window. The Client Deployment

Descriptor window is displayed. This Web service contains the extensions that you must configure.

Complete the following steps to locate the client-side bindings:

a. Expand the Web Services > Client section and double-click the name of the Web service.

b. Click the WS Binding tab and expand the Security Response Consumer Binding Configuration

section.

4. Optional: Locate the server-side bindings using the Project Explorer window. The Web Services Editor

window is displayed. This Web service contains the bindings that you must configure. Complete the

following steps to locate the server-side bindings:

a. Expand the Web Services > Services section and double-click the name of the Web service.

b. Click the Binding Configurations tab and expand the Request Consumer Binding Configuration

Details section.

1066 Securing applications and their environment

5. Expand the Encryption Information section and click Add to add a new entry or select an existing entry

and click Edit. The Encryption Information dialog window is displayed. Complete the following steps to

specify an encryption information configuration:

a. Specify a name for the encryption information configuration in the Encryption name field.

b. Optional: Select Show only FIPS Compliant Algorithms if you only want the FIPS compliant

algorithms to be shown in the encryption method algorithm drop-down lists. Use this option if you

expect this application to run on a WebSphere Application Server that has set the Use the United

States Federal Information Processing Standard (FIPS) algorithms option in the SSL certificate

and key management panel of the administrative console for WebSphere Application Server.

c. Select a data encryption algorithm from the Data encryption method algorithm field. The data

encryption algorithm is used for encrypting or decrypting parts of a SOAP message, such as the

SOAP body or the username token. The following pre-configured algorithms are supported:

v http://www.w3.org/2001/04/xmlenc#tripledes-cbc

v http://www.w3.org/2001/04/xmlenc#aes128-cbc

v http://www.w3.org/2001/04/xmlenc#aes256-cbc

To use this algorithm, you must download the unrestricted Java Cryptography Extension (JCE)

policy file from the following Web site: http://www.ibm.com/developerworks/java/jdk/security/
index.html.

v http://www.w3.org/2001/04/xmlenc#aes192-cbc

To use this algorithm, you must download the unrestricted Java Cryptography Extension (JCE)

policy file from the following Web site: http://www.ibm.com/developerworks/java/jdk/security/
index.html.

Do not use the 192-bit key encryption algorithm if you want your configured application to be in

compliance with the Basic Security Profile (BSP).

This algorithm must match the data encryption algorithm that is configured for the generator. For

more information on configuring the encryption information for the generator, see “Configuring

encryption information for the generator binding with an assembly tool” on page 1078.

d. Select a key encryption algorithm from the Key encryption method algorithm field. The key

encryption algorithm is used to encrypt the key that is used for encrypting the message parts within

the SOAP message. The following pre-configured algorithms are supported:

v http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p.

When running with Software Development Kit (SDK) Version 1.4, the list of supported key

transport algorithms will not include this one. This algorithm will appear in the list of supported

key transport algorithms when running with SDK Version 1.5.

Restriction: This algorithm is not supported when the WebSphere Application Server is running

in Federal Information Processing Standard (FIPS) mode.

v http://www.w3.org/2001/04/xmlenc#rsa-1_5

v http://www.w3.org/2001/04/xmlenc#kw-tripledes

v http://www.w3.org/2001/04/xmlenc#kw-aes128

v http://www.w3.org/2001/04/xmlenc#kw-aes256

To use this algorithm, you must download the unrestricted Java Cryptography Extension (JCE)

policy file from the following Web site: http://www.ibm.com/developerworks/java/jdk/security/
index.html.

v http://www.w3.org/2001/04/xmlenc#kw-aes192

To use this algorithm, you must download the unrestricted Java Cryptography Extension (JCE)

policy file from the following Web site: http://www.ibm.com/developerworks/java/jdk/security/
index.html.

Do not use the 192-bit key encryption algorithm if you want your configured application to be in

compliance with the Basic Security Profile (BSP).

Chapter 14. Web services 1067

http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html

Select the blank entry if the data encryption key, which is the key used for encrypting the message

parts, is not encrypted. This key encryption algorithm for the consumer must match the key

encryption algorithm for the generator. For more information on configuring the encryption

information for the generator, see “Configuring encryption information for the generator binding with

an assembly tool” on page 1078.

6. Click Add in the Encryption Key Information section to add a new key information entry or click

Remove to delete a selected entry. Complete the following substeps if you are adding a new key

information entry.

a. Specify a name in the Key information name field.

b. Select a key information reference from the list under the Encryption key information field. The

value in this field references the key information configuration that you specified previously. If you

have a key information configuration called con_enckeyinfo that you want to use with this

encryption information configuration, specify con_enckeyinfo in the Key information element field.

For more information, see “Configuring key information for the consumer binding with an assembly

tool” on page 1045.

7. Select a required confidentiality part from the list in the RequiredConfidentiality part field. The value in

this field specifies a reference to the message parts for encryption.

8. Click OK to save your encryption information configuration.

After you complete this task for the consumer binding, you must configure the encryption information for

generator binding if this task was not previously completed. For more information, see “Configuring

encryption information for the generator binding with an assembly tool” on page 1078.

Encrypting message elements in consumer security constraints with keywords

Prior to completing this task, you must import your application into an assembly tool.

For information on how to import your application, see ″Importing an enterprise application EAR file″ in the

Application Server Toolkit documentation.

Complete the following steps to specify which message parts to check for encryption when you configure

the consumer security constraints for either the response consumer or the request consumer. The

response consumer is configured for the client and the request consumer is configured for the server. In

the following steps, you must configure either the client-side bindings in step 2 or the server-side bindings

in step 3.

1. Start the assembly tool and click Window > Open Perspective > J2EE.

2. Optional: Locate the client-side bindings using the Project Explorer window. The Client Deployment

Descriptor window is displayed. This Web service contains the extensions that you must configure.

Complete the following steps to locate the client-side bindings:

a. Expand the Web Services > Client section and double-click the name of the Web service.

b. Click the WS Extension tab and expand the Response Consumer Configuration section.

3. Optional: Locate the server-side bindings using the Project Explorer window. The Web Services Editor

window is displayed. This Web service contains the bindings that you must configure. Complete the

following steps to locate the server-side bindings:

a. Expand the Web Services > Services section and double-click the name of the Web service.

b. Click the Extensions tab and expand the Request Consumer Service Configuration Details

section.

4. Expand the Required Confidentiality section. Confidentiality refers to encryption and integrity refers to

digital signing. Confidentiality reduces the risk of someone intercepting the message as it moves

across a network. With confidentiality specifications, the message is encrypted before it is sent and

decrypted when it is received at the intended target. For more information on encryption, see “XML

encryption” on page 1063.

1068 Securing applications and their environment

5. Click Add to specify which parts of the message to check for encryption. The Required Confidentiality

Dialog window is displayed. Complete the following steps to specify a configuration:

a. Specify a name for the confidentiality element in the Required Confidentiality Name field.

b. Specify a usage type in the Usage type field. This field specifies the requirement for the

confidentiality element. The value of this attribute is either Required or Optional.

6. Click Add under Message parts and select the message parts dialect. The http://www.ibm.com/
websphere/webservices/wssecurity/dialect-was dialect specifies which message part to be checked for

encryption using keywords. If you select this dialect, you can select one of the following keywords

under Message parts keyword:

bodycontent

Specifies the user data portion of the message. If you select this keyword, the body is checked

for encryption.

usernametoken

Specifies a username token that contains the basic authentication information such as a user

name and a password. Usually, the username token is encrypted so that the user information

is secure. If you select this keyword, the username token element is checked for encryption.

digestvalue

Specifies a unique digest value. When a part of the Simple Object Access Protocol (SOAP)

message is signed, a unique digest value is created and is used by the receiving party to

check the integrity of the message. You can encrypt the digestvalue element to secure the

digest value. If you select this keyword, the digestvalue is checked for encryption.

signature

Specifies an entire signature. You can encrypt the signature element, ds:Signature. by

selecting this message part.

Note: If the value of a ds:DigestValue element in a signature needs to be encrypted, the entire

parent ds:Signature element must be encrypted to ensure that the application complies

to the Basic Security Profile (BSP). You can use the signature keyword to perform the

encryption.

wscontextcontent

Encrypts the content in the WS-Context header for the SOAP header. For more information,

see Propagating work area context over Web services.

Note: You must have a matching configuration for the generator.

In addition to the message parts, you also can specify that WebSphere Application Server check the

encryption of the nonce and timestamp elements. For more information, see the following articles:

v “Adding time stamps for confidentiality in consumer security constraints with keywords”

v “Adding time stamps for confidentiality in consumer security constraints with an XPath expression”

on page 1074

v “Adding a nonce for confidentiality in consumer security constraints with keywords” on page 1071

v “Adding the nonce for confidentiality in consumer security constraints with an XPath expression” on

page 1076

7. Click OK to save your configuration.

After you specify which message parts to check for encryption, you must specify which method is used to

verify the encryption of the message parts. For more information, see “Configuring encryption information

for the consumer binding with an assembly tool” on page 1066.

Adding time stamps for confidentiality in consumer security constraints with keywords:

Prior to completing this task, you must import your application into an assembly tool.

Chapter 14. Web services 1069

For information on how to import your application, see ″Importing an enterprise application EAR file″ in the

Application Server Toolkit documentation.

This task is used to specify that a time stamp embedded in a particular element and encrypted is checked

for encryption along with the message parts in the Required Integrity . Complete the following steps to

specify the time stamp for confidentiality using keywords when you configure the consumer security

constraints for either the response consumer or the request consumer. The response consumer is

configured for the client and the request consumer is configured for the server. In the following steps, you

must configure either the client-side extensions in step 2 or the server-side extensions in step 3.

 1. Start the assembly tool.

 2. Switch to the Java 2 Platform, Enterprise Edition (J2EE) perspective. Click Window > Open

Perspective > J2EE.

 3. Optional: Locate the client-side extensions using the Project Explorer window. The Client

Deployment Descriptor window is displayed. This Web service contains the extensions that you need

to configure. Complete the following steps to locate the client-side extensions:

a. Expand the Web Services > Client section and double-click the name of the Web service.

b. Click the WS Extension tab and expand the Response Consumer Configuration section.

 4. Optional: Locate the server-side extensions using the Project Explorer window. The Web Services

Editor window is displayed. This Web service contains the extensions that you need to configure.

Complete the following steps to locate the server-side extensions:

a. Expand the Web Services > Services section and double-click the name of the Web service.

b. Click the Extensions tab and expand the Request Consumer Service Configuration Details

section.

 5. Expand the Required Confidentiality section. Confidentiality refers to encryption while integrity refers

to digital signing. Confidentiality reduces the risk of someone intercepting the message as it moves

across a network. With confidentiality specifications, the message is encrypted before it is sent and

decrypted when it is received at the intended target. For more information on encryption, see “XML

encryption” on page 1063.

 6. Click Add to specify that the element within which a timestamp is added and encrypted, is checked

for confidentiality. The Required Confidentiality Dialog window is displayed. Complete the following

steps to specify a configuration:

a. Specify a name for the confidentiality element in the Required Confidentiality Name field.

b. Specify a usage type in the Usage type field. This field specifies the requirement for the

confidentiality element. The value of this attribute is either Required or Optional.

 7. In the Timestamp section, click Add and select the Timestamp dialect. The http://www.ibm.com/
websphere/webservices/wssecurity/dialect-was dialect specifies the message part that is verified for

encryption using the keywords. If you select this dialect, you can select one of the following keywords

under the Timestamp keyword heading:

bodycontent

Specifies the user data portion of the message. If this keyword is selected, the body along

with the embedded timestamp is checked for confidentiality.

usernametoken

Specifies a username token that contains the basic authentication information such as a user

name and a password. Usually, the username token is encrypted so that the user information

is secure. If you select this keyword, the username token along with the embedded

timestamp is checked for confidentiality.

digestvalue

Specifies a unique digest value. When a part of the Simple Object Access Protocol (SOAP)

message is signed, a unique digest value is created and is used by the receiving party to

1070 Securing applications and their environment

check the integrity of the message. You can encrypt the digestvalue element to secure the

digest value. If you select this keyword, the digestvalue along with the embedded timestamp

is checked for confidentiality.

signature

Specifies an entire signature. You can encrypt the signature element, ds:Signature, by

selecting this message part.

Note: If the value of a ds:DigestValue element in a signature needs to be encrypted, the

entire parent ds:Signature element must be encrypted to ensure that the application

complies to the Basic Security Profile (BSP). You can use the signature keyword to

perform the encryption.

wscontextcontent

Encrypts the content in the WS-Context header for the SOAP header. For more information,

see Propagating work area context over Web services.

 8. If you have not specified message part(s) in Required Confidentiality, in the Message Parts section

click Add to add message parts. You must define at least one message part in Required

Confidentiality for specifying Timestamp in Required Confidentiality.″

 9. In the Message Parts section, select the message parts keyword.

10. Click OK to save the configuration changes.

Note: These configurations for the consumer and the generator must match.

In addition to the time stamp, you can specify that the nonce is checked for confidentiality. For more

information, see the following articles:

v “Adding a nonce for integrity in consumer security constraints with keywords” on page 1033

v “Adding a nonce for integrity in consumer security constraints with an XPath expression” on page

1038

After you specify which message parts to check for encryption, you must specify which method is used to

check the encryption. For more information, see “Configuring encryption information for the consumer

binding with an assembly tool” on page 1066.

Adding a nonce for confidentiality in consumer security constraints with keywords:

You can check the confidentiality of an element that has nonce embedded in it and is encrypted using

keywords when you configure the consumer security constraints for either the response consumer or the

request consumer.

 Prior to completing this task, you must import your application into an assembly tool.

For information on how to import your application, see ″Importing an enterprise application EAR file″ in the

Application Server Toolkit documentation.

Nonce for confidentiality is used to specify that the nonce is embedded in a particular element within the

message and that the element is encrypted. Complete the following steps to check the confidentiality of an

element that has nonce embedded in it and is encrypted using keywords when you configure the

consumer security constraints for either the response consumer or the request consumer. The response

consumer is configured for the client and the request consumer is configured for the server. In the

following steps, you must configure either the client-side extensions in step 2 or the server-side extensions

in step 3.

 1. Start the assembly tool.

 2. Switch to the Java 2 Platform, Enterprise Edition (J2EE) perspective. Click Window > Open

Perspective > J2EE.

Chapter 14. Web services 1071

3. Optional: Locate the client-side extensions using the Project Explorer window. The Client

Deployment Descriptor window is displayed. This Web service contains the extensions that you must

configure. Complete the following steps to locate the client-side extensions:

a. Expand the Web Services > Client section and double-click the name of the Web service.

b. Click the WS Extension tab and expand the Response Consumer Configuration section.

 4. Optional: Locate the server-side extensions using the Project Explorer window. The Web Services

Editor window is displayed. This Web service contains the extensions that you must configure.

Complete the following steps to locate the server-side extensions:

a. Expand the Web Services > Services section and double-click the name of the Web service.

b. Click the Extensions tab and expand the Request Consumer Service Configuration Details

section.

 5. Expand the Required Confidentiality section. Confidentiality refers to encryption and integrity refers to

digital signing. Confidentiality reduces the risk of someone intercepting the message as it moves

across a network. With confidentiality specifications, the message is encrypted before it is sent and

decrypted when it is received at the intended target. For more information on encryption, see “XML

encryption” on page 1063.

 6. Click Add to specify that the element within which a nonce is added and encrypted, is checked for

confidentiality. The Required Confidentiality Dialog window is displayed. Complete the following steps

to specify a configuration:

a. Specify a name for the confidentiality element in the Required Confidentiality Name field.

b. Specify a usage type in the Usage type field. This field specifies the requirement for the

confidentiality element. The value of this attribute is either Required or Optional.

 7. Under Nonce, click Add and select the Nonce dialect. The http://www.ibm.com/websphere/
webservices/wssecurity/dialect-was dialect specifies the message part that has an embedded

nonce is verified for encryption. If you select this dialect, you can select one of the following keywords

under Nonce keyword:

bodycontent

Specifies the user data portion of the message. If this keyword is selected, the nonce is

embedded in the SOAP message body and the body along with the embedded nonce is

checked for confidentiality.

usernametoken

Specifies a username token that contains the basic authentication information such as a user

name and a password. Usually, the username token is encrypted so that the user information

is secure. If you select this keyword, the user name token element along with the embedded

nonce is checked for confidentiality.

digestvalue

Specifies a unique digest value. When a part of the SOAP message is signed, a unique

digest value is created and is used by the receiving party to check the integrity of the

message. You can encrypt the digestvalue element to secure the digest value. If you select

this keyword, the digestvalue element along with the embedded nonce is checked for

confidentiality.

signature

Specifies an entire signature. You can encrypt the signature element, ds:Signature. by

selecting this message part.

Note: If the value of a ds:DigestValue element in a signature needs to be encrypted, the

entire parent ds:Signature element must be encrypted to ensure that the application

complies to the Basic Security Profile (BSP). You can use the signature keyword to

perform the encryption.

1072 Securing applications and their environment

wscontextcontent

Encrypts the content in the WS-Context header for the SOAP header. For more information,

see Propagating work area context over Web services.

 8. If you have not specified message parts in Required Confidentiality, in the Message Parts section,

click Add to add message parts. You must define at least one message part in Required

Confidentiality for specifying Nonce in Required Confidentiality.

 9. In the Message Parts section, select the message parts keyword.

10. Click OK to save the configuration changes.

Note: These configurations for the consumer and the generator must match.

In addition to the nonce, you can specify that the timestamp element is checked for confidentiality. For

more information, see the following articles:

v “Adding time stamps for confidentiality in consumer security constraints with keywords” on page

1069

v “Adding time stamps for confidentiality in consumer security constraints with an XPath expression”

on page 1074

After you specify which message parts to check for confidentiality, you must specify which method is used

to verify the encryption. For more information, see “Configuring encryption information for the consumer

binding with an assembly tool” on page 1066.

Encrypting message elements in consumer security constraints with an XPath

expression

Prior to completing this task, you must import your application into an assembly tool.

For information on how to import your application, see ″Importing an enterprise application EAR file″ in the

Application Server Toolkit documentation.

The following information explains the difference between using an XPath expression and using keywords

to specify which part of the message to sign:

XPath expression

Specify any part of the message using an XPath expression. XPath is a language that is used to

address parts of an XML document. You can find information on XPath syntax at the following

Web site: http://www.w3.org/TR/1999/REC-xpath-19991116.

Keywords

Specify only elements within the message using predefined keywords.

Complete the following steps to specify which message parts to check for encryption when you configure

the consumer security constraints for either the response consumer or the request consumer. The

response consumer is configured for the client and the request consumer is configured for the server. In

the following steps, you must configure either the client-side extensions in step 2 or the server-side

extensions in step 3.

1. Start the assembly tool.

2. Switch to the Java 2 Platform, Enterprise Edition (J2EE) perspective. Click Window > Open

Perspective > J2EE.

3. Optional: Locate the client-side extensions using the Project Explorer window. The Client Deployment

Descriptor window is displayed. This Web service contains the extensions that you must configure.

Complete the following steps to locate the client-side extensions:

a. Expand the Web Services > Client section and double-click the name of the Web service.

b. Click the WS Extension tab and expand the Response Consumer Configuration section.

Chapter 14. Web services 1073

http://www.w3.org/TR/1999/REC-xpath-19991116

4. Optional: Locate the server-side extensions using the Project Explorer window. The Web Services

Editor window is displayed. This Web service contains the extensions that you must configure.

Complete the following steps to locate the server-side extensions:

a. Expand the Web Services > Services section and double-click the name of the Web service.

b. Click the Extensions tab and expand the Request Consumer Service Configuration Details

section.

5. Expand the Required Confidentiality section. Confidentiality refers to encryption and integrity refers to

digital signing. Confidentiality reduces the risk of someone intercepting the message as it moves

across a network. With confidentiality specifications, the message is encrypted before it is sent and

decrypted when it is received at the intended target. For more information on encryption, see “XML

encryption” on page 1063.

6. Click Add to specify which parts of the message to check for encryption. The Required Confidentiality

Dialog window is displayed. Complete the following steps to specify a configuration:

a. Specify a name for the confidentiality element in the Required Confidentiality Name field.

b. Specify a usage type in the Usage type field. This field specifies the requirement for the

confidentiality element. The value of this attribute is either Required or Optional.

7. Click Add under the Message parts section of the Required Confidentiality Dialog window. Complete

the following steps to specify the message part and its associated message parts dialect:

a. Select the message parts dialect from the Message parts section. The http://www.w3.org/TR/1999/
REC-xpath-19991116 dialect specifies which message part is checked for encryption using an

XPath expression.

Do not use this transform algorithm if you want your configured application to be compliant with the

Basic Security Profile (BSP). Instead use http://www.w3.org/2002/06/xmldsig-filter2 to ensure

compliance.

b. Specify the message part to be checked for encryption using an XPath expression in the Message

parts keyword field. For example, to specify that the body is checked for encryption, you might add

the following expression in the Message parts keyword field as one continuous line:

/*[namespace-uri()=’http://schemas.xmlsoap.org/soap/envelope/’

and local-name()=’Envelope’]/*[namespace-uri()=’http://schemas.xmlsoap.org/

soap/envelope/’ and local-name()=’Body’]

Note: These configurations for the consumer and the generator must match.

In addition to the message parts, you also can specify that WebSphere Application Server check the

nonce and timestamp elements for encryption. For more information, see the following articles:

v “Adding time stamps for confidentiality in consumer security constraints with keywords” on page

1069

v “Adding time stamps for confidentiality in consumer security constraints with an XPath expression”

v “Adding a nonce for confidentiality in consumer security constraints with keywords” on page 1071

v “Adding the nonce for confidentiality in consumer security constraints with an XPath expression” on

page 1076

8. Click OK to save your configuration.

After you specify which message parts to check for encryption, you must specify which method is used to

verify the encryption of the message parts. For more information, see “Configuring encryption information

for the consumer binding with an assembly tool” on page 1066.

Adding time stamps for confidentiality in consumer security constraints with an XPath

expression:

Prior to completing this task, you must import your application into an assembly tool.

1074 Securing applications and their environment

For information on how to import your application, see ″Importing an enterprise application EAR file″ in the

Application Server Toolkit documentation.

The following information explains the difference between using an XPath expression and using keywords

to specify which part of the message to sign:

XPath expression

Specify any part of the message using an XPath expression. XPath is a language that is used to

address parts of an XML document. You can find information on XPath syntax at the following

Web site: http://www.w3.org/TR/1999/REC-xpath-19991116.

Keywords

Specify only elements within the message using predefined keywords.

This task is used to specify that a time stamp embedded in a particular element and encrypted on the

generator side is checked for encryption on the consumer side. Complete the following steps to specify the

time stamp for confidentiality using an XPath expression when you configure the consumer security

constraints for either the response consumer or the request consumer. The response consumer is

configured for the client and the request consumer is configured for the server. In the following steps, you

must configure either the client-side extensions in step 2 or the server-side extensions in step 3.

1. Start the assembly tool.

2. Switch to the Java 2 Platform, Enterprise Edition (J2EE) perspective. Click Window > Open

Perspective > J2EE.

3. Optional: Locate the client-side extensions using the Project Explorer window. The Client Deployment

Descriptor window is displayed. This Web service contains the extensions that you must configure.

Complete the following steps to locate the client-side extensions:

a. Expand the Web Services > Client section and double-click the name of the Web service.

b. Click the WS Extension tab and expand the Response Consumer Configuration section.

4. Optional: Locate the server-side extensions using the Project Explorer window. The Web Services

Editor window is displayed. This Web service contains the extensions that you must configure.

Complete the following steps to locate the server-side extensions:

a. Expand the Web Services > Services section and double-click the name of the Web service.

b. Click the Extensions tab and expand the Request Consumer Service Configuration Details

section.

5. Expand the Required Confidentiality section. Confidentiality refers to encryption and integrity refers to

digital signing. Confidentiality reduces the risk of someone intercepting the message as it moves

across a network. With confidentiality specifications, the message is encrypted before it is sent and

decrypted when it is received at the intended target. For more information on encryption, see “XML

encryption” on page 1063.

6. Click Add to specify that the element within which a timestamp is added and encrypted, is checked for

confidentiality. The Required Confidentiality Dialog window is displayed. Complete the following steps

to specify a configuration:

a. Specify a name for the confidentiality element in the Required Confidentiality Name field.

b. Specify a usage type in the Usage type field. This field specifies the requirement for the

confidentiality element. The value of this attribute is either Required or Optional.

7. Click Add under the Timestamp section of the Required Confidentiality Dialog window. Complete the

following steps to specify the timestamp dialect and the message part:

a. Select the timestamp dialect from the Timestamp section. The http://www.w3.org/TR/1999/REC-
xpath-19991116 dialect specifies which message part is verified for encryption using an XPath

expression.

Do not use this transform algorithm if you want your configured application to be compliant with the

Basic Security Profile (BSP). Instead use http://www.w3.org/2002/06/xmldsig-filter2 to ensure

compliance.

Chapter 14. Web services 1075

http://www.w3.org/TR/1999/REC-xpath-19991116

b. Specify the message part that has an embedded time stamp and is checked for encryption using

an XPath expression in the Timestamp keyword field. For example, to specify that the bodycontent

element along with the embedded timestamp is checked for encryption, you might add the following

expression in the Timestamp keyword field as one continuous line:

/*[namespace-uri()=’http://schemas.xmlsoap.org/soap/envelope/’

and local-name()=’Envelope’]/*[namespace-uri()=’http://schemas.xmlsoap.org/

soap/envelope/’ and local-name()=’Bodycontent’]

If you have not specified message parts in Required Confidentiality, you can click Add in the

Message Parts section to add the message parts. You must define at least one message part in

Required Confidentiality to specify a time stamp in Required Confidentiality.

8. Click OK to save the configuration changes.

Note: These configurations for the consumer and the generator must match.

In addition to the time stamp, you can specify that the nonce is checked for encryption. For more

information, see the following articles:

v “Adding a nonce for integrity in consumer security constraints with keywords” on page 1033

v “Adding a nonce for integrity in consumer security constraints with an XPath expression” on page

1038

After you specify which message parts to check for encryption, you must specify which method is used to

verify the encryption. For more information, see “Configuring encryption information for the consumer

binding with an assembly tool” on page 1066.

Adding the nonce for confidentiality in consumer security constraints with an XPath expression:

Prior to completing this task, you must import your application into an assembly tool.

For information on how to import your application, see ″Importing an enterprise application EAR file″ in the

Application Server Toolkit documentation.

The following information explains the difference between using an XPath expression and using keywords

to specify which part of the message to sign:

XPath expression

Specify any part of the message using an XPath expression. XPath is a language that is used to

address parts of an XML document. You can find information on XPath syntax at the following

Web site: http://www.w3.org/TR/1999/REC-xpath-19991116.

Keywords

Specify only elements within the message using predefined keywords.

Nonce for confidentiality is used to specify that the nonce is embedded in a particular element within the

message and that the element is encrypted. Complete the following steps to check the confidentiality of an

element that has nonce embedded in it and is encrypted using an XPath expression when you configure

the consumer security constraints for either the response consumer or the request consumer. The

response consumer is configured for the client and the request consumer is configured for the server. In

the following steps, you must configure either the client-side bindings in step 2 or the server-side bindings

in step 3.

 1. Start the assembly tool.

 2. Switch to the Java 2 Platform, Enterprise Edition (J2EE) perspective. Click Window > Open

Perspective > J2EE.

 3. Optional: Locate the client-side bindings using the Project Explorer window. The Client Deployment

Descriptor window is displayed. This Web service contains the extensions that you must configure.

Complete the following steps to locate the client-side bindings:

a. Expand the Web Services > Client section and double-click the name of the Web service.

1076 Securing applications and their environment

http://www.w3.org/TR/1999/REC-xpath-19991116

b. Click the WS Extension tab and expand the Response Consumer Configuration section.

 4. Optional: Locate the server-side bindings using the Project Explorer window. The Web Services

Editor window is displayed. This Web service contains the bindings that you must configure.

Complete the following steps to locate the server-side bindings:

a. Expand the Web Services > Services section and double-click the name of the Web service.

b. Click the Extensions tab and expand the Request Consumer Service Configuration Details

section.

 5. Expand the Required Confidentiality section. Confidentiality refers to encryption and integrity refers to

digital signing. Confidentiality reduces the risk of someone intercepting the message as it moves

across a network. With confidentiality specifications, the message is encrypted before it is sent and

decrypted when it is received at the intended target. For more information on encryption, see “XML

encryption” on page 1063.

 6. Click Add to specify that the element within which a nonce is added and encrypted is checked for

confidentiality. The Required Confidentiality Dialog window is displayed. Complete the following steps

to specify a configuration:

a. Specify a name for the confidentiality element in the Required Confidentiality Name field.

b. Specify a usage type in the Usage type field. This field specifies the requirement for the

confidentiality element. The value of this attribute is either Required or Optional.

 7. Click Add under the Nonce section of the Required Confidentiality Dialog window. Complete the

following steps to specify a nonce dialect and its associated message part:

a. Select the nonce dialect from the Nonce section. The http://www.w3.org/TR/1999/REC-xpath-
19991116 dialect specifies the message part which has an embedded nonce is verified for

encryption using an XPath expression.

Do not use this transform algorithm if you want your configured application to be compliant with

the Basic Security Profile (BSP). Instead use http://www.w3.org/2002/06/xmldsig-filter2 to ensure

compliance.

b. Specify the message part that has an embedded nonce is unencryption using an XPath

expression in the Nonce keyword field. For example, to specify that the bodycontent element

along with the embedded nonce is checked for confidentiality, you might add the following

expression in the Nonce keyword field as one continuous line:

/*[namespace-uri()=’http://schemas.xmlsoap.org/soap/envelope/’

and local-name()=’Envelope’]/*[namespace-uri()=’http://schemas.xmlsoap.org/

soap/envelope/’ and local-name()=’Bodycontent’]

 8. If you have not specified message parts in Required Confidentiality, click Add in the Message Parts

section to add message parts. You must define at least one message part in Required Confidentiality

for specifying Nonce in Required Confidentiality.

 9. In the Message Parts section, select the message parts keyword.

10. Click OK to save the configuration changes.

Note: These configurations on the consumer side and the generator side must match.

In addition to the nonce, you can specify that the timestamp element is checked for encryption. For

more information, see the following articles:

v “Adding time stamps for confidentiality in consumer security constraints with keywords” on page

1069

v “Adding time stamps for confidentiality in consumer security constraints with an XPath expression”

on page 1074

After you specify which message parts to check for encryption, you must specify which method is used to

verify the encryption. For more information, see “Configuring encryption information for the consumer

binding with an assembly tool” on page 1066.

Chapter 14. Web services 1077

Configuring encryption information for the generator binding with an assembly

tool

The encryption information on the generator side is used for encrypting an outgoing SOAP message. You

can configure the encryption information for the generator binding by using an assembly tool.

Prior to completing this task, you must complete the following steps:

1. Import your application into an assembly tool.

For information on how to import your application, see ″Importing an enterprise application EAR file″ in

the Application Server Toolkit documentation.

2. Specify which message parts to encrypt. For more information, see “Encrypting the message elements

in generator security constraints with keywords” on page 1051 or “Encrypting the message elements in

generator security constraints with an XPath expression” on page 1058.

3. Configure the key information that is referenced by the Key information element within the Encryption

information dialog window. For more information, see “Configuring key information for the generator

binding with an assembly tool” on page 1023.

Complete the following steps to configure the encryption information for the server-side and client-side

bindings using an assembly tool. The request generator is configured for the client and the response

generator is configured for the server.

In the following steps, you must configure either the client-side bindings in step 2 or the server-side

bindings in step 3.

1. Start the assembly tool.

2. Switch to the Java 2 Platform, Enterprise Edition (J2EE) perspective. Click Window > Open

Perspective > J2EE.

3. Optional: Locate the client-side bindings using the Project Explorer window. The Client Deployment

Descriptor window is displayed. This Web service contains the bindings that you must configure.

Complete the following steps to locate the client-side bindings:

a. Expand the Web Services > Client section and double-click the name of the Web service.

b. Click the WS Binding tab and expand the Security Request Generator Binding Configuration

section.

4. Optional: Locate the server-side bindings using the Project Explorer window. The Web Services Editor

window is displayed. This Web service contains the bindings that you must configure. Complete the

following steps to locate the server-side bindings:

a. Expand the Web Services > Services section and double-click the name of the Web service.

b. Click the Binding Configurations tab and expand the Response Generator Binding Configuration

Details section.

5. Expand the Encryption Information section and click Add to add a new entry or select an existing entry

and click Edit. The Encryption Information Dialog window is displayed. Complete the following steps to

specify an encryption information configuration:

a. Specify a name for the encryption information configuration in the Encryption name field. For

example, you might specify gen_encinfo.

b. Optional: Select Show only FIPS Compliant Algorithms if you want only the FIPS compliant

algorithms to be shown in the encryption method algorithm drop-down lists. Use this option if you

expect this application to run on a WebSphere Application Server that has set the Use the United

States Federal Information Processing Standard (FIPS) algorithms option in the SSL certificate

and key management panel of the administrative console for WebSphere Application Server.

c. Select a data encryption algorithm from the Data encryption method algorithm field. This specifies

the algorithm used to encrypt parts of the message. The following pre-configured algorithms are

supported:

v http://www.w3.org/2001/04/xmlenc#tripledes-cbc

1078 Securing applications and their environment

v http://www.w3.org/2001/04/xmlenc#aes128-cbc

v http://www.w3.org/2001/04/xmlenc#aes256-cbc

To use this algorithm, you must download the unrestricted Java Cryptography Extension (JCE)

policy file from the following Web site: http://www.ibm.com/developerworks/java/jdk/security/
index.html.

v http://www.w3.org/2001/04/xmlenc#aes192-cbc

To use this algorithm, you must download the unrestricted JCE policy file from the following Web

site: http://www.ibm.com/developerworks/java/jdk/security/index.html.

Do not use the 192-bit key encryption algorithm if you want your configured application to be in

compliance with the Basic Security Profile (BSP).

This algorithm must match the data encryption algorithm that is configured for the consumer. For

more information on configuring the encryption information for the consumer, see “Configuring

encryption information for the consumer binding with an assembly tool” on page 1066.

d. Select a key encryption algorithm from the Key encryption method algorithm field. This algorithm is

used to encrypt the keys. The following pre-configured algorithms are supported:

v http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p.

When running with Software Development Kit (SDK) Version 1.4, the list of supported key

transport algorithms will not include this one. This algorithm appears in the list of supported key

transport algorithms when running with SDK Version 1.5.

Restriction: This algorithm is not supported when the WebSphere Application Server is running

in Federal Information Processing Standard (FIPS) mode.

By default, the RSA-OAEP algorithm uses the SHA1 message digest algorithm to compute a

message digest as part of the encryption operation. Optionally, you can use the SHA256 or

SHA512 message digest algorithm by specifying a key encryption algorithm property. The

property name is: com.ibm.wsspi.wssecurity.enc.rsaoaep.DigestMethod. The property value is

one of the following URIs of the digest method:

– http://www.w3.org/2001/04/xmlenc#sha256

– http://www.w3.org/2001/04/xmlenc#sha512

By default, the RSA-OAEP algorithm uses a null string for the optional encoding octet string for

the OAEPParams. You can provide an explicit encoding octet string by specifying a key

encryption algorithm property. For the property name, you can specify

com.ibm.wsspi.wssecurity.enc.rsaoaep.OAEPparams. The property value is the base 64-encoded

value of the octet string.

Important: You can set these digest method and OAEPParams properties on the generator

side only. On the consumer side, these properties are read from the incoming SOAP

message.

v http://www.w3.org/2001/04/xmlenc#rsa-1_5

v http://www.w3.org/2001/04/xmlenc#kw-tripledes

v http://www.w3.org/2001/04/xmlenc#kw-aes128

v http://www.w3.org/2001/04/xmlenc#kw-aes256

To use this algorithm, you must download the unrestricted Java Cryptography Extension (JCE)

policy file from the following Web site: http://www.ibm.com/developerworks/java/jdk/security/
index.html.

v http://www.w3.org/2001/04/xmlenc#kw-aes192

To use this algorithm, you must download the unrestricted Java Cryptography Extension (JCE)

policy file from the following Web site: http://www.ibm.com/developerworks/java/jdk/security/
index.html.

Chapter 14. Web services 1079

http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html

Do not use the 192-bit key encryption algorithm if you want your configured application to be in

compliance with the Basic Security Profile (BSP).

Select the blank entry if the data encryption key, which is the key that is used for encrypting the

message parts, is not encrypted. The key encryption algorithm for the generator and the consumer

must match. For more information on configuring the encryption information for the generator, see

“Configuring encryption information for the generator binding with an assembly tool” on page 1078.

e. Specify a name in the Key information name field. For example, you might specify gen_ekeyinfo.

f. Select a key information element in the Key information element field. The value in this field

references the key information configuration that you specified previously. If you have a key

information configuration called gen_enckeyinfo that you want to use with this encryption

information configuration, specify get_enckeyinfo in the Key information element field. For more

information, see “Configuring key information for the generator binding with an assembly tool” on

page 1023.

g. Select a confidentiality part in the Confidentiality part field. The value in this field specifies the

name of the confidentiality element that is encrypted.

6. Click OK to save your encryption information configuration.

After you complete this task for the consumer binding, you must configure the encryption information for

consumer binding. For more information, see “Configuring encryption information for the consumer binding

with an assembly tool” on page 1066.

Adding a stand-alone time stamp to generator security constraints

Prior to completing this task, you must import your application into an assembly tool.

For information on how to import your application, see ″Importing an enterprise application EAR file″ in the

Application Server Toolkit documentation.

The timestamp determines if the message is valid based upon the time that the message is sent by one

machine and then received by another machine.

Complete the following steps to specify a standalone time stamp when you configure the generator

security constraints for either the request generator or the response generator. The request generator is

configured for the client and the response generator is configured for the server. In the following steps, you

must configure either the client-side extensions in step 2 or the server-side extensions in step 3.

1. Start the assembly tool.

2. Switch to the Java 2 Platform, Enterprise Edition (J2EE) perspective. Click Window > Open

Perspective > J2EE.

3. Optional: Locate the client-side extensions using the Project Explorer window. The Client Deployment

Descriptor window is displayed. This Web service contains the extensions that you need to configure.

Complete the following steps to locate the client-side extensions:

a. Expand the Web Services > Client section and double-click the name of the Web service.

b. Click the WS Extension tab and expand the Request Generator Configuration section.

4. Optional: Locate the server-side extensions using the Project Explorer window. The Web Services

Editor window is displayed. This Web service contains the extensions that you need to configure.

Complete the following steps to locate the server-side extensions:

a. Expand the Web Services > Services section and double-click the name of the Web service.

b. Click the Extensions tab and expand the Response Generator Service Configuration Details

section.

5. Expand the Add Timestamp section and select the Use Add Timestamp option. When you select this

option, a time stamp is added to the message that is sent.

1080 Securing applications and their environment

6. Specify an expiration time for the time stamp, which helps defend against replay attacks. Complete the

following steps to configure the time stamp:

a. Expand the Expires subsection within the Add Timestamp section.

b. Select the Use Expires option.

c. Specify an expiration time for the time stamp. The lexical representation for the duration is the [ISO

8601] extended format PnYnMnDTnHnMnS, where:

P Precedes the date and time values.

nY Represents the number of years in which the time stamp is in effect. Select a value from 0

to 99 years.

nM Represents the number of months in which the time stamp is in effect. Select a value from

0 to 11 months.

nD Represents the number of days in which the time stamp is in effect. Select a value from 0

to 30 days.

T Separates the date and time values.

nH Represents the number of hours in which the time stamp is in effect. Select a value from 0

to 23 hours.

nM Represents the number of minutes in which the time stamp is in effect. Select a value from

0 to 59 minutes.

nS Represents the number of seconds in which the time stamp is in effect. The number of

seconds can include decimal digits to arbitrary precision. You can select a value from 0 to

59 for the seconds and from 0 to 9 for tenths of a second.

For example, 1 year, 2 months, 3 days, 10 hours, and 30 minutes is represented as

P1Y2M3DT10H30M. Typically, you might configure a message time stamp for between 10 and 30

minutes. For example, 10 minutes is represented as P0Y0M0DT0H10M0S.

Adding a stand-alone time stamp in consumer security constraints

Prior to completing this task, you must import your application into an assembly tool.

For information on how to import your application, see ″Importing an enterprise application EAR file″ in the

Application Server Toolkit documentation.

The timestamp determines if the message is valid based upon the time that the message is sent by one

machine and then received by another machine.

Complete the following steps to specify a standalone time stamp when you configure the consumer

security constraints for either the response consumer or the request consumer. The response consumer is

configured for the client and the request consumer is configured for the server. In the following steps, you

must configure either the client-side extensions in step 2 or the server-side extensions in step 3.

1. Start the assembly tool.

2. Switch to the Java 2 Platform, Enterprise Edition (J2EE) perspective. Click Window > Open

Perspective > J2EE.

3. Optional: Locate the client-side extensions using the Project Explorer window. The Client Deployment

Descriptor window is displayed. This Web service contains the extensions that you need to configure.

Complete the following steps to locate the client-side extensions:

a. Expand the Web Services > Client section and double-click the name of the Web service.

b. Click the WS Extension tab and expand the Response Consumer Configuration section.

4. Optional: Locate the server-side extensions using the Project Explorer window. The Web Services

Editor window is displayed. This Web service contains the extensions that you need to configure.

Complete the following steps to locate the server-side extensions:

Chapter 14. Web services 1081

a. Expand the Web Services > Services section and double-click the name of the Web service.

b. Click the Extensions tab and expand the Request Consumer Service Configuration Details

section.

5. Expand the Add Timestamp section and select Use Add Timestamp option. When you select this

option, a time stamp is added to the message that is sent.

6. Specify an expiration time for the time stamp, which helps defend against replay attacks. Complete the

following steps to configure the time stamp:

a. Expand the Expires subsection within the Add Timestamp section.

b. Select the Use Expires option.

c. Specify an expiration time for the time stamp. The lexical representation for the duration is the [ISO

8601] extended format PnYnMnDTnHnMnS, where:

P Precedes the date and time values.

nY Represents the number of years in which the time stamp is in effect. Select a value from 0

to 99 years.

nM Represents the number of months in which the time stamp is in effect. Select a value from

0 to 11 months.

nD Represents the number of days in which the time stamp is in effect. Select a value from 0

to 30 days.

T Separates the date and time values.

nH Represents the number of hours in which the time stamp is in effect. Select a value from 0

to 23 hours.

nM Represents the number of minutes in which the time stamp is in effect. Select a value from

0 to 59 minutes.

nS Represents the number of seconds in which the time stamp is in effect. The number of

seconds can include decimal digits to aribrary precision. You can select a value from 0 to

59 for the seconds and from 0 to 9 for tenths of a second.

For example, 1 year, 2 months, 3 days, 10 hours, and 30 minutes is represented as

P1Y2M3DT10H30M. Typically, you might configure a message time stamp for between 10 and 30

minutes. For example, 10 minutes is represented as P0Y0M0DT0H10M0S.

Security token

Web services security provides a general-purpose mechanism to associate security tokens with messages

for single message authentication. A security token represents a set of claims made by a client that might

include a name, password, identity, key, certificate, group, privilege, and so on.

A specific type of security token is not required by Web services security. Web services security is

designed to be extensible and support multiple security token formats to accommodate a variety of

authentication mechanisms. For example, a client might provide proof of identity and proof of a particular

business certification. However, the security token usage for Web services security is defined in separate

profiles such as the Username token profile, the X.509 token profile, the Security Assertion Markup

Language (SAML) token profile, the eXtensible rights Markup Language (XrML) token profile, the Kerberos

token profile and so on.

A security token is embedded in the SOAP message within the SOAP header. The security token within

the SOAP header is propagated from the message sender to the intended message receiver. On the

receiving side, the WebSphere Application Server security handler authenticates the security token and

sets up the caller identity on the running thread.

WebSphere Application Server Version 6.0.x contains an enhanced security token that has the following

features:

1082 Securing applications and their environment

v The client can send multiple tokens to downstream servers.

v The receiver can determine which security token to use for authorization based upon the type or signed

part for X.509 tokens.

v You can use the custom token for digital signing or encryption.

Configuring the security token in generator security constraints

You can specify the security token when you configure the request generator or the response generator.

Prior to completing this task, you must import your application into an assembly tool.

See the information about Importing an enterprise application EAR file in the Application Server Toolkit

documentation.

A security token represents a set of claims that are made by a client and might include a name, password,

identity, key, certificate, group, privilege, and so on. It is embedded in the SOAP message within the SOAP

header. WebSphere Application Server propagates the security token within the SOAP header from the

message sender to the intended message receiver. On the receiving side, the security handler for

WebSphere Application Server authenticates the security token and sets up the caller identity on the

thread.

Complete the following steps to specify the security token when you configure the request generator or the

response generator. The request generator is configured for the client and the response generator is

configured for the server. In the following steps, you must configure either the client-side extensions in

step 2 or the server-side extensions in step 3.

1. Start the assembly tool.

2. Switch to the Java 2 Platform, Enterprise Edition (J2EE) perspective. Click Window > Open

Perspective > J2EE.

3. Optional: Locate the client-side extensions using the Project Explorer window. The Client Deployment

Descriptor window is displayed. This Web service contains the extensions that you need to configure.

Complete the following steps to locate the client-side extensions:

a. Expand the Web Services > Client section and double-click the name of the Web service.

b. Click the WS Extension tab and expand the Request Generator Configuration section.

4. Optional: Locate the server-side extensions using the Project Explorer window. The Web Services

Editor window is displayed. This Web service contains the extensions that you need to configure.

Complete the following steps to locate the server-side extensions:

a. Expand the Web Services > Services section and double-click the name of the Web service.

b. Click the Extensions tab and expand the Response Generator Service Configuration Details

section.

5. Expand the Security Token section. The Security Token Dialog window is displayed.

6. Click Add to configure the security token. Complete the following steps to configure the security token:

a. Specify a name for the security token in the Name field. For example, you might specify un_token.

b. Select a token type from the Token type field. For example, if you wish to send a username token,

select Username for the token type. If you select a token type other than custom token, you do not

need to specify values in the Uniform Resource Identifier (URI) and Local name fields. These fields

are automatically specified when you select a token type other than custom token.

For a username token or an X.509 token, you do not need to specify a value in the URI field.

c. Optional: Specify a value for the URI and Local name fields if you are configuring a custom token.

For example, you might specify http://www.ibm.com/custom in the URI field and CustomToken in

the Local name field.

7. Click OK to save the configuration changes.

Chapter 14. Web services 1083

When you configure the token generator, select the security token that you created using these steps. For

more information, see “Configuring token generators with an assembly tool” on page 1015.

Configuring the security token requirement in consumer security constraints

You can specify the security token when you configure the response consumer or the request consumer.

Prior to completing this task, you must import your application into an assembly tool.

For information on how to import your application, see ″Importing an enterprise application EAR file″ in the

Application Server Toolkit documentation.

A security token represents a set of claims that are made by a client and might include a name, password,

identity, key, certificate, group, privilege, and so on. It is embedded in the SOAP message within the SOAP

header. WebSphere Application Server propagates the security token within the SOAP header from the

message sender to the intended message receiver. On the receiving side, the security handler for

WebSphere Application Server authenticates the security token and sets up the caller identity on the

thread.

Complete the following steps to specify the security token when you configure the response consumer or

the request consumer. The response consumer is configured for the client and the request consumer is

configured for the server. In the following steps, you must configure either the client-side extensions in

step 2 or the server-side extensions in step 3.

1. Start the assembly tool.

2. Switch to the Java 2 Platform, Enterprise Edition (J2EE) perspective. Click Window > Open

Perspective > J2EE.

3. Optional: Locate the client-side extensions using the Project Explorer window. The Client Deployment

Descriptor window is displayed. This Web service contains the extensions that you need to configure.

Complete the following steps to locate the client-side extensions:

a. Expand the Web Services > Client section and double-click the name of the Web service.

b. Click the WS Extension tab and expand the Response Consumer Configuration section.

4. Optional: Locate the server-side extensions using the Project Explorer window. The Web Services

Editor window is displayed. This Web service contains the extensions that you need to configure.

Complete the following steps to locate the server-side extensions:

a. Expand the Web Services > Services section and double-click the name of the Web service.

b. Click the Extensions tab and expand the Request Consumer Service Configuration Details

section.

5. Expand the Required Security Token section. The Required Security Token Dialog window is displayed.

6. Click Add to configure the security token. Complete the following steps to configure the security token:

a. Specify a name for the security token in the Name field. For example, you might specify un_token.

b. Select a token type from the Token type field. For example, if you want to send a username token,

select Username for the token type. If you select a token type other than custom token, you do not

need to specify values in the Uniform Resource Identifier (URI) and Local name fields. These fields

are automatically specified when you select a token type other than custom token.

For a username token or an X.509 token, you do not need to specify a value in the URI field.

c. Optional: Specify a value for the URI and Local name fields if you are configuring a custom token.

For example, you might specify http://www.ibm.com/custom in the URI field and CustomToken in

the Local name field.

d. Specify a usage type in the Usage type field. This field specifies the requirement for the

confidentiality element. The value of this attribute is either Required or Optional.

7. Click OK to save the configuration changes.

1084 Securing applications and their environment

When you configure the token consumer, select the security token that you created using these steps. For

more information, see “Configuring token consumers with an assembly tool” on page 1041.

Configuring the caller in consumer security constraints

Prior to completing this task, you must import your application into an assembly tool.

For information on how to import your application, see ″Importing an enterprise application EAR file″ in the

Application Server Toolkit documentation.

The caller is used to identify the token. The run time for Web services security uses this token identity to

create the security credential and principal for WebSphere Application Server. The token identity must be

in the configured user registry so that the Application Server can use the token identity in Java 2 Platform,

Enterprise Edition (J2EE) authorization checks.

Complete the following steps to specify the caller part when you configure the consumer security

constraints for either the response consumer or the request consumer. The response consumer is

configured for the client and the request consumer is configured for the server. In the following steps, you

must configure either the client-side extensions in step 2 or the server-side extensions in step 3.

 1. Start the assembly tool.

 2. Switch to the J2EE perspective. Click Window > Open Perspective > J2EE.

 3. Optional: Locate the client-side extensions using the Project Explorer window. The Client

Deployment Descriptor window is displayed. This Web service contains the extensions that you need

to configure. Complete the following steps to locate the client-side extensions:

a. Expand the Web Services > Client section and double-click the name of the Web service.

b. Click the WS Extension tab and expand the Response Consumer Configuration section.

 4. Optional: Locate the server-side extensions using the Project Explorer window. The Web Services

Editor window is displayed. This Web service contains the extensions that you need to configure.

Complete the following steps to locate the server-side extensions:

a. Expand the Web Services > Services section and double-click the name of the Web service.

b. Click the Extensions tab and expand the Request Consumer Service Configuration Details

section.

 5. Expand the Caller Part section.

 6. Click Add to specify the caller part. The Caller Part Dialog window is displayed. Complete the

following steps to configure the caller part:

a. Specify the name of the caller in the Name field.

b. Optional: Specify the name of an integrity or confidentiality part in the Required Integrity or

Required Confidentiality part field if you want to select the token that used for either digital

signature or encryption as the caller token. For more information on these configurations, see the

following tasks:

v “Signing message elements in consumer security constraints with keywords” on page 1029

v “Signing message elements in consumer security constraints with an XPath expression” on

page 1035

v “Encrypting message elements in consumer security constraints with keywords” on page 1068

v “Encrypting message elements in consumer security constraints with an XPath expression” on

page 1073

Important: Either complete this step or specify a token type in the Token type field in the next

step.

c. Optional: Specify a token type in the Token type field if you want to select a standalone security

token as the caller token.

Chapter 14. Web services 1085

If a standalone security token is used for authentication, then the Uniform Resource Identifier

(URI) and local name attributes must define the type of security token that is used for

authentication. You can select standard or custom security tokens by URI and local name.

If you specify a token type in the Token type field, complete the following steps:

1) Specify the namespace URI of the security token that is used for authentication in the URI

field.

2) Specify the local name of the security token that is used for authentication in the Local name

field. The following table shows the URI and local name combinations that are supported:

 Table 46. URI and Local name combinations

URI Local name Description

A namespace URI is not applicable. Specify http://docs.oasis-
open.org/wss/2004/01/oasis-
200401-wss-x509-token-profile-
1.0#X509v3 as the local name

value.

Specifies the name of an X.509

certificate token

A namespace URI is not applicable. Specify http://docs.oasis-
open.org/wss/2004/01/oasis-
200401-wss-x509-token-profile-
1.0#X509PKIPathv1 as the local

name value.

Specifies the name of the X.509

certificates in a PKI path

A namespace URI is not applicable. Specify http://docs.oasis-
open.org/wss/2004/01/oasis-
200401-wss-x509-token-profile-
1.0#PKCS7 as the local name

value.

Specifies a list of X509 certificates

and certificate revocation lists

(CRL) in a PKCS#7

Specify http://www.ibm.com/websphere/
appserver/tokentype/5.0.2 as the URI

value.

Specify LTPA as the local name

value.

Specifies a binary security token

that contains an embedded

Lightweight Third Party

Authentication (LTPA) token.

Specify http://www.ibm.com/websphere/
appserver/tokentype as the URI value.

Specify LTPA_PROPAGATION as the

local name value.

Specifies a binary security token

that contains an embedded

propagation token.

Specify the namespace URI value as

indicated by the provider.

Specify http://docs.oasis-
open.org/wss/2004/01/oasis-
200401-wss-username-token-
profile-1.0#UsernameToken as the

local name value.

Specifies the token type that is

configured to perform token

validation. This local name is used

to remap an incoming security

token to a different security token.

You can use this local name value

in a situation that is similar to the

following scenario:

A client sends a username token

to the server. The custom token

consumer on the server uses the

security token service to

authenticate the user name

information. The username token

is used to create a new token type

such as a Security Assertion

Markup Language (SAML) token.

You can use the identity from the

SAML token for authentication and

authorization verification in

WebSphere Application Server.

1086 Securing applications and their environment

The custom token requires that you specify both the URI and the Local name.

 7. Optional: Configure identity assertion. For more information, see “Configuring identity assertion”

 8. Optional: Click Add and specify a Trust method property in the Trust method property section, if

necessary.

 9. Optional: Click Add and specify an additional property in the Property section, if necessary.

10. Click OK to save the configuration changes.

Note: These configurations on the consumer side and the generator side must match.

Configuring identity assertion

Prior to completing this task, you must import your application into an assembly tool.

For information on how to import your application, see ″Importing an enterprise application EAR file″ in the

Application Server Toolkit documentation.

Identity assertion is one of the WebSphere Application Server Version 6.0.x and later enhancements, but it

must be used in a secured environment such as a Virtual Private Network (VPN) or HTTPs. In a secure

environment, it is possible to send the requester identity without credentials with other trusted credentials

such as the server identity. With identity assertion, WebSphere Application server supports the following

types of trust modes:

None Specifies that a trusted credential is not attached to the Simple Object Access protocol (SOAP)

message

BasicAuth

Specifies that a username token with a user name and a password is used as a trusted credential

Signature

Specifies that an X.509 certificate security token is used in the digital signature

The specific configuration for identity assertion is necessary on the consumer side in a service

configuration only. On the generator side, you need to configure two token generators in a client

configuration: one for a requester token and one for a token of a trusted party.

Complete the following steps to configure an application for identity assertion. You must configure both the

consumer and the generator to complete the configuration.

 1. Start the assembly tool.

 2. Switch to the Java 2 Platform, Enterprise Edition (J2EE) perspective. Click Window > Open

Perspective > J2EE.

 3. Expand the Web Services > Services section in the Project Explorer and double-click the name of the

Web service.

 4. Click the Extensions tab and expand the Response Consumer Service Configuration Details > Caller

Part section to configure the caller token.

 5. Configure the caller token for the consumer. Complete the following steps to configure the caller

token for the consumer:

a. Click Add to configure the caller part. The Caller Part Dialog window is displayed. In this window,

configure both a token that is used as a caller (requester) credential and a token for the trusted

party.

b. Specify a name for the caller token in the Name field.

c. Select the type of caller token in Token type field. For example, you can select Username if a

username token is used as the caller token. When you select the token type, the Local name is

automatically specified.

Chapter 14. Web services 1087

d. Optional: If you select the Custom token in the Token type field, you must specify the Local

name and the Uniform Resource Identifier (URI) of the custom token. The URI field is used only

for a custom token.

e. Optional: If the caller token is also used as a certificate of a required integrity or confidentiality

part, select the name of the part in Integrity or Confidentiality part field. The list contains the

names of the integrity and confidentiality parts that are defined in the Required Integrity and

Required Confidentiality sections for the consumer. For example, when an X.509 certificate token

is used for both a caller token and a signature certificate of the body element, you can select

X.509 certificate token in the Token type field and select reqint_body1 in Integrity or

Confidentiality part field. This example assumes that reqint_body1 is a required integrity

configuration.

 6. Configure a trusted party token for the consumer. Complete the following steps to configure the

trusted party token:

a. Select the Use IDAssertion option to associate a trust method with this caller and to verify an

asserted identity from the intermediary (caller).

b. Select the name of the trust method in the Trust method name field. The following selections are

supported:

None Select this option to specify that a trusted credential is not attached to the SOAP

message.

BasicAuth

Select this option to specify that a username token with a user name and password is

used as a trusted credential.

Signature

Select this option to specify that an X.509 certificate security token is used in the digital

signature.

When you select either BasicAuth or Signature, the URI and the Local name fields are

automatically specified.

c. Optional: Select a name of an integrity or confidentiality part in the Integrity or Confidentiality part

field if you require digital signature or encryption by the trusted party token. For example, if you

select Signature in the Trust method name field and you require that the trusted party token signs

the body element, select reqint_body2 in Integrity and Confidentiality part field. This example

assumed that reqint_body2 is a required integrity configuration.

 7. Optional: If you select BasicAuth or Signature in the Trust method name field, specify a trusted ID

evaluator in Token Consumer Dialog window of the binding configuration. Complete the following

steps to specify a trusted ID evaluator:

a. Click Binding Configurations in the Web services editor.

b. Expand the Token Consumer section and click Add.

c. Click the Use trusted ID evaluator option.

d. Specify a class name in the Trusted ID evaluator class field. The class implements the

com.ibm.wsspi.wssecurity.id.TrustedIDEvaluator interface and validates a trusted party token.

WebSphere Application Server provides the com.ibm.wsspi.wssecurity.id.TrustedIDEvaluatorImpl

class, which is a sample implementation of the TrustedIDEvaluator interface. If you use this class,

specify com.ibm.wsspi.wssecurity.id.TrustedIDEvaluatorImpl in Trusted ID evaluator class field

and click Add to add the following trusted ID evaluator property:

v In the name field, specify trustedid

v In the value field, specify CN=Alice,O=IBM,C=US

The value of the property is the distinguished name (DN) of the username or X.509 certificate

token of the trusted party token.

e. Click OK to save the configuration.

1088 Securing applications and their environment

8. Expand the Web Services > Client section in the Project Explorer and double-click the name of the

Web service.

 9. Click the WS Extension tab and expand the Request Generator Configuration > Security Token

section.

10. Specify the caller token for the generator. Do not specify a token in the required token if the token is

used for signing or encryption. However, you must specify a token in the required token for a

stand-alone token. A stand-alone token is a token that is not used for signing or encryption. When the

caller token type is a username token or an X.509 certificate token and it is not used for signing or

encryption, specify a security token for this caller token.

a. Click Add to configure a security token.

b. Specify a name for the caller token in the Name field.

c. Select either the Username or X.509 certificate token option in the Token type field. After you

select one of these two options, a value for the Local name field is automatically defined.

d. Click OK to save the configuration.

e. Click the WS Binding tab and expand the Security Request Generator Binding Configuration >

Token Generator section.

f. Click Add and add the token generator configuration for the caller token.

g. Click OK to save the configuration.

11. Configure the trusted party token. When the trust mode, which was specified previously, is None only

the caller token is attached and you do not need to specify the security token of the trusted party.

When the trust mode is BasicAuth or Signature you need to specify a username token or an X.509

certificate token of the trusted party token. However, if the X.509 certificate token of trusted party is

used for digital signing or encryption as well, you do not need to specify the security token of the

trusted party. Complete the following steps to configure the trusted party token:

a. Expand the Web Services > Client section in the Project Explorer and double-click the name of

the Web service.

b. Click the WS Extension tab and expand the Request Generator Configuration > Security Token

section.

c. Click Add to configure a security token.

d. Specify a name for the trusted party token in the Name field.

e. Select either the Username or X.509 certificate token option in the Token type field. After you

select one of these two options, a value for the Local name field is automatically defined.

f. Click OK to save the configuration.

g. Click the WS Binding tab and expand the Security Request Generator Binding Configuration >

Token Generator section.

h. Click Add and add the token generator configuration for the trusted party token.

i. Click OK to save the configuration.

Your environment is configured for identity assertion.

Configuring trust anchors for the generator binding on the application

level

This document describes how to configure trust anchors for the generator binding at the application level.

It does not describe how to configure trust anchors at the server or cell level. Trust anchors defined at the

application level have a higher precedence over trust anchors defined at the server or cell level. For more

information on creating and configuring trust anchors on the server or cell level, see “Configuring trust

anchors on the server or cell level” on page 1190.

Chapter 14. Web services 1089

You can configure a trust anchor for the application-level trust anchor using an Application Server Toolkit or

the administrative console. This document describes how to configure the application-level trust anchor

using the administrative console.

A trust anchor specifies key stores that contain trusted root certificates, which validate the signer

certificate. These key stores are used by the request generator and the response generator (when Web

services is acting as client) to generate the signer certificate for the digital signature. The keystores are

critical to the integrity of the digital signature validation. If they are tampered with, the result of the digital

signature verification is doubtful and comprised. Therefore, it is recommended that you secure these

keystores. The binding configuration specified for the request generator must match the binding

configuration for the response generator.

The trust anchor configuration for the request generator on the client must match the configuration for the

request consumer on the server. Also, the trust anchor configuration for the response generator on the

server must match the configuration for the response consumer on the client.

Complete the following steps to configure trust anchors for the generator binding on the application level:

1. Locate the trust anchor panel in the administrative console.

a. Click Applications > Enterprise applications > application_name.

b. Under Manage modules, click URI_name.

c. Under Web Services Security Properties you can access the trust anchor configuration for the

following bindings:

v For the request generator (sender) binding, click Web services: Client security bindings.

Under Request generator (sender) binding, click Edit custom.

v For the response generator (sender) binding, click Web services: Server security bindings.

Under Response generator (sender) binding, click Edit custom.

d. Under Additional properties, click Trust anchors.

e. Click New to create a trust anchor configuration, click Delete to delete an existing configuration, or

click the name of an existing trust anchor configuration to edit its settings. If you are creating a new

configuration, enter a unique name in the Trust anchor name field.

2. Specify the keystore password, the keystore location, and the keystore type. Key store files contain

public and private keys, root certificate authority (CA) certificates, the intermediate CA certificate, and

so on. Keys retrieved from the keystore are used to sign and validate or encrypt and decrypt

messages or message parts. If you specified the

com.ibm.wsspi.wssecurity.keyinfo.KeyStoreKeyLocator implementation for the key locator class

implementation, you must specify a key store password, location, and type.

a. Specify a password in the Key store password field. This password is used to access the keystore

file.

b. Specify the location of the key store file in the Key store path field.

c. Select a keystore type from the Key store type field. The Java Cryptography Extension (JCE) used

by IBM supports the following key store types:

JKS Use this option if you are not using Java Cryptography Extensions (JCE) and if your

keystore file uses the Java Keystore (JKS) format.

JCEKS

Use this option if you are using Java Cryptography Extensions.

JCERACFKS

Use JCERACFKS if the certificates are stored in a SAF key ring (z/OS only).

PKCS11KS (PKCS11)

Use this format if your keystore uses the PKCS#11 file format. Keystores using this format

might contain RSA keys on cryptographic hardware or might encrypt keys that use

cryptographic hardware to ensure protection.

1090 Securing applications and their environment

PKCS12KS (PKCS12)

Use this option if your keystore uses the PKCS#12 file format.

WebSphere Application Server provides some sample keystore files in the ${USER_INSTALL_ROOT}/
etc/ws-security/samples directory. For example, you might use the enc-receiver.jceks keystore

file for encryption keys. The password for this file is Storepass and the type is JCEKS.

 Attention: Do not use these keystore files in a production environment. These samples are

provided for testing purposes only.

This task configures trust anchors for the generator binding at the application level.

You must specify a similar trust anchor configuration for the consumer.

Trust anchor collection

Use this page to view a list of keystore objects that contain trusted root certificates. These objects are

used for certificate path validation of incoming X.509-formatted security tokens. Keystore objects within

trust anchors contain trusted root certificates that are used by the CertPath API to validate the trust of a

certificate chain.

To create the keystore file, use the key tool that is located in the install_dir\java\jre\bin\keytool

directory.

To view this administrative console page for trust anchors on the server level, complete the following

steps:

1. Click Servers > Application servers > server_name.

2. Under Security, click Web services: Default bindings for Web services security.

3. Under Additional properties, click Trust anchors.

To view this administrative console page for trust anchors on the application level,

1. Click Applications > Enterprise applications > application_name.

2. Click Manage modules > URI_name.

3.

Version 6 and later applications

Under Web Services Security Properties, you can

access trust anchors information for the following bindings:

v For the Response consumer (receiver) binding, click Web services: Client security bindings.

Under Response consumer (receiver) binding, click Edit custom.

v For the Request consumer (receiver) binding, click Web services: Server security bindings.

Under Request consumer (receiver) binding, click Edit custom.

4.

Version 5.x application

Under Additional properties, you can access the trust anchors

information for the following bindings:

v For the Response receiver binding, click Web services: Client security bindings. Under Response

receiver binding, click Edit.

v For the Request receiver binding, click Web services: Server security bindings. Under Request

receiver binding, click Edit.

5. Under Additional properties, click Trust anchors.

If you click Update runtime, the Web services security run time is updated with the default binding

information, which is contained in the ws-security.xml file that was previously saved. If you make

changes on this panel, you must complete the following steps:

1. Save your changes by clicking Save at the top of the administrative console. When you click Save,

you are returned to the administrative console home panel.

Chapter 14. Web services 1091

2. Return to the Trust anchors collection panel and click Update runtime. When you click Update

runtime, the configuration changes made to the other Web services also are updated in the Web

services security run time.

Trust anchor name:

Specifies the unique name that is used to identify the trust anchor.

Key store path:

Specifies the location of the keystore file that contains the trust anchors.

Key store type:

Specifies the type of keystore file.

 The value for this field is JKS, JCEKS, JCERACFKS (z/OS only), JCE4758RACFKS (z/OS only),

PKCS11KS (PKCS11), or PKCS12KS (PKCS12).

The value for this field is JKS, JCEKS, JCERACFKS (z/OS only), PKCS11KS (PKCS11), or PKCS12KS

(PKCS12).

Trust anchor configuration settings

Use this information to configure a trust anchor. Trust anchors point to keystores that contain trusted root

or self-signed certificates. This information enables you to specify a name for the trust anchor and the

information that is needed to access a keystore. The application binding uses this name to reference a

predefined trust anchor definition in the binding file (or the default).

To view this administrative console page for trust anchors on the server level, complete the following

steps:

1. Click Servers > Application servers > server_name.

2. Under Security, click Web services: Default bindings for Web services security.

3. Under Additional properties, click Trust anchors.

4. Click New to create a trust anchor or click the name of an existing configuration to modify its settings.

To view this administrative console page for trust anchors on the application level,

1. Click Applications > Enterprise applications > application_name.

2. Click Manage modules > URI_name.

3. Under Web Services Security Properties, you can access trust anchors information for the following

bindings:

v For the Response consumer (receiver) binding, click Web services: Client security bindings.

Under Response consumer (receiver) binding, click Edit custom.

v For the Request consumer (receiver) binding, click Web services: Server security bindings.

Under Request consumer (receiver) binding, click Edit custom.

4.

Version 5.x application

Under Additional properties, you can access the trust anchors

information for the following bindings:

v For the Response receiver binding, click Web services: Client security bindings. Under Response

receiver binding, click Edit.

v For the Request receiver binding, click Web services: Server security bindings. Under Request

receiver binding, click Edit.

5. Under Additional properties, click Trust anchors.

6. Click New to create a trust anchor or click the name of an existing configuration to modify its settings.

1092 Securing applications and their environment

Trust anchor name:

Specifies the unique name that is used by the application binding to reference a predefined trust anchor

definition in the default binding.

Key store configuration name:

Specifies the name of the key store configuration defined in the keystore settings in secure

communications.

Key store password:

Specifies the password that is needed to access the key store file.

Key store path:

Specifies the location of the keystore file.

 Use ${USER_INSTALL_ROOT} as this path expands to the WebSphere Application Server path on your

machine.

Key store type:

Specifies the type of keystore file.

 Choose from the following options:

Version 5.x or 6 application

JKS

Use this option if you are not using Java Cryptography Extensions (JCE).

Version 5.x or 6 application

JCEKS

Use this option if you are using Java Cryptography Extensions.

Version 6 and later applications

JCERACFKS

Use JCERACFKS if the certificates are stored in a SAF key ring (z/OS only).

Version 6 and later applications

PKCS11KS (PKCS11)

Use this format if your keystore uses the PKCS#11 file format. Keystores that use this format

might contain Rivest Shamir Adleman (RSA) keys on cryptographic hardware or might encrypt

keys that use cryptographic hardware to ensure protection.

Version 6 and later applications

PKCS12KS (PKCS12)

Use this option if your keystore uses the PKCS#12 file format.

 Default JKS

Range JKS, JCEKS, PKCS11KS (PKCS11), PKCS12KS

(PKCS12)

Configuring the collection certificate store for the generator binding on

the application level

You can configure a collection certificate for the generator bindings on the application level.

Chapter 14. Web services 1093

A collection certificate store is a collection of non-root, certificate authority (CA) certificates and certificate

revocation lists (CRLs). This collection of CA certificates and CRLs is used to check for a valid signature in

a digitally signed SOAP message.

Complete the following steps to configure a collection certificate for the generator bindings on the

application level:

 1. Locate the collection certificate store configuration panel in the administrative console.

a. Click Applications > Enterprise applications > application_name.

b. Under Manage modules, click URI_name.

c. Under Web Services Security Properties, you can access the key information for the request

generator and response generator bindings.

v For the request generator (sender) binding, click Web services: Client security bindings.

Under Request generator (sender) binding, click Edit custom.

v For the response generator (sender) binding, click Web services: Server security bindings.

Under Response generator (sender) binding, click Edit custom.

d. Under Additional properties, click Collection certificate store.

 2. Specify the Certificate store name. Click New to create a collection certificate store configuration,

select the box next to the configuration and click Delete to delete an existing configuration, .or click

the name of an existing collection certificate store configuration to edit its settings. If you are creating

a new configuration, enter a name in the Certificate store name field.

The name of the collection certificate store must be unique to the level of the application server. For

example, if you create the collection certificate store for the application level, the store name must be

unique to the application level. The name that is specified in the Certificate store name field is used

by other configurations to refer to a predefined collection certificate store. WebSphere Application

Server searches for the collection certificate store based on proximity.

For example, if an application binding refers to a collection certificate store named cert1, the

Application Server searches for cert1 at the application level before searching the server level.

 3. Specify a certificate store provider in the Certificate store provider field. WebSphere Application

Server supports the IBMCertPath certificate store provider. To use another certificate store provider,

you must define the provider implementation in the provider list within the install_dir/java/jre/lib/
security/java.security file. However, make sure that your provider supports the same requirements

of the certificate path algorithm as WebSphere Application Server.

 4. Click OK and Save to save the configuration.

 5. Click the name of your certificate store configuration. After you specify the certificate store provider,

you must specify either the location of a certificate revocation list or the X.509 certificates. However,

you can specify both a certificate revocation list and the X.509 certificates for your certificate store

configuration.

 6. Under Additional properties, click Certificate revocation lists.

 7. Click New to specify a certificate revocation list path, click Delete to delete an existing list reference,

or click the name of an existing reference to edit the path. You must specify the fully qualified path to

the location where WebSphere Application Server can find your list of certificates that are not valid.

For portability reasons, it is recommended that you use the WebSphere Application Server variables

to specify a relative path to the certificate revocation lists (CRL). This recommendation is especially

important when you are working in a WebSphere Application Server Network Deployment

environment. For example, you might use the USER_INSTALL_ROOT variable to define a path such

as $USER_INSTALL_ROOT/mycertstore/mycrl1. For a list of supported variables, click Environment

> WebSphere variables in the administrative console. The following list provides recommendation for

using certificate revocation lists:

v If CRLs are added to the collection certificate store, add the CRLs for the root certificate authority

and each intermediate certificate, if applicable. When the CRL is in the certificate collection store,

the certificate revocation status for every certificate in the chain is checked against the CRL of the

issuer.

1094 Securing applications and their environment

v When the CRL file is updated, the new CRL does not take effect until you restart the Web service

application.

v Before a CRL expires, you must load a new CRL into the certificate collection store to replace the

old CRL. An expired CRL in the collection certificate store results in a certificate path (CertPath)

build failure.

 8. Click OK and Save to save the configuration.

 9. Return to the collection certificate store configuration panel. To access the panel, complete the

following steps:

a. Click Applications > Enterprise applications > application_name.

b. Under Manage modules, click URI_name.

c. Under Web Services Security properties, you can access the key information for the request

generator and response generator bindings.

v For the request generator (sender) binding, click Web services: Client security bindings.

Under Request generator (sender) binding, click Edit custom.

v For the response generator (sender) binding, click Web services: Server security bindings.

Under Response generator (sender) binding, click Edit custom.

d. Under Additional properties, click Collection certificate store > certificate_store_name.

10. Under Additional properties, click X.509 certificates.

11. Click New to create a X.509 certificate configuration, click Delete to delete an existing configuration,

or click the name of an existing X.509 certificate configuration to edit its settings. If you are creating a

new configuration, enter a name in the Certificate store name field.

12. Specify a path in the X.509 certificate path field. This entry is the absolute path to the location of the

X.509 certificate. The collection certificate store is used to validate the certificate path of incoming

X.509-formatted security tokens.

You can use the USER_INSTALL_ROOT variable as part of path name. For example, you might type:

USER_INSTALL_ROOT/etc/ws-security/samples/intca2.cer. Do not use this certificate path for

production use. You must obtain your own X.509 certificate from a certificate authority before putting

your WebSphere Application Server environment into production.

Click Environment > WebSphere variables in the administrative console to configure the

USER_INSTALL_ROOT variable.

13. Click OK and then Save to save your configuration.

You have configured the collection certificate store for the generator binding.

You must specify a similar collection certificate store configuration for the consumer.

Collection certificate store collection

Use this page to view a list of certificate stores that contains untrusted, intermediary certificate files

awaiting validation. Validation might consist of checking to see if the certificate is on a certificate

revocation list (CRL), checking that the certificate is not expired, and checking that the certificate is issued

by a trusted signer.

The following list provides recommendations for using CRLs:

v If CRLs are added to the collection certificate store collection, add the CRLs for the root certificate

authority and each intermediate certificate, if applicable. When the CRL is in the certificate collection

store, the certificate revocation status for every certificate in the chain is checked against the CRL of the

issuer.

v When the CRL file is updated, the new CRL does not take effect until you restart the Web service

application.

v Before a CRL expires, you must load a new CRL into the certificate collection store to replace the old

CRL. An expired CRL in the collection certificate store results in a certificate path (CertPath) build

failure.

Chapter 14. Web services 1095

To view the administrative console panel for the collection certificate store on the server level, complete

the following steps:

1. Click Servers > Application servers > server_name.

2. Under Security, click Web services: Default bindings for Web services security.

3. Under Additional properties, click Collection certificate store.

To view this administrative console page for the collection certificate store on the application level,

complete the following steps:

1. Click Applications > Enterprise applications > application_name.

2. Click Manage modules > URI_name.

3. Under Web Services Security Properties, you can access collection certificate stores for the following

bindings:

v For the Request generator, click Web services: Client security bindings. Under Request

generator (sender) binding, click Edit custom > Collection certificate store.

v For the Request consumer, click Web services: Server security bindings. Under Request

consumer (receiver) binding, click Edit custom > Collection certificate store.

v For the Response generator, click Web services: Server security bindings. Under Response

generator (sender) binding, click Edit custom > Collection certificate store.

v For the Response consumer, click Web services: Client security bindings. Under Response

consumer (receiver) binding, click Edit custom > Collection certificate store.

4.

Version 5.x application

Under Additional properties, you can access collection certificate

stores for the following bindings:

v For the Request receiver binding, click Web services: Server security bindings. Under Response

receiver binding, click Edit > Collection certificate store.

v For the Response receiver binding, click Web services: Client security bindings. Under Response

receiver binding, click Edit > Collection certificate store.

Complete the following steps:

1. Click New to specify a new certificate store name and certificate store provider.

2. Click OK and messages display at the top of the administrative console panel.

3. Within the messages at the top of the administrative console panel, click Save.

4. Return to the collection certificate store collection panel and click Update runtime to update the Web

services security run time with the default binding information, which is found in the ws_security.xml

file. When you click Update runtime, the configuration changes made to the other Web services are

also updated in the Web services security run time.

Certificate store name:

Specifies the name of the certificate store.

Certificate store provider:

Specifies the provider of the certificate store.

Collection certificate store configuration settings

Use this page to specify the name and the provider for a collection certificate store. A collection certificate

store is a collection of non-root, certificate authority (CA) certificates and certificate revocation lists (CRLs).

This collection of CA certificates and CRLs is used to check the signature of a digitally signed Simple

Object Access Protocol (SOAP) message.

1096 Securing applications and their environment

To view the administrative console panel for the collection certificate store on the server level, complete

the following steps:

1. Click Servers > Application servers > server_name.

2. Under Security, click Web services: Default bindings for Web services security.

3. Under Additional properties, click Collection certificate store.

4. Specify a new collection certificate store by clicking New or by clicking the collection certificate store

name to modify its settings.

To view this administrative console page for the collection certificate store on the application level,

complete the following steps:

1. Click Applications > Enterprise applications > application_name.

2. Click Manage modules > URI_name

3. Under Web Services Security Properties, you can access collection certificate stores for the following

bindings:

v For the Request generator, click Web services: Client security bindings. Under Request

generator (sender) binding, click Edit custom > Collection certificate store.

v For the Request consumer, click Web services: Server security bindings. Under Request

consumer (receiver) binding, click Edit custom > Collection certificate store.

v For the Response generator, click Web services: Server security bindings. Under Response

generator (sender) binding, click Edit custom > Collection certificate store.

v For the Response consumer, click Web services: Client security bindings. Under Response

consumer (receiver) binding, click Edit custom > Collection certificate store.

4.

Version 5.x application

Under Additional properties, you can access collection certificate

stores for the following bindings:

v For the Request receiver binding click Edit > Collection certificate store.

v For the Response receiver binding, click Edit > Collection certificate store.

5. Specify a new collection certificate store by clicking New or by clicking the collection certificate store

name to modify its settings.

After configuring a collection certificate store, you can select the new configuration under Certificate store

on the token generator and token consumer panels. To access these panels, complete the following steps:

1. Click Security > Web services.

2. Under Default generator bindings, click Token generators or under Default consumer bindings, click

Token consumers.

3. Click New to create a new token generator or token consumer, or click the name of an existing

configuration to make modifications.

After you configure your collection certificate store on this panel, you must click Apply before configuring

either the certificate revocation list or an X.509 certificate. The certificate revocation list configuration is not

available for version 5.x applications through the administrative console. After you configure your certificate

revocation list or X.509 certificate, complete the following steps:

1. Click Save, at the top of the administrative console panel, which returns you to the list of the

configured collection certificate stores.

2. Click Update runtime to update the Web services security run time with the default binding

information, which is found in the ws_security.xml file.

Certificate store name:

Specifies the name for the certificate store.

Chapter 14. Web services 1097

The name of the collection certificate store must be unique in the scope. For example, the name must be

unique at the server level. The name specified in Certificate store name field is used by other

configurations to refer to a pre-defined collection certificate store. For example, the application binding

refers to a collection certificate store that is defined on the server level. The application server looks up the

collection certificate store based on proximity. For example, if cert1 is defined as the name of the

certificate store on the cell and server levels and cert1 is referenced in the application binding, the

application server uses the server-level collection certificate store.

Certificate Store Provider:

Specifies the provider for the certificate store implementation.

 This product supports the IBMCertPath certificate path provider. If you need to use another certificate path

provider, define the provider implementation in the provider list within the java.security file in the

Software Development Kit (SDK).

 Data type String

Default IBMCertPath

X.509 certificates collection

Use this page to view a list of untrusted, intermediate certificate files. This collection certificate store is

used for certificate path validation of incoming X.509-formatted security tokens.

To view the administrative console panel for the collection certificate store on the server level, complete

the following steps:

1. Click Servers > Application servers > server_name.

2. Under Security, click Web services: Default bindings for Web services security.

3. Under Additional properties, click Collection certificate store.

4. Click the name of a configured collection certificate store or create a new collection certificate store

first.

5. Under Additional properties, click X.509 certificates.

To view this administrative console page for an X.509 certificate on the application level, complete the

following steps:

1. Click Applications > Enterprise applications > application_name.

2. Click Manage modules > URI_name.

3. Under Web Services Security Properties, you can access collection certificate stores for the following

bindings:

v For the Request generator, click Web services: Client security bindings. Under Request

generator (sender) binding, click Edit custom > Collection certificate store.

v For the Request consumer, click Web services: Server security bindings. Under Request

consumer (receiver) binding, click Edit custom > Collection certificate store.

v For the Response generator, click Web services: Server security bindings. Under Response

generator (sender) binding, click Edit custom > Collection certificate store.

v For the Response consumer, click Web services: Client security bindings. Under Response

consumer (receiver) binding, click Edit custom > Collection certificate store.

4.

Version 5.x application

Under Additional properties, you can access the collection

certificate stores for the following bindings.

v For the Response receiver binding, click Web services: Client security bindings. Under Response

receiver binding, click Edit > Collection certificate store.

1098 Securing applications and their environment

v For the Request receiver binding, click Web services: Server security bindings. Under Request

receiver binding, click Edit > Collection certificate store.

5. Click the name of a configured collection certificate store or create a new collection certificate store

first.

6. Under Additional properties, click X.509 certificates.

X.509 certificate path:

Specifies the location of the X.509 certificate.

X.509 certificate configuration settings

Use this page to specify a list of untrusted, intermediate certificate files. This collection certificate store is

used for certificate path validation of incoming X.509-formatted security tokens.

To view the administrative console panel for the collection certificate store on the server level, complete

the following steps:

1. Click Servers > Application servers > server_name.

2. Under Security, click Web services: Default bindings for Web services security.

3. Under Additional properties, click Collection certificate store.

4. Click the name of a configured collection certificate store or create a new collection certificate store

first.

5. Under Additional properties, click X.509 certificates.

6. Specify a new X.509 certificate path by clicking New or by clicking the X.509 certificate path to modify

its settings.

To view this administrative console page for an X.509 certificate on the application level, complete the

following steps:

1. Click Applications > Enterprise applications > application_name.

2. Click Manage modules > URI_name.

3. Under Web Services Security Properties, you can access collection certificate stores for the following

bindings:

v For the Request generator, click Web services: Client security bindings. Under Request

generator (sender) binding, click Edit custom > Collection certificate store.

v For the Request consumer, click Web services: Server security bindings. Under Request

consumer (receiver) binding, click Edit custom > Collection certificate store.

v For the Response generator, click Web services: Server security bindings. Under Response

generator (sender) binding, click Edit custom > Collection certificate store.

v For the Response consumer, click Web services: Client security bindings. Under Response

consumer (receiver) binding, click Edit custom > Collection certificate store.

4.

Version 5.x application

Under Additional properties, you can access the collection

certificate stores for the following bindings.

v For the Response receiver binding, click Web services: Client security bindings. Under Response

receiver binding, click Edit > Collection certificate store.

v For the Request receiver binding, click Web services: Server security bindings. Under Request

receiver binding, click Edit > Collection certificate store.

5. Click the name of a configured collection certificate store or create a new collection certificate store

first.

6. Under Additional properties, click X.509 certificates.

7. Specify a new X.509 certificate path by clicking New or click the X.509 certificate path to modify its

settings.

Chapter 14. Web services 1099

X.509 Certificate Path:

Specifies the absolute path to the location of the X.509 certificate.

 As shown in the following example, you can use the USER_INSTALL_ROOT variable as part of the path

name: {USER_INSTALL_ROOT}/etc/ws-security/samples/intca2.cer. This X.509 certificate path is not for

production use. Obtain your own X.509 from a certificate authority before putting your application server

environment into production.

You can configure the USER_INSTALL_ROOT variable in the administrative console by clicking

Environment > WebSphere Variables.

Certificate revocation list collection

Use this page to determine the location of the certificate revocation lists (CRL) known to the application

server. The Application Server checks the CRLs to determine the validity of the client certificate. A

certificate that is found in a certificate revocation list might not be expired, but is no longer trusted by the

certificate authority (CA) that issued the certificate. The CA might add the certificate to the certificate

revocation list if it believes that the client authority is compromised.

To view the administrative console panel for the collection certificate store on the server level, complete

the following steps:

1. Click Servers > Application servers > server_name.

2. Under Security, click Web services: Default bindings for Web services security.

3. Under Additional properties, click Collection certificate store.

4. Click the name of a configured collection certificate store or create a new collection certificate store

first.

5. Under Additional properties, click Certificate revocation lists.

Version 6 and later applications

To view this administrative console page for the collection

certificate store on the application level, complete the following steps:

1. Click Applications > Enterprise applications > application_name.

2. Click Manage modules > URI_name.

3. Under Web Services Security Properties, you can access collection certificate stores for the following

bindings:

v For the Request generator, click Web services: Client security bindings. Under Request

generator (sender) binding, click Edit custom > Collection certificate store.

v For the Request consumer, click Web services: Server security bindings. Under Request

consumer (receiver) binding, click Edit custom > Collection certificate store.

v For the Response generator, click Web services: Server security bindings. Under Response

generator (sender) binding, click Edit custom > Collection certificate store.

v For the Response consumer, click Web services: Client security bindings. Under Response

consumer (receiver) binding, click Edit custom > Collection certificate store.

4. Click the name of a configured collection certificate store or create a new collection certificate store

first.

5. Under Additional properties, click Certificate revocation lists.

6. Under Additional properties, you can access collection certificate stores for the following bindings:

v For the Response receiver binding, click Web services: Client security bindings. Under Response

receiver binding, click Edit.

7. Under Additional properties, click Collection certificate store > certificate_store_name.

8. Under Additional properties, click X.509 certificates.

1100 Securing applications and their environment

9. Click New and specify the path to the certificate revocation list.

Version 5.x application

To add a certificate revocation list for a version 5.x application,

complete the following steps:

1. Click Applications > Enterprise applications > application_name.

2. Under Related items, click Manage modules > URI_name.

Certificate revocation list path:

Specifies the location where you can find the list of certificates that are not valid.

Certificate revocation list configuration settings

Use this page to specify a list of certificate revocations that check the validity of a certificate. The

application server checks the certificate revocation lists (CRL) to determine the validity of the client

certificate. A certificate that is found in a certificate revocation list might not be expired, but is no longer

trusted by the certificate authority (CA) that issued the certificate. The CA might add the certificate to the

certificate revocation list if it believes that the client authority is compromised.

To view the administrative console panel for the collection certificate store on the server level, complete

the following steps:

1. Click Servers > Application servers > server_name.

2. Under Security, click Web services: Default bindings for Web services security.

3. Under Additional properties, click Collection certificate store.

4. Click the name of a configured collection certificate store or create a new collection certificate store

first.

5. Under Additional properties, click Certificate revocation lists > New to specify the path to a new list

or click the name of a certificate revocation list to modify its path.

To view this administrative console page for the collection certificate store on the application level,

complete the following steps:

1. Click Applications > Enterprise applications > application_name.

2. Click Manage modules > URI_name.

3. Under Web Services Security Properties, you can access collection certificate stores for the following

bindings:

v For the Request generator, click Web services: Client security bindings. Under Request

generator (sender) binding, click Edit custom > Collection certificate store.

v For the Request consumer, click Web services: Server security bindings. Under Request

consumer (receiver) binding, click Edit custom > Collection certificate store.

v For the Response generator, click Web services: Server security bindings. Under Response

generator (sender) binding, click Edit custom > Collection certificate store.

v For the Response consumer, click Web services: Client security bindings. Under Response

consumer (receiver) binding, click Edit custom > Collection certificate store.

4. Click the name of a configured collection certificate store or create a new collection certificate store

first.

5. Under Additional properties, click Certificate revocation lists > New to specify the path to a new list

or click the name of a certificate revocation list to modify its path.

Certificate revocation list path:

Specifies a fully qualified path to the location where you can find the list of certificates that are not valid.

Chapter 14. Web services 1101

For portability reasons, it is recommended that you use application server variables to specify a relative

path to the certificate revocation list. This recommendation is especially important when you are working in

a WebSphere Application Server Network Deployment environment. For example, you might use the

USER_INSTALL_ROOT variable to define a path such as $USER_INSTALL_ROOT/mycertstore/mycrl where

mycertstore represents the name of your certificate store and mycrl represents the certificate revocation

list. For a list of the supported variables, click Environment > WebSphere variables in the administrative

console.

The following list provides recommendations for using CRLs:

v If CRLs are added to the collection certificate store collection, add the CRLs for the root certificate

authority and each intermediate certificate, if applicable. When the CRL is in the certificate collection

store, the certificate revocation status for every certificate in the chain is checked against the CRL of the

issuer.

v When the CRL file is updated, the new CRL does not take effect until you restart the Web service

application.

v Before a CRL expires, you must load a new CRL into the certificate collection store to replace the old

CRL. An expired CRL in the collection certificate store results in a certificate path (CertPath) build

failure.

Username token element

You can use the UsernameToken element to propagate a user name and, optionally, password information.

Also, you can use this token type to carry basic authentication information. Both a user name and a

password are used to authenticate the message. A UsernameToken containing the user name is used in

identity assertion, which establishes the identity of the user based on the trust relationship.

The following example shows the syntax of the UsernameToken element:

<wsse:UsernameToken wsu:Id="Example-1">

 <wsse:Username>

 ...

 </wsse:Username>

 <wsse:Password Type="...">

 ...

 </wsse:Password>

 <wsse:Nonce EncodingType="...">

 ...

 </wsse:Nonce>

 <wsu:Created>

 ...

 </wsu:Created>

</wsse:UsernameToken>

The Web services security specification defines the following password types:

wsse:PasswordText (default)

This type is the actual password for the user name.

wsse:PasswordDigest

The type is the digest of the password for the user name. The value is a base64-encoded SHA1

hash value of the UTF8-encoded password.

WebSphere Application Server supports the default PasswordText type. However, it does not support

password digest because most user registry security policies do not expose the password to the

application software.

The following example illustrates the use of the <UsernameToken> element:

<S:Envelope

 xmlns:S="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:wsse="http://docs.oasis-open.org

1102 Securing applications and their environment

/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd">

 <S:Header>

 ...

 <wsse:Security>

 <wsse:UsernameToken>

 <wsse:Username>Joe</wsse:Username>

 <wsse:Password>ILoveJava</wsse:Password>

 </wsse:UsernameToken>

 </wsse:Security>

 </S:Header>

</S:Envelope>

Nonce, a randomly generated token

Nonce is a randomly generated, cryptographic token that is used to prevent replay attacks. Although

Nonce can be inserted anywhere in the SOAP message, it is typically inserted in the <UsernameToken>

element.

Without nonce, when a user name token is passed from one machine to another machine using a

nonsecure transport, such as HTTP, the token might be intercepted and used in a replay attack. The same

password might be reused when the user name token is transmitted between the client and the server,

which leaves it vulnerable to attack. The user name token can be stolen even if you use XML digital

signature and XML encryption.

To help eliminate these replay attacks, the <wsse:Nonce> and <wsu:Created> elements are generated within

the <wsse:UsernameToken> element and used to validate the message. The server checks the freshness of

the message by verifying that the difference between the nonce creation time, which is specified by the

<wsu:Created> element, and the current time falls within a specified time period. Also, the server checks a

cache of used nonces to verify that the user name token in the received SOAP message has not been

processed within the specified time period. These two features are used to lessen the chance that a user

name token is used for a replay attack.

To add nonce for the user name token, you can specify it in the token generator for the user name token.

When the token generator for the user name token is specified, you can select the Add nonce option if

you want to include nonce in the user name token.

Custom security token propagation

Web services security has the ability to send security tokens in the security header of a SOAP message.

These security tokens can be used to sign, verify, encrypt or decrypt message parts. They can also be

sent as stand-alone security tokens and set as the caller on the request consumer. Custom security token

propagation is a feature that is used to propagate these custom security tokens using Web services

security.

Web services security supports the Username, X.509 and Lightweight Third-Party Authentication (LTPA)

security token types. When you use security token propagation, the propagation token is sent in the

wsse:BinarySecurityToken element in the security header of the SOAP message. Web services security

uses the same propagation token format as used by the Security attribute propagation feature.

Configuring this option is similar to the configuration for sending and receiving LTPA tokens. The same

token generator and token consumer implementations are used, for example:

v com.ibm.wsspi.wssecurity.token.LTPATokenGenerator

v com.ibm.wsspi.wssecurity.token.LTPATokenConsumer

But, the token type Uniform Resource Identifier (URI) and local name for the token generator and token

consumer are different. For custom token properties, use the following values:

v Token type URI: http://www.ibm.com/websphere/appserver/tokentype

v Token type local name: LTPA_PROPAGATION

Chapter 14. Web services 1103

By default, the custom token propagation uses the following JAAS login configuration entries:

v Inbound: WSS_INBOUND

v Outbound: WSS_OUTBOUND

You can use the com.ibm.ws.webservices.wssecurity.constants.jaasConfig custom property to specify a

different JAAS login configuration for the generator. You can do this configuration on the CallbackHandler

configuration panel. To specify a different JAAS login configuration on the consumer side, use the JAAS

configuration name field in the Token consumer panel.

rrdSecurity.props file

Remote request dispatcher (RRD) supports LTPA and security attribute propagation for Web services

security (WS-Security). You can enable token propagation in the was_install/profiles/profileName/
properties/rrdSecurity.props file.

The rrdSecurity.props file contains comments to describe the security attributes.

The following is the format of the rrdSecurity.props file. The default values are in bold face type.

v LTPAPropagation= (True | False)

v SecurityAttributePropagation= (True | False)

v SSLRequired= (True | False)

The WS-Security runtime inspects the run as (invocation) subject and propagates the security tokens in

the subject. The default setting is to only propagate the LTPA tokens.

Custom security tokens can be passed as attributes of the LTPA tokens. The security attribute propagation

support uses the same pluggable JAAS login module as the CSIv2 support. The security attribute is not

signed or encrypted, therefore, you should not send the attribute in clear text form. You must require SSL

to ensure integrity and confidentiality. If SSL is not required, RRD uses the same scheme, such as HTTP

or HTTPS, to make the Web services call that the original request used. See Custom security token

propagation for more information.

You must also configure the target Web service to validate the LTPA tokens and security attributes.

These links are provided for convenience. Often, the information is not specific to an IBM WebSphere

Application Server product, but is useful all or in part for understanding the product. When possible, links

are provided to technical papers and Redbooks that supplement the broad coverage of the release

documentation with in-depth examinations of particular product areas.

Configuring the token generator on the application level

This task describes the steps that are needed to specify the token generators at the application level. The

information is used on the generator side to generate the security token.

Complete the following steps to configure the token generator on the application level:

 1. Locate the token generator panel in the administrative console.

a. Click Applications > Enterprise applications > application_name.

b. Under Manage modules, click URI_name.

c. Under Web Services Security Properties you can access the token generators for the following

bindings:

v For the request generator (sender) binding, click Web services: Client security bindings.

Under Request generator (sender) binding, click Edit custom.

v For the response generator (sender) binding, click Web services: Server security bindings.

Under Response generator (sender) binding, click Edit custom.

1104 Securing applications and their environment

d. Under Additional properties, click Token generators.

e. Click New to create a token generator configuration, select the box next to an existing

configuration and click Delete to delete an existing configuration, or click the name of an existing

token generator configuration to edit its settings. If you are creating a new configuration, enter a

unique name in the Token generator name field. For example, you might specify gen_signtgen.

 2. Specify a class name in the Token generator class name field. The token generator class must

implement the com.ibm.wsspi.wssecurity.token.TokenGeneratorComponent interface. The token

generator class name for the request generator and the response generator must be similar to the

token consumer class name for the request consumer and the response consumer. For example, if

your application requires a username token consumer, you can specify the

com.ibm.wsspi.wssecurity.token.UsernameTokenConsumer class name on the token consumer panel

for the application level and the com.ibm.wsspi.wssecurity.token.UsernameTokenGenerator class

name in this field.

 3. Optional: Select a part reference in the Part reference field. The part reference indicates the name of

the security token that is defined in the deployment descriptor.

Important: On the application level, if you do not specify a security token in your deployment

descriptor, the Part reference field is not displayed. If you define a security token called

user_tgen in your deployment descriptor, user_tgen is displayed as an option in the Part

reference field. You can specify a security token in the deployment descriptor when you

assemble your application using an assembly tool.

 4. Select either None or Dedicated signing information for the certificate path. Select None when the

token generator does not use the PKCS#7 token type. When the token generator uses the PKCS#7

token type and you want to package certificate revocation lists (CRLs) in the security token, select

Dedicated signing information and select a certificate store. To configure a collection certificate

store and certificate revocation lists for the generator bindings on the application level, complete the

following steps:

a. Click Applications > Enterprise applications > application_name.

b. Under Related Items, click EJB Modules or Web Modules > URI_name.

c. Under Additional Properties you can access the collection certificate store configuration for the

following bindings:

v For the request generator (sender) binding, click Web services: Client security bindings.

Under Request generator (sender) binding, click Edit custom.

v For the response generator (sender) binding, click Web services: Server security bindings.

Under Response generator (sender) binding, click Edit custom.

d. Under Additional properties, click Collection certificate store.

For more information about configuring a collection certificate store, see “Configuring the collection

certificate store for the generator binding on the application level” on page 1093.

 5. Optional: Select the Add nonce option. This option indicates whether a nonce is included in the user

name token for the token generator. Nonce is a unique, cryptographic number that is embedded in a

message to help stop repeat, unauthorized attacks of user name tokens. The Add nonce option is

valid only when the generated token type is a user name token and is available only for the request

generator binding.

If you select the Add nonce option, you can specify the following properties under Additional

properties. These properties are used by the request consumer.

 Table 47. Additional nonce properties

Property name

Default

value Explanation

com.ibm.ws.wssecurity.config.token.

BasicAuth.Nonce.cacheTimeout

600

seconds

Specifies the timeout value, in seconds, for the

nonce value that is cached on the server.

Chapter 14. Web services 1105

Table 47. Additional nonce properties (continued)

Property name

Default

value Explanation

com.ibm.ws.wssecurity.config.token.

BasicAuth.Nonce.clockSkew

0 seconds Specifies the time, in seconds, before the nonce

time stamp expires.

com.ibm.ws.wssecurity.config.token.

BasicAuth.Nonce.maxAge

300

seconds

Specifies the clock skew value, in seconds, to

consider when WebSphere Application Server

checks the timeliness of the message.

On the server level, you can specify these additional properties for a nonce on the Default bindings

for Web services security panel within the administrative console. To access the panell, click Servers

> Application servers > server_name. Under Security, click Web services: Default bindings for

Web services security.

 6. Optional: Select the Add timestamp option. This option indicates whether to insert a time stamp into

the user name token. The Add timestamp option is valid only when the generated token type is a

user name token and is available only for the request generator binding.

 7. Specify the value type local name in the Local name field. For a user name token and an X.509

certificate security token, WebSphere Application Server provides predefined local names for the

value type. When you specify any of the following local names, you do not need to specify a value

type URI:

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-
1.0#UsernameToken

This local name specifies a user name token.

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509

This local name specifies an X.509 certificate token.

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-
1.0#X509PKIPathv1

This local name specifies X.509 certificates in a public key infrastructure (PKI) path.

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#PKCS7

This local name specifies a list of X.509 certificates and certificate revocation lists in a

PKCS#7 format.

For an LTPA token, you can use LTPA for the value type local name and http://www.ibm.com/
websphere/appserver/tokentype/5.0.2 for the value type Uniform Resource Identifier (URI). For

LTPA token propagation, you can use LTPA_PROPAGATION for the value type local name and

http://www.ibm.com/websphere/appserver/tokentype for the value type URI.

 8. Optional: Specify the value type URI in the URI field. This entry specifies the namespace URI of the

value type for the generated token.

 9. Click OK and Save to save the configuration.

10. Click the name of your token generator configuration.

11. Under Additional properties, click Callback handler.

12. Specify the settings for the callback handler.

a. Specify a class name in the Callback handler class name field. This class name is the name of

the callback handler implementation class that is used to plug-in a security token framework. The

specified callback handler class must implement the javax.security.auth.callback.CallbackHandler

interface and must provide a constructor using the following syntax:

MyCallbackHandler(String username, char[] password, java.util.Map properties)

Where:

username

Specifies the user name that is passed into the configuration.

1106 Securing applications and their environment

password

Specifies the password that is passed into the configuration.

properties

Specifies the other configuration properties that are passed into the configuration.

This constructor is required if the callback handler needs a user name and a password. However,

if the callback handler does not need a user name and a password, such as

X509CallbackHandler, use a constructor with the following syntax:

MyCallbackHandler(java.util.Map properties)

WebSphere Application Server provides the following default callback handler implementations:

com.ibm.wsspi.wssecurity.auth.callback.GUIPromptCallbackHandler

This callback handler uses a login prompt to gather the user name and password

information. However, if you specify the user name and password on this panel, a prompt

is not displayed and WebSphere Application Server returns the user name and password

to the token generator. Use this implementation for a Java 2 Platform, Enterprise Edition

(J2EE) application client only. If you use this implementation, you must provide a basic

authentication user ID and password on this panel.

com.ibm.wsspi.wssecurity.auth.callback.NonPromptCallbackHandler

This callback handler does not issue a prompt and returns the user name and password if

it is specified on this panel. You can use this callback handler when the Web service is

acting as a client. If you use this implementation, you must provide a basic authentication

user ID and password on this panel.

com.ibm.wsspi.wssecurity.auth.callback.StdinPromptCallbackHandler

This callback handler uses a standard-in prompt to gather the user name and password.

However, if the user name and password is specified on this panel, WebSphere

Application Server does not issue a prompt, but returns the user name and password to

the token generator. Use this implementation for a Java 2 Platform, Enterprise Edition

(J2EE) application client only. If you use this implementation, you must provide a basic

authentication user ID and password on this panel.

com.ibm.wsspi.wssecurity.auth.callback.LTPATokenCallbackHandler

This callback handler is used to obtain the Lightweight Third Party Authentication (LTPA)

security token from the Run As invocation Subject. This token is inserted in the Web

services security header within the SOAP message as a binary security token. However, if

the user name and password are specified on this panel, WebSphere Application Server

authenticates the user name and password to obtain the LTPA security token rather than

obtaining it from the Run As Subject. Use this callback handler only when the Web

service is acting as a client on the application server. It is recommended that you do not

use this callback handler on a J2EE application client. If you use this implementation, you

must provide a basic authentication user ID and password on this panel.

com.ibm.wsspi.wssecurity.auth.callback.X509CallbackHandler

This callback handler is used to create the X.509 certificate that is inserted in the Web

services security header within the SOAP message as a binary security token. A keystore

and a key definition is required for this callback handler. If you use this implementation,

you must provide a key store password, path, and type on this panel.

com.ibm.wsspi.wssecurity.auth.callback.PKCS7CallbackHandler

This callback handler is used to create X.509 certificates encoded with the PKCS#7

format. The certificate is inserted in the Web services security header in the SOAP

message as a binary security token. A keystore is required for this callback handler. You

can specify a certificate revocation list (CRL) in the collection certificate store. The CRL is

encoded with the X.509 certificate in the PKCS#7 format. If you use this implementation,

you must provide a key store password, path, and type on this panel.

Chapter 14. Web services 1107

com.ibm.wsspi.wssecurity.auth.callback.PkiPathCallbackHandler

This callback handler is used to create X.509 certificates encoded with the PkiPath

format. The certificate is inserted in the Web services security header within the SOAP

message as a binary security token. A keystore is required for this callback handler. A

CRL is not supported by the callback handler; therefore, the collection certificate store is

not required or used. If you use this implementation, you must provide a key store

password, path, and type on this panel.

The callback handler implementation obtains the required security token and passes it to the

token generator. The token generator inserts the security token in the Web services security

header within the SOAP message. Also, the token generator is a plug-in point for the pluggable

security token framework. Service providers can provide their own implementation, but the

implementation must use the com.ibm.wsspi.wssecurity.token.TokenGeneratorComponent

interface.

b. Optional: Select the Use identity assertion option. Select this option if you have identity

assertion defined in the IBM extended deployment descriptor. This option indicates that only the

identity of the initial sender is required and inserted into the Web services security header within

the SOAP message. For example, WebSphere Application Server sends only the user name of

the original caller for a username token generator. For an X.509 token generator, the application

server sends the original signer certification only.

c. Optional: Select the Use RunAs identity option. Select this option if you have identity assertion

defined in the IBM extended deployment descriptor and you want to use the Run As identity

instead of the initial caller identity for identity assertion in a downstream call. This option is valid

only if you have Username TokenGenerator configured as a token generator.

d. Optional: Specify the basic authentication user ID in the Basic authentication user ID field. This

entry specifies the user name that is passed to the constructors of the callback handler

implementation. The basic authentication user name and password are used if you specified one

of the following default callback handler implementations in the Callback handler class name field:

v com.ibm.wsspi.wssecurity.auth.callback.GUIPromptCallbackHandler

v com.ibm.wsspi.wssecurity.auth.callback.NonPromptCallbackHandler

v com.ibm.wsspi.wssecurity.auth.callback.StdinPromptCallbackHandler

v com.ibm.wsspi.wssecurity.auth.callback.LTPATokenCallbackHandler

e. Optional: Specify the basic authentication password in the Basic authentication password field.

This entry specifies the password that is passed to the constructors of the callback handler

implementation.

f. Optional: Specify the key store password in the Key store password field. This entry specifies the

password used to access the key store file. The key store and its configuration are used if you

select on of the following default callback handler implementations that are provided by

WebSphere Application Server:

com.ibm.wsspi.wssecurity.auth.callback.PKCS7CallbackHandler

The keystore is used to build the X.509 certificate with the certificate path.

com.ibm.wsspi.wssecurity.auth.callback.PkiPathCallbackHandler

The keystore is used to build the X.509 certificate with the certificate path.

com.ibm.wsspi.wssecurity.auth.callback.X509CallbackHandler

The keystore is used to retrieve the X.509 certificate.

g. Optional: Specify the key store path in the Path field. It is recommended that you use the

${USER_INSTALL_ROOT} in the path name as this variable expands to the WebSphere Application

Server path on your machine. To change the path used by this variable, click Environment >

WebSphere variables, and click USER_INSTALL_ROOT. This field is required when you use the

com.ibm.wsspi.wssecurity.auth.callback.PKCS7CallbackHandler,

com.ibm.wsspi.wssecurity.auth.callback.PkiPathCallbackHandler, or

com.ibm.wsspi.wssecurity.auth.callback.X509CallbackHandler callback handler implementations.

1108 Securing applications and their environment

h. Optional: Select the key store type in the Type field. This selection indicates the format used by

the keystore file. You can select one of the following values for this field:

JKS Use this option if the keystore uses the Java Keystore (JKS) format.

JCEKS

Use this option if the Java Cryptography Extension is configured in the software

development kit (SDK). The default IBM JCE is configured in WebSphere Application

Server. This option provides stronger protection for stored private keys by using Triple

DES encryption.

JCERACFKS

Use JCERACFKS if the certificates are stored in a SAF key ring (z/OS only).

PKCS11KS (PKCS11)

Use this format if your keystore uses the PKCS#11 file format. Keystores using this format

might contain RSA keys on cryptographic hardware or might encrypt keys that use

cryptographic hardware to ensure protection.

PKCS12KS (PKCS12)

Use this option if your keystore uses the PKCS#12 file format.

13. Click OK and then click Save to save the configuration.

14. Click the name of your token generator configuration.

15. Under Additional properties, click Callback handler > Keys.

16. Specify the key name, key alias, and the key password.

a. Click New to create a key configuration, click Delete to delete an existing configuration, or click

the name of an existing key configuration to edit its settings. If you are creating a new

configuration, enter a unique name in the key name field. For digital signatures, the key name is

used by the request generator or response generator signing information to determine which key

is used to digitally sign the message. For encryption, the key name is used to determine the key

used for encryption. The key name must be a fully qualified, distinguished name. For example,

CN=Bob,O=IBM,C=US.

b. Specify the key alias in the Key alias field. The key alias is used by the key locator to find the key

within the keystore file.

c. Specify the key password in the Key password field. This password is needed to access the key

object within the keystore file.

17. Click OK and Save to save the configuration.

You have configured the token generator for the application level.

You must specify a similar token consumer configuration for the application level.

Request generator (sender) binding configuration settings

Use this page to specify the binding configuration for the request generator.

To view this administrative console page, complete the following steps:

1. Click Applications > Enterprise applications > application_name.

2. Click Manage modules.

3. Click the Uniform Resource Identifier (URI).

4. Under Web Services Security Properties, click Web services: Client security bindings.

5. Under Request generator (sender) binding, click Edit custom.

The security constraints or bindings are defined using the application assembly process before the

application is installed.

Chapter 14. Web services 1109

This product provides assembly tools to assemble your application.

If the security constraints are defined in the application, you must either define the corresponding binding

information or select the Use defaults option on this panel and use the default binding information for the

cell or server level. The default binding provided by this product is a sample. Do not use this sample in a

production environment without modifying the configuration. The security constraints define what is signed

or encrypted in the Web services security message. The bindings define how to enforce the requirements.

Digital signature security constraint (integrity)

The following table shows the required and optional binding information when the digital signature security

constraint (integrity) is defined in the deployment descriptor.

 Information type Required or optional

Signing information Required

Key information Required

Key locators Optional

Collection certificate store Optional

Token generator Optional

Properties Optional

You can use the key locators and the collection certificate store that are defined at either the server-level

or the cell-level.

Encryption constraint (confidentiality)

The following table shows the required and optional binding information when the encryption constraint

(confidentiality) is defined in the deployment descriptor.

 Information type Required or optional

Encryption information Required

Key information Required

Key locators Optional

Collection certificate store Optional

Token generator Optional

Properties Optional

You can use the key locators and the collection certificate store that are defined at either the server-level

or the cell-level.

Security token constraint

The following table shows the required and optional binding information when the security token constraint

is defined in the deployment descriptor.

 Information type Required or optional

Token generator Required

Collection certificate store Optional

Properties Optional

You can use the collection certificate store that is defined at either the server-level or the cell-level.

1110 Securing applications and their environment

Use defaults:

Select this option if you want to use the default binding information from the server or cell level.

 If you select this option, the application server checks for binding information on the server level

Component:

Specifies the enterprise bean in an assembled EJB module.

Port:

Specifies the port in the Web service that is defined during application assembly.

Web service:

Specifies the name of the Web service that is defined during application assembly.

Response generator (sender) binding configuration settings

Use this page to specify the binding configuration for the response generator or response sender.

To view this administrative console page, complete the following steps:

1. Click Applications > Enterprise applications > application_name.

2. Click Manage modules.

3. Click the Uniform Resource Identifier (URI).

4. Under Web Services Security Properties, click Web services: Server security bindings.

5. Under Response generator (sender) binding, click Edit custom.

The security constraints or bindings are defined using the application assembly process before the

application is installed.

This product provides assembly tools to assemble your application.

If the security constraints are defined in the application, you must either define the corresponding binding

information or select the Use defaults option on this panel and use the default binding information for the

server or cell level. The default binding that is provided by this product is a sample. Do not use this

sample in a production environment without modifying the configuration. The security constraints define

what is signed or encrypted in the Web services security message. The bindings define how to enforce the

requirements.

Digital signature security constraint (integrity)

The following table shows the required and optional binding information when the digital signature security

constraint (integrity) is defined in the deployment descriptor.

 Information type Required or optional

Signing information Required

Key information Required

Key locators Optional

Collection certificate store Optional

Token generator Optional

Properties Optional

Chapter 14. Web services 1111

You can use the key locators and the collection certificate store that are defined at either the server-level

or the cell-level.

Encryption constraint (confidentiality)

The following table shows the required and optional binding information when the encryption constraint

(confidentiality) is defined in the deployment descriptor.

 Information type Required or optional

Encryption information Required

Key information Required

Key locators Optional

Collection certificate store Optional

Token generator Optional

Properties Optional

You can use the key locators and the collection certificate store that are defined at either the server-level

or the cell-level.

Security token constraint

The following table shows the required and optional binding information when the security token constraint

is defined in the deployment descriptor.

 Information type Required or optional

Token generator Required

Collection certificate store Optional

Properties Optional

You can use the collection certificate store that is defined at either the server-level or the cell-level.

Use defaults:

Select this option if you want to use the default binding information from the server or cell level.

 If you select this option, the application server checks for binding information on the server level

Port:

Specifies the port number in the Web service that is defined during application assembly.

Web service:

Specifies the name of the Web service that is defined during application assembly.

Callback handler configuration settings

Use this page to specify how to acquire the security token that is inserted in the Web services security

header within the Simple Object Access Protocol (SOAP) message. The token acquisition is a pluggable

framework that leverages the Java Authentication and Authorization Service (JAAS)

javax.security.auth.callback.CallbackHandler interface for acquiring the security token.

To view this administrative console page for the callback handler on the server level, complete the

following steps:

1. Click Servers > Application servers > server_name .

1112 Securing applications and their environment

2. Under Security, click Web services: Default bindings for Web services security.

3. Under Default generator bindings, click Token generators > token_generator_name .

4. Under Additional properties, click Callback handler.

To view this administrative console page for the callback handler on the application level , complete the

following steps:

1. Click Applications > Enterprise applications > application_name.

2. Click Manage modules > URI_name .

3. Under Additional properties, you can access the callback handler information for the following bindings:

v For the Request generator (sender) binding, click Web services: Client security bindings. Under

Request generator (sender) binding, click Edit custom. Under Additional properties, click Token

generator. Click New to create a new token generator configuration or click the name of an existing

configuration to modify its settings. Under Additional properties, click Callback handler.

v For the Response generator (sender) binding, click Web services: Server security bindings.

Under Response generator (sender) binding, click Edit custom. Under Additional properties, click

Token generator. Click New to create a new token generator configuration or click the name of an

existing configuration to modify its settings. Under Additional properties, click Callback handler.

Callback handler class name:

Specifies the name of the callback handler implementation class that is used to plug in a security token

framework.

 The specified callback handler class must implement the javax.security.auth.callback.CallbackHandler

class. The implementation of the JAAS javax.security.auth.callback.CallbackHandler interface must provide

a constructor using the following syntax:

MyCallbackHandler(String username, char[] password, java.util.Map properties)

Where:

username

Specifies the user name that is passed into the configuration.

password

Specifies the password that is passed into the configuration.

properties

Specifies the other configuration properties that are passed into the configuration.

The application server provides the following default callback handler implementations:

Version 5.x or 6 application

com.ibm.wsspi.wssecurity.auth.callback.GUIPromptCallbackHandler

This callback handler uses a login prompt to gather user name and password information.

However, if you specify the user name and password on this panel, a prompt is not displayed and

the application server returns the user name and password to the token generator if it is specified

on this panel. Use this implementation for a Java 2 Platform, Enterprise Edition (J2EE) application

client only.

Version 5.x or 6 application

com.ibm.wsspi.wssecurity.auth.callback.NonPromptCallbackHandler

This callback handler does not issue a prompt and returns the user name and password if it is

specified on this panel. You can use this callback handler when the Web service is acting as a

client.

Chapter 14. Web services 1113

Version 5.x or 6 application

com.ibm.wsspi.wssecurity.auth.callback.StdinPromptCallbackHandler

This callback handler uses a standard-in prompt to gather the user name and password. However,

if the user name and password is specified on this panel, the application server does not issue a

prompt, but returns the user name and password to the token generator. Use this implementation

for a Java 2 Platform, Enterprise Edition (J2EE) application client only.

Version 5.x or 6 application

com.ibm.wsspi.wssecurity.auth.callback.LTPATokenCallbackHandler

This callback handler is used to obtain the Lightweight Third Party Authentication (LTPA) security

token from the Run As invocation Subject. This token is inserted in the Web services security

header within the SOAP message as a binary security token. However, if the user name and

password are specified on this panel, the application server authenticates the user name and

password to obtain the LTPA security token rather than obtaining it from the Run As Subject. Use

this callback handler only when the Web service is acting as a client on the application server. It is

recommended that you do not use this callback handler on a J2EE application client.

Version 6 and later applications

com.ibm.wsspi.wssecurity.auth.callback.X509CallbackHandler

This callback handler is used to create the X.509 certificate that is inserted in the Web services

security header within the SOAP message as a binary security token. A keystore and a key

definition is required for this callback handler.

Version 6 and later applications

com.ibm.wsspi.wssecurity.auth.callback.PKCS7CallbackHandler

This callback handler is used to create X.509 certificates encoded with the PKCS#7 format. The

certificate is inserted in the Web services security header in the SOAP message as a binary

security token. A keystore is required for this callback handler. You must specify a certificate

revocation list (CRL) in the collection certificate store. The CRL is encoded with the X.509

certificate in the PKCS#7 format.

Version 6 and later applications

com.ibm.wsspi.wssecurity.auth.callback.PkiPathCallbackHandler

This callback handler is used to create X.509 certificates encoded with the PkiPath format. The

certificate is inserted in the Web services security header within the SOAP message as a binary

security token. A keystore is required for this callback handler. A CRL is not supported by the

callback handler; therefore, the collection certificate store is not required or used.

The callback handler implementation obtains the required security token and passes it to the token

generator. The token generator inserts the security token in the Web services security header within the

SOAP message. Also, the token generator is the plug-in point for the pluggable security token framework.

Service providers can provide their own implementation, but the implementation must use the

com.ibm.wsspi.wssecurity.token.TokenGeneratorComponent interface.

Use identity assertion:

Select this option if you have identity assertion defined in the IBM extended deployment descriptor.

 This option indicates that only the identity of the initial sender is required and inserted into the Web

services security header within the SOAP message. For example, the application server sends only the

user name of the original caller for a Username TokenGenerator. For an X.509 token generator, the

application server sends the original signer certification only.

1114 Securing applications and their environment

Use RunAs identity:

Select this option if you have identity assertion defined in the IBM extended deployment descriptor and

you want to use the Run As identity instead of the initial caller identity for identity assertion for a

downstream call.

 This option is valid only if you have Username TokenGenerator configured as a token generator.

Basic authentication user ID:

Specifies the user name that is passed to the constructors of the callback handler implementation.

 The basic authentication user name and password are used if you select one of the following default

callback handler implementations provided by this product:

v com.ibm.wsspi.wssecurity.auth.callback.GUIPromptCallbackHandler

v com.ibm.wsspi.wssecurity.auth.callback.LTPATokenCallbackHandler

v com.ibm.wsspi.wssecurity.auth.callback.NonPromptCallbackHandler

v com.ibm.wsspi.wssecurity.auth.callback.StdinPromptCallbackHandler

These implementations are described in detail under the Callback handler class name field description in

this article.

Basic authentication password:

Specifies the password that is passed to the constructor of the callback handler.

 The keystore and its related configuration are used if you select one of the following default callback

handler implementations provided by this product:

com.ibm.wsspi.wssecurity.auth.callback.PKCS7CallbackHandler

The keystore is used to build the X.509 certificate with the certificate path.

com.ibm.wsspi.wssecurity.auth.callback.PkiPathCallbackHandler

The keystore is used to build the X.509 certificate with the certificate path.

com.ibm.wsspi.wssecurity.auth.callback.X509CallbackHandler

The keystore is used to retrieve the X.509 certificate.

Key store configuration name:

Specifies the name of the key store configuration defined in the keystore settings in secure

communications.

Key store password:

Specifies the password that is used to access the keystore file.

Key store path:

Specifies the location of the keystore file.

 Use ${USER_INSTALL_ROOT} in the path name because this variable expands to the product path on

your machine. To change the path used by this variable, click Environment > WebSphere variables and

click USER_INSTALL_ROOT.

Key store type:

Chapter 14. Web services 1115

Specifies the type of keystore file format

 Choose one of the following values for this field:

JKS Use this option if the keystore uses the Java Keystore (JKS) format.

JCEKS

Use this option if the Java Cryptography Extension is configured in the software development kit

(SDK). The default IBM JCE is configured in the application server. This option provides stronger

protection for stored private keys by using Triple DES encryption.

JCERACFKS

Use JCERACFKS if the certificates are stored in a SAF key ring (z/OS only).

PKCS11KS (PKCS11)

Use this option if your keystore file uses the PKCS#11 file format. Keystore files that use this

format might contain Rivest Shamir Adleman (RSA) keys on cryptographic hardware or might

encrypt keys that use cryptographic hardware to ensure protection.

PKCS12KS (PKCS12)

Use this option if your keystore file uses the PKCS#12 file format.

Key collection

Use this page to view a list of logical names that is mapped to a key alias in the keystore file.

To view this administrative console page for the key locator collection on the server level, complete the

following steps:

1. Click Servers > Application servers > server_name.

2. Under Security, click Web services: Default bindings for Web services security.

3. Under Default generator bindings, click Token Generators > token_generator_name.

4. Under Additional properties, click Callback handler > Keys.

Keys are also available by clicking Key locators > key_locator_name. Under Additional properties, click

Keys.

To use this administrative console page for the key locator collection on the application level, complete the

following steps:

1. Click Applications > Enterprise applications > application_name.

2. Click Manage modules > URI_name.

3. Under Web Services Security Properties, you can access key locators for the following bindings:

v For the Request generator, click Web services: Client security bindings. Under Request

generator (sender) binding, click Edit custom > Key locators. Under Additional properties, click

Keys.

v For the Request consumer, click Web services: Server security bindings. Under Request

consumer (receiver) binding, click Edit custom > Key locators. Under Additional properties, click

Keys.

v For the Response generator, click Web services: Server security bindings. Under Response

generator (sender) binding, click Edit custom > Key locators. Under Additional properties, click

Keys.

v For the Response consumer, click Web services: Client security bindings. Under Response

consumer (receiver) binding, click Edit custom > Key locators.Under Additional properties, click

Keys.

4.

Version 5.x application

Under Additional properties, you can access key locators for the

following bindings:

1116 Securing applications and their environment

v For the Request sender, click Web services: Client security bindings. Under Request sender

binding, click Edit > Key locators. Under Additional properties, click Keys.

v For the Request receiver, click Web services: Server security bindings. Under Request receiver

binding, click Edit > Key locators. Under Additional properties, click Keys.

v For the Response sender, click Web services: Server security bindings. Under Response sender

binding, click Edit > Key locators. Under Additional properties, click Keys.

v For the Response receiver, click Web services: Client security bindings. Under Response

receiver binding, click Edit > Key locators. Under Additional properties, click Keys.

Key name:

Specifies the name of the key object that is found in the keystore file.

Key alias:

Specifies an alias for the key object.

 The alias is used when the key locator searches for the key objects in the keystore file.

Key configuration settings

Use this page to define the mapping of a logical name to a key alias in a keystore file.

To view this administrative console page for the key locator collection on the server level, complete the

following steps:

1. Click Servers > Application servers > server_name.

2. Under Security, click Web services: Default bindings for Web services security.

3. Under Default generator bindings, click Token Generators > token_generator_name.

4. Under Additional properties, click Callback handler > Keys.

5. Specify a new key configuration by clicking New or by clicking the key configuration name to modify

the settings.

Keys are also available by clicking Key locators > key_locator_name. Under Additional properties, click

Keys > New.

To use this administrative console page for the key locator collection on the application level, complete the

following steps:

1. Click Applications > Enterprise applications > application_name.

2. Click Manage modules > URI_name.

3.

Version 6 and later applications

Under Additional properties, you can access key locators

for the following bindings:

v For the Request generator, click Web services: Client security bindings. Under Request

generator (sender) binding, click Edit custom > Key locators. Under Additional properties, click

Keys.

v For the Request consumer, click Web services: Server security bindings. Under Request

consumer (receiver) binding, click Edit custom > Key locators. Under Additional properties, click

Keys.

v For the Response generator, click Web services: Server security bindings. Under Response

generator (sender) binding, click Edit custom > Key locators. Under Additional properties, click

Keys.

v For the Response consumer, click Web services: Client security bindings. Under Response

consumer (receiver) binding, click Edit custom > Key locators.Under Additional properties, click

Keys.

Chapter 14. Web services 1117

4. Under Web Services Security Properties, you can access key locators for the following bindings:

v For the Request sender, click Web services: Client security bindings. Under Request sender

binding, click Edit > Key locators. Under Additional properties, click Keys.

v For the Request receiver, click Web services: Server security bindings. Under Request receiver

binding, click Edit > Key locators. Under Additional properties, click Keys.

v For the Response sender, click Web services: Server security bindings. Under Response sender

binding, click Edit > Key locators. Under Additional properties, click Keys.

v For the Response receiver, click Web services: Client security bindings. Under Response

receiver binding, click Edit > Key locators. Under Additional properties, click Keys.

5. Specify a new key configuration by clicking New or by clicking the key configuration name to modify

the settings.

Key name:

Specifies the name of the key object. For digital signatures, the key name is used by the request sender

or request generator signing information to determine which key is used to digitally sign the message. For

encryption, the key name is used to determine the key used for encryption.

Key alias:

Specifies the alias for the key object, which is used by the key locator to find the key within the keystore

file.

Key password:

Specifies the password that is needed to access the key object within the keystore file.

Web services: Client security bindings collection

Use this page to view a list of application-level, client-side binding configurations for Web services security.

These bindings are used when a Web service is a client to another Web service.

To view this administrative console page, complete the following steps:

1. Click Applications > Enterprise Applications > application_name.

2. Click Manage modules > URI_file_name.

3. Under Web Services Security Properties, click Web services: Client security bindings.

Component:

Specifies the enterprise bean in an assembled Enterprise JavaBeans (EJB) module.

Port:

Specifies the port that is used to send messages to a server and receive messages from a server.

Web service:

Specifies the name of the Web service that is defined during application assembly.

The key name must be a fully qualified, distinguished name. For example, CN:Bob,O=IBM,C=US.

Note: If you enter the distinguished name with spaces before or after commas and equal symbols, the

application server normalizes the distinguished names automatically during run time by removing

these extra spaces.

1118 Securing applications and their environment

Request generator (sender) binding:

Specifies the binding configuration that is used to send request messages to the request consumer.

 Click Edit custom to configure the required and additional properties such as signing information, key

information, token generators, key locators, and collection certificate stores.

The binding information for the request generator that is specified for the client must match the binding

information for the request consumer that is specified for the server.

Response consumer (receiver) binding:

Specifies the binding configuration that is used to receive response messages from the response

generator.

 Click Edit custom to configure the required and additional properties such as signing information, key

information, token consumers, key locators, collection certificate stores, and trust anchors.

The binding information for the response consumer that is specified for the client must match the binding

information for the response generator that is specified for the server.

Request sender binding:

Specifies the binding configuration that is used to send request messages to the request receiver.

 Click Edit to configure the additional properties for the request sender such as signing information, key

information, encryption information, key locators, and the login binding.

The binding information for the request sender that is specified for the client must match the binding

information for the request receiver that is specified for the server.

Response receiver binding:

Specifies the binding configuration that is used to receive response messages from the response sender.

 Click Edit to configure the additional properties for the response receiver such as signing information,

encryption information, trust anchors, collection certificate stores, and key locators.

The binding information for the response receiver that is specified for the client must match the binding

information for the response sender that is specified for the server.

HTTP basic authentication:

Specifies the user name and password to use for this port with HTTP transport-level basic authentication.

You can enable transport-level authentication security independently of message-level security.

 Click Edit to configure the basic authentication ID and password for transport-level authentication.

HTTP SSL configuration:

Enables and configures transport-level Secure Sockets Layer (SSL) security for this port. You can enable

transport-level SSL security independently of message-level security.

 Click Edit to specify the settings for transport-level HTTP SSL configuration for this port.

Chapter 14. Web services 1119

Web services: Server security bindings collection

Use this page to view a list of server-side binding configurations for Web services security.

To view this administrative console page, complete the following steps:

1. Click Applications > Enterprise applications > application_name.

2. Click Manage modules > URI_file_name.

3. Under Web Services Security Properties, click Web services: Server security bindings.

Port:

Specifies the port in which messages are received from the request generator or the request sender. The

request generator is the term that is used for Version 6.x applications and the request sender is the term

that is used for Version 5.x applications.

Web service:

Specifies the name of the Web service that is defined during application assembly.

Request consumer (receiver) binding:

Specifies the binding configuration that is used to receive request messages from the request generator

(sender) binding.

 Click Edit custom to configure the required and additional information such as signing information, key

information, token consumers, key locators, intermediate certificates in the collection certificate store, and

trust anchors.

The binding information for the request consumer that is specified for the server must match the binding

information for the request generator that is specified for the client.

Response generator (sender) binding:

Specifies the binding configuration that is used to send request messages to the response consumer.

 Click Edit custom to configure the required and additional information such as signing information, key

information, token generators, key locators, and intermediate certificates in the collection certificate store.

The binding information for the response generator that is specified for the server must match the binding

information for the response consumer that is specified for the client.

Request receiver binding:

Specifies the binding configuration that is used to receive request messages from the request sender

binding.

 Click Edit to configure additional properties for the request receiver such as signing information, encryption

information, trust anchors, collection certificate stores, key locators, trusted ID evaluators, and login

mappings.

The binding information for the request receiver that is specified for the server must match the binding

information for the request sender that is specified for the client.

Response sender binding:

Specifies the binding configuration that is used to send request messages to the response receiver.

1120 Securing applications and their environment

Click Edit to configure additional properties for the response sender such as signing information,

encryption information, and key locators.

The binding information for the response sender that is specified for the server must match the binding

information for the response receiver that is specified for the client.

Configuring the key locator for the generator binding on the

application level

The key locator information for the default generator specifies which key locator implementation is used to

locate the key to be used for signature and encryption information. The key locator information for the

generator specifies which key locator implementation is used to locate the key to be used for signature

validation or encryption.

WebSphere Application Server provides default values for the bindings. However, you must modify the

defaults for a production environment.

Complete the following steps to configure the key locator for the generator binding on the application level:

1. Locate the encryption information configuration panel in the administrative console.

a. Click Applications > Enterprise applications > application_name.

b. Under Manage modules, click URI_name.

c. Under Web Services Security Properties you can access the key information for the request

generator and response generator bindings.

v For the request generator (sender) binding, click Web services: Client security bindings.

Under Request generator (sender) binding, click Edit custom.

v For the response generator (sender) binding, click Web services: Server security bindings.

Under Response generator (sender) binding, click Edit custom.

d. Under Additional properties, click Key locators.

e. Click New to create a key locator configuration, select the box next to the configuration and click

Delete to delete an existing configuration, or click the name of an existing key locator configuration

to edit its settings. If you are creating a new configuration, enter a unique name in the Key locator

name field. For example, you might specify gen_keyloc.

2. Specify a class name for the key locator class implementation in the Key locator class name field.

Key locators associated with Version 6.0.x and later applications must implement the

com.ibm.wsspi.wssecurity.keyinfo.KeyLocator interface. Specify a class name according to the

requirements of the application. For example, if the application requires that the key is read from a

keystore file, specify the com.ibm.wsspi.wssecurity.keyinfo.KeyStoreKeyLocator implementation.

WebSphere Application Server supports the following default key locator class implementations for

Version 6.0.x and later applications that are available to use with the request generator or response

generator:

com.ibm.wsspi.wssecurity.keyinfo.KeyStoreKeyLocator

This implementation locates and obtains the key from the specified keystore file.

com.ibm.wsspi.wssecurity.keyinfo.SignerCertKeyLocator

This implementation uses the public key from the signer certificate and is used by the

response generator.

3. Specify the keystore password, the keystore location, and the keystore type. Keystore files contain

public and private keys, root certificate authority (CA) certificates, the intermediate CA certificate, and

so on. Keys retrieved from the keystore are used to sign and validate or encrypt and decrypt

messages or message parts. If you specified the

com.ibm.wsspi.wssecurity.keyinfo.KeyStoreKeyLocator implementation for the key locator class

implementation, you must specify a keystore password, location, and type.

Chapter 14. Web services 1121

a. Specify a password in the keystore Password field. This password is used to access the keystore

file.

b. Specify the location of the keystore file in the keystore Path field.

c. Select a keystore type from the Type field. The Java Cryptography Extension (JCE) that is used by

IBM supports the following keystore types:

JKS Use this option if you are not using Java Cryptography Extensions (JCE) and if your

keystore file uses the Java Keystore (JKS) format.

JCEKS

Use this option if you are using Java Cryptography Extensions.

JCERACFKS

Use JCERACFKS if the certificates are stored in a SAF key ring (z/OS only).

PKCS11KS (PKCS11)

Use this format if your keystore uses the PKCS#11 file format. Keystores using this format

might contain RSA keys on cryptographic hardware or might encrypt keys that use

cryptographic hardware to ensure protection.

PKCS12KS (PKCS12)

Use this option if your keystore uses the PKCS#12 file format.

WebSphere Application Server provides some sample keystore files in the ${USER_INSTALL_ROOT}/
etc/ws-security/samples directory. For example, you might use the enc-receiver.jceks keystore

file for encryption keys. The password for this file is Storepass and the type is JCEKS.

Important: Do not use the sample keystore files in a production environment. These samples are

provided for testing purposes only.

4. Click OK and then click Save to save the configuration.

5. Under Additional properties, click Keys.

6. Click New to create a key configuration, select the box next to the configuration and click Delete to

delete an existing configuration, or click the name of an existing key configuration to edit its settings.

This entry specifies the name of the key object within the keystore file. If you are creating a new

configuration, enter a unique name in the Key name field. For digital signatures, the key name is used

by the request generator or the response generator signing information to determine which key is used

to digitally sign the message.

You must use a fully qualified distinguished name for the key name. For example, you might use

CN=Bob,O=IBM,C=US.

Important: Do not use the sample key files in a production environment. These samples are provided

for testing purposes only.

7. Specify an alias in the Key alias field. The key alias is used by the key locator to search for key

objects in the keystore.

8. Specify a password in the Key password field. The password is used to access the key object within

the keystore file.

9. Click OK and Save to save the configuration.

You have configured the key locator for the generator binding at the application level.

You must specify a similar key information configuration for the consumer.

Key locator collection

Use this page to view a list of key locator configurations that retrieve keys from the keystore for digital

signature and encryption. A key locator must implement the com.ibm.wsspi.wssecurity.config.KeyLocator

interface.

1122 Securing applications and their environment

To view this administrative console page for the key locator collection on the server level, complete the

following steps:

1. Click Servers > Application servers > server_name.

2. Under Security, click Web services: Default bindings for Web services security.

3. Under Additional properties, click Key locators.

To use this administrative console page for the key locator collection on the application level, complete the

following steps:

1. Click Applications > Enterprise applications > application_name.

2. Click Manage modules > URI_name.

3. Under Web Services Security Properties, you can access key locators for the following bindings:

v For the Request generator, click Web services: Client security bindings. Under Request

generator (sender) binding, click Edit custom > Key locators.

v For the Request consumer, click Web services: Server security bindings. Under Request

consumer (receiver) binding, click Edit custom > Key locators.

v For the Response generator, click Web services: Server security bindings. Under Response

generator (sender) binding, click Edit custom > Key locators.

v For the Response consumer, click Web services: Client security bindings. Under Response

consumer (receiver) binding, click Edit custom > Key locators.

4.

Version 5.x application

Under Additional properties, you can access key locators for the

following bindings:

v For the Request sender, click Web services: Client security bindings. Under Request sender

binding, click Edit > Key locators.

v For the Request receiver, click Web services: Server security bindings. Under Request receiver

binding, click Edit > Key locators.

v For the Response sender, click Web services: Server security bindings. Under Response sender

binding, click Edit > Key locators.

v For the Response receiver, click Web services: Client security bindings. Under Response

receiver binding, click Edit > Key locators.

Tip: The bindings for a version 5.x application has a link that says Edit and the bindings for a Version

6.0.x. or later application has a link that says Edit custom. This is quick reference to determine

which application version you are configuring.

Using this Key locator collection panel, complete the following steps:

1. Specify a key locator name and a key locator class name on the panel.

2. Save your changes by clicking Save in the messages section at the top of the administrative console.

The administrative console home panel is displayed.

3. After saving your changes, update the Web services security run time with the default binding

information by clicking Update runtime. When you click Update runtime, the configuration changes

made to the other Web services also are updated in the Web services security run time.

4. After you define key locators, click the key locator name to specify additional properties and keys

under Additional Properties.

Key locator name:

Specifies the unique name of the key locator.

Key locator class name:

Chapter 14. Web services 1123

Specifies the class name of the key locator, which retrieves the key that is used for digital signing and

encryption.

Key locator configuration settings

Use this page to specify the settings for a key locator configuration. The key locators retrieve keys from

the keystore file for digital signature and encryption. This product enables you to plug in a custom key

locator configuration.

To view this administrative console page for the key locator collection on the server level, complete the

following steps:

1. Click Servers > Application servers > server_name.

2. Under Security, click Web services: Default bindings for Web services security.

3. Under Additional properties, click Key locators.

4. Click New to create a new configuration or click the name of a configuration to modify its settings.

To use this administrative console page for the key locator collection on the application level, complete the

following steps:

1. Click Applications > Enterprise applications > application_name.

2. Click Manage modules > URI_name.

3. Under Web Services Security properties, you can access key locators for the following bindings:

v For the Request generator, click Web services: Client security bindings. Under Request

generator (sender) binding, click Edit custom > Key locators.

v For the Request consumer, click Web services: Server security bindings. Under Request

consumer (receiver) binding, click Edit custom > Key locators.

v For the Response generator, click Web services: Server security bindings. Under Response

generator (sender) binding, click Edit custom > Key locators.

v For the Response consumer, click Web services: Client security bindings. Under Response

consumer (receiver) binding, click Edit custom > Key locators.

4.

Version 5.x application

Under Additional properties, you can access key locators for the

following bindings:

v For the Request sender, click Web services: Client security bindings. Under Request sender

binding, click Edit > Key locators.

v For the Request receiver, click Web services: Server security bindings. Under Request receiver

binding, click Edit > Key locators.

v For the Response sender, click Web services: Server security bindings. Under Response sender

binding, click Edit > Key locators.

v For the Response receiver, click Web services: Client security bindings. Under Response

receiver binding, click Edit > Key locators.

5. Click New to create a new configuration or click the name of a configuration to modify its settings.

Key locator name:

Specifies the name of the key locator.

 Data type String

Key locator class name:

Specifies the name for the key locator class implementation.

1124 Securing applications and their environment

Version 6 and later applications Key locators that are associated with Version 6 and later

applications must implement the com.ibm.wsspi.wssecurity.keyinfo.KeyLocator interface. This product

provides the following default key locator class implementations for Version 6 and later applications:

com.ibm.wsspi.wssecurity.keyinfo.KeyStoreKeyLocator

This implementation locates and obtains the key from the specified keystore file.

com.ibm.wsspi.wssecurity.keyinfo.SignerCertKeyLocator

This implementation uses the public key from the certificate of the signer. This class

implementation is used by the response generator.

com.ibm.wsspi.wssecurity.keyinfo.X509TokenKeyLocator

This implementation uses the X.509 security token from the sender message for digital signature

validation and encryption. This class implementation is used by the request consumer and the

response consumer.

Version 5.x application

Key locators that are associated with Version 5.x applications must

implement the com.ibm.wsspi.wssecurity.config.KeyLocator interface. This product provides the following

default key locator class implementations for Version 5.x applications.

com.ibm.wsspi.wssecurity.config.WSldKeyStoreMapKeyLocator

This implementation maps an authenticated identity to a key and is used by the response sender.

If encryption is used, this class is used to locate a key to encrypt the response message. The

com.ibm.wsspi.wssecurity.config.WSldKeyStoreMapKeyLocator class can map an authenticated

identity from the invocation credential of the current thread to a key that is used to encrypt the

message. If an authenticated identity is present on the current thread, the class maps the ID to the

mapped name. For example, user1 is mapped to mappedName_1. Otherwise, name=″default″.

When a matching key is not found, the authenticated identity is mapped to the default key that is

specified in the binding file. This implementation supports the following formats: JKS, JCEKS, and

PKCS12.

com.ibm.wsspi.wssecurity.config.KeyStoreKeyLocator

This implementation maps a name to an alias and is used by the response receiver, request

sender, and request receiver. The encryption process uses this class to obtain a key to encrypt a

message, and the digital signature process uses this class to obtain a key to sign a message. The

com.ibm.wsspi.wssecurity.config.KeyStoreKeyLocator class maps a logical name to a key alias in

the keystore file. For example, key #105115176771 is mapped to CN=Alice, O=IBM, c=US.

com.ibm.wsspi.wssecurity.config.CertInRequestKeyLocator

This implementation uses the signer certificate to encrypt the response. This class implementation

is used by the response sender and response receiver.

 Data type String

Key store password:

Specifies the password that is used to access the keystore file.

Key store configuration name:

Specifies the name of the key store configuration defined in the keystore settings in secure

communications.

Key store path:

Specifies the location of the keystore file.

Key store type:

Chapter 14. Web services 1125

Specifies the type of keystore file.

JKS Use this option if you are not using Java Cryptography Extensions (JCE) and if your keystore file

uses the Java Keystore (JKS) format.

JCEKS

Use this option if you are using Java Cryptography Extensions.

JCERACFKS

Use JCERACFKS if the certificates are stored in a SAF key ring (z/OS only).

PKCS11KS (PKCS11)

Use this format if your keystore file uses the PKCS#11 file format. Keystores files that use this

format might contain Rivest Shamir Adleman (RSA) keys on cryptographic hardware or might

encrypt keys that use cryptographic hardware to ensure protection.

PKCS12KS (PKCS12)

Use this option if your keystore file uses the PKCS#12 file format.

 Default JKS

Range JKS, JCEKS, PKCS11KS (PKCS11), PKCS12KS

(PKCS12)

Web services security property collection

Use this page to a view a list of additional properties for the configuration.

You can view a Web services security property collection panel in several ways. Complete the following

steps to view one of these administrative console pages:

1. Click Security > Web services.

2. Under Default generator bindings or Default consumer bindings, click Properties.

3. Click New to create a new property.

4. Click Delete to a delete a property that you specified previously.

Property name:

Specifies the name of the property.

Property value:

Specifies the value for the property.

Web services security property configuration settings

Use this page to configure additional properties.

You can view a Web services security property configuration settings panel in several ways. Complete the

following steps to view one of these administrative console pages:

1. Click Security > Web services.

2. Under Default generator bindings or Default consumer bindings, click Properties > New.

Property Name:

Specifies the name of the property.

 Data type: String

Property Value:

1126 Securing applications and their environment

Specifies the value for the property.

 Data type: String

The following table lists the properties that you can configure using the Web services security property

panels.

 Configuration panel

name

Property name Property value Description

JAAS configuration com.ibm.wsspi.wssecurity.

token.X509.issuerName

Specify the SubjectDN or the

IssuerDN of the issuer for the

X.509 certificate.

This property is used to specify the

issuer of the certificate in the token

consumer component.

JAAS configuration com.ibm.wsspi.wssecurity.

token.X509.issuerSerial

Specify the serial number of

the X.509 certificate.

This property is used to specify the

serial number of the certificate in the

token consumer component.

Key information com.ibm.wsspi.wssecurity.

keyinfo.EncodingNS

Specify the namespace

Uniform Resource Identifier

(URI) for the qualified name

(QName).

This property is used to specify the

namespace URI part of the QName

that represents the encoding

method.

Request generator

and Response

generator

com.ibm.wsspi.wssecurity.

timestamp.SOAPHeaderElement

Specify 1 or true. This property is used with the Add

nonce option to set the

mustUnderstand flag in the

deployment descriptor.

Request generator

and Response

generator

com.ibm.wsspi.wssecurity.

timestamp.dialect

Signing information com.ibm.wsspi.wssecurity.

dsig.dumpPath

Specify the path used to locate

the output file.

This property is used to specify an

output file for dumping the target

UTF-8 binary data before signing

and verifying messages.

Token generator com.ibm.wsspi.wssecurity.

token.username.timestampExpires

Specify 1 or true. This property is used to specify an

expiration date for the user name

token.

Transform algorithms com.ibm.wsspi.wssecurity.

dsig.XPathExpression

not(ancestor-or-self::*

[namespace-uri()=

’http://www.w3.org/2000

/09/xmldsig#’ and

local-name()=’Signature’])

This property is used with this

algorithm:

http://www.w3.org/TR/1999

/REC-xpath-19991116

Configuring the key information for the generator binding on the

application level

Before you begin this task, configure the key locators and the token consumers that are referenced by the

Key locator reference and Token reference fields within the key information panel.

This task provides the steps needed for configuring the key information for the request generator (client

side) and the response generator (server side) bindings at the application level. The key information is

used to specify the configuration needed to generate the key for digital signature and encryption. The

signing information and the encryption information configurations can share the key information, which is

why they are both defined at the same level.

Complete the following information to configure the key information for the generator binding on the

application level:

1. Locate the key information configuration panel in the administrative console.

a. Click Applications > Enterprise applications > application_name.

b. Under Manage modules, click URI_name.

Chapter 14. Web services 1127

c. Under Web Services Security Properties you can access the key information for the request

generator and response generator bindings.

v For the request generator (sender) binding, click Web services: Client security bindings.

Under Request generator (sender) binding, click Edit custom.

v For the response generator (sender) binding, click Web services: Server security bindings.

Under Response generator (sender) binding, click Edit custom.

d. Under Required properties, click Key information.

e. Click New to create a key information configuration, select the box next to an existing configuration

and click Delete to delete the configuration, or click the name of an existing signing information

configuration to edit its settings. If you are creating a new configuration, enter a name in the Key

information name field. For example, you might specify gen_signkeyinfo.

2. Select a key information type from the Key information type field. The key information type specifies

how to reference the security tokens. WebSphere Application Server supports the following key

information types:

Key identifier

The security token is referenced using an opaque value that uniquely identifies the token. The

algorithm that is used for generating the <KeyIdentifier> element value depends upon the

token type. For example, a hash of the important elements of the security token is used for

generating the <KeyIdentifier> element value. The following <KeyInfo> element is generated in

the Simple Object Access Protocol (SOAP) message for this key information type:

<ds:KeyInfo xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

 <wsse:SecurityTokenReference>

 <wsse:KeyIdentifier ValueType="wsse:X509v3">/62wXO...</wsse:KeyIdentifier>

 </wsse:SecurityTokenReference>

</ds:KeyInfo>

Key name

The security token is referenced using a name that matches an identity assertion within the

token. It is recommended that you do not use this key type as it might result in multiple

security tokens that match the specified name. The following <KeyInfo> element is generated

in the SOAP message for this key information type:

<ds:KeyInfo>

 <ds:KeyName>CN=Group1</ds:KeyName>

</ds:KeyInfo>

Security token reference

The security token is directly referenced using Universal Resource Identifiers (URIs). The

following <KeyInfo> element is generated in the SOAP message for this key information type:

<ds:KeyInfo>

 <wsse:SecurityTokenReference>

 <wsse:Reference URI="#mytoken" />

 </wsse:SecurityTokenReference>

</ds:KeyInfo>

Embedded token

The security token is directly embedded within the <SecurityTokenReference> element. The

following <KeyInfo> element is generated in the SOAP message for this key information type:

<ds:KeyInfo>

 <wsse:SecurityTokenReference>

 <wsse:Embedded wsu:Id=”tok1” />

 ...

 </wsse:Embedded>

 </wsse:SecurityTokenReference>

</ds:KeyInfo>

1128 Securing applications and their environment

X509 issuer name and issuer serial

The security token is referenced by an issuer name and an issuer serial number of an X.509

certificate. The following <KeyInfo> element is generated in the SOAP message for this key

information type:

<ds:KeyInfo>

 <wsse:SecurityTokenReference>

 <ds:X509Data>

 <ds:X509IssuerSerial>

 <ds:X509IssuerName>CN=Jones, O=IBM, C=US</ds:X509IssuerName>

 <ds:X509SerialNumber>1040152879</ds:X509SerialNumber>

 </ds:X509IssuerSerial>

 </ds:X509Data>

 </wsse:SecurityTokenReference>

</ds:KeyInfo>

Each type of key information is described in the Web Services Security: SOAP Message Security 1.0

(WS-Security 2004) OASIS standard, which is located at: http://www.oasis-open.org/home/index.php

under Web services security.

3. Select a key locator reference from the Key locator reference field. This reference specifies a key

locator that WebSphere Application Server uses to locate the keys that are used for digital signature

and encryption. Before you can select a key locator, you must have configured a key locator. For more

information on configuring a key locator, see the following articles:

v “Configuring the key locator for the generator binding on the application level” on page 1121

v “Configuring the key locator for the consumer binding on the application level” on page 1176

4. Click Get keys to view a list of key name references. After you click Get keys, the key names that are

defined in the sig_klocator element are shown in the key name reference menu. If you change the key

locator reference, you must click Get keys again to display the list of key names associated with the

new key locator.

5. Select a key name reference from the Key name reference field. This reference specifies the name of

a key that is used for generating a digital signature and for encryption. The list of key names provided

comes from the key locator specified with the key locator reference.

6. Select a token reference from the Token reference field. This token reference specifies the name of

token generator that is used for processing the security token. However, WebSphere Application

Server requires this field only when you select Security token reference or Embedded token in the Key

information type field. Before specifying a token reference, you must configure a token generator. For

more information on configuring a token generator, see “Configuring the token generator on the

application level” on page 1104.

7. Optional: If you select Key identifier as the key information type on this panel, you must specify an

encoding method, calculation method, value type namespace URI, and a value type local name.

a. Select an encoding method from the Encoding method field. The encoding method specifies the

encoding format for the key identifier. WebSphere Application Server supports the following

encoding methods:

v http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-
1.0#Base64Binary

v http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#HexBinary

b. Select a calculation method from the Calculation method field. WebSphere Application Server

supports the following calculation methods:

v http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#ITSHA1

v http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#IT60SHA1

c. Specify a value type namespace Uniform Resource Identifier (URI) in the Namespace URI field. In

this field, specify the namespace URI of the value type for a security token that is referenced by

the key identifier. When you specify the X.509 certificate token, you do not need to specify this

option. If you want to specify another token, you must specify the URI of the qualified name

(QName) for value type.

Chapter 14. Web services 1129

http://www.oasis-open.org/home/index.php

d. Specify a value type local name. This name is the local name of the value type for a security token

that is referenced by the key identifier. When this local name is used in conjunction with the

corresponding namespace URI, the information is called the value type qualified name or QName.

When you specify the X.509 certificate token, it is recommended that you use the predefined local

names. When you specify the predefined local names, you do not need to specify the namespace

URI of the value type. However, if you do not use one of the predefined local names, you must

specify both the uniform resource identifier (URI) and the local name. WebSphere Application

Server provides the following predefined local names:

X.509 certificate token

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509v3

X.509 certificates in a PKIPath

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-
1.0#X509PKIPathv1

A list of X509 certificates and CRLs in a PKCS#7

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#PKCS7

LTPA Lightweight Third-Party Authentication token. When you specify a value type local name of

LTPA, you must also specify a namespace URI of http://www.ibm.com/websphere/
appserver/tokentype/5.0.2.

LTPA_PROPAGATION

Lightweight Third-Party Authentication propagation token. When you specify a value type

local name of LTPA_PROPAGATION, you must also specify a namespace URI of

http://www.ibm.com/websphere/appserver/tokentype.

8. Click OK and then click Save to save the configuration.

You have configured the key information for the generator binding at the application level

You must specify a similar key information configuration for the consumer.

Key information collection

Use this page to view the configurations that are currently available for generating or consuming the key

for XML digital signatures and XML encryption.

To view this administrative console page on the server level for the key information references, complete

the following steps:

1. Click Servers > Application Servers > server_name.

2. Under Security, click Web services: Default bindings for Web services security.

3. Under Default generator bindings or the Default consumer bindings, click Key information.

To view this administrative console page on the application level for the key information references,

complete the following steps.

Note: This option is available on the application level for Version 6 and later applications.

1. Click Applications > Enterprise applications > application_name.

2. Click Manage modules > URI_name .

3. Under Web Services Security Properties, you can access the signing information for the following

bindings:

v For the Request generator (sender) binding, click Web services: Client security bindings. Under

Request generator (sender) binding, click Edit custom.

v For the Request consumer (receiver) binding, click Web services: Server security bindings.

Under Request consumer (receiver) binding, click Edit custom.

1130 Securing applications and their environment

v For the Response generator (sender) binding, click Web services: Server security bindings.

Under Response generator (sender) binding, click Edit custom.

v For the Response consumer (receiver) binding, click Web services: Client security bindings.

Under Response consumer (receiver) binding, click Edit custom.

4. Under Required properties, click Key information.

Key information name:

Specifies the name that is given for the key configuration.

Key information class name:

Specifies the class name that is used for the key information type.

Key information type:

Specifies the type of mechanism used to reference the security token. The type corresponds to the class

name that is specified in the Key information class name field.

Key information configuration settings

Use this page to specify the related configuration need to specify the key for XML digital signature or XML

encryption.

To view this administrative console page on the server level for the key information references, complete

the following steps:

1. Click Servers > Application Servers > server_name.

2. Under Security, click Web services: Default bindings for Web services security.

3. Under Default generator bindings or the Default consumer bindings, click Key information.

4. Click New to create a new configuration or click the configuration name to modify its contents.

To view this administrative console page on the application level for the key information references,

complete the following steps.

Note: This option is available on the application level for Version 6.0.x applications.

1. Click Applications > Enterprise applications > application_name.

2. Under Related items, click Manage modules > URI_name.

3. Under Additional properties, you can access the signing information for the following bindings:

v For the Request generator (sender) binding, click Web services: Client security bindings. Under

Request generator (sender) binding, click Edit custom.

v For the Request consumer (receiver) binding, click Web services: Server security bindings.

Under Request consumer (receiver) binding, click Edit custom.

v For the Response generator (sender) binding, click Web services: Server security bindings.

Under Response generator (sender) binding, click Edit custom.

v For the Response consumer (receiver) binding, click Web services: Client security bindings.

Under Response consumer (receiver) binding, click Edit custom.

4. Under Required properties, click Key information.

5. Click New to create a new configuration or click the configuration name to modify its contents.

Before clicking Properties under Additional properties, you must enter a value in the Key information

name field and select an option for the Key information type and Key locator reference options.

Key information name:

Chapter 14. Web services 1131

Specifies a name for the key information configuration.

Key information type:

Specifies the type of key information. The key information type specifies how to reference security tokens.

 This product supports the following types of key information. Each type of key information is described in

Web Services Security: SOAP Message Security 1.0 (WS-Security 2004)

 Type Description

Key identifier The security token is referenced using an opaque value that

uniquely identifies the token.

Key name The security token is referenced using a name that matches an

identity assertion within the token.

Security token reference With this type, the security token is directly referenced.

Embedded token With this type, the security token reference is embedded.

X509 issuer name and issuer serial With this type, the security token is referenced by an issuer and

serial number of an X.509 certificate

The X.509 issuer name and issuer serial is described in Web Services Security: X.509 Certificate Token

Profile Version 1.0. The other types are described in Web Services Security: SOAP Message Security 1.0

(WS-Security 2004).

If you select Key identifier for the key information type, you can specify values in the following fields on

this panel:

v Encoding method

v Calculation method

v Value type namespace URI

v Value type local name

Key locator reference:

Specifies the reference that is used to retrieve the key for digital signature and encryption.

 Before specifying a key locator reference, you must configure a key locator. You can specify a signing key

configuration for the following bindings:

 Binding name Cell level, server level,

or application level

Path

Default generator binding Server level 1. Click Servers > Application servers >

server_name.

2. Under Security, click Web services: Default

bindings for Web services security.

3. Under Additional properties, click Key locators.

4. Click New to create a new key locator or click

the name of a configured key locator to modify

its configuration.

1132 Securing applications and their environment

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf

Binding name Cell level, server level,

or application level

Path

Default consumer binding Server level 1. Click Servers > Application servers >

server_name.

2. Under Security, click Web services: Default

bindings for Web services security.

3. Under Additional properties, click Key locators.

4. Click New to create a new key locator or click

the name of a configured key locator to modify

its configuration.

Request sender binding Application level 1. Click Applications > Enterprise applications >

application_name.

2. Under Related items, click Manage modules >

URI_name.

3. Click Web services: Client security bindings.

Under Request sender binding, click Edit.

4. Under Additional properties, click Key locators.

5. Click New to create a new key locator or click

the name of a configured key locator to modify

its configuration.

Response receiver binding Application level 1. Click Applications > Enterprise applications >

application_name.

2. Under Related items, click Manage modules >

URI_name.

3. Click Web services: Client security bindings.

Under Response receiver binding, click Edit.

4. Under Additional properties, click Key locators.

5. Click New to create a new key locator or click

the name of a configured key locator to modify

its configuration.

Request receiver binding Application level 1. Click Applications > Enterprise applications >

application_name.

2. Under Related items, click Manage modules >

URI_name.

3. Click Web services: Server security bindings.

Under Request receiver binding, click Edit.

4. Under Additional properties, click Key locators.

5. Click New to create a new key locator or click

the name of a configured key locator to modify

its configuration.

Response sender binding Application level 1. Click Applications > Enterprise applications >

application_name.

2. Under Related items, click Manage modules >

URI_name.

3. Click Web services: Server security bindings.

Under Response sender binding, click Edit.

4. Under Additional properties, click Key locators.

5. Click New to create a new key locator or click

the name of a configured key locator to modify

its configuration.

Chapter 14. Web services 1133

Binding name Cell level, server level,

or application level

Path

Request generator (sender) binding Application level 1. Click Applications > Enterprise applications >

application_name.

2. Under Related items, click Manage modules >

URI_name.

3. Click Web services: Client security bindings.

Under Request generator (sender) binding, click

Edit.

4. Under Additional properties, click Key locators.

5. Click New to create a new key locator or click

the name of a configured key locator to modify

its configuration.

Response consumer (receiver)

binding

Application level 1. Click Applications > Enterprise applications >

application_name.

2. Under Related items, click Manage modules >

URI_name.

3. Click Web services: Client security bindings.

Under Response consumer (receiver) binding,

click Edit custom.

4. Under Additional properties, click Key locators.

5. Click New to create a new key locator or click

the name of a configured key locator to modify

its configuration.

Request consumer (receiver)

binding

Application level 1. Click Applications > Enterprise applications >

application_name.

2. Under Related items, click Manage modules >

URI_name.

3. Click Web services: Server security bindings.

Under Request consumer (receiver) binding, click

Edit custom.

4. Under Additional properties, click Key locators.

5. Click New to create a new key locator or click

the name of a configured key locator to modify

its configuration.

Response generator (sender)

binding

Application level 1. Click Applications > Enterprise applications >

application_name.

2. Under Related items, click Manage modules >

URI_name.

3. Click Web services: Server security bindings.

Under Response generator (sender) binding,

click Edit custom.

4. Under Additional properties, click Key locators.

5. Click New to create a new key locator or click

the name of a configured key locator to modify

its configuration.

Key name reference:

Specifies the name of the key that is used for generating digital signature and encryption.

1134 Securing applications and their environment

This field is displayed for the default generator and is also displayed for the request generator and

response generator for Version 6.0.x applications.

 Binding name Cell level, server level,

or application level

Path

Default generator binding Server level 1. Click Servers > Application servers >

server_name.

2. Under Security, click Web services: Default

bindings for Web services security.

3. Under Additional properties, click Key locators.

4. Click New to create a new key locator or click

the name of a configured key locator to modify its

configuration.

Request generator (sender)

binding

Application level 1. Click Applications > Enterprise applications >

application_name.

2. Under Related items, click Manage modules >

URI_name.

3. Click Web services: Client security bindings.

Under Request generator (sender) binding, click

Edit.

4. Under Additional properties, click Key locators.

5. Click New to create a new key locator or click

the name of a configured key locator to modify its

configuration.

Response generator (sender)

binding

Application level 1. Click Applications > Enterprise applications >

application_name.

2. Under Related items, click Manage modules >

URI_name.

3. Click Web services: Server security bindings.

Under Response generator (sender) binding,

click Edit custom.

4. Under Additional properties, click Key locators.

5. Click New to create a new key locator or click

the name of a configured key locator to modify its

configuration.

Token reference:

Specifies the name of a token generator or token consumer that is used for processing a security token.

 The application server requires this field only when you specify Security token reference or Embedded

token in the Key information type field. The Token reference field is also required when you specify a

key identifier type for the consumer. Before specifying a token reference, you must configure a token

generator or token consumer. You can specify a token configuration for the following bindings on the

following levels:

Chapter 14. Web services 1135

Binding name Cell level, server level,

or application level

Path

Default generator binding Server level 1. Click Servers > Application servers >

server_name.

2. Under Security, click Web services: Default

bindings for Web services security.

3. Under Default generator bindings, click Token

generator.

4. Click New to create a new token generator or

click the name of a configured token generator

to modify its configuration.

Default consumer binding Server level 1. Click Servers > Application servers >

server_name.

2. Under Security, click Web services: Default

bindings for Web services security.

3. Under Default consumer bindings, click Token

consumer.

4. Click New to create a new token consumer or

click the name of a configured token consumer

to modify its configuration.

Request generator (sender) binding Application level 1. Click Applications > Enterprise applications >

application_name.

2. Under Related items, click Manage modules >

URI_name.

3. Click Web services: Client security bindings.

Under Request generator (sender) binding, click

Edit custom.

4. Under Additional properties, click Token

generators.

5. Click New to create a new token consumer or

click the name of a configured token consumer

to modify its configuration.

Response consumer (receiver)

binding

Application level 1. Click Applications > Enterprise applications >

application_name.

2. Under Related items, click Manage modules >

URI_name.

3. Click Web services: Client security bindings.

Under Response consumer (receiver) binding,

click Edit custom.

4. Under Required properties, click Token

consumers.

5. Click New to create a new token consumer or

click the name of a configured token consumer

to modify its configuration.

1136 Securing applications and their environment

Binding name Cell level, server level,

or application level

Path

Request consumer (receiver)

binding

Application level 1. Click Applications > Enterprise applications >

application_name.

2. Under Related items, click Manage modules >

URI_name.

3. Click Web services: Server security bindings.

Under Request consumer (receiver) binding,

click Edit custom.

4. Under Required properties, click Token

consumers.

5. Click New to create a new token consumer or

click the name of a configured token consumer

to modify its configuration.

Response generator (sender)

binding

Application level 1. Click Applications > Enterprise applications >

application_name.

2. Under Related items, click Manage modules >

URI_name.

3. Click Web services: Server security bindings.

Under Response generator (sender) binding,

click Edit custom.

4. Under Additional properties, click Token

generators.

5. Click New to create a new token consumer or

click the name of a configured token consumer

to modify its configuration.

Encoding method:

Specifies the encoding method that indicates the encoding format for the key identifier.

 This field is valid when you specify Key identifier in the Key information type field. This product supports

the following encoding methods:

v http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#Base64Binary

v http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#HexBinary

This field is available for the default generator binding only.

Calculation method:

 This field is valid when you specify Key identifier in the Key information type field. This product supports

the following calculation methods:

v http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#ITSHA1

v http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#IT60SHA1

This field is available for the generator binding only.

Value type namespace URI:

Specifies the namespace Uniform Resource Identifier (URI) of the value type for a security token that is

referenced by the key identifier.

Chapter 14. Web services 1137

This field is valid when you specify Key identifier in the Key information type field. When you specify the

X.509 certificate token, you do not need to specify this option. If you want to specify another token, specify

the URI of QName for value type.

This product provides the following predefined value type URIs for the Lightweight Third Party

Authentication (LTPA) token:

v http://www.ibm.com/websphere/appserver/tokentype

v http://www.ibm.com/websphere/appserver/tokentype/5.0.2

This field is available for the generator binding only.

Value type local name:

Specifies the local name of the value type for a security token that is referenced by the key identifier.

 When this local name is used with the corresponding namespace URI, the information is called the value

type qualified name or QName.

This field is valid when you specify Key identifier in the Key information type field. When you specify the

X.509 certificate token, it is recommended that you use the predefined local names. When you specify the

predefined local names, you do not need to specify the URI of the value type. This product provides the

following predefined local names:

X.509 certificate token

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509v3

X.509 certificates in a PKIPath

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509PKIPathv1

A list of X509 certificates and CRLs in a PKCS#7

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#PKCS7

Lightweight Third Party Authentication (LTPA)

LTPA_PROPAGATION

Attention: For LTPA, the value type local name is LTPA. If you enter LTPA for the local name, you must

specify the http://www.ibm.com/websphere/appserver/tokentype/5.0.2 URI value in the Value type URI

field as well. For LTPA token propagation, the value type local name is LTPA_PROPAGATION. If you enter

LTPA_PROPAGATION for the local name, you must specify the http://www.ibm.com/websphere/appserver/
tokentype URI value in the Value type URI field as well. For the other predefined value types (User name

token, X509 certificate token, X509 certificates in a PKIPath, and a list of X509 certificates and CRLs in a

PKCS#7), the value for the Value type local name field begins with http://. For example, if you are

specifying the user name token for the value type, enter http://docs.oasis-open.org/wss/2004/01/oasis-
200401-wss-username-token-profile-1.0#UsernameToken in the Value type local name field and then you

do not need to enter a value in the value type URI field.

When you specify a custom value type for custom tokens, you can specify the local name and the URI of

the quality name (QName) of the value type. For example, you might specify Custom for the local name

and http://www.ibm.com/custom for the URI.

This field is also available for the generator binding only.

Configuring the signing information for the generator binding on the

application level

In the server-side extensions file (ibm-webservices-ext.xmi) and the client-side deployment descriptor

extensions file (ibm-webservicesclient-ext.xmi), you must specify which parts of the message are

1138 Securing applications and their environment

signed. Also, you must configure the key information that is referenced by the key information references

on the signing information panel within the administrative console.

This task explains the required steps to configure the signing information for the client-side request

generator and the server-side response generator bindings at the application level. WebSphere Application

Server uses the signing information for the default generator to sign parts of the message including the

body, time stamp, and user name token. The Application Server provides default values for bindings.

However, an administrator must modify the defaults for a production environment. Complete the following

steps to configure the signing information for the generator sections of the bindings files on the application

level:

 1. Locate the signing information configuration panel in the administrative console.

a. Click Applications > Enterprise applications > application_name.

b. Under Manage modules, click URI_name.

c. Under Web Services Security Properties, you can access the signing information for the request

generator and the response generator bindings.

v For the request generator (sender) binding, click Web services: Client security bindings.

Under Request generator (sender) binding, click Edit custom.

v For the response generator (sender) binding, click Web services: Server security bindings.

Under Response generator (sender) binding, click Edit custom.

d. Under Required properties, click Signing information.

e. Click New to create a signing information configuration, select the box next to the configuration

and click Delete to delete an existing configuration, or click the name of an existing signing

information configuration to edit its settings. If you are creating a new configuration, enter a name

in the Signing information name field. For example, you might specify gen_signinfo.

 2. Select a signature method algorithm from the Signature method field. The algorithm that is specified

for the generator, which is either the request generator or the response generator configuration, must

match the algorithm that is specified for the consumer, which is either the request consumer or

response consumer configuration. WebSphere Application Server supports the following

pre-configured algorithms:

v http://www.w3.org/2000/09/xmldsig#rsa-sha1

v http://www.w3.org/2000/09/xmldsig#hmac-sha1

v http://www.w3.org/2000/09/xmldsig#dsa-sha1

Do not use this algorithm if you want the configured application to be compliant with the Basic

Security Profile (BSP). Any ds:SignatureMethod/@Algorithm element in a SIGNATURE based on a

symmetric key must have a value of http://www.w3.org/2000/09/xmldsig#rsa-sha1 or

http://www.w3.org/2000/09/xmldsig#hmac-sha1.

 3. Select a canonicalization method from the Canonicalization method field. The canonicalization

algorithm that you specify for the generator must match the algorithm for the consumer. WebSphere

Application Server supports the following pre-configured algorithms:

v http://www.w3.org/2001/10/xml-exc-c14n#

v http://www.w3.org/2001/10/xml-exc-c14n#WithComments

v http://www.w3.org/TR/2001/REC-xml-c14n-20010315

v http://www.w3.org/TR/2001/REC-xml-c14n-20010315#WithComments

 4. Select a key information signature type from the Key information signature type field. WebSphere

Application Server supports the following signature types:

None Specifies that the KeyInfo element is not signed.

Keyinfo

Specifies that the entire KeyInfo element is signed.

Keyinfochildelements

Specifies that the child elements of the KeyInfo element are signed.

Chapter 14. Web services 1139

http://www.w3.org/2000/09/xmldsig#rsa-sha1
http://www.w3.org/2000/09/xmldsig#hmac-sha1
http://www.w3.org/2000/09/xmldsig#dsa-sha1
http://www.w3.org/2000/09/xmldsig#rsa-sha1
http://www.w3.org/2000/09/xmldsig#hmac-sha1

The key information signature type for the generator must match the signature type for the consumer.

You might encounter the following situations:

v If you do not specify one of the previous signature types, WebSphere Application Server uses

keyinfo, by default.

v If you select Keyinfo or Keyinfochildelements and you select http://docs.oasis-open.org/wss/2004/
01/oasis-200401-wss-soap-message-security-1.0#STR-Transform as the transform algorithm in a

subsequent step, WebSphere Application Server also signs the referenced token.

 5. Select a signing key information reference from the Signing key information field. This selection is a

reference to the signing key that the Application Server uses to generate digital signatures.

 6. Click OK and Save to save the configuration.

 7. Click the name of the new signing information configuration. This configuration is the one that you

specified in a previous step.

 8. Specify the part reference, digest algorithm, and transform algorithm. The part reference specifies

which parts of the message to digitally sign.

a. Under Additional properties, click Part references > New to create a new part reference, click

Part references > Delete to delete an existing part reference, or click a part name to edit an

existing part reference.

b. Specify a unique part name for this part reference. For example, you might specify reqint.

c. Select a part reference from the Part reference field.

The part reference refers to the message part that is digitally signed. The part attribute refers to

the name of the <Integrity> element in the deployment descriptor when the <PartReference>

element is specified for the signature. You can specify multiple <PartReference> elements within

the <SigningInfo> element. The <PartReference> element has two child elements when it is

specified for the signature: <DigestTransform> and <Transform>.

d. Select a digest method algorithm from the menu. The digest method algorithm specified within the

<DigestMethod> element is used in the <SigningInfo> element.

WebSphere Application Server supports the following algorithms:

v http://www.w3.org/2000/09/xmldsig#sha1

v http://www.w3.org/2001/04/xmlenc#sha256

v http://www.w3.org/2001/04/xmlenc#sha512

e. Click OK to save the configuration.

f. Click the name of the new part reference configuration. This configuration is the one that you

specified in a previous step.

g. Under Additional Properties, click Transforms > New to create a new transform, click

Transforms > Delete to delete a transform, or click a transform name to edit an existing

transform. If you create a new transform configuration, specify a unique name. For example, you

might specify reqint_body_transform1.

h. Select a transform algorithm from the menu. The transform algorithm is that is specified within the

<Transform> element and specifies the transform algorithm for the signature. WebSphere

Application Server supports the following algorithms:

v http://www.w3.org/2001/10/xml-exc-c14n#

v http://www.w3.org/TR/1999/REC-xpath-19991116

Do not use this transform algorithm if you want your configured application to be compliant with

the Basic Security Profile (BSP). Instead use http://www.w3.org/2002/06/xmldsig-filter2 to

ensure compliance.

v http://www.w3.org/2002/06/xmldsig-filter2

v http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#STR-
Transform

v http://www.w3.org/2002/07/decrypt#XML

1140 Securing applications and their environment

v http://www.w3.org/2000/09/xmldsig#enveloped-signature

The transform algorithm that you select for the generator must match the transform algorithm that

you select for the consumer.

Important: If both of the following conditions are true, WebSphere Application Server signs the

referenced token:

v You previously selected the Keyinfo or the Keyinfochildelements option from the

Key information signature type field on the signing information panel.

v You select http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-
message-security-1.0#STR-Transform as the transform algorithm.

 9. Click Apply.

10. Optional: Determine whether to disable the Inclusive namespace prefix list. The Exclusive XML

Canonicalization Version 1.0 specification recommends that you include all of the namespace

declarations that correspond to the namespace prefix in the canonicalization form. For security

reasons, WebSphere Application Server, by default, includes the prefix in the digital signature for Web

services security. However, some implementations of Web services security cannot handle this prefix

list. WebSphere Application Server can handle digitally signed messages that either contain or do not

contain the prefix list. If you experience a signature validation failure when a signed Simple Object

Access Protocol (SOAP) message is sent and you are using another vendor in your environment, it is

highly recommended that you check with their Web site for a possible fix to their implementation

before you disable this property. To disable this property, complete the following steps:

a. Under Additional properties, click Canonicalization method properties > New.

b. In the Property name field, enter the com.ibm.wsspi.wssecurity.dsig.inclusiveNamespaces

property.

c. In the Property value field, enter the false value.

d. Click OK.

You can set this property for both the request generator and the response generator configurations.

11. Click Save at the top of the panel to save your configuration.

After completing these steps, the signing information is configured for the generator on the application

level.

You must specify a similar signing information configuration for the consumer.

Signing information collection

Use this page to view a list of signing parameters. Signing information is used to sign and validate parts of

a message including the body, time stamp, and user name token. You can also use these parameters for

X.509 validation when the authentication method is IDAssertion and the ID type is X509Certificate in the

server-level configuration. In such cases, you must fill in the certificate path fields only.

Note: Use Internet Explorer if you experience difficulties in the Signing Information panel using Netscape

4.7.9.

To view this administrative console page on the cell level for signing information, complete the following

steps:

To view this administrative console page on the server level for signing information, complete the following

steps:

1. Click Servers > Application Servers > server_name.

2. Under Security, click Web services: Default bindings for Web services security.

3. Under Default generator bindings or Default consumer bindings, click Signing information.

4. Click New to create a signing parameter. Click Delete to delete a signing parameter.

Chapter 14. Web services 1141

http://www.w3.org/TR/xml-exc-c14n/
http://www.w3.org/TR/xml-exc-c14n/

To view this administrative console page on the application level for signing information, complete the

following steps:

1. Click Applications > Enterprise applications > application_name.

2. Click Manage modules > URI_name.

3.

Version 6 and later applications

Under Web Services Security Properties, you can

access the signing information for the following bindings:

v For the Request generator (sender) binding, click Web services: Client security bindings. Under

Request generator (sender) binding, click Edit custom.

v For Response consumer (receiver) binding, click Web services: Client security bindings. Under

Response consumer (receiver) binding, click Edit custom.

v For the Request consumer (receiver) binding, click Web services: Server security bindings.

Under Request consumer (receiver) binding, click Edit custom.

v For the Response generator (sender) binding, click Web services: Server security bindings.

Under Response generator (sender) binding, click Edit custom.

4.

Version 6 and later applications

Under Required properties, click Signing information.

5.

Version 5.x application

Under Additional properties, you can use this panel to configure

the following bindings:

v For the Request receiver binding, click Web services: Server security bindings. Under Request

receiver binding, click Edit.

v For the Response receiver binding, click Web services: Client security bindings. Under Response

receiver binding, click Edit.

6.

Version 5.x application

Under Additional properties, click Signing information.

7. Click New to create a signing parameter. Click Delete to delete a signing parameter.

Signing information name:

Specifies the unique name that is assigned to the signing configuration.

Signature method:

Specifies the signature method algorithm that is chosen for the signing configuration.

Canonicalization method:

Specifies the canonicalization method algorithm that is chosen for the signing configuration.

Signing information configuration settings

Use this page to configure new signing parameters.

The specifications that are listed on this page for the signature method, digest method, and

canonicalization method are located in the World Wide Web Consortium (W3C) document entitled, XML

Signature Syntax and Specification: W3C Recommendation 12 Feb 2002.

To view this administrative console page on the server level for signing information, complete the following

steps:

1. Click Servers > Application Servers > server_name.

2. Under Security, click Web services: Default bindings for Web services security.

1142 Securing applications and their environment

3. Under Default generator bindings or Default consumer bindings, click Signing information.

4. Click New to create a signing parameter or click the name of an existing configuration to modify its

settings.

To view this administrative console page on the application level for signing information, complete the

following steps:

1. Click Applications > Enterprise applications > application_name.

2. Click Manage modules > URI_name.

3. Under Web Services Security Properties, you can access the signing information for the following

bindings:

v For the Request generator (sender) binding, click Web services: Client security bindings. Under

Request generator (sender) binding, click Edit custom.

v For Response consumer (receiver) binding, click Web services: Client security bindings. Under

Response consumer (receiver) binding, click Edit custom.

v For the Request consumer (receiver) binding, click Web services: Server security bindings.

Under Request consumer (receiver) binding, click Edit custom.

v For the Response generator (sender) binding, click Web services: Server security bindings.

Under Response generator (sender) binding, click Edit custom.

4.

Version 6 and later applications

Under Required properties, click Signing information.

5.

Version 5.x application

Under Additional properties, you can access the signing

information for the following bindings:

v For the Request receiver binding, click Web services: Server security bindings. Under Request

receiver binding, click Edit.

v For the Response receiver binding, click Web services: Client security bindings. Under Response

receiver binding, click Edit.

6.

Version 5.x application

Under Additional properties, click Signing information.

7. Click New to create a signing parameter or click the name of an existing configuration to modify its

settings.

Signing information name:

Specifies the name that is assigned to the signing configuration.

Signature method:

Specifies the algorithm Uniform Resource Identifiers (URI) of the signature method.

 The following pre-configured algorithms are supported:

v

Version 5.x or 6 application

http://www.w3.org/2000/09/xmldsig#rsa-sha1

v

Version 5.x or 6 application

http://www.w3.org/2000/09/xmldsig#dsa-sha1

Do not use this algorithm if you want the configured application to be compliant with the Basic Security

Profile (BSP). Any ds:SignatureMethod/@Algorithm element in a signature based on a symmetric key

must have a value of http://www.w3.org/2000/09/xmldsig#rsa-sha1 or http://www.w3.org/2000/09/
xmldsig#hmac-sha1.

v

Version 6 and later applications

http://www.w3.org/2000/09/xmldsig#hmac-sha1

Chapter 14. Web services 1143

http://www.w3.org/2000/09/xmldsig#rsa-sha1
http://www.w3.org/2000/09/xmldsig#dsa-sha1
http://www.w3.org/2000/09/xmldsig#rsa-sha1
http://www.w3.org/2000/09/xmldsig#hmac-sha1
http://www.w3.org/2000/09/xmldsig#hmac-sha1
http://www.w3.org/2000/09/xmldsig#hmac-sha1

For Version 6.0.x applications, you can specify additional signature methods on the Algorithm URI panel.

To access the Algorithm URI panel, complete the following steps:

1. Click Security > Web services.

2. Under Additional properties, click Algorithm mappings > algorithm_factory_engine_class_name >

Algorithm URI > New.

When you specify the Algorithm URI, you also must specify an algorithm type. To have the algorithm

display as a selection in the Signature method field on the Signing information panel, you must select

Signature as the algorithm type.

This field is available for Version 6.0.x applications and for the request receiver and response receiver

bindings for Version 5.x applications.

Digest method:

Specifies the algorithm URI of the digest method.

 The http://www.w3.org/2000/09/xmldsig#sha1 algorithm is supported.

This field is available for the request receiver and response receiver bindings for Version 5.x applications.

Canonicalization method:

Specifies the algorithm URI of the canonicalization method.

 The following pre-configured algorithms are supported:

v http://www.w3.org/2001/10/xml-exc-c14n#

v http://www.w3.org/2001/10/xml-exc-c14n#WithComments

v http://www.w3.org/TR/2001/REC-xml-c14n-20010315

v http://www.w3.org/TR/2001/REC-xml-c14n-20010315#WithComments

This field is for Version 6.0.x applications and for the request receiver and response receiver bindings for

Version 5.x applications.

Key information signature type:

Specifies how to sign a KeyInfo element if dsigkey or enckey is specified for the signing part in the

deployment descriptor.

 This product supports the following keywords:

keyinfo (default)

Specifies that the entire KeyInfo element is signed.

keyinfochildelements

Specifies that the child elements of the KeyInfo element is signed.

If you do not specify a keyword, the application server uses the keyinfo value, by default.

The Key information signature type field is available for the token consumer binding.

For Version 6.0.x.x applications, this field is also available for the default consumer, request consumer, and

response consumer bindings.

Signing key information:

1144 Securing applications and their environment

http://www.w3.org/2000/09/xmldsig#sha1
http://www.w3.org/2001/10/xml-exc-c14n#
http://www.w3.org/2001/10/xml-exc-c14n#WithComments
http://www.w3.org/TR/2001/REC-xml-c14n-20010315
http://www.w3.org/TR/2001/REC-xml-c14n-20010315#WithComments

Specifies a reference to the key information that the application server uses to generate the digital

signature.

 You can specify one signing key only for the default generator binding on the server level. However, you

can specify multiple signing keys for the default consumer bindings. The signing keys for the default

consumer bindings are specified using the Key Information references link under Additional properties on

the Signing information panel.

On the application level, you can specify only one signing key for the request generator and the response

generator. You can specify multiple signing keys for the request consumer and response generator. The

signing keys for the request consumer and the response consumer are specified using the Key information

references link under Additional properties.

You can specify a signing key configuration for the following bindings on the following levels:

 Binding name Cell level, server level, or

application level

Path

Default generator binding Server level 1. Click Servers > Application Servers >

server_name.

2. Under Security, click Web services: Default

bindings for Web services security .

3. Under Default generator binding, click Key

information.

Default consumer binding Server level 1. Click Servers > Application Servers >

server_name.

2. Under Security, click Web services: Default

bindings for Web services security .

3. Under Default consumer binding, click Key

information.

Certificate path:

Specifies the settings for the certificate path validation. When you select Trust any, this validation is

skipped and all incoming certificates are trusted.

 The certificate path options are available on the application level.

Trust anchor

The application server searches for trust anchor configurations on the application and server levels and

lists the configurations in this menu.

Version 5.x application

You can specify trust anchors as an additional property for the

response receiver binding and the request receiver binding.

Chapter 14. Web services 1145

You can specify a trust anchor configuration for the following bindings on the following levels:

 Binding name Cell level, server level, or

application level

Path

Default generator binding Server level 1. Click Servers > Application servers >

server_name.

2. Under Security, click Web services: Default

bindings for Web services security.

3. Under Additional properties, click Trust

anchors > New.

Default consumer binding Server level 1. Click Servers > Application servers >

server_name.

2. Under Security, click Web services: Default

bindings for Web services security.

3. Under Additional properties, click Trust

anchors > New.

Response receiver Application level for Version 5.x

applications

1. Click Applications > Enterprise

applications > application_name.

2. Click Manage modules > URI_name.

3. Click Web services: Client security

bindings.

4. Under the Response receiver binding, click

Edit.

5. Under Additional properties, click Trust

anchors > New.

Request receiver Application level for Version 5.x

applications

1. Click Applications > Enterprise

applications > application_name.

2. Click Manage modules > URI_name.

3. Click Web services: Server security

bindings.

4. Under the Request receiver binding, click

Edit.

5. Under Additional properties, click Trust

anchors > New.

For an explanation of the fields on the trust anchor panel, see “Trust anchor configuration settings” on

page 1092.

Certificate store

The application server searches for certificate store configurations on the application and server levels and

lists the configurations in this menu.

1146 Securing applications and their environment

You can specify a certificate store configuration for the following bindings on the following levels:

 Binding name Cell level, server level, or

application level

Path

Default generator binding Server level 1. Click Servers > Application servers >

server_name.

2. Under Security, click Web services: Default

bindings for Web services security.

3. Under Additional properties, click Collection

certificate store > New.

Default consumer binding Server level 1. Click Servers > Application servers >

server_name.

2. Under Security, click Web services: Default

bindings for Web services security.

3. Under Additional properties, click Collection

certificate store > New.

Response receiver Application level for Version 5.x

applications

1. Click Applications > Enterprise

applications > application_name.

2. Click Manage modules > URI_name.

3. Click Web services: Client security

bindings.

4. Under the Response receiver binding, click

Edit.

5. Under Additional properties, click Collection

certificate store > New.

Request receiver Application level for Version 5.x

applications

1. Click Applications > Enterprise

applications > application_name.

2. Click Manage modules > URI_name.

3. Click Web services: Server security

bindings.

4. Under the Request receiver binding, click

Edit.

5. Under Additional properties, click Collection

certificate store > New.

For an explanation of the fields on the collection certificate store panel, see “Collection certificate store

configuration settings” on page 1096.

Part reference collection

Use this page to view the message part references for signature and encryption that are defined in the

deployment descriptors.

To view this administrative console page on the server level for signing information, complete the following

steps:

1. Click Servers > Application Servers > server_name.

2. Under Security, click Web services: Default bindings for Web services security.

3. Under Default generator bindings or Default consumer bindings, click Signing information >

signing_information_name.

4. Under Additional properties, click Part references.

Chapter 14. Web services 1147

To view this administrative console page on the application level for signing information, complete the

following steps. Part references are available through the administrative console using Version 6.x

applications only.

1. Click Applications > Enterprise applications > application_name.

2. Click Manage modules > URI_name.

3. Under Web Services Security Properties, you can access the signing information for the following

bindings:

v For the Request generator (sender) binding, click Web services: Client security bindings. Under

Request generator (sending) binding, click Edit custom.

v For Response consumer (receiver) binding, click Web services: Client security bindings. Under

Response consumer (receiver) binding, click Edit custom.

v For the Request consumer (receiver) binding, click Web services: Server security bindings.

Under Request consumer (receiver) binding, click Edit custom.

v For the Response generator (sender) binding, click Web services: Server security bindings.

Under Response generator (sender) binding, click Edit custom.

4. Under Required properties, click Signing information > signing_information_name.

5. Under Additional properties, click Part references.

Part name:

Specifies the name that is assigned to the part reference configuration.

Part reference:

Specifies the name of the signed part that is defined in the deployment descriptor.

 The Part reference field is specified in the application binding configuration only.

Digest method algorithm:

Specifies the algorithm Uniform Resource Identifier (URI) of the digest method that is used for the signed

part that is specified by the part reference.

Part reference configuration settings

Use this page to specify a reference to the message parts for signature and encryption that are defined in

the deployment descriptors.

To view this administrative console page on the server level for signing information, complete the following

steps:

1. Click Servers > Application Servers > server_name.

2. Under Security, click Web services: Default bindings for Web services security.

3. Under Default generator bindings or Default consumer bindings, click Signing information >

signing_information_name.

4. Under Additional properties, click Part references.

5. Click New to create a part reference or click the name of an existing configuration to modify its

settings.

To view this administrative console page on the application level for signing information, complete the

following steps.

Note: Part references are available through the administrative console using Version 6.0.x.x applications

only.

1. Click Applications > Enterprise applications > application_name.

1148 Securing applications and their environment

2. Click Manage modules > URI_name.

3. Under Web Services Security Properties, you can access the signing information for the following

bindings:

v For the Request generator (sender) binding, click Web services: Client security bindings. Under

Request generator (sending) binding, click Edit custom.

v For Response consumer (receiver) binding, click Web services: Client security bindings. Under

Response consumer (receiver) binding, click Edit custom.

v For the Request consumer (receiver) binding, click Web services: Server security bindings.

Under Request consumer (receiver) binding, click Edit custom.

v For the Response generator (sender) binding, click Web services: Server security bindings.

Under Response generator (sender) binding, click Edit custom.

4. Under Required properties, click Signing information > signing_information_name.

5. Under Additional properties, click Part references.

6. Click New to create a part reference or click the name of an existing configuration to modify its

settings.

You must specify a part name and select a part reference before specifying additional properties. Before

specifying the digest method properties that are accessible under Additional properties, specify a digest

method algorithm on this panel. If you specify none and click Digest method, an error message is

displayed.

Part name:

Specifies the name that is assigned to the part reference configuration.

Part reference:

Specifies the name of the <integrity> or <requiredIntegrity> element for the signed part of the message or

it specifies the name of the <confidentiality> or <requiredConfidentiality> element for the encrypted part of

the message in the deployment descriptor.

 The part names that are defined in the deployment descriptor are listed as options in this field. This field is

displayed for the binding configuration on the application level only.

Digest method algorithm:

Specifies the algorithm Uniform Resource Identifier (URI) of the digest method that is used for the signed

part that is specified by the part reference.

 This product provides the following predefined algorithm URIs:

v http://www.w3.org/2000/09/xmldsig#sha1

v http://www.w3.org/2001/04/xmlenc#sha256

v http://www.w3.org/2001/04/xmlenc#sha512

If you want to specify a custom algorithm, you must configure the custom algorithm in the Algorithm URI

panel before setting the digest method algorithm.

To access the Algorithm URI panel, complete the following steps for the server level:

1. Click Servers > Application servers > server_name.

2. Under Security, click Web services: Default bindings for Web services security.

3. Under Additional properties, click Algorithm mappings > algorithm_factory_engine_class_name >

Algorithm URI > New.

The specified algorithms are listed as options for this field.

Chapter 14. Web services 1149

When you specify the Algorithm URI, you also must specify an algorithm type. To have the algorithm

display as a selection in the Digest method algorithm field on the Part reference panel, you must select

Digest value calculation (Message digest) as the algorithm type.

Transforms collection

Use this page to view the transform algorithm that is used for processing the Web services security

message.

To view this administrative console page for the server level, complete the following steps:

1. Click Application Servers > Servers > server_name.

2. Under Security, click Web services: Default bindings for Web services security.

3. Under Default generator bindings or Default consumer bindings, click Signing information >

signing_information_name.

4. Under Additional properties, click Part references > part_name.

5. Under Additional properties, click Transforms.

Version 6 and later applications

To view this administrative console page for the application

level, complete the following steps.

Note: This option is available for Version 6 and later applications only.

1. Click Applications > Enterprise applications > application_name.

2. Click Manage Modules > URI_name.

3. Under Web Services Security Properties, you can access the transforms information for the following

bindings:

v For the Request generator (sender) binding, click Web services: Client security bindings. Under

Request generator (sender) binding, click Edit custom.

v For the Request consumer (receiver) binding, click Web services: Server security bindings.

Under Request consumer (receiver) binding, click Edit custom.

v For the Response generator (sender) binding, click Web services: Server security bindings.

Under Response generator (sender) binding, click Edit custom.

v For the Response consumer (receiver) binding, click Web services: Client security bindings.

Under Request consumer (receiver) binding, click Edit custom.

4. Under Required properties, click Signing information > signing_information_name.

5. Under Additional properties, click Part references > part_name > Transforms.

Transform name:

Specifies the name that is assigned to the transform algorithm.

Transform algorithm:

Specifies the algorithm Uniform Resource Identifier (URI) of the transform algorithm.

Transforms configuration settings

Use this page to specify the transform algorithm that is used for processing the Web services security

message.

To view this administrative console page for the server level, complete the following steps:

1. Click Application Servers > Servers > server_name.

2. Under Security, click Web services: Default bindings for Web services security.

1150 Securing applications and their environment

3. Under Default generator bindings or Default consumer bindings, click Signing information >

signing_information_name.

4. Under Additional properties, click Part references > part_name.

5. Under Additional properties, click Transforms.

6. Click New to create a transform configuration or click the name of an existing configuration to modify

its settings.

Version 6 and later applications

To view this administrative console page for the application

level, complete the following steps. This option is available for Version 6.x applications only.

1. Click Applications > Enterprise applications > application_name.

2. Click Manage modules > URI_name.

3. Under Web Services Security Properties, you can access the transforms information for the following

bindings:

v For the Request generator (sender) binding, click Web services: Client security bindings. Under

Request generator (sender) binding, click Edit custom.

v For the Request consumer (receiver) binding, click Web services: Server security bindings.

Under Request consumer (receiver) binding, click Edit custom.

v For the Response generator (sender) binding, click Web services: Server security bindings.

Under Response generator (sender) binding, click Edit custom.

v For the Response consumer (receiver) binding, click Web services: Client security bindings.

Under Request consumer (receiver) binding, click Edit custom.

4. Under Required properties, click Signing information > signing_information_name.

5. Under Additional properties, click Part references > part_name > Transforms.

6. Click New to create a transform configuration or click the name of an existing configuration to modify

its settings.

You must specify a transform name and select a transform algorithm before specifying additional

properties.

Transform name:

Specifies the name that is assigned to the transform algorithm.

Transform algorithm:

Specifies the algorithm Uniform Resource Identifier (URI) of the transform algorithm.

 This product supports the following algorithms:

http://www.w3.org/2001/10/xml-exc-c14n#

This algorithm specifies the World Wide Web Consortium (W3C) Exclusive Canonicalization

recommendation.

http://www.w3.org/TR/1999/REC-xpath-19991116

This algorithm specifies the W3C XML path language recommendation. If you specify this

algorithm, you must specify the property name and value by clicking Properties, which is

displayed under Additional properties. For example, you might specify the following information:

Property

com.ibm.wsspi.wssecurity.dsig.XPathExpression

Value not(ancestor-or-self::*[namespace-uri()=’http://www.w3.org/2000/09/xmldsig#’ and

local-name()=’Signature’])

Chapter 14. Web services 1151

Note: Do not use this transform algorithm if you want your configured application to be compliant

with the Basic Security Profile (BSP). Instead use http://www.w3.org/2002/06/xmldsig-filter2

to ensure compliance.

http://www.w3.org/2002/06/xmldsig-filter2

This algorithm specifies the XML-Signature XPath Filter Version 2.0 proposed recommendation.

 When you use this algorithm, you must specify a set of properties. You can use multiple property

sets for the XPath Filter Version 2. Therefore, it is recommended that your property names end

with the number of the property set, which is denoted by an asterisk in the following examples:

v To specify an XPath expression for the XPath filter2, you might use:

name com.ibm.wsspi.wssecurity.dsig.XPath2Expression_*

v To specify a filter type for each XPath, you might use:

name com.ibm.wsspi.wssecurity.dsig.XPath2Filter_*

Following this expression, you can have a value, [intersect], [subtract], or [union].

v To specify the processing order for each XPath, you might use:

name com.ibm.wsspi.wssecurity.dsig.XPath2Order_*

Following this expression, indicate the processing order of the XPath.

The following is a list of complete examples:

com.ibm.wsspi.wssecurity.dsig.XPath2Expression_2 = [XPath expression#1]

com.ibm.wsspi.wssecurity.dsig.XPath2Filter_1 = [intersect]

com.ibm.wsspi.wssecurity.dsig.XPath2Order_1 = [1]

com.ibm.wsspi.wssecurity.dsig.XPath2Expression_2 = [XPath expression#2]

com.ibm.wsspi.wssecurity.dsig.XPath2Filter_2 = [subtract]

com.ibm.wsspi.wssecurity.dsig.XPath2Order_2 = [2]

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#STR-
Transform

This algorithm specifies the enhancements to SOAP messaging that provide message integrity

and confidentiality.

http://www.w3.org/2002/07/decrypt#XML

This algorithm specifies the W3C decryption transform for XML Signature recommendation.

http://www.w3.org/2000/09/xmldsig#enveloped-signature

This algorithm specifies the W3C recommendation for XML digital signatures.

Configuring the encryption information for the generator binding on

the application level

Configure the key information that is referenced by the key information references in the encryption

information panel.

This task provides the steps that are needed for configuring encryption information for the request

generator (client side) and the response generator (server side) bindings at the application level. This

encryption information is used to specify how the generators (senders) encrypt outgoing messages.

Complete the following steps to configure the encryption information for the request generator or response

generator section of the bindings file on the application level:

1. Locate the encryption information configuration panel in the administrative console.

a. Click Applications > Enterprise applications > application_name.

b. Under Manage modules, click URI_name.

c. Under Web Services Security Properties, you can access the key information for the request

generator and response generator bindings.

1152 Securing applications and their environment

v For the request generator (sender) binding, click Web services: Client security bindings.

Under Request generator (sender) binding, click Edit custom.

v For the response generator (sender) binding, click Web services: Server security bindings.

Under Response generator (sender) binding, click Edit custom.

d. Under Required properties, click Encryption information.

e. Click New to create an encryption information configuration. Click Delete to delete an existing

configuration or click the name of an existing encryption information configuration to edit its

settings. If you are creating a new configuration, enter a name in the Encryption information name

field. For example, you might specify gen_encinfo.

2. Select a data encryption algorithm from the Data encryption algorithm field. The selection specifies the

algorithm that is used to encrypt parts of the message. WebSphere Application Server supports the

following pre-configured algorithms:

v http://www.w3.org/2001/04/xmlenc#tripledes-cbc

v http://www.w3.org/2001/04/xmlenc#aes128-cbc

v http://www.w3.org/2001/04/xmlenc#aes256-cbc

To use this algorithm, you must download the unrestricted Java Cryptography Extension (JCE)

policy file from the following Web site: http://www.ibm.com/developerworks/java/jdk/security/
index.html.

v http://www.w3.org/2001/04/xmlenc#aes192-cbc

To use this algorithm, you must download the unrestricted Java Cryptography Extension (JCE)

policy file from the following Web site: http://www.ibm.com/developerworks/java/jdk/security/
index.html.

Do not use the 192-bit key encryption algorithm if you want your configured application to be in

compliance with the Basic Security Profile (BSP).

The data encryption algorithm that you select for the generator side must match the data encryption

method that you select for the consumer side.

3. Select a key encryption algorithm from the Key encryption algorithm field. This selection specifies the

algorithm that is used to encrypt keys. WebSphere Application Server supports the following

pre-configured algorithms:

v http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p.

When running with Software Development Kit (SDK) Version 1.4, the list of supported key transport

algorithms does not include this one. This algorithm appears in the list of supported key transport

algorithms when running with SDK Version 1.5.

Restriction: This algorithm is not supported when the WebSphere Application Server is running in

Federal Information Processing Standard (FIPS) mode.

By default, the RSA-OAEP algorithm uses the SHA1 message digest algorithm to compute a

message digest as part of the encryption operation. Optionally, you can use the SHA256 or SHA512

message digest algorithm by specifying a key encryption algorithm property. For the property name,

you can specify com.ibm.wsspi.wssecurity.enc.rsaoaep.DigestMethod. The property value is one of

the following URIs of the digest method:

– http://www.w3.org/2001/04/xmlenc#sha256

– http://www.w3.org/2001/04/xmlenc#sha512

By default, the RSA-OAEP algorithm uses a null string for the optional encoding octet string for the

OAEPParams. You can provide an explicit encoding octet string by specifying a key encryption

algorithm property. For the property name, you can specify

com.ibm.wsspi.wssecurity.enc.rsaoaep.OAEPparams. The property value is the base 64-encoded

value of the octet string.

Chapter 14. Web services 1153

http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p

Important: You can set these digest method and OAEPParams properties on the generator side

only. On the consumer side, these properties are read from the incoming Simple Object

Access Protocol (SOAP) message.

v http://www.w3.org/2001/04/xmlenc#rsa-1_5

v http://www.w3.org/2001/04/xmlenc#kw-tripledes

v http://www.w3.org/2001/04/xmlenc#kw-aes128

v http://www.w3.org/2001/04/xmlenc#kw-aes256

To use this algorithm, you must download the unrestricted Java Cryptography Extension (JCE)

policy file from the following Web site: http://www.ibm.com/developerworks/java/jdk/security/
index.html.

v http://www.w3.org/2001/04/xmlenc#kw-aes192

To use this algorithm, you must download the unrestricted Java Cryptography Extension (JCE)

policy file from the following Web site: http://www.ibm.com/developerworks/java/jdk/security/
index.html.

Do not use the 192-bit key encryption algorithm if you want your configured application to be in

compliance with the Basic Security Profile (BSP).

The key encryption algorithm that you select for the generator side must match the key encryption

method that you select for the consumer side.

4. Select an encryption key information reference from the Encryption key information menu. This

selection is a reference to the encryption key that is used to encrypt parts of the message. To

configure the key information, see “Configuring the key information for the generator binding on the

application level” on page 1127.

5. Select a part reference from the Part reference field. This field specifies the name of the part reference

for the generator binding element in the deployment descriptor.

6. Click OK and then click Save to save the configuration.

The encryption information is configured for the generator binding at the application level.

You must specify a similar encryption information configuration for the consumer.

Encryption information collection

Use this page to specify the configuration for the encrypting and decrypting parameters. This configuration

is used to encrypt and decrypt parts of the message, including the body and user name token.

To view the administrative console panel for the encryption information on the server level, complete the

following steps:

1. Click Servers > Application servers > server_name.

2. Under Security, click Web services: Default bindings for Web services security.

3. Under either Default generator bindings or Default consumer bindings, click Encryption information.

To view this administrative console page for the collection certificate store on the application level,

complete the following steps:

1. Click Applications > Enterprise applications > application_name.

2. Click Manage modules > URI_name.

3. Under Web Services Security Properties, you can access encryption information for the following

bindings:

v For the Request generator, click Web services: Client security bindings. Under Request

generator (sender) binding, click Edit custom. Under Required properties, click Encryption

information.

1154 Securing applications and their environment

http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html

v For the Request consumer, click Web services: Server security bindings. Under Request

consumer (receiver) binding, click Edit custom. Under Required properties, click Encryption

information.

v For the Response generator, click Web services: Server security bindings. Under Response

generator (sender) binding, click Edit custom. Under Required properties, click Encryption

information.

v For the Response consumer, click Web services: Client security bindings. Under Response

consumer (receiver) binding, click Edit custom. Under Required properties, click Encryption

information.

4.

Version 5.x application

Under Additional properties, you can access encryption

information for the following bindings:

v For the Request receiver, click Web services: Server security bindings. Under Request receiver

binding, click Edit. Under Additional properties, click Encryption information.

v For the Response receiver, click Web services: Client security bindings. Under Response

receiver binding, click Edit. Under Additional properties, click Encryption information.

Encryption information name:

Specifies the name of the encryption information.

Key locator reference:

Specifies the name of the key locator configuration that retrieves the key for XML digital signature and

XML encryption.

Key encryption algorithm: Specifies the algorithm that is used to encrypt and decrypt keys.

Data encryption algorithm: Specifies the algorithm that is used to encrypt and decrypt data.

Encryption information configuration settings

Use this page to configure the encryption and decryption parameters. You can use these parameters to

encrypt and decrypt various parts of the message, including the body and user name token.

To view the administrative console panel for the encryption information on the server level, complete the

following steps:

1. Click Servers > Application servers > server_name.

2. Under Security, click Web services: Default bindings for Web services security.

3. Under either Default generator bindings or Default consumer bindings, click Encryption information.

4. Click New to create a new encryption configuration or click the name of an existing encryption

configuration.

To view this administrative console page for the collection certificate store on the application level,

complete the following steps:

1. Click Applications > Enterprise applications > application_name.

2. Under Modules, click Module update > module_name.

3. Under Web Services Security Properties, you can access encryption information for the following

bindings:

v For the Request generator, click Web services: Client security bindings. Under Request

generator (sender) binding, click Edit custom. Under Required properties, click Encryption

information.

Chapter 14. Web services 1155

v For the Request consumer, click Web services: Server security bindings. Under Request

consumer (receiver) binding, click Edit custom. Under Required properties, click Encryption

information.

v For the Response generator, click Web services: Server security bindings. Under Response

generator (sender) binding, click Edit custom. Under Required properties, click Encryption

information.

v For the Response consumer, click Web services: Client security bindings. Under Response

consumer (receiver) binding, click Edit custom. Under Required properties, click Encryption

information.

4.

Version 5.x application

Under Additional properties, you can access encryption

information for the following bindings:

v For the Request receiver, click Web services: Server security bindings. Under Request receiver

binding, click Edit. Under Additional properties, click Encryption information.

v For the Response receiver, click Web services: Client security bindings. Under Response

receiver binding, click Edit. Under Additional properties, click Encryption information.

5. Click either New to create a new encryption configuration or click the name of an existing encryption

configuration.

Encryption information name:

Specifies the name for the encryption information.

 Data type String

Data encryption algorithm:

Specifies the algorithm Uniform Resource Identifier (URI) of the data encryption method.

 The following algorithms are supported:

v http://www.w3.org/2001/04/xmlenc#tripledes-cbc

v http://www.w3.org/2001/04/xmlenc#aes128-cbc

v http://www.w3.org/2001/04/xmlenc#aes256-cbc. To use this algorithm, you must download the

unrestricted Java Cryptography Extension (JCE) policy file from the following Web site:

http://www.ibm.com/developerworks/java/jdk/security/index.html. For more information, see “Encryption

information configuration settings” on page 1161.

v http://www.w3.org/2001/04/xmlenc#aes192-cbc. To use this algorithm, you must download the

unrestricted Java Cryptography Extension (JCE) policy file from the following Web site:

http://www.ibm.com/developerworks/java/jdk/security/index.html. For more information, see “Encryption

information configuration settings” on page 1161.

Do not use the 192-bit data encryption algorithm if you want your configured application to be in

compliance with the Basic Security Profile (BSP).

By default, the Java Cryptography Extension (JCE) is shipped with restricted or limited strength ciphers. To

use 192-bit and 256- bit Advanced Encryption Standard (AES) encryption algorithms, you must apply

unlimited jurisdiction policy files. For more information, see the Key encryption algorithm field description.

Key locator reference:

Specifies the name of the key locator configuration that retrieves the key for XML digital signature and

XML encryption.

 The Key locator reference field is displayed for the request receiver and response receiver bindings, which

are used by Version 5.x applications.

1156 Securing applications and their environment

http://www.w3.org/2001/04/xmlenc#tripledes-cbc
http://www.w3.org/2001/04/xmlenc#aes128-cbc
http://www.w3.org/2001/04/xmlenc#aes256-cbc
http://www.w3.org/2001/04/xmlenc#aes192-cbc

You can configure these key locator reference options on the server level and the application level. The

configurations that are listed in the field are a combination of the configurations on these two levels.

You can specify an encryption key configuration for the following bindings on the following levels:

 Binding name Cell level, server level, or

application level

Path

Default generator binding Server level 1. Click Servers > Application servers >

server_name.

2. Under Security, click Web services: Default

bindings for Web services security.

3. Under Additional properties, click Key

locators.

Default consumer binding Server level 1. Click Servers > Application servers >

server_name.

2. Under Security, click Web services: Default

bindings for Web services security.

3. Under Additional properties, click Key

locators.

Request sender Application level 1. Click Applications > Enterprise

applications > application_name.

2. Click Manage modules > URI_name.

3. Click Web services: Client security

bindings. Under Request sender binding,

click Edit.

4. Under Additional properties, click Key

locators.

Request receiver Application level 1. Click Applications > Enterprise

applications > application_name.

2. Click Manage modules > URI_name.

3. Click Web services: Server security

bindings. Under Request receiver binding,

click Edit.

4. Under Additional properties, click Key

locators.

Response sender Application level 1. Click Applications > Enterprise

applications > application_name.

2. Click Manage modules > URI_name.

3. Click Web services: Server security

bindings. Under Response sender binding,

click Edit.

4. Under Additional properties, click Key

locators.

Response receiver Application level 1. Click Applications > Enterprise

applications > application_name.

2. Click Manage modules > URI_name.

3. Click Web services: Client security

bindings. Under Response receiver binding,

click Edit.

4. Under Additional properties, click Key

locators.

Chapter 14. Web services 1157

Key encryption algorithm:

Specifies the algorithm Uniform Resource Identifier (URI) of the key encryption method.

 The following algorithms are provided by the application server:

v http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p.

When running with Software Development Kit (SDK) Version 1.4, the list of supported key transport

algorithms does not include this one. This algorithm appears in the list of supported key transport

algorithms when running with Software Development Kit (SDK) Version 1.5 or later.

By default, the RSA-OAEP algorithm uses the SHA1 message digest algorithm to compute a message

digest as part of the encryption operation. Optionally, you can use the SHA256 or SHA512 message

digest algorithm by specifying a key encryption algorithm property. The property name is:

com.ibm.wsspi.wssecurity.enc.rsaoaep.DigestMethod. The property value is one of the following URIs

of the digest method:

– http://www.w3.org/2001/04/xmlenc#sha256

– http://www.w3.org/2001/04/xmlenc#sha512

By default, the RSA-OAEP algorithm uses a null string for the optional encoding octet string for the

OAEPParams. You can provide an explicit encoding octet string by specifying a key encryption

algorithm property. For the property name, you can specify

com.ibm.wsspi.wssecurity.enc.rsaoaep.OAEPparams. The property value is the base 64-encoded value

of the octet string.

Important: You can set these digest method and OAEPParams properties on the generator side only.

On the consumer side, these properties are read from the incoming Simple Object Access

Protocol (SOAP) message.

v http://www.w3.org/2001/04/xmlenc#rsa-1_5

v http://www.w3.org/2001/04/xmlenc#kw-tripledes

v http://www.w3.org/2001/04/xmlenc#kw-aes128

v http://www.w3.org/2001/04/xmlenc#kw-aes192

Do not use the 192-bit data encryption algorithm if you want your configured application to be in

compliance with the Basic Security Profile (BSP).

v http://www.w3.org/2001/04/xmlenc#kw-aes256

By default, the Java Cryptography Extension (JCE) ships with restricted or limited strength ciphers. To use

192-bit and 256- bit Advanced Encryption Standard (AES) encryption algorithms, you must apply unlimited

jurisdiction policy files. Before downloading these policy files, back up the existing policy files

(local_policy.jar and US_export_policy.jar in the WAS_HOME/jre/lib/security/ directory) prior to

overwriting them in case you want to restore the original files later. To download the policy files, complete

one of the following sets of steps:

v For application server platforms using IBM Developer Kit, Java Technology Edition Version 1.4.2,

including the AIX, Linux, and Windows platforms, complete the following steps to obtain unlimited

jurisdiction policy files:

1. Go to the following Web site: http://www.ibm.com/developerworks/java/jdk/security/index.html

2. Click Java 1.4.2

3. Click IBM SDK Policy files.

The Unrestricted JCE Policy files for SDK 1.4 Web site is displayed.

4. Enter your user ID and password or register with IBM to download the policy files. The policy files

are downloaded onto your machine.

v For application server platforms using the Sun-based Java Development Kit (JDK) Version 1.4.2,

including the Solaris environments and the HP-UX platform, complete the following steps to obtain

unlimited jurisdiction policy files:

1158 Securing applications and their environment

http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p
http://www.w3.org/2001/04/xmlenc#rsa-1_5
http://www.w3.org/2001/04/xmlenc#kw-tripledes
http://www.w3.org/2001/04/xmlenc#kw-aes128
http://www.w3.org/2001/04/xmlenc#kw-aes192
http://www.w3.org/2001/04/xmlenc#kw-aes256
http://www.ibm.com/developerworks/java/jdk/security/index.html

1. Go to the following Web site: http://java.sun.com/j2se/1.4.2/download.html

2. Click Archive area.

3. Locate the Java Cryptography Extension (JCE) Unlimited Strength Jurisdiction Policy Files 1.4.2

information and click Download. The policy file is downloaded onto your machine.

After following either of these sets of steps, two Java archive (JAR) files are placed in the Java virtual

machine (JVM) jre/lib/security/ directory.

By default, the Java Cryptography Extension (JCE) ships with restricted or limited strength ciphers. To use

192-bit and 256- bit Advanced Encryption Standard (AES) encryption algorithms, you must apply unlimited

jurisdiction policy files. Before downloading these policy files, back up the existing policy files

(local_policy.jar and US_export_policy.jar in the WAS_HOME/jre/lib/security/ directory) prior to

overwriting them in case you want to restore the original files later. To download the policy files, complete

one of the following sets of steps:

v For application server platforms using IBM Developer Kit, Java Technology Edition Version 5, including

the AIX, Linux, and Windows platforms, you can obtain unlimited jurisdiction policy files by completing

the following steps:

1. Go to the following Web site: http://www.ibm.com/developerworks/java/jdk/security/index.html

2. Click Java 5

3. Click IBM SDK Policy files.

The Unrestricted JCE Policy files for SDK 5 Web site is displayed.

4. Enter your user ID and password or register with IBM to download the policy files. The policy files

are downloaded onto your machine.

v For application server platforms using the Sun-based Java Development Kit (JDK) Version 5, including

the Solaris environments and the HP-UX platform, you can obtain unlimited jurisdiction policy files by

completing the following steps:

1. Go to the following Web site: http://java.sun.com/j2se/1.5.0/download.jsp

2. Click Archive area.

3. Locate the Java Cryptography Extension (JCE) Unlimited Strength Jurisdiction Policy Files 1.5.1

information and click Download. The policy file is downloaded onto your machine.

After following either of these sets of steps, two Java archive (JAR) files are placed in the Java virtual

machine (JVM) jre/lib/security/ directory.

To specify custom algorithms on the server level, complete the following steps:

1. Click Servers > Application servers > server_name.

2. Under Security, click Web services: Default bindings for Web services security.

3. Under Additional properties, click Algorithm mappings.

4. Click New to specify a new algorithm mapping or click the name of an existing configuration to modify

its settings.

5. Under Additional properties, click Algorithm URI.

6. Click New to create a new algorithm URI. You must specify Key encryption in the Algorithm type

field to have the configuration display in the Key encryption algorithm field on the Encryption

information configuration settings panel.

Encryption key information:

Specifies the name of the key information reference that is used for encryption. This reference is resolved

to the actual key by the specified key locator and defined in the key information.

Chapter 14. Web services 1159

http://java.sun.com/j2se/1.4.2/download.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://java.sun.com/j2se/1.5.0/download.jsp

Version 6 and later applications You must specify either one or no encryption key

configurations for the request generator and response generator bindings.

Version 6 and later applications

For the response consumer and the request consumer

bindings, you can configure multiple encryption key references. To create a new encryption key reference,

under Additional properties, click Key information references.

You can specify an encryption key configuration for the following bindings on the following levels:

 Binding name Cell level, server level, or

application level

Path

Default generator binding Server level 1. Click Servers > Application servers >

server_name.

2. Under Security, click Web services: Default

bindings for Web services security.

3. Under Default generator binding, click Key

information.

Default consumer binding Server level 1. Click Servers > Application servers >

server_name.

2. Under Security, click Web services: Default

bindings for Web services security.

3. Under Default consumer binding, click Key

information.

Request generator (sender)

binding

Application level 1. Click Applications > Enterprise

applications > application_name.

2. Click Manage modules > URI_name.

3. Under Web Services Security Properties,

click Web services: Client security

bindings.

4. Under Request generator (sender) binding,

click Edit custom.

5. Under Required properties, click Key

information.

Response generator (sender)

binding

Application level 1. Click Applications > Enterprise

applications > application_name.

2. Click Manage modules > URI_name.

3. Under Web Services Security Properties,

click Web services: Server security

bindings.

4. Under Response generator (sender) binding,

click Edit custom.

5. Under Required properties, click Key

information.

Part Reference:

Specifies the name of the <confidentiality> element for the generator binding or the

<requiredConfidentiality> element for the consumer binding element in the deployment descriptor.

 This field is available on the application level only.

1160 Securing applications and their environment

Encryption information configuration settings

Use this page to configure the encryption and decryption parameters.

The specifications that are listed on this page for the signature method, digest method, and

canonicalization method are located in the World Wide Web Consortium (W3C) document entitled, XML

Encryption Syntax and Processing: W3C Recommendation 10 Dec 2002.

To view this administrative console page, complete the following steps:

1. Click Applications > Enterprise Applications > application_name and complete one of the following

steps:

v Click Manage modules > URI_file_name > Web Services: Client Security Bindings. Under

Request sender binding, click Edit. Under Web Service Security Properties, click Encryption

Information.

v Click Manage modules > URI_file_name > Web Services: Server Security Bindings. Under

Response sender binding, click Edit. Under Web Service Security Properties, click Encryption

Information.

2. Select None or Dedicated encryption information. The application server can have either one or no

encryption configurations for the request sender and the response sender bindings. If you are not

using encryption, select None. To configure encryption for either of these two bindings, select

Dedicated encryption information and specify the configuration settings using the fields that are

described in this topic.

Encryption information name:

Specifies the name of the key locator configuration that retrieves the key for XML digital signature and

XML encryption.

Key locator reference:

Specifies the name that is used to reference the key locator.

 You can configure these key locator reference options on the server level and the application level. The

configurations that are listed in the field are a combination of the configurations on these two levels.

To configure the key locators on the server level, complete the following steps:

1. Click Servers > Application servers > server_name.

2. Under Security, click Web services: Default bindings for Web services security.

3. Under Additional properties, click Key locators.

To configure the key locators on the application level, complete the following steps:

1. Click Applications > Enterprise applications > application_name.

2. Click Manage modules > URI_name.

3. Under Web Service Security Properties, you can access the key locators for the following bindings:

v For the Request sender, click Web services: Client security bindings. Under Request sender

binding, click Edit. Under Additional properties, click Key locators.

v For the Request receiver, click Web services: Server security bindings. Under Request receiver

binding, click Edit. Under Additional properties, click Key locators.

v For the Response sender, click Web services: Server security bindings. Under Response sender

binding, click Edit. Under Additional properties, click Key locators.

v For the Response receiver, click Web services: Client security bindings. Under Response

receiver binding, click Edit. Under Additional properties, click Key locators.

Encryption key name:

Chapter 14. Web services 1161

Specifies the name of the encryption key that is resolved to the actual key by the specified key locator.

 Data type String

Key encryption algorithm:

Specifies the algorithm uniform resource identifier (URI) of the key encryption method.

 The following algorithms are supported:

v http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p.

When running with Software Development Kit (SDK) Version 1.4, the list of supported key transport

algorithms does not include this one. This algorithm appears in the list of supported key transport

algorithms when running with JDK 1.5 or later.

By default, the RSA-OAEP algorithm uses the SHA1 message digest algorithm to compute a message

digest as part of the encryption operation. Optionally, you can use the SHA256 or SHA512 message

digest algorithm by specifying a key encryption algorithm property. The property name is:

com.ibm.wsspi.wssecurity.enc.rsaoaep.DigestMethod. The property value is one of the following URIs

of the digest method:

– http://www.w3.org/2001/04/xmlenc#sha256

– http://www.w3.org/2001/04/xmlenc#sha512

By default, the RSA-OAEP algorithm uses a null string for the optional encoding octet string for the

OAEPParams. You can provide an explicit encoding octet string by specifying a key encryption

algorithm property. For the property name, you can specify

com.ibm.wsspi.wssecurity.enc.rsaoaep.OAEPparams. The property value is the base 64-encoded value

of the octet string.

Important: You can set these digest method and OAEPParams properties on the generator side only.

On the consumer side, these properties are read from the incoming Simple Object Access

Protocol (SOAP) message.

v http://www.w3.org/2001/04/xmlenc#rsa-1_5.

v http://www.w3.org/2001/04/xmlenc#kw-tripledes.

v http://www.w3.org/2001/04/xmlenc#kw-aes128.

v http://www.w3.org/2001/04/xmlenc#kw-aes192.

To use this algorithm, you must download the unrestricted Java Cryptography Extension (JCE) policy

file.

Do not use the 192-bit key encryption algorithm if you want your configured application to be in

compliance with the Basic Security Profile (BSP).

v http://www.w3.org/2001/04/xmlenc#kw-aes256.

To use this algorithm, you must download the unrestricted Java Cryptography Extension (JCE) policy

file.

By default, the Java Cryptography Extension (JCE) is shipped with restricted or limited strength ciphers. To

use 192-bit and 256- bit Advanced Encryption Standard (AES) encryption algorithms, you must apply

unlimited jurisdiction policy files. Before downloading these policy files, back up the existing policy files

(local_policy.jar and US_export_policy.jar in the WAS_HOME/jre/lib/security/ directory) prior to

overwriting them in case you want to restore the original files later. To download the policy files, complete

one of the following sets of steps:

v For application server platforms using IBM Developer Kit, Java Technology Edition Version 1.4.2,

including the AIX, Linux, and Windows platforms, complete the following steps to obtain unlimited

jurisdiction policy files:

1. Go to the following Web site: http://www.ibm.com/developerworks/java/jdk/security/index.html

2. Click Java 1.4.2

3. Click IBM SDK Policy files.

1162 Securing applications and their environment

http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p
http://www.w3.org/2001/04/xmlenc#rsa-1_5
http://www.w3.org/2001/04/xmlenc#kw-tripledes
http://www.w3.org/2001/04/xmlenc#kw-aes128
http://www.w3.org/2001/04/xmlenc#kw-aes192
http://www.w3.org/2001/04/xmlenc#kw-aes256
http://www.ibm.com/developerworks/java/jdk/security/index.html

The Unrestricted JCE Policy files for SDK 1.4 Web site is displayed.

4. Enter your user ID and password or register with IBM to download the policy files. The policy files

are downloaded onto your machine.

v For application server platforms using the Sun-based Java Development Kit (JDK) Version 1.4.2,

including the Solaris environments and the HP-UX platform, complete the following steps to obtain

unlimited jurisdiction policy files:

1. Go to the following Web site: http://java.sun.com/j2se/1.4.2/download.html

2. Click Archive area.

3. Locate the Java Cryptography Extension (JCE) Unlimited Strength Jurisdiction Policy Files 1.4.2

information and click Download. The jce_policy-1_4_1.zip file is downloaded onto your machine.

After following either of these sets of steps, two Java archive (JAR) files are placed in the Java virtual

machine (JVM) jre/lib/security/ directory.

Data encryption algorithm:

Specifies the algorithm Uniform Resource Identifiers (URI) of the data encryption method.

 The following algorithms are supported:

v http://www.w3.org/2001/04/xmlenc#tripledes-cbc

v http://www.w3.org/2001/04/xmlenc#aes128-cbc

v http://www.w3.org/2001/04/xmlenc#aes192-cbc

Do not use the 192-bit data encryption algorithm if you want your configured application to be in

compliance with the Basic Security Profile (BSP).

v http://www.w3.org/2001/04/xmlenc#aes256-cbc

By default, the JCE ships with restricted or limited strength ciphers. To use 192-bit and 256- bit AES

encryption algorithms, you must apply unlimited jurisdiction policy files. For more information, see the Key

encryption algorithm field description.

Configuring trust anchors for the consumer binding on the application

level

You can configure trust anchors for the consumer binding at the application level.

This article does not describe how to configure trust anchors at the server or cell level. Trust anchors that

are defined at the application level have a higher precedence over trust anchors that are defined at the

server or cell level. For more information on creating and configuring trust anchors on the server or cell

level, see “Configuring trust anchors on the server or cell level” on page 1190.

You can configure a trust anchor for the trust anchor using an assembly tool or the administrative console.

This article describes how to configure the application-level trust anchor using the administrative console.

A trust anchor specifies key stores that contain trusted root Certificate Authority (CA) certificates, which

validate the signer certificate. These keystores are used by the request consumer (as defined in the

ibm-webservices-bnd.xmi file) and the response consumer (as defined in the ibm-webservicesclient-
bnd.xmi file when a Web service is acting as a client) to validate the X.509 certificate in the SOAP

message. The keystores are critical to the integrity of the digital signature validation. If the keystores are

tampered with, the result of the digital signature verification is doubtful and comprised. Therefore, it is

recommended that you secure these keystores. The binding configuration specified for the request

consumer in the ibm-webservices-bnd.xmi file must match the binding configuration for the response

consumer in the ibm-webservicesclient-bnd.xmi file. The trust anchor configuration for the request

Chapter 14. Web services 1163

http://java.sun.com/j2se/1.4.2/download.html
http://www.w3.org/2001/04/xmlenc#tripledes-cbc
http://www.w3.org/2001/04/xmlenc#aes128-cbc
http://www.w3.org/2001/04/xmlenc#aes192-cbc
http://www.w3.org/2001/04/xmlenc#aes256-cbc

consumer on the server side must match the request generator configuration on the client side. Also, the

trust anchor configuration for the response consumer on the client side must match the response

generator configuration on the server side.

Complete the following steps to configure trust anchors for the consumer binding on the application level:

1. Locate the trust anchor panel in the administrative console.

a. Click Applications > Enterprise applications > application_name.

b. Under Manage modules, click URI_name.

c. Under Web Services Security Properties you can access the trust anchor configuration for the

following bindings:

v For the request consumer (receiver) binding, click Web services: Server security bindings.

Under Request consumer (receiver) binding, click Edit custom.

v For the response consumer (receiver) binding, click Web services: Client security bindings.

Under Response consumer (receiver) binding, click Edit custom.

d. Under Additional properties, click Trust anchors.

e. Click New to create a trust anchor configuration. Select the box next to a configuration and click

Delete to delete an existing configuration or click the name of an existing trust anchor configuration

to edit its settings. If you are creating a new configuration, enter a unique name in the Trust anchor

name field.

2. Specify the keystore password, the keystore location, and the keystore type. A trust anchor keystore

file contains the trusted root Certificate Authority (CA) certificates that are used for validating the X.509

certificate that is used in digital signature or XML encryption.

a. Specify a password in the Key store password field. This password is used to access the keystore

file.

b. Specify the location of the keystore file in the Key store path field.

c. Select a keystore type from the Key store type field. The Java Cryptography Extension (JCE) that

is used by IBM supports the following keystore types:

JKS Use this option if you are not using Java Cryptography Extensions (JCE) and if your

keystore file uses the Java Keystore (JKS) format.

JCEKS

Use this option if you are using Java Cryptography Extensions.

JCERACFKS

Use JCERACFKS if the certificates are stored in a SAF key ring (z/OS only).

PKCS11KS (PKCS11)

Use this format if your keystore file uses the PKCS#11 file format. Keystore files that use

this format might contain RSA keys on cryptographic hardware or might encrypt keys that

use cryptographic hardware to ensure protection.

PKCS12KS (PKCS12)

Use this option if your keystore file uses the PKCS#12 file format.

WebSphere Application Server provides some sample keystore files in the ${USER_INSTALL_ROOT}/
etc/ws-security/samples directory. For example, you might use the enc-receiver.jceks keystore

file for encryption keys. The password for this file is storepass and the type is JCEKS.

 Attention: Do not use these keystore files in a production environment. These samples are

provided for testing purposes only.

This task configures trust anchors for the consumer binding at the application level

You must specify a similar trust anchor information for the generator.

1164 Securing applications and their environment

Configuring the collection certificate store for the consumer binding

on the application level

A collection certificate store is a collection of non-root, certificate authority (CA) certificates and certificate

revocation lists (CRLs). This collection of CA certificates and CRLs is used to check for a valid signature in

a digitally signed Simple Object Access Protocol (SOAP) message. Complete the following steps to

configure a collection certificate for the consumer bindings on the application level:

 1. Locate the collection certificate store configuration panel in the administrative console.

a. Click Applications > Enterprise applications > application_name.

b. Under Manage modules, click module_name.

c. Under Web services security properties, you can access the collection certificate store information

for the response consumer and request consumer bindings.

v For the response consumer (receiver) binding, click Web services: Client security bindings.

Under Response consumer (receiver) binding, click Edit custom.

v For the request consumer (receiver) binding, click Web services: Server security bindings.

Under Response consumer (receiver) binding, click Edit custom.

d. Under Additional properties, click Collection certificate store.

 2. Click New to create a collection certificate store configuration, click Delete to delete an existing

configuration, or click the name of an existing collection certificate store configuration to edit its

settings. If you are creating a new configuration, enter a name in the Certificate store name field.

The name of the collection certificate store must be unique to the level of the application server. For

example, if you create the collection certificate store for the application level, the store name must be

unique to the application level. The name that is specified in the Certificate store name field is used

by other configurations to refer to a predefined collection certificate store. WebSphere Application

Server searches for the collection certificate store based on proximity.

For example, if an application binding refers to a collection certificate store named cert1, the

Application Server searches for cert1 at the application level before searching the server level.

 3. Specify a certificate store provider in the Certificate store provider field. WebSphere Application

Server supports the IBMCertPath certificate store provider. To use another certificate store provider,

you must define the provider implementation in the provider list within the install_dir/java/jre/lib/
security/java.security file. However, make sure that your provider supports the same requirements

of the certificate path algorithm as WebSphere Application Server.

 4. Click OK and Save to save the configuration.

 5. Click the name of your certificate store configuration. After you specify the certificate store provider,

you must specify either the location of a certificate revocation list or the X.509 certificates. However,

you can specify both a certificate revocation list and the X.509 certificates for your certificate store

configuration.

 6. Under Additional properties, click Certificate revocation lists.

 7. Click New to specify a certificate revocation list path, click Delete to delete an existing list reference,

or click the name of an existing reference to edit the path. You must specify the fully qualified path to

the location where WebSphere Application Server can find your list of certificates that are not valid.

For portability reasons, it is recommended that you use the WebSphere Application Server variables

to specify a relative path to the certificate revocation lists (CRL). This recommendation is especially

important when you are working in a WebSphere Application Server Network Deployment

environment. For example, you might use the USER_INSTALL_ROOT variable to define a path such

as $USER_INSTALL_ROOT/mycertstore/mycrl1. For a list of supported variables, click Environment

> WebSphere variables in the administrative console. The following list provides recommendation for

using certificate revocation lists:

v If CRLs are added to the collection certificate store, add the CRLs for the root certificate authority

and each intermediate certificate, if applicable. When the CRL is in the certificate collection store,

the certificate revocation status for every certificate in the chain is checked against the CRL of the

issuer.

Chapter 14. Web services 1165

v When the CRL file is updated, the new CRL does not take effect until you restart the Web service

application.

v Before a CRL expires, you must load a new CRL into the certificate collection store to replace the

old CRL. An expired CRL in the collection certificate store results in a certificate path (CertPath)

build failure.

 8. Click OK and Save to save the configuration.

 9. Return to the Collection certificate store configuration panel. See the first few steps of this article to

locate the collection certificate store panel.

10. Under Additional properties, click X.509 certificates.

11. Click New to create a new configuration for X.509 certificates, click Delete to delete an existing

configuration, or click the name of an existing X.509 certificate configuration to edit its settings. If you

are creating a new configuration, enter a name in the Certificate store name field.

12. Specify a path in the X.509 certificate path field. This entry is the absolute path to the location of the

X.509 certificates. The collection certificate store is used to validate the certificate path of incoming

X.509-formatted security tokens.

You can use the USER_INSTALL_ROOT variable as part of the path name. For example, you might

type: USER_INSTALL_ROOT/etc/ws-security/samples/intca2.cer. Do not use this certificate path for

production use. You must obtain your own X.509 certificate from a certificate authority before putting

your WebSphere Application Server environment into production.

Click Environment > WebSphere variables in the administrative console to configure the

USER_INSTALL_ROOT variable.

13. Click OK and then Save to save your configuration.

You have configured the collection certificate store for the consumer binding.

You must configure a token consumer configuration that references this certificate store configuration.

Binary security token

The ValueType attribute identifies the type of the security token, for example, a Lightweight Third Party

Authentication (LTPA) token. The EncodingType type indicates how the security token is encoded, for

example, Base64Binary. The BinarySecurityToken element defines a security token that is binary encoded.

The encoding is specified using the EncodingType attribute. The value type and space are specified using

the ValueType attribute. The Web services security implementation for WebSphere Application Server,

Version 6 and later supports both LTPA and X.509 certificate binary security tokens.

A binary security token has the following attributes that are used for interpretation:

v Value type

v Encoding type

The following example depicts an LTPA binary security token in a Web services security message header:

<wsse:BinarySecurityToken xmlns:ns7902342339871340177=

 "http://www.ibm.com/websphere/appserver/tokentype/5.0.2"

 EncodingType="wsse:Base64Binary"

 ValueType="ns7902342339871340177:LTPA">

 MIZ6LGPt2CzXBQfio9wZTo1VotWov0NW3Za6lU5K7Li78DSnIK6iHj3hxXgrUn6p4wZI

 8Xg26havepvmSJ8XxiACMihTJuh1t3ufsrjbFQJOqh5VcRvI+AKEaNmnEgEV65jUYAC9

 C/iwBBWk5U/6DIk7LfXcTT0ZPAd+3D3nCS0f+6tnqMou8EG9mtMeTKccz/pJVTZjaRSo

 msu0sewsOKfl/WPsjW0bR/2g3NaVvBy18VlTFBpUbGFVGgzHRjBKAGo+ctkl80nlVLIk

 TUjt/XdYvEpOr6QoddGi4okjDGPyyoDxcvKZnReXww5UsoqlpfXwN4KG9as=

</wsse:BinarySecurityToken>

</wsse:Security>

</soapenv:Header>

1166 Securing applications and their environment

As shown in the example, the token is Base64Binary encoded.

Configuring token consumer on the application level

You can specify the token consumer on the application level. The token consumer information is used on

the consumer side to incorporate the security token.

Complete the following steps to configure the token consumer on the application level:

 1. Locate the token consumer panel in the administrative console.

a. Click Applications > Enterprise applications > application_name.

b. Under Manage modules, click URI_name.

c. Under Web Services Security Properties you can access the token consumer for the following

bindings:

v For the request consumer (receiver) binding, click Web services: Server security bindings.

Under Request consumer (receiver) binding, click Edit custom.

v For the response consumer (receiver) binding, click Web services: Client security bindings.

Under Response consumer (receiver) binding, click Edit custom.

d. Under Required properties, click Token consumer.

e. Click New to create a token consumer configuration, click Delete to delete an existing

configuration, or click the name of an existing token consumer configuration to edit its settings. If

you are creating a new configuration, enter a unique name in the Token consumer name field.

For example, you might specify con_signtgen.

 2. Specify a class name in the Token consumer class name field. The token consumer class must

implement the com.ibm.wsspi.wssecurity.token.TokenConsumerComponent interface. The token

consumer class name for the request consumer and the response consumer must be similar to the

token generator class name for the request generator and the response generator. For example, if

your application requires a user name token consumer, you can specify the

com.ibm.wsspi.wssecurity.token.UsernameTokenGenerator class name on the Token generator panel

for application level and the com.ibm.wsspi.wssecurity.token.UsernameTokenConsumer class name in

this field.

 3. Optional: Select a part reference in the Part reference field. The part reference indicates the name

of the security token that is defined in the deployment descriptor. For example, if you receive a

username token in your request message, you might want to reference the token in the username

token consumer.

Important: On the application level, if you do not specify a security token in your deployment

descriptor, the Part reference field is not displayed. If you define a security token called

user_tcon in your deployment descriptor, user_tcon is displayed as an option in the Part

reference field.

 4. Optional: In the certificate path section of the panel, select a certificate store type and indicate the

trust anchor and certificate store name, if necessary. These options and fields are necessary when

you specify com.ibm.wsspi.wssecurity.token.X509TokenConsumer as the token consumer class name.

The names of the trust anchor and the collection certificate store are created in the certificate path

under your token consumer. You can select one of the following options:

None If you select this option, the certificate path is not specified.

Trust any

If you select this option, any certificate is trusted. When the received token is consumed, the

Application Server does not validate the certificate path.

Dedicated signing information

If you select this option, you can select a trust anchor and a certificate store configuration.

When you select the trust anchor or the certificate store of a trusted certificate, you must

configure the trust anchor and the certificate store before setting the certificate path.

Chapter 14. Web services 1167

Trust anchor

A trust anchor specifies a list of key store configurations that contain trusted root

certificates. These configurations are used to validate the certificate path of incoming

X.509-formatted security tokens. Keystore objects within trust anchors contain trusted

root certificates that are used by the CertPath API to validate the trustworthiness of a

certificate chain. You must create the keystore file using the key tool utility, which is

located in the install_dir/java/jre/bin/keytool file.

 You can configure trust anchors for the application level by completing the following

steps:

a. Click Applications > Enterprise applications > application_name.

b. Under Related Items, click EJB Modules or Web Modules > URI_name.

c. Access the token consumer from the following bindings:

v For the request consumer (receiver) binding, click Web services: Server

security bindings. Under Request consumer (receiver) binding, click Edit

custom.

v For the response consumer (receiver) binding, click Web services: Client

security bindings. Under Response consumer (receiver) binding, click Edit

custom.

d. Under Additional properties, click Trust anchors.

Collection certificate store

A collection certificate store includes a list of untrusted, intermediary certificates and

certificate revocation lists (CRLs). The collection certificate store is used to validate

the certificate path of the incoming X.509-formatted security tokens. You can

configure the collection certificate store for the application level by completing the

following steps:

a. Click Applications > Enterprise applications > application_name.

b. Under Related Items, click EJB Modules or Web Modules > URI_name.

c. Access the token consumer from the following bindings:

v For the request consumer (receiver) binding, click Web services: Server

security bindings. Under Request consumer (receiver) binding, click Edit

custom.

v For the response consumer (receiver) binding, click Web services: Client

security bindings. Under Response consumer (receiver) binding, click Edit

custom.

d. Under Additional properties, click Collection certificate store.

 5. Optional: Specify a trusted ID evaluator. The trusted ID evaluator is used to determine whether to

trust the received ID. You can select one of the following options:

None If you select this option, the trusted ID evaluator is not specified.

Existing evaluator definition

If you select this option, you can select one of the configured trusted ID evaluators. For

example, you can select the SampleTrustedIDEvaluator, which is provided by WebSphere

Application Server as an example.

Binding evaluator definition

If you select this option, you can configure a new trusted ID evaluator by specifying a trusted

ID evaluator name and class name.

Trusted ID evaluator name

Specifies the name that is used by the application binding to refer to a trusted identity

(ID) evaluator that is defined in the default bindings.

1168 Securing applications and their environment

Trusted ID evaluator class name

Species the class name of the trusted ID evaluator. The specified trusted ID evaluator

class name must implement the com.ibm.wsspi.wssecurity.id.TrustedIDEvaluator

interface. The default TrustedIDEvaluator class is

com.ibm.wsspi.wssecurity.id.TrustedIDEvaluatorImpl. When you use this default

TrustedIDEvaluator class, you must specify the name and value properties for the

default trusted ID evaluator to create the trusted ID list for evaluation. To specify the

name and value properties, complete the following steps:

a. Under Additional properties, click Properties > New.

b. Specify the trusted ID evaluator name in the Property field. You must specify the

name in the form, trustedId_n where _n is an integer from 0 to n.

c. Specify the trusted ID in the Value field.

For example:

property name="trustedId_0", value="CN=Bob,O=ACME,C=US"

property name="trustedId_1, value="user1"

If the distinguished name (DN) is used, the space is removed for comparison. See

the programming model information in the documentation for an explanation of how to

implement the com.ibm.wsspi.wssecurity.id.TrustedIDEvaluator interface. For more

information, see “Default implementations of the Web services security service

provider programming interfaces” on page 985.

Note: Define the trusted ID evaluator on the server level instead of the application

level. To define the trusted ID evaluator on the server level, complete the

following steps:

a. Click Servers > Application servers > server_name.

b. Under Security, click Web services: Default bindings for Web services

security.

c. Under Additional properties, click Trusted ID evaluators.

d. Click New to define a new trusted ID evaluator.

The trusted ID evaluator configuration is available only for the token consumer on the server-side

application level.

 6. Optional: Select the Verify nonce option. This option indicates whether to verify a nonce in the user

name token if it is specified for the token consumer. Nonce is a unique, cryptographic number that is

embedded in a message to help stop repeat, unauthorized attacks of user name tokens. The Verify

nonce option is valid only when the incorporated token type is a user name token.

 7. Optional: Select the Verify timestamp option. This option indicates whether to verify a time stamp in

the user name token. The Verify nonce option is valid only when the incorporated token type is a

user name token.

 8. Specify the value type local name in the Local name field. This field specifies the local name of the

value type for the consumed token. For a user name token and an X.509 certificate security token,

WebSphere Application Server provides predefined local names for the value type.

 Table 48. Uniform Resource Identifier (URI) and Local name combinations

URI Local name Description

A namespace URI is not applicable. Specify http://docs.oasis-
open.org/wss/2004/01/oasis-
200401-wss-x509-token-profile-
1.0#X509v3 as the local name

value.

Specifies the name of an X.509

certificate token

Chapter 14. Web services 1169

Table 48. Uniform Resource Identifier (URI) and Local name combinations (continued)

URI Local name Description

A namespace URI is not applicable. Specify http://docs.oasis-
open.org/wss/2004/01/oasis-
200401-wss-x509-token-profile-
1.0#X509PKIPathv1 as the local

name value.

Specifies the name of the X.509

certificates in a PKI path

A namespace URI is not applicable. Specify http://docs.oasis-
open.org/wss/2004/01/oasis-
200401-wss-x509-token-profile-
1.0#PKCS7 as the local name

value.

Specifies a list of X509 certificates

and certificate revocation lists

(CRL) in a PKCS#7

Specify http://www.ibm.com/websphere/
appserver/tokentype/5.0.2 as the URI

value.

Specify LTPA as the local name

value.

Specifies a binary security token

that contains an embedded

Lightweight Third Party

Authentication (LTPA) token.

Specify http://www.ibm.com/websphere/
appserver/tokentype as the URI value.

Specify LTPA_PROPAGATION as the

local name value.

Specifies a binary security token

that contains an embedded

propagation token.

Specify the namespace URI value as

indicated by the provider.

Specify http://docs.oasis-
open.org/wss/2004/01/oasis-
200401-wss-username-token-
profile-1.0#UsernameToken as the

local name value.

Specifies the token type that is

configured to perform token

validation. This local name is used

to remap an incoming security

token to a different security token.

You can use this local name value

in a situation that is similar to the

following scenario:

A client sends a username token

to the server. The custom token

consumer on the server uses the

security token service to

authenticate the user name

information. The username token

is used to create a new token type

such as a Security Assertion

Markup Language (SAML) token.

You can use the identity from the

SAML token for authentication and

authorization verification in

WebSphere Application Server.

 9. Optional: Specify the value type URI in the URI field. This entry specifies the namespace URI of the

value type for the consumed token.

Remember: If you specify the token consumer for a username token or an X.509 certificate security

token, you do not need to specify a value type URI.

If you want to specify another token, you must specify both the local name and the URI. For example,

if you have an implementation of your own custom token, you can specify CustomToken in the Local

name field and http://www.ibm.com/custom

10. Click OK and Save to save the configuration.

11. Click the name of your token consumer configuration.

12. Under Additional properties, click JAAS configuration. The Java Authentication and Authorization

Service (JAAS) configuration specifies the name of the JAAS configuration that is defined in the JAAS

login panel. The JAAS configuration specifies how the token logs in on the consumer side.

1170 Securing applications and their environment

13. Select a JAAS configuration from the JAAS configuration name field. The field specifies the name

of the JAAS system of application login configuration. You can specify additional JAAS system and

application configurations by clicking Security > Secure administrative, applications, and

infrastructure. Under Authentication, click Java Authentication and Authorization Service and

click either Application logins > New or System logins > New. Do not remove the predefined

system or application login configurations. However, within these configurations, you can add module

class names and specify the order in which WebSphere Application Server loads each module.

WebSphere Application Server provides the following predefined JAAS configurations:

ClientContainer

This selection specifies the login configuration that is used by the client container

applications. The configuration uses the CallbackHandler application programming interface

(API) that is defined in the deployment descriptor for the client container. To modify this

configuration, see the JAAS configuration panel for application logins.

WSLogin

This selection specifies whether all of the applications can use the WSLogin configuration to

perform authentication for the security run time. To modify this configuration, see the JAAS

configuration panel for application logins.

DefaultPrincipalMapping

This selection specifies the login configuration that is used by Java 2 Connectors (J2C) to

map users to principals that are defined in the J2C authentication data entries. To modify this

configuration, see the JAAS configuration panel for application logins.

system.wssecurity.IDAssertion

This selection enables a Version 5.x application to use identity assertion to map a user name

to a WebSphere Application Server credential principal. To modify this configuration, see the

JAAS configuration panel for system logins.

system.wssecurity.Signature

This selection enables a Version 5.x application to map a distinguished name (DN) in a

signed certificate to a WebSphere Application Server credential principal. To modify this

configuration, see the JAAS configuration panel for system logins.

system.LTPA_WEB

This selection processes login requests that are used by the Web container such as servlets

and JavaServer Pages (JSPs) files. To modify this configuration, see the JAAS configuration

panel for system logins.

system.WEB_INBOUND

This selection handles login requests for Web applications, which include servlets and

JavaServer Pages (JSP) files. This login configuration is used by WebSphere Application

Server Version 5.1.1. To modify this configuration, see the JAAS configuration panel for

system logins.

system.RMI_INBOUND

This selection handles logins for inbound Remote Method Invocation (RMI) requests. This

login configuration is used by WebSphere Application Server Version 5.1.1. To modify this

configuration, see the JAAS configuration panel for system logins.

system.DEFAULT

This selection handles the logins for inbound requests that are made by internal

authentications and most of the other protocols except Web applications and RMI requests.

This login configuration is used by WebSphere Application Server Version 5.1.1. To modify

this configuration, see the JAAS configuration panel for system logins.

system.RMI_OUTBOUND

This selection processes RMI requests that are sent outbound to another server when the

com.ibm.CSIOutboundPropagationEnabled property is true. This property is set in the CSIv2

authentication panel.

Chapter 14. Web services 1171

To access the panel, click Security > Secure administrative, applications, and

infrastructure. Under Authentication, click RMI/IIOP security > CSIv2 Outbound

authentication. To set the com.ibm.CSIOutboundPropagationEnabled property, select

Security attribute propagation. To modify this JAAS login configuration, see the JAAS -

System logins panel.

system.wssecurity.X509BST

This selection verifies an X.509 binary security token (BST) by checking the validity of the

certificate and the certificate path. To modify this configuration, see the JAAS configuration

panel for system logins.

system.wssecurity.PKCS7

This selection verifies an X.509 certificate within a PKCS7 object that might include a

certificate chain, a certificate revocation list, or both. To modify this configuration, see the

JAAS configuration panel for system logins.

system.wssecurity.PkiPath

This section verifies an X.509 certificate with a public key infrastructure (PKI) path. To modify

this configuration, see the JAAS configuration panel for system logins.

system.wssecurity.UsernameToken

This selection verifies the basic authentication (user name and password) data. To modify this

configuration, see the JAAS configuration panel for system logins.

system.wssecurity.IDAssertionUsernameToken

This selection supports the use of identity assertion in Version 6.0.x applications to map a

user name to a WebSphere Application Server credential principal. To modify this

configuration, see the JAAS configuration panel for system logins.

system.WSS_INBOUND

This selection specifies the login configuration for inbound or consumer requests for security

token propagation using Web services security. To modify this configuration, see the JAAS

configuration panel for system logins.

system.WSS_OUTBOUND

This selection specifies the login configuration for outbound or generator requests for security

token propagation using Web services security. To modify this configuration, see the JAAS

configuration panel for system logins.

None With this selection, you do not specify a JAAS login configuration.

14. Click OK and then click Save to save the configuration.

You have configured the token consumer for the application level.

You must specify a similar token generator configuration for the application level.

Request consumer (receiver) binding configuration settings

Use this page to specify the binding configuration for the request consumer.

To view this administrative console page, complete the following steps:

1. Click Applications > Enterprise applications > application_name.

2. Click Manage modules.

3. Click the Uniform Resource Identifier (URI).

4. Under Web Services Security Properties, click Web services: Server security bindings.

5. Under Request consumer (receiver) binding, click Edit custom.

The security constraints or bindings are defined using the application assembly process before the

application is installed.

1172 Securing applications and their environment

This product provides assembly tools to assemble your application.

If the security constraints are defined in the application, you must either define the corresponding binding

information or select the Use defaults option on this panel and use the default binding information for the

cell or server level. The default binding that is provided by this product is a sample. Do not use this

sample in a production environment without modifying the configuration. The security constraints define

what is signed or encrypted in the Web services security message. The bindings define how to enforce the

requirements.

Digital signature security constraint (integrity)

The following table shows the required and optional binding information when the digital signature security

constraint (integrity) is defined in the deployment descriptor.

 Information type Required or optional

Signing information Required

Key information Required

Token consumer Required

Key locators Optional

Collection certificate store Optional

Trust anchors Optional

Properties Optional

You can use the key locators, collection certificate stores, and trust anchors that are defined at either the

server level or the cell level.

Encryption constraint (confidentiality)

The following table shows the required and optional binding information when the encryption constraint

(confidentiality) is defined in the deployment descriptor.

 Information type Required or optional

Encryption information Required

Key information Required

Token consumer Required

Key locators Optional

Collection certificate store Optional

Trust anchors Optional

Properties Optional

You can use the key locators, collection certificate store, and trust anchors that are defined at either the

server level or the cell level.

Security token constraint

The following table shows the required and optional binding information when the security token constraint

is defined in the deployment descriptor.

 Information type Required or optional

Token consumer Required

Collection certificate store Optional

Chapter 14. Web services 1173

Information type Required or optional

Trust anchors Optional

Properties Optional

You can use the collection certificate store and trust anchors that are defined at the server level or the cell

level.

Use defaults:

Select this option if you want to use the default binding information from the server or cell level.

 If you select this option, the application server checks for binding information on the server level.

Port:

Specifies the port in the Web service that is defined during application assembly.

Web service:

Specifies the name of the Web service that is defined during application assembly.

Response consumer (receiver) binding configuration settings

Use this page to specify the binding configuration for the response consumer.

To view this administrative console page, complete the following steps:

1. Click Applications > Enterprise applications > application_name.

2. Click Manage modules.

3. Click the Uniform Resource Identifier (URI).

4. Under Web Services Security Properties, click Web services: Client security bindings.

5. Under Response consumer (receiver) binding, click Edit custom.

The security constraints or bindings are defined using the application assembly process before the

application is installed.

This product provides assembly tools to assemble your application.

If the security constraints are defined in the application, you must either define the corresponding binding

information or select the Use defaults option on this panel and use the default binding information for the

server or cell level. The default binding that is provided by this product is a sample. Do not use this

sample in a production environment without modifying the configuration. The security constraints define

what is signed or encrypted in the Web services security message. The bindings define how to enforce the

requirements.

Digital signature security constraint (integrity)

The following table shows the required and optional binding information when the digital signature security

constraint (integrity) is defined in the deployment descriptor.

 Information type Required or optional

Signing information Required

Key information Required

Token consumer Optional

Key locators Optional

1174 Securing applications and their environment

Information type Required or optional

Collection certificate store Optional

Trust anchors Optional

Properties Optional

You can use the key locators, collection certificate stores, and trust anchors that are defined at either the

server level or the cell level.

Encryption constraint (confidentiality)

The following table shows the required and optional binding information when the encryption constraint

(confidentiality) is defined in the deployment descriptor.

 Information type Required or optional

Encryption information Required

Key information Required

Token consumer Optional

Key locators Optional

Collection certificate store Optional

Trust anchors Optional

Properties Optional

You can use the key locators, collection certificate store, and trust anchors that are defined at the

application level, server level, or the cell level.

Security token constraint

The following table shows the required and optional binding information when the security token constraint

is defined in the deployment descriptor.

 Information type Required or optional

Token consumer Required

Collection certificate store Optional

Trust anchors Optional

Properties Optional

You can use the collection certificate store and trust anchors that are defined at the application level,

server level, or the cell level.

Use defaults:

Select this option if you want to use the default binding information from the cell or server level.

 If you select this option, the application server checks for binding information on the server level

Component:

Specifies the enterprise bean in an assembled Enterprise JavaBeans (EJB) module.

Port:

Chapter 14. Web services 1175

Specifies the port in the Web service that is defined during application assembly.

Web service:

Specifies the name of the Web service that is defined during application assembly.

Configuring the key locator for the consumer binding on the

application level

The key locator information for the consumer at the application level specifies which key locator

implementation is used. The key locator implementation locates the key to be used to validate the digital

signature or the encryption information by the application.

Complete the following steps to configure the key locator for the consumer binding on the application level:

1. Locate the key locator configuration panel in the administrative console.

a. Click Applications > Enterprise applications > application_name.

b. Under Manage modules, click URI_name.

c. Under Web Services Security Properties, you can access the key information for the request

consumer and response consumer bindings.

v For the request consumer (receiver) binding, click Web services: Server security bindings.

Under Request consumer (receiver) binding, click Edit custom.

v For the response consumer (receiver) binding, click Web services: Client security bindings.

Under Response consumer (receiver) binding, click Edit custom.

d. Under Additional properties, click Key locators.

e. Click New to create a key locator configuration, click Delete and select the box next to the

configuration to delete an existing configuration, or click the name of an existing key locator

configuration to edit its settings. If you are creating a new configuration, enter a unique name in the

Key locator name field. For example, you might specify klocator.

2. Specify a name for the key locator class implementation. Key locators that are associated with Version

6.0.x applications must implement the com.ibm.wsspi.wssecurity.keyinfo.KeyLocator interface. Specify

a class name according to the requirements of the application. For example, if the application requires

that the key is read from a keystore file, specify the

com.ibm.wsspi.wssecurity.keyinfo.KeyStoreKeyLocator implementation. WebSphere Application Server

provides the following default key locator class implementations for Version 6.0.x applications that are

available to use with the request consumer or response consumer:

com.ibm.wsspi.wssecurity.keyinfo.KeyStoreKeyLocator

This implementation locates and obtains the key from the specified keystore file.

com.ibm.wsspi.wssecurity.keyinfo.X509TokenKeyLocator

This implementation uses the X.509 security token from the sender message for digital

signature validation and encryption. This class implementation is used by the request

consumer and the response consumer.

3. Specify the keystore password, the keystore location, and the keystore type. Keystore files contain

public and private keys, root certificate authority (CA) certificates, the intermediate CA certificate, and

so on. Keys that are retrieved from the keystore files are used to sign and validate or encrypt and

decrypt messages or message parts. If you specified the

com.ibm.wsspi.wssecurity.keyinfo.KeyStoreKeyLocator implementation for the key locator class

implementation, you must specify a keystore password, location, and type.

a. Specify a password in the keystore Password field. This password is used to access the keystore

file.

b. Specify the location of the keystore file in the keystore Path field.

c. Select a keystore type from the keystore Type field. The Java Cryptography Extension (JCE) that is

used by IBM supports the following keystore types:

1176 Securing applications and their environment

JKS Use this option if you are not using Java Cryptography Extensions (JCE) and if your

keystore file uses the Java Keystore (JKS) format.

JCEKS

Use this option if you are using Java Cryptography Extensions.

JCERACFKS

Use JCERACFKS if the certificates are stored in a SAF key ring (z/OS only).

PKCS11KS (PKCS11)

Use this format if your keystore file uses the PKCS#11 file format. Keystore files that use

this format might contain RSA keys on cryptographic hardware or might encrypt keys that

use cryptographic hardware to ensure protection.

PKCS12KS (PKCS12)

Use this option if your keystore uses the PKCS#12 file format.

WebSphere Application Server provides some sample keystore files in the ${USER_INSTALL_ROOT}/
etc/ws-security/samples directory. For example, you might use the enc-receiver.jceks keystore

file for encryption keys. The password for this file is Storepass and the type is JCEKS.

 Attention: Do not use these keystore files in a production environment. These samples are

provided for testing purposes only.

4. Click OK and Save to save the configuration.

5. Under Additional properties, click Keys.

6. Click New to create a key configuration, click Delete and select the box next to the configuration to

delete an existing configuration, or click the name of an existing key configuration to edit its settings.

This entry specifies the name of the key object within the keystore file. If you are creating a new

configuration, enter a unique name in the Key name field.

It is recommended that you use a fully qualified distinguished name for the key name. For example,

you might use CN=Bob,O=IBM,C=US.

7. Specify an alias in the Key alias field. The key alias is used by the key locator to search for key

objects in the keystore file.

8. Specify a password in the Key password field. The password is used to access the key object within

the keystore file.

9. Click OK and then click Save to save the configuration.

You have configured the key locator for the consumer binding at the application level.

You must specify a similar key information configuration for the generator.

Configuring the key information for the consumer binding on the

application level

Configure the key locators and the token consumers that are referenced by the Key locator reference and

the Token reference fields within the key information panel.

This task provides the steps that are needed for configuring the key information for the request consumer

(server side) and the response consumer (client side) bindings at the application level. The key information

on the consumer side is used for specifying the information about the key, which is used for validating the

digital signature in the received message or for decrypting the encrypted parts of the message. Complete

the following steps to configure the key information for consumer binding on the application level.

1. Locate the key information configuration panel in the administrative console.

a. Click Applications > Enterprise applications > application_name.

b. Under Manage modules, click URI_name.

c. Under Web Services Security Properties, you can access the key information for the request

consumer and response consumer bindings.

Chapter 14. Web services 1177

v For the request consumer (receiver) binding, click Web services: Server security bindings.

Under request consumer (receiver) binding, click Edit custom.

v For the response consumer (receiver) binding, click Web services: Client security bindings.

Under response consumer (receiver) binding, click Edit custom.

d. Under Required properties, click Key information.

e. Click New to create a key information configuration, click Delete and select the box next to the

configuration to delete an existing configuration, or click the name of an existing key information

configuration to edit its settings. If you are creating a new configuration, enter a name in the Key

information name field. For example, you might specify con_signkeyinfo.

2. Select a key information type from the Key information type field. The key information types specify

different mechanisms for referencing security tokens using the <wsse:SecurityTokenReference>

element within the <ds:KeyInfo> element. WebSphere Application Server supports the following key

information types:

Key identifier

The security token is referenced using an opaque value that uniquely identifies the token. The

algorithm that is used for generating the <KeyIdentifier> element value depends upon the

token type. For example, you can use the identifier for the public keys that are defined in the

Internet Engineering Task Force (IETF) Request for Comment (RFC) 3280. The following

<KeyInfo> element is generated in the Simple Object Access Protocol (SOAP) message for

this key information type:

<ds:KeyInfo xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

 <wsse:SecurityTokenReference>

 <wsse:KeyIdentifier ValueType="http://docs.oasis-open.org/wss/2004/01

 /oasis-200401-wss-x509-token-profile-1.0#X509v3SubjectKeyIdentifier">

 /62wXO...

 </wsse:KeyIdentifier>

 </wsse:SecurityTokenReference>

</ds:KeyInfo>

Key name

The security token is referenced using a name that matches an identity assertion within the

token. It is recommended that you do not use this key type as it might result in multiple

security tokens that match the specified name. The following <KeyInfo> element is generated

in the SOAP message for this key information type:

<ds:KeyInfo>

 <ds:KeyName>CN=Group1</ds:KeyName>

</ds:KeyInfo>

In general, use a key name when you use a Key-Hashing Message Authentication Code

(HMAC) digital signature algorithm, such as http://www.w3.org/2000/09/xmldsig#hmac-sha1.

Security token reference

The security token is directly referenced using Universal Resource Identifiers (URIs). The

following <KeyInfo> element is generated in the SOAP message for this key information type:

<ds:KeyInfo>

 <wsse:SecurityTokenReference>

 <wsse:Reference URI=’#SomeCert’

 ValueType="http://docs.oasis-open.org/wss/2004/01/

 oasis-200401-wss-x509-token-profile-1.0#X509v3" />

 </wsse:SecurityTokenReference>

</ds:KeyInfo>

Attention: As stated in the Web services Interoperability Organization (WS-I) Basic Security

Profile Version 1 draft and shown in the previous example, the wsse:Reference element in a

SECURE_ENVELOPE must have a ValueType attribute.

1178 Securing applications and their environment

http://www.ietf.org/rfc/rfc3280.txt
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0-2004-05-12.html
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0-2004-05-12.html

Embedded token

The security token is directly embedded within the <SecurityTokenReference> element. The

following <KeyInfo> element is generated in the SOAP message for this key information type:

<ds:KeyInfo>

 <wsse:SecurityTokenReference>

 <wsse:Embedded wsu:Id=”tok1” />

 ...

 </wsse:Embedded>

 </wsse:SecurityTokenReference>

</ds:KeyInfo>

X509 issuer name and issuer serial

The security token is referenced by an issuer name and an issuer serial number of an X.509

certificate. The following <KeyInfo> element is generated in the SOAP message for this key

information type:

<ds:KeyInfo>

 <wsse:SecurityTokenReference>

 <ds:X509Data>

 <ds:X509IssuerSerial>

 <ds:X509IssuerName>CN=Jones, O=IBM, C=US</ds:X509IssuerName>

 <ds:X509SerialNumber>1040152879</ds:X509SerialNumber>

 </ds:X509IssuerSerial>

 </ds:X509Data>

 </wsse:SecurityTokenReference>

</ds:KeyInfo>

Each type of key information is described in the Web Services Security: SOAP Message Security 1.0

(WS-Security 2004) OASIS standard, which is located at: http://www.oasis-open.org/home/index.php

under Web services security.

3. Select a key locator reference from the Key locator reference field. The value of this field is a

reference to a key locator that WebSphere Application Server uses to locate the keys that are used for

digital signature and encryption. Before you can select a key locator, you must configure a key locator.

For more information on configuring a key locator, see “Configuring the key locator for the consumer

binding on the application level” on page 1176.

4. Select a token reference from the Token reference field. The token reference specifies a reference to

a token consumer that is used for processing the security token in the message. However, WebSphere

Application Server requires this field only when you select Security token reference or Embedded

token in the Key information type field. Before specifying a token reference, you must configure a

token consumer. For more information on configuring a token consumer, see “Configuring token

consumer on the application level” on page 1167.

Select (none) if a token consumer is not required for this key information configuration.

5. Click OK and Save to save this configuration.

You have configured the key information for the generator binding at the application level

If you have not configured the key information for the generator binding. You must specify a similar key

information configuration for the generator. After you configure the key information for both the consumer

and the generator, configure the signing information or encryption information, which references the key

information that is specified in this key information task.

Configuring the signing information for the consumer binding on the

application level

You can configure the signing information for the server-side request consumer and the client-side

response consumer bindings at the application level.

Chapter 14. Web services 1179

http://www.oasis-open.org/home/index.php

In the server-side extensions file and the client-side deployment descriptor extensions file, you must

specify which parts of the message are signed. Also, you must configure the key information that is

referenced by the key information references on the signing information panel within the administrative

console.

WebSphere Application Server uses the signing information on the consumer side to verify the integrity of

the received SOAP message by validating that the message parts are signed. Complete the following

steps to configure the signing information for the server-side request consumer and client-side response

consumer sections of the bindings files on the application level:

 1. Access the administrative console.

To access the administrative console, enter http://localhost:port_number/ibm/console in your Web

browser unless you have changed the port number.

 2. Click Applications > Enterprise applications > application_name.

 3. Under Manage modules, click URI_name.

 4. Under Web Services Security Properties you can access the signing information for the request

generator and response generator bindings.

v To configure the request consumer signing information, click Web services: Server security

bindings. Under Request consumer (receiver) binding, click Edit custom.

v To configure the response consumer signing information, click Web services: Client security

bindings. Under Response consumer (receiver) binding, click Edit custom.

 5. Under Required properties, click Signing information.

 6. Click New to create a signing information configuration, click Delete to delete an existing

configuration, or click the name of an existing signing information configuration to edit its settings. If

you are creating a new configuration, enter a name in the Signing information name field.

 7. Select a signature method algorithm from the Signature method field. The signature method is the

algorithm that is used to convert the canonicalized <SignedInfo> element in the binding file into the

<SignatureValue> element. The algorithm that is specified for the consumer, which is either the

request consumer or the response consumer configuration, must match the algorithm specified for the

generator, which is either the request generator or response generator configuration. WebSphere

Application Server supports the following pre-configured algorithms:

v http://www.w3.org/2000/09/xmldsig#rsa-sha1

v http://www.w3.org/2000/09/xmldsig#hmac-sha1

v http://www.w3.org/2000/09/xmldsig#dsa-sha1

Do not use this algorithm if you want the configured application to be compliant with the Basic

Security Profile (BSP). Any ds:SignatureMethod/@Algorithm element in a signature based on a

symmetric key must have a value of http://www.w3.org/2000/09/xmldsig#rsa-sha1 or

http://www.w3.org/2000/09/xmldsig#hmac-sha1.

 8. Select a canonicalization method from the Canonicalization method field. The canonicalization method

algorithm is used to canonicalize the <SignedInfo> element before it is incorporated as part of the

digital signature operation. The canonicalization algorithm that you specify for the generator must

match the algorithm for the consumer. WebSphere Application Server supports the following

pre-configured algorithms:

v http://www.w3.org/2001/10/xml-exc-c14n#

v http://www.w3.org/2001/10/xml-exc-c14n#WithComments

v http://www.w3.org/TR/2001/REC-xml-c14n-20010315

v http://www.w3.org/TR/2001/REC-xml-c14n-20010315#WithComments

 9. Select a key information signature type from the Key information signature type field. The key

information signature type specifies how the <KeyInfo> element in the SOAP message is digitally

signed. WebSphere Application Server supports the following signature types:

None Specifies that the key is not signed.

1180 Securing applications and their environment

http://www.w3.org/2000/09/xmldsig#rsa-sha1
http://www.w3.org/2000/09/xmldsig#hmac-sha1
http://www.w3.org/2000/09/xmldsig#dsa-sha1
http://www.w3.org/2000/09/xmldsig#rsa-sha1
http://www.w3.org/2000/09/xmldsig#hmac-sha1
http://www.w3.org/2001/10/xml-exc-c14n#
http://www.w3.org/2001/10/xml-exc-c14n#WithComments
http://www.w3.org/TR/2001/REC-xml-c14n-20010315
http://www.w3.org/TR/2001/REC-xml-c14n-20010315#WithComments

Keyinfo

Specifies that the entire KeyInfo element is signed.

Keyinfochildelements

Specifies that the child elements of the KeyInfo element are signed.

If you do not specify one of the previous signature types, WebSphere Application Server uses

keyinfo, by default. The key information signature type for the consumer must match the signature

type for the generator.

10. Under Additional properties, click Key information references.

a. Click New to create a key information reference or click the name of an existing entry to edit its

configuration. The Key information references panel is displayed.

b. Enter a name in the Name field.

c. Select a key information reference in the Key information reference field. This reference is the key

information configuration name that specifies the key information that is used by this signing

information configuration.

11. Return to the Signing information panel. Under Additional properties, click Part references. On the

Part references panel, you can specify references to the message parts that are defined in the

deployment descriptor extensions file.

a. Click New to create a new Part reference or click the name of an existing part reference to edit its

configuration. The Part reference panel is displayed.

b. Enter a name in the Part name field. This name is the name of the required integrity configuration

in the deployment descriptor extensions file and specifies the message parts that must be digitally

signed.

c. Select a digest method algorithm from the Digest method algorithm field.

WebSphere Application Server supports the following pre-configured algorithms:

v http://www.w3.org/2000/09/xmldsig#sha1

v http://www.w3.org/2001/04/xmlenc#sha256

v http://www.w3.org/2001/04/xmlenc#sha512

If you want to specify a custom algorithm, you must configure the custom algorithm in the

Algorithm URI panel before setting the digest method algorithm.

12. Under Additional properties, click Transforms.

a. Click New to create a new transform or click the name of an existing transform to edit its

configuration.

b. Enter a name in the Transform name field.

c. Select a transform algorithm from the Transform algorithm field. WebSphere Application Server

supports the following pre-configured algorithms:

v http://www.w3.org/2001/10/xml-exc-c14n#

v http://www.w3.org/TR/1999/REC-xpath-19991116

Do not use this transform algorithm if you want your configured application to be compliant with

the Basic Security Profile (BSP). Instead use http://www.w3.org/2002/06/xmldsig-filter2 to

ensure compliance.

v http://www.w3.org/2002/06/xmldsig-filter2

v http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#STR-
Transform

v http://www.w3.org/2002/07/decrypt#XML

v http://www.w3.org/2000/09/xmldsig#enveloped-signature

The transform algorithm that you select for the consumer must match the transform algorithm that

you select for the generator. For each part reference in the signing information, specify both a

digest method algorithm and a transform algorithm.

13. Click OK.

Chapter 14. Web services 1181

14. Click Save at the top of the panel to save your configuration.

After completing these steps, you have configured the signing information for the consumer.

You must specify a similar signing information configuration for the generator.

Key information references collection

Use this page to view the key information references that are needed for encryption or signing.

To view this administrative console page on the server level, complete the following steps. On the server

level, you can configure the key information references for the default consumer bindings only.

1. Click Servers > Application Servers > server_name.

2. Under Security, click Web services: Default bindings for Web services security.

3. Under Default consumer bindings, click either of the following links:

v Click Encryption information > encryption_information_name.

v Click Signing information > signing_information_name.

4. Under Additional properties, click Key information references.

To view this administrative console page on the application level, complete the following steps. On the

application level, you can configure the key information reference for the consumer bindings only.

1. Click Applications > Enterprise applications > application_name.

2. Click Manage modules > URI_name.

3. Under Web Services Security properties, you can access the signing information for the following

bindings:

v For the Response consumer (receiver) binding, click Web services: Client security bindings.

Under Response consumer (receiver) binding, click Edit custom. Under Required properties, click

Encryption information. Click New to create a new encryption configuration or click the name of a

configuration to modify its settings.

v For the Request consumer (receiver) binding, click Web services: Server security bindings.

Under Request consumer (receiver) binding, click Edit custom. Under Required properties, click

Encryption information. Click New to create a new encryption configuration or click the name of a

configuration to modify its settings.

Name:

Specifies the name of the Key information reference.

Key information reference:

Specifies a reference to the message parts that are signed or encrypted.

 The value of this field is the name of the <requiredIntegrity> or the <requiredConfidentiality> element in the

deployment descriptor.

Key information reference configuration settings

Use this page to specify a reference to the message parts for signature and encryption that is defined in

the deployment descriptors.

To view this administrative console page on the server level for the key information references, complete

the following steps. On the server level, you can configure the key information references for the default

consumer bindings only.

1. Click Servers > Application Servers > server_name.

2. Under Security, click Web services: Default bindings for Web services security.

1182 Securing applications and their environment

3. Under Default consumer bindings, click either of the following links:

v Click Encryption information > encryption_information_name.

v Click Signing information > signing_information_name.

4. Under Additional properties, click Key information references.

5. Click New to create a key information reference or click the name of an existing configuration to modify

its settings.

To view this administrative console page on the application level, complete the following steps:

1. Click Applications > Enterprise applications > application_name.

2. Click Manage modules > URI_name.

3. Under Web Services Security Properties, you can access the key information references for the

following bindings:

v For the Response consumer (sender) binding, click Web services: Client security bindings. Under

Response consumer (sender) binding, click Edit custom. Under Required properties, click

Encryption information > encryption_information_name. Under Additional properties, click Key

information references.

v For the Request consumer (receiver) binding, click Web services: Server security bindings.

Under Request consumer (receiver) binding, click Edit custom. Under Required properties, click

Encryption information > encryption_information_name. Under Additional properties, click Key

information references.

4. Click New to create a key information reference or click the name of an existing configuration to modify

its settings.

Name:

Specifies the name of the key information reference.

Key information reference:

Specifies a reference to the message parts that are signed or encrypted.

 The value of this field is the name of the <requiredIntegrity> or the <requiredConfidentiality> element in the

deployment descriptor. You can specify a signing key configuration for the following bindings:

 Binding name Cell level, Server level, or

application level

Path

Default consumer binding Server level 1. Click Servers > Application Servers >

server_name.

2. Under Security, click Web services: Default

bindings for Web services security .

3. Under Default consumer binding, click Key

information.

Response consumer (receiver)

binding

Application level 1. Click Applications > Enterprise

applications > application_name.

2. Click Manage modules > URI_name.

3. Under Web Services Security Properties,

click Web services: Client security

bindings.

4. Under Response consumer (receiver)

binding, click Edit custom.

5. Under Required properties, click Key

information.

Chapter 14. Web services 1183

Binding name Cell level, Server level, or

application level

Path

Request consumer (receiver)

binding

Application level 1. Click Applications > Enterprise

applications > application_name.

2. Click Manage modules > URI_name.

3. Under Web Services Security Properties,

click Web services: Server security

bindings.

4. Under Resquest consumer (receiver)

binding, click Edit custom.

5. Under Required properties, click Key

information.

Configuring the encryption information for the consumer binding on

the application level

Configure the key information that is referenced in the encryption information panel. For more information,

see “Configuring the key information for the consumer binding on the application level” on page 1177.

This task provides the steps that are needed for configuring the encryption information for the request

consumer (server side) and response consumer (client side) bindings at the application level. The

encryption information on the consumer side is used for decrypting the encrypted message parts in the

incoming Simple Object Access Protocol (SOAP) message.

Complete the following steps to configure the encryption information for the request consumer or response

consumer section of the bindings file on the application level:

1. Locate the Encryption information configuration panel in the administrative console.

a. Click Applications > Enterprise applications > application_name.

b. Under Manage modules, click URI_name.

c. Under Web Services Security Properties you can access the encryption information for the request

consumer and response consumer bindings.

v For the request consumer (receiver) binding, click Web services: Server security bindings.

Under Request consumer (receiver) binding, click Edit custom.

v For the response consumer (receiver) binding, click Web services: Client security bindings.

Under Response consumer (receiver) binding, click Edit custom.

d. Under Required properties, click Encryption information.

e. Click New to create an encryption information configuration, click Delete to delete an existing

configuration, or click the name of an existing encryption information configuration to edit its

settings. If you are creating a new configuration, enter a name in the Encryption information name

field. For example, you might specify cons_encinfo.

2. Select a data encryption algorithm from the Data encryption algorithm field. The data encryption

algorithm is used for encrypting or decrypting parts of a SOAP message such as the SOAP body or

the username token. WebSphere Application Server supports the following pre-configured algorithms:

v http://www.w3.org/2001/04/xmlenc#tripledes-cbc

v http://www.w3.org/2001/04/xmlenc#aes128-cbc

v http://www.w3.org/2001/04/xmlenc#aes256-cbc

To use this algorithm, you must download the unrestricted Java Cryptography Extension (JCE)

policy file from the following Web site: http://www.ibm.com/developerworks/java/jdk/security/
index.html.

v http://www.w3.org/2001/04/xmlenc#aes192-cbc

1184 Securing applications and their environment

http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html

To use this algorithm, you must download the unrestricted Java Cryptography Extension (JCE)

policy file from the following Web site: http://www.ibm.com/developerworks/java/jdk/security/
index.html.

Do not use the 192-bit key encryption algorithm if you want your configured application to be in

compliance with the Basic Security Profile (BSP).

The data encryption algorithm that you select for the consumer side must match the data encryption

method that you select for the generator side.

3. Select a key encryption algorithm from the Key encryption algorithm field. The key encryption algorithm

is used for encrypting the key that is used for encrypting the message parts within the SOAP message.

Select (none) if the data encryption key, which is the key that is used for encrypting the message

parts, is not encrypted. WebSphere Application Server supports the following pre-configured

algorithms:

v http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p.

When running with Software Development Kit (SDK) Version 1.4, the list of supported key transport

algorithms does not include this one. This algorithm appears in the list of supported key transport

algorithms when running with SDK Version 1.5.

Restriction: This algorithm is not supported when the WebSphere Application Server is running in

Federal Information Processing Standard (FIPS) mode.

v http://www.w3.org/2001/04/xmlenc#rsa-1_5

v http://www.w3.org/2001/04/xmlenc#kw-tripledes

v http://www.w3.org/2001/04/xmlenc#kw-aes128

v http://www.w3.org/2001/04/xmlenc#kw-aes256

To use the http://www.w3.org/2001/04/xmlenc#aes256-cbc algorithm, you must download the

unrestricted Java Cryptography Extension (JCE) policy file from the following Web site:

http://www.ibm.com/developerworks/java/jdk/security/index.html.

v http://www.w3.org/2001/04/xmlenc#kw-aes192

To use the http://www.w3.org/2001/04/xmlenc#kw-aes192 algorithm, you must download the

unrestricted Java Cryptography Extension (JCE) policy file from the following Web site:

http://www.ibm.com/developerworks/java/jdk/security/index.html.

Do not use the 192-bit key encryption algorithm if you want your configured application to be in

compliance with the Basic Security Profile (BSP).

The key encryption algorithm that you select for the consumer side must match the key encryption

method that you select for the generator side.

4. Optional: Select a part reference in the Part reference field. The part reference specifies the name of

the message part that is encrypted and is defined in the deployment descriptor. For example, you can

encrypt the bodycontent message part in the deployment descriptor. The name of this Required

Confidentiality part is conf_con. This message part is shown as an option in the Part reference field.

5. Under Additional properties, click Key information references.

6. Click New to create a key information configuration, click Delete to delete an existing configuration, or

click the name of an existing key information configuration to edit its settings. If you are creating a new

configuration, enter a name in the name field. For example, you might specify con_ekeyinfo. This entry

is the name of the <encryptionKeyInfo> element in the binding file.

7. Select a key information reference from the Key information reference field. This reference is the value

of the keyinfoRef attribute of the <encryptionKeyInfo> element and it is the name of the <keyInfo>

element that is referenced by this key information reference. Each key information reference entry

generates an <encryptionKeyInfo> element under the <encryptionInfo> element in the binding

configuration file. For example, if you enter con_ekeyinfo in the Name field and dec_keyinfo in the Key

information reference field, the following <encryptionKeyInfo> element is generated in the binding file:

<encryptionKeyInfo xmi:id="EncryptionKeyInfo_1085092248843"

keyinfoRef="dec_keyinfo” name="con_ekeyinfo"/>

Chapter 14. Web services 1185

http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html

8. Click OK and then click Save to save the configuration.

You have configured the encryption information for the consumer binding at the application level

You must specify a similar encryption information configuration for the generator.

Hardware cryptographic device support for Web Services Security

In IBM WebSphere Application Server Version 6.1 or later, Web services security supports the use of

cryptographic hardware devices. There are two ways in which to use hardware cryptographic devices with

Web services security as described in this article.

Enabling cryptographic operations on hardware devices

You can enable cryptographic operations on hardware devices. The keys that are used can be stored in a

Java keystore file; it is not necessary to store them on the hardware device. The decision to use enable

cryptographic operations on hardware devices is made at the server level only, not at the application level.

If cryptographic operations on hardware device is enabled, the Web service security run time first attempts

to use the hardware device for cryptographic operations. If the attempt to use the hardware device fails, or

the algorithm is not supported by the hardware device, the run time uses a software provider from the

security providers list.

Enabling this feature might improve the performance depending on the hardware device.

For more information on how to enable cryptographic operations on hardware devices, see “Configuring

hardware cryptographic devices for Web Services Security” on page 1187.

Secure keys

Cryptographic keys can be stored on the hardware cryptographic device and never leave the device.

These secure keys are confined to the hardware cryptographic device for security considerations rather

than performance considerations. The option to select whether to use keys stored in a hardware

cryptographic device or a Java keystore file can be made at the application level.

If the keystore reference is specified to be a hardware device configuration, the Web services security run

time first attempts to obtain the cryptographic algorithm from the hardware device. If the algorithm is not

supported or fails, the run time uses a software provider from the security providers list.

For information on how to enable secure keys, see “Enabling cryptographic keys stored in hardware

devices in Web Services Security” on page 1188.

Limitations

The hardware cryptographic device support for Web Services Security currently has the following

limitations:

v There is no support for a Web services client running as a J2EE Application Client.

v There is no support for hardware cryptographic devices on iSeries.

v Versions 5.x and 6.0 Web services security applications can run in a Version 6.1 WebSphere

Application Server, but they cannot take advantage of the hardware cryptographic support. Only Version

6.1 and later Web services security applications can take advantage of the hardware cryptographic

support.

1186 Securing applications and their environment

Enabling hardware cryptographic devices for Web Services Security

A cryptographic token is a hardware or software device with a built-in keystore implementation.

Cryptographic devices are used to manage certificates stored on the cryptographic tokens. These devices

are also called smartcards.

You can enable Web Services Security using cryptographic hardware devices for both Web service clients

and Web service providers running in the WebSphere Application Server environment.

Web services security using cryptographic hardware devices is supported for both Web (JavaServer Pages

(JSP) or servlet) and Enterprise JavaBeans (EJB) Web service clients. Individual applications have the

option to select whether to use keys stored in hardware devices or in a Java keystore file.

There are two ways to enable hardware cryptographic devices for Web service security:

v Enable cryptographic operations on hardware devices for Web services security. For more information,

see “Configuring hardware cryptographic devices for Web Services Security.”

v Enable cryptographic keys that are stored in hardware devices for Web services security. For more

information, see “Enabling cryptographic keys stored in hardware devices in Web Services Security” on

page 1188

Note: Hardware cryptographic devices for Web Services Security are not supported on the Java 2

Platform, Enterprise Edition (J2EE) Application Client on distributed platform.

 Related concepts

 “Hardware cryptographic device support for Web Services Security” on page 1186
In IBM WebSphere Application Server Version 6.1 or later, Web services security supports the use of

cryptographic hardware devices. There are two ways in which to use hardware cryptographic devices

with Web services security as described in this article.

 Related tasks

 “Configuring hardware cryptographic devices for Web Services Security”
You can configure a hardware cryptographic device in Web Service Security. The key for the

cryptographic operation can be stored in an ordinary Java key store file, and does not need to be

stored on the hardware devices.

 “Enabling cryptographic keys stored in hardware devices in Web Services Security” on page 1188
You can enable individual Web service applications to use cryptographic keys stored in hardware

devices in Web Services Security.

Configuring hardware cryptographic devices for Web Services Security

You can configure a hardware cryptographic device in Web Service Security. The key for the cryptographic

operation can be stored in an ordinary Java key store file, and does not need to be stored on the

hardware devices.

You must first configure a hardware cryptographic device using the Secure Sockets Layer (SSL) certificate

and key management panels in the administrative console.

1. In the administrative console, click Servers > Application servers and then select the server name.

2. Under Security, select Web services: default bindings for Web services security.

3. Under Cryptographic Hardware, select Enable cryptographic operations on hardware device and

then specify the name of the hardware cryptographic device configuration name. For more information,

see “Configuring a hardware cryptographic keystore” on page 454.

4. Click OK.

This procedure configures a hardware cryptographic device for all Web services security applications

running on the WebSphere Application Server.

 Related concepts

Chapter 14. Web services 1187

“Hardware cryptographic device support for Web Services Security” on page 1186
In IBM WebSphere Application Server Version 6.1 or later, Web services security supports the use of

cryptographic hardware devices. There are two ways in which to use hardware cryptographic devices

with Web services security as described in this article.

 Related tasks

 “Enabling hardware cryptographic devices for Web Services Security” on page 1187

 “Enabling cryptographic keys stored in hardware devices in Web Services Security”
You can enable individual Web service applications to use cryptographic keys stored in hardware

devices in Web Services Security.

 “Configuring a hardware cryptographic keystore” on page 454
You can create a hardware cryptographic keystore that WebSphere Application Server can use to

provide cryptographic token support in the server configuration.

Enabling cryptographic keys stored in hardware devices in Web Services Security

You can enable individual Web service applications to use cryptographic keys stored in hardware devices

in Web Services Security.

You must first configure the hardware acceleration device using the key management panels in the

administrative console. See “Configuring hardware cryptographic devices for Web Services Security” on

page 1187

1. In the administrative console, click Servers > Application servers and then select the server name.

2. Under Security, click Web services: default bindings for Web services security.

3. Under Additional properties, click key locators.

4. Select the key locator name.

5. Under Key store, specify the name of the keystore configuration.

If the keystore reference is specified to a hardware device configuration, the Web Services Security

run time first attempts to obtain the cryptographic algorithm from the hardware device. If the hardware

device is not supported or if it fails, the run time for Web services security obtains the cryptographic

algorithm from the security providers list. See “Creating a keystore configuration” on page 453 for more

information about how to create the name of a keystore configuration.

If hardware acceleration is enabled, the Web service security run time first attempts to use the

hardware device for cryptographic operations. If the attempt to use the hardware device fails or if the

algorithm is not supported by the hardware device, the run time will use a software provider from the

security providers list. The run time displays a warning message that you failed to use hardware

cryptographic provider but the process will continue using the software that is provided.

6. Click OK.

If the name of the keystore reference is a Java keystore file, a hardware acceleration device configured at

the application server level (ws-security.xml) is used for cryptographic operations.

 Related tasks

 “Enabling hardware cryptographic devices for Web Services Security” on page 1187

 “Configuring hardware cryptographic devices for Web Services Security” on page 1187
You can configure a hardware cryptographic device in Web Service Security. The key for the

cryptographic operation can be stored in an ordinary Java key store file, and does not need to be

stored on the hardware devices.

Retrieving tokens from the JAAS Subject in a server application

In WebSphere Application Server Version 6.1, the security handlers are responsible for propagating

security tokens. These security tokens are embedded in the SOAP security header and passed to

1188 Securing applications and their environment

downstream servers. The security tokens are encapsulated in the implementation classes for the

com.ibm.wsspi.wssecurity.auth.token.Token interface. You can retrieve the security token data from either a

server application or a client application.

With a server application, the application acts as the request consumer and the response generator, is

deployed, and runs in the Java 2 Platform, Enterprise Edition (J2EE) container. The consumer component

for Web services security stores the security tokens that it receives in the Java Authentication and

Authorization Service (JAAS) Subject of the current thread. You can retrieve the security tokens from the

JAAS Subject that is maintained as a local thread in the container. Complete the following steps to retrieve

the security token data from a server application:

1. Obtain the JAAS Subject of the current thread using the WSSubject utility class. If you enable Java 2

security on the Secure administration, applications, and infrastructure panel in the administrative

console, access to the JAAS Subject is denied if the application code is not granted the

javax.security.auth.AuthPermission(″wssecurity.getCallerAsSubject″) permission. The following code

sample shows how to obtain the JAAS subject:

javax.security.auth.Subject subj;

try {

subj = com.ibm.websphere.security.auth.WSSubject.getCallerSubject();

} catch (com.ibm.websphere.security.WSSecurityException e) {

 ...

}

2. Obtain a set of private credentials from the Subject. For more information, see the application

programming interface (API) com.ibm.websphere.security.auth.WSSubject class through the

information center . To access this information within the information center, click Reference >

Developer > API Documentation > Application Programming Interfaces. In the Application

Programming Interfaces article, click com.ibm.websphere.security.auth > WSSubject.

 Attention: When Java 2 security is enabled, you might need to use the AccessController class to

avoid a security violation that is caused by operating the security objects in the J2EE container.

The following code sample shows how to set the AccessController class and obtain the private

credentials:

Set s = (Set) AccessController.doPrivileged(

new PrivilegedAction() {

public Object run() {

return subj.getPrivateCredentials();

}

 });

3. Search the targeting token class in the private credentials. You can search the targeting token class by

using the java.util.Iterator interface. The following example shows how to retrieve a username token

with a certain token ID value in the security header. You can also use other method calls to retrieve

security tokens. For more information, see the application programming interface (API) documents for

the com.ibm.wsspi.wssecurity.auth.token.Token interface or custom token classes.

com.ibm.wsspi.wssecurity.auth.token.UsernameToken unt;

Iterator it = s.iterator();

while (it.hasNext()) {

 Object obj = it.next();

 if (obj != null &&

obj instanceOf com.ibm.wsspi.wssecurity.auth.token.UsernameToken) {

 unt =(com.ibm.wsspi.wssecurity.auth.token.UsernameToken) obj;

if (unt.getId().equals(“...”)) break;

else continue;

 }

}

After completing these steps, you have retrieved the security tokens from the JAAS Subject in a server

application

Chapter 14. Web services 1189

Retrieving tokens from the JAAS Subject in an application

The security handlers are responsible for propagating security tokens. These security tokens are

embedded in the SOAP security header and passed to downstream servers.

The security tokens are encapsulated in the implementation classes for the

com.ibm.wsspi.wssecurity.auth.token.Token interface. You can retrieve the security token data from either a

server application or a client application.

With a client application, the application serves as the request generator and the response consumer and

runs as the Java 2 Platform, Enterprise Edition (J2EE) client application. The consumer component for

Web services security stores the security tokens that it receives in one of the properties of the

MessageContext object for the current Web services call. You can retrieve a set of token objects through

the javax.xml.rpc.Stub interface of that Web Services call. You must know which security tokens to retrieve

and their token IDs in case multiple security tokens are included in the SOAP security header. Complete

the following steps to retrieve the security token data from a client application:

1. Use the com.ibm.wsspi.wssecurity.token.tokenPropergation key string to obtain the Hashtable for the

tokens through a property value in the javax.xml.rpc.Stub interface. The following example shows how

to obtain the Hashtable:

java.util.Hashtable t;

javax.xml.rpc.Service serv = ...;

MyWSPortType pt = (MyWSPortType)serv.getPort(MyWSPortType.class);

t = (Hashtable)((javax.xml.rpc.Stub)pt)._getProperty(

com.ibm.wsspi.wssecurity.Constants.WSSECURITY_TOKEN_PROPERGATION);

2. Search the targeting token objects in the Hashtable. Each token object in the Hashtable is set with its

token ID as a key. You must have prior knowledge of the security token IDs to retrieve the security

tokens. The following example shows how to retrieve a username token from the security header with

a certain token ID value:

com.ibm.wsspi.wssecurity.auth.token.UsernameToken unt;

if (t != null) {

 unt = (com.ibm.wsspi.wssecuty.auth.token.UsernameToken)t.get(“...”);

}

After completing these steps, you have retrieved the security tokens from the JAAS Subject in a client

application

Configuring trust anchors on the server or cell level

Prior to completing the steps to configure trust anchors, you must create the keystore file using the key

tool. WebSphere Application Server provides the key tool in the install_dir/java/jre/bin/keytool file.

This task provides the steps that are needed to configure a list of keystore objects that contain trusted root

certificates. These objects are used for certificate path validation of incoming X.509-formatted security

tokens. Keystore objects within trust anchors contain trusted root certificates that are used by the CertPath

application programming interface (API) to determine whether to trust a certificate chain.

Complete the following steps to configure the trust anchors on the server level:

1. Access the default bindings for the server level.

a. Click Servers > Application servers > server_name.

b. Under Security, click Web services: Default bindings for Web services security.

2. Under Additional properties, click Trust anchors.

3. Click New to create a trust anchor configuration, click Delete to delete an existing configuration, or

click the name of an existing trust anchor configuration to edit its settings. If you are creating a new

configuration, enter a unique name for the trust anchor in the Trust anchor name field.

4. Specify a password in the Key store password field that is used to access the keystore file.

1190 Securing applications and their environment

5. Specify the absolute location of the keystore file in the Key store path field. It is recommended that you

use the USER_INSTALL_ROOT variable as a portion of the keystore path. To change this predefined

variable, click Environment > WebSphere variables. The USER_INSTALL_ROOT variable might

display on the second page of variables.

6. Specify the type of keystore file in the key store type field. WebSphere Application Server supports the

following keystore types:

JKS Use this option if you are not using Java Cryptography Extensions (JCE) and your keystore file

uses the Java Key Store (JKS) format.

JCEKS

Use this option if you are using Java Cryptography Extensions.

JCERACFKS

Use JCERACFKS if the certificates are stored in a SAF key ring (z/OS only).

PKCS11KS (PKCS11)

Use this option if your keystore file uses the PKCS#11 file format. Keystore files that use this

format might contain Rivest Shamir Adleman (RSA) keys on cryptographic hardware or might

encrypt keys that use cryptographic hardware to ensure protection.

PKCS12KS (PKCS12)

Use this option if your keystore file uses the PKCS#12 file format.

7. Click OK and Save to save your configuration.

You have configured trust anchors at the server or cell level.

Configuring the collection certificate store for the server or cell-level

bindings

Collection certificate stores contain untrusted, intermediary certificate files awaiting validation. You can

configure the collection certificate store on the server level and the cell level.

Validation might consist of checking for a valid signature in a digitally signed SOAP message to see if the

certificate is on a certificate revocation list (CRLs), checking that the certificate is not expired, and

checking that the certificate is issued by a trusted signer.

Complete the following steps to configure a collection certificate store on the server level:

 1. Access the default bindings for the server level.

a. Click Servers > Application servers > server_name .

b. Under Security, click Web services: Default bindings for Web services security.

 2. Under Additional properties, click Collection certificate store.

 3. Click New to create a collection certificate store configuration, click Delete to delete an existing

configuration, or click the name of an existing collection certificate store configuration to edit its

settings. If you are creating a new configuration, enter a name in the Certificate store name field. For

example, you might name your certificate store sig_certstore.

The name of the collection certificate store must be unique to the level of the application server. For

example, if you create the collection certificate store for the server level, the store name must be

unique to the server level. The name that is specified in the Certificate store name field is used by

other configurations to refer to a predefined collection certificate store. WebSphere Application Server

searches for the collection certificate store based on proximity.

For example, if an application binding refers to a collection certificate store named cert1, the

Application Server searches for cert1 at the application level before searching the server level.

 4. Specify a certificate store provider in the Certificate store provider field. WebSphere Application

Server supports the IBMCertPath certificate store provider. To use another certificate store provider,

you must define the provider implementation in the provider list within the install_dir/java/jre/lib/

Chapter 14. Web services 1191

security/java.security file. However, make sure that your provider supports the same requirements

of the certificate path algorithm as WebSphere Application Server.

 5. Click OK and Save to save the configuration.

 6. Click the name of your certificate store configuration. After you specify the certificate store provider,

you must specify either the location of a certificate revocation list or the X.509 certificates. However,

you can specify both a certificate revocation list and the X.509 certificates for your certificate store

configuration.

 7. Under Additional properties, click Certificate revocation lists. For the generator binding, a certificate

revocation list (CRL) is used when it is included in a generated security token. For example, a

security token might be wrapped in a PKCS#7 format with a CRL. For more information on certificate

revocation lists, see “Certificate revocation list” on page 1013.

 8. Click New to specify a certificate revocation list path, click Delete to delete an existing list reference,

or click the name of an existing reference to edit the path. You must specify the fully qualified path to

the location where WebSphere Application Server can find your list of certificates that are not valid.

WebSphere Application Server uses the certificate revocation list to check the validity of the sender

certificate.

For portability reasons, it is recommended that you use the WebSphere Application Server variables

to specify a relative path to the certificate revocation lists. This recommendation is especially

important when you are working in a WebSphere Application Server Network Deployment

environment.

For example, you might use the USER_INSTALL_ROOT variable to define a path such as

$USER_INSTALL_ROOT/mycertstore/mycrl1 where mycertstore represents the name of your

certificate store and mycrl1 represents the certificate revocation list. For a list of supported variables,

click Environment > WebSphere variables in the administrative console. The following list provides

recommendations for using certificate revocation lists:

v If CRLs are added to the collection certificate store, add the CRLs for the root certificate authority

and each intermediate certificate, if applicable. When the CRL is in the certificate collection store,

the certificate revocation status for every certificate in the chain is checked against the CRL of the

issuer.

v When the CRL file is updated, the new CRL does not take effect until you restart the Web service

application.

v Before a CRL expires, you must load a new CRL into the certificate collection store to replace the

old CRL. An expired CRL in the collection certificate store results in a certificate path (CertPath)

build failure.

 9. Click OK and then Save to save the configuration.

10. Return to the Collection certificate store configuration panel.

11. Under Additional properties, click X.509 certificates. The X.509 certificate configuration specifies

intermediate certificate files that are used for certificate path validation of incoming X.509-formatted

security tokens.

12. Click New to create an X.509 certificate configuration, click Delete to delete an existing configuration,

or click the name of an existing X.509 certificate configuration to edit its settings. If you are creating a

new configuration, enter a name in the Certificate store name field.

13. Specify a path in the X.509 certificate path field. This entry is the absolute path to the location of the

X.509 certificate. The collection certificate store is used to validate the certificate path of the incoming

X.509-formatted security tokens.

You can use the USER_INSTALL_ROOT variable as part of path name. For example, you might type:

$USER_INSTALL_ROOT/etc/ws-security/samples/intca2.cer. Do not use this certificate path for

production use. You must obtain your own X.509 certificate from a certificate authority before putting

your WebSphere Application Server environment into production.

Click Environment > WebSphere variables in the administrative console to configure the

USER_INSTALL_ROOT variable.

14. Click OK and then Save to save your configuration.

1192 Securing applications and their environment

15. Return to the Collection certificate store collection panel and click Update run time to update the

Web services security run time with the default binding information, which is located in the

ws-security.xml file. When you click Update run time, the configuration changes made to other Web

services are also updated in the run time for Web services security.

You have configured the collection certificate store for the server or cell level.

Distributed nonce caching

The distributed nonce caching feature enables you to distribute the cache for a nonce to different servers

in a cluster.

In previous releases of WebSphere Application Server, the nonce was cached locally. To use this feature,

you must complete the following actions:

v Configure cache replication.

v Verify that you created an appropriate domain setting when you form a cluster.

v Verify that replication domain is properly secured. The nonce cache is crucial to the integrity of the

nonce validation process. If the nonce cache is compromised, then you cannot trust the result of the

validation process.

v In the administrative console for the server level, select the Distribute nonce caching option. You can

enable the option by completing the following steps:

1. Click Security > Web services.

2. Select the Distribute nonce caching option.

v Restart the servers within your cluster.

When you select the Distribute nonce caching option in the administrative console, the nonce is

propagated to other servers in your environment. However, the nonce might be subject to a one-second

delay in propagation and subject to any network congestion.

For more information on distributed nonce caching, see “Web services security enhancements” on page

960.

Configuring a nonce on the server or cell level

You can configure nonce for the cell level using the WebSphere Application Server administrative console.

Nonce is a randomly generated, cryptographic token that is used to prevent replay attacks of user name

tokens that are used with SOAP messages. Typically, nonce is used with the user name token.

You can configure nonce at the application level, the server level, and the cell level. However, you must

consider the order of precedence. The following list shows the order of precedence:

1. Application level

The application level settings for the nonce maximum age and nonce clock skew fields are specified

through the additional properties.

2. Server level

If you configure nonce on the application level and the server level, the values that are specified for the

application level take precedence over the values that are specified for the server level. Likewise, the

values that are specified for the application level take precedence over the values specified for the server

level. Complete the following steps to configure nonce on the server level:

Complete the following steps to configure a nonce on the server or cell level:

1. Access the default bindings for the server level.

a. Click Servers > Application servers > server_name.

Chapter 14. Web services 1193

b. Under Security, click Web services: Default bindings for Web services security.

2. Specify a value, in seconds, for the Nonce cache timeout field. The value that is specified for the

Nonce cache timeout field indicates how long the nonce remains cached before it is discarded. You

must specify a minimum of 300 seconds. However, if you do not specify a value, the default is 600

seconds. This field is optional on the server level, but required on the cell level.

3. Specify a value, in seconds, for the Nonce maximum age field. The value that is specified for the

Nonce maximum age field indicates how long the nonce is valid. You must specify a minimum of 300

seconds, but the value cannot exceed the number of seconds that is specified for the Nonce cache

timeout field in the previous step. If you do not specify a value, the default is 300 seconds.

In a Network Deployment environment, this field is optional on the server level, but it is required on the

cell level.

4. Specify a value, in seconds, for the Nonce clock skew field. The value that is specified for the Nonce

clock skew field specifies the amount of time, in seconds, to consider when the message receiver

checks the freshness of the value. Consider the following information when you set this value:

v Difference in time between the message sender and the message receiver, if the clocks are not

synchronized.

v Time that is needed to encrypt and transmit the message.

v Time that is needed to get through network congestion.

At a minimum, you must specify 0 seconds in this field. However, the maximum value cannot exceed

the number of seconds indicated in the Nonce maximum age field. If you do not specify a value, the

default is 0 seconds. This field is optional on the server level, but required on the cell level.

5. Select the Distribute nonce caching option. This option enables you to distribute the caching for a

nonce using a Data Replication Service (DRS). In previous releases of WebSphere Application Server,

the nonce was cached locally. By selecting this option, the nonce is propagated to other servers in

your environment. However, the nonce might be subject to a one-second delay in propagation and

subject to any network congestion.

6. Restart the server. If you change the Nonce cache timeout value and do not restart the server, the

change is not recognized by the server.

Configuring token generators on the server or cell level

The token generator on the server or cell level is used to specify the information for the token generator if

these bindings are not defined at the application level. The signing information and the encryption

information can share the token generator information, which is why they are all defined at the same level.

WebSphere Application Server provides default values for bindings. You must modify the defaults for a

production environment.

Complete the following steps to configure the token generators on the server level:

 1. Access the default bindings for the server level.

a. Click Servers > Application servers > server_name .

b. Under Security, click Web services: Default bindings for Web services security.

 2. Under Default generator bindings, click Token generators.

 3. Click New to create a token generator configuration, click Delete to delete an existing configuration,

or click the name of an existing token generator configuration to edit its settings. If you are creating a

new configuration, enter a unique name for the token generator configuration in the Token generator

name field. For example, you might specify sig_tgen. This field specifies the name of the token

generator element.

 4. Specify a class name in the Token generator class name field. The token generator class must

implement the com.ibm.wsspi.wssecurity.token.TokenGeneratorComponent interface. The token

generator class name must be similar to the token consumer class name. For example, if your

application requires an X.509 certificate token consumer, you can specify the

1194 Securing applications and their environment

com.ibm.wsspi.wssecurity.token.X509TokenConsumer class name on the Token consumer panel and

the com.ibm.wsspi.wssecurity.token.X509TokenGenerator class name in this field. WebSphere

Application Server provides the following default token generator class implementations:

com.ibm.wsspi.wssecurity.token.UsernameTokenGenerator

This implementation generates a username token.

com.ibm.wsspi.wssecurity.token.X509TokenGenerator

This implementation generates an X.509 certificate token.

com.ibm.wsspi.wssecurity.token.LTPATokenGenerator

This implementation generates a Lightweight Third Party Authentication (LTPA) token.

 5. Select a certificate path option. The certificate path specifies the certificate revocation list (CRL),

which is used for generating a security token that is wrapped in a PKCS#7 with a CRL. WebSphere

Application Server provides the following certificate path options:

None Select this option in case the CRL is not used for generating a security token. You must

select this option when the token generator does not use the PKCS#7 token type.

Dedicated signing information

If the CRL is wrapped in a security token, select Dedicated signing information and select

a collection certificate store name from the Certificate store field. The Certificate store field

shows the names of collection certificate stores already defined. To define a collection

certificate store on the cell level, see “Configuring the collection certificate store for the server

or cell-level bindings” on page 1191.

 6. Select the Add nonce option to include a nonce in the user name token for the token generator.

Nonce is a unique cryptographic number that is embedded in a message to help stop repeat,

unauthorized attacks of user name tokens. The Add nonce option is available if you specify a user

name token for the token generator.

 7. Select the Add timestamp option to include a time stamp in the user name token for the token

generator.

 8. Specify a value type local name in the Local name field. This entry specifies the local name of the

value type for a security token that is referenced by the key identifier. This attribute is valid when Key

identifier is selected as Key information type. To specify the Key information type, see “Configuring

the key information for the generator binding on the server or cell level” on page 1206. WebSphere

Application Server provides the following predefined X.509 certificate token configurations:

X.509 certificate token

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509v3

X.509 certificates in a PKIPath

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-
1.0#X509PKIPathv1

A list of X.509 certificates and CRLs in a PKCS#7

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#PKCS7

LTPA For LTPA, the value type local name is LTPA. If you enter LTPA for the local name, you must

specify the http://www.ibm.com/websphere/appserver/tokentype/5.0.2 uniform resource

identifier (URI) value in the Value type URI field as well.

LTPA_PROPAGATION

For LTPA token propagation, the value type local name is LTPA_PROPAGATION. If you enter

LTPA_PROPAGATION for the local name, you must specify the http://www.ibm.com/websphere/
appserver/tokentype URI value in the Value type URI field as well.

For example, when an X.509 certificate token is specified, you can use http://docs.oasis-open.org/
wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509v3 for the local name.

 9. Specify the value type URI in the URI field. This entry specifies the namespace URI of the value type

for a security token that is referenced by the key identifier. This attribute is valid when Key identifier

Chapter 14. Web services 1195

is selected as Key information type on the Key information panel for the default generator. When the

X.509 certificate token is specified, you do not need to specify the namespace URI. If another token

is specified, you must specify the namespace URI of the value type.

10. Click OK and then Save to save the configuration.

11. Click the name of your token generator configuration.

12. Under Additional properties, click Callback handler to configure the callback handler properties. The

callback handler specifies how to acquire the security token that is inserted in the Web services

security header within the SOAP message. The token acquisition is a pluggable framework that

leverages the Java Authentication and Authorization Service (JAAS)

javax.security.auth.callback.CallbackHandler interface for acquiring the security token.

a. Specify a callback handler class implementation in the Callback handler class name field. This

attribute specifies the name of the Callback handler class implementation that is used to plug in a

security token framework. The specified callback handler class must implement the

javax.security.auth.callback.CallbackHandler class. WebSphere Application Server provides the

following default callback handler implementations:

com.ibm.wsspi.wssecurity.auth.callback.GUIPromptCallbackHandler

This callback handler uses a login prompt to gather the user name and password

information. However, if you specify the user name and password on this panel, a prompt

is not displayed and WebSphere Application Server returns the user name and password

to the token generator. Use this implementation for a Java 2 Platform, Enterprise Edition

(J2EE) application client only.

com.ibm.wsspi.wssecurity.auth.callback.NonPromptCallbackHandler

This callback handler does not issue a prompt and returns the user name and password if

it is specified in the basic authentication section of this panel. You can use this callback

handler when the Web service is acting as a client.

com.ibm.wsspi.wssecurity.auth.callback.StdinPromptCallbackHandler

This callback handler uses a standard-in prompt to gather the user name and password.

However, if the user name and password is specified in the basic authentication section of

this panel, WebSphere Application Server does not issue a prompt, but returns the user

name and password to the token generator. Use this implementation for a Java 2

Platform, Enterprise Edition (J2EE) application client only.

com.ibm.wsspi.wssecurity.auth.callback.LTPATokenCallbackHandler

This callback handler is used to obtain the Lightweight Third Party Authentication (LTPA)

security token from the Run As invocation Subject. This token is inserted in the Web

services security header within the SOAP message as a binary security token. However, if

the user name and password are specified in the basic authentication section of this

panel, WebSphere Application Server authenticates the user name and password to

obtain the LTPA security token. It obtains the security token this way rather than obtaining

it from the Run As Subject. Use this callback handler only when the Web service is acting

as a client on the application server. It is recommended that you do not use this callback

handler on a J2EE application client.

com.ibm.wsspi.wssecurity.auth.callback.X509CallbackHandler

This callback handler is used to create the X.509 certificate that is inserted in the Web

services security header within the SOAP message as a binary security token. A keystore

file and a key definition are required for this callback handler.

com.ibm.wsspi.wssecurity.auth.callback.PKCS7CallbackHandler

This callback handler is used to create X.509 certificates that are encoded with the

PKCS#7 format. The certificate is inserted in the Web services security header in the

SOAP message as a binary security token. A keystore file is required for this callback

handler. You must specify a certificate revocation list (CRL) in the collection certificate

store. The CRL is encoded with the X.509 certificate in the PKCS#7 format. For more

1196 Securing applications and their environment

information on configuring the collection certificate store, see “Configuring the collection

certificate store for the server or cell-level bindings” on page 1191.

com.ibm.wsspi.wssecurity.auth.callback.PkiPathCallbackHandler

This callback handler is used to create X.509 certificates that are encoded with the

PkiPath format. The certificate is inserted in the Web services security header within the

SOAP message as a binary security token. A keystore file is required for this callback

handler. A CRL is not supported by the callback handler; therefore, the collection

certificate store is not required or used.

For an X.509 certificate token, you might specify the

com.ibm.wsspi.wssecurity.auth.callback.X509CallbackHandler implementation.

b. Optional: Select the Use identity assertion option. Select this option if you have identity

assertion that is defined in the IBM extended deployment descriptor. This option indicates that

only the identity of the initial sender is required and inserted into the Web services security

header within the SOAP message. For example, WebSphere Application Server sends only the

user name of the original caller for a user name token generator. For an X.509 token generator,

the application server sends the original signer certification only.

c. Optional: Select the Use RunAs identity option. Select this option if the following conditions are

true:

v You have identity assertion defined in the IBM extended deployment descriptor.

v You want to use the Run As identity instead of the initial caller identity for identity assertion for

a downstream call.

d. Optional: Specify a basic authentication user ID and password in the User ID and Password

fields. This entry specifies the user name and password that is passed to the constructors of the

callback handler implementation. The basic authentication user ID and password are used if you

specify one of the following default callback handler implementations that are provided by

WebSphere Application Server:

v com.ibm.wsspi.wssecurity.auth.callback.GUIPromptCallbackHandler

v com.ibm.wsspi.wssecurity.auth.callback.LTPATokenCallbackHandler

v com.ibm.wsspi.wssecurity.auth.callback.NonPromptCallbackHandler

v com.ibm.wsspi.wssecurity.auth.callback.StdinPromptCallbackHandler

e. Optional: Specify a keystore password and path. The keystore and its related information are

necessary when the key or certificate is used for generating a token. For example, the keystore

information is required if you select one of the following default callback handler implementations

that are provided by WebSphere Application Server:

v com.ibm.wsspi.wssecurity.auth.callback.PKCS7CallbackHandler

v com.ibm.wsspi.wssecurity.auth.callback.PkiPathCallbackHandler

v com.ibm.wsspi.wssecurity.auth.callback.X509CallbackHandler

The keystore files contain public and private keys, root certificate authority (CA) certificates,

intermediate CA certificates, and so on. Keys that are retrieved from the keystore file are used to

sign and validate or encrypt and decrypt messages or message parts. To retrieve a key from a

keystore file, you must specify the keystore password, the keystore path, and the keystore type.

13. Select a keystore type from the Type field. WebSphere Application Server provides the following

options:

JKS Use this option if you are not using Java Cryptography Extensions (JCE) and if your keystore

file uses the Java Keystore (JKS) format.

JCEKS

Use this option if you are using Java Cryptography Extensions.

JCERACFKS

Use JCERACFKS if the certificates are stored in a SAF key ring (z/OS only).

Chapter 14. Web services 1197

PKCS11KS (PKCS11)

Use this format if your keystore file uses the PKCS#11 file format. Key store files using this

format might contain RSA keys on cryptographic hardware or might encrypt the keys that use

cryptographic hardware to ensure protection.

PKCS12KS (PKCS12)

Use this option if your keystore file uses the PKCS#12 file format.

14. Click OK and then Save to save the configuration.

15. Click the name of your token generator configuration.

16. Under Additional properties, click Callback handler > Keys.

17. Click New to create a key configuration, click Delete to delete an existing configuration, or click the

name of an existing key configuration to edit its settings. If you are creating a new configuration, enter

a unique name for the key configuration in the Key name field. This name refers to the name of the

key object that is stored within the keystore file.

18. Specify an alias for the key object in the Key alias field. Use the alias when the key locator searches

for the key objects in the keystore.

19. Specify the password that is associated with the key in the Key password field.

20. Click OK and Save to save the configuration.

You have configured the token generators at the server or the cell level.

You must specify a similar token consumer configuration.

Token generator collection

Use this page to view the token generators. The information is used on the generator side only to

generate the security token.

To view this administrative console page for the server level, complete the following steps:

1. Click Servers > Application servers > server_name .

2. Under Security, click Web services: Default bindings for Web services security.

3. Under Default generator bindings, click Token generators.

Token generator name:

Specifies the name of the token generator configuration.

Token generator class name:

Specifies the name of the token generator implementation class.

 This class must implement the com.ibm.wsspi.wssecurity.token.TokenGeneratorComponent interface.

Token generator configuration settings

Use this page to specify the information for the token generator. The information is used at the generator

side only to generate the security token.

To view this administrative console page for the server level, complete the following steps:

1. Click Servers > Application servers > server_name .

2. Under Security, click Web services: Default bindings for Web services security.

3. Under Default generator bindings, click Token generators > token_generator_name or click New to

create a new token generator.

1. Click Applications > Enterprise applications > application_name .

2. Under Related items, click Manage modules> URI_name .

1198 Securing applications and their environment

3. Under Additional properties, you can access the token generator information for the following bindings:

v For the Request generator (sender) binding, click Web services: Client security bindings. Under

Request generator (sender) binding, click Edit custom.

v For the Response generator (sender) binding, click Web services: Server security bindings.

Under Response generator (sender) binding, click Edit custom.

4. Click New to create a new token generator or click the name of an existing token generator name to

specify its settings.

To view this administrative console page for the application level, complete the following steps:

1. Click Applications > Enterprise applications > application_name .

2. Click Manage modules > URI_name .

3. Under Web Services Security Properties, click Web services: Client security bindings.

4. Under Request generator (sender) binding, click Edit custom.

5. Under Additional properties, click Token generators > New.

Before specifying additional properties, specify a value in the Token generator name and the Token

generator class name fields.

Token generator name:

Specifies the name of the token generator configuration.

Token generator class name:

Specifies the name of the token generator implementation class.

 This class must implement the com.ibm.wsspi.wssecurity.token.TokenGeneratorComponent interface.

Certificate path:

Specifies the certificate revocation list (CRL) that is used for generating a security token wrapped in a

PKCS#7 token type with CRL.

 When the token generator is not for a PKCS#7 token type, you must select None. When the token

generator is for the PKCS#7 token type and you want to package CRL in the security token, select

Dedicated signing information and specify the CRL for the collection certificate store.

You can specify a certificate store configuration for the following bindings on the following levels:

 Binding name Cell level, server level, or

application level

Path

Default generator bindings Server level 1. Click Servers > Application servers >

server_name.

2. Under Security, click Web services: Default

bindings for Web services security.

3. Under Additional properties, click Collection

certificate store.

Using the collection certificate store, you can configure a related certificate revocation list by clicking

Certificate revocation list under Additional properties.

Add nonce:

Chapter 14. Web services 1199

Indicates whether nonce is included in the user name token for the token generator. Nonce is a unique

cryptographic number that is embedded in a message to help stop repeat, unauthorized attacks of user

name tokens.

 On the application level, if you select the Add nonce option, you can specify the following properties

under Additional properties:

 Table 49. Additional nonce properties

Property name

Default

value Explanation

com.ibm.ws.wssecurity.config.token.

BasicAuth.Nonce.cacheTimeout

600

seconds

Specifies the timeout value, in seconds, for the

nonce value that is cached on the server.

com.ibm.ws.wssecurity.config.token.

BasicAuth.Nonce.clockSkew

0 seconds Specifies the time, in seconds, before the nonce

time stamp expires.

com.ibm.ws.wssecurity.config.token.

BasicAuth.Nonce.maxAge

300

seconds

Specifies the clock skew value, in seconds, to

consider when the application server checks the

timeliness of the message.

These properties are available on the administrative console at the cell and server level. However, on the

application level, you can configure the properties under Additional properties.

This option is displayed on the cell, server, and application levels. This option is valid only when the

generated token type is a user name token.

Add timestamp:

Specifies whether to insert the time stamp into the user name token.

 This option is displayed on the cell, server, and application levels. This option is valid only when the

generated token type is a user name token.

Value type local name:

Specifies the local name of the value type for the generated token.

 For a user name token and an X.509 certificate security token, this product provides predefined value

types. When you specify the following local names, you do not need to specify the Uniform Resource

Identifier (URI) of value type.

Username token

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-
1.0#UsernameToken

X509 certificate token

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509

X509 certificates in a PKIPath

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509PKIPathv1

A list of X509 certificates and CRLs in a PKCS#7

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#PKCS7

Lightweight Third Party Authentication (LTPA)

LTPA_PROPAGATION

Important: For LTPA, the value type local name is LTPA. If you enter LTPA for the local name, you must

specify the http://www.ibm.com/websphere/appserver/tokentype/5.0.2 URI value in the Value

type URI field as well. For LTPA token propagation, the value type local name is

1200 Securing applications and their environment

LTPA_PROPAGATION. If you enter LTPA_PROPAGATION for the local name, you must specify the

http://www.ibm.com/websphere/appserver/tokentype URI value in the Value type URI field as

well. For the other predefined value types (Username token, X509 certificate token, X509

certificates in a PKIPath, and a list of X509 certificates and CRLs in a PKCS#7), the value for

the local name field begins with http://. For example, if you are specifying the user name

token for the value type, enter http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
username-token-profile-1.0#UsernameToken in the Value type local name field and then you

do not need to enter a value in the Value type URI field.

When you specify a custom value type for custom tokens, you can specify the local name and the URI of

the quality name (QName) of the value type. For example, you might specify Custom for the local name

and http://www.ibm.com/custom for the URI.

Value type URI:

Specifies the namespace URI of the value type for the generated token.

 When you specify the token generator for the user name token or the X.509 certificate security token, you

do not need to specify this option. If you want to specify another token, specify the URI of the QName of

the value type.

The application server provides the following predefined value type URIs:

v For the LTPA token: http://www.ibm.com/websphere/appserver/tokentype/5.0.2

v For the LTPA token propagation: http://www.ibm.com/websphere/appserver/tokentype

Algorithm URI collection

Use this page to view a list of uniform resource identifier (URI) algorithms for XML digital signature or XML

encryption that are mapped to an algorithm factory engine class. With algorithm mappings, service

providers can use other cryptographic algorithms for digest value calculation, digital signature signing and

verification, data encryption and decryption, and key encryption and decryption.

To view this administrative console page on the cell level, complete the following steps:

1. Click Security > Web services.

2. Under Additional properties, click Algorithm mappings.

3. Under Additional properties, click Algorithm URI.

To view administrative console page on the server level, complete the following steps:

1. Click Servers > Application servers > server_name.

2. Under Security, click Web services: Default bindings for Web services security.

3. Under Additional properties, click Algorithm mappings.

4. Under Additional properties, click Algorithm URI.

Algorithm URI:

Specifies the algorithm uniform resource identifier (URI) for the specified algorithm type.

Algorithm type:

Specifies the algorithm type.

Algorithm URI configuration settings

Use this page to specify the algorithm uniform resource identifier (URI) and its usage type.

This product supports the following algorithm URI types:

Chapter 14. Web services 1201

Message digest

Specifies the algorithm URI that is used for digest value calculation.

Signature

Specifies the algorithm URI that is used for digital signature, including both signature and signing

verification.

Data encryption

Specifies the algorithm URI that is used for both encrypting and decrypting data.

Key encryption

Specifies the algorithm URI that is used for encrypting and decrypting the encryption key.

If the URI is used for multiple usage types, then you must define a mapping of the URI to each usage

type.

To view this administrative console page on the server level, complete the following steps:

1. Click Servers > Application servers > server_name.

2. Under Security, click Web services: Default bindings for Web services security.

3. Under Additional properties, click Algorithm mappings.

Note: The Algorithm mappings feature is not supported when the Use the Federal Information

Processing Standard (FIPS) option has been selected on the SSL certificate and key

management panel of the administrative console. When this option is selected, the New button

in the Algorithm mappings panel is not available.

4. Click New.

5. Under Additional properties, click Algorithm URI > algorithm_URI_name

Algorithm URI:

Specifies the algorithm uniform resource identifier (URI) for the specified algorithm type.

 The algorithm URI that is defined on this page is available to the various binding configurations. For

example, if you specify an algorithm URI and select Signature from the Algorithm type field, the URI

displays in the Signature method field on the signing information panel.

Algorithm type:

Specifies the type of algorithm that is specified in the Algorithm URI field.

 The following types of algorithms are supported by this product. The following list shows where

configurations that are specified on this panel are displayed for a binding configuration:

 Algorithm type Explanation Location of the configuration

Signature This algorithm type is used for digital

signatures.

This configuration displays in the Signature

method field on the Signing information panel.

For information on how to access the Signing

information panel, see “Signing information

configuration settings” on page 1142.

Digest value

calculation

(message digest)

This algorithm type is used for calculating the

digest value.

This configuration displays in the Digest

method algorithm field on the Part references

panel. For information on how to access the

Part references panel, see “Part reference

configuration settings” on page 1148.

1202 Securing applications and their environment

Algorithm type Explanation Location of the configuration

Data encryption This algorithm type is used for encrypting data. This configuration displays in the Data

encryption algorithm field on the Encryption

information panel. For information on how to

access the Encryption information panel, see

“Encryption information configuration settings”

on page 1155.

Key encryption This algorithm type is used for encrypting the

key that is used for data encryption.

This configuration displays in the Key

encryption algorithm field on the Encryption

information panel. For information on how to

access the Encryption information panel, see

“Encryption information configuration settings”

on page 1155.

The actual implementation of the algorithm is done in the implementation class for the engine factory.

Algorithm mapping collection

You can view a list of custom uniform resource identifier (URI) algorithms for digest value calculation,

signature, key encryption, and data encryption. The application server maps these algorithms to an

implementation of the algorithm factory engine interface. With algorithm mappings, service providers can

extend the cryptographic algorithms for XML digital signature and XML encryption.

To view this administrative console page on the cell level, complete the following steps:

1. Click Security > Web services.

2. Under Additional properties, click Algorithm mappings.

To view this administrative console page on the server level, complete the following steps:

1. Click Servers > Application servers > server_name.

2. Under Security, click Web services: Default bindings for Web services security.

3. Under Additional properties, click Algorithm mappings.

Algorithm factory engine class:

Specifies the custom class that implements the engine factory implementation class for the algorithm

factory engine.

 The implementation class for the engine factory implements the cryptographic functions of the defined

uniform resource identifier (URI).

Note: The Algorithm mappings feature is not supported when the Use the Federal Information

Processing Standard (FIPS) algoriths option has been selected on the Global security panel of

the administrative console. When this option is selected, the New button in the Algorithm mappings

panel is not available.

Algorithm mapping configuration settings

Use this page to view a list of custom uniform resource identifier (URI) algorithms for digest value

calculation, signature, key encryption, and data encryption. The application server maps these algorithms

to an implementation of the algorithm factory engine interface. With algorithm mappings, service providers

can extend the cryptographic algorithms for XML digital signature and XML encryption.

To view this administrative console page on the server level, complete the following steps:

1. Click Servers > Application servers > server_name.

2. Under Security, click Web services: Default bindings for Web services security.

Chapter 14. Web services 1203

3. Under Additional properties, click Algorithm mappings > algorithm_factory_engine_class_name.

Note: The Algorithm mappings feature is not supported when the Use the Federal Information

Processing Standard (FIPS) option has been selected on the Global security panel of the

administrative console. When this option is selected, the New button in the Algorithm mappings

panel is not available.

Note: The Algorithm mappings feature is not supported when the Use the Federal Information

Processing Standard (FIPS) option has been selected on the SSL certificate and key

management panel of the administrative console. When this option is selected, the New button

in the Algorithm mappings panel is not available.

4. Click New.

Algorithm factory engine class:

Specifies the custom class that implements the engine factory interface.

 To use this algorithm mapping feature, you must specify a custom algorithm class in the Algorithm factory

engine class field for digital signature, data encryption, digest value calculation, and key encryption. The

algorithm factory engine provides a plug-in point for service providers to provide their implementation for

digest value calculation, digital signature, key encryption, and data encryption that is based on a specified

algorithm uniform resource identifier (URI). By clicking Algorithm URI under Additional properties, you can

specify the algorithm URI and its usage type. This product supports the following algorithm types:

Message digest

Specifies the algorithm URI that is used for digest value calculation.

Signature

Specifies the algorithm URI that is used for digital signatures including both signing and signature

verification.

Data encryption

Specifies the algorithm URI that is used for both encrypting and decrypting data.

Key encryption

Specifies the algorithm URI that is used for both encrypting and decrypting the encryption key.

If the URI is used for multiple usage types, then you must define a mapping of the URI to each usage

type. The actual implementation of the algorithm is provided by the custom class that implements the

engine factory interface. For more information, refer to the information center documentation on how to

implement a factory class.

Configuring the key locator on the server or cell level

The key locator information for the default generator bindings specifies which key locator implementation is

used to locate the key that is used for signature and encryption information if these bindings are not

defined at the application level. The key locator information for the default consumer bindings specifies

which key locator implementation is used to locate the key that is used for signature validation or

decryption if these bindings are not defined at the application level. WebSphere Application Server

provides default values for the bindings. However, you must modify the defaults for a production

environment.

Complete the following steps to configure the key locator on the server or cell level:

 1. Access the default bindings for the server level.

a. Click Servers > Application servers > server_name.

b. Under Security, click Web services: Default bindings for Web services security.

1204 Securing applications and their environment

2. Under Additional properties, click Key locator. You can configure the key locator configurations for

both the default generator and the default consumer in this location.

 3. Click New to create a key locator configuration, click Delete to delete an existing configuration, or

click the name of an existing key locator configuration to edit its settings. If you are creating a new

configuration, enter a unique name for the key locator configuration in the Key locator name field. For

example, you might specify sig_klocator.

 4. Specify a name for the key locator class implementation in the Key locator class name field. The key

locators that are associated with Version 6.0.x applications must implement the

com.ibm.wsspi.wssecurity.keyinfo.KeyLocator interface. WebSphere Application Server provides the

following default key locator class implementations for Version 6.0.x applications:

com.ibm.wsspi.wssecurity.keyinfo.KeyStoreLeyLocator

This implementation locates and obtains the key from a specified keystore file.

com.ibm.wsspi.wssecurity.keyinfo.SignerCertKeyLocator

This implementation uses the public key from the certificate of the signer. This class

implementation is used by the response generator.

com.ibm.wsspi.wssecurity.keyinfo.X509TokenKeyLocator

This implementation uses the X.509 security token from the sender message for digital

signature validation and encryption. This class implementation is used by the request

consumer and the response consumer.

For example, you might specify the com.ibm.wsspi.wssecurity.keyinfo.KeyStoreLeyLocator

implementation if you need the configuration to be the key locator for signing information.

 5. Specify the keystore password, the keystore location, and the keystore type. Keystore files contain

public and private keys, root certificate authority (CA) certificates, the intermediate CA certificate, and

so on. Keys that are retrieved from the keystore file are used to sign and validate or encrypt and

decrypt messages or message parts. If you specified the

com.ibm.wsspi.wssecurity.keyinfo.KeyStoreKeyLocator implementation for the key locator class

implementation, you must specify a key store password, location, and type.

a. Specify a password in the Key store password field. This password is used to access the keystore

file.

b. Specify the location of the keystore file in the Key store path field.

c. Select a keystore type from the Key store type field. The Java Cryptography Extension (JCE) that

is used supports the following key store types:

JKS Use this option if you are not using Java Cryptography Extensions (JCE) and if your

keystore file uses the Java Keystore (JKS) format.

JCEKS

Use this option if you are using Java Cryptography Extensions.

JCERACFKS

Use JCERACFKS if the certificates are stored in a SAF key ring (z/OS only).

PKCS11

Use this format if your keystore file uses the PKCS#11 file format. Keystore files that use

this format might contain Rivest Shamir Adleman (RSA) keys on cryptographic hardware

or might encrypt keys that use cryptographic hardware to ensure protection.

PKCS12

Use this option if your keystore file uses the PKCS#12 file format.

WebSphere Application Server provides some sample keystore files in the ${USER_INSTALL_ROOT}/
etc/ws-security/samples directory. For example, you might use the enc-receiver.jceks keystore

file for encryption keys. The password for this file is storepass and the type is JCEKS.

 Attention: Do not use these keystore files in a production environment. These samples are

provided for testing purposes only.

Chapter 14. Web services 1205

6. Click OK and Save to save the configuration.

 7. Under Additional properties, click Keys.

 8. Click New to create a key configuration, click Delete to delete an existing configuration, or click the

name of an existing key configuration to edit the settings. This entry specifies the name of the key

object within the keystore file. If you are creating a new configuration, enter a unique name in the Key

name field.

You must use a fully qualified distinguished name for the key name. For example, you might use

CN=Bob,O=IBM,C=US.

 9. Specify an alias in the Key alias field. The key alias is used by the key locator to search for key

objects in the keystore file.

10. Specify a password in the Key password field. The password is used to access the key object within

the keystore file.

11. Click OK and then click Save to save the configuration.

You have configured the key locator for the server or cell level.

Configure the key information for the default generator and the default consumer bindings that reference

this key locator.

Configuring the key information for the generator binding on the

server or cell level

Use the key information for the default generator to specify the key that is used by the signing or the

encryption information configurations if these bindings are not defined at the application level. The signing

and encryption information configurations can share the same key information, which is why they are both

defined on the same level. WebSphere Application Server provides default values for these bindings.

However, an administrator must modify these values for a production environment.

Complete the following steps to configure the key information for the generator binding on the server or

cell level:

 1. Access the default bindings for the server level.

a. Click Servers > Application servers > server_name .

b. Under Security, click Web services: Default bindings for Web services security.

 2. Under Default generator bindings, click Key information.

 3. Click New to create a key information configuration, click Delete to delete an existing configuration, or

click the name of an existing key information configuration to edit the settings. If you are creating a

new configuration, enter a unique name for the key configuration in the Key information name field.

For example, you might specify sig_keyinfo.

 4. Select a key information type from the Key information type field. WebSphere Application Server

supports the following types of key information:

Key identifier

This key information type is used when two parties agree on how to create a key identifier.

For example, a field of X.509 certificates can be used for the key identifier according to the

X.509 profile.

Key name

This key information type is used when the sender and receiver agree on the name of the

key.

Security token reference

This key information type is typically used when an X.509 certificate is used for digital

signature.

1206 Securing applications and their environment

Embedded token

This key information type is used to embed a security token in an embedded element.

X509 issuer name and issuer serial

This key information type specifies an X.509 certificate with its issuer name and serial

number.

Select Security token reference if you are using an X.509 certificate for the digital signature. In

these steps, it is assumed that Security token reference is selected for this field.

Important: This key information type must match the key information type that is specified for the

consumer.

 5. Select a key locator reference from the Key locator reference menu. In these steps, assume that the

key locator reference is called sig_klocator. The key locator reference is the name of the key locator

that is used to generate the key for digital signature. You must configure a key locator before you can

select it in this field. For more information on configuring the key locator, see “Configuring the key

locator on the server or cell level” on page 1204.

 6. Click Get keys to view a list of key name references. After you click Get keys, the key names that

are defined in the sig_klocator element are shown in the key name reference menu. If you change

the key locator reference, you must click Get keys again to display the list of key names that are

associated with the new key locator.

 7. Select a key name reference from the Key name reference menu. The key name reference specifies

the name of the key that is used for generating the digital signature or for encryption. The Key name

reference menu displays a list of key names that are defined for the selected key locator in the Key

locator reference field. For example, select signerkey. It is assumed that signer key is a key name

that is defined for the sig_klocator key locator.

 8. Select a token reference from the Token reference field. The token reference refers to the name of a

configured token generator. When a security token is required in the deployment descriptor, the token

reference attribute is required. If you select Security token reference in the Key information type

field, the token reference is required and you can specify an X.509 token generator. To specify an

X.509 token generator, you must have an X.509 token generator configured. To configure an X.509

token generator, see “Configuring token generators on the server or cell level” on page 1194. For the

remaining steps, it is assumed that an X.509 token generator that is named gen_tcon is already

configured.

 9. Optional: Select an encoding method from the Encoding method field This field specifies the

encoding format for the key identifier. The encoding method attribute is valid when you select Key

identifer as the key information type. WebSphere Application Server supports the following encoding

methods:

v http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-
1.0#Base64Binary

v http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#HexBinary

10. Optional: Select a calculation method from the Calculation method field. The calculation method

specifies the calculation algorithm that is used for the key identifier. This attribute is valid when you

select Key identifier as the key information type. WebSphere Application Server supports the

following calculation methods:

v http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#ITSHA1

v http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#IT60SHA1

11. Optional: Specify a Uniform Resource Identifier (URI) of the value type for a security token from the

Namespace URI field. The namespace URI is referenced by the key identifier. This attribute is valid

when you select Key identifier as the key information type. When you specify the X.509 certificate

token, you do not need to specify the namespace URI. If another token is specified, you must specify

the namespace URI. For example, you can specify http://www.ibm.com/websphere/appserver/
tokentype/5.0.2 for the Lightweight Third Party Authentication (LTPA) token and

http://www.ibm.com/websphere/appserver/tokentype for the LTPA_PROPAGATION token.

Chapter 14. Web services 1207

12. Optional: Specify the local name of the value type for a security token in the Local name field. The

local name is referenced by the key identifier. This attribute is valid when you select Key identifier as

the key information type. WebSphere Application Server supports the following local names:

For an X.509 certificate token

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509v3

For X.509 certificates in a PKIPath

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-
1.0#X509PKIPathv1

For a list of X.509 certificates and CRLs in a PKCS#7

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#PKCS7

For LTPA

LTPA

For LTPA_PROPAGATION

LTPA_PROPAGATION

13. Click OK and Save to save the configuration.

You have configured the key information for the generator binding at the server or cell level.

You must specify a similar key information configuration for the consumer.

Configuring the signing information for the generator binding on the

server or cell level

In the server-side extensions file (ibm-webservices-ext.xmi) and the client-side deployment descriptor

extensions file (ibm-webservicesclient-ext.xmi), you must specify which parts of the message are

signed. Also, you need to configure the key information that is referenced by the key information

references on the Signing information panel within the administrative console.

This task explains the steps that are needed for you to configure the signing information for the client-side

request generator and the server-side response generator bindings at the server or cell level. WebSphere

Application Server uses the signing information for the default generator to sign parts of the message that

include the body, time stamp, and user name token if these bindings are not defined at the application

level. The Application Server provides default values for bindings. However, an administrator must modify

the defaults for a production environment.

Complete the following steps to configure the signing information for the generator sections of the bindings

files on the server level:

 1. Access the default bindings for the server level.

a. Click Servers > Application servers > server_name.

b. Under Security, click Web services: Default bindings for Web services security.

 2. Under Default generator bindings, click Signing information.

 3. Click New to create a signing information configuration, click Delete to delete an existing

configuration, or click the name of an existing signing information configuration to edit the settings. If

you are creating a new configuration, enter a unique name for the signing configuration in the Signing

information name field. For example, you might specify gen_signinfo.

 4. Select a signature method algorithm from the Signature method field. The algorithm that is specified

for the default generator must match the algorithm that is specified for the default consumer.

WebSphere Application Server supports the following pre-configured algorithms:

v http://www.w3.org/2000/09/xmldsig#rsa-sha1

v http://www.w3.org/2000/09/xmldsig#hmac-sha1

v http://www.w3.org/2000/09/xmldsig#dsa-sha1

1208 Securing applications and their environment

http://www.w3.org/2000/09/xmldsig#rsa-sha1
http://www.w3.org/2000/09/xmldsig#hmac-sha1
http://www.w3.org/2000/09/xmldsig#dsa-sha1

Do not use this algorithm if you want the configured application to be compliant with the Basic

Security Profile (BSP). Any ds:SignatureMethod/@Algorithm element in a SIGNATURE based on a

symmetric key must have a value of http://www.w3.org/2000/09/xmldsig#rsa-sha1 or

http://www.w3.org/2000/09/xmldsig#hmac-sha1.

 5. Select a canonicalization method from the Canonicalization method field. The canonicalization

algorithm that you specify for the generator must match the algorithm for the consumer. WebSphere

Application Server supports the following pre-configured canonical XML and exclusive XML

canonicalization algorithms:

v http://www.w3.org/2001/10/xml-exc-c14n#

v http://www.w3.org/2001/10/xml-exc-c14n#WithComments

v http://www.w3.org/TR/2001/REC-xml-c14n-20010315

v http://www.w3.org/TR/2001/REC-xml-c14n-20010315#WithComments

 6. Select a key information signature type from the Key information signature type field. The key

information signature type determines how to digitally sign the key. WebSphere Application server

supports the following signature types:

None Specifies that the KeyInfo element is not signed.

Keyinfo

Specifies that the entire KeyInfo element is signed.

Keyinfochildelements

Specifies that the child elements of the KeyInfo element are signed.

The key information signature type for the generator must match the signature type for the consumer.

You might encounter the following situations:

v If you do not specify one of the previous signature types, WebSphere Application Server uses

keyinfo, by default.

v If you select Keyinfo or Keyinfochildelements and you select http://docs.oasis-open.org/wss/2004/
01/oasis-200401-wss-soap-message-security-1.0#STR-Transform as the transform algorithm in a

subsequent step, WebSphere Application Server also signs the referenced token.

 7. Select a signing key information reference from the Signing key information field. This selection is a

reference to the signing key that the Application Server uses to generate digital signatures. In the

binding files, this information is specified within the <signingKeyInfo> tag. The key that is used for

signing is specified by the key information element, which is defined at the same level as the signing

information. For more information, see “Configuring the key information for the generator binding on

the server or cell level” on page 1206.

 8. Click OK to save the configuration.

 9. Click the name of the new signing information configuration. This configuration is the one that you

specified in the previous steps.

10. Specify the part reference, digest algorithm, and transform algorithm. The part reference specifies

which parts of the message to digitally sign.

a. Under Additional Properties, click Part references > New to create a new part reference, click

Part references > Delete to delete an existing part reference, or click a part name to edit an

existing part reference.

b. Specify a unique part name for the message part that needs signing. This message part is

specified on both the server side and the client side. You must specify an identical part name for

both the server side and the client side. For example, you might specify reqint for both the

generator and the consumer.

Important: You do not need to specify a value for the Part reference in the default bindings like

you specify on the application level because the part reference on the application

level points to a particular part of the message that is signed. Because the default

bindings for the server level is applicable to all of the services that are defined on a

particular server, you cannot specify this value.

Chapter 14. Web services 1209

http://www.w3.org/2000/09/xmldsig#rsa-sha1
http://www.w3.org/2000/09/xmldsig#hmac-sha1

c. Select a digest method algorithm in the Digest method algorithm field. The digest method

algorithm that is specified in the binding files within the <DigestMethod> element is used in the

<SigningInfo> element.

WebSphere Application Server supports the following algorithms:

v http://www.w3.org/2000/09/xmldsig#sha1

v http://www.w3.org/2001/04/xmlenc#sha256

v http://www.w3.org/2001/04/xmlenc#sha512

d. Click OK and Save to save the configuration.

e. Click the name of the new part reference configuration. This configuration is the one that you

specified in the previous steps.

f. Under Additional properties, click Transforms > New to create a new transform, click Transforms

> Delete to delete a transform, or click a transform name to edit an existing transform. If you

create a new transform configuration, specify a unique name. For example, you might specify

reqint_body_transform1.

g. Select a transform algorithm from the menu. The transform algorithm is specified within the

<Transform> element. This algorithm element specifies the transform algorithm for the digital

signature. WebSphere Application Server supports the following algorithms:

v http://www.w3.org/2001/10/xml-exc-c14n#

v http://www.w3.org/TR/1999/REC-xpath-19991116

Do not use this transform algorithm if you want your configured application to be compliant with

the Basic Security Profile (BSP). Instead use http://www.w3.org/2002/06/xmldsig-filter2 to

ensure compliance.

v http://www.w3.org/2002/06/xmldsig-filter2

v http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#STR-
Transform

v http://www.w3.org/2002/07/decrypt#XML

v http://www.w3.org/2000/09/xmldsig#enveloped-signature

The transform algorithm that you select for the generator must match the transform algorithm that

you select for the consumer.

Important: If both of the following conditions are true, WebSphere Application Server signs the

referenced token:

v You previously selected the Keyinfo or the Keyinfochildelements option from the

Key information signature type field on the signing information panel.

v You select http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-
message-security-1.0#STR-Transform as the transform algorithm.

11. Click Apply.

12. Optional: Determine whether to disable the Inclusive namespace prefix list. The Exclusive XML

Canonicalization Version 1.0 specification recommends that you include all of the namespace

declarations that correspond to the namespace prefix in the canonicalization form. For security

reasons, WebSphere Application Server, by default, includes the prefix in the digital signature for Web

services security. However, some implementations of Web services security cannot handle this prefix

list. WebSphere Application Server can handle digitally signed messages that either contain or do not

contain the prefix list. If you experience a signature validation failure when a signed Simple Object

Access Protocol (SOAP) message is sent and you are using another vendor in your environment, it is

highly recommended that you check with their Web site for a possible fix to their implementation

before you disable this property. To disable this property, complete the following steps:

a. Under Additional properties, click Canonicalization method properties > New.

b. In the Property name field, enter the com.ibm.wsspi.wssecurity.dsig.inclusiveNamespaces

property.

1210 Securing applications and their environment

http://www.w3.org/TR/xml-exc-c14n/
http://www.w3.org/TR/xml-exc-c14n/

c. In the Property value field, enter the false value.

d. Click OK.

13. Click Save at the top of the panel to save your configuration.

After completing these steps, you have configured the signing information for the generator on the server

level.

You must specify a similar signing information configuration for the consumer.

Configuring the encryption information for the generator binding on

the server or cell level

The encryption information for the default generator specifies how to encrypt the information on the sender

side if these bindings are not defined at the application level. WebSphere Application Server provides

default values for the bindings. However, an administrator must modify the defaults for a production

environment.

Complete the following steps to configure the encryption information for the generator binding on the

server level:

1. Access the default bindings for the server level.

a. Click Servers > Application servers > server_name.

b. Under Security, click Web services: Default bindings for Web services security.

2. Under Default generator bindings, click Encryption information.

3. Click New to create an encryption information configuration, click Delete to delete an existing

configuration, or click the name of an existing encryption information configuration to edit the settings.

If you are creating a new configuration, enter a unique name for the encryption configuration in the

Encryption information name field. For example, you might specify gen_encinfo.

4. Select a data encryption algorithm from the Data encryption algorithm field. This algorithm is used to

encrypt the data. WebSphere Application Server supports the following pre-configured algorithms:

v http://www.w3.org/2001/04/xmlenc#tripledes-cbc

v http://www.w3.org/2001/04/xmlenc#aes128-cbc

v http://www.w3.org/2001/04/xmlenc#aes256-cbc

To use this algorithm, you must download the unrestricted Java Cryptography Extension (JCE)

policy file from the following Web site: http://www.ibm.com/developerworks/java/jdk/security/
index.html.

v http://www.w3.org/2001/04/xmlenc#aes192-cbc

To use this algorithm, you must download the unrestricted Java Cryptography Extension (JCE)

policy file from the following Web site: http://www.ibm.com/developerworks/java/jdk/security/
index.html.

Do not use this algorithm, the 192-bit key encryption algorithm, if you want your configured

application to be in compliance with the Basic Security Profile (BSP).

The data encryption algorithm that you select for the generator side must match the data encryption

algorithm that you select for the consumer side.

5. Select a key encryption algorithm from the Key encryption algorithm field. This algorithm is used to

encrypt the key. WebSphere Application Server supports the following pre-configured algorithms:

v http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p.

When running with JDK 1.4, the list of supported key transport algorithms will not include this one.

This algorithm will appear in the list of supported key transport algorithms when running with JDK

1.5.

Chapter 14. Web services 1211

http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p

Restriction: This algorithm is not supported when the WebSphere Application Server is running in

Federal Information Processing Standard (FIPS) mode.

By default, the RSA-OAEP algorithm uses the SHA1 message digest algorithm to compute a

message digest as part of the encryption operation. Optionally, you can use the SHA256 or SHA512

message digest algorithm by specifying a key encryption algorithm property. The property name is:

com.ibm.wsspi.wssecurity.enc.rsaoaep.DigestMethod. The property value is one of the following

URIs of the digest method:

– http://www.w3.org/2001/04/xmlenc#sha256

– http://www.w3.org/2001/04/xmlenc#sha512

By default, the RSA-OAEP algorithm uses a null string for the optional encoding octet string for the

OAEPParams. You can provide an explicit encoding octet string by specifying a key encryption

algorithm property. For the property name, you can specify

com.ibm.wsspi.wssecurity.enc.rsaoaep.OAEPparams. The property value is the base 64-encoded

value of the octet string.

Important: You can set these digest method and OAEPParams properties on the generator side

only. On the consumer side, these properties are read from the incoming Simple Object

Access Protocol (SOAP) message.

v http://www.w3.org/2001/04/xmlenc#rsa-1_5

v http://www.w3.org/2001/04/xmlenc#kw-tripledes

v http://www.w3.org/2001/04/xmlenc#kw-aes128

v http://www.w3.org/2001/04/xmlenc#kw-aes256

To use this algorithm, you must download the unrestricted Java Cryptography Extension (JCE)

policy file from the following Web site: http://www.ibm.com/developerworks/java/jdk/security/
index.html.

v http://www.w3.org/2001/04/xmlenc#kw-aes192

To use this algorithm, you must download the unrestricted Java Cryptography Extension (JCE)

policy file from the following Web site: http://www.ibm.com/developerworks/java/jdk/security/
index.html.

Do not use this algorithm, the 192-bit key encryption algorithm, if you want your configured

application to be in compliance with the Basic Security Profile (BSP).

If you select None, the key is not encrypted.

The key encryption algorithm that you select for the generator side must match the key encryption

algorithm that you select for the consumer side.

6. Select a encryption key configuration from the Encryption key information field. This attribute specifies

the name of the key that is used to encrypt the message. To configure the key information, see

“Configuring the key information for the generator binding on the server or cell level” on page 1206.

7. Click OK and then click Save to save the configuration.

You have configured the encryption information for the generator binding at the server or cell level.

You must specify a similar encryption information configuration for the consumer.

Configuring trusted ID evaluators on the server or cell level

You can configure trusted identity (ID) evaluators. The trusted ID evaluator determines whether or not to

trust the identity-asserting authority.

This task provides the steps that are needed to configure trusted identity (ID) evaluators. The trusted ID

evaluator determines whether to trust the identity-asserting authority. After the ID is trusted, the

WebSphere Application Server issues the proper credentials based on the identity, which are used in a

1212 Securing applications and their environment

http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html

downstream call to another server for invoking resources. The trusted ID evaluator implements the

com.ibm.wsspi.wssecurity.id.TrustedIDEvaluator interface.

Complete the following steps to configure the trusted ID evaluators on the server level:

1. Access the default bindings for the server level.

a. Click Servers > Application servers > server_name.

b. Under Security, click Web services: Default bindings for Web services security.

2. Under Additional properties, click Trusted ID evaluators.

3. Click New to create a trusted ID evaluator configuration, click Delete to delete an existing

configuration, or click the name of an existing configuration to edit the settings. If you are creating a

new configuration, enter a unique name for the trusted ID evaluator configuration in the Trusted ID

evaluator name field. This field specifies the name that is used by the application binding to refer to a

trusted identity (ID) evaluator that is defined in the default binding.

4. Specify a class name in the Trusted ID evaluator class name field. The default class name is

com.ibm.wsspi.wssecurity.id.TrustedIDEvaluatorImpl. The specified trusted ID evaluator class name

must implement the com.ibm.wsspi.wssecurity.id.TrustedIDEvaluator class. When you use the default

TrustedIDEvaluator class, you must specify the name and value properties for the default trusted ID

evaluator to create the trusted ID list for evaluation.

5. Under Additional properties, click Properties > New.

6. Specify the trusted ID evaluator name as a property name. You must specify the trusted ID evaluator

name in the form, trustedId_n, where _n is an integer from zero (0) to n.

7. Specify the trusted ID as a property value.

property name="trustedId_0", value="CN=Bob,O=ACME,C=US"

property name="trustedId_1, value="user1"

If a distinguished name (DN) is used, the space is removed for comparison.

8. Click OK and then Save.

You have configured the trusted ID evaluators at the server or cell level.

Trusted ID evaluator collection

Use this page to view a list of trusted identity (ID) evaluators. The trusted ID evaluator determines whether

to trust the identity-asserting authority. After the ID is trusted, the application server issues the proper

credentials based on the identity, which are used in a downstream call for invoking resources. The trusted

ID evaluator implements the com.ibm.wsspi.wssecurity.id.TrustedIDEvaluator interface.

To view this administrative console page for trusted ID evaluators on the server level, complete the

following steps:

1. Click Servers > Application servers > server_name.

2. Under Security, click Web services: Default bindings for Web services security.

3. Under Additional properties, click Trusted ID evaluators.

4. Click New to create a trusted ID evaluator or click Delete to a delete a trusted ID evaluator.

Version 6 and later applications

To view this administrative console page for trusted ID

evaluators on the application level, complete the following steps:

1. Click Applications > Enterprise applications > application_name.

2. Under Related items, click EJB modules or Web modules.

3. Click URI_name.

4. Under Additional properties, click Web services: Server security bindings.

5. Under Request consumer (receiver) binding, click Edit custom.

6. Click Trusted ID evaluators.

Chapter 14. Web services 1213

7. Click New to create a trusted ID evaluator or click Delete to delete a trusted ID evaluator.

Version 5.x application

To view this administrative console page for trusted ID evaluators on

the application level, complete the following steps:

1. Click Applications > Enterprise applications > application_name.

2. Click Manage modules > URI_name.

3. Under Web Service Security Properties, click Web services: Server security bindings.

4. Click Edit under Request receiver binding.

5. Click Trusted ID evaluators.

6. Click New to create a trusted ID evaluator or click Delete to delete a trusted ID evaluator.

Important: Trusted ID evaluators are only required for the request receiver (Version 5.x applications) and

the request consumer (Version 6.0.x.x applications), if identity assertion is configured.

Using this trusted ID evaluator collection panel, complete the following steps:

1. Specify a trusted ID evaluator name and a trusted ID evaluator class name.

2. Save your changes by clicking Save in the messages section at the top of the administrative console.

3. Click Update run time to update the Web services security run time with the default binding

information, which is found in the ws_security.xml file. The configuration changes made to the other

Web services also are updated in the Web services security run time.

Trusted ID evaluator name:

Specifies the unique name of the trusted ID evaluator.

Trusted ID evaluator class name:

Specifies the class name of the trusted ID evaluator.

Trusted ID evaluator configuration settings

Use this information to configure trust identity (ID) evaluators.

To view this administrative console page for trusted ID evaluators on the server level, complete the

following steps:

1. Click Servers > Application servers > server_name.

2. Under Security, click Web services: Default bindings for Web services security.

3. Under Additional properties, click Trusted ID evaluators.

4. Click New to create a trusted ID evaluator or click the name of an existing configuration to modify the

settings.

Version 6 and later applications

To view this administrative console page for trusted ID

evaluators on the application level, complete the following steps:

1. Click Applications > Enterprise applications > application_name.

2. Click Manage modules.

3. Click the URI_name.

4. Under Web Services Security Properties, click Web services: Server security bindings.

5. Under Request consumer (receiver) binding, click Edit custom.

6. Click Trusted ID evaluators.

7. Click New to create a trusted ID evaluator or click Delete to delete a trusted ID evaluator.

1214 Securing applications and their environment

Version 5.x application To view this administrative console page for trusted ID evaluators on

the application level, complete the following steps:

1. Click Applications > Enterprise applications > application_name.

2. Under Related items, click EJB modules or Web modules > URI_name.

3. Under Additional properties, click Web services: Server security bindings.

4. Click Edit under Request receiver binding.

5. Click Trusted ID evaluators.

6. Click New to create a trusted ID evaluator or click Delete to delete a trusted ID evaluator.

Important: Trusted ID evaluators are only required for the request receiver (Version 5.x applications) and

the request consumer (Version 6.x applications), if identity assertion is configured.

You can specify one of the following options:

None Choose this option if you are not specifying a trusted ID evaluator.

Existing evaluator definition

Choose this option to specify a currently defined trusted ID evaluator.

Binding evaluator definition

Choose this option to specify a new trusted ID evaluator. A description of the required fields

follows.

Trusted ID evaluator name:

Specifies the name that is used by the application binding to refer to a trusted identity (ID) evaluator that is

defined in the default binding.

Trusted ID evaluator class name:

Specifies the class name of the trusted ID evaluator.

 The specified trusted ID evaluator class name must implement the

com.ibm.wsspi.wssecurity.id.TrustedIDEvaluator interface. The default TrustedIDEvaluator class is

com.ibm.wsspi.wssecurity.id.TrustedIDEvaluatorImpl. When you use this default TrustedIDEvaluator class,

you must specify the name and the value properties for the default trusted ID evaluator to create the

trusted ID list for evaluation.

To specify the name and value properties, complete the following steps:

1. Under Additional properties, click Properties > New.

2. Specify the trusted ID evaluator name as a property name. You must specify the trusted ID evaluator

name in the form, trustedId_n, where _n is an integer from zero (0) to n.

3. Specify the trusted ID as a property value.

For example:

property name=″trustedId_0″, value=″CN=Bob,O=ACME,C=US″

property name=″trustedId_1″, value=″user1″

If a distinguished name (DN) is used, the space is removed for comparison.

 Default com.ibm.wsspi.wssecurity.id.TrustedIDEvaluatorImpl

Chapter 14. Web services 1215

See the programming model information in the documentation for an explanation of how to implement the

com.ibm.wsspi.wssecurity.id.TrustedIDEvaluator interface.

Configuring token consumers on the server or cell level

The token consumer on the server or cell level is used to specify the information that is needed to process

the security token if it is not defined at the application level. WebSphere Application Server provides

default values for bindings. You must modify the defaults for a production environment.

Complete the following steps to configure the token consumers on the server level.

 1. Access the default bindings for the server level.

a. Click Servers > Application servers > server_name.

b. Under Security, click Web services: Default bindings for Web services security.

 2. Under Default consumer bindings, click Token consumers.

 3. Click New to create a token consumer configuration, click Delete to delete an existing configuration,

or click the name of an existing token consumer configuration to edit its settings. If you are creating a

new configuration, enter a unique name for the token consumer configuration in the Token consumer

name field. For example, you might specify sig_cgen. This field specifies the name of the token

consumer element.

 4. Specify a class name in the Token consumer class name field. The token consumer class must

implement the com.ibm.wsspi.wssecurity.token.TokenConsumerComponent interface. The token

consumer class name must be similar to the token generator class name.

For example, if your application requires an X.509 certificate token consumer, you can specify the

com.ibm.wsspi.wssecurity.token.X509TokenGenerator class name on the Token generator panel and

the com.ibm.wsspi.wssecurity.token.X509TokenConsumer class name in this field. WebSphere

Application Server provides the following default token consumer class implementations:

com.ibm.wsspi.wssecurity.token.UsernameTokenConsumer

This implementation integrates a user name token.

com.ibm.wsspi.wssecurity.token.X509TokenConsumer

This implementation integrates an X.509 certificate token.

com.ibm.wsspi.wssecurity.token.LTPATokenConsumer

This implementation integrates a Lightweight Third Party Authentication (LTPA) token.

com.ibm.wsspi.wssecurity.token.IDAssertionUsernameTokenConsumer

This implementation integrates an IDAssertionUsername token.

 A corresponding token generator class does not exist for this implementation.

 5. Select a certificate path option. The certificate path specifies the certificate revocation list (CRL) that

is used for generating a security token wrapped in a PKCS#7 with a CRL. WebSphere Application

Server provides the following certificate path options:

None If you select this option, the certificate path is not specified.

Trust any

If you select this option, any certificate is trusted. When the received token is consumed, the

certificate path validation is not processed.

Dedicated signing information

If you select this option, you can specify a trust anchor and a certificate store. When you

select the trust anchor or the certificate store of a trusted certificate, you must configure the

collection certificate store before setting the certificate path. To define a collection certificate

store on the server or cell level, see “Configuring the collection certificate store for the server

or cell-level bindings” on page 1191.

1216 Securing applications and their environment

a. Select a trust anchor in the Trust anchor field. WebSphere Application Server provides two

sample trust anchors. However, it is recommended that you configure your own trust anchors for

a production environment. For information on configuring a trust anchor, see “Configuring trust

anchors on the server or cell level” on page 1190.

b. Select a collection certificate store in the Certificate store field. WebSphere Application Server

provides a sample collection certificate store. If you select None, the collection certificate store is

not specified. For information on specifying a list of certificate stores that contain untrusted,

intermediary certificate files awaiting validation, see “Configuring trusted ID evaluators on the

server or cell level” on page 1212.

 6. Select a trusted ID evaluator from the Trusted ID evaluation reference field. This field specifies a

reference to the Trusted ID evaluator class name that is defined in Trusted ID evaluators panel. The

trusted ID evaluator is used for evaluating whether the received ID is trusted. If you select None, the

trusted ID evaluator is not referenced in this token consumer configuration. To configure a trusted ID

evaluator, see “Configuring trusted ID evaluators on the server or cell level” on page 1212.

 7. Select the Verify nonce option if a nonce is included in a user name token on the generator side.

Nonce is a unique cryptographic number that is embedded in a message to help stop repeat,

unauthorized attacks of user name tokens. The Verify nonce option is available if you specify a user

name token for the token consumer and nonce is added to the user name token on the generator

side.

 8. Select the Verify timestamp option if a time stamp is included in the user name token on the

generator side. The Verify Timestamp option is available if you specify a user name token for the

token consumer and a time stamp is added to the user name token on the generator side.

 9. Specify the local name of the value type for the integrated token. This entry specifies the local name

of the value type for a security token that is referenced by the key identifier. This attribute is valid

when Key identifier is selected as the key information type. To specify the key information type, see

“Configuring the key information for the consumer binding on the server or cell level” on page 1224.

WebSphere Application Server has predefined value type local names for the user name token and

the X.509 certificate security token. Enter one of the following local names for the user name token

and the X.509 certificate security token. When you specify the following local names, you do not need

to specify the URI of the value type:

Username token

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-
1.0#UsernameToken

X.509 certificate token

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509v3

X.509 certificates in a PKIPath

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-
1.0#X509PKIPathv1

A list of X.509 certificates and CRLs in a PKCS#7

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#PKCS7

Note: To specify Lightweight Third Party Authentication (LTPA) or token propagation

(LTPA_PROPAGATION), you must specify both the value type local name and the Uniform

Resource Identifier (URI). For LTPA, specify LTPA for the local name and http://www.ibm.com/
websphere/appserver/tokentype/5.0.2 for the URI. For LTPA token propagation, specify

LTPA_PROPAGATION for the local name and http://www.ibm.com/websphere/appserver/
tokentype for the URI.

For example, when an X.509 certificate token is specified, you can use http://docs.oasis-open.org/
wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509v3 for the local name. When you

specify the local name of another token, you must specify a value type Qname. For example:

uri=http://www.ibm.com/custom, localName=CustomToken

Chapter 14. Web services 1217

10. Specify the value type uniform resource identifier (URI) in the URI field. This entry specifies the

namespace URI of the value type for a security token that is referenced by the key identifier. This

attribute is valid when Key identifier is selected as the key information type on the Key information

panel for the default generator. When you specify the token consumer for the user name token or an

X.509 certificate security token, you do not need to specify this option. If you specify another token,

you need to specify the URI of the QName for the value type.

11. Click OK and then Save to save the configuration. After saving the token generator configuration, you

can specify a Java Authentication and Authorization Service (JAAS) configuration for your token

consumer.

12. Click the name of your token generator configuration.

13. Under Additional properties, click JAAS configuration.

14. Select a JAAS configuration from the JAAS configuration name field. The field specifies the name of

the JAAS system for application login configuration. You can specify additional JAAS system and

application configurations by clicking Security > Global security. Under Authentication, click JAAS

configuration and either Application logins > New or System logins > New. Do not remove the

predefined system or application login configurations. However, within these configurations, you can

add module class names and specify the order in which WebSphere Application Server loads each

module. WebSphere Application Server provides the following predefined JAAS configurations:

ClientContainer

This selection specifies the login configuration that is used by the client container

applications. The configuration uses the CallbackHandler application programming interface

(API) that is defined in the deployment descriptor for the client container. To modify this

configuration, see the JAAS configuration panel for application logins.

WSLogin

This selection specifies whether all of the applications can use the WSLogin configuration to

perform authentication for the security run time. To modify this configuration, see the JAAS

configuration panel for application logins.

DefaultPrincipalMapping

This selection specifies the login configuration that is used by Java 2 Connectors (J2C) to

map users to principals that are defined in the J2C authentication data entries. To modify this

configuration, see the JAAS configuration panel for application logins.

system.wssecurity.IDAssertion

This selection enables a Version 5.x application to use identity assertion to map a user name

to a WebSphere Application Server credential principal. To modify this configuration, see the

JAAS configuration panel for system logins.

system.wssecurity.Signature

This selection enables a Version 5.x application to map a distinguished name (DN) in a

signed certificate to a WebSphere Application Server credential principal. To modify this

configuration, see the JAAS configuration panel for system logins.

system.LTPA_WEB

This selection processes login requests that are used by the Web container such as servlets

and JavaServer Pages (JSP) files. To modify this configuration, see the JAAS configuration

panel for system logins.

system.WEB_INBOUND

This selection handles login requests for Web applications, which include servlets and

JavaServer Pages (JSP) files. This login configuration is used by WebSphere Application

Server Version 5.1.1. To modify this configuration, see the JAAS configuration panel for

system logins.

system.RMI_INBOUND

This selection handles logins for inbound Remote Method Invocation (RMI) requests. This

1218 Securing applications and their environment

login configuration is used by WebSphere Application Server Version 5.1.1. To modify this

configuration, see the JAAS configuration panel for system logins.

system.DEFAULT

This selection handles the logins for inbound requests that are made by internal

authentications and most of the other protocols except Web applications and RMI requests.

This login configuration is used by WebSphere Application Server Version 5.1.1. To modify

this configuration, see the JAAS configuration panel for system logins.

system.RMI_OUTBOUND

This selection processes RMI requests that are sent outbound to another server when the

com.ibm.CSIOutboundPropagationEnabled property is true. This property is set in the CSIv2

authentication panel. To access the panel, click Security > Secure administrative,

applications, and infrastructure. Under Authentication, click RMI/IIOP security and clickr

CSIv2 outbound authentication. To set the com.ibm.CSIOutboundPropagationEnabled

property, select Security attribute propagation. To modify this JAAS login configuration, see

the JAAS - System logins panel.

system.wssecurity.X509BST

This section verifies an X.509 binary security token (BST) by checking the validity of the

certificate and the certificate path. To modify this configuration, see the JAAS configuration

panel for system logins.

system.wssecurity.PKCS7

This selection verifies an X.509 certificate with a certificate revocation list in a PKCS7 object.

To modify this configuration, see the JAAS configuration panel for system logins.

system.wssecurity.PkiPath

This section verifies an X.509 certificate with a public key infrastructure (PKI) path. To modify

this configuration, see the JAAS configuration panel for system logins.

system.wssecurity.UsernameToken

This selection verifies the basic authentication (user name and password) data. To modify this

configuration, see the JAAS configuration panel for system logins.

system.wssecurity.IDAssertionUsernameToken

This selection enables Version 6 and later applications to use identity assertion to map a user

name to a WebSphere Application Server credential principal. To modify this configuration,

see the JAAS configuration panel for system logins.

system.WSS_INBOUND

This selection specifies the login configuration for inbound or consumer requests for security

token propagation using Web services security. To modify this configuration, see the JAAS

configuration panel for system logins.

system.WSS_OUTBOUND

This selection specifies the login configuration for outbound or generator requests for security

token propagation using Web services security. To modify this configuration, see the JAAS

configuration panel for system logins.

None With this selection, you do not specify a JAAS login configuration.

15. Click OK and then Save to save the configuration.

You have configured the token consumer at the server or cell level.

You must specify a similar token generator configuration for the server or cell level.

Token consumer collection

Use this page to view the token consumer. The information is used on the consumer side only to process

the security token.

Chapter 14. Web services 1219

To view this administrative console page for the server level, complete the following steps:

1. Click Servers > Application servers > server_name.

2. Under Security, click Web services: Default bindings for Web services security.

3. Under Default generator bindings, click Token consumers.

To view this administrative console page for Version 6 and later applications on the application level,

complete the following steps:

1. Click Applications > Enterprise applications > application_name.

2. Click Manage modules > URI_name.

3. Under Web Services Security Properties, you can access the signing information for the following

bindings:

v For the Response generator (sender) binding, click Web services: Server security bindings.

Under Response generator (sender) binding, click Edit custom. Under Required properties, click

Token consumers.

v For the Response consumer (receiver) binding, click Web services: Client security bindings.

Under Response consumer (receiver) binding, click Edit custom. Under Required properties, click

Token consumers.

Token consumer name:

Specifies the name of the token consumer configuration.

Token consumer class name:

Specifies the name of the token consumer implementation class.

 This class must implement the com.ibm.wsspi.wssecurity.token.TokenConsumerComponent interface.

Token consumer configuration settings

Use this page to specify the information for the token consumer. The information is used at the consumer

side only to process the security token.

To view this administrative console page for the server level, complete the following steps:

1. Click Servers > Application servers > server_name .

2. Under Security, click Web services: Default bindings for Web services security.

3. Under Default consumer bindings, click Token consumers > token_consumer_name or click New to

create a new token consumer.

To view this administrative console page for Version 6 and later applications on the application level,

complete the following steps:

1. Click Applications > Enterprise applications > application_name .

2. Click Manage modules > URI_name.

3. Under Web Services Security Properties, you can access the signing information for the following

bindings:

v For the Response generator (sender) binding, click Web services: Server security bindings.

Under Response generator (sender) binding, click Edit custom. Under Required properties, click

Token consumers.

v For the Response consumer (receiver) binding, click Web services: Client security bindings.

Under Response consumer (receiver) binding, click Edit custom. Under Required properties, click

Token consumers.

4. Click New to specify a new configuration or click the name of an existing configuration to modify its

settings.

1220 Securing applications and their environment

Before specifying additional properties, specify a value in the Token consumer name, the Token consumer

class name, and the Value type local name fields.

Token consumer name:

Specifies the name of the token consumer configuration.

Token consumer class name:

Specifies the name of the token consumer implementation class.

 This class must implement the com.ibm.wsspi.wssecurity.token.TokenConsumerComponent interface.

Part reference:

Specifies a reference to the name of the security token that is defined in the deployment descriptor.

 On the application level, when the security token is not specified in the deployment descriptor, the Part

reference field is not displayed.

Certificate path:

Specifies the trust anchor and the certificate store.

 You can select the following options:

None If you select this option, the certificate path is not specified.

Trust any

If you select this option, any certificate is trusted. When the received token is incorporated, the

certificate path validation is not processed.

Dedicated signing information

If you select this option, you can specify the trust anchor and the certificate store. When you select

the trust anchor or the certificate store of a trusted certificate, you must configure the collection

certificate store before setting the certificate path.

Trust anchor

You can specify a trust anchor for the following bindings on the following levels:

 Binding name Cell level, server level, or

application level

Path

Default consumer binding Server level Click Servers > Application servers >

server_name.

Under Security, click Web services: Default

bindings for Web services security.

Under Additional properties, click Trust

anchors.

Chapter 14. Web services 1221

Certificate store

You can specify a certificate path configuration for the following bindings on the following levels:

 Binding name Cell level, server level, or

application level

Path

Default consumer binding Server level 1. Click Servers > Application servers >

server_name.

2. Under security, click Web services: Default

bindings for Web services security.

3. Under Additional properties, click Collection

certificate store.

Trusted ID evaluator reference:

Specifies the reference to the Trusted ID evaluator class name that is defined in the Trusted ID evaluators

panel. The trusted ID evaluator is used for determining whether the received ID is trusted.

 You can select the following options:

None If you select this option, the trusted ID evaluator is not specified.

Existing evaluator definition

If you select this option, you can select one of the configured trusted ID evaluators.

 You can specify a certificate path configuration for the following bindings on the following levels:

 Binding name Cell level, server level, or

application level

Path

Default consumer binding Server level 1. Click Servers > Application servers >

server_name.

2. Under security, click Web services: Default

bindings for Web services security.

3. Under Additional properties, click Trusted ID

evaluators.

Binding evaluator definition

If you select this option, you can specify a new trusted ID evaluator and its class name.

When you select a trusted ID evaluator reference, you must configure the trusted ID evaluators before

setting the token consumer.

The Trusted ID evaluator field is displayed in the default binding configuration and the application server

binding configuration.

Verify nonce:

Specifies whether the nonce of the user name token is verified.

 This option is displayed on the cell, server, and application levels. This option is valid only when the type

of incorporated token is the user name token.

Verify timestamp:

Specifies whether the time stamp of user name token is verified.

1222 Securing applications and their environment

This option is displayed on the cell, server, and application levels. This option is valid only when the type

of incorporated token is the user name token.

Value type local name:

Specifies the local name of value type for the consumed token.

 This product has predefined value type local names for the user name token and the X.509 certificate

security token. Use the following local names for the user name token and the X.509 certificate security

token. When you specify the following local names, you do not need to specify the Uniform Resource

Identifier (URI) of the value type:

Username token

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-
1.0#UsernameToken

X509 certificate token

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509

X509 certificates in a PKIPath

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509PKIPathv1

A list of X509 certificates and CRLs in a PKCS#7

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#PKCS7

Lightweight Third Party Authentication (LTPA)

LTPA_PROPAGATION

Important: For Lightweight Third Party Authentication (LTPA), the value type local name is LTPA. If you

enter LTPA for the local name, you must specify the http://www.ibm.com/websphere/appserver/
tokentype/5.0.2 URI value in the Value type URI field as well. For LTPA token propagation, the

value type local name is LTPA_PROPAGATION. If you enter LTPA_PROPAGATION for the local name,

you must specify the http://www.ibm.com/websphere/appserver/tokentype URI value in the

Value type URI field as well.For the other predefined value types (Username token, X509

certificate token, X509 certificates in a PKIPath, and a list of X509 certificates and CRLs in a

PKCS#7), the value for the local name field begins with http://. For example, if you are

specifying the username token for the value type, enter http://docs.oasis-open.org/wss/
2004/01/oasis-200401-wss-username-token-profile-1.0#UsernameToken in the value type

local name field and then you do not need to enter a value in the value type URI field.

When you specify a custom value type for custom tokens, you can specify the local name and the URI of

the Quality name (QName) of the value type. For example, you might specify Custom for the local name

and http://www.ibm.com/custom for the URI.

Value type URI:

Specifies the namespace URI of the value type for the integrated token.

 When you specify the token consumer for the user name token or the X.509 certificate security token, you

do not need to specify this option. If you want to specify another token, specify the URI of the QName for

the value type.

The application server provides the following predefined value type URIs:

v For the LTPA token: http://www.ibm.com/websphere/appserver/tokentype/5.0.2

v For the LTPA token propagation: http://www.ibm.com/websphere/appserver/tokentype

Chapter 14. Web services 1223

Configuring the key information for the consumer binding on the

server or cell level

The key information for the default consumer is used to specify the key that is used by the signing or the

encryption information configurations if these bindings are not defined at the application level. The signing

and encryption information configurations can share the same key information, which is why they are both

defined on the same level. WebSphere Application Server provides default values for these bindings.

However, an administrator must modify these values for a production environment.

Complete the following steps to configure the key information for the consumer binding on the server or

cell level:

1. Access the default bindings for the server level.

a. Click Servers > Application servers > server_name.

b. Under Security, click Web services: Default bindings for Web services security.

2. Under Default consumer bindings, click Key information.

3. Click New to create a key information configuration, click Delete to delete an existing configuration, or

click the name of an existing key information configuration to edit the settings. If you are creating a

new configuration, enter a unique name for the key configuration in the Key information name field. For

example, you might specify con_signkeyinfo.

4. Select a key information type from the Key information type field. WebSphere Application Server

supports the following types of key information:

Key identifier

This key information type is used when two parties agree on how to create a key identifier. For

example, a field of X.509 certificates can be used for the key identifier according to the X.509

profile.

Key name

This key information type is used when the sender and receiver agree on the name of the key.

Security token reference

This key information type is typically used when an X.509 certificate is used for digital

signature.

Embedded token

This key information type is used to embed a security token in an embedded element.

X509 issuer name and issuer serial

This key information type specifies an X.509 certificate with its issuer name and serial number.

Select Security token reference if you are using an X.509 certificate for the digital signature. In these

steps, it is assumed that Security token reference is selected for this field.

Important: This key information type must match the key information type that is specified for the

generator.

5. Select a key locator reference from the Key locator reference menu. In these steps, assume that the

key locator reference is called sig_klocator. You must configure a key locator before you can select it in

this field. For more information on configuring the key locator, see “Configuring the key locator on the

server or cell level” on page 1204.

6. Select a token reference from the Token reference field. The token reference refers to the name of a

configured token consumer. When a security token is required in the deployment descriptor, the token

reference attribute is required. If you select Security token reference in the Key information type field,

the token reference is required and you can specify an X.509 token consumer. To specify an X.509

token consumer, you must have an X.509 token consumer configured. To configure an X.509 token

consumer, see “Configuring token consumers on the server or cell level” on page 1216.

7. Click OK and Save to save the configuration.

1224 Securing applications and their environment

You have configured the key information for the consumer binding at the server or cell level.

You must specify a similar key information configuration for the generator

Configuring the signing information for the consumer binding on the

server or cell level

In the server-side extensions file (ibm-webservices-ext.xmi) and the client-side deployment descriptor

extensions file (ibm-webservicesclient-ext.xmi), you must specify which parts of the message are

signed. Also, you need to configure the key information that is referenced by the key information

references on the signing information panel within the administrative console.

This task explains the steps that are needed for you to configure the signing information for the client-side

request generator and server-side response generator bindings at the server or cell level. WebSphere

Application Server uses the signing information for the default generator to sign parts of the message

including the body, time stamp, and user name token, if these bindings are not defined at the application

level. The Application Server provides default values for bindings. However, an administrator must modify

the defaults for a production environment.

Complete the following steps to configure the signing information for the consumer sections of the bindings

files on the server level:

 1. Access the default bindings for the server level.

a. Click Servers > Application servers > server_name.

b. Under Security, click Web services: Default bindings for Web services security.

 2. Under Default consumer bindings, click Signing information.

 3. Click New to create a signing information configuration, click Delete to delete an existing

configuration, or click the name of an existing signing information configuration to edit the settings. If

you are creating a new configuration, enter a unique name for the signing configuration in the Signing

information name field. For example, you might specify gen_signinfo.

 4. Select a signature method algorithm from the Signature method field. The algorithm that is specified

for the default consumer must match the algorithm that is specified for the default generator.

WebSphere Application Server supports the following pre-configured algorithms:

v http://www.w3.org/2000/09/xmldsig#rsa-sha1

v http://www.w3.org/2000/09/xmldsig#hmac-sha1

v http://www.w3.org/2000/09/xmldsig#dsa-sha1

Do not use this algorithm if you want the configured application to be compliant with the Basic

Security Profile (BSP). Any ds:SignatureMethod/@Algorithm element in a SIGNATURE based on a

symmetric key must have a value of http://www.w3.org/2000/09/xmldsig#rsa-sha1 or

http://www.w3.org/2000/09/xmldsig#hmac-sha1.

 5. Select a canonicalization method from the Canonicalization method field. The canonicalization

algorithm that you specify for the generator must match the algorithm for the consumer. WebSphere

Application Server supports the following pre-configured canonical XML and exclusive XML

canonicalization algorithms:

v http://www.w3.org/2001/10/xml-exc-c14n#

v http://www.w3.org/2001/10/xml-exc-c14n#WithComments

v http://www.w3.org/TR/2001/REC-xml-c14n-20010315

v http://www.w3.org/TR/2001/REC-xml-c14n-20010315#WithComments

 6. Select a key information signature type from the Key information signature type field. The key

information signature type determines how to digitally sign the key. WebSphere Application Server

supports the following signature types:

None Specifies that the KeyInfo element is not signed.

Chapter 14. Web services 1225

http://www.w3.org/2000/09/xmldsig#rsa-sha1
http://www.w3.org/2000/09/xmldsig#hmac-sha1
http://www.w3.org/2000/09/xmldsig#dsa-sha1
http://www.w3.org/2000/09/xmldsig#rsa-sha1
http://www.w3.org/2000/09/xmldsig#hmac-sha1

Keyinfo

Specifies that the entire KeyInfo element is signed.

Keyinfochildelements

Specifies that the child elements of the KeyInfo element are signed.

The key information signature type for the consumer must match the signature type for the generator.

You might encounter the following situations:

v If you do not specify one of the previous signature types, WebSphere Application Server uses

keyinfo, by default.

v If you select Keyinfo or Keyinfochildelements and you select http://docs.oasis-open.org/wss/2004/
01/oasis-200401-wss-soap-message-security-1.0#STR-Transform as the transform algorithm in a

subsequent step, WebSphere Application Server also signs the referenced token.

 7. Click OK to save the configuration.

 8. Click the name of the new signing information configuration. This configuration is the one that you

specified in the previous steps.

 9. Specify the key information reference, part reference, digest algorithm, and transform algorithm.

a. Under Additional properties, click Key information references > New to create a new reference,

click Key information references > Delete to delete an existing reference, or click a reference

name to edit an existing key information reference.

b. Enter a name for the configuration in the Name field. For example, enter con_skeyinfo.

c. Select a key information reference from the Key information reference field. The key Information

reference points to the key that WebSphere Application Server uses for digital signing. In the

binding files, the reference is specified within the <signingKeyInfo> element. The key that is used

for signing is specified by the Key information element, which is defined at the same level as the

signing information. For more information, see “Configuring the key information for the consumer

binding on the application level” on page 1177.

d. Click OK and Save to save the configuration.

e. Under Additional Properties, click Part references > New to create a new part reference, click

Part references > Delete to delete an existing part reference, or click a part name to edit an

existing part reference. The part reference specifies which parts of the message to digitally sign.

The part attribute refers to the name of the <RequiredIntegrity> element in the deployment

descriptor when <PartReference> is specified for the digital signature. WebSphere Application

Server enables you to specify multiple <PartReference> elements for the <SigningInfo> element.

The <PartReference> element has two child elements: <DigestMethod> and <Transform>

f. Specify a unique part name for this part reference. For example, you might specify reqint.

Important: We do not need to specify a value for the Part reference field like you specify on the

application level because the part reference on the application level points to a

particular part of the message that is signed. Because the default bindings for the

server level is applicable to all of the services that are defined on a particular server,

you cannot specify this value.

g. Select a digest method algorithm in the Digest method algorithm field. The digest method

algorithm specified within the <DigestMethod> element that is used in the <SigningInfo> element.

WebSphere Application Server supports the following algorithms:

v http://www.w3.org/2000/09/xmldsig#sha1

v http://www.w3.org/2001/04/xmlenc#sha256

v http://www.w3.org/2001/04/xmlenc#sha512

h. Click OK and Save to save the configuration.

i. Click the name of the new part reference configuration. This configuration is the one that you

specified in the previous steps.

1226 Securing applications and their environment

j. Under Additional properties, click Transforms > New to create a new transform, click Transforms

> Delete to delete a transform, or click a transform name to edit an existing transform. If you

create a new transform configuration, specify a unique name. For example, you might specify

reqint_body_transform1.

k. Select a transform algorithm from the menu. The transform algorithm is specified within the

<Transform> element. It specifies the transform algorithm for the signature. WebSphere

Application Server supports the following algorithms:

v http://www.w3.org/2001/10/xml-exc-c14n#

v http://www.w3.org/TR/1999/REC-xpath-19991116

Do not use this transform algorithm if you want your configured application to be compliant with

the Basic Security Profile (BSP). Instead use http://www.w3.org/2002/06/xmldsig-filter2 to

ensure compliance.

v http://www.w3.org/2002/06/xmldsig-filter2

v http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#STR-
Transform

v http://www.w3.org/2002/07/decrypt#XML

v http://www.w3.org/2000/09/xmldsig#enveloped-signature

The transform algorithm that you select for the consumer must match the transform algorithm that

you select for the generator.

Important: If both of the following conditions are true, WebSphere Application Server signs the

referenced token:

v You previously selected the Keyinfo or the Keyinfochildelements option from the

Key information signature type field on the signing information panel.

v You select http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-
message-security-1.0#STR-Transform as the transform algorithm.

10. Click OK.

11. Click Save at the top of the panel to save your configuration.

After completing these steps, you have configured the signing information for the consumer on the server

level.

You must specify a similar signing information configuration for the generator.

Configuring the encryption information for the consumer binding on

the server or cell level

The encryption information for the default consumer specifies how to process the encryption information on

the receiver side if these bindings are not defined at the application level. WebSphere Application Server

provides default values for the bindings. However, an administrator must modify the defaults for a

production environment.

Complete the following steps to configure the encryption information for the consumer binding on the

server level:

1. Access the default bindings for the server level.

a. Click Servers > Application servers > server_name.

b. Under Security, click Web services: Default bindings for Web services security.

2. Under Default consumer bindings, click Encryption information.

3. Click New to create an encryption information configuration, click Delete to delete an existing

configuration, or click the name of an existing encryption information configuration to edit the settings.

If you are creating a new configuration, enter a unique name for the encryption configuration in the

Encryption information name field. For example, you might specify con_encinfo.

Chapter 14. Web services 1227

4. Select a data encryption algorithm from the Data encryption algorithm field. This algorithm is used to

encrypt the data. WebSphere Application Server supports the following pre-configured algorithms:

v http://www.w3.org/2001/04/xmlenc#tripledes-cbc

v http://www.w3.org/2001/04/xmlenc#aes128-cbc

v http://www.w3.org/2001/04/xmlenc#aes256-cbc

To use this algorithm, you must download the unrestricted Java Cryptography Extension (JCE)

policy file from the following Web site: http://www.ibm.com/developerworks/java/jdk/security/
index.html.

v http://www.w3.org/2001/04/xmlenc#aes192-cbc

To use this algorithm, you must download the unrestricted Java Cryptography Extension (JCE)

policy file from the following Web site: http://www.ibm.com/developerworks/java/jdk/security/
index.html.

Do not use the 192-bit key encryption algorithm if you want your configured application to be in

compliance with the Basic Security Profile (BSP).

The data encryption algorithm that you select for the consumer side must match the data encryption

algorithm that you select for the generator side.

5. Select a key encryption algorithm from the Key encryption algorithm field. This algorithm is used to

encrypt the key. WebSphere Application Server supports the following pre-configured algorithms:

v http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p.

When running with Software Development Kit (SDK) Version 1.4, the list of supported key transport

algorithms does not include this one. This algorithm appears in the list of supported key transport

algorithms when running with SDK Version 1.5.

Restriction: This algorithm is not supported when the WebSphere Application Server is running in

Federal Information Processing Standard (FIPS) mode.

v http://www.w3.org/2001/04/xmlenc#rsa-1_5

v http://www.w3.org/2001/04/xmlenc#kw-tripledes

v http://www.w3.org/2001/04/xmlenc#kw-aes128

v http://www.w3.org/2001/04/xmlenc#kw-aes256

To use this algorithm, you must download the unrestricted Java Cryptography Extension (JCE)

policy file from the following Web site: http://www.ibm.com/developerworks/java/jdk/security/
index.html.

v http://www.w3.org/2001/04/xmlenc#kw-aes192

To use this algorithm, you must download the unrestricted Java Cryptography Extension (JCE)

policy file from the following Web site: http://www.ibm.com/developerworks/java/jdk/security/
index.html.

Do not use the 192-bit key encryption algorithm if you want your configured application to be in

compliance with the Basic Security Profile (BSP).

If you select None, the key is not encrypted.

The key encryption algorithm that you select for the consumer side must match the key encryption

algorithm that you select for the generator side.

6. Under Additional properties, click Key information references.

7. Click New to create a key information configuration, click Delete to delete an existing configuration, or

click the name of an existing key information configuration to edit the settings. If you are creating a

new configuration, enter a unique name for the key information configuration in the name field. For

example, you might specify con_enckeyinfo.

8. Select a key information reference from the Key information reference field. This selection refers to the

name of the key information that is used for encryption. For more information, see “Configuring the key

information for the consumer binding on the server or cell level” on page 1224.

9. Click OK and Save to save the configuration.

1228 Securing applications and their environment

http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html

You have configured the encryption information for the consumer binding at the server level.

You must specify a similar encryption information configuration for the generator.

Tuning Web services security for Version 6.1 applications

The Java Cryptography Extension (JCE) is integrated into the software development kit (SDK) version

1.4.x and is no longer an optional package. However, the default Java Cryptography Extension (JCE)

jurisdiction policy file shipped with the SDK enables you to use cryptography to enforce this default policy.

The Java Cryptography Extension (JCE) is integrated into the software development kit (SDK) version

1.4.x and is no longer an optional package. However, due to export and import regulations, the default

Java Cryptography Extension (JCE) jurisdiction policy file shipped with the SDK enables you to use strong,

but limited, cryptography only. To enforce this default policy, WebSphere Application Server uses a JCE

jurisdiction policy file that might introduce a performance impact. The default JCE jurisdiction policy might

have a performance impact on the cryptographic functions that are supported by Web services security. If

you have Web services applications that use transport level security for XML encryption or digital

signatures, you might encounter performance degradation over previous releases of WebSphere

Application Server. However, IBM and Sun Microsystems provide versions of these jurisdiction policy files

that do not have restrictions on cryptographic strengths. If you are permitted by your governmental import

and export regulations, download one of these jurisdiction policy files. After downloading one of these files,

the performance of JCE and Web services security might improve.

For WebSphere Application Server platforms using IBM Developer Kit, Java Technology Edition Version 5,

including the AIX, Linux, and Windows platforms, you can obtain unlimited jurisdiction policy files by

completing the following steps:

1. Go to the following Web site: http://www.ibm.com/developerworks/java/jdk/security/index.html

2. Click J2SE 5.0

3. Scroll down and click IBM SDK Policy files.

The Unrestricted JCE Policy files for the SDK Web site is displayed.

4. Click Sign in and provide your IBM intranet ID and password.

5. Select the appropriate Unrestricted JCE Policy files and then click Continue.

6. View the license agreement and then click I Agree.

7. Click Download Now.

For WebSphere Application Server platforms using the Sun-based Java Development Kit (JDK) Version 5,

including the Solaris environments and the HP-UX platform, you can obtain unlimited jurisdiction policy

files by completing the following steps:

1. Go to the following Web site: http://java.sun.com/j2se/1.5.0/download.jsp

2. Click Other Downloads.

3. Locate the Java Cryptography Extension (JCE) Unlimited Strength Jurisdiction Policy Files

1.5.1information and click Download. The policy files are downloaded onto your machine.

In IBM WebSphere Application Server Version 6.1, Web services security supports the use of

cryptographic hardware devices. There are two ways in which to use hardware cryptographic devices with

Web services security.

See “Hardware cryptographic device support for Web Services Security” on page 1186 for more

information.

After following either of these sets of steps, two Java Archive (JAR) files are placed in the JVM

jre/lib/security/ directory.

Chapter 14. Web services 1229

http://www.ibm.com/developerworks/java/jdk/security/index.html
http://java.sun.com/j2se/1.5.0/download.jsp

Securing Web services for Version 5.x applications based on

WS-Security

Web services security for WebSphere Application Server is based on standards included in the Web

services security (WS-Security) specification. These standards address how to provide protection for

messages exchanged in a Web service environment.

Important: There is an important distinction between Version 5.x and Version 6 and later applications.

The information in this article supports Version 5.x applications only that are used with

WebSphere Application Server Version 6.0.x and later. The information does not apply to

Version 6 and later applications.

The specification defines the core facilities for protecting the integrity and confidentiality of a message and

provides mechanisms for associating security-related claims with the message. Web services security is a

message-level standard based on securing SOAP messages through XML digital signature, confidentiality

through XML encryption, and credential propagation through security tokens.

Use the deprecated ″Securing Apache SOAP Web services″ topics in the WebSphere Application Server,

Version 5 documentation if you are still using Apache SOAP Version 2.3.

To secure Web services, you must consider a broad set of security requirements, including authentication,

authorization, privacy, trust, integrity, confidentiality, secure communications channels, federation,

delegation, and auditing across a spectrum of application and business topologies. One of the key

requirements for the security model in today’s business environment is the ability to inter-operate between

formerly incompatible security technologies, such as public key infrastructure and Kerberos in

heterogeneous environments like Microsoft .NET and environments that are based on the Java 2 Platform,

Enterprise Edition (J2EE) standards. The complete Web services security protocol stack and technology

roadmap is described in Security in a Web Services World: A Proposed Architecture and Roadmap.

Specification: Web Services Security (WS-Security) proposes a standard set of SOAP extensions that you

can use to build secure Web services. These standards confirm integrity and confidentiality, which are

generally provided with digital signature and encryption technologies. In addition, Web services security

provides a general purpose mechanism for associating security tokens with messages. A typical example

of the security token is a user name and password token, in which a user name and password are

included as text. Web services security defines how to encode binary security tokens using methods such

as X.509 certificates and Kerberos tickets.

To establish a managed environment and to enforce constraints for Web services security, you must

perform a Java Naming and Directory Interface (JNDI) lookup on the client to resolve the service

reference.

An administrator can use any of the following methods to integrate message-level security into a

WebSphere Application Server environment:

v “Securing Web services for Version 5.x applications using XML digital signature” on page 1259

v “Securing Web services for Version 5.x applications using XML encryption” on page 1313

v “Securing Web services for Version 5.x applications using basicauth authentication” on page 1332

v “Securing Web services for Version 5.x applications using identity assertion authentication” on page

1340

v “Securing Web services for version 5.x applications using signature authentication” on page 1346

v “Securing Web services for version 5.x applications using a pluggable token” on page 1358

1230 Securing applications and their environment

http://www.ibm.com/developerworks/webservices/library/ws-secmap/
http://www.ibm.com/developerworks/library/ws-secure/

Web services security specification—a chronology

This chronology describes the process that has been used to develop the Web services security

specifications. The chronology includes both the Organization for the Advancement of Structured

Information Standards (OASIS) and non-OASIS activities.

Non-OASIS activities

Important: There is an important distinction between Version 5.x and Version 6.0.x applications. The

information in this article supports Version 5.x applications only that are used with WebSphere

Application Server Version 6.0.x and later. The information does not apply to Version 6.0.x

applications.

In April 2002, IBM, Microsoft, and VeriSign proposed the Web Services Security (WS-Security)

specification on their Web sites. This specification included the basic ideas of security token, XML

signature, and XML encryption. The specification also defined the format for user name tokens and

encoded binary security tokens. After some discussion and an interoperability test that was based on the

specification, the following issues were noted:

v The specification requires that the Web services security processors understand the schema correctly

so that the processor distinguishes between the ID attribute for XML signature and XML encryption.

v The freshness of the message, which indicates whether the message complies with predefined time

constraints, cannot be determined.

v Digested password strings do not strengthen security.

In August 2002, IBM, Microsoft, and VeriSign published the Web Services Security Addendum, which

attempted to address the previously listed issues. The following solutions were put in the addendum:

v Require a global ID attribute for XML signature and XML encryption.

v Use time stamp header elements that indicate the time of the creation, receipt, or expiration of the

message.

v Use password strings that are digested with a timestamp and nonce (randomly generated token).

OASIS activities

In June 2002, OASIS received a proposed Web services security specification from IBM, Microsoft, and

Verisign. The Web Services Security Technical Committee (WSS TC) was organized at OASIS soon after

the submission. The technical committee included many companies including IBM, Microsoft, VeriSign,

Sun Microsystems, and BEA Systems.

In September 2002, WSS TC published its first specification, Web Services Security Core Specification,

Working Draft 01. This specification included the contents of both the original Web services security

specification and its addendum.

The coverage of the technical committee became larger as the discussion proceeded. Since the Web

Services Security Core Specification allows arbitrary types of security tokens, proposals were published as

profiles. The profiles described the method for embedding tokens, including Security Assertion Markup

Language (SAML) tokens and Kerberos tokens imbedded into the Web services security messages.

Subsequently, the definitions of the usage for user name tokens and X.509 binary security tokens, which

were defined in the original Web Services Security Specification, were divided into the profiles.

WebSphere Application Server supports the following specifications:

v Web Services Security: SOAP Message Security Draft 13 (formerly Web Services Security Core

Specification)

v Web Services Security: Username Token Profile Draft 2

Chapter 14. Web services 1231

The following figure shows the various Web services security-related specifications. As indicated in the

figure, the current support level for Web services security: SOAP message security is based on Draft 13

from May 2003. The current support level for Web services security user name token profiles, is based on

Draft 2 from February 2003.

Web services security support

Important: There is an important distinction between Version 5.x and Version 6 and later applications.

The information in this article supports Version 5.x applications only that are used with

WebSphere Application Server Version 6.0.x and later. The information does not apply to

Version 6.0.x and later applications.

WebSphere Application Server, Versions 4.x, 5, and 5.0.1 support digital signature for Apache SOAP

Version 2.x. Beginning with WebSphere Application Server, Version 5.0.2, IBM supports Web services

security, which is an extension of the IBM Web services engine to provide a quality of service. The IBM

implementation is based on the Web services security specification, ″Web Services Security

(WS-Security)″, originally proposed by IBM, Microsoft, and VeriSign in April 2002. Early versions of the

proposed draft specification can be found in Web Services Security (WS-Security) Version 1.0 05 April

2002 and Web Services Security Addendum 18 August 2002. The WebSphere Application Server

implementation is based on the Organization for the Advancement of Structured Information Standards

(OASIS) working Draft 13 specification. (See the OASIS Web Services Security TC Web site for the latest

working specification.) However, not all the features in the OASIS working Draft 13 specification are

implemented.

The WebSphere Application Server security infrastructure fully integrates Web services security with the

Java 2 Platform, Enterprise Edition (J2EE) security specification. Web services security is not supported in

a pure Java client or a nonmanaged client. When a user ID and password are embedded in a request

message, authentication is performed with the user ID and password. If authentication is successful, a

user identity is established and further resource access is authorized based on that identity. After the user

ID and password are authenticated by the Web services security run time, a J2EE container performs

authorization.

WebSphere Application Server provides an implementation of the key features of Web services security

based on the following specifications:

v Specification: Web Services Security (WS-Security) Version 1.0 05 April 2002

v Web Services Security Addendum 18 August 2002

May 2003

WSS: Soap Message

Sec. Draft 13

February 2003

WSS: Username Token

Profile Draft 2

OASIS

activites

April 2002

WS-Security August 2002

WS-Security

Addendum
September 2002

WS-Core Draft 1

Figure 8. Web services security specification support

1232 Securing applications and their environment

http://www-106.ibm.com/developerworks/webservices/library/ws-secure/
http://www-106.ibm.com/developerworks/webservices/library/ws-secureadd.html

v Web Services Security: SOAP Message Security Working 13 May 2003

v Web Services Security: Username Token Profile Draft

The following table provides a summary of Web services security elements supported by WebSphere

Application Server:

 Table 50. Web services security elements

Element Notes

UsernameToken Both the user name and password for the BasicAuth

authentication method and the user name for the identity

assertion authentication method are supported.

WebSphere Application Server supports nonce, a

randomly generated value.

BinarySecurityToken X.509 certificates and Lightweight Third Party

Authentication (LTPA) can be embedded, but there is no

implementation to embed Kerberos tickets. However, the

binary token generation and validation are pluggable and

are based on the Java Authentication and Authorization

Service (JAAS) Application Programming Interfaces

(APIs). You can extend this implementation to generate

and validate other types of binary security tokens.

Signature The X.509 certificate is embedded as a binary security

token and can be referenced by the

SecurityTokenReference. WebSphere Application Server

does not support shared, key-based signature.

Encryption Both the EncryptedKey and ReferenceList XML tags are

supported. KeyIdentifier specifies public keys and

KeyName identifies the secret keys. WebSphere Application

Server has the capability to map an authenticated identity

to a key for encryption or use the signer certificate to

encrypt the response message.

Timestamp WebSphere Application Server supports the Created and

Expires attributes. The freshness of the message, which

indicates whether the message complies with predefined

time constraints, is checked only if the Expires attribute is

present in the message. WebSphere Application Server

does not support the Received attribute, which is defined

in the addendum. Instead, WebSphere Application Server

uses the TimestampTrace Received attribute, which is

defined in the OASIS specification.

XML based token You can insert and validate an arbitrary format of XML

tokens into a message. This format mechanism is based

on the JAAS APIs.

Signing and encrypting attachments is not supported by WebSphere Application Server. However,

WebSphere Application Server signs and encrypts the following elements for the request message.

 Method Element

XML digital signature v Body

v Securitytoken

v Timestamp

XML encryption v Bodycontent

v Usernametoken

Chapter 14. Web services 1233

http://www.oasis-open.org/committees/download.php/2314/WSS-SOAPMessageSecurity-13-050103-merged.pdf
http://www.oasis-open.org/apps/group_public/download.php/1003/documents/documents/WSS-Username-02-0223-merged.pdf

Method Element

AuthMethod v BasicAuth

v IDAssertion (From WebSphere Application Server to

another WebSphere Application Server

v Signature

v Lightweight Third Party Authentication (LTPA) on the

server side

v Other customer tokens

WebSphere Application Server signs and encrypts the following elements for the response message:

 Method Element

XML digital signature v Body

v Timestamp

XML encryption v Bodycontent

The namespaces used for sending a message were published by OASIS in draft 13 (http://
schemas.xmlsoap.org/ws/2003/06/secext). However, the Web services security run time in WebSphere

Application Server can accept any of the following namespaces:

April 2002 specification

http://schemas.xmlsoap.org/ws/2002/04/secext

August 2002 addendum

http://schemas.xmlsoap.org/ws/2002/07/secext

 http://schemas.xmlsoap.org/ws/2002/07/utility

OASIS draft published on draft 13 May 2003

http://schemas.xmlsoap.org/ws/2003/06/secext

 http://schemas.xmlsoap.org/ws/2003/06/utility

Note: WebSphere Application Server only uses the previously mentioned two name spaces for

sending out requests and responses. However, the product can process all other mentioned

name spaces for incoming requests and responses.

WebSphere Application Server provides the following capabilities for Web services security:

v Integrity of the message

v Authenticity of the message

v Confidentiality of the message

v Privacy of the message

v Transport level security: provided by Secure Sockets Layer (SSL)

v Security token propagation (pluggable)

v Identity assertion

See the previous table titled, ″Web services security elements,″ for a description of capabilities that are not

supported.

1234 Securing applications and their environment

http://schemas.xmlsoap.org/ws/2003/06/secext
http://schemas.xmlsoap.org/ws/2003/06/secext
http://schemas.xmlsoap.org/ws/2002/04/secext
http://schemas.xmlsoap.org/ws/2002/07/secext
http://schemas.xmlsoap.org/ws/2002/07/utility
http://schemas.xmlsoap.org/ws/2003/06/secext
http://schemas.xmlsoap.org/ws/2003/06/utility

Web services security and Java 2 Platform, Enterprise Edition security

relationship

This article describes the relationship between Web services security (message level security) model and

the Java 2 Platform, Enterprise Edition (J2EE) security model. It also includes information on J2EE

role-based authorization checks.

Important: There is an important distinction between Version 5.x and Version 6 and later applications.

The information in this article supports Version 5.x applications only that are used with

WebSphere Application Server Version 6.0.x and later. The information does not apply to

Version 6.0.x and later applications.

WebSphere Application Server supports Java Specification Requests (JSR) 101 and JSR 109. For more

information, see Developing Web services applications. JSRs 101 and 109 define Web services for the

J2EE architecture so that you can develop and run Web services on the J2EE component architecture.

Important: Web services security refers to the Web services security: SOAP Message Security

specification. For more information, see “Web services security support” on page 1232.

Securing Web services with WebSphere Application Server security (J2EE

role-based security)

You can secure Web services using the existing security infrastructure of WebSphere Application Server,

J2EE role-based security, and Secure Sockets Layer (SSL) transport level security.

Authentication

RPC

router

EJB

container

EJB

Java

bean

RMI / IIOP

User1

User1

User1

User1

User1

Web

container

Web

Services

engine

WebSphere

Application Server

SOAP / HTTP(s)

SOAP / HTTP(s)

HTTP Basic

<user1: password>

User 1

Authentication
mechanism

SWAM LTPA

User Registry

LocalOS LDAP Custom

Authenticate

user1 / password

Figure 9. SOAP message flow using existing security infrastructure of WebSphere Application Server

Chapter 14. Web services 1235

The Web services port can be secured using J2EE role-based security. The Web services sender sends

the basic authentication data using the HTTP header. SSL (HTTPS) can be used to secure the transport.

When the WebSphere Application Server receives the SOAP message, the Web container authenticates

the user (in this example, user1) and sets the security context for the call. After the security context is set,

the SOAP router servlet sends the request to the implementation of the Web services (the implementation

can be JavaBeans or enterprise bean files). For enterprise bean implementations, the EJB container

performs an authorization check against the identity of user1.

The Web services port also can be secured using the J2EE role. Then, authorization is performed by the

Web container before the SOAP request is dispatched to the Web services implementation.

Securing Web services with Web services security at the message level

You can also secure Web services using Web services security at the message level. In this case, you can

digitally sign or encrypt a certain part of the message. Web services security also supports security token

propagation within the SOAP message. The following scenario assumes that the Web services port is not

secured with J2EE role-based security and the enterprise bean is secured with J2EE role-based security.

In this case, the Web services port is not secured with J2EE role-based security. The Web services engine

processes the SOAP message before the client sends the message to the Web services port. The Web

services security run time acts on the security constraints, such as digitally signing, encrypting, or

Authentication

WebSphere

Application Server

SOAP / HTTP(s)

SOAP / HTTP(s)

wsse: Username Token

<user1: password>

User 1

Authentication
mechanism

User Registry

Authenticate user1 / password

RPC

router

EJB

container

EJB

Java

bean

RMI / IIOP

User1

User1

User1

User1

User1

User1

User1

Web

container

Web

Services

engine

Security

handler

Web

Services

engine

Security

handler

WCCM
(deployment
descriptor)

WCCM

(deployment

descriptor)

SWAM LTPA LocalOS LDAP Custom

Figure 10. SOAP message flow using Web services security

1236 Securing applications and their environment

generating (and inserting) a security token in the SOAP header. In this case <wsse:UsernameToken> is

generated using user1 and the password. On the server-side (receiving), the Web services process the

incoming message and Web services security enforces security constraints. This enforcement includes

making sure that messages are properly signed, properly encrypted, and decrypted, authenticating the

security token, and setting up the security context with the authenticated identity. (In this case, user1 is the

authenticated identity.) Finally, the SOAP message is dispatched to the Web services implementation (if

the implementation is an enterprise beans file, the Enterprise JavaBeans (EJB) container performs an

authorization check against user1). SSL also might be used in this scenario.

Mixing the two

The second scenario shows that Web services security can complement J2EE role-based security. For

example, SSL can be enabled at the transport level to provide a secure channel. Furthermore, if the Web

services implementation is an enterprise beans file, you can leverage the EJB role-based authorization by

performing authorization checks. Web services security run time leverages the security infrastructure to set

the authenticated identity in the security context. The authenticated identity can be used in the

downstream call to J2EE resources (or other resource types).

There are subtle consequences of combining the two scenarios. For example, if the HTTP transport is

sending basic authentication data with user1 and password in the HTTP header, but

<wsse:UsernameToken> with user99 and letmein also is inserted into the SOAP header. In the previous

scenarios, there are two authentications performed. One authentication is performed by the Web container

for authenticating user1, and the other is performed by Web services security for authenticating user99.

The Web services security run time runs after the Web container runs and user99 is the authenticated

identity that is set in the security context.

Web services security can also propagate security tokens from the sender to the receiver for SOAP over a

Java Message Service (JMS) transport.

J2EE role-based authorization checks

A standard for authorization does not exist for Web services. However, IBM, in conjunction with Microsoft

Corporation, jointly published a security white paper road map for Web services called Security in a Web

Services World: A Proposed Architecture and Roadmap in which a proposal exists for the

WS-Authorization specification. However, the WS-Authorization specification has not been published.

The existing implementation of Web services security is based upon the Web Services for J2EE

specification or the Java Specification Requirements (JSR) 109 specification. The implementation of Web

services security leverages the J2EE role-based authorization checks. For conceptual information on

role-based authorization, see “Role-based authorization” on page 324. If you develop a Web service that

requires method-level authorization checks, then you must use stateless session beans to implement your

Web service. For more information on using stateless session beans to implement a Web service, see

Developing a Web service from an enterprise bean and “Securing enterprise bean applications” on page

925. If you develop a Web service that is implemented as a servlet, you can use coarse-grained or

URL-based authorization in the Web container. However, in this situation, you cannot use the identity from

Web services security for authorization checks. Instead, you can use the identity from the transport. If you

use SOAP over HTTP, then the identity is in the HTTP transport.

Web services security model in WebSphere Application Server

The Web services security model used by WebSphere Application Server is the declarative model.

WebSphere Application Server does not include any application programming interfaces (APIs) for

programmatically interacting with Web services security. However, a few Server Provider Interfaces (SPIs)

are available for extending some security-related behaviors.

Chapter 14. Web services 1237

http://www.ibm.com/developerworks/library/specification/ws-secmap/
http://www.ibm.com/developerworks/library/specification/ws-secmap/

Important: There is an important distinction between Version 5.x and Version 6 and later applications.

The information in this article supports Version 5.x applications only that are used with

WebSphere Application Server Version 6.0.x and later. The information does not apply to

Version 6 and later applications.

The security constraints for Web services security are specified in IBM deployment descriptor extensions

for Web services. The Web services security run time acts on the constraints to enforce Web services

security for the SOAP message. The scope of the IBM deployment descriptor extension is at the

enterprise bean (EJB) or Web module level. Bindings are associated with each of the following IBM

deployment descriptor extensions:

Client (Might be either a Java 2 Platform, Enterprise Edition (J2EE) client (application client

container) or Web services acting as a client)

ibm-webservicesclient-ext.xmi

 ibm-webservicesclient-bnd.xmi

Server

ibm-webservices-ext.xmi

 ibm-webservices-bnd.xmi

It is recommended that you use the tools provided by IBM (the Application Server Toolkit and Rational

Web Developer) to create the IBM deployment descriptor extension and bindings. After the bindings are

created, you can use the administrative console or an assembly tool to specify the bindings.

Important: The binding information is collected after application deployment rather than during application

deployment. The alternative is to specify the required binding information before deploying

your application.

Web services

implemented

as an EJB file

EJB module

Enterprise application 1

ibm-webserviecesclient-ext.xmi

ibm-webservicesclient-bnd.xmi

Security

handler

Enterprise application 2

EJB module

ibm-webservices-ext.xmi

ibm-webservices-bnd.xmi

Security

handler

Web services

implemented

as an EJB file

Figure 11. Web services security model

1238 Securing applications and their environment

The Web services security run time enforces Web services security based on the defined security

constraints in the deployment descriptor and binding files. Web services security has the following four

points where it intercepts the message and acts on the security constraints defined:

 Message points Description

Request sender (defined in the ibm-webservicesclient-
ext.xmi and ibm-webservicesclient-bnd.xmi files)

v Applies the appropriate security constraints to the

SOAP message (such as signing or encryption) before

the message is sent, generating the time stamp or the

required security token.

Request receiver (defined in the ibm-webservices-
ext.xmi and ibm-webservices-bnd.xmi files)

v Verifies that the Web services security constraints are

met.

v Verifies the freshness of the message based on the

time stamp. The freshness of the message indicates

whether the message complies with predefined time

constraints.

v Verifies the required signature.

v Verifies that the message is encrypted and decrypts

the message if encrypted.

v Validates the security tokens and sets up the security

context for the downstream call.

Response sender (defined in the ibm-webservices-
ext.xmi and ibm-webservices-bnd.xmi files)

v Applies the appropriate security constraints to the

SOAP message response, like signing the message,

encrypting the message, or generating the time stamp.

Deployment descriptor

and service bindings

Deployment descriptor

and service bindings

Configuration Configuration

Client Application Server

Security handler

• Security token generation

• Digital signature generation

• Encrypt message

• Decrypt message

• Digital signature validation

• Security token validation

and setup security context

Simple Object

Access Protocol

request

+

web services

security headers

[transport headers]

Request

Security handler

EJB file,

servlet,

JavaBean

file

Request

Response

• Decrypt message

• Digital signature validation

• Digital signature generation

• Encrypt message

Response

Figure 12. Web services security message interpretation

Chapter 14. Web services 1239

Message points Description

Response receiver (defined in the ibm-
webservicesclient-ext.xmi or ibm-webservicesclient-
bnd.xmi files)

v Verifies that the Web services security constraints are

met.

v Verifies the freshness of the message based on the

time stamp. The freshness of the message indicates

whether the message complies with predefined time

constraints.

v Verifies the required signature.

v Verifies that the message is encrypted and decrypts

the message, if encrypted.

Web services: Default bindings for the Web services security

collection

Use this page to configure the settings for nonce on the server level and to manage the default bindings

for the signing information, encryption information, key information, token generators, token consumers,

key locators, collection certificate store, trust anchors, trusted ID evaluators, algorithm mappings, and login

mappings.

To view this administrative console page for the server level, complete the following steps:

1. Click Servers > Application Servers > server_name.

2. Under Security, click Web services: Default bindings for Web services security.

Read the Web services documentation before you begin defining the default bindings for Web services

security.

Nonce is a unique cryptographic number that is embedded in a message to help stop repeat, unauthorized

attacks of user name tokens.

In WebSphere Application Server and WebSphere Application Server Express, you must specify values for

the Nonce cache timeout, Nonce maximum age, and Nonce clock skew fields for the server level.

The default binding configuration provides a central location where reusable binding information is defined.

The application binding file can reference the information that is contained in the default binding

configuration.

Nonce cache timeout

Specifies the timeout value, in seconds, for the nonce cached on the server. Nonce is a randomly

generated value.

The Nonce cache timeout field is required on the server level.

If you make changes to the value for the Nonce cache timeout field, you must restart the application

server for the changes to take effect.

 Default 600 seconds

Minimum 300 seconds

Nonce maximum age

Specifies the default time, in seconds, before the nonce timestamp expires. Nonce is a randomly

generated value.

1240 Securing applications and their environment

The maximum value cannot exceed the number of seconds that is specified in the Nonce cache timeout

field for the server level.

The Nonce maximum age field is required on the server level.

 Default 300 seconds

Range 300 to the value that is specified, in seconds, in the

Nonce cache timeout field.

Nonce clock skew

Specifies the default clock skew value, in seconds, to consider when the application server checks the

timeliness of the message. Nonce is a randomly generated value.

The maximum value cannot exceed the number of seconds that is specified in the Nonce maximum age

field.

The Nonce clock skew field is required.

 Default 0 seconds

Range 0 to the value that is specified, in seconds, in the Nonce

maximum age field.

Distribute nonce caching

Enables distributed caching for the nonce value using a Data Replication Service (DRS).

transition: In previous releases of WebSphere Application Server, the nonce value was cached locally.

By selecting this option, the nonce value is propagated to other servers in your environment. However, the

nonce value might be subject to a one-second delay in propagation and subject to any network

congestion.

Enable cryptographic operations on hardware device

Enables cryptographic operations on hardware devices. Enabling this feature might improve the

performance, depending on the hardware device.

Cryptographic hardware configuration name

Specifies the name of the hardware device configuration name defined in the keystore settings in the

secure communications.

This value is necessary only if Hardware acceleration has been selected.

Usage scenario for propagating security tokens

This sample shows propagating security tokens using Web services security, the security infrastructure of

the WebSphere Application Server, and Java 2 Platform, Enterprise Edition (J2EE) security.

Important: There is an important distinction between Version 5.x and Version 6 and later applications.

The information in this article supports Version 5.x applications only that are used with

WebSphere Application Server Version 6.0.x and later. The information does not apply to

Version 6.0.x and later applications.

A sample scenario

This document describes a usage scenario for Web services security.

Chapter 14. Web services 1241

In scenario 1, Client 1 invokes Web services 1. Then Web services 1 calls the Enterprise JavaBeans

(EJB) file 2. The EJB file 2 calls Web services 3 and Web services 3 calls Web services 4.

The previous scenario shows how to propagate security tokens using Web services security, the security

infrastructure of the WebSphere Application Server, and Java 2 Platform, Enterprise Edition (J2EE)

security. Web services 1 is configured to accept <wsse:UsernameToken> only and use the BasicAuth

authentication method. However, Web services 4 is configured to accept either <wsse:UsernameToken>

using the BasicAuth authentication method or Lightweight Third Party Authentication (LTPA) as

<wsse:BinarySecurityToken>. The following steps describe the scenario shown in the previous figure:

 1. Client 1 sends a SOAP message to Web services 1 with user1 and password in the

<wsse:UsernameToken> element.

 2. The user1 and password values are authenticated by the Web services security run time and set in

the current security context as the Java Authentication and Authorization Service (JAAS) Subject.

 3. Web services 1 invokes EJB file 2 using the Remote Method Invocation over the Internet Inter-ORB

Protocol (RMI/IIOP) protocol.

 4. The user1 identity is propagated to the downstream call.

 5. The EJB container of EJB file 2 performs an authorization check against user1.

 6. EJB file 2 calls Web services 3 and Web services 3 is configured to accept LTPA tokens.

 7. The RunAs role of EJB file 2 is set to user2.

 8. The LTPA CallbackHandler implementation extracts the LTPA token from the current JAAS Subject in

the security context and Web services security run time inserts the token as <wsse:

BinarySecurityToken> in the SOAP header.

 9. The Web services security run time in Web services 3 calls the JAAS login configuration to validate

the LTPA token and set it in the current security context as the JAAS Subject.

10. Web services 3 is configured to send LTPA security to Web services 4. In this case, assume that the

RunAs role is not configured for Web services 3. The LTPA token of user2 is propagated to Web

services 4.

11. Client 2 uses the <wsse:UsernameToken> element to propagate the basic authentication data to Web

services 4.

Client 1

Client 2

Remote Method Invocation over

the Internet / Inter-ORB Protocol

(RM I / I IOP)

User1

EJB file 2

RunAs user2

wsse: UsernameToken

< user1: password >

wsse: UsernameToken

< user2: password >

wsse: UsernameToken

< user1: password >

wsse: BinarySecurityToken

< LTPA token bytes of user2 >

Web service 1

Web service 3

Web service 4

Simple Object

Access Protocol

(SOAP)/ HTTP/ HTTPS

SOAP/ HTTP/ HTTPS SOAP / HTTP / HTTPS

SOAP / HTTP / HTTPS

Figure 13. Propagating security tokens

1242 Securing applications and their environment

Web services security complements the WebSphere Application Server security run time and the J2EE

role-based security. This scenario demonstrates how to propagate security tokens across multiple

resources such as Web services and EJB files.

Web services security constraints

The Web services security model that is used by WebSphere Application Server is the declarative model.

A version 5.x application must be secured with Web services security by defining the security constraints

in the IBM extension deployment descriptors and in IBM extension bindings.

Important: There is an important distinction between Version 5.x and Version 6 and later applications.

The information in this article supports Version 5.x applications only that are used with

WebSphere Application Server Version 6.0.x and later. The information does not apply to

Version 6 and later applications.

No Application Programming Interfaces (APIs) exist in WebSphere Application Server for programmatically

interacting with Web services security. However, Service Provider Programming Interfaces (SPIs) are

available for extending some security run-time behaviors. You can secure an application with Web services

security by defining security constraints in the IBM extension deployment descriptors and in IBM extension

bindings.

The development life cycle of a Web services security-enabled application is similar to the Java 2

Platform, Enterprise Edition (J2EE) programming model. See the following figure for more details.

The Web services security constraints are defined by the assembler during the application assembly

phase if the J2EE application is Web services-enabled. Create, define, and edit the Web services security

constraints with an assembly tool. For more information, see Assembly tools.

Web services security constraints

The security constraints for Web services security are specified in the IBM deployment descriptor

extension for Web services. The assembler defines these constraints during the application assembly

phase, if the J2EE application is Web services enabled. Define the Web services security constraints using

an assembly tool. For more information, see Assembling applications.

The Web services security run time acts on the constraints to enforce Web services security for the SOAP

message. The scope of the IBM deployment descriptor extension is at the Enterprise JavaBeans (EJB)

module or Web module level. There also are bindings associated with each of the following IBM

deployment descriptor extensions:

Creation Assembly Deployment

Deploy
Component

provider

creates the

application

Assembler

assembles

and declares

Web service

security

constraints

Deployer

deploys

and gathers

binding

information

J2EE

module

Web services

(JSR-109)

enabled J2EE

application with

Web services

security

J2EE

application

server

Components

Figure 14. Application development life cycle

Chapter 14. Web services 1243

Client (might be either a J2EE client (application client container) or Web services acting as a client)

v ibm-webservicesclient-ext.xmi

v ibm-webservicesclient-bnd.xmi

Server

v ibm-webservices-ext.xmi

v ibm-webservices-bnd.xmi

The IBM extension deployment descriptor and bindings are associated with each EJB module or Web

module. See Figure 2 for more information. If Web services is acting as a client, then it contains the client

IBM extension deployment descriptors and bindings in the EJB module or Web module.

The Web services security handler acts on the security constraints defined in the IBM extension

deployment descriptor and enforces the security constraints accordingly. There are outbound and inbound

configurations in both the client and server security constraints.

In a SOAP request, the following message points exist:

v Sender outbound

v Receiver inbound

v Receiver outbound

v Sender inbound

These message points correspond to the following four security constraints:

Web services

implemented

as an EJB file

ibm-webservices-bnd.xmi

ibm-webservices-ext.xmi

EJB module

Enterprise application 1

Enterprise application 2ibm-webserviecesclient-bnd.xmi

ibm-webservicesclient-ext.xmi

Web services

implemented as

a JavaBean file

ibm-webservices-bnd.xmi

ibm-webservices-ext.xmi

Web module ibm-webserviecesclient-bnd.xmi

ibm-webservicesclient-ext.xmi

Web services

implemented

as an EJB file

Web

services

security

handler

ibm-webservices-bnd.xmi

ibm-webservices-ext.xmi

Web

services

security

handler

Web

services

security

handler

EJB module

Figure 15. IBM extension deployment descriptors and bindings

1244 Securing applications and their environment

v Request sender (sender outbound)

v Request receiver (receiver inbound)

v Response sender (receiver outbound)

v Response receiver (sender inbound)

The security constraints of request sender and request receiver must match. Also, the security constraints

of the response sender and response receiver must match. For example, if you specify integrity as a

constraint in the request receiver, then you must configure the request sender to have integrity applied to

the SOAP message. Otherwise, the request is denied because the SOAP message does not include the

integrity specified in the request constraint.

The four security constraints are shown in the following figure of Web services security constraints.

Sample configuration for Web services security for a version 5.x application

To secure a version 5.x application with Web services security, you must define the security constraints in

the IBM extension deployment descriptors and in IBM extension bindings. Sample keystore files and

default binding information are provided for a sample configuration to demonstrate what IBM deployment

descriptor extensions and bindings can do.

Important: There is an important distinction between Version 5.x and Version 6 and later applications.

The information in this article supports Version 5.x applications only that are used with

WebSphere Application Server Version 6.0.x and later. The information does not apply to

Version 6 and later applications.

Deployment descriptor

and service bindings

Deployment descriptor

and service bindings

Configuration Configuration

Client Application Server

Security handler

• Security token generation

• Digital signature generation

• Encrypt message

• Decrypt message

• Digital signature validation

• Security token validation

and setup security context

Simple Object

Access Protocol

request

+

web services

security headers

[transport headers]

Request

Security handler

EJB file,

servlet,

JavaBean

file

Request

Response

• Decrypt message

• Digital signature validation

• Digital signature generation

• Encrypt message

Response

Figure 16. Web services security constraints

Chapter 14. Web services 1245

WebSphere Application Server provides the following sample keystores for sample configurations. These

sample keystores are for testing and sample purposes only. Do not use them a in production environment.

v ${USER_INSTALL_ROOT}/etc/ws-security/samples/dsig-sender.ks

– The keystore password is client

– Trusted certificate with alias name, soapca

– Personal certificate with alias name, soaprequester and key password client issued by intermediary

certificate authority Int CA2, which is, in turn, issued by soapca

v ${USER_INSTALL_ROOT}/etc/ws-security/samples/dsig-receiver.ks

– The keystore password is server

– Trusted certificate with alias name, soapca

– Personal certificate with alias name, soapprovider and key password server, issued by intermediary

certificate authority Int CA2, which is, in turn, issued by soapca

v ${USER_INSTALL_ROOT}/etc/ws-security/samples/enc-sender.jceks

– The keystore password is storepass

– Secret key CN=Group1, alias name Group1, and key password keypass

– Public key CN=Bob, O=IBM, C=US, alias name bob, and key password keypass

– Private key CN=Alice, O=IBM, C=US, alias name alice, and key password keypass

v ${USER_INSTALL_ROOT}/etc/ws-security/samples/enc-receiver.jceks

– The keystore password is storepass

– Secret key CN=Group1, alias name Group1, and key password keypass

– Private key CN=Bob, O=IBM, C=US, alias name bob, and key password keypass

– Public key CN=Alice, O=IBM, C=US, alias name alice, and key password keypass

v ${USER_INSTALL_ROOT}/etc/ws-security/samples/intca2.cer

– The intermediary certificate authority is Int CA2.

Default binding (cell and server level)

WebSphere Application Server provides the following default binding information:

Trust anchors

Used to validate the trust of the signer certificate.

v SampleClientTrustAnchor is used by the response receiver to validate the signer certificate.

v SampleServerTrustAnchor is used by the request receiver to validate the signer certificate.

Collection Certificate Store

Used to validate the certificate path.

v SampleCollectionCertStore is used by the response receiver and the request receiver to

validate the signer certificate path.

Key Locators

Used to locate the key for signature, encryption, and decryption.

v SampleClientSignerKey is used by the requesting sender to sign the Simple Object Access

Protocol (SOAP) message. The signing key name is clientsignerkey, which can be referenced

in the signing information as the signing key name.

v SampleServerSignerKey is used by the responding sender to sign the SOAP message. The

signing key name is serversignerkey, which can be referenced in the signing information as the

signing key name.

v SampleSenderEncryptionKeyLocator is used by the sender to encrypt the SOAP message. It is

configured to use the ${USER_INSTALL_ROOT}/etc/ws-security/samples/enc-sender.jceks

keystore and the com.ibm.wsspi.wssecurity.config.KeyStoreKeyLocator keystore key locator.

1246 Securing applications and their environment

v SampleReceiverEncryptionKeyLocator is used by the receiver to decrypt the encrypted SOAP

message. The implementation is configured to use the ${USER_INSTALL_ROOT}/etc/ws-security/
samples/enc-receiver.jceks keystore and the

com.ibm.wsspi.wssecurity.config.KeyStoreKeyLocator keystore key locator. The

implementation is configured for symmetric encryption (DES or TRIPLEDES). However, to use it

for asymmetric encryption (RSA), you must add the private key CN=Bob, O=IBM, C=US, alias

name bob, and key password keypass.

v SampleResponseSenderEncryptionKeyLocator is used by the response sender to encrypt the

SOAP response message. It is configured to use the ${USER_INSTALL_ROOT}/etc/ws-security/
samples/enc-receiver.jceks keystore and the

com.ibm.wsspi.wssecurity.config.WSIdKeyStoreMapKeyLocator key locator. This key locator

maps an authenticated identity (of the current thread) to a public key for encryption. By default,

WebSphere Application Server is configured to map to public key alice, and you must change

WebSphere Application Server to the appropriate user. The

SampleResponseSenderEncryptionKeyLocator key locator also can set a default key for

encryption. By default, this key locator is configured to use public key alice.

Trusted ID Evaluator

Used to establish trust before asserting to the identity in identity assertion.

 SampleTrustedIDEvaluator is configured to use the

com.ibm.wsspi.wssecurity.id.TrustedIDEvaluatorImpl implementation. The default

implementation of com.ibm.wsspi.wssecurity.id.TrustedIDEvaluator contains a list of trusted

identities. The list is defined as properties with trustedId_* as the key and the value as the

trusted identity. Define this information for the server level in the administration console by

completing the following steps:

1. Click Servers > Application Servers > server1.

2. Under Additional Properties, click Web Services: Default bindings for Web Services

Security > Trusted ID Evaluators > SampleTrustedIDEvaluator

Login Mapping

Used to authenticate the incoming security token in the Web services security SOAP header of a

SOAP message.

v The BasicAuth authentication method is used to authenticate user name security token (user

name and password).

v The signature authentication method is used to map a distinguished name (DN) into a

WebSphere Application Server Java Authentication and Authorization Server (JAAS) Subject.

v The IDAssertion authentication method is used to map a trusted identity into a WebSphere

Application Server JAAS Subject for identity assertion.

v The Lightweight Third Party Authentication (LTPA) authentication method is used to validate a

LTPA security token.

The previous default bindings for trust anchors, collection certificate stores, and key locators are for testing

or sample purpose only. Do not use them for production.

A sample configuration

The following examples demonstrate what IBM deployment descriptor extensions and bindings can do.

The unnecessary information was removed from the examples to improve clarity. Do not copy and paste

these examples into your application deployment descriptors or bindings. These examples serve as

reference only and are not representative of the recommended configuration.

Use the following tools to create or edit IBM deployment descriptor extensions and bindings:

v Use an assembly tool to create or edit the IBM deployment descriptor extensions.

v Use an assembly tool or the administrative console to create or edit the bindings file.

Chapter 14. Web services 1247

The following example illustrates a scenario that:

v Signs the SOAP body, time stamp, and security token.

v Encrypts the body content and user name token.

v Sends the user name token (basic authentication data).

v Generates the time stamp for the request.

For the response, the SOAP body and time stamp are signed, the body content is encrypted, and the

SOAP message freshness is checked using the time stamp. The freshness of the message indicates

whether the message complies with predefined time constraints.

The request sender and the request receiver are a pair. Similarly, the response sender and the response

receiver are a pair.

Tip: It is recommended that you use the WebSphere Application Server variables for specifying the path

to the key stores. In the administrative console, click Environment > Manage WebSphere

Variables. These variables often help with platform differences such as file system naming

conventions. In the following examples, $${USER_INSTALL_ROOT} is used for specifying the path to the

key stores.

Client-side IBM deployment descriptor extension

The client-side IBM deployment descriptor extension describes the following constraints:

Request Sender

v Signs the SOAP body, time stamp and security token

v Encrypts the body content and user name token

v Sends the basic authentication token (user name and password)

v Generates the time stamp to expire in three minutes

Response Receiver

v Verifies that the SOAP body and time stamp are signed

v Verifies that the SOAP body content is encrypted

v Verifies that the time stamp is present (also check for message freshness)

Example 1: Sample client IBM deployment descriptor extension

The xmi:id statements are removed for readability. These statements must be added for this example to

work.

Important: In the following code sample, lines 2 through 4 were split into three lines due to the width of

the printed page.

<?xml version="1.0" encoding="UTF-8"?>

<com.ibm.etools.webservice.wscext:WsClientExtension xmi:version="2.0"

 xmlns:xmi="http://www.omg.org/XMI" xmlns:com.ibm.etools.webservice.wscext=

 http://www.ibm.com/websphere/appserver/schemas/5.0.2/wscext.xmi">

 <serviceRefs serviceRefLink="service/myServ">

 <portQnameBindings portQnameLocalNameLink="Port1">

 <clientServiceConfig actorURI="myActorURI">

 <securityRequestSenderServiceConfig actor="myActorURI">

 <integrity>

 <references part="body"/>

 <references part="timestamp"/>

 <references part="securitytoken"/>

 </integrity>

1248 Securing applications and their environment

<confidentiality>

 <confidentialParts part="bodycontent"/>

 <confidentialParts part="usernametoken"/>

 </confidentiality>

 <loginConfig authMethod="BasicAuth"/>

 <addCreatedTimeStamp flag="true" expires="PT3M"/>

 </securityRequestSenderServiceConfig>

 <securityResponseReceiverServiceConfig>

 <requiredIntegrity>

 <references part="body"/>

 <references part="timestamp"/>

 </requiredIntegrity>

 <requiredConfidentiality>

 <confidentialParts part="bodycontent"/>

 </requiredConfidentiality>

 <addReceivedTimeStamp flag="true"/>

 </securityResponseReceiverServiceConfig>

 </clientServiceConfig>

 </portQnameBindings>

 </serviceRefs>

</com.ibm.etools.webservice.wscext:WsClientExtension>

Client-side IBM extension bindings

Example 2 shows the client-side IBM extension binding for the security constraints described previously in

the discussion on client-side IBM deployment descriptor extensions.

The signer key and encryption (decryption) key for the message can be obtained from the keystore key

locator implementation (com.ibm.wsspi.wssecurity.config.KeyStoreKeyLocator). The signer key is used

for encrypting the response. The sample is configured to use the Java Certification Path API to validate

the certificate path of the signer of the digital signature. The user name token (basic authentication) data is

collected from the standard in (stdin) prompts using one of the default JAAS implementations

:javax.security.auth.callback.CallbackHandler implementation

(com.ibm.wsspi.wssecurity.auth.callback.StdinPromptCallbackHandler).

Example 2: Sample client IBM extension binding

Important: In the following code sample, several lines were split into multiple lines due to the width of the

printed page. See the close bracket for an indication of where each line of code ends.

<?xml version="1.0" encoding="UTF-8"?>

<com.ibm.etools.webservice.wscbnd:ClientBinding xmi:version="2.0"

 xmlns:xmi="http://www.omg.org/XMI"

 xmlns:com.ibm.etools.webservice.wscbnd=

 "http://www.ibm.com/websphere/appserver/schemas/5.0.2/wscbnd.xmi">

 <serviceRefs serviceRefLink="service/MyServ">

 <portQnameBindings portQnameLocalNameLink="Port1">

 <securityRequestSenderBindingConfig>

 <signingInfo>

 <signatureMethod algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>

 <signingKey name="clientsignerkey" locatorRef="SampleClientSignerKey"/>

 <canonicalizationMethod algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>

 <digestMethod algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

 </signingInfo>

 <keyLocators name="SampleClientSignerKey" classname=

 "com.ibm.wsspi.wssecurity.config.KeyStoreKeyLocator">

 <keyStore storepass="{xor}PDM2OjEr" path=

 "$${USER_INSTALL_ROOT}/etc/ws-security/samples/dsig-sender.ks" type="JKS"/>

 <keys alias="soaprequester" keypass="{xor}PDM2OjEr" name="clientsignerkey"/>

 </keyLocators>

Chapter 14. Web services 1249

<encryptionInfo name="EncInfo1">

 <encryptionKey name="CN=Bob, O=IBM, C=US" locatorRef=

 "SampleSenderEncryptionKeyLocator"/>

 <encryptionMethod algorithm="http://www.w3.org/2001/04/xmlenc#tripledes-cbc"/>

 <keyEncryptionMethod algorithm="http://www.w3.org/2001/04/xmlenc#rsa-1_5"/>

 </encryptionInfo>

 <keyLocators name="SampleSenderEncryptionKeyLocator" classname=

 "com.ibm.wsspi.wssecurity.config.KeyStoreKeyLocator">

 <keyStore storepass="{xor}LCswLTovPiws" path=

 "$${USER_INSTALL_ROOT}/etc/ws-security/samples/enc-sender.jceks" type="JCEKS"/>

 <keys alias="Group1" keypass="{xor}NDomLz4sLA==" name="CN=Group1"/>

 </keyLocators>

 <loginBinding authMethod="BasicAuth" callbackHandler=

 "com.ibm.wsspi.wssecurity.auth.callback.StdinPromptCallbackHandler"/>

 </securityRequestSenderBindingConfig>

 <securityResponseReceiverBindingConfig>

 <signingInfos>

 <signatureMethod algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>

 <certPathSettings>

 <trustAnchorRef ref="SampleClientTrustAnchor"/>

 <certStoreRef ref="SampleCollectionCertStore"/>

 </certPathSettings>

 <canonicalizationMethod algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>

 <digestMethod algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

 </signingInfos>

 <trustAnchors name="SampleClientTrustAnchor">

 <keyStore storepass="{xor}PDM2OjEr" path=

 "$${USER_INSTALL_ROOT}/etc/ws-security/samples/dsig-sender.ks" type="JKS"/>

 </trustAnchors>

 <certStoreList>

 <collectionCertStores provider="IBMCertPath" name="SampleCollectionCertStore">

 <x509Certificates path="$${USER_INSTALL_ROOT}/etc/ws-security/samples/intca2.cer"/>

 </collectionCertStores>

 </certStoreList>

 <encryptionInfos name="EncInfo2">

 <encryptionKey locatorRef="SampleReceiverEncryptionKeyLocator"/>

 <encryptionMethod algorithm="http://www.w3.org/2001/04/xmlenc#tripledes-cbc"/>

 <keyEncryptionMethod algorithm="http://www.w3.org/2001/04/xmlenc#rsa-1_5"/>

 </encryptionInfos>

 <keyLocators name="SampleReceiverEncryptionKeyLocator" classname=

 "com.ibm.wsspi.wssecurity.config.KeyStoreKeyLocator">

 <keyStore storepass="{xor}PDM2OjEr" path=

 "$${USER_INSTALL_ROOT}/etc/ws-security/samples/dsig-sender.ks" type="JKS"/>

 <keys alias="soaprequester" keypass="{xor}PDM2OjEr" name="clientsignerkey"/>

 </keyLocators>

 </securityResponseReceiverBindingConfig>

 </portQnameBindings>

 </serviceRefs>

</com.ibm.etools.webservice.wscbnd:ClientBinding>

Server-side IBM deployment descriptor extension

The client-side IBM deployment descriptor extension describes the following constraints:

Request Receiver (ibm-webservices-ext.xmi and ibm-webservices-bnd.xmi)

v Verifies that the SOAP body, time stamp, and security token are signed.

v Verifies that the SOAP body content and user name token are encrypted.

v Verifies that the basic authentication token (user name and password) is in the Web services security

SOAP header.

1250 Securing applications and their environment

v Verifies that the time stamp is present (also check for message freshness). The freshness of the

message indicates whether the message complies with predefined time constraints.

Response Sender (ibm-webservices-ext.xmi and ibm-webservices-bnd.xmi)

v Signs the SOAP body and time stamp

v Encrypts the SOAP body content

v Generates the time stamp to expire in 3 minutes

Example 3: Sample server IBM deployment descriptor extension

Important: In the following code sample, several lines were split into multiple lines due to the width of the

printed page. See the close bracket for an indication of where each line of code ends.
<?xml version="1.0" encoding="UTF-8"?>

<com.ibm.etools.webservice.wsext:WsExtension xmi:version="2.0"

 xmlns:xmi="http://www.omg.org/XMI"

 xmlns:com.ibm.etools.webservice.wsext=

http://www.ibm.com/websphere/appserver/schemas/5.0.2/wsext.xmi">

 <wsDescExt wsDescNameLink="MyServ">

 <pcBinding pcNameLink="Port1">

 <serverServiceConfig actorURI="myActorURI">

 <securityRequestReceiverServiceConfig>

 <requiredIntegrity>

 <references part="body"/>

 <references part="timestamp"/>

 <references part="securitytoken"/>

 </requiredIntegrity>

 <requiredConfidentiality">

 <confidentialParts part="bodycontent"/>

 <confidentialParts part="usernametoken"/>

 </requiredConfidentiality>

 <loginConfig>

 <authMethods text="BasicAuth"/>

 </loginConfig>

 <addReceivedTimestamp flag="true"/>

 </securityRequestReceiverServiceConfig>

 <securityResponseSenderServiceConfig actor="myActorURI">

 <integrity>

 <references part="body"/>

 <references part="timestamp"/>

 </integrity>

 <confidentiality>

 <confidentialParts part="bodycontent"/>

 </confidentiality>

 <addCreatedTimestamp flag="true" expires="PT3M"/>

 </securityResponseSenderServiceConfig>

 </serverServiceConfig>

 </pcBinding>

 </wsDescExt>

</com.ibm.etools.webservice.wsext:WsExtension>

Server-side IBM extension bindings

The following binding information reuses some of the default binding information defined either at the

server level or the cell level, which depends upon the installation. For example, request receiver is

referencing the SampleCollectionCertStore certification store and the SampleServerTrustAnchor trust store

is defined in the default binding. However, the encryption information in the request receiver is referencing

a SampleReceiverEncryptionKeyLocator key locator defined in the application-level binding (the same

ibm-webservices-bnd.xmi file). The response sender is configured to use the signer key of the digital

signature of the request to encrypt the response using one of the default key locator

(com.ibm.wsspi.wssecurity.config.CertInRequestKeyLocator) implementations.

Chapter 14. Web services 1251

Example 4: Sample server IBM extension binding

<?xml version="1.0" encoding="UTF-8"?>

<com.ibm.etools.webservice.wsbnd:WSBinding xmi:version="2.0"

 xmlns:xmi="http://www.omg.org/XMI"

 xmlns:com.ibm.etools.webservice.wsbnd=

 http://www.ibm.com/websphere/appserver/schemas/5.0.2/wsbnd.xmi">

 <wsdescBindings wsDescNameLink="MyServ">

 <pcBindings pcNameLink="Port1" scope="Session">

 <securityRequestReceiverBindingConfig>

 <signingInfos>

 <signatureMethod algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>

 <certPathSettings>

 <trustAnchorRef ref="SampleServerTrustAnchor"/>

 <certStoreRef ref="SampleCollectionCertStore"/>

 </certPathSettings>

 <canonicalizationMethod algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>

 <digestMethod algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

 </signingInfos>

 <encryptionInfos name="EncInfo1">

 <encryptionKey locatorRef="SampleReceiverEncryptionKeyLocator"/>

 <encryptionMethod algorithm="http://www.w3.org/2001/04/xmlenc#tripledes-cbc"/>

 <keyEncryptionMethod algorithm="http://www.w3.org/2001/04/xmlenc#rsa-1_5"/>

 </encryptionInfos>

 <keyLocators name="SampleReceiverEncryptionKeyLocator" classname=

 "com.ibm.wsspi.wssecurity.config.KeyStoreKeyLocator">

 <keyStore storepass="{xor}LCswLTovPiws" path="$${USER_INSTALL_ROOT}/

 etc/ws-security/samples/enc-receiver.jceks" type="JCEKS"/>

 <keys alias="Group1" keypass="{xor}NDomLz4sLA==" name="CN=Group1"/>

 <keys alias="bob" keypass="{xor}NDomLz4sLA==" name="CN=Bob, O=IBM, C=US"/>

 </keyLocators>

 </securityRequestReceiverBindingConfig>

 <securityResponseSenderBindingConfig>

 <signingInfo>

 <signatureMethod algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>

 <signingKey name="serversignerkey" locatorRef="SampleServerSignerKey"/>

 <canonicalizationMethod algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>

 <digestMethod algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

 </signingInfo>

 <encryptionInfo name="EncInfo2">

 <encryptionKey locatorRef="SignerKeyLocator"/>

 <encryptionMethod algorithm="http://www.w3.org/2001/04/xmlenc#tripledes-cbc"/>

 <keyEncryptionMethod algorithm="http://www.w3.org/2001/04/xmlenc#rsa-1_5"/>

 </encryptionInfo>

 <keyLocators name="SignerKeyLocator" classname=

 "com.ibm.wsspi.wssecurity.config.CertInRequestKeyLocator"/>

 </securityResponseSenderBindingConfig>

 </pcBindings>

 </wsdescBindings>

 <routerModules transport="http" name="StockQuote.war"/>

</com.ibm.etools.webservice.wsbnd:WSBinding>

Overview of authentication methods

The Web services security implementation for WebSphere Application Server supports the following

authentication methods: BasicAuth, Lightweight Third Party Authentication (LTPA), digital signature, and

identity assertion.

Important: There is an important distinction between Version 5.x and Version 6 and later applications.

The information in this article supports Version 5.x applications only that are used with

WebSphere Application Server Version 6.0.x and later. The information does not apply to

Version 6 and later applications.

When the WebSphere Application Server is configured to use the BasicAuth authentication method, the

sender attaches the Lightweight Third Party Authentication (LTPA) token as a BinarySecurityToken from

1252 Securing applications and their environment

the current security context or from basic authentication data configuration in the binding file in the SOAP

message header. The Web services security message receiver authenticates the sender by validating the

user name and password against the configured user registry. With the LTPA method, the sender attaches

the LTPA BinarySecurityToken it previously received in the SOAP message header. The receiver

authenticates the sender by validating the LTPA token and the token expiration time. With the Digital

Signature authentication method, the sender attaches a BinarySecurityToken from a X509 certificate to the

Web services security message header along with a digital signature of the message body, time stamp,

security token, or any combination of the three. The receiver authenticates the sender by verifying the

validity of the X.509 certificate and the digital signature using the public key from the verified certificate.

The identity assertion authentication method is different from the other three authentication methods. This

method establishes the security credential of the sender based on the trust relationship. You can use the

identity assertion authentication method, for example, when an intermediary server must invoke a service

from a downstream server on behalf of the client, but does not have the client authentication information.

The intermediary server might establish a trust relationship with the downstream server and then assert

the client identity to the same downstream server.

Web Services Security supports the following trust modes:

v BasicAuth

v Digital signature

v Presumed trust

When you use the BasicAuth and digital signature trust modes, the intermediary server passes its own

authentication information to the downstream server for authentication. The presumed trust mode

establishes a trust relationship using some external mechanism. For example, the intermediary server

might pass SOAP messages through a Secure Socket Layers (SSL) connection with the downstream

server and transport layer client certificate authentication.

The Web services security implementation for WebSphere Application Server validates the trust

relationship by following this procedure:

1. The downstream server validates the authentication information of the intermediary server.

2. The downstream server verifies whether the authenticated intermediary server is authorized for identity

assertion. For example, the intermediary server must be in the trust list for the downstream server.

The client identity might be represented by a name string, a distinguished name (DN), or an X.509

certificate. The client identity is attached in the Web services security message in a UsernameToken with

just a user name, DN, or in a BinarySecurityToken of a certificate. The following table summarizes the type

of security token that is required for each authentication method.

 Table 51. Authentication methods and their security tokens

Authentication method Security token

BasicAuth BasicAuth requires <wsse:UsernameToken> with

<wsse:Username> and <wsse:Password>.

Signature Signature requires <ds:Signature> and

<wsse:BinarySecurityToken>.

Chapter 14. Web services 1253

Table 51. Authentication methods and their security tokens (continued)

Authentication method Security token

IDAssertion IDAssertion requires <wsse:UsernameToken> with

<wsse:Username> or <wsse:BinarySecurityToken> with a

X.509 certificate for client identity depending on <idType>.

This method also requires other security tokens according

to the <trustMode>:

v If the <trustMode> is BasicAuth, IDAssertion requires

<wsse:UsernameToken> with <wsse:Username> and

<wsse:Password>.

v If the <trustMode> is Signature, IDAssertion requires

<wsse:BinarySecurityToken>.

LTPA LTPA requires <wsse:BinarySecurityToken> with an LTPA

token.

A Web service can support multiple authentication methods simultaneously. The receiver side of the Web

services deployment descriptor can specify all the authentication methods that are supported in the

ibm-webservices-ext.xmi XML file. The Web services receiver-side, as shown in the following example, is

configured to accept all the authentication methods described previously:

<loginConfig xmi:id="LoginConfig_1052760331326">

 <authMethods xmi:id="AuthMethod_1052760331326" text="BasicAuth"/>

 <authMethods xmi:id="AuthMethod_1052760331327" text="IDAssertion"/>

 <authMethods xmi:id="AuthMethod_1052760331336" text="Signature"/>

 <authMethods xmi:id="AuthMethod_1052760331337" text="LTPA"/>

</loginConfig>

<idAssertion xmi:id="IDAssertion_1052760331336" idType="Username" trustMode="Signature"/>

You can define only one authentication method in the sender-side Web services deployment descriptor. A

Web service client can use any of the authentication methods that are supported by the particular Web

services application. The following example illustrates an identity assertion authentication method

configuration in the ibm-webservicesclient-ext.xmi deployment descriptor extension of the Web service

client:

<loginConfig xmi:id="LoginConfig_1051555852697">

 <authMethods xmi:id="AuthMethod_1051555852698" text="IDAssertion"/>

</loginConfig>

<idAssertion xmi:id="IDAssertion_1051555852697" idType="Username" trustMode="Signature"/>

As shown in the previous example, the client identity type is Username and the trust mode is digital

signature.

1254 Securing applications and their environment

The sender security handler invokes the handle() method of an implementation of the

javax.security.auth.callback.CallbackHandler interface. The

javax.security.auth.callback.CallbackHandler interface creates the security token and passes it back to

the sender security handler. The sender security handler constructs the security token based on the

authentication information in the callback array and inserts the security token into the Web services

security message header.

The receiver security handler compares the token type in the message header with the expected token

types configured in the deployment descriptor. If none of the expected token types are found in the Web

services security header of the SOAP message, the request is rejected with a SOAP fault exception.

Otherwise, the token type is used to map to a Java Authentication and Authorization Service (JAAS) login

configuration for validating the token. If the authentication is successful, a JAAS Subject is created and

associated with the running thread. Otherwise, the request is rejected with a SOAP fault exception.

XML digital signature

XML-Signature Syntax and Processing (XML signature) is a specification that defines XML syntax and

processing rules to sign and verify digital signatures for digital content. The specification was developed

jointly by the World Wide Web Consortium (W3C) and the Internet Engineering Task Force (IETF).

XML signature does not introduce new cryptographic algorithms. WebSphere Application Server uses XML

signature with existing algorithms such as RSA, HMAC, and SHA1. XML signature defines many methods

for describing key information and enables the definition of a new method.

XML canonicalization (c14n) is often needed when you use XML signature. Information can be represented

in various ways within serialized XML documents. For example, although their octet representations are

different, the following examples are identical:

Security Token

generation

CallbackHandlerconfiguration

security

token

Sender

security handler

Simple Object Access

Protocol request

+

web services

security headers

Deployment descriptor

and service bindings

XML configuration

Deployment descriptor

and service bindings

XML configuration

Receiver

security handler

Request

• Security Token validation

• Set the JAAS subject

caller and runAs identity

JAAS login configurationsecurity token

JAAS

subject

Request

Figure 17. Security token generation and validation

Chapter 14. Web services 1255

v <person first="John" last="Smith"/>

v <person last="Smith" first="John"></person>

C14n is a process used to canonicalize XML information. Select an appropriate c14n algorithm because

the information that is canonicalized is dependent upon this algorithm. One of the major c14n algorithms,

Exclusive XML Canonicalization, canonicalizes the character encoding scheme, attribute order, namespace

declarations, and so on. The algorithm does not canonicalize white space outside tags, namespace

prefixes, or data type representation.

XML signature in the Web Services Security-Core specification

The Web Services Security-Core (WSS-Core) specification defines a standard way for SOAP messages to

incorporate an XML signature. You can use almost all of the XML signature features in WSS-Core except

enveloped signature and enveloping signature. However, WSS-Core has some recommendations such as

exclusive canonicalization for the c14n algorithm and some additional features such as

SecurityTokenReference and KeyIdentifier. The KeyIdentifier is the value of the SubjectKeyIdentifier

field within the X.509 certificate. For more information on the KeyIdentifier, see ″Reference to a Subject

Key Identifier″ within the OASIS Web Services Security X.509 Certificate Token Profile documentation.

By including XML signature in SOAP messages, the following are realized:

Message integrity

A message receiver can confirm that attackers or accidents have not altered parts of the message

after these parts are signed by a key.

Authentication

You can assume that a valid signature is proof of possession. A message with a digital certificate

issued by a certificate authority and a signature in the message that is validated successfully by a

public key in the certificate, is proof that the signer has the corresponding private key. The receiver

can authenticate the signer by checking the trustworthiness of the certificate.

XML signature in the current implementation

XML signature is supported in Web services security, however, an application programming interface (API)

is not available. The current implementation has many hardcoded behaviors and has some user-operable

configuration items. To configure the client for digital signature, see Configuring the client for response

digital signature verification: Verifying the message parts. To configure the server for digital signature, see

Configuring the server for request digital signature verification: Verifying the message parts.

Security considerations

In a replay attack, an attacker taps the lines, receives a signed message, and then returns the message to

the receiver. In this case, the receiver receives the same message twice and might process both of them if

the signatures are valid. Processing both messages can cause damage to the receiver if the message is a

claim for money. If you have the signed generation time stamp and the signed expiration time in a

message replay, attacks might be reduced. However, this is not a complete solution. A message must

have a nonce value to prevent these attacks and the receiver must reject a message that contains a

processed nonce. The current implementation does not provide a standard way to generate and check

nonces in messages. In WebSphere Application Server, Version 5.1, nonce is supported in username

tokens only. The username token profile contains concrete nonce usage scenarios for username tokens.

Applications handle nonces (such as serial numbers) and they need to be signed.

Important: There is an important distinction between Version 5.x and Version 6 and later applications.

The information in this article supports Version 5.x applications only that are used with

WebSphere Application Server Version 6.0.x and later. The information does not apply to

Version 6 and later applications.

1256 Securing applications and their environment

http://www.oasis-open.org/committees/download.php/5073/oasis-200401-wss-x509-token-profile-1.0.pdf

Signing parameter configuration settings

Use this page to configure new signing parameters.

Important: There is an important distinction between Version 5.x and Version 6 and later applications.

The information in this article supports Version 5.x applications only that are used with

WebSphere Application Server Version 6.0.x and later. The information does not apply to

Version 6.0.x and later applications.

The specifications that are listed on this page for the signature method, digest method, and

canonicalization method are located in the World Wide Web Consortium (W3C) document entitled, XML

Signature Syntax and Specification: W3C Recommendation 12 Feb 2002.

To view this administrative console page, complete the following steps:

1. Click Enterprise Applications > application_name.

2. Click Manage modules > URI_file_name

3.

Version 5.x application

Under Additional properties, you can access the signing

information for the following bindings:

a. For the Request sender binding, click Web services: Client security bindings. Under Request

sender binding, click Edit. Under Additional properties, click Signing information.

b. For the Response sender binding, click Web services: Server security bindings. Under

Response sender binding, click Edit. Under Additional properties, click Signing information.

4. In the Request Sender Binding column, click Edit > Signing Information.

If the signing information is not available, select None.

If the signing information is available, select Dedicated Signing Information and specify the configuration

in the following fields:

Signature method:

Specifies the algorithm Uniform Resource Identifiers (URI) of the signature method.

 The following algorithms are supported:

v http://www.w3.org/2000/09/xmldsig#rsa-sha1

v http://www.w3.org/2000/09/xmldsig#dsa-sha1

v http://www.w3.org/2000/09/xmldsig#hmac-sha1

You can also add custom algorithms.

Digest method:

Specifies the algorithm URI of the digest method.

 WebSphere Application Server supports the http://www.w3.org/2000/09/xmldsig#sha1 algorithm.

Canonicalization method:

Specifies the algorithm URI of the canonicalization method.

 The following algorithms are supported:

v http://www.w3.org/2001/10/xml-exc-c14n#

v http://www.w3.org/2001/10/xml-exc-c14n#WithComments

v http://www.w3.org/TR/2001/REC-xml-c14n-20010315

v http://www.w3.org/TR/2001/REC-xml-c14n-20010315#WithComments

Chapter 14. Web services 1257

http://www.w3.org/2000/09/xmldsig#sha1
http://www.w3.org/2001/10/xml-exc-c14n#
http://www.w3.org/2001/10/xml-exc-c14n#WithComments
http://www.w3.org/TR/2001/REC-xml-c14n-20010315
http://www.w3.org/TR/2001/REC-xml-c14n-20010315#WithComments

Key name:

Specifies the name of the key object found in the keystore file.

Key locator reference:

Specifies the name used to reference the key locator

 You can configure these key locator reference options on the server level and the application level. The

configurations that are listed in the field are a combination of the configurations on these two levels.

You can specify a key locator configuration for the following bindings on the following levels:

 Binding name Cell level, server level, or

application level

Path

N/A Server level 1. Click Servers > Application servers >

server_name.

2. Under Security, click Web services:

Default bindings for Web services

security.

3. Under Additional properties, click Key

locators.

Request sender Application level 1. Click Applications > Enterprise

applications > application_name.

2. Click Manage modules > URI_name.

3. Click Web services: Client security

bindings.

4. Under Request sender binding, click Edit.

5. Under Additional properties, click Key

locators.

Request receiver Application level 1. Click Applications > Enterprise

applications > application_name.

2. Click Manage modules > URI_name.

3. Click Web services: Server security

bindings.

4. Under Request receiver binding, click Edit.

5. Under Additional properties, click Key

locators.

Response sender Application level 1. Click Applications > Enterprise

applications > application_name.

2. Click Manage modules > URI_name.

3. Click Web services: Server security

bindings.

4. Under Response sender binding, click Edit.

5. Under Additional properties, click Key

locators.

1258 Securing applications and their environment

Binding name Cell level, server level, or

application level

Path

Response receiver Application level 1. Click Applications > Enterprise

applications > application_name.

2. Click Manage modules > URI_name.

3. Click Web services: Client security

bindings.

4. Under Response receiver binding, click

Edit.

5. Under Additional properties, click Key

locators.

Securing Web services for Version 5.x applications using XML digital

signature

XML digital signature is one of the methods WebSphere Application Server provides to secure your Web

services. It provides message integrity and authentication capabilities when used with SOAP messages

Important: There is an important distinction between Version 5.x and Version 6 and later applications.

The information in this article supports Version 5.x applications only that are used with

WebSphere Application Server Version 6.0.x and later. The information does not apply to

Version 6.0.x and later applications.

WebSphere Application Server provides several different methods to secure your Web services; XML

digital signature is one of these methods. You might secure your Web services using any of the following

methods:

v XML digital signature

v XML encryption

v Basicauth authentication

v Identity assertion authentication

v Signature authentication

v Pluggable token

XML digital signature provides both message integrity and authentication capabilities when it is used with

SOAP messages. A message receiver can verify that attackers or accidents have not altered parts of the

message after the message was signed by a key. If a message has a digital certificate issued by a

certificate authority (CA) and a signature in the message is validated successfully by a public key in the

certificate, it is proof that the signer has the corresponding private key. To use XML digital signature to

secure Web services, complete the following steps:

1. Define the security constraints or extensions. To configure the security constraints, you must use and

assembly tool. For more information, see Assembly tools.

a. Configure the client to digitally sign a message request. To configure the client, complete the

following steps to specify which parts of the SOAP message to digitally sign and define the method

used to digitally sign the message. The client in these steps is the request sender.

1) Specify the message parts by following the steps found in Configuring the client for request

signing: digitally signing message parts.

2) Select the method used to digitally sign the request message. You can select the digital

signature method by following the steps in Configuring the client for request signing: choosing

the digital signature method.

b. Configure the server to verify the digital signature that is used in the message request. To

configure the server, you must specify which parts of the SOAP message, sent by the request

Chapter 14. Web services 1259

sender, contain digitally signed information and which method was used to digitally sign the

message. The settings chosen for the request receiver, or the server in this step, must match the

settings chosen for the request sender in the previous step.

1) Define the message parts by following the steps found in Configuring the server for request

digital signature verification: verifying message parts.

2) Select the same method used by the request sender to digitally sign the message. You can

select the digital signature method by following the steps in Configuring the server for request

digital signature verification: choosing the verification method

c. Configure the server to digitally sign a message response. To configure the server, complete the

following steps to specify which parts of the SOAP message to digitally sign and define the method

used to digitally sign the message. The sender in these steps is the response sender.

1) Specify which message parts to digitally sign by following the steps found in Configuring the

server for response signing: digitally signing message parts.

2) Select the method used to digitally sign the response message. You can select the digital

signature method by following the steps in Configuring the server for response signing:

choosing the digital signature method

d. Configure the client to verify the digital signature that is used in the message response. To

configure the client, you must specify which parts of the SOAP message sent by the response

sender contain digitally signed information and which method was used to digitally sign the

message. The settings chosen for the response receiver, or client in this step, must match the

settings chosen for the response sender in the previous step.

1) Define the message parts by following the steps found in Configuring the client for response

digital signature verification: verifying message parts

2) Select the same method used by the response sender to digitally sign the message. You can

select the digital signature method by following the steps in Configuring the client for response

digital signature verification: choosing the verification method

2. Define the client security bindings. To configure the client security bindings, complete the steps in

either of the following topics:

v Configuring the client security bindings using the Application Server Toolkit

v Configuring the client security bindings using the administrative console

3. Define the server security bindings. To configure the server security bindings, complete the steps in

either of the following topics:

v Configuring the server security bindings using the Application Server Toolkit

v Configuring the server security bindings using the administrative console

After completing these steps, you have secured your Web services using XML digital signature.

Default configuration for WebSphere Application Server

Each application server, in WebSphere Application Server, uses a copy of the ws-security.xml file to

define the default binding information for Web services security.

Important: There is an important distinction between Version 5.x and Version 6.0.x applications. The

information in this article supports Version 5.x applications only that are used with WebSphere

Application Server Version 6.0.x and later. The information does not apply to Version 6.0.x and

later applications.

In the WebSphere Application Server, each application server has a copy of the ws-security.xml file,

which defines the default binding information for Web services security. The following list contains the

defaults defined in the ws-security.xml file:

Trust anchors

Identifies the trusted root certificates for signature verification.

1260 Securing applications and their environment

Collection certificate stores

Contains certificate revocation lists (CRLs) and nontrusted certificates for verification.

Key locators

Locates the keys for digital signature and encryption.

Trusted ID evaluators

Evaluates the trust of the received identity before identity assertion.

Login mappings

Contains the Java Authentication and Authorization Service (JAAS) configurations for AuthMethod

token validation.

If the Web services security constraints specified in the deployment descriptors and the required bindings

are not defined in the bindings file, the default constraints in the ws-security.xml file are used.

When you use the addNode command, the ws-security.xml file is added with the server configuration to

the new cell. The following figure shows the activity when you use the addNode command.

Default binding

The default binding information is defined in the ws-security.xml file and can be administered by either

the administrative console or by scripting.

Important: There is an important distinction between Version 5.x and Version 6 and later applications.

The information in this article supports version 5.x applications only that are used with

WebSphere Application Server Version 6.0.x and later. The information does not apply to

Version 6 and later applications.

Certain applications can share certain binding information. This information includes truststores, keystores,

and authentication methods (token validation). WebSphere Application Server provides support for default

binding information. Administrators can define binding information at:

v The server level

Applications can refer to this binding information.

My cell

My node

Server1

ws-security.xml

file
ibm-services-bnd.xml

file

Default configuration for server1

application-level binding

overrides

EJB module

ibm-webservices-ext.xmi

Web services

implemented

as an EJB file

Figure 18. Configuration when using the addNode command

Chapter 14. Web services 1261

You can define the following binding information in the ws-security.xml file:

Trust anchors (truststore)

v Trust anchors contain key store configuration information that has the root-trusted certificates.

Trust anchors are used for certificate path validation of the incoming X.509-formatted security

tokens.

v The Trust Anchor Name is used in the binding file (ibm-webservices-bnd.xmi and

ibm-webservicesclient-bnd-xmi when Web services is running as a client) to refer to the trust

anchor defined in the default binding information. The trust anchor name must be unique in the

trust anchor collection.

Collection certificate store

v The collection certificate store specifies a list of untrusted, intermediate certificates and is used

for certificate path validation of incoming X.509-formatted security tokens. The default provider

is IBMCertPath.

v The Certificate Store Name is used in the binding file (ibm-webservices-bnd.xmi and

ibm-webservicesclient-bnd-xmi when Web services is running as a client) to refer to the

certificate store defined in the default binding information. The Certificate Store Name must be

unique to the collection certificate store collection.

Key locators

v Key locators specify implementation of the com.ibm.wsspi.wssecurity.config.KeyLocator

interface. This interface is used to retrieve keys for signature or encryption. Customer

implementations can extend the key locator interface to retrieve keys using other methods.

WebSphere Application Server provides implementations to retrieve a key from the key store,

map an authenticated identity to a key in the key store, or retrieve a key from the signer

certificate (mapping and retrieving actions are used for encrypting the response).

v The Key Locator Name is used in the binding file (ibm-webservices-bnd.xmi and

ibm-webservicesclient-bnd-xmi when Web services is running as a client) to refer to the key

locator defined in the default binding information. The Key Locator Name must be unique to the

key locators collection in the default binding information.

Trusted ID evaluators

v Trusted ID evaluators are an implementation of the

com.ibm.wsspi.wssecurity.id.TrustedIDEvaluator interface. This interface is used to make sure

the identity (ID)-asserting authority is trusted. Additionally, you can extend the trusted identity

evaluator to validate the trust. WebSphere Application Server provides a default implementation

for validating trust based on a predefined list of identities.

v The Trusted ID Evaluator Name is used in the binding file (ibm-webservices-bnd.xmi) to refer to

the trusted identity evaluator defined in the default binding information. The Trusted ID Evaluator

Name must be unique to the Trusted ID Evaluator collection.

Login mappings

v Login mappings define the mapping of the authentication method to the Java Authentication and

Authorization Service (JAAS) login configuration. The mappings are used to authenticate the

incoming security token embedded in the Web services security SOAP message header. The

JAAS login configuration is defined in the administrative console under Security > Secure

administration, applications, and infrastructure > Java Authentication and Authorization

Service > Application logins.

v WebSphere Application Server defines the following authentication methods:

BasicAuth

Authenticates user name and password.

Signature

Maps the subject distinguished name (DN) in the certificate to a WebSphere Application

Server credential.

1262 Securing applications and their environment

IDAssertion

Maps the identity to a WebSphere Application Server credential.

LTPA Authenticates a Lightweight Third Party Authentication (LTPA) token.

After identity authentication, the associated credential is used in the downstream call.

v This method can be extended to authenticate custom security tokens by providing a custom

JAAS login configuration and by using the

com.ibm.wsspi.wssecurity.auth.module.WSSecurityMappingModule to create the principal and

credential required by WebSphere Application Server.

v If LoginConfig (AuthMethod) is defined in the IBM extension deployment descriptor

(ibm-webservices-ext.xmi), but there are no login mapping bindings (ibm-webservices-bnd.xmi)

defined for the AuthMethod, Web services security run time uses the login mapping defined in

the default binding information.

 WebSphere Application Server

In the WebSphere Application Server, each server has a copy of the ws-security.xml file (default binding

information for Web services security). There is no cell-level copy of the ws-security.xml file, which is

only available in the WebSphere Application Server Network Deployment installation. To navigate to the

server-level default binding in the administrative console, complete the following steps:

1. Click Servers > Application Servers > server1.

2. Under Security, click Web Services: Default bindings for Web Services Security.

Web services security run time uses the binding information in the application Enterprise JavaBeans (EJB)

module or Web module binding file (ibm-webservices-bnd.xmi or ibm-webservicesclient-bnd.xmi if Web

services is acting as a client on the server) if the binding information is defined in the application-level

binding file. For example, if key locator K1 is defined in both the application-level binding file and the

default binding file (ws-security.xml), the K1 in the application-level binding file is used.

My cell

My node

Server1

ws-security.xml

file
ibm-services-bnd.xml

file

Default configuration for server1

application-level binding

overrides

EJB module

ibm-webservices-ext.xmi

Web services

implemented

as an EJB file

Figure 19. Web services security application-level bindings and server-level default binding information

Chapter 14. Web services 1263

Trust anchors

A trust anchor specifies keystores that contain trusted root certificates that validate the signer certificate.

The request receiver and the response receiver use these keystores to validate the signer certificate of the

digital signature.

Important: There is an important distinction between Version 5.x and Version 6 and later applications.

The information in this article supports Version 5.x applications only that are used with

WebSphere Application Server Version 6.0.x and later. The information does not apply to

Version 6.0.x and later applications.

The request receiver (as defined in the ibm-webservices-bnd.xmi file) and the response receiver (as

defined in the ibm-webservicesclient-bnd.xmi file when Web services is acting as client) use these

keystores to validate the signer certificate of the digital signature. The keystores are critical to the integrity

of the digital signature validation. If they are tampered with, the result of the digital signature verification is

doubtful and comprised. Therefore, it is recommended that you secure these keystores. The binding

configuration specified for the request receiver in the ibm-webservices-bnd.xmi file must match the binding

configuration for the response receiver in the ibm-webservicesclient-bnd.xmi file.

The trust anchor is defined as javax.security.cert.TrustAnchor in the Java CertPath application

programming interface (API). The Java CertPath API uses the trust anchor and the certificate store to

validate the incoming X.509 certificate that is embedded in the SOAP message.

The Web services security implementation in WebSphere Application Server supports this trust anchor. In

WebSphere Application Server, the trust anchor is represented as a Java keystore object. The type, path,

and password of the keystore are passed to the implementation through the administrative console or by

scripting.

Configuring trust anchors using an assembly tool

Use an assembly tool to configure trust anchors (that specify key stores which contain trusted root

certificates to validate the signer certificate) or trust stores at the application level.

Important: There is an important distinction between Version 5.x and Version 6 and later applications.

The information in this article supports Version 5.x applications only that are used with

WebSphere Application Server Version 6.0.x and later. The information does not apply to

Version 6.0.x and later applications.

This document describes how to configure trust anchors or trust stores at the application level. It does not

describe how to configure trust anchors at the server or cell level. Trust anchors defined at the application

level have a higher precedence over trust anchors defined at the server or cell level. You can configure an

application-level trust anchor using an assembly tool or the administrative console. This document

describes how to configure the application-level trust anchor using an assembly tool. For more information

on creating and configuring trust anchors at the server or cell level, see either “Configuring the server

security bindings using an assembly tool” on page 1306 or “Configuring the server security bindings using

the administrative console” on page 1309.

A trust anchor specifies key stores that contain trusted root certificates, which validate the signer

certificate. These key stores are used by the request receiver (as defined in the ibm-webservices-bnd.xmi

file) and the response receiver (as defined in the application-client.xml file when Web services is acting

as client) to validate the signer certificate of the digital signature. The key stores are critical to the integrity

of the digital signature validation. If they are tampered with, the result of the digital signature verification is

doubtful and comprised. Therefore, it is recommended that you secure these key stores. The binding

configuration specified for the request receiver in the ibm-webservices-bnd.xmi file must match the binding

configuration for the response receiver in the application-client.xml file.

Complete the following steps to configure trust anchors using an assembly tool.

1264 Securing applications and their environment

1. Configure an assembly tool to work with a Java 2 Platform, Enterprise Edition (J2EE) enterprise

application. For more information, see Assembling applications

2. Create a Web services-enabled J2EE enterprise application. If you have not created a Web

services-enabled J2EE enterprise application, see Developing Web services applications. Also, see

either “Configuring the server security bindings using an assembly tool” on page 1306 or “Configuring

the server security bindings using the administrative console” on page 1309 for an introduction on how

to manage Web services security binding information on the server.

3. Configure the client-side response receiver, which is defined in the ibm-webservicesclient-bnd.xmi

bindings extensions file.

a. Use an assembly tool to import your J2EE application.

b. Click Windows > Open Perspective > Other > J2EE.

c. Click Application Client projects > application_name > appClientModule > META-INF

d. Right-click the application-client.xml file, select Open with > Deployment Descriptor Editor,

and click the WS Binding tab. The Client Deployment Descriptor is displayed.

e. Locate the Port qualified name binding section and either select an existing entry or click Add, to

add a new port binding. The Web services client port binding editor displays for the selected port.

f. Locate the Trust anchor section and click Add. The Trust anchor dialog box is displayed.

1) Enter a unique name within the port binding for the Trust anchor name.

The name is used to reference the trust anchor that is defined.

2) Enter the key store password, path, and key store type.

The supported key store types are the Java Cryptography Extension (JCE) and Java

Cryptography Extension Key Stores (JCEKS) types.

Click Edit to edit the selected trust anchor.

Click Remove to remove the selected trust anchor.

When you start the application, the configuration is validated in the run time while the binding

information is loading.

g. Save the changes.

4. Configure the server-side request receiver, which is defined in the ibm-webservices-bnd.xmi bindings

extensions file.

a. Click Windows > Open perspective > J2EE.

b. Select the Web services enabled Enterprise JavaBeans (EJB) or Web module.

c. In the Package Explorer window, click the META-INF directory for an EJB module or the WEB-INF

directory for a Web module.

d. Right-click the webservices.xml file, select Open with > Web services editor, and click the

bindings tab. The Web services bindings editor is displayed.

e. Locate the Web service description bindings section and either select an existing entry or click Add

to add a new Web services descriptor.

f. Click Binding configurations. The Web services binding configurations editor is displayed for the

selected Web services descriptor.

g. Locate the Trust anchor section and click Add. The Trust anchor dialog box is displayed.

1) Enter a unique name within the binding for the Trust anchor name.

This unique name is used to reference the trust anchor defined.

2) Enter the key store password, path, and key store type. The supported key store types are JCE

and JCEKS.

Click Edit to edit the selected trust anchor.

Click Remove to remove the selected trust anchor.

When you start the application, the configuration is validated in the run time while the binding

information is loading.

Chapter 14. Web services 1265

h. Save the changes.

This procedure defines trust anchors that can be used by the request receiver or the response receiver (if

the Web services is acting as client) to verify the signer certificate.

The request receiver or the response receiver (if the Web service is acting as a client) uses the defined

trust anchor to verify the signer certificate. The trust anchor is referenced using the trust anchor name.

To complete the signing information configuration process for request receiver, complete the following

tasks:

1. “Configuring the server for request digital signature verification: Verifying the message parts” on page

1291

2. “Configuring the server for request digital signature verification: choosing the verification method” on

page 1292

To complete the process for the response receiver, if the Web services is acting as a client, complete the

following tasks:

1. “Configuring the client for response digital signature verification: verifying the message parts” on page

1298

2. “Configuring the client for response digital signature verification: choosing the verification method” on

page 1300

Configuring trust anchors using the administrative console

Use the WebSphere Application Server administrative console to configure trust anchors that specify key

stores which contain trusted root certificates to validate the signer certificate.

Important: There is an important distinction between Version 5.x and Version 6 and later applications.

The information in this article supports Version 5.x applications only that are used with

WebSphere Application Server Version 6.0.x and later. The information does not apply to

Version 6.0.x and later applications.

This document describes how to configure trust anchors or trust stores at the application level. It does not

describe how to configure trust anchors at the server or cell level. Trust anchors defined at the application

level have a higher precedence over trust anchors defined at the server or cell level. For more information

on creating and configuring trust anchors at the server or cell level, see either “Configuring the server

security bindings using an assembly tool” on page 1306 or “Configuring the server security bindings using

the administrative console” on page 1309.

You can configure an application-level trust anchor using an assembly tool or the administrative console.

This document describes how to configure the application-level trust anchor using the administrative

console.

A trust anchor specifies key stores that contain trusted root certificates, which validate the signer

certificate. These key stores are used by the request receiver (as defined in the ibm-webservices-bnd.xmi

file) and the response receiver (as defined in the ibm-webservicesclient-bnd.xmi file when Web services

is acting as client) to validate the signer certificate of the digital signature. The keystores are critical to the

integrity of the digital signature validation. If they are tampered with, the result of the digital signature

verification is doubtful and comprised. Therefore, it is recommended that you secure these keystores. The

binding configuration specified for the request receiver in the ibm-webservices-bnd.xmi file must match the

binding configuration for the response receiver in the ibm-webservicesclient-bnd.xmi file.

The following steps are for the client-side response receiver, which is defined in the ibm-
webservicesclient-bnd.xmi file and the server-side request receiver, which is defined in the

ibm-webservices-bnd.xmi file.

1266 Securing applications and their environment

1. Configure an assembly tool to work with a Java 2 Platform, Enterprise Edition (J2EE) enterprise

application. For more information, see Assembling applications

2. Create a Web services-enabled J2EE enterprise application. If you have not created a Web

services-enabled J2EE enterprise application, see Developing Web services applications. Also, see

either “Configuring the server security bindings using an assembly tool” on page 1306 or “Configuring

the server security bindings using the administrative console” on page 1309 for an introduction on how

to manage Web services security binding information on the server.

3. Click Applications > Enterprise applications > enterprise_application.

4. Under Manage modules, click URI_name.

5. Under Web Services Security Properties, click Web services: client security bindings to edit the

response receiver binding information, if Web services is acting as a client.

a. Under Response receiver binding, click Edit.

b. Under Additional properties, click Trust anchors.

c. Click New to create a new trust anchor.

d. Enter a unique name within the request receiver binding for the Trust anchor name field. The name

is used to reference the trust anchor that is defined.

e. Enter the key store password, path, and key store type.

f. Click the trust anchor name link to edit the selected trust anchor.

g. Click Remove to remove the selected trust anchor or anchors.

When you start the application, the configuration is validated in the run time while the binding

information is loading.

6. Return to the Web services-enabled module panel accessed in step 2.

7. Under Web Services Security Properties, click Web services: server security bindings to edit the

request receiver binding information.

a. Under Request receiver binding, click Edit.

b. Under Additional properties, click Trust anchors.

c. Click New to create a new trust anchor

Enter a unique name within the request receiver binding for the Trust anchor name field. The name

is used to reference the trust anchor that is defined.

Enter the key store password, path, and key store type.

Click the trust anchor name link to edit the selected trust anchor.

Click Remove to remove the selected trust anchor or anchors.

When you start the application, the configuration is validated in the run time while the binding

information is loading.

8. Save the changes.

This procedure defines trust anchors that can be used by the request receiver or the response receiver (if

the Web services is acting as client) to verify the signer certificate.

The request receiver or the response receiver (if the Web service is acting as a client) uses the defined

trust anchor to verify the signer certificate. The trust anchor is referenced using the trust anchor name.

To complete the signing information configuration process for request receiver, complete the following

tasks:

1. “Configuring the server for request digital signature verification: Verifying the message parts” on page

1291

2. “Configuring the server for request digital signature verification: choosing the verification method” on

page 1292

Chapter 14. Web services 1267

To complete the process for the response receiver, if the Web services is acting as client, complete the

following tasks:

1. “Configuring the client for response digital signature verification: verifying the message parts” on page

1298

2. “Configuring the client for response digital signature verification: choosing the verification method” on

page 1300

Collection certificate store

A collection certificate store is a collection of non-root, certificate authority (CA) certificates and certificate

revocation lists (CRLs). This collection of CA certificates and CRLs is used to check the signature of a

digitally signed SOAP message.

Important: There is an important distinction between Version 5.x and Version 6.0.x applications. The

information in this article supports Version 5.x applications only that are used with WebSphere

Application Server Version 6.0.x and later. The information does not apply to Version 6.0.x

applications.

The collection certificate stores are used when processing a received SOAP message. This collection is

configured in the securityRequestReceiverBindingConfig section of the binding file for servers and in the

securityResponseReceiverBindingConfig section of the binding file for clients.

A collection certificate store is one kind of certificate store. A certificate store is defined as

javax.security.cert.CertStore in the Java CertPath application programming interface (API). The Java

CertPath API defines the following types of certificate stores:

Collection certificate store

A collection certificate store accepts the certificates and CRLs as Java collection objects.

Lightweight Directory Access Protocol certificate store

The Lightweight Directory Access Protocol (LDAP) certificate store accepts certificates and CRLs

as LDAP entries.

The CertPath API uses the certificate store and the trust anchor to validate the incoming X.509 certificate

that is embedded in the SOAP message.

The Web services security implementation in the WebSphere Application Server supports the collection

certificate store. Each certificate and CRL is passed as an encoded file. This configuration is done using

either the administrative console or by scripting.

Configuring the client-side collection certificate store using an assembly tool

You can configure the client-side collection certificate store using the assembly tool.

Important: There is an important distinction between Version 5.x and Version 6 and later applications.

The information in this article supports Version 5.x applications only that are used with

WebSphere Application Server Version 6.0.x and later. The information does not apply to

Version 6 and later applications.

A collection certificate store is a collection of non-root, certificate authority (CA) certificates and certificate

revocation lists (CRLs). This collection of CA certificates and CRLs are used to check the signature of a

digitally signed SOAP message.

You can configure the collection certificate either by using an assembly tool or the WebSphere Application

Server administrative console. Complete the following steps to configure the client-side collection

certificate store using the assembly tool.

 1. Launch an assembly tool. For more information on the assembly tools, see Assembly tools

1268 Securing applications and their environment

2. Switch to the Java 2 Platform, Enterprise Edition (J2EE) perspective. Click Window > Open

Perspective > J2EE.

 3. Click Application Client projects > application_name > appClientModule > META-INF

 4. Right-click the application-client.xml file, select Open with > Deployment Descriptor Editor, and

click the WS Binding tab. The Client Deployment Descriptor is displayed.

 5. Click the Port binding tab in deployment descriptor editor within the assembly tool. The Web services

client port binding window is displayed.

 6. Select one of the Port qualified name binding entries.

 7. Expand the Security response receiver binding configuration > certificate store list > Collection

certificate store section.

 8. Click Add to create a new collection certificate store, click Edit to edit an existing certificate store, or

click Remove to delete an existing certificate store.

 9. Enter a name in the Name field. This name is referenced in the Certificate store reference field in the

Signing info dialog box.

10. Leave the Provider field as IBMCertPath.

11. Click Add to enter the path to your certificate store. For example, the path might be:

${USER_INSTALL_ROOT}/etc/ws-security/samples/intca2.cer. If you have additional certificate store

paths, click Add to add the paths.

12. Click OK when you finish adding paths.

Configuring the client-side collection certificate store using the administrative

console

You can configure the client-side collection certificate store by using the administrative console.

Important: There is an important distinction between Version 5.x and Version 6 and later applications.

The information in this article supports Version 5.x applications only that are used with

WebSphere Application Server Version 6.0.x and later. The information does not apply to

Version 6 and later applications.

A collection certificate store is a collection of non-root, certificate authority (CA) certificates and certificate

revocation lists (CRLs). This collection of CA certificates and CRLs are used to check the signature of a

digitally signed SOAP message.

You can configure the collection certificate either by using the assembly tools or the WebSphere

Application Server administrative console. Complete the following steps to configure the client-side

collection certificate store using the administrative console.

 1. Connect to the WebSphere Application Server administrative console.

You can connect to the administrative console by typing http://localhost:port_number/ibm/console

in your Web browser unless you have changed the port number.

 2. Click Applications > Enterprise applications > application_name.

 3. Under Manage modules, click URI_name.

 4. Under Additional properties, click either Web services: client security bindings to add the collection

certificate store to the client security bindings. If you do not see any entries, return to the assembly

tool and configure the security extensions for either the client or the server.

To configure the security extensions for the client, see the following topics:

v “Configuring the client for response digital signature verification: verifying the message parts” on

page 1298

v “Configuring the client for response digital signature verification: choosing the verification method”

on page 1300

 5. Under Response receiver binding, click Edit to edit the client security bindings.

 6. Click Collection certificate store.

Chapter 14. Web services 1269

7. Click a Certificate store name to edit an existing certificate store or click New to add a new certificate

store name.

 8. Enter a name in the Certificate store name field. The name entered in this field is a name that is

referenced in the Certificate store field on the Signing information configuration page.

 9. Leave the Certificate store provider field value as IBMCertPath.

10. Click Apply.

11. Under Additional properties, click X.509 certificates > New.

12. Enter the path to your certificate store. For example, the path might be: ${USER_INSTALL_ROOT}/etc/
ws-security/samples/intca2.cer. If you have any additional certificate store paths to enter, click New

and add the path names.

13. Click OK.

Configuring the server-side collection certificate store using an assembly tool

A collection certificate store is a collection of non-root, certificate authority (CA) certificates and certificate

revocation lists (CRLs). This collections of CA certificates and CRLs are used to check the signature of a

digitally signed SOAP message. You can configure the server-side collection certificate store by using an

assembly tool.

Important: There is an important distinction between Version 5.x and Version 6 and later applications.

The information in this article supports Version 5.x applications only that are used with

WebSphere Application Server Version 6.0.x and later. The information does not apply to

Version 6.0.x and later applications.

You can configure the collection certificate either by using an assembly tool or by using the WebSphere

Application Server administrative console. Complete the following steps to configure the server-side

collection certificate store using an assembly tool.

 1. Start an assembly tool.

For more information on the assembly tools, see ″Starting WebSphere Application Server Toolkit″ in

the Application Server Toolkit documentation.

 2. Switch to the Java 2 Platform, Enterprise Edition (J2EE) perspective. Click Window > Open

Perspective > J2EE.

 3. Click EJB projects > application_name > ejbModule > META-INF

 4. Right-click the webservices.xml file, select Open with > Web Services Editor.

 5. Click the Binding configurations tab in the Web services editor within the assembly tool. The Web

Service Binding Configuration window is displayed.

 6. Select one of the Web service description binding entries under the Port Component Binding section.

 7. Expand the Request receiver binding configuration details > Certificate store list > Collection

certificate store section.

 8. Click Add to create a new collection certificate store, click Edit to edit an existing certificate store, or

click Remove to delete an existing certification store.

 9. Enter a name in the Name field. This name is referenced in the Certificate store reference field in

the Signing info dialog.

10. Leave the Provider field as IBMCertPath.

11. Click Add to enter the path to your certificate store. For example, the path might be:

${USER_INSTALL_ROOT]/etc/ws-security/samples/intca2.cer. If you have additional certificate store

paths, click Add to add the paths.

12. Click OK when you finish adding paths.

1270 Securing applications and their environment

Configuring the server-side collection certificate store using the administrative

console

You can configure the collection certificate either by using an assembly tool or the WebSphere Application

Server administrative console.

Important: There is an important distinction between Version 5.x and Version 6 and later applications.

The information in this article supports Version 5.x applications only that are used with

WebSphere Application Server Version 6.0.x and later. The information does not apply to

Version 6 and later applications.

A collection certificate store is a collection of non-root, certificate authority (CA) certificates and certificate

revocation lists (CRLs). This collection of CA certificates and CRLs is used to check the signature of a

digitally signed SOAP message.

Complete the following steps to configure the server-side collection certificate store using the

administrative console.

 1. Connect to the WebSphere Application Server administrative console.

You can connect to the administrative console by typing http://localhost:port_number/ibm/console in

your Web browser unless you have changed the port number.

 2. Click Applications > Enterprise applications > application_name.

 3. Under Manage modules, click URI_name

 4. Under Web Services Security Properties, click Web services: server security bindings to add the

collection certificate store to the server security bindings. If you do not see any entries, return to the

assembly tool and configure the security extensions for the server.

To configure the security extensions for the server, see the following topics:

v “Configuring the server for request digital signature verification: Verifying the message parts” on

page 1291

v “Configuring the server for request digital signature verification: choosing the verification method”

on page 1292

 5. Click Edit under Request Receiver Binding to edit the server security bindings.

 6. Click Collection certificate store.

 7. Click a Certificate store name to edit an existing certificate store or click New to add a new certificate

store name.

 8. Enter a name in the Certificate store name field. The name entered in this field is a name that is

referenced in the Certificate store field on the Signing information configuration page.

 9. Leave the Certificate store provider field as IBMCertPath.

10. Click Apply.

11. Under Additional Properties, click X.509 Certificates > New.

12. Enter the path to your certificate store. For example, the path might be: ${USER_INSTALL_ROOT}/etc/
ws-security/samples/intca2.cer. If you have any additional certificate store paths to enter, click New

and add the path names.

13. Click OK.

Configuring default collection certificate stores at the server level in the

WebSphere Application Server administrative console

You can define a single collection certificate store for all of the applications that need to use the same

certificates. Use the WebSphere Application Server administrative console to configure the default

collection certificate store at the server level.

Chapter 14. Web services 1271

Important: There is an important distinction between Version 5.x and Version 6 and later applications.

The information in this article supports Version 5.x applications only that are used with

WebSphere Application Server Version 6.0.x and later. The information does not apply to

Version 6.0.x and later applications.

A collection certificate store is a collection of non-root, certificate authority (CA) certificates and certificate

revocation lists (CRLs). This collection of CA certificates and CRLs are used to check the signature of a

digitally signed SOAP message. A certificate store typically refers to a certificate store located in the file

system. The location of the certificate store can vary from machine to machine, so you might configure a

default collection certificate store for a specific machine and reference it from within the signing

information. The signing information is found within the binding configurations of any application installed

on the machine. This suggestion enables you to define a single collection certificate store for all of the

applications that need to use the same certificates. You also can specify the default binding information at

the cell level.

Complete the following steps to configure the default collection certificate store at the server level using

the WebSphere Application Server administrative console:

 1. Connect to the administrative console.

You can access the administrative console by typing http://localhost:port_number/ibm/console in

your Web browser unless you have changed the port number.

 2. Click Servers > Application servers > server_name.

 3. Under Security, click Web Services: Default bindings for Web Services Security.

 4. Under Additional properties, click Collection certificate store.

 5. Enter a name in the Certificate store name field. This name is referenced in the Certificate store

field on the Signing information configuration page.

 6. Leave the Certificate store provider field value as IBMCertPath.

 7. Click Apply.

 8. Under Additional properties, click X.509 certificates > New.

 9. Enter the path to your certificate store. For example, the path might be: ${USER_INSTALL_ROOT}/etc/
ws-security/samples/intca2.cer.

If you have any additional certificate store paths to enter, click New and add the path names.

10. Click OK.

Key locator

A key locator (com.ibm.wsspi.wssecurity.config.KeyLocator) is an abstraction of the mechanism that

retrieves the key for digital signature and encryption.

You can use any of the following infrastructure from which to retrieve the keys depending upon the

implementation:

v Java keystore file

v Database

v Lightweight Third Party Authentication (LTPA) server

Key locators search the key using some type of a clue. The following types of clues are supported:

v A string label of the key, which is explicitly passed through the application programming interface (API).

The relationships between each key and its name (string label) is maintained inside the key locator.

v The execution context of the key locator; explicit information is not passed to the key locator. A key

locator determines the appropriate key according to the execution context.

Current versions of key locators do not support the retrieval of verification keys because current Web

services security implementations do not support the secret key-based signature. Because the key locators

1272 Securing applications and their environment

support the public key-based signature only, the key for verification is embedded in the X.509 certificate as

a <BinarySecurityToken> element in the incoming message.

For example, key locators can obtain the identity of the caller from the context and can retrieve the public

key of the caller for response encryption.

Usage scenarios

This section describes the usage scenarios for key locators.

Signing

The name of the signing key is specified in the Web services security configuration. This value is passed

to the key locator and the actual key is returned. The corresponding X.509 certificate also can be returned.

Verification

As described previously, key locators are not used in signature verification.

Encryption

The name of the encryption key is specified in the Web services security configuration. This value is

passed to the key locator and the actual key is returned.

Decryption

The Web services security specification recommends using the key identifier instead of the key name.

However, while the algorithm for computing the identifier for the public keys is defined in Internet

Engineering Task Force (IETF) Request for Comment (RFC) 3280, there is no agreed upon algorithm for

the secret keys. Therefore, the current implementation of Web services security uses the identifier only

when public key-based encryption is performed. Otherwise, the ordinal key name is used.

When you use public key-based encryption, the value of the key identifier is embedded in the incoming

encrypted message. Then, the Web services security implementation searches for all the keys managed

by the key locator and decrypts the message using the key whose identifier value matches the one in the

message.

When you use secret key-based encryption, the value of the key name is embedded in the incoming

encrypted message. The Web services security implementation asks the key locator for the key with the

name that matches the name in the message and decrypts the message using the key.

Important: There is an important distinction between Version 5.x and Version 6.0.x applications. The

information in this article supports Version 5.x applications only that are used with WebSphere

Application Server Version 6.0.x and later. The information does not apply to Version 6.0.x

applications.

Keys

Keys are used for XML signature and encryption.

There are two predominant kinds of keys used in the current Web services security implementation:

v Public key - such as Rivest Shamir Adleman (RSA) encryption and Digital Signature Algorithm (DSA)

encryption

v Secret key - such as Data Encryption Standard (DES) encryption

Chapter 14. Web services 1273

In public key-based signature, a message is signed using the sender private key and is verified using the

sender public key. In public key-based encryption, a message is encrypted using the receiver public key

and is decrypted using the receiver private key. In secret key-based signature and encryption, the same

key is used by both parties.

While the current implementation of Web services security can support both kinds of keys, there are a few

items to note:

v Secret key-based signature is not supported.

v The format of the message differs slightly between public key-based encryption and secret key-based

encryption.

Important: There is an important distinction between Version 5.x and Version 6 and later applications.

The information in this article supports Version 5.x applications only that are used with

WebSphere Application Server Version 6.0.x and later. The information does not apply to

Version 6 and later applications.

Web services security service provider programming interfaces

Several Service Provider Interfaces (SPIs) are provided to extend the capability of the Web services

security runtime.

Important: There is an important distinction between Version 5.x and Version 6 and later applications.

The information in this article supports Version 5.x applications only that are used with

WebSphere Application Server Version 6.0.x and later. The information does not apply to

Version 6.0.x and later applications.

The following list contains the SPIs that are available for WebSphere Application Server:

v com.ibm.wsspi.wssecurity.config.KeyLocator is an abstract for obtaining the keys for digital signature

and encryption. The following list contains the default implementations:

– com.ibm.wsspi.wssecurity.config.KeyStoreKeyLocator

Implements the Java key store.

– com.ibm.wsspi.wssecurity.config.WSIdKeyStoreMapKeyLocator

Provides a mapping of the authenticated identity to a key for encryption. Or, the implementation uses

the default key that is specified. This implementation is typically used in the response sender

configuration.

– com.ibm.wsspi.wssecurity.config.CertInRequestKeyLocator

Provides the capability of using the signer key for encryption in the response message. This

implementation is typically used in the response sender configuration.

v com.ibm.wsspi.wssecurity.id.TrustedIDEvaluator is an interface that is used to evaluate the trust for

identity assertion. The default implementation is com.ibm.wsspi.wssecurity.id.TrustedIDEvaluatorImpl,

which enables you to define a list of trusted identities.

v The Java Authentication and Authorization Service (JAAS) CallbackHandler application programming

interfaces (APIs) are used for token generation by the request sender. This interface can be extended to

generate a custom token that can be inserted in the Web services security header. The following list

contains the default implementations that are provided by WebSphere Application Server:

– com.ibm.wsspi.wssecurity.auth.callback.GUIPromptCallbackHandler

Presents a login prompt to gather the basic authentication data. Use this implementation in the client

environment only.

– com.ibm.wsspi.wssecurity.auth.callback.StdinPromptCallbackHandler

Collects the basic authentication data in the standard in (stdin) prompt. Use this implementation in

the client environment only.

– com.ibm.wsspi.wssecurity.auth.callback.NonPromptCallbackHandler

1274 Securing applications and their environment

Reads the basic authentication data from the application binding file. This implementation might be

used on the server side to generate a user name token.

– com.ibm.wsspi.wssecurity.auth.callback.LTPATokenCallbackHandler

Generates a Lightweight Third Party Authentication (LTPA) token in the Web services security header

as a binary security token. If basic authentication data is defined in the application binding file, it is

used to perform a login, to extract the LTPA token from the WebSphere credentials, and to insert the

token in the Web services security header. Otherwise, it will extract the LTPA security token from the

invocation credentials (RunAs identity) and insert the token in the Web services security header.

The JAAS LoginModule API is used for token validation on the request receiver side of the message. You

can implement a custom LoginModule API to perform validation of the custom token on the request

receiver of the message. After the token is verified and validated, the token is set as the caller and then

run as the identity in the WebSphere Application Server runtime. The identity is used for authorization

checks by the containers before a Java 2 Platform, Enterprise Edition (J2EE) resource is invoked. The

following list presents the default AuthMethod configurations provided by WebSphere Application Server:

BasicAuth

Validates a user name token.

Signature

Maps the distinguished name (DN) of a verified certificate to a Java Authentication and

Authorization Service (JAAS) subject.

IDAssertion

Maps a trusted identity to a JAAS subject.

LTPA Validates an LTPA token that is received in the message and creates a JAAS subject.

Configuring key locators using an assembly tool

Important: There is an important distinction between Version 5.x and Version 6 and later applications.

The information in this article supports Version 5.x applications only that are used with

WebSphere Application Server Version 6.0.x and later. The information does not apply to

Version 6.0.x and later applications.

This task provides instructions on how to configure key locators using an assembly tool. You can configure

key locators in various locations within the assembly tool. This task provides instructions on how to

configure key locators at any of these locations because the concept is the same.

 1. Start an assembly tool. For more information on the assembly tools, see Assembly tools.

 2. Switch to the Java 2 Platform, Enterprise Edition (J2EE) perspective. Click Window > Open

Perspective > J2EE.

 3. Click Application Client projects > application_name > appClientModule > META-INF

 4. Right-click the application-client.xml file, select Open with > Deployment Descriptor Editor, and

click the WS Binding tab. The Client Deployment Descriptor is displayed.

 5. Click the WS Binding tab in deployment descriptor editor within the assembly tool or the Binding

configurations tab in the Web services editor within the assembly tool.

 6. Expand one of the Binding configuration sections.

 7. Expand the Key locators section.

 8. Click Add to create a new key locator, click Edit to edit an existing key locator, or click Remove to

delete an existing key locator.

 9. Enter a key locator name. The name entered for the Key locator name is used to refer to the key

locator from the Encryption information and Signing Information sections.

10. Enter a key locator class. The key locator class is the implementation of the KeyLocator interface.

When using default implementations, select a class from the menu.

Chapter 14. Web services 1275

11. Determine whether to click Use key store. Select this option when you use the default

implementations as they use key stores. If you click Use key store, complete the following steps:

a. Enter a value in the key store storepass field. The key store storepass is the password used to

access the key store.

b. Enter a path name in the key store path field. The key store path is the location on the file system

where the key store resides. Make sure that the location can be found wherever you deploy the

application.

c. Enter a type value in the key store type field. The valid types to enter are JKS and JCEKS. JKS is

used when you are not using the Java Cryptography Extensions (JCE) policy. JCEKS is used

when you are using JCE. Although the JCEKS type is more secure, it might decrease

performance.

d. Click Add to create an entry for a key in the key store.

1) Enter a value in the Alias field.

The key alias is a reference to this particular key from the Signing Information section.

2) Enter a value in the Key pass field.

The key pass is the password associated with the certificate which is created using the

Development Kit, Java Technology Edition keytool.exe file.

3) Enter a value in the Key name field.

The key name refers to the alias of the certificate as found in the key store.

12. Click Add to create a custom property. The property can be used by custom key locator

implementations. For example, you can use properties with the WSIdKeyStoreMapKeyLocator default

implementation. The key locator implementation has the following property names:

v id_, which maps to a credential user ID.

v mappedName_ , which maps to the key alias to use for this user name.

v default, which maps to a key alias to use when a credential does not have an associated id_ entry.

A typical set of properties for this key locator might be: id_1=user1, mappedName_1=key1, id_2=user2,

mappedName_2=key2, default=key3. If user1 or user2 authenticates, then the associated key1 or key2 is

used, respectively. However, if none of the user properties authenticate or the user is not user1 or

user2, then key3 is used.

a. Enter a name in the Name field. The name entered is the property name.

b. Enter a value in the Value field. This value entered is the property value.

Configuring key locators using the administrative console

You can configure binding information and key locators using the WebSphere Application Server

administrative console.

Important: There is an important distinction between Version 5.x and Version 6 and later applications.

The information in this article supports Version 5.x applications only that are used with

WebSphere Application Server Version 6.0.x and later. The information does not apply to

Version 6.0.x and later applications.

This task provides instructions on how to configure key locators using the WebSphere Application Server

administrative console. You can configure binding information in the administrative console. You must use

an assembly tool to configure extensions. The following steps are used to configure a key locator in the

administrative console for a specific application:

1. Open the administrative console.

Type http://localhost:port_number/ibm/console in your Web browser unless you have changed the

port number.

2. Click Applications > Enterprise Applications > application_name.

3. Under Related Items, click either Web Modules or EJB Modules, depending on the type of module

you are securing.

1276 Securing applications and their environment

4. Click the name of the module you are securing.

5. Under Additional Properties, click either Web services: Client security bindings or Web services:

Server security bindings, depending on whether you are adding the key locator to the client security

bindings or to the server security bindings. If you do not see any entries, return to the assembly tool

and configure the security extensions.

6. Edit the Request Sender Binding, Response Receiver Binding, Request Receiver Binding, or

Response Sender Binding.

v If you are editing your client security bindings, click Edit for either the Request Sender Binding or

the Response Receiver Binding.

v If you are editing your server security bindings, click Edit for either the Request Receiver Binding or

the Response Sender Binding.

7. Click Key Locators.

8. Click New to configure a new key locator, select the box next to a key locator name and click Delete

to delete a key locator, or click the name of a key locator to edit its configuration. If you are configuring

a new key locator or editing an existing one, complete the following steps:

a. Specify a name for the key locator in the Key Locator Name field.

b. Specify a name for the key locator class implementation in the Key Locator Classname field.

WebSphere Application Server has the following default key locator class implementations:

com.ibm.wsspi.wssecurity.config.WSldKeyStoreMapKeyLocator

This class is used by the response sender to map an authenticated identity to a key. If

encryption is used, this class is used to locate a key to encrypt the response message.

The com.ibm.wsspi.wssecurity.config.WSldKeyStoreMapKeyLocator class has the capability

to map an authenticated identity from the invocation credential of the current thread to a

key that is used to encrypt the message. If an authenticated identity is present on the

current thread, the class maps the ID to the mapped name. For example, user1 is mapped

to mappedName_1. Otherwise, name=″default″. When a matching key is not found, the

authenticated identity is mapped to the default key specified in the binding file.

com.ibm.wsspi.wssecurity.config.KeyStoreKeyLocator

This class is used by the response receiver, the request sender, and the request receiver

to map a name to an alias. Encryption uses this class to obtain a key to encrypt a

message and digital signature uses this class to obtain a key to sign a message. The

com.ibm.wsspi.wssecurity.config.KeyStoreKeyLocator class maps a logical name to a key

alias in the key store file. For example, key #105115176771 maps to CN=Alice, O=IBM,

C=US.

c. Specify the password used to access the key store password in the Key Store Password field.

This field is optional because the key locator does not use a key store.

d. Specify the path name used to access the key store in the Key Store Path field. This field is

optional because the key locator does not use a key store. Use ${USER_INSTALL_ROOT} because

this path expands to the WebSphere Application Server path on your machine.

e. Select a keystore type from the Key Store Type field. This field is optional because the key locator

does not use a key store. Use the JKS option if you are not using the Java Cryptography

Extensions (JCE) policy and use JCEKS if you are using the JCE policy.

Trusted ID evaluator

The trusted ID evaluator is an abstraction of the mechanism that evaluates whether the given ID name is

to be trusted. The trusted ID evaluator is typically used by the eventual receiver in a multi-hop

environment.

Important: There is an important distinction between Version 5.x and Version 6.0.x applications. The

information in this article supports Version 5.x applications only that are used with WebSphere

Application Server Version 6.0.x and later. The information does not apply to Version 6.0.x

applications.

Chapter 14. Web services 1277

Depending upon the implementation, you can use various types of infrastructure to store a list of the

trusted IDs, such as:

v Plain text file

v Database

v Lightweight Directory Access Protocol (LDAP) server

The Web services security implementation (com.ibm.wsspi.wssecurity.id.TrustedIDEvaluator) invokes the

trusted ID evaluator and passes the identity name of the intermediary as a parameter. If the identity is

evaluated and deemed trustworthy, the procedure continues. Otherwise, an exception is created and the

procedure is stopped.

Login mappings

Login mappings, found in the ibm-webservices-bnd.xmi Extended Markup Language (XML) file, contains a

mapping configuration. This mapping configuration defines how the Web services security handler maps

the token <ValueType> element that is contained within the security token extracted from the message

header, to the corresponding authentication method. The token <ValueType> element is contained within

the security token extracted from a Simple Object Access Protocol (SOAP) message header.

The sender-side Web services security handler generates and attaches security tokens based on the

<AuthMethods> element that is specified in the deployment descriptor. For example, if the authentication

method is BasicAuth, the sender-side security handler generates and attaches UsernameToken (with both

user name and password) to the SOAP message header. The Web services security run time uses the

Java Authentication and Authorization Service (JAAS) javax.security.auth.callback.CallbackHandler

interface as a security provider to generate security tokens on the client side (or when Web services is

acting as client).

The sender security handler invokes the handle() method of a

javax.security.auth.callback.CallbackHandler interface implementation. This implementation creates

the security token and passes the token back to the sender security handler. The senders security handler

constructs the security token based on the authentication information in the callback array. The security

handler then inserts the security token into the Web Services Security message header.

The CallbackHandler interface implementation that you use to generate the required security token is

defined in the <loginBinding> element in the ibm-webservicesclient-bnd.xmi Web services security

binding file. For example,

<loginBinding xmi:id="LoginBinding_1052760331526" authMethod="BasicAuth"

 callbackHandler="com.ibm.wsspi.wssecurity.auth.callback.StdinPromptCallbackHandler"/>

The <loginBinding> element associates the

com.ibm.wsspi.wssecurity.auth.callback.StdinPromptCallbackHandler interface with the BasicAuth

authentication method. WebSphere Application Server provides the following set of CallbackHandler

interface implementations you can use to create various security token types:

com.ibm.wsspi.wssecurity.auth.callback.GUIPromptCallbackHandler

If there is no basic authentication data defined in the login binding information (this information is

not the same as the HTTP basic authentication information), the previous token type prompts for

user name and password through a login panel. The implementation uses the basic authentication

data defined in the login binding. Use this CallbackHandler with the BasicAuth authentication

method. Do not use this CallbackHandler implementation on the server because it prompts you for

login binding information.

com.ibm.wsspi.wssecurity.auth.callback.StdinPromptCallbackHandler

If basic authentication data is not defined in the login binding (this information is not the same as

the HTTP basic authentication information), the implementation prompts for the user name and

password using standard in (stdin). The implementation uses the basic authentication data defined

1278 Securing applications and their environment

in the login binding. Use this CallbackHandler implementation with the BasicAuth authentication

method. Do not use this CallbackHandler implementation on the server because it prompts you for

login binding information.

com.ibm.wsspi.wssecurity.auth.callback.NonPromptCallbackHandler

This CallbackHandler implementation does not prompt. Rather, it uses the basic authentication

data defined in the login binding (this information is not the same as the HTTP basic

authentication information). This CallbackHandler implementation is meant for use with the

BasicAuth authentication method. You must define the basic authentication data in the login

binding information for this CallbackHandler implementation. You can use this implementation

when Web services is running as a client and needs to send basic authentication

(<wsse:UsernameToken>) to the downstream call.

com.ibm.wsspi.wssecurity.auth.callback.LTPATokenCallbackHandler

The CallbackHandler generates Lightweight Third Party Authentication (LTPA) tokens from the run

as JAAS Subject (invocation Subject) of the current WebSphere Application Server security

context. However, if basic authentication data is defined in the login binding information (not the

HTTP basic authentication information), the implementation uses the basic authentication data and

LTPA token generated. The Token Type URI and Token Type Local Name values must be

defined in the login binding information for this CallbackHandler implementation. The token value

type is used to validate the token to the request sender and request receiver binding configuration.

The Web services security run time inserts the LTPA token as a binary security token

(<wsse:BinarySecurityToken>) into the message SOAP header. The value type is mandatory. (See

LTPA for more information). Use this CallbackHandler implementation with the LTPA authentication

method.

Figure 1 shows the sender security handler in the request sender message process.

Chapter 14. Web services 1279

You can configure the receiver-side security server to support multiple authentication methods and multiple

types of security tokens. The following steps describe the request sender SOAP message process:

1. After receiving a message, the receiver Web services security handler compares the token type (in the

message header) with the expected token types configured in the deployment descriptor.

2. The Web services security handler extracts the security token form the message header and maps the

token <ValueType> element to the corresponding authentication method. The mapping configuration is

defined in the <loginMappings> element in the ibm-webservices-bnd.xmi XML file. For example:

<loginMappings xmi:id="LoginMapping_1051977980074" authMethod="LTPA"

 configName="WSLogin">

 <callbackHandlerFactory xmi:id="CallbackHandlerFactory_1051977980081"

 classname="com.ibm.wsspi.wssecurity.auth.callback.WSCallbackHandlerFactoryImpl"/>

 <tokenValueType xmi:id="TokenValueType_1051977980081"

 uri="http://www.ibm.com/websphere/appserver/tokentype/5.0.2" localName="LTPA"/>

</loginMappings>

The com.ibm.wsspi.wssecurity.auth.callback.CallbackHandlerFactory interface is a factory for

javax.security.auth.callback.CallbackHandler.

3. The Web services security run time initiates the factory implementation class and passes the

authentication information from Web services security header to the factory class through the set

methods.

4. The Web services security run time invokes the newCallbackHandler() method to obtain the

javax.security.auth.CallbackHandler object, which generates the required security token.

5. When the security handler receives an LTPA BinarySecurityToken, it uses the WSLogin JAAS login

configuration and the newCallbackHandler() method to validate the security token. If none of the

expected token types are found in the SOAP message Web services security header, the request is

rejected with an SOAP fault. Otherwise, the token type is used to map to a JAAS login configuration

Security Token

generation

CallbackHandler
configuration

security token:

Sender

security handler

Request

<Property> - as HashMap

<BasicAuth> - as user name

and password

javax.security.auth.callback.NameCallback

javax.security.auth.callback.PasswordCallback

com.ibm.ws.spi.wssecurity.auth.callback.XMLTokenCallback

com.ibm.websphere.security.auth.callback.WSCredTokenCallback

<wsse:UsernameToken>ifjavax.security.auth.callback.NameCallback

and/or javax.security.auth.callbackPasswordCallback is populated with data.

OR

<wsse:BinarySecurityToken> encoded token from

com.ibm.websphere.security.auth.callback.WSCredTokenCallback

and the ValueType is generated from <TokenValueType> defined

in the binding information.

OR

XML-based token is created based on the DOM element returns

from the com.ibm.ws.spi.wssecurity.auth.callback.XMLTokenCallback.

Deployment descriptor

and service bindings

XML configuration

Figure 20. Request sender SOAP message process

1280 Securing applications and their environment

for token validation. If authentication is successful, a JAAS Subject is created and associated with the

running thread. Otherwise, the request is rejected with a SOAP fault.

The following table shows the authentication methods and the JAAS login configurations.

 Authentication method JAAS login configuration

BasicAuth WSLogin

Signature system.wssecurity.Signature

LTPA WSLogin

IDAssertion system.wssecurity.IDAssertion

Figure 2 shows the receiver security handler in the request receiver message process.

The default <LoginMapping> is defined in the following files:

v Server-level ws-security.xml file

If nothing is defined in the binding file information, the ws-security.xml default is used. However, an

administrator can override the default by defining a new <LoginMapping> element in the binding file.

JAAS subject:

com.ibm.websphere.security.auth.WSPrincipal

com.ibm.websphere.security.cred.WSCredential

<wsse:UsernameToken>ifjavax.security.auth.callback.NameCallback

and/or javax.security.auth.callbackPasswordCallback is populated with data.

OR

<wsse:BinarySecurityToken> encoded token from

com.ibm.websphere.security.auth.callback.WSCredTokenCallback

and the ValueType is generated from <TokenValueType> defined

in the binding information.

OR

XML-based token is created based on the DOM element returns

from the com.ibm.ws.spi.wssecurity.auth.callback.XMLTokenCallback.

• Security Token validation

• Set the JAAS subject

caller and runAs identity

JAAS login configuration

Security token

javax.security.auth.callback.NameCallback

javax.security.auth.callback.PasswordCallback

com.ibm.ws.spi.wssecurity.auth.callback.XMLTokenCallback

com.ibm.websphere.security.auth.callback.WSCredTokenCallback

<!ELEMENT AuthMethod (#PCDATA)>

<!ELEMENT TokenValueType EMPTY>

<!ATTLIST TokenValueType uri CDATA #REQUIRED localName CDATA #REQUIRED>

<!ELEMENT ConfigName (#PCDATA)>

<!ELEMENT CallbackHandlerFactory(Property*)>

<!ATTLIST CallbackHandlerFactory classname %TYPE_CLASS; #REQUIRED>

Sender

security handler

Request

Deployment descriptor

and service bindings

XML configuration

Figure 21. Request receiver SOAP message process

Chapter 14. Web services 1281

6. The client reads the default binding information in the ${install_dir}/properties/ws-security.xml

file.

7. The server run-time component loads the following files if they exist:

v Server-level ws-security.xml file

On a base application server, the server run time component only loads the server-level

ws-security.xml file. The server-side ws-security.xml file and the application Web services security

binding information are managed using the administrative console and the WSADMIN command. You

can specify the binding information during application deployment either through the administrative

console or through the WSADMIN command. The Web services security policy is defined in the

deployment descriptor extension (ibm-webservicesclient-ext.xmi) and the bindings are stored in the

IBM binding extension (ibm-webservicesclient-bnd.xmi). However, the ${install_dir}/properties/
ws-security.xml file defines the default binding value for the client. If the binding information is not

specified in the binding file, the run time reads the binding information from the default

${install_dir}/properties/ws-security.xml file.

Important: There is an important distinction between Version 5.x and Version 6 and later applications.

The information in this article supports Version 5.x applications only that are used with

WebSphere Application Server Version 6.0.x and later. The information does not apply to

Version 6 and later applications.

Login mappings collection:

Use this page to view a list of configurations for validating security tokens within incoming messages.

Login mappings map an authentication method to a Java Authentication and Authorization Service (JAAS)

login configuration to validate the security token. Four authentication methods are predefined in the

WebSphere Application Server: BasicAuth, Signature, IDAssertion, and Lightweight Third Party

Authentication (LTPA).

Important: There is an important distinction between Version 5.x and Version 6 and later applications.

The information in this article supports Version 5.x applications only that are used with

WebSphere Application Server Version 6.0.x and later. The information does not apply to

Version 6.0.x and later applications.

To view this administrative console page for the server level, complete the following steps:

1. Click Servers > Application servers > server_name.

2. Under Security, click Web services: Default bindings for Web services security.

3. Under Additional properties, click Login mappings.

4. Click either New to create a new login mapping configuration or click the name of an existing

configuration.

To view this administrative console page for the application level, complete the following steps:

1. Click Applications > Enterprise applications > application_name.

2. Click Manage modules > URI_name.

3. Under Web Services Security properties, click Web services: Server security bindings.

4. Click Edit under Request receiver binding.

5. Click Login mappings.

If you click Update runtime, the Web services security run time is updated with the default binding

information, which is contained in the ws-security.xml file that was previously saved. After you specify the

authentication method, the JAAS configuration name, and the Callback Handler Factory class name on

this panel, you must complete the following steps:

1. Click Save in the messages section at the top of the administrative console.

1282 Securing applications and their environment

2. Click Update runtime. When you click Update runtime, the configuration changes made to the other

Web services also are updated in the Web services security run time.

Important: If the login mapping configuration is not found on the application level, the Web services run

time searches for the login mapping configuration on the server level. If the configuration is

not found on the server level, the Web services run time searches the cell.

Authentication method:

Specifies the authentication method used for validating the security tokens.

 The following authentication methods are available:

BasicAuth

The basic authentication method includes both a user name and a password in the security token.

The information in the token is authenticated by the receiving server and is used to create a

credential.

Signature

The signature authentication method sends an X.509 certificate as a security token. For

Lightweight Directory Access Protocol (LDAP) registries, the distinguished name (DN) is mapped

to a credential, which is based on the LDAP certificate filter settings. For local OS registries, the

first attribute of the certificate, usually the common name (CN) is mapped directly to a user name

in the registry.

IDAssertion

The identity assertion method maps a trusted identity (ID) to a WebSphere Application Server

credential. This authentication method only includes a user name in the security token. An

additional token is included in the message for trust purposes. When the additional token is

trusted, the IDAssertion token user name is mapped to a credential.

LTPA Lightweight Third Party Authentication (LTPA) validates an LTPA token.

JAAS configuration name:

Specifies the name of the Java Authentication and Authorization Service (JAAS) configuration.

Callback handler factory class name:

Specifies the name of the factory for the CallbackHandler class.

Login mapping configuration settings:

Use this page to specify the Java Authentication and Authorization Service (JAAS) login configuration

settings that are used to validate security tokens within incoming messages.

Important: There is an important distinction between Version 5.x and Version 6 and later applications.

The information in this article supports Version 5.x applications only that are used with

WebSphere Application Server Version 6.0.x and later. The information does not apply to

Version 6.0.x and later applications.

To view this administrative console page for the server level, complete the following steps:

1. Click Servers > Application servers > server_name.

2. Under Security, click Web services: Default bindings for Web services security.

3. Under Additional properties, click Login mappings.

4. Click either New to create a new login mapping configuration or click the name of an existing

configuration.

To use this administrative console page for the application level, complete the following steps:

Chapter 14. Web services 1283

1. Click Applications > Enterprise applications > application_name.

2. Click Manage modules > URI_name.

3. Under Web Services Security Properties, click Web services: Server security bindings.

4. Click Edit under Request receiver binding.

5. Click Login mappings.

6. Click either New to create a new login mapping configuration or click the name of an existing

configuration.

Important: If the login mapping configuration is not found on the application level, the Web services run

time searches for the login mapping configuration on the server level. If the configuration is

not found on the server level, the Web services run time searches the cell.

Authentication method:

Specifies the method of authentication.

 You can use any string, but the string must match the element in the service-level configuration. The

following words are reserved and have special meanings:

BasicAuth

Uses both a user name and a password.

IDAssertion

Uses only a user name, but requires that additional trust is established on the receiving server

using a TrustedIDEvaluator mechanism.

Signature

Uses the distinguished name (DN) of the signer.

LTPA Validates a token.

JAAS configuration name:

Specifies the name of the Java Authentication and Authorization Service (JAAS) configuration.

 You can use the following predefined system login configurations:

system.wssecurity.IDAssertion

Enables a version 5.x application to use identity assertion to map a user name to a WebSphere

Application Server credential principal.

system.wssecurity.Signature

Enables a version 5.x application to map a distinguished name (DN) in a signed certificate to a

WebSphere Application Server credential principal.

system.LTPA_WEB

Processes login requests that are used by the Web container such as servlets and JavaServer

Pages (JSP) files.

system.WEB_INBOUND

Handles logins for Web application requests, which include servlets and JavaServer Pages. This

login configuration is used by WebSphere Application Server Version 5.1.1.

system.RMI_INBOUND

Handles logins for inbound Remote Method Invocation (RMI) requests. This login configuration is

used by WebSphere Application Server Version 5.1.1.

1284 Securing applications and their environment

system.DEFAULT

Handles the logins for inbound requests made by internal authentications and most of the other

protocols except Web applications and RMI requests. This login configuration is used by

WebSphere Application Server Version 5.1.1.

system.RMI_OUTBOUND

Processes RMI requests that are sent outbound to another server when the

com.ibm.CSIOutboundPropagationEnabled property is true. This property is set in the CSIv2

authentication panel. To access the panel, click Security > Global security > Authentication

protocol > CSIv2 Outbound authentication. To set the

com.ibm.CSIOutboundPropagationEnabled property, select Security attribute propagation.

Version 6 and later applications

system.wssecurity.X509BST

Verifies an X.509 binary security token (BST) by checking the validity of the certificate and the

certificate path.

Version 6 and later applications

system.wssecurity.PKCS7

Verifies an X.509 certificate with a certificate revocation list in a PKCS7 object.

Version 6 and later applications

system.wssecurity.PkiPath

Verifies an X.509 certificate with a public key infrastructure (PKI) path.

Version 6 and later applications

system.wssecurity.UsernameToken

Verifies basic authentication (user name and password).

These system login configurations are defined on the System logins panel, which is accessible by

completing the following steps:

1. Click Security > Secure administration, applications, and infrastructure.

2. Under Java Authentication and Authorization Service, click System logins.

Attention: The predefined system login configurations are listed on the System logins configuration

panel without the system prefix. For example, the system.wssecurity.UsernameToken configuration listed in

the Java Authentication and Authorization Service (JAAS) configuration name option corresponds to the

wssecurity.UsernameToken configuration that is on the System logins configuration panel.

You can use the following predefined application login configurations:

ClientContainer

Specifies the login configuration that is used by the client container application, which uses the

CallbackHandler API that is defined in the deployment descriptor of the client container.

WSLogin

Specifies whether all applications can use the WSLogin configuration to perform authentication for

the WebSphere Application Server security run time.

DefaultPrincipalMapping

Specifies the login configuration used by Java 2 Connectors (J2C) to map users to principals that

are defined in the J2C authentication data entries.

These application login configurations are defined on the Application logins panel, which is accessible by

completing the following steps:

1. Click Security > Secure administration, applications, and infrastructure.

2. Under Java Authentication and Authorization Service, click Application logins.

Chapter 14. Web services 1285

Do not remove these predefined system or application login configurations. Within these configurations,

you can add module class names and specify the order in which WebSphere Application Server loads

each module.

Callback handler factory class name:

Specifies the name of the factory for the CallbackHandler class.

 You must implement the com.ibm.wsspi.wssecurity.auth.callback.CallbackHandlerFactory class in this field.

Token type URI:

Specifies the namespace Uniform Resource Identifiers (URI), which denotes the type of security token that

is accepted.

 If binary security tokens are accepted, the value denotes the ValueType attribute in the element. The

ValueType element identifies the type of security token and its namespace. If Extensible Markup Language

(XML) tokens are accepted, the value denotes the top-level element name of the XML token.

If the reserved words are specified previously in the Authentication method field, this field is ignored.

 Data type: Unicode characters except for non-ASCII characters, but

including the number sign (#), the percent sign (%), and

the square brackets ([]).

Token type local name:

Specifies the local name of the security token type, for example, X509v3.

 If binary security tokens are accepted, the value denotes the ValueType attribute in the element. The

ValueType attribute identifies the type of security token and its namespace. If Extensible Markup Language

(XML) tokens are accepted, the value denotes the top-level element name of the XML token.

If the reserved words are specified previously in the Authentication method field, this field is ignored.

Nonce maximum age:

Specifies the time, in seconds, before the nonce timestamp expires. Nonce is a randomly generated value.

 You must specify a minimum of 300 seconds for the Nonce maximum age field. However, the maximum

value cannot exceed the number of seconds specified in the Nonce cache timeout field for either the

server level or the cell level.

You can specify the Nonce maximum age value for the server level by completing the following steps:

1. Click Servers > Application Servers > server_name.

2. Under Additional Properties, click Web Services: Default bindings for Web Services Security.

Important: The Nonce maximum age field on this panel is optional and only valid if the BasicAuth

authentication method is specified. If you specify another authentication method and attempt

to specify values for this field, the following error message displays and you must remove the

specified value: Nonce is not supported for authentication methods other than

BasicAuth.

If you specify the BasicAuth method, but do not specify values for the Nonce maximum age field, the Web

services security run time searches for a Nonce maximum age value on the server level. If a value is not

1286 Securing applications and their environment

found on the server level, the run time searches the cell level. If a value is not found on either the server

level or the cell level, the default is 300 seconds.

 Default 300 seconds

Range 300 to Nonce cache timeout seconds

Nonce clock skew:

Specifies the clock skew value, in seconds, to consider when WebSphere Application Server checks the

freshness of the message. Nonce is a randomly generated value.

 You can specify the Nonce clock skew value for the server level by completing the following steps:

1. Click Servers > Application Servers > server_name.

2. Under Additional Properties, click Web Services: Default bindings for Web Services Security.

You must specify a minimum of zero (0) seconds for the Nonce Clock Skew field. However, the maximum

value cannot exceed the number of seconds that is specified in the Nonce maximum age field on this

Login mappings panel.

Important: The Nonce clock skew field on this panel is optional and only valid if the BasicAuth

authentication method is specified. If you specify another authentication method and attempt

to specify values for this field, the following error message displays and you must remove the

specified value: Nonce is not supported for authentication methods other than

BasicAuth.

Note: If you specify BasicAuth, but do not specify values for the Nonce clock skew field, WebSphere

Application Server searches for a Nonce clock skew value on the server level. If a value is not

found on the server level, the run time searches the cell level. If a value is not found on either the

server level or the cell level, the default is zero (0) seconds.

 Default 0 seconds

Range 0 to Nonce Maximum Age seconds

Configuring the client for request signing: digitally signing message parts

To configure the client for request signing, specify which message parts to digitally sign when configuring

the client.

Important: There is an important distinction between Version 5.x and Version 6 and later applications.

The information in this article supports Version 5.x applications only that are used with

WebSphere Application Server Version 6.0.x and later. The information does not apply to

Version 6.0.x and later applications.

Prior to completing these steps, read either of the following topics to become familiar with the Security

Extensions tab and the Port Binding tab in the Web Services Client Editor within an assembly tool, such

as the Application Server Toolkit or Rational Web Developer.

v “Configuring the client security bindings using an assembly tool” on page 1302

v “Configuring the security bindings on a server acting as a client using the administrative console” on

page 1305

These two tabs are used to configure the Web services security extensions and the Web services security

bindings, respectively.

Complete the following steps to specify which message parts to digitally sign when configuring the client

for request signing:

Chapter 14. Web services 1287

1. Launch an assembly tool. For more information on the assembly tools, see Assembly tools

2. Click Windows > Open perspective > Other > J2EE.

3. Click Application Client projects > application_name > appClientModule > META-INF

4. Right-click the application-client.xml file, select Open with > Deployment Descriptor Editor, and

click the WS Extension tab. The Client Deployment Descriptor is displayed.

5. Expand Request sender configuration > Integrity. Integrity refers to digital signature while

confidentiality refers to encryption. Integrity decreases the risk of data modification while the data is

transmitted across the Internet. For more information on digitally signing SOAP messages, see “XML

digital signature” on page 1255.

6. Indicate which parts of the message to sign by clicking Add and selecting body, timestamp, or

SecurityToken. The following list contains descriptions of the message parts

body The body is the user data portion of the message.

timestamp

The time stamp determines if the message is valid based on the time that the message is sent

and then received. If timestamp is selected, proceed to the next step and select Add created

time stamp to add a time stamp to a message.

SecurityToken

The security token authenticates the client. If this option is selected, the message is signed.

You can choose to digitally sign the message using a time stamp if Add created time stamp is

selected and configured. You can digitally sign the message using a security token if a login

configuration authentication method is selected.

7. Optional: Expand the Add created time stamp section and select this option if you want a time

stamp added to the message. You can specify an expiration time for the time stamp, which helps

defend against replay attacks. The lexical representation for duration is the [ISO 8601] extended format

PnYnMnDTnHnMnS, where:

v nY represents the number of years

v nM represents the number of months

v nD represents the number of days

v T is the date and time separator

v nH represents the number of hours

v nM represents the number of minutes

v nS represents the number of seconds. The number of seconds can include decimal digits to

arbitrary precision.

For example, to indicate a duration of 1 year, 2 months, 3 days, 10 hours, and 30 minutes, the format

is: P1Y2M3DT10H30M. Typically, you configure a message time stamp for about 10 to 30 minutes, for

example, 10 minutes is represented as: P0Y0M0DT0H10M0S. The P character precedes time and date

values.

Important: If you configure the client and server signing information correctly, but receive a Soap body

not signed error when executing the client, you might need to configure the actor. You can

configure the actor in the following locations on the client in the Web Services Client Editor

within the assembly tool (such as the Application Server Toolkit or Rational Web Developer):

v Click Security extensions > Client service configuration details and indicate the actor

information in the Actor URI field.

v Click Security extensions > Request sender configuration > Details and indicate the

actor information in the Actor field.

You must configure the same actor strings for the Web service on the server, which processes

the request and sends the response back. Configure the actor in the following locations in the

Web Services Editor within the WebSphere Application Server Toolkit:

1288 Securing applications and their environment

v Click Security extensions > Server service configuration.

v Click Security extensions > Response sender service configuration details > Details

and indicate the actor information in the Actor field.

The actor information on both the client and server must refer to the same exact string. When

the Actor fields on the client and server match, the request or response is acted upon instead

of being forwarded downstream. The Actor fields might be different when you have Web

services acting as a gateway to other Web services. However, in all other cases, make sure

that the actor information matches on the client and server. When Web services are acting as

a gateway and they do not have the same actor configured as the request passing through

the gateway, Web services do not process the message from a client. Instead, these Web

services send the request downstream. The downstream process that contains the correct

actor string processes the request. The same situation occurs for the response. Therefore, it is

important that you verify that the appropriate client and server Actor fields are synchronized.

After you have specified which message parts to digitally sign, you must specify which method is used to

digitally sign the message. See “Configuring the client for request signing: choosing the digital signature

method” for more information.

Configuring the client for request signing: choosing the digital signature method

To configure the client for request signing, specify which message parts to digitally sign when configuring

the client.

Important: There is an important distinction between Version 5.x and Version 6 and later applications.

The information in this article supports Version 5.x applications only that are used with

WebSphere Application Server Version 6.0.x and later. The information does not apply to

Version 6.0.x and later applications.

Prior to completing these steps, read either of the following topics to become familiar with the Security

extensions tab and the Port binding tab in the Web services client editor within an assembly tool, such as

the Application Server Toolkit or Rational Web Developer:

v “Configuring the client security bindings using an assembly tool” on page 1302

v “Configuring the security bindings on a server acting as a client using the administrative console” on

page 1305

These two tabs are used to configure the Web services security extensions and the Web services security

bindings, respectively. You must specify which parts of the message sent by the client must be digitally

signed. See “Configuring the client for request signing: digitally signing message parts” on page 1287 for

more information.

Complete the following steps to specify which message parts to digitally sign when configuring the client

for request signing:

1. Launch an assembly tool. For more information on the assembly tools, see Assembly tools.

2. Switch to the Java 2 Platform, Enterprise Edition (J2EE) perspective. Click Windows > Open

perspective > Other > J2EE.

3. Click Application Client projects > application_name > appClientModule > META-INF

4. Right-click the application-client.xml file, select Open with > Deployment Descriptor Editor, and

click the WS Binding tab. The Client Deployment Descriptor is displayed.

5. Expand Security request sender binding configuration > Signing information.

6. Select Edit to view the signing information and select a digital signature method from the Signature

method algorithm field. The following table describes the purpose of this information. Some of these

definitions are based on the XML-Signature specification, which is located at the following Web site

http://www.w3.org/TR/xmldsig-core.

Chapter 14. Web services 1289

http://www.w3.org/TR/xmldsig-core

Name Purpose

Canonicalization method algorithm Canonicalizes the <SignedInfo> element before the

information is digested as part of the signature operation.

Digest method algorithm Applies to the data after transforms are applied, if

specified, to yield the <DigestValue> element. Signing the

<DigestValue> element binds the resource content to the

signer key. The algorithm selected for the client request

sender configuration must match the algorithm selected in

the server request receiver configuration.

Signature method algorithm Converts the canonicalized <SignedInfo> element into the

<SignatureValue> element. The algorithm selected for the

client request sender configuration must match the

algorithm selected in the server request receiver

configuration.

Signing key name Represents the key entry associated with the signing key

locator. The key entry refers to an alias of the key, which

is found in the key store and is used to sign the request.

Signing key locator Represents a reference to a key locator implementation

class that locates the correct hey store where the alias

and the certificate exist.

7. Optional: Select Show only FIPS Compliant Algorithms if you only want the FIPS compliant

algorithms to be shown in the Digest method algorithm and Signature method algorithm drop-down

lists. Use this option if you expect this application to be run on a WebSphere Application Server that

has set the Use the United States Federal Information Processing Standard (FIPS) algorithms

option in the SSL certificate and key management panel of the WebSphere administrative console.

Important: If you configure the client and server signing information correctly, but receive a Soap body

not signed error when running the client, you might need to configure the actor. You can

configure the actor in the following locations on the client in the Web services client editor

within an assembly tool:

v Click Security extensions > Client service configuration details and indicate the actor

information in the Actor URI field.

v Click Security extensions > Request sender configuration > Details and indicate the

actor information in the Actor field.

You must configure the same actor strings for the Web service on the server, which processes

the request and sends the response back. Configure the actor in the following locations in the

Web services editor within an assembly tool:

v Click Security extensions > Server service configuration.

v Click Security extensions > Response sender service configuration details > Details

and indicate the actor information in the Actor field.

The actor information on both the client and server must refer to the same exact string. When

the actor fields on the client and server match, the request or response is acted upon instead

of being forwarded downstream. The Actor fields might be different when you have Web

services acting as a gateway to other Web services. However, in all other cases, make sure

that the actor information matches on the client and server. When Web services are acting as

a gateway and they do not have the same actor configured as the request passing through

the gateway, Web services do not process the message from a client. Instead, these Web

services send the request downstream. The downstream process that contains the correct

actor string processes the request. The same situation occurs for the response. Therefore, it is

important that you verify that the appropriate client and server actor fields are synchronized.

1290 Securing applications and their environment

You have specified which method is used to digitally sign a message when the client sends a message to

a server.

After you configure the client to digitally sign the message, you must configure the server to verify the

digital signature. See “Configuring the server for request digital signature verification: Verifying the

message parts” for more information.

Configuring the server for request digital signature verification: Verifying the

message parts

Configure the server for request digital signature verification by modifying the extensions to indicate which

parts of the request to verify.

Important: There is an important distinction between Version 5.x and Version 6 and later applications.

The information in this article supports Version 5.x applications only that are used with

WebSphere Application Server Version 6.0.x and later. The information does not apply to

Version 6.0.x and later applications.

Prior to completing these steps, read either of the following topics to become familiar with the Extensions

tab and the Binding Configurations tab in the Web services editor within the assembly tool such as the

Application Server Toolkit or Rational Web Developer:

v “Configuring the server security bindings using an assembly tool” on page 1306

v “Configuring the server security bindings using the administrative console” on page 1309

You can use these two tabs to configure the Web services security extensions and the Web services

security bindings, respectively. Also, you must specify which parts of the message sent by the client must

be digitally signed. See “Configuring the client for request signing: digitally signing message parts” on page

1287 to determine which message parts are digitally signed. The message parts specified for the client

request sender must match the message parts specified for the server request receiver.

Complete the following steps to configure the server for request digital signature verification. The steps

describe how to modify the extensions to indicate which parts of the request to verify.

1. Launch an assembly tool. For more information on the assembly tools, see Assembly tools

2. Switch to the Java 2 Platform, Enterprise Edition (J2EE) perspective. Click Windows > Open

perspective > Other > J2EE.

3. Click EJB Projects > application_name > ejbModule > META-INF.

4. Right-click the webservices.xml file, and click Open with > Web services editor.

5. Click the Extensions tab in the Web services editor.

6. Expand the Request receiver service configuration details > Required integrity section. Required

integrity refers to the parts of the message that require digital signature verification. The purpose of

digital signature verification is to make sure that the message parts have not been modified while

transmitting across the Internet.

7. Indicate parts of the message to verify by clicking Add, and selecting one of the following three parts:

body, timestamp, or SecurityToken. You can determine which parts of the message to verify by looking

at the Web service request sender configuration in the client application. To view the Web service

request sender configuration information in the Web services client editor, click the Security extensions

tab and expand Request sender configuration > Integrity. The following includes a list and

description of the message parts:

Body This is the user data portion of the message.

Timestamp

The timestamp determines if the message is valid based on the time that the message is sent

and then received. If timestamp option is selected, proceed to the next step to Add Created

Time Stamp to the message.

Chapter 14. Web services 1291

Securitytoken

The security token authenticates the client. If the SecurityToken is selected, the message is

signed.

8. Optional: Expand the Add received time stamp section. The Add Received Time Stamp value

indicates to validate the Add Created Time Stamp option configured by the client. You must select this

option if you selected the Add Created Time Stamp on the client. The time stamp ensures message

integrity by indicating the timeliness of the request. This option helps defend against replay attacks.

Important: If you configure the client and server signing information correctly, but receive a Soap body

not signed error when running the client, you might need to configure the actor. You can

configure the actor in the following locations on the client in the Web Services Client Editor

within the Application Server Toolkit:

v Click Security extensions > Client service configuration details and indicate the actor

information in the Actor URI field.

v Click Security extensions > Request sender configuration > Details and indicate the

actor information in the Actor field.

You must configure the same actor strings for the Web service on the server, which processes

the request and sends the response back. Configure the actor in the following locations in the

Web Services Editor within the Application Server Toolkit:

v Click Security extensions > Server service configuration.

v Click Security extensions > Response sender service configuration details > Details

and indicate the actor information in the Actor field.

The actor information on both the client and server must refer to the same exact string. When

the actor fields on the client and server match, the request or response is acted upon instead

of being forwarded downstream. The actor fields might be different when you have Web

services acting as a gateway to other Web services. However, in all other cases, make sure

that the actor information matches on the client and server. When Web services are acting as

a gateway and they do not have the same actor configured as the request passing through

the gateway, Web services do not process the message from a client. Instead, these Web

services send the request downstream. The downstream process that contains the correct

actor string processes the request. The same situation occurs for the response. Therefore, it is

important that you verify that the appropriate client and server actor fields are synchronized.

You have specified which message parts are digitally signed and must be verified by the server when the

client sends a message to a server.

After you specify which message parts contain a digital signature that must be verified by the server, you

must configure the server to recognize the digital signature method used to digitally sign the message.

See “Configuring the server for request digital signature verification: choosing the verification method” for

more information.

Configuring the server for request digital signature verification: choosing the

verification method

To configure the server for request digital signature verification, use an assembly tool to modify the

extensions and indicate which digital signature method the server will use during verification.

Important: There is an important distinction between Version 5.x and Version 6 and later applications.

The information in this article supports Version 5.x applications only that are used with

WebSphere Application Server Version 6.0.x and later. The information does not apply to

Version 6.0.x and later applications.

1292 Securing applications and their environment

Prior to completing these steps, read either of the following topics to become familiar with the Extensions

tab and the Binding Configurations tab in the Web Services Editor within the assembly tool such as the

Application Server Toolkit or Rational Web Developer:

v “Configuring the server security bindings using an assembly tool” on page 1306

v “Configuring the server security bindings using the administrative console” on page 1309

You can use these two tabs to configure the Web services security extensions and Web services security

bindings, respectively. You must specify which message parts contain digital signature information that

must be verified by the server. See “Configuring the server for request digital signature verification:

Verifying the message parts” on page 1291. The message parts specified for the client request sender

must match the message parts specified for the server request receiver. Likewise, the digital signature

method chosen for the client must match the digital signature method used by the server.

Complete the following steps to configure the server for request digital signature verification. The steps

describe how to modify the extensions to indicate which digital signature method the server will use during

verification.

1. Launch an assembly tool. For more information on the assembly tools, see Assembly tools

2. Switch to the Java 2 Platform, Enterprise Edition (J2EE) perspective. Click Windows > Open

perspective > Other > J2EE.

3. Click EJB Projects > application_name > ejbModule > META-INF.

4. Right-click the webservices.xml file, and click Open with > Web services editor.

5. Click the Binding Configurations tab.

6. Expand the Security request receiver binding configuration details > Signing information section.

7. Click Edit to edit the signing information. The signing information dialog is displayed, select or enter

the following information:

v Canonicalization method algorithm

v Digest method algorithm

v Signature method algorithm

v Use certificate path reference

v Trust anchor reference

v Certificate store reference

v Trust any certificate

For more conceptual information on digitally signing SOAP messages, see XML digital signature. The

following table describes the purpose for each of these selections. Some of the following definitions are

based on the XML-Signature specification, which is located at the following Web address:

http://www.w3.org/TR/xmldsig-core.

 Name Purpose

Canonicalization method algorithm Canonicalizes the <SignedInfo> element before it is

digested as part of the signature operation. The algorithm

selected for the server request receiver configuration

must match the algorithm selected in the client request

sender configuration.

Digest method algorithm Applies to the data after transforms are applied, if

specified, to yield the <DigestValue> element. The signing

of the <DigestValue> element binds resource content to

the signer key. The algorithm selected for the server

request receiver configuration must match the algorithm

selected in the client request sender configuration.

Chapter 14. Web services 1293

http://www.w3.org/TR/xmldsig-core

Name Purpose

Signature method algorithm Converts the canonicalized <SignedInfo> element into the

<SignatureValue> element. The algorithm selected for the

server request receiver configuration must match the

algorithm selected in the client request sender

configuration.

Use certificate path reference or Trust any certificate Validates a certificate or signature sent with a message.

When a message is signed, the public key used to sign it

is sent with the message. This public key or certificate

might not be validated at the receiving end. By selecting

User certificate path reference, you must configure a

trust anchor reference and a certificate store reference to

validate the certificate sent with the message. By

selecting Trust any certificate, the signature is validated

by the certificate sent with the message without the

certificate itself being validated.

Use certificate path reference: Trust anchor reference Refers to a key store that contains trusted, self-signed

certificates and certificate authority (CA) certificates.

These certificates are trusted certificates that you can use

with any applications in your deployment.

Use certificate path reference: Certificate store

reference

Contains a collection of X.509 certificates. These

certificates are not trusted for all applications in your

deployment, but might be used as an intermediary to

validate certificates for an application.

8. Optional: Select Show only FIPS Compliant Algorithms if you only want the FIPS compliant

algorithms to be shown in the Signature method algorithm and Digest method algorithm drop-down

lists. Use this option if you expect this application to be run on a WebSphere Application Server that

has set the Use the United States Federal Information Processing Standard (FIPS) algorithms.

option in the SSL certificate and key management panel of the administrative console for WebSphere

Application Server.

Important: If you configure the client and server signing information correctly, but receive a Soap body

not signed error when running the client, you might need to configure the actor. You can

configure the actor in the following locations on the client in the Web Services Client Editor

within the Application Server Toolkit:

v Click Security extensions > Client service configuration details and indicate the actor

information in the Actor URI field.

v Click Security extensions > Request sender configuration > Details and indicate the

actor information in the Actor field.

You must configure the same actor strings for the Web service on the server, which processes

the request and sends the response back. Configure the actor in the following locations in the

Web Services Editor within the WebSphere Application Server Toolkit:

v Click Security extensions > Server service configuration.

v Click Security extensions > Response sender service configuration details > Details

and indicate the actor information in the Actor field.

The actor information on both the client and server must refer to the same exact string. When

the actor fields on the client and server match, the request or response is acted upon instead

of being forwarded downstream. The actor fields might be different when you have Web

services acting as a gateway to other Web services. However, in all other cases, make sure

that the actor information matches on the client and server. When Web services are acting as

a gateway and they do not have the same actor configured as the request passing through

the gateway, Web services do not process the message from a client. Instead, these Web

1294 Securing applications and their environment

services send the request downstream. The downstream process that contains the correct

actor string processes the request. The same situation occurs for the response. Therefore, it is

important that you verify that the appropriate client and server actor fields are synchronized.

You have specified the method that the server uses to verify the digital signature in the message parts.

After you configure the client for request signing and the server for request digital signature verification,

you must configure the server and the client to handle the response. Next, specify the response signing for

the server. See “Configuring the server for response signing: digitally signing message parts” for more

information.

Configuring the server for response signing: digitally signing message parts

Use an assembly tool to specify which message parts to digitally sign when configuring the server for

response signing.

Important: There is an important distinction between Version 5.x and Version 6 and later applications.

The information in this article supports Version 5.x applications only that are used with

WebSphere Application Server Version 6.0.x and later. The information does not apply to

Version 6.0.x and later applications.

Prior to completing these steps, read either of the following topics to become familiar with the Extensions

tab and the Binding configurations tab in the Web services editor within an assembly tool such as the

Application Server Toolkit or Rational Web Developer:

v “Configuring the server security bindings using an assembly tool” on page 1306

v “Configuring the server security bindings using the administrative console” on page 1309

These two tabs are used to configure the Web services security extensions and the Web services security

bindings, respectively.

Complete the following steps to specify which message parts to digitally sign when configuring the server

for response signing:

1. Launch an assembly tool. For more information on the assembly tools, see Assembly tools

2. Switch to the Java 2 Platform, Enterprise Edition (J2EE) perspective. Click Windows > Open

perspective > Other > J2EE.

3. Click EJB Projects > application _name >ejbModule > META-INF

4. Right-click the webservices.xml file and click Open with > Web services editor.

5. Click the Extensions tab, which is located at the bottom of the Web Services Editor within the

assembly tool.

6. Expand Response sender service configuration details > Integrity. Integrity refers to digital

signature while confidentiality refers to encryption. Integrity decreases the risk of data modification

while the data is transmitted across the Internet. For more information on digitally signing SOAP

messages, see XML digital signature.

7. Indicate the parts of the message to sign by clicking Add, and selecting Body, Timestamp, or

Securitytoken.

The following list contains descriptions of the message parts:

Body The body is the user data portion of the message.

Timestamp

The time stamp determines if the message is valid based on the time that the message is sent

and then received. If timestamp if selected, proceed to the next step and click Add Created

Time Stamp, which indicates that the time stamp is added to the message.

Securitytoken

The security token is used for authentication. If this option is selected, the authentication

information is added to the message.

Chapter 14. Web services 1295

8. Optional: Expand the Add created time stamp section. Select this option if you want a time stamp

added to the message. You can specify an expiration time for the time stamp, which helps defend

against replay attacks. The lexical representation for duration is the ISO 8601 extended format,

PnYnMnDTnHnMnS, where:

v nY represents the number of years.

v nM represents the number of months.

v nD represents the number of days.

v T is the date and time separator.

v nH represents the number of hours.

v nM represents the number of minutes.

v nS represents the number of seconds. The number of seconds can include decimal digits to

arbitrary precision.

For example, to indicate a duration of 1 year, 2 months, 3 days, 10 hours, and 30 minutes, the format

is: P1Y2M3DT10H30M. Typically, you configure a message time stamp for about 10 to 30 minutes. 10

minutes is represented as: P0Y0M0DT0H10M0S. The P character precedes time and date values.

Important: If you configure the client and server signing information correctly, but receive a Soap body

not signed error when running the client, you might need to configure the actor. You can

configure the actor in the following locations on the client in the Web Services Client Editor

within the assembly tool:

v Click Security extensions > Client service configuration details and indicate the actor

information in the Actor URI field.

v Click Security extensions > Request sender configuration > Details and indicate the

actor information in the Actor field.

You must configure the same actor strings for the Web service on the server, which processes

the request and sends the response back. Configure the actor in the following locations in the

Web Services Editor within the WebSphere Application Server Toolkit:

v Click Security extensions > Server service configuration.

v Click Security extensions > Response sender service configuration details > Details

and indicate the actor information in the Actor field.

The actor information on both the client and server must refer to the same exact string. When

the actor fields on the client and server match, the request or response is acted upon instead

of being forwarded downstream. The actor fields might be different when you have Web

services acting as a gateway to other Web services. However, in all other cases, make sure

that the actor information matches on the client and server. When Web services are acting as

a gateway and they do not have the same actor configured as the request passing through

the gateway, Web services do not process the message from a client. Instead, these Web

services send the request downstream. The downstream process that contains the correct

actor string processes the request. The same situation occurs for the response. Therefore, it is

important that you verify that the appropriate client and server actor fields are synchronized.

You have specified which message parts to digitally sign when the server sends a response to the client.

After you specifying which message parts to digitally sign, you must specify which method is used to

digitally sign the message. See “Configuring the server for response signing: choosing the digital signature

method” for more information.

Configuring the server for response signing: choosing the digital signature

method

Use an assembly tool to specify which digital signature method to use when configuring the server for

response signing.

1296 Securing applications and their environment

Important: There is an important distinction between Version 5.x and Version 6 and later applications.

The information in this article supports Version 5.x applications only that are used with

WebSphere Application Server Version 6.0.x and later. The information does not apply to

Version 6.0.x and later applications.

Prior to completing these steps, read either of the following topics to become familiar with the Extensions

tab and the Binding configurations tab in the Web services editor within the assembly tools such as the

Application Server Toolkit or Rational Web Developer:

v “Configuring the server security bindings using an assembly tool” on page 1306

v “Configuring the server security bindings using the administrative console” on page 1309

These two tabs are used to configure the Web services security extensions and the Web services security

bindings, respectively.

Complete the following steps to specify which digital signature method to use when configuring the server

for response signing:

1. Launch an assembly tool. For more information on the assembly tools, see Assembly tools.

2. Switch to the Java 2 Platform, Enterprise Edition (J2EE) perspective. Click Window > Open

Perspective > J2EE.

3. Click EJB Projects > application _name >ejbModule > META-INF

4. Right-click the webservices.xml file and click Open with > Web services editor.

5. Click the Binding Configurations tab.

6. Expand Response sender binding configuration details > Signing information.

7. Click Edit to choose a signing method. The signing info dialog is displayed and either select or enter

the following information:

v Canonicalization method algorithm

v Digest method algorithm

v Signature method algorithm

v Signing key name

v Signing key locator

The following table describes the purpose of this information. Some of these definitions are based on

the XML-Signature specification, which is located at the following address: http://www.w3.org/TR/
xmldsig-core.

 Name Purpose

Canonicalization method algorithm Canonicalizes the <SignedInfo> element before the

information is digested as part of the signature operation.

Use the same algorithm on the client response receiver.

The algorithm selected for the server response sender

configuration must match the algorithm selected in the

client response receiver configuration.

Digest method algorithm Applies to the data after transforms are applied, if

specified, to yield the <DigestValue> element. Signing the

<DigestValue> binds resource content to the signer key.

The algorithm selected for the server response sender

configuration must match the algorithm selected in the

client response receiver configuration.

Signature method algorithm Converts the canonicalized <SignedInfo> element into the

<SignatureValue> element. The algorithm selected for the

server response sender configuration must match the

algorithm selected in the client response receiver

configuration.

Chapter 14. Web services 1297

http://www.w3.org/TR/xmldsig-core
http://www.w3.org/TR/xmldsig-core

Name Purpose

Signing key name Represents the key entry associated with the signing key

locator. The key entry refers to an alias of the key, which

is found in the key store and is used to sign the request.

Signing key locator Represents a reference to a key locator implementation

class that locates the correct key store where the alias

and certificate exists. For more information on configuring

key locators, see any of the following files:

v “Configuring key locators using an assembly tool” on

page 1275

v “Configuring key locators using the administrative

console” on page 1276

8. Optional: Select Show only FIPS Compliant Algorithms if you only want the FIPS compliant

algorithms to be shown in the Signature method algorithm and Digest method algorithm drop-down

lists. Use this option if you expect this application to be run on a WebSphere Application Server that

has set the Use the United States Federal Information Processing Standard (FIPS) algorithms

option in the SSL certificate and key management panel of the administrative console for WebSphere

Application Server.

You have specified which method is used to digitally sign a message when the server sends a message to

a client.

After you configure the server to digitally sign the response message, you must configure the client to

verify the digital signature contained in the response message. See “Configuring the client for response

digital signature verification: verifying the message parts” for more information.

Configuring the client for response digital signature verification: verifying the

message parts

To configure the Web services security extensions and the Web services security bindings, use the WS

Extension tab and the WS Binding tab in the Client Deployment Descriptor within an assembly tool such

as the Application Server Toolkit or Rational Web Developer.

Important: There is an important distinction between Version 5.x and Version 6 and later applications.

The information in this article supports Version 5.x applications only that are used with

WebSphere Application Server Version 6.0.x and later. The information does not apply to

Version 6.0.x and later applications.

Prior to completing these steps, read either of the following topics to becomes familiar with the WS

Extension tab and the WS Binding tab in the Client Deployment Descriptor within the assembly tool such

as the Application Server Toolkit or Rational Web Developer:

v “Configuring the client security bindings using an assembly tool” on page 1302

v “Configuring the security bindings on a server acting as a client using the administrative console” on

page 1305

You can use these two tabs to configure the Web services security extensions and the Web services

security bindings, respectively.

Complete the following steps to configure the client for response digital signature verification. The steps

describe how to modify the extensions to indicate which parts of the response to verify.

1. Launch an assembly tool. For more information on the assembly tools, see Assembly tools.

2. Switch to the Java 2 Platform, Enterprise Edition (J2EE) perspective. Click Windows > Open

perspective > Other > J2EE.

3. Click Application Client projects > application_name > appClientModule > META-INF.

1298 Securing applications and their environment

4. Right-click the application-client.xml file and click Open With > Deployment descriptor editor.

5. Click the WS extension tab.

6. Expand the Response receiver configuration > Required integrity section. Required integrity refers

to parts that require digital signature verification. Digital signature verification decreases the risk that

the message parts have been modified while the message is transmitted across the Internet.

7. Indicate the parts of the message that must be verified. You can determine which parts of the message

to verify by looking at the Web service response sender configuration. Click Add and select one of the

following parts:

Body The body is the user data portion of the message.

Timestamp

The time stamp determines if the message is valid based on the time that the message is sent

and then received. If the time stamp option is selected, proceed to the next step to add a

received time stamp to the message.

Securitytoken

The security token authenticates the client. If Securitytoken option is selected, the message is

signed.

8. Optional: Expand the Add received time stamp section. Select Add received time stamp to add the

received time stamp to the message.

Important: If you configure the client and server signing information correctly, but receive a Soap body

not signed error when running the client, you might need to configure the actor. You can

configure the actor in the following locations on the client in the Web services client editor

within an assembly tool:

v Click Security extensions > Client service configuration details and indicate the actor

information in the Actor URI field.

v Click Security extensions > Request sender configuration > Details and indicate the

actor information in the Actor field.

You must configure the same actor strings for the Web service on the server, which processes

the request and sends the response back. Configure the actor in the following locations in the

Web services editor within an assembly tool:

v Click Security extensions > Server service configuration.

v Click Security extensions > Response sender service configuration details > Details

and indicate the actor information in the Actor field.

The actor information on both the client and server must refer to the same exact string. When

the actor fields on the client and server match, the request or response is acted upon instead

of being forwarded downstream. The actor fields might be different when you have Web

services acting as a gateway to other Web services. However, in all other cases, make sure

that the actor information matches on the client and server. When Web services are acting as

a gateway and they do not have the same actor configured as the request passing through

the gateway, Web services do not process the message from a client. Instead, these Web

services send the request downstream. The downstream process that contains the correct

actor string processes the request. The same situation occurs for the response. Therefore, it is

important that you verify that the appropriate client and server actor fields are synchronized.

You have specified which message parts are digitally signed and must be verified by the client when the

server sends a response message to the client.

Chapter 14. Web services 1299

After you specify which message parts contain a digital signature that must be verified by the client, you

must configure the client to recognize the digital signature method used to digitally sign the message. See

“Configuring the client for response digital signature verification: choosing the verification method” for more

information.

Configuring the client for response digital signature verification: choosing the

verification method

You can configure the Web services security extensions and Web services security bindings using the WS

extension tab and the WS binding tab in the Web services editor within an assembly tool such as the

Application Server Toolkit or Rational Web Developer.

Important: There is an important distinction between Version 5.x and Version 6 and later applications.

The information in this article supports Version 5.x applications only that are used with

WebSphere Application Server Version 6.0.x and later. The information does not apply to

Version 6.0.x and later applications.

Prior to completing these steps, read either of the following topics to become familiar with the WS

extension tab and the WS binding tab in the Web services editor within an assembly tool such as the

Application Server Toolkit or Rational Web Developer:

v “Configuring the server security bindings using an assembly tool” on page 1306

v “Configuring the server security bindings using the administrative console” on page 1309

You can use these two tabs to configure the Web services security extensions and Web services security

bindings, respectively. Also, you must specify which message parts contain digital signature information

that must be verified by the client. See “Configuring the client for response digital signature verification:

verifying the message parts” on page 1298 to specify which message parts are digitally signed by the

server and must be verified by the client. The message parts specified for the server response sender

must match the message parts specified for the client response receiver. Likewise, the digital signature

method chosen for the server must match the digital signature method used by the client.

Complete the following steps to configure the client for response digital signature verification. The steps

describe how to modify the extensions to indicate which digital signature method the client will use during

verification.

1. Launch an assembly tool. For more information on the assembly tools, see Assembly tools.

2. Switch to the Java 2 Platform, Enterprise Edition (J2EE) perspective. Click Windows > Open

perspective > Other > J2EE.

3. Click Application Client Projects > application_name > appClientModule > META-INF.

4. Right-click the application-client.xml file, select Open with > Deployment descriptor editor.

5. Click the WS Binding tab.

6. Expand the Security response receiver binding configuration > Signing information section.

7. Click Edit to select a digital signature method. The signing info dialog displays and either select or

enter the following information:

v Canonicalization method algorithm

v Digest method algorithm

v Signature method algorithm

v Signing key name

v Signing key locator

For more conceptual information on digitally signing SOAP messages, see XML digital signature. The

following table describes the purpose for each of these selections. Some of the following definitions are

based on the XML-Signature specification, which can be found at: http://www.w3.org/TR/xmldsig-core.

1300 Securing applications and their environment

http://www.w3.org/TR/xmldsig-core

Name Purpose

Canonicalization method algorithm The canonicalization method algorithm is used to

canonicalize the <SignedInfo> element before it is

digested as part of the signature operation.

Digest method algorithm The digest method algorithm is the algorithm applied to

the data after transforms are applied, if specified, to yield

the <DigestValue>. The signing of the <DigestValue>

binds resource content to the signer key. The algorithm

selected for the client response receiver configuration

must match the algorithm selected in the server response

sender configuration.

Signature method algorithm The signature method is the algorithm that is used to

convert the canonicalized <SignedInfo> element into the

<SignatureValue> element. The algorithm selected for the

client response receiver configuration must match the

algorithm selected in the server response sender

configuration.

Use certificate path reference or Trust any certificate When a message is signed, the public key used to sign it

is transmitted with the message. To validate this public

key at the receiving end, configure a certificate path

reference. By selecting User certificate path reference,

you must configure a trust anchor reference and

certificate store reference to validate the certificate sent

with the message. By selecting trust any certificate, the

signature is validated by the certificate sent with the

message without the certificate itself being validated.

Use certificate path reference: Trust anchor reference A trust anchor is a configuration that refers to a keystore

that contains trusted, self-signed certificates and

certificate authority (CA) certificates. These certificates

are trusted certificates that you can use with any

applications in your deployment.

Use certificate path reference: Certificate store

reference

A certificate store is a configuration that has a collection

of X.509 certificates. These certificates are not trusted for

all applications in your deployment, but might be used as

an intermediary to validate certificates for an application.

8. Optional: Select Show only FIPS Compliant Algorithms if you only want the FIPS compliant

algorithms to be shown in the Signature method algorithm and Digest method algorithm drop-down

lists. Use this option if you expect this application to be run on a WebSphere Application Server that

has set the Use the United States Federal Information Processing Standard (FIPS) algorithms

option in the SSL certificate and key management panel of the administrative console for WebSphere

Application Server.

Important: If you configure the client and server signing information correctly, but receive a Soap body

not signed error when running the client, you might need to configure the actor. You can

configure the actor in the following locations on the client in the Web services client editor

within an assembly tool:

v Click Security extensions > Client service configuration details and indicate the actor

information in the Actor URI field.

v Click Security extensions > Request sender configuration > Details and indicate the

actor information in the Actor field.

You must configure the same actor strings for the Web service on the server, which processes

the request and sends the response back. Configure the actor in the following locations in the

Web services editor within an assembly tool:

Chapter 14. Web services 1301

v Click Security extensions > Server service configuration.

v Click Security extensions > Response sender service configuration details > Details

and indicate the actor information in the Actor field.

The actor information on both the client and server must refer to the same exact string. When

the actor fields on the client and server match, the request or response is acted upon instead

of being forwarded downstream. The actor fields might be different when you have Web

services acting as a gateway to other Web services. However, in all other cases, make sure

that the actor information matches on the client and server. When Web services are acting as

a gateway and they do not have the same actor configured as the request passing through

the gateway, Web services do not process the message from a client. Instead, these Web

services send the request downstream. The downstream process that contains the correct

actor string processes the request. The same situation occurs for the response. Therefore, it is

important that you verify that the appropriate client and server actor fields are synchronized.

You have specified which method the client uses to verify the digital signature in the message parts.

After you configure the server for response signing and the client for request digital signature verification,

verify that you have configured the client and the server to handle the message request.

Configuring the client security bindings using an assembly tool

Use the Web services client editor within an assembly tool to include the binding information, that

describes how to run the security specifications found in the extensions, in the client enterprise archive

(EAR) file.

Important: There is an important distinction between Version 5.x and Version 6 and later applications.

The information in this article supports Version 5.x applications only that are used with

WebSphere Application Server Version 6.0.x and later. The information does not apply to

Version 6.0.x and later applications.

When configuring a client for Web services security, the bindings describe how to run the security

specifications found in the extensions. Use the Web services client editor within an assembly tool to

include the binding information in the client enterprise archive (EAR) file.

You can configure the client-side bindings from a pure client accessing a Web service or from a Web

service accessing a downstream Web service. This document focuses on the pure client situation.

However, the concepts, and in most cases the steps, also apply when a Web service is configured to

communicate downstream to another Web service that has client bindings. Complete the following steps to

edit the security bindings on a pure client (or server acting as a client) using an assembly tool:

1. Import the Web services client EAR file into an assembly tool. When you edit the client bindings on a

server acting as a client, the same basic steps apply. Refer to the Assembly tools documentation for

additional information.

2. Switch to the Java 2 Platform, Enterprise Edition (J2EE) perspective. Click Window > Open

Perspective > J2EE.

3. Click Application Client Projects > application_name > appClientModule > META-INF.

4. Right-click the application-client.xml file, select Open with > Deployment descriptor editor. The

Client Deployment Descriptor is displayed.

5. Click the WS Extension tab.

6. On the WS extension tab, select the Port QName Bindings that you want to configure. The Web

services security extensions are configured for outbound requests and inbound responses. You need to

configure the following information for Web services security extensions. These topics are discussed in

more detail in other sections of the documentation.

Request sender configuration details

1302 Securing applications and their environment

Details

“Configuring the client for request signing: digitally signing message parts” on page 1287

Integrity

“Configuring the client for request signing: digitally signing message parts” on page 1287

Confidentiality

“Configuring the client for request encryption: Encrypting the message parts” on page 1318

Login Config

BasicAuth

“Configuring the client for basic authentication: specifying the method” on page 1332

IDAssertion

“Configuring the client for identity assertion: specifying the method” on page 1340

Signature

“Configuring the client for signature authentication: specifying the method” on page

1346

LTPA “Configuring the client for LTPA token authentication: specifying LTPA token

authentication” on page 1364

ID assertion

“Configuring the client for identity assertion: specifying the method” on page 1340

Add created time stamp

“Configuring the client for request signing: digitally signing message parts” on page 1287

Response receiver configuration details

Required integrity

“Configuring the client for response digital signature verification: verifying the message parts”

on page 1298

Required confidentiality

“Configuring the client for response decryption: decrypting the message parts” on page 1329

Add received time stamp

“Configuring the client for response digital signature verification: verifying the message parts”

on page 1298

7. On the WS binding tab, select the Port Qualified Name Binding that you want to configure. The Web

services security bindings are configured for outbound requests and inbound responses. You need to

configure the following information for Web services security bindings. These topics are discussed in

more details in other sections of the documentation.

Security request sender binding configuration

Signing information

“Configuring the client for request signing: choosing the digital signature method” on page

1289

Encryption information

“Configuring the client for request encryption: choosing the encryption method” on page 1318

Key locators

“Configuring key locators using an assembly tool” on page 1275

Login binding

Basic auth

“Configuring the client for basic authentication: collecting the authentication

information” on page 1334

Chapter 14. Web services 1303

ID assertion

“Configuring the client for identity assertion: collecting the authentication method” on

page 1341

Signature

“Configuring the client for signature authentication: collecting the authentication

information” on page 1348

LTPA “Configuring the client for LTPA token authentication: collecting the authentication

method information” on page 1365

Security response receiver binding configuration

Signing information

“Configuring the client for response digital signature verification: choosing the verification

method” on page 1300

Encryption information

“Configuring the client for response decryption: choosing a decryption method” on page 1330

Trust anchor

“Configuring trust anchors using an assembly tool” on page 1264

Certificate store list

“Configuring the client-side collection certificate store using an assembly tool” on page 1268

Key locators

“Configuring key locators using an assembly tool” on page 1275

Important: When configuring the security request sender binding configuration, you must synchronize the

information used to perform the specified security with the security request receiver binding

configuration, which is configured in the server EAR file. These two configurations must be

synchronized in all respects because there is no negotiation during run time to determine the

requirements of the server.

For example, when configuring the encryption information in the security request sender binding

Configuration, you must use the public key from the server for encryption. Therefore, the key locator that

you choose must contain the public key from the server configuration. The server must contain the private

key to decrypt the message. This example illustrates the important relationship between the client and

server configuration. Additionally, when configuring the security response receiver binding configuration,

the server must send the response using security information known by this client security response

receiver binding configuration.

The following table shows the related configurations between the client and the server. The client request

sender and the server request receiver are relative configurations that must be synchronized with each

other. The server response sender and the client response receiver are related configurations that must be

synchronized with each other. Note that the related configurations are end points for any request or

response. One end point must communicate its actions with the other end point because run time

requirements are not negotiated.

 Table 52. Related configurations

Client configuration Server configuration

Request sender Request receiver

Response receiver Response sender

1304 Securing applications and their environment

Configuring the security bindings on a server acting as a client using the

administrative console

Use the Web services client editor within an assembly tool to include the binding information, that

describes how to run the security specifications found in the extensions, in the client enterprise archive

(EAR) file.

Important: There is an important distinction between Version 5.x and Version 6 and later applications.

The information in this article supports Version 5.x applications only that are used with

WebSphere Application Server Version 6.0.x and later. The information does not apply to

Version 6.0.x and later applications.

When configuring a client for Web services security, the bindings describe how to run the security

specifications found in the extensions. Use the Web services client editor within an assembly tool to

include the binding information in the client enterprise archive (EAR) file.

You can configure the client-side bindings from a pure client accessing a Web service or from a Web

service accessing a downstream Web service. Complete the following steps to find the location in which to

edit the client bindings from a Web service that is running on the server. When a Web service

communicates with another Web service, you must configure client bindings to access the downstream

Web service.

1. Deploy the Web service using the WebSphere Application Server administrative console. Click

Applications > Install New Application.

You can access the administrative console by typing http://localhost:port_number/ibm/console in

your Web browser unless you have changed the port number.

See also Installing a new application.

2. Click Applications > Enterprise applications > application_name.

3. Under Manage modules, click URI_name.

4. Under Web Services Security Properties, click Web Services: Client security bindings. A table

displays with the following columns:

v Component Name

v Port

v Web Service

v Request Sender Binding

v Request Receiver Binding

v HTTP Basic Authentication

v HTTP SSL Configuration

For Web services security, you must edit the request sender binding and response receiver binding

configurations. You can use the defaults for some of the information at the server level. Default

bindings are convenient because you can configure commonly reused elements such as key locators

once and then reference their aliases in the application bindings.

5. View the default bindings for the server using the administrative console by clicking Servers >

Application server > server_name. Under Additional Properties, click Web Services: Default

bindings for Web services security. You can configure the following sections. These topics are

discussed in more detail in other sections of the documentation.

v Request sender binding

– “Signing parameter configuration settings” on page 1257

– “Encryption information configuration settings” on page 1161

– “Key locator configuration settings” on page 1124

– “Login bindings configuration settings” on page 1314

v Response receiver binding

Chapter 14. Web services 1305

– “Signing information configuration settings” on page 1142

– “Encryption information configuration settings” on page 1155

– “Trust anchor configuration settings” on page 1092

– “Collection certificate store configuration settings” on page 1096

– “Key locator configuration settings” on page 1124

Important: When configuring the security request sender binding configuration, you must synchronize the

information used to perform the specified security with the security request receiver binding

configuration, which is configured in the server EAR file. These two configurations must be

synchronized in all respects because there is no negotiation during run time to determine the

requirements of the server. For example, when configuring the encryption information in the

security request sender binding configuration, you must use the public key from the server for

encryption. Therefore, the key locator that you choose must contain the public key from the

server configuration. The server must contain the private key to decrypt the message. This

example illustrates the important relationship between the client and server configuration.

Additionally, when configuring the security response receiver binding configuration, the server

must send the response using security information known by this client security response

receiver binding configuration.

The following table shows the related configurations between the client and the server. The client request

sender and the server request receiver are relative configurations that must be synchronized with each

other. The server response sender and the client response receiver are related configurations that must be

synchronized with each other. Note that related configurations are end points for any request or response.

One end point must communicate its actions with the other end point because run time requirements are

not required.

 Table 53. Related configurations

Client configuration Server configuration

Request sender Request receiver

Response receiver Response sender

Configuring the server security bindings using an assembly tool

Important: There is an important distinction between Version 5.x and Version 6 and later applications.

The information in this article supports Version 5.x applications only that are used with

WebSphere Application Server Version 6.0.x and later. The information does not apply to

Version 6.0.x and later applications.

Create an Enterprise JavaBeans (EJB) file Java archive (JAR) file or a Web archive (WAR) file containing

the security binding file (ibm-webservices-bnd.xmi) and the security extension file (ibm-webservices-
ext.xmi). If this archive is acting as a client to a downstream service, you also need the client-side

binding file (ibm-webservicesclient-bnd.xmi) and the client-side extension file (ibm-webservicesclient-
ext.xmi). These files are generated using the WSDL2Java command. You can edit these files using the

Web services editor in the Assembly tools.

When configuring server-side security for Web services security, the security extensions configuration

specifies what security is performed, the security bindings configuration indicates how to perform what is

specified in the security extensions configuration. You can use the defaults for some elements at the cell

and server levels in the bindings configuration, including key locators, trust anchors, the collection

certificate store, trusted ID evaluators, and login mappings and reference these elements from the WAR

and JAR binding configurations.

1306 Securing applications and their environment

Prior to importing the Web services enterprise archive (EAR) file into the assembly tool, make sure that

you have already run the wsdl2java command on your Web service to enable your Java 2 Platform,

Enterprise Edition (J2EE) application. You must import the Web services EAR file into the assembly tool.

Open the Web services editor in an assembly tool to begin editing the server security extensions and

bindings. The following steps can locate the server security extensions and bindings. Other tasks specify

how to configure each section of the extensions and bindings in more detail.

1. Launch an assembly tool. For more information on the assembly tools, see Assembly tools.

2. Switch to the J2EE perspective. Click Window > Open Perspective > J2EE.

3. Configure the server for inbound requests and outbound responses security configuration. To configure

the server for inbound requests and outbound responses, complete the following steps:

a. Click EJB Projects > application_name > ejbModule > META-INF.

b. Right-click the webservices.xml file and click Open with > Web services editor. The

webservices.xml file represents the server-side (inbound) Web services configuration. The

webservicesclient.xml file represents the client-side (outbound) Web services configuration.

4. In the Web services editor (for the webservices.xml file and inbound requests and outbound responses

Web services configuration), there are several tabs at the bottom of the editor including Web Services,

Port Components, Handlers, Security Extensions, Bindings, and Binding Configurations. The security

extensions are edited using the Security Extensions tab. The security bindings are edited using the

Security Bindings tab.

a. Click the WS Extensions tab and select the port component binding to edit. The Web services

security extensions are configured for inbound requests and outbound responses. You need to

configure the following information for Web services security extensions. These topics are

discussed in more detail in other topics in the documentation.

Request receiver service configuration details

Required integrity

“Configuring the server for request digital signature verification: Verifying the message

parts” on page 1291

Required confidentiality

“Configuring the server for request decryption: decrypting the message parts” on page

1322

Login config

Basic auth

“Configuring the server to handle BasicAuth authentication information” on page

1337

ID assertion

“Configuring the server to handle identity assertion authentication” on page 1342

Signature

“Configuring the server to support signature authentication” on page 1349

LTPA “Configuring the server to handle LTPA token authentication information” on page

1366

Add received time stamp

“Configuring the server for request digital signature verification: Verifying the message

parts” on page 1291

Response sender service configuration details

Details

“Configuring the server for response signing: digitally signing message parts” on page 1295

Integrity

“Configuring the server for response signing: digitally signing message parts” on page 1295

Chapter 14. Web services 1307

Confidentiality

“Configuring the server for response encryption: encrypting the message parts” on page

1325

Add created time stamp

“Configuring the server for response signing: digitally signing message parts” on page 1295

b. Click the Binding Configurations tab and select the port component binding to edit. The Web

services security bindings are configured for inbound requests and outbound responses. You need

to configure the following information for Web services security bindings. These topics are

discussed in more details in other topics in the documentation.

Response receiver binding configuration details

Signing Information

“Configuring the server for request digital signature verification: choosing the verification

method” on page 1292

Encryption Information

“Configuring the server for request decryption: choosing the decryption method” on page

1323

Trust Anchor

“Configuring trust anchors using an assembly tool” on page 1264

Certificate Store List

“Configuring the server-side collection certificate store using an assembly tool” on page

1270

Key Locators

“Configuring key locators using an assembly tool” on page 1275

Login Mapping

Basic auth

“Configuring the server to validate BasicAuth authentication information” on page

1337

ID assertion

“Configuring the server to validate identity assertion authentication information” on

page 1344

Signature

“Configuring the server to validate signature authentication information” on page

1350

LTPA “Configuring the server to validate LTPA token authentication information” on page

1366

Trusted ID evaluator

Trusted ID evaluator reference

Response sender binding configuration details

Signing information

“Configuring the server for response signing: choosing the digital signature method” on

page 1296

Encryption information

“Configuring the server for response encryption: choosing the encryption method” on page

1326

Key locators

“Configuring key locators using an assembly tool” on page 1275

1308 Securing applications and their environment

Configure the client for outbound requests and inbound responses security configuration by right-clicking

the webservicesclient.xml file and clicking Open With > Deployment descriptor editor. For more

information, see “Configuring the client security bindings using an assembly tool” on page 1302.

Configuring the server security bindings using the administrative console

Use the WebSphere Application Server administrative console to edit bindings for a Web service after

these bindings are deployed on a server.

Important: There is an important distinction between Version 5.x and Version 6 and later applications.

The information in this article supports Version 5.x applications only that are used with

WebSphere Application Server Version 6.0.x and later. The information does not apply to

Version 6.0.x and later applications.

Create an Enterprise JavaBeans (EJB) file Java archive (JAR) file or Web archive (WAR) file containing

the security binding file (ibm-webservices-bnd.xmi) and the security extension file (ibm-webservices-
ext.xmi). If this archive is acting as a client to a downstream service, you also need the client-side binding

file (ibm-webservicesclient-bnd.xmi) and the client-side extension file (ibm-webservicesclient-ext.xmi).

These files are generated using the WSDL2Java command command. You can edit these files using the

Web Services Editor in the Assembly tools.

When configuring server-side security for Web services security, the security extensions configuration

specifies what security is to be performed while the security bindings configuration indicates how to

perform what is specified in the security extensions configuration. You can use the defaults for some

elements at the cell and server levels in the bindings configuration, including key locators, trust anchors,

the collection certificate store, trusted ID evaluators, and login mappings and reference them from the

WAR and JAR binding configurations.

The following steps describe how to edit bindings for a Web service after these bindings are deployed on

a server. When one Web service communicates with another Web service, you also must configure the

client bindings to access the downstream Web service.

1. Deploy the Web service using the WebSphere Application Server administrative console.

Type http://localhost:port_number/ibm/console in your Web browser unless you have changed the

port number.

After you log into the administration console, click Applications > Install new application to deploy

the Web service. For more information, see Installing application files with the console.

2. After you deploy the Web service, click Applications > Enterprise applications > application_name.

3. Under Manage modules, click URI_name.

4. Under Web Services Security Properties, click Web services: client security bindings for outbound

requests and inbound responses. Click Web services: server security bindings for inbound requests

and outbound responses.

5. If you click Web services: server security bindings, the following sections can be configured. These

topics are discussed in more detail in other sections of the documentation.

v Request receiver binding

– Signing information

– Encryption information

– Trust anchors

– Collection certificate store

– Key locator

– Trusted ID evaluator

– Login mappings

v Response sender binding

– Signing parameters

Chapter 14. Web services 1309

– Encryption information

– Key locator

XML encryption

Extensible Markup Language (XML) encryption is a specification developed by World Wide Web (WWW)

Consortium (W3C) in 2002 that contains the steps to encrypt data, the steps to decrypt encrypted data,

the syntax to represent XML encrypted data, the information used to decrypt the data, and a list of

encryption algorithms such as triple Data Encryption Standard (DES), Advanced Encryption Standard

(AES), and Rivest-Shamir-Adleman algorithm (RSA).

You can apply XML encryption to an XML element, XML element content, and arbitrary data, including an

XML document. For example, suppose that you need to encrypt the CreditCard element shown in the

example 1.

Example 1: Sample XML document

<PaymentInfo xmlns=’http://example.org/paymentv2’>

 <Name>John Smith</Name>

 <CreditCard Limit=’5,000’ Currency=’USD’>

 <Number>4019 2445 0277 5567</Number>

 <Issuer>Example Bank</Issuer>

 <Expiration>04/02</Expiration>

 </CreditCard>

</PaymentInfo>

Example 2: XML document with a common secret key

Example 2 shows the XML document after encryption. The EncryptedData element represents the

encrypted CreditCard element. The EncryptionMethod element describes the applied encryption algorithm,

which is triple DES in this example. The KeyInfo element contains the information to retrieve a decryption

key, which is a KeyName element in this example. The CipherValue element contains the ciphertext

obtained by serializing and encrypting the CreditCard element.

<PaymentInfo xmlns=’http://example.org/paymentv2’>

 <Name>John Smith</Name>

 <EncryptedData Type=’http://www.w3.org/2001/04/xmlenc#Element’

 xmlns=’http://www.w3.org/2001/04/xmlenc#’>

 <EncryptionMethod

 Algorithm=’http://www.w3.org/2001/04/xmlenc#tripledes-cbc’/>

 <KeyInfo xmlns=’http://www.w3.org/2000/09/xmldsig#’>

 <KeyName>John Smith</KeyName>

 </KeyInfo>

 <CipherData>

 <CipherValue>ydUNqHkMrD...</CipherValue>

 </CipherData>

 </EncryptedData>

</PaymentInfo>

Example 3: XML document encrypted with the public key of the recipient

In example 2, it is assumed that both the sender and recipient have a common secret key. If the recipient

has a public and private key pair, which is most likely the case, the CreditCard element can be encrypted

as shown in example 3. The EncryptedData element is the same as the EncryptedData element found in

Example 2. However, the KeyInfo element contains an EncryptedKey .

<PaymentInfo xmlns=’http://example.org/paymentv2’>

 <Name>John Smith</Name>

 <EncryptedData Type=’http://www.w3.org/2001/04/xmlenc#Element’

 xmlns=’http://www.w3.org/2001/04/xmlenc#’>

 <EncryptionMethod

 Algorithm=’http://www.w3.org/2001/04/xmlenc#tripledes-cbc’/>

 <KeyInfo xmlns=’http://www.w3.org/2000/09/xmldsig#’>

1310 Securing applications and their environment

<EncryptedKey xmlns=’http://www.w3.org/2001/04/xmlenc#’>

 <EncryptionMethod

 Algorithm=’http://www.w3.org/2001/04/xmlenc#rsa-1_5’/>

 <KeyInfo xmlns=’http://www.w3.org/2000/09/xmldsig#’>

 <KeyName>Sally Doe</KeyName>

 </KeyInfo>

 <CipherData>

 <CipherValue>yMTEyOTA1M...</CipherValue>

 </CipherData>

 </EncryptedKey>

 </KeyInfo>

 <CipherData>

 <CipherValue>ydUNqHkMrD...</CipherValue>

 </CipherData>

 </EncryptedData>

</PaymentInfo>

XML Encryption in the WSS-Core

WSS-Core specification is under development by Organization for the Advancement of Structured

Information Standards (OASIS). The specification describes enhancements to SOAP messaging to provide

quality of protection through message integrity, message confidentiality, and single message

authentication. The message confidentiality is realized by encryption based on XML Encryption.

The WSS-Core specification supports encryption of any combination of body blocks, header blocks, their

sub-structures, and attachments of a SOAP message. The specification also requires that when you

encrypt parts of a SOAP message, you mprepend a reference from the security header block to the

encrypted parts of the message. The reference can be a clue for a recipient to identify which encrypted

parts of the message to decrypt.

The XML syntax of the reference varies according to what information is encrypted and how it is

encrypted. For example, suppose that the CreditCard element in example 4 is encrypted with either a

common secret key or the public key of the recipient.

Example 4: Sample SOAP message

<SOAP-ENV:Envelope

 SOAP-ENV:encodingStyle=’http://schemas.xmlsoap.org/soap/encoding/’

 xmlns:SOAP-ENV=’http://schemas.xmlsoap.org/soap/envelope/’>

 <SOAP-ENV:Body>

 <PaymentInfo xmlns=’http://example.org/paymentv2’>

 <Name>John Smith</Name>

 <CreditCard Limit=’5,000’ Currency=’USD’>

 <Number>4019 2445 0277 5567</Number>

 <Issuer>Example Bank</Issuer>

 <Expiration>04/02</Expiration>

 </CreditCard>

 </PaymentInfo>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

The resulting SOAP messages are shown in Examples 5 and 6. In these example, the ReferenceList and

EncryptedKey elements are used as references, respectively.

Example 5: SOAP message encrypted with a common secret key

<SOAP-ENV:Envelope

 SOAP-ENV:encodingStyle=’http://schemas.xmlsoap.org/soap/encoding/’

 xmlns:SOAP-ENV=’http://schemas.xmlsoap.org/soap/envelope/’>

 <SOAP-ENV:Header>

 <Security SOAP-ENV:mustUnderstand=’1’

 xmlns=’http://schemas.xmlsoap.org/ws/2003/06/secext’>

 <ReferenceList xmlns=’http://www.w3.org/2001/04/xmlenc#’>

 <DataReference URI=’#ed1’/>

Chapter 14. Web services 1311

</ReferenceList>

 </Security>

 </SOAP-ENV:Header>

 <SOAP-ENV:Body>

 <PaymentInfo xmlns=’http://example.org/paymentv2’>

 <Name>John Smith</Name>

 <EncryptedData Id=’ed1’

 Type=’http://www.w3.org/2001/04/xmlenc#Element’

 xmlns=’http://www.w3.org/2001/04/xmlenc#’>

 <EncryptionMethod

 Algorithm=’http://www.w3.org/2001/04/xmlenc#tripledes-cbc’/>

 <KeyInfo xmlns=’http://www.w3.org/2000/09/xmldsig#’>

 <KeyName>John Smith</KeyName>

 </KeyInfo>

 <CipherData>

 <CipherValue>ydUNqHkMrD...</CipherValue>

 </CipherData>

 </EncryptedData>

 </PaymentInfo>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Example 6: SOAP message encrypted with the public key of the recipient

<SOAP-ENV:Envelope

 SOAP-ENV:encodingStyle=’http://schemas.xmlsoap.org/soap/encoding/’

 xmlns:SOAP-ENV=’http://schemas.xmlsoap.org/soap/envelope/’>

 <SOAP-ENV:Header>

 <Security SOAP-ENV:mustUnderstand=’1’

 xmlns=’http://schemas.xmlsoap.org/ws/2003/06/secext’>

 <EncryptedKey xmlns=’http://www.w3.org/2001/04/xmlenc#’>

 <EncryptionMethod

 Algorithm=’http://www.w3.org/2001/04/xmlenc#rsa-1_5’/>

 <KeyInfo xmlns=’http://www.w3.org/2000/09/xmldsig#’>

 <KeyName>Sally Doe</KeyName>

 </KeyInfo>

 <CipherData>

 <CipherValue>yMTEyOTA1M...</CipherValue>

 </CipherData>

 <ReferenceList>

 <DataReference URI=’#ed1’/>

 </ReferenceList>

 </EncryptedKey>

 </Security>

 </SOAP-ENV:Header>

 <SOAP-ENV:Body>

 <PaymentInfo xmlns=’http://example.org/paymentv2’>

 <Name>John Smith</Name>

 <EncryptedData Id=’ed1’

 Type=’http://www.w3.org/2001/04/xmlenc#Element’

 xmlns=’http://www.w3.org/2001/04/xmlenc#’>

 <EncryptionMethod

 Algorithm=’http://www.w3.org/2001/04/xmlenc#tripledes-cbc’/>

 <CipherData>

 <CipherValue>ydUNqHkMrD...</CipherValue>

 </CipherData>

 </EncryptedData>

 </PaymentInfo>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Relationship to digital signature

The WSS-Core specification also provides message integrity, which is realized by a digital signature based

on the XML-Signature specification.

1312 Securing applications and their environment

A combination of encryption and digital signature over common data introduces cryptographic

vulnerabilities.

Important: There is an important distinction between Version 5.x and Version 6 and later applications.

The information in this article supports Version 5.x applications only that are used with

WebSphere Application Server Version 6.0.x and later. The information does not apply to

Version 6 and later applications.

Securing Web services for Version 5.x applications using XML

encryption

XML encryption is one method that WebSphere Application Server provides to secure your Web services.

It enables you to encrypt an XML element, the content of an XML element, or arbitrary data such as an

XML document.

Important: There is an important distinction between Version 5.x and Version 6 and later applications.

The information in this article supports Version 5.x applications only that are used with

WebSphere Application Server Version 6.0.x and later. The information does not apply to

Version 6.0.x and later applications.

WebSphere Application Server provides several different methods to secure your Web services. XML

encryption is one of these methods. You can secure your Web services using any of the following

methods:

v XML digital signature

v XML encryption

v Basicauth authentication

v Identity assertion authentication

v Signature authentication

v Pluggable token

XML encryption enables you to encrypt an XML element, the content of an XML element, or arbitrary data

such as an XML document. Like XML digital signature, a message is sent by the client as the request

sender to the server as the request receiver. The response is sent by the server as the response sender

to the client as the request receiver. Unlike XML digital signature, which verifies the authenticity of the

sender, XML encryption scrambles the message content using a key, which can be unscrambled by a

receiver that possesses the same key. You can use XML encryption in conjunction with XML digital

signature to scramble the content while verifying the authenticity of the message sender.

To use XML encryption to secure Web services, you must use an assembly tool. For more information, see

Assembly tools

To securing Web services for Version 5.x applications using XML encryption, complete the following steps:

1. Specify the encryption settings for the request sender. The message parts and the encryption method

settings chosen for the request sender on the client must match the message parts and the method

settings chosen for the request receiver on the server. To specify the encryption settings for the

request sender:

a. “Configuring the client for request encryption: Encrypting the message parts” on page 1318.

b. “Configuring the client for request encryption: choosing the encryption method” on page 1318.

2. Specify the encryption settings for the request receiver. The decryption settings chosen for the request

receiver must match the encryption settings chosen for the request sender.

To specify the decryption settings for the request receiver:

a. “Configuring the server for request decryption: decrypting the message parts” on page 1322.

b. “Configuring the server for request decryption: choosing the decryption method” on page 1323.

Chapter 14. Web services 1313

3. Specify the encryption settings for the response sender. The message parts and the encryption method

settings chosen for the response sender on the server must match the message parts and the method

settings chosen for the response receiver on the client. To specify the encryption settings for the

response sender:

a. “Configuring the server for response encryption: encrypting the message parts” on page 1325.

b. “Configuring the server for response encryption: choosing the encryption method” on page 1326.

4. Specify the encryption settings for the response receiver.

Remember: The decryption settings chosen for the response receiver must match the encryption

settings chosen for the response sender.

To specify the decryption settings for the response receiver, complete the following steps:

a. “Configuring the client for response decryption: decrypting the message parts” on page 1329.

b. “Configuring the client for response decryption: choosing a decryption method” on page 1330.

After completing these steps, you have secured your Web services using XML encryption.

Login bindings configuration settings

Use this page to configure the encryption and decryption parameters.

Important: There is an important distinction between Version 5.x and Version 6 and later applications.

The information in this article supports Version 5.x applications only that are used with

WebSphere Application Server Version 6.0.x and later. The information does not apply to

Version 6.0.x and later applications.

The pluggable token uses the Java Authentication and Authorization Service (JAAS) CallBackHandler

(javax.security.auth.callback.CallBackHandler) interface to generate the token that is inserted into the

message. The following list describes the CallBack support implementations:

com.ibm.wsspi.wssecurity.auth.callback.BinaryTokenCallback

This implementation is used for generating binary tokens inserted as <wsse:BinarySecurityToken/
@ValueType> in the message.

javax.security.auth.callback.NameCallback and javax.security.auth.callback.PasswordCallback

This implementation is used for generating user name tokens inserted as <wsse:UsernameToken> in

the message.

com.ibm.wsspi.wssecurity.auth.callback.XMLTokenSenderCallback

This implementation is used to generate Extensible Markup Language (XML) tokens and is

inserted as the <SAML: Assertion> element in the message.

com.ibm.wsspi.wssecurity.auth.callback.PropertyCallback

This implementation is used to obtain properties that are specified in the binding file.

To view this administrative console page, complete the following steps:

1. Click Applications > Enterprise Applications > application_name.

2. Under Related Items, click Manage modules > URI_file_name > Web Services: Client security

bindings.

3. Under Request Sender Bindings, click Edit.

4. Under Additional properties, click Login binding.

If the encryption information is not available, select None.

If the encryption information is available, select Dedicated login binding and specify the configuration in

the following fields:

Authentication method:

Specifies the unique name for the authentication method.

1314 Securing applications and their environment

You can uses any string to name the authentication method. However, the string must match the element

in the server-level configuration. The following words are reserved by WebSphere Application Server:

BasicAuth

This method uses both a user name and a password.

IDAssertion

This method uses a user name, but it requires that additional trust is established by the receiving

server using a trusted ID evaluator mechanism.

Signature

This method uses the distinguished name (DN) of the signer.

LTPA This method validates the token.

Callback handler:

Specifies the name of the callback handler. The callback handler must implement the

javax.security.auth.callback.CallbackHandler interface.

Basic authentication user ID:

Specifies the user name for basic authentication. With the basic authentication method, you can define a

user name and a password in the binding file.

Basic authentication password:

Specifies the password for basic authentication.

Token type URI:

Specifies the namespace Uniform Resource Identifiers (URI), which denotes the type of security token that

is accepted.

 The value of this field if is impacted by the following conditions:

v If binary security tokens are accepted, the value denotes the ValueType attribute in the element. The

ValueType element identifies the type of security token and its namespace.

v If Extensible Markup Language (XML) tokens are accepted, the value denotes the top-level element

name of the XML token.

v The Token type URI field is ignored if the reserved words, which are listed in the description of the

Authentication method field, are specified.

This information is inserted as <wsse:BinarySecurityToken>/ValueType for the <SAML: Assertion> XML

token.

Token type local name:

Specifies the local name of the security token type. For example, X509v3.

 The value of this field if is impacted by the following conditions:

v If binary security tokens are accepted, the value denotes the ValueType attribute in the element. The

ValueType element identifies the type of security token and its namespace.

v If Extensible Markup Language (XML) tokens are accepted, the value denotes the top-level element

name of the XML token.

v The Token type URI field is ignored if the reserved words, which are listed in the description of the

Authentication method field, are specified.

Chapter 14. Web services 1315

This information is inserted as <wsse:BinarySecurityToken>/ValueType for the <SAML: Assertion> XML

token.

Request sender

The security handler on the request sender side of the SOAP message enforces the security constraints,

located in the ibm-webservicesclient-ext.xmi file, and bindings, located in the ibm-webservicesclient-
bnd.xmi file. These constraints and bindings apply both to Java 2 Platform, Enterprise Edition (J2EE)

application clients or when Web services is acting as a client. The security handler acts on the security

constraints before sending the SOAP message. For example, the security handler might digitally sign the

message, encrypt the message, create a time stamp, or insert a security token.

The security handler on the request sender side of the SOAP message enforces the security constraints,

located in the ibm-webservicesclient-ext.xmi file, and the bindings, located in the ibm-
webservicesclient-bnd.xmi file. These constraints and bindings apply both to J2EE application clients or

when Web services is acting as a client. The security handler acts on the security constraints before

sending the SOAP message. Request sender security constraints must match the security constraint

requirements defined in the request receiver. For example, the security handler might digitally sign the

message, encrypt the message, create a time stamp, or insert a security token. You can specify the

following security requirements for the request sender and apply them to the SOAP message:

Integrity (digital signature)

You can select multiple parts of a message to sign digitally. The following list contains the integrity

options:

v Body

v Time stamp

v Security token

Confidentiality (encryption)

You can select multiple parts of a message to encrypt. The following list contains the confidentiality

options:

v Body content

v Username token

Security token

You can insert only one token into the message. The following list contains the security token

options:

v Basic authentication, which requires both a user name and a password

v Identity assertion, which requires a user name only

v X.509 binary security token

v Lightweight Third Party Authentication (LTPA) binary security token

v Custom token , which is pluggable and supports custom-defined tokens in the SOAP message

Timestamp

You can have a time stamp to indicate the timeliness of the message.

v Timestamp

Important: There is an important distinction between Version 5.x and Version 6 and later applications.

The information in this article supports Version 5.x applications only that are used with

WebSphere Application Server Version 6.0.x and later. The information does not apply to

Version 6 and later applications.

Request sender binding collection:

Use this page to specify the binding configuration to send request messages for Web services security.

1316 Securing applications and their environment

Important: There is an important distinction between Version 5.x and Version 6 and later applications.

The information in this article supports Version 5.x applications only that are used with

WebSphere Application Server Version 6.0.x and later. The information does not apply to

Version 6.0.x and later applications.

To view this administrative console page, complete the following steps:

1. Click Applications > Enterprise applications > application_name.

2. Click Manage modules > URI_file_name

3. Under Web Services Security Properties, click Web services: Client security bindings.

4. Under Request sender binding, click Edit.

Web services security namespace: Specifies the namespace that is used by Web services security to

send a request. However, this field configures the namespace value only and does not enforce the

semantics of the specification related to the namespace. Web services security uses the processing

semantic only in draft 13 of the OASIS specification. The following schemas are available:

v http://schemas.xmlsoap.org/ws/2003/06/secext

v http://schemas.xmlsoap.org/ws/2002/07/secext

v http://schemas.xmlsoap.org/ws/2002/04/secext

v None

The namespace used by the response sender is based on the namespace of the incoming message in the

request receiver.

Signing information:

Specifies the configuration for the signing parameters. Signing information is used to sign and validate

parts of the message including the body and time stamp.

 You can also use these parameters for X.509 validation when the Authentication method is IDAssertion

and the ID Type is X509Certificate, in the server-level configuration. In such cases, you must fill in the

Certificate Path fields only.

Encryption information:

Specifies the configuration for the encrypting and decrypting parameters. Encryption information is used for

encrypting and decrypting various parts of a message, including the body and user name token.

Key locators:

Specifies a list of key locator objects that retrieve the keys for digital signature and encryption from a

keystore file or a repository. The key locator maps a name or a logical name to an alias or maps an

authenticated identity to a key. This logical name is used to locate a key in a key locator implementation.

Login mappings:

Specifies a list of configurations for validating tokens within incoming messages.

 Login mappings map the authentication method to the Java Authentication and Authorization Service

(JAAS) configuration.

To configure JAAS, complete the following steps:

1. Click Security > Secure administration, applications, and infrastructure.

2. Under the Java Authentication and Authorization Service field, select Application logins or System

logins.

Chapter 14. Web services 1317

Configuring the client for request encryption: Encrypting the message parts

To configure the client for request encryption, specify which message parts to encrypt when configuring the

client.

Important: There is an important distinction between Version 5.x and Version 6 and later applications.

The information in this article supports Version 5.x applications only that are used with

WebSphere Application Server Version 6.0.x and later. The information does not apply to

Version 6.0.x and later applications.

Prior to completing these steps, read either of the following topics to familiarize yourself with the WS

Extensions tab and the WS Binding tab in the Client Deployment Descriptor Editor within an assembly

tool:

v “Configuring the client security bindings using an assembly tool” on page 1302

v “Configuring the security bindings on a server acting as a client using the administrative console” on

page 1305

These two tabs are used to configure the Web services security extensions and Web services security

bindings, respectively.

Complete the following steps to specify which message parts to encrypt when configuring the client for

request encryption:

1. Launch an assembly tool. For more information on the assembly tools, see Assembly tools.

2. Switch to the Java 2 Platform, Enterprise Edition (J2EE) perspective. Click Window > Open

Perspective > J2EE.

3. Click Application Client Projects > application_name > appClientModule > META-INF.

4. Right-click the application-client.xml file, select Open with > Deployment descriptor editor.

5. Click the WS extensions tab, which is located at the bottom of Client Deployment Descriptor Editor

within the assembly tool.

6. Expand Request sender configuration > Confidentiality. Confidentiality refers to encryption while

integrity refers to digital signing. Confidentiality reduces the risk of someone understanding the

message flowing across the Internet. With confidentiality specifications, the message is encrypted

before it is sent and decrypted when it is received at the correct target. For more information on

encrypting , see XML encryption.

7. Select the parts of the message that you want to encrypt by clicking Add. You can select one of the

following parts:

Bodycontent

User data portion of the message

Usernametoken

Basic authentication information, if selected

After you specify which message parts to encrypt, you must specify which method to use to encrypt the

request message. See “Configuring the client for request encryption: choosing the encryption method” for

more information.

Configuring the client for request encryption: choosing the encryption method

To configure the client for request encryption, specify which encryption method to use when configuring the

client.

Important: There is an important distinction between Version 5.x and Version 6 and later applications.

The information in this article supports Version 5.x applications only that are used with

WebSphere Application Server Version 6.0.x and later. The information does not apply to

Version 6.0.x and later applications.

1318 Securing applications and their environment

Prior to completing these steps, read either of the following topics to familiarize yourself with the WS

Extensions tab and the WS Binding tab in the Client Deployment Descriptor editor within an assembly

tool:

v “Configuring the client security bindings using an assembly tool” on page 1302

v “Configuring the security bindings on a server acting as a client using the administrative console” on

page 1305

These two tabs are used to configure the Web services security extensions and Web services security

bindings, respectively.

Complete the following steps to specify which encryption method to use when configuring the client for

request encryption:

1. Launch an assembly tool. For more information on the assembly tools, see Assembly tools.

2. Switch to the Java 2 Platform, Enterprise Edition (J2EE) perspective. Click Window > Open

Perspective > J2EE.

3. Click Application Client Projects > application_name > appClientModule > META-INF.

4. Right-click the application-client.xml file, select Open with > Deployment descriptor editor.

5. Click the WS binding tab, which is located at the bottom of the Client Deployment Descriptor editor

within the assembly tool.

6. Expand Security request sender binding configuration > Encryption information.

7. Select an encryption option and click Edit to view the encryption information or click Add to add

another option. The following table describes the purpose of this information. Some of these definitions

are based on the XML-Encryption specification, which is located at the following Web address:

http://www.w3.org/TR/xmlenc-core

Encryption name

Refers to the name of the encryption information entry.

Data encryption method algorithm

Encrypts and decrypts data in fixed size, multiple octet blocks.

Key encryption method algorithm

Represents public key encryption algorithms that are specified for encrypting and decrypting

keys.

Encryption key name

Represents a Subject (Owner field of the certificate) from a public key certificate found by the

encryption key locator, which is used by the key encryption method algorithm to encrypt the

private key. The private key is used to encrypt the data.

 The key chosen must be a public key of the target. Encryption must be done using the public

key and decryption must be done by the target using the private key (the personal certificate of

the target).

Encryption key locator

Represents a reference to a key locator implementation class that locates the correct key store

where the alias and the certificate exist. For more information on configuring key locators, see

“Configuring key locators using an assembly tool” on page 1275 and “Configuring key locators

using the administrative console” on page 1276.

8. Optional: Select Show only FIPS Compliant Algorithms if you only want the FIPS compliant

algorithms to be shown in the Data Encryption method algorithm and Key Encryption method

algorithm drop-down lists. Use this option if you expect this application to be run on a WebSphere

Application Server that has set the Use the United States Federal Information Processing

Standard (FIPS) algorithms option in the SSL certificate and key management panel of the

WebSphere administrative console.

Chapter 14. Web services 1319

http://www.w3.org/TR/xmlenc-core

For more information, see “Configuring key locators using an assembly tool” on page 1275 and

“Configuring key locators using the administrative console” on page 1276.

You must specify which parts of the request message to encrypt. See “Configuring the client for request

encryption: Encrypting the message parts” on page 1318 if you have not previously specified this

information.

Request receiver

The request receiver defines the security requirement of the SOAP message. The security handler on the

request receiver side of the SOAP message enforces the security specifications that are defined in the

IBM extension deployment descriptor (ibm-webservices-ext.xmi) and bindings (ibm-webservices-bnd.xmi).

Important: There is an important distinction between Version 5.x and Version 6 and later applications.

The information in this article supports Version 5.x applications only that are used with

WebSphere Application Server Version 6.0.x and later. The information does not apply to

Version 6 and later applications.

The security constraint for request sender must match the security requirement of the request receiver for

the server to accept the request. If the incoming SOAP message does not meet all the security

requirements defined, then the request is rejected with the appropriate fault code returned to the sender.

For security tokens, the token is validated using Java Authentication and Authorization Service (JAAS)

login configuration and authenticated identity is set as the identity for the downstream invocation.

For example, if there is a security requirement to have the SOAP body digitally signed by Joe Smith and if

the SOAP body of the incoming SOAP message is not signed by Joe Smith, then the request is rejected.

You can define the following security requirements for the request receiver:

Required integrity (digital signature)

You can select multiple parts of a message to sign digitally. The following list contains the integrity

options:

v Body

v Time stamp

v Security token

Required confidentiality (encryption)

You can select multiple parts of a message to encrypt. The following list contains the confidentiality

options:

v Body content

v Token

You can have multiple security tokens. The following list contains the security token options:

v Basic authentication, which requires both a user name and a password

v Identity assertion, which requires a user name only

v X.509 binary security token

v Lightweight Third Party Authentication (LTPA) binary security token

v Custom token, which is pluggable and supports custom-defined tokens validated by the JAAS

login configuration

Received time stamp

You can have a time stamp for checking the timeliness of the message.

v Time stamp

Request receiver binding collection:

1320 Securing applications and their environment

Use this page to specify the binding configuration to receive request messages for Web services security.

Important: There is an important distinction between Version 5.x and Version 6 and later applications.

The information in this article supports Version 5.x applications only that are used with

WebSphere Application Server Version 6.0.x and later. The information does not apply to

Version 6.0.x and later applications.

To view this administrative console page, complete the following steps:

1. Click Applications > Enterprise applications > application_name.

2. Click Manage modules > URI_file_name

3. Under Web Services Security Properties, click Web services: Server security bindings.

4. Under Request receiver binding, click Edit.

Signing information:

Specifies the configuration for the signing parameters. Signing information is used to sign and validate

parts of a message including the body, the timestamp, and the user name token.

 You also can use these parameters for X.509 certificate validation when the authentication method is

IDAssertion and the ID Type is X509Certificate in the server-level configuration. In such cases, you must

fill in the Certificate Path fields only.

Encryption information:

Specifies the configuration for the encrypting and decrypting parameters. This configuration is used to

encrypt and decrypt parts of the message that include the body and the user name token.

Trust anchors:

Specifies a list of keystore objects that contain the trusted root certificates that are issued by a certificate

authority (CA).

 The certificate authority authenticates a user and issues a certificate. The CertPath API uses the certificate

to validate the certificate chain of incoming, X.509-formatted security tokens or trusted, self-signed

certificates.

Collection certificate store:

Specifies a list of the untrusted, intermediate certificate files.

 The collection certificate store contains a chain of untrusted, intermediate certificates.The CertPath API

attempts to validate these certificates, which are based on the trust anchor.

Key locators:

Specifies a list of key locator objects that retrieve the keys for digital signature and encryption from a

keystore file or a repository. The key locator maps a name or a logical name to an alias or maps an

authenticated identity to a key. This logical name is used to locate a key in a key locator implementation.

Trusted ID evaluators:

Specifies a list of trusted ID evaluators that determine whether to trust the identity-asserting authority or

message sender.

Chapter 14. Web services 1321

The trusted ID evaluators are used to authenticate additional identities from one server to another server.

For example, a client sends the identity of user A to server 1 for authentication. Server 1 calls downstream

to server 2, asserts the identity of user A, and includes the user name and password of server 1. Server 2

attempts to establish trust with server 1 by authenticating its user name and password and checking the

trust based on the TrustedIDEvaluator implementation. If the authentication process and the trust check

are successful, server 2 trusts that server 1 authenticated user A and a credential is created for user A on

server 2 to invoke the request.

Login mappings:

Specifies a list of configurations for validating tokens within incoming messages.

 Login mappings map the authentication method to the Java Authentication and Authorization Service

(JAAS) configuration.

To configure JAAS, complete the following steps:

1. Click Security > Secure administration, applications, and infrastructure.

2. Under the Java Authentication and Authorization Service field, select Application logins or System

logins.

Configuring the server for request decryption: decrypting the message parts

Use the WS Extensions tab and the WS Binding configurations tab to specify which parts of the request

message must be decrypted by the server.

Important: There is an important distinction between Version 5.x and Version 6 and later applications.

The information in this article supports Version 5.x applications only that are used with

WebSphere Application Server Version 6.0.x and later. The information does not apply to

Version 6.0.x and later applications.

Complete this task to specify which parts of the request message must be decrypted by the server. You

must know which parts of the request message the client encrypts because the server must decrypt the

same message parts.

Prior to completing these steps, read either of the following topics to become familiar with the WS

Extensions tab and the WS Binding configurations tab:

v “Configuring the server security bindings using an assembly tool” on page 1306

v “Configuring the server security bindings using the administrative console” on page 1309

These two tabs are used to configure the Web services security extensions and Web services security

bindings, respectively.

Complete the following steps to configure the request receiver extensions:

1. Launch an assembly tool. For more information on the assembly tools, see Assembly tools.

2. Switch to the Java 2 Platform, Enterprise Edition (J2EE) perspective. Click Window > Open

Perspective > J2EE.

3. Click EJB Projects > application_name > ejbModule > META_INF.

4. Right-click the webservices.xml file, and click Open with > Web services editor.

5. Click the Extensions tab, which is located at the bottom of the Web services editor within the assembly

tool.

6. Expand the Request receiver service configuration details > Required confidentiality section.

7. Select the parts of the message to decrypt. The message parts selected for the request decryption on

the server must match the message parts selected for the message encryption on the client. Click Add

and select either of the following message parts:

1322 Securing applications and their environment

bodycontent

The user data section of the message.

usernametoken

This token is the basic authentication information.

After you specify which parts of the request message to decrypt, you must specify the method to use

decrypt the message. See “Configuring the server for request decryption: choosing the decryption method”

for more information.

Configuring the server for request decryption: choosing the decryption method

Use the WS Extensions tab and the WS Bindings tab to configure the Web services security extensions

and Web services security bindings.

Important: There is an important distinction between Version 5.x and Version 6 and later applications.

The information in this article supports Version 5.x applications only that are used with

WebSphere Application Server Version 6.0.x and later. The information does not apply to

Version 6.0.x and later applications.

Prior to completing these steps, read either of the following topics to become familiar with the WS

Extensions tab and the WS Bindings tab:

v “Configuring the server security bindings using an assembly tool” on page 1306

v “Configuring the server security bindings using the administrative console” on page 1309

These two tabs are used to configure the Web services security extensions and Web services security

bindings, respectively.

Complete this task to specify which decryption method is used by the server to decrypt the request

message. You must know which decryption method the client uses because the server must use the same

method.

1. Launch an assembly tool. For more information on the assembly tools, see Assembly tools.

2. Switch to the Java 2 Platform, Enterprise Edition (J2EE) perspective. Click Window > Open

Perspective > J2EE.

3. Click EJB Projects > application_name > ejbModule > META_INF.

4. Right-click the webservices.xml file, select Open with > Web services editor.

5. Click the Binding Configurations tab, which is located at the bottom of the Web services editor within

the assembly tool.

6. Expand the Request receiver binding configuration details > Encryption information section.

7. Click Edit to view the encryption information. The following table describes the purpose for each of

these selections. Some definitions are taken from the XML-Encryption specification , which is located

at the following Web address: http://www.w3.org/TR/xmlenc-core

Encryption name

Represents the name of this encryption information entry; an alias for the entry.

Data encryption method algorithm

Encrypts and decrypts data in fixed size, multiple octet blocks. This algorithm must be the

same as the algorithm selected in the client request sender configuration.

Key encryption method algorithm

Represents algorithms specified for encrypting and decrypting keys. This algorithm must be the

same as the algorithm selected in the client request sender configuration.

Encryption key name

Represents a Subject from a personal certificate, which is typically a distinguished name (DN)

Chapter 14. Web services 1323

http://www.w3.org/TR/xmlenc-core

that is found by the encryption key locator. The subject is used by the key encryption method

algorithm to decrypt the secret key, and the secret key is used to decrypt the data.

 The key chosen must be a private key in the key store configured by the key locator. The key

requires the same Subject used by the client to encrypt the data. Encryption must be done

using the public key and decryption by using the private key (personal certificate). To ensure

that the client encrypts the data with the correct public or private key, you must extract the

public key from the server key store and add it to the key store specified in the encryption

configuration information for the client request sender.

 For example, the personal certificate of a server is CN=Bob, O=IBM, C=US. Therefore the server

contains the public and private key pair. The client sending the request should encrypt the data

using the public key for CN=Bob, O=IBM, C=US. The server decrypts the data using the private

key for CN=Bob, O=IBM, C=US.

Encryption key locator

Represents a reference to a key locator implementation class that finds the correct keystore

where the alias and the certificate exist. For more information on configuring key locators, go

to the following sections: “Configuring key locators using an assembly tool” on page 1275 and

“Configuring key locators using the administrative console” on page 1276.

8. Optional: Select Show only FIPS Compliant Algorithms if you only want the FIPS compliant

algorithms to be shown in the Data Encryption method algorithm and Key Encryption method algorithm

drop-down lists. Use this option if you expect this application to be run on a WebSphere Application

Server that has set the Use the United States Federal Information Processing Standard (FIPS)

algorithms option in the SSL certificate and key management panel of the administrative console for

WebSphere Application Server.

It is important to note that for decryption, the encryption key name chosen must refer to a personal

certificate that can be located by the key locator of the server referenced in the encryption information.

Enter the Subject of the personal certificate here, which is typically a Distinguished Name (DN). The

Subject uses the default key locator to find the key. If a custom key locator is written, the encryption key

name can be anything used by the key locator to find the correct encryption key. The encryption key

locator references the implementation class that finds the correct key store where this alias and certificate

exist. Refer to “Configuring key locators using an assembly tool” on page 1275 and “Configuring key

locators using the administrative console” on page 1276 for more information.

You must specify which parts of the request message to decrypt. See “Configuring the server for request

decryption: decrypting the message parts” on page 1322 if you have not previously specified this

information.

Response sender

The response sender defines the security requirements of the SOAP response message. The security

handler acts on the security constraints that are defined for the response in the IBM extension deployment

descriptors.

Important: There is an important distinction between Version 5.x and Version 6 and later applications.

The information in this article supports Version 5.x applications only that are used with

WebSphere Application Server Version 6.0.x and later. The information does not apply to

Version 6 and later applications.

The IBM extension deployment descriptors are located in the ibm-webservices-ext.xmi file and the

bindings, located in the ibm-webservices-bnd.xmi file. The security handler signs, encrypts, or generates

the time stamp for the SOAP response message before the response is send to the caller.

Integrity constraints (digital signature)

You can select which parts of the message are digitally signed.

v Body

1324 Securing applications and their environment

v Time stamp

Confidentiality (encryption)

You can encrypt the body content of the message.

Time stamp

You can have a time stamp for checking the timeliness of the message.

The security constraints that apply to the SOAP response message must match the security requirements

defined in the response receiver. Otherwise, the response is rejected by the response receiver (caller).

Response sender binding collection:

Use this page to specify the binding configuration for sender response messages for Web services

security.

Important: There is an important distinction between Version 5.x and Version 6 and later applications.

The information in this article supports Version 5.x applications only that are used with

WebSphere Application Server Version 6.0.x and later. The information does not apply to

Version 6.0.x and later applications.

To view this administrative console page, complete the following steps:

1. Click Applications > Enterprise applications > application_name.

2. Click Manage modules > URI_file_name

3. Under Web Services Security Properties, click Web services: Server security bindings.

4. Under Response sender binding, click Edit.

Signing information:

Specifies the configuration for the signing parameters.

 You also can use these parameters for X.509 certificate validation when the authentication method is

IDAssertion and the ID Type is X509Certificate in the server-level configuration. In such cases, you must

fill-in the Certificate Path fields only.

Encryption information:

Specifies the configuration for the encryption and decryption parameters.

Key locators:

Specifies a list of key locator objects that retrieve the keys for a digital signature and encryption from a

keystore file or a repository. The key locator maps a name or logical name to an alias or maps an

authenticated identity to a key. This logical name is used to locate a key in a key locator implementation.

Configuring the server for response encryption: encrypting the message parts

Important: There is an important distinction between Version 5.x and Version 6 and later applications.

The information in this article supports Version 5.x applications only that are used with

WebSphere Application Server Version 6.0.x and later. The information does not apply to

Version 6.0.x and later applications.

Prior to completing these steps, read either of the following topics to become familiar with the WS

Extensions tab and the WS Bindings tab in the Web services editor within an assembly tool:

v “Configuring the server security bindings using an assembly tool” on page 1306

v “Configuring the server security bindings using the administrative console” on page 1309

Chapter 14. Web services 1325

These two tabs are used to configure the Web services security extensions and the Web services security

bindings, respectively.

Complete the following steps to specify which parts of the response message to encrypt when configuring

the server for response encryption:

1. Launch an assembly tool. For more information on the assembly tools, see Assembly tools.

2. Switch to the Java 2 Platform, Enterprise Edition (J2EE) perspective. Click Window > Open

Perspective > J2EE.

3. Click EJB Projects > application_name ejbModule > META_INF.

4. Right-click the webservices.xml file, select Open with > Web services editor.

5. Click the Extensions tab, which is located at the bottom of the Web Services Editor within the

assembly tool.

6. Expand Response sender service configuration details > Confidentiality. Confidentiality refers to

encryption while integrity refers to digital signing. Confidentiality reduces the risk of someone

understanding the message flowing across the Internet. With confidentiality specifications, the

response is encrypted before it is sent and decrypted when it is received at the correct target. For

more information on encrypting, see “XML encryption” on page 1310.

7. Select the parts of the response that you want to encrypt by clicking Add and selecting Bodytoken or

Usernametoken. The following information describes the message parts:

Bodycontent

User data portion of the message.

Usernametoken

Basic authentication information, if selected.

 A user name token does not appear in the response so you do not need to select this option

for the response. If you select this option, make sure that you also select it for the client

response receiver. If you do not select this option, make sure that you do not select it for the

client response receiver.

After you specify which message parts to encrypt, you must specify which method to use message

encryption. See “Configuring the server for response encryption: choosing the encryption method” for more

information.

Configuring the server for response encryption: choosing the encryption method

Important: There is an important distinction between Version 5.x and Version 6 and later applications.

The information in this article supports Version 5.x applications only that are used with

WebSphere Application Server Version 6.0.x and later. The information does not apply to

Version 6.0.x and later applications.

Prior to completing these steps, read either of the following topics to become familiar with the Extensions

tab and the Binding configurations tab in the Web services editor within an assembly tool:

v “Configuring the server security bindings using an assembly tool” on page 1306

v “Configuring the server security bindings using the administrative console” on page 1309

These two tabs are used to configure the Web services security extensions and Web services security

bindings, respectively.

Complete the following steps to specify which method the server uses to encrypt the response message:

1. Launch an assembly tool. For more information on the assembly tools, see Assembly tools.

2. Switch to the Java 2 Platform, Enterprise Edition (J2EE) perspective. Click Window > Open

Perspective > J2EE.

3. Click EJB Projects > application_name > ejbModule > META_INF.

1326 Securing applications and their environment

4. Right-click the webservices.xml file, and click Open with > Web services editor.

5. Click the Binding Configurations tab, which is located at the bottom of the Web Services Editor within

the assembly tool.

6. Expand Response sender binding configuration details > Encryption information.

7. Click Edit to view the encryption information. The following table describes the purpose of this

information. Some of these definitions are based on the XML-Encryption specification, which is located

at the following Web address: http://www.w3.org/TR/xmlenc-core

Encryption name

Refers to the name of the encryption information entry.

Data encryption method algorithm

Encrypts and decrypts data in fixed size, multiple octet blocks. The algorithm selected for the

server response sender configuration must match the algorithm selected in the client response

receiver configuration.

Key encryption method algorithm

Represents public key encryption algorithms that are specified for encrypting and decrypting

keys. The algorithm selected for the server response sender configuration must match the

algorithm selected in the client response receiver configuration.

Encryption key name

Represents a Subject from a public key certificate typically distinguished name (DN) that is

found by the encryption key locator and used by the key encryption method algorithm to

encrypt the private key. The private key is used to encrypt the data.

 The key name chosen in the server response sender encryption information must be the public

key of the key configured in the client response receiver encryption information. Encryption by

the response sender must be done using the public key and decryption must be done by the

response receiver using the associated private key (the personal certificate of the response

receiver).

Encryption key locator

The encryption key locator represents a reference to a key locator implementation class that

finds the correct key store where the alias and the certificate exist. For more information on

configuring key locators, see “Configuring key locators using an assembly tool” on page 1275

and “Configuring key locators using the administrative console” on page 1276.

8. Select Show only FIPS Compliant Algorithms if you only want the FIPS compliant algorithms to be

shown in the Data Encryption method algorithm and Key Encryption method algorithm drop-down lists.

Use this option if you expect this application to be run on a WebSphere Application Server that has set

the Use the United States Federal Information Processing Standard (FIPS) algorithms option in

the SSL certificate and key management panel of the administrative console for WebSphere

Application Server.

The encryption key name chosen must refer to a public key of the response receiver. For the encryption

key name, use the Subject of the public key certificate, typically a Distinguished Name (DN). The name

chosen is used by the default key locator to find the key. If you write a custom key locator, the encryption

key name might be anything used by the key locator to find the correct encryption key (a public key). The

encryption key locator references the implementation class that finds the correct key store where the alias

and certificate exist. For more information, see “Configuring key locators using an assembly tool” on page

1275 and “Configuring key locators using the administrative console” on page 1276.

You must specify which parts of the response message to encrypt. See “Configuring the server for

response encryption: encrypting the message parts” on page 1325 if you have not previously specified this

information.

Chapter 14. Web services 1327

http://www.w3.org/TR/xmlenc-core

Response receiver

The response receiver defines the security requirements of the response received from a request to a

Web service. The security constraints for response sender must match the security requirements of the

response receiver. If the constraints do not match, the response is not accepted by the caller or the

sender.

Important: There is an important distinction between Version 5.x and Version 6 and later applications.

The information in this article supports Version 5.x applications only that are used with

WebSphere Application Server Version 6.0.x and later. The information does not apply to

Version 6 and later applications.

The security handler enforces the security constraints based on the security requirements defined in the

IBM extension deployment descriptor, located in the ibm-webservicesclient-ext.xmi file and in the

bindings, located in the ibm-webservicessclient-bnd.xmi file.

For example, the security requirement might have the response SOAP body encrypted. If the SOAP body

of the SOAP message is not encrypted, the response is rejected and the appropriate fault code is

communicated back to the caller of the Web services.

You can specify the following security requirements for a response receiver:

Required integrity (digital signature)

You can select which parts of a message are digitally signed. The following list contains the

integrity options:

v Body

v Time stamp

Required confidentiality (encryption)

You can encrypt the body content of the message.

Received time stamp

You can have a time stamp for checking the timeliness of the message.

Response receiver binding collection:

Use this page to specify the binding configuration for receiver response messages for Web services

security.

Important: There is an important distinction between Version 5.x and Version 6 and later applications.

The information in this article supports Version 5.x applications only that are used with

WebSphere Application Server Version 6.0.x and later. The information does not apply to

Version 6.0.x and later applications.

To view this administrative console page, complete the following steps:

1. Click Applications > Enterprise applications > application_name.

2. Click Manage modules > URI_file_name > Web Services: Client security bindings.

3. Under Response receiver binding, click Edit.

Signing information:

Specifies the configuration for the signing parameters. Signing information is used to sign and to validate

parts of the message including the body and the timestamp.

 You can also use these parameters for X.509 validation when the authentication method is IDAssertion

and the ID type is X509Certificate, in the server-level configuration. In such cases, you must fill in the

certificate path fields only.

1328 Securing applications and their environment

Encryption information:

Specifies the configuration for the encryption and decryption parameters.

 Encryption information is used for encrypting and decrypting various parts of a message, including the

body and the user name token.

Trust anchors:

Specifies a list of keystore objects that contain the trusted root certificates that are self-signed or issued by

a certificate authority.

 The certificate authority authenticates a user and issues a certificate. After the certificate is issued, the

keystore objects, which contain these certificates, use the certificate for certificate path or certificate chain

validation of incoming X.509-formatted security tokens.

Collection certificate store:

Specifies a list of the untrusted, intermediate certificate files.

 The collection certificate store contains a chain of untrusted, intermediate certificates. The CertPath API

attempts to validate these certificates, which are based on the trust anchor.

Key locators:

Specifies a list of key locator objects that retrieve the keys for a digital signature and encryption from a

keystore file or a repository.

 The key locator maps a name or a logical name to an alias or maps an authenticated identity to a key.

This logical name is used to locate a key in a key locator implementation.

Configuring the client for response decryption: decrypting the message parts

To configure the client for response decryption, specify which response message parts to decrypt when

configuring the client. The server response encryption and client response decryption configurations must

match.

Important: There is an important distinction between Version 5.x and Version 6 and later applications.

The information in this article supports Version 5.x applications only that are used with

WebSphere Application Server Version 6.0.x and later. The information does not apply to

Version 6.0.x and later applications.

Prior to completing these steps, read either of the following topics to become familiar with the WS

Extensions tab and the WS Binding tab in the Client Deployment Descriptor Editor within an assembly

tool:

v “Configuring the client security bindings using an assembly tool” on page 1302

v “Configuring the security bindings on a server acting as a client using the administrative console” on

page 1305

These two tabs are used to configure the Web services security extensions and the Web services security

bindings, respectively.

Complete the following steps to specify which response message parts to decrypt when configuring the

client for response decryption. The server response encryption and client response decryption

configurations must match.

1. Launch an assembly tool. For more information on the assembly tools, see Assembly tools.

Chapter 14. Web services 1329

2. Switch to the Java 2 Platform, Enterprise Edition (J2EE) perspective. Click Window > Open

Perspective > J2EE.

3. Click Application Client Projects > application_name > appClientModule > META-INF.

4. Right-click the application-client.xml file, select Open with > Deployment descriptor editor.

5. Click the WS Extensions tab, which is located at the bottom of the deployment descriptor editor within

the assembly tool.

6. Expand the Response receiver configuration > Required confidentiality section.

7. Select the parts of the message that you must decrypt by clicking Add and selecting either

Bodycontent or Usernametoken. The following information describes these message parts:

Bodycontent

The user data portion of the message.

Usernametoken

The basic authentication information, if selected.

The information selected in this step is encrypted by the server in the response sender.

Important: A username token is typically not sent in the response. Thus, you usually do not need to

select username token.

After you specify which message parts to decrypt, you must specify which method to use when decrypting

the response message. See “Configuring the client for response decryption: choosing a decryption

method” for more information.

Configuring the client for response decryption: choosing a decryption method

To configure the client for response decryption, specify which decryption method to use when the client

decrypts the response message. The server response encryption and client response decryption

configurations must match.

Important: There is an important distinction between Version 5.x and Version 6 and later applications.

The information in this article supports Version 5.x applications only that are used with

WebSphere Application Server Version 6.0.x and later. The information does not apply to

Version 6.0.x and later applications.

Prior to completing these steps, read either of the following topics to become familiar with the WS

Extensions tab and the WS Bindings tab in the Client Deployment Descriptor Editor within an assembly

tool such as the Application Server Toolkit or Rational Web Developer:

v “Configuring the client security bindings using an assembly tool” on page 1302

v “Configuring the security bindings on a server acting as a client using the administrative console” on

page 1305

These two tabs are used to configure the Web services security extensions and Web services security

bindings, respectively.

Complete the following steps to specify which decryption method to use when the client decrypts the

response message. The server response encryption and client response decryption configurations must

match.

1. Launch an assembly tool. For more information on the assembly tools, see Assembly tools.

2. Switch to the Java 2 Platform, Enterprise Edition (J2EE) perspective. Click Window > Open

Perspective > J2EE.

3. Click Application Client Projects > application_name > appClientModule > META-INF.

4. Right-click the application-client.xml file, select Open with > Deployment descriptor editor.

5. Click the WS Binding tab, which is located at the bottom of the deployment descriptor editor within the

assembly tool.

1330 Securing applications and their environment

6. Expand the Security response receiver binding configuration > Encryption information section.

For more information on encrypting and decrypting SOAP messages, see “XML encryption” on page

1310.

7. Click Edit to view the encryption information. The following table describes the purpose for this

information. Some of these definitions are based on the XML-Encryption specification, which is located

at the following Web address: http://www.w3.org/TR/xmlenc-core

Encryption name

Refers to the alias that is used for the encryption information entry.

Data encryption method algorithm

Encrypts and decrypts data in fixed size, multiple octet blocks.

Key encryption method algorithm

Represents public key encryption algorithms specified for encrypting and decrypting keys.

Encryption key name

Represents a Subject from a personal certificate, which is typically a distinguished name (DN)

that is found by the encryption key locator. The Subject is used by the key encryption method

algorithm to decrypt the secret key. The secret key is used to decrypt the data.

Important: The key chosen must be a private key of the client. Encryption must be done

using the public key and decryption must be done by the private key (personal

certificate). For example, the personal certificate of the client is: CN=Alice, O=IBM,

C=US. Therefore, the client contains the public and private key pair. The target

server that sends the response encrypts the secret key by using the public key for

CN=Alice, O=IBM, C=US. The client decrypts the secret key by using the private

key for CN=Alice, O=IBM, C=US.

Encryption key locator

Represents a reference to a key locator implementation class that finds the correct key store

where the alias and the certificate exist. For more information on configuring key locators, see

“Configuring key locators using an assembly tool” on page 1275 and “Configuring key locators

using the administrative console” on page 1276.

8. Optional: Select Show only FIPS Compliant Algorithms if you only want the FIPS compliant

algorithms to be shown in the Data Encryption method algorithm and Key Encryption method algorithm

drop-down lists. Use this option if you expect this application to be run on a WebSphere Application

Server that has set the Use the United States Federal Information Processing Standard (FIPS)

algorithms option in the SSL certificate and key management panel of the administrative console for

WebSphere Application Server.

For decryption, the encryption key name chosen must refer to a personal certificate that can be located by

the client key locator. The Subject (owner field of the certificate) of the personal certificate should be

entered in the Encryption key name, this is typically a Distinguished Name (DN). The default key locator

uses the Encryption key name to find the key within the keystore. If you write a custom key locator, the

encryption key name can be anything used by the key locator to find the correct encryption key. The

encryption key locator references the implementation class that locates the correct key store where this

alias and certificate exists. For more information, see “Configuring key locators using an assembly tool” on

page 1275 and “Configuring key locators using the administrative console” on page 1276.

You must specify which parts of the request message to decrypt. See the topic“Configuring the client for

response decryption: decrypting the message parts” on page 1329 if you have not previously specified this

information.

Chapter 14. Web services 1331

http://www.w3.org/TR/xmlenc-core

Securing Web services for Version 5.x applications using basicauth

authentication

Important: There is an important distinction between Version 5.x and Version 6 and later applications.

The information in this article supports Version 5.x applications only that are used with

WebSphere Application Server Version 6.0.x and later. The information does not apply to

Version 6.0.x and later applications.

WebSphere Application Server provides several different methods to secure your Web services. XML

digital signature is one of these methods. You might also secure your Web services using any of the

following methods:

v XML digital signature

v XML encryption

v Basicauth authentication

v Identity assertion authentication

v Signature authentication

v Pluggable token

With the basicauth authentication method, the request sender generates a basicauth security token using

a callback handler. The request receiver retrieves the basicauth security token from the SOAP message

and validates it using a Java Authentication and Authorization Service (JAAS) login module. Trust is

established using user name and password validation. To use basicauth authentication to secure Web

services, complete the following tasks:

1. Secure the client for basicauth authentication.

a. Configure the client for basicauth authentication: Specifying the method

b. Configure the client for basicauth authentication: Collecting the authentication information

2. Secure the server for basicauth authentication.

a. Configure the server to handle basicauth authentication

b. Configure the server to validate basicauth authentication information

After completing these steps, you have secured your Web services using basicauth authentication.

Configuring the client for basic authentication: specifying the method

Important: There is an important distinction between Version 5.x and Version 6 and later applications.

The information in this article supports Version 5.x applications only that are used with

WebSphere Application Server Version 6.0.x and later. The information does not apply to

Version 6.0.x and later applications.

BasicAuth refers to the user ID and password of a valid user in the registry of the target server. BasicAuth

information can be collected in many ways including through an administrative console prompt, a standard

in (Stdin) prompt, or specified in the bindings, which prevents user interaction. For more information on

BasicAuth authentication, see: “BasicAuth authentication method” on page 1333.

Attention: WebSphere Application Server supports nonce (randomly generated token) with BasicAuth

authentication. For more information, see Nonce.

Complete the following steps to specify BasicAuth as the authentication method:

1. Launch an assembly tool. For more information on the assembly tools, see Assembly tools.

2. Switch to the Java 2 Platform, Enterprise Edition (J2EE) perspective. Click Window > Open

Perspective > J2EE.

3. Click Application Client Projects > application_name > appClientModule > META-INF.

1332 Securing applications and their environment

4. Right-click the application-client.xml file, select Open with > Deployment descriptor editor.

5. Click the WS Extensions tab, which is located at the bottom of the deployment descriptor editor within

the assembly tool.

6. Expand the Request sender configuration > Login configuration section. The only valid login

configuration choices for a pure client are BasicAuth and Signature.

7. Select BasicAuth to authenticate the client using a user ID and a password. This user ID and

password must be specified in the target user registry. The other choice, Signature, attempts to

authenticate the client using the certificate used to digitally sign the message.

For more information on getting started with the Web services client editor within the assembly tool, see

either of the following topics:

v “Configuring the client security bindings using an assembly tool” on page 1302

v “Configuring the security bindings on a server acting as a client using the administrative console” on

page 1305

After you specify the BasicAuth authentication method, you must specify how to collect the authentication

information. See “Configuring the client for basic authentication: collecting the authentication information”

on page 1334.

BasicAuth authentication method:

When you use the BasicAuth authentication method, the security token that is generated is a

<wsse:UsernameToken> element with <wsse:Username> and <wsse:Password> elements.

 WebSphere Application Server supports text passwords but not password digest because passwords are

not stored and cannot be retrieved from the server. On the request sender side, a callback handler is

invoked to generate the security token. On the request receiver side, a Java Authentication and

Authorization Service (JAAS) login module is used to validate the security token. These two operations,

token generation and token validation, are described in the following sections.

BasicAuth token generation

The request sender generates a BasicAuth security token using a callback handler. The security

token returned by the callback handler is inserted in the SOAP message. The callback handler

that is used is specified in the <LoginBinding> element of the bindings file, ibm-
webservicesclient-bnd.xmi . The following callback handler implementations are provided with

WebSphere Application Server and can be used with the BasicAuth authentication method:

v com.ibm.wsspi.wssecurity.auth.callback.GUIPromptCallbackHandler

v com.ibm.wsspi.wssecurity.auth.callback.StdinPromptCallbackHandler

v com.ibm.wsspi.wssecurity.auth.callback.NonPromptCallbackHandler

You can add your own callback handlers that implement the

javax.security.auth.callback.CallbackHandler method.

BasicAuth token validation

The request receiver retrieves the BasicAuth security token from the SOAP message and validates

it using a JAAS login module. The <wsse:Username> and <wsse:Password> elements in the

security token are used to perform the validation. If the validation is successful, the login module

returns a JAAS Subject. This Subject is set as the identity of the running thread. If the validation

fails, the request is rejected with a SOAP fault exception.

 The JAAS login configuration is specified in the <LoginMapping> element of the bindings file.

Default bindings are specified in the ws-security.xml file. However, you can override these

bindings using the application-specific ibm-webservices-bnd.xmi file. The configuration information

consists of a CallbackHandlerFactory and a ConfigName value. The CallbackHandlerFactory

option specifies the name of a class that is used for creating the JAAS CallbackHandler object.

WebSphere Application Server provides the

com.ibm.wsspi.wssecurity.auth.callback.WSCallbackHandlerFactoryImpl CallbackHandlerFactory

Chapter 14. Web services 1333

implementation. The ConfigName value specifies a JAAS configuration name entry. WebSphere

Application Server searches the security.xml file for a matching configuration name entry. If a

match is not found, it searches the wsjaas.conf file for a match. WebSphere Application Server

provides the WSLogin default configuration entry, which is suitable for the BasicAuth authentication

method.

Important: There is an important distinction between Version 5.x and Version 6 and later applications.

The information in this article supports Version 5.x applications only that are used with

WebSphere Application Server Version 6.0.x and later. The information does not apply to

Version 6 and later applications.

Configuring the client for basic authentication: collecting the authentication

information

The BasicAuth authentication method refers to the user ID and the password of a valid user in the registry

of the target server. Collection of BasicAuth information can occur in many ways including through a user

interface prompt, a standard in (Stdin) prompt, or specified in the bindings, which prevents user interaction.

Note: There is an important distinction between Version 5.x and Version 6 and later applications. The

information in this article supports Version 5.x applications only that are used with WebSphere

Application Server Version 6.0.x and later. The information does not apply to Version 6.0.x and later

applications.

For more information on BasicAuth authentication, see “BasicAuth authentication method” on page 1333.

Complete this task to specify the authentication information needed for BasicAuth authentication:

1. Launch an assembly tool. For more information on the assembly tools, see Assembly tools.

2. Switch to the Java 2 Platform, Enterprise Edition (J2EE) perspective. Click Window > Open

Perspective > J2EE.

3. Click Application Client Projects > application_name > appClientModule > META-INF.

4. Right-click the application-client.xml file, select Open with > Deployment descriptor editor.

5. Click the WS Binding tab, which is located at the bottom of deployment descriptor editor within the

assembly tool such as the Application Server Toolkit or Rational Web Developer.

6. Expand the Security request sender binding configuration > Login binding section.

7. Click Edit or Enable to view the login binding information. The login binding information displays and

enter the following information:

Authentication method

Specifies the type of authentication. Select BasicAuth to use basic authentication.

Token value type URI and Token value type local name

When you select BasicAuth, you cannot edit the token value type URI and the local name

values. Specifies values for custom authentication types. For BasicAuth authentication, leave

these values blank.

Callback handler

Specifies the Java Authentication and Authorization Server (JAAS) callback handler

implementation for collecting the BasicAuth information. You can use the following default

implementations for the callback handler:

com.ibm.wsspi.wssecurity.auth.callback.StdinPromptCallbackHandler

This implementation is used for non-user interface console prompts.

com.ibm.wsspi.wssecurity.auth.callback.GUIPromptCallbackHandler

This implementation is used for user interface panel prompts.

1334 Securing applications and their environment

com.ibm.wsspi.wssecurity.auth.callback.NonPromptCallbackHandler

This implementation is used when you plan to always enter the user ID and password

in the BasicAuth user ID and password section that follows.

Basic Authentication user ID and Basic Authentication password

Specifies values for the BasicAuth user ID and password, regardless of the default callback

handler indicated previously, these user ID and password values are used to authenticate to

the server for the Web services security authentication. If you leave these values blank, use

either the GUIPromptCallbackHandler or the StdinPromptCallbackHandler implementation, but

only on a pure client. Always fill-in these values for any Web service that acts as a client to

another Web service that you want to specify for BasicAuth for authentication downstream. If

you want the client identity of the originator to flow downstream, configure the Web service

client to use either ID assertion or Lightweight Third Party Authentication (LTPA).

Property

Specifies properties with name and value pairs for custom callback handlers to use. For

BasicAuth authentication, you do not need to enter any information. To enter a new property,

click Add and enter the new property and value.

Other basic authentication entries: There is a basic authentication entry in the Port Qualified Name

Binding Details section. This entry is used for HTTP transport authentication, which might be required if

the router servlet is protected.

Information specified in the Web services security basic authentication section overrides the basic

authentication information specified in the Port Qualified Name Binding Details section for authorizing the

Web service.

For a server that acts as a client, do not specify a user interface or non-user interface prompt callback

handler. To configure BasicAuth authentication from one Web service to a downstream Web service, select

the com.ibm.wsspi.wssecurity.auth.callback.NonPromptCallbackHander implementation and explicitly

specify the BasicAuth user ID and password. If you want the client identity of the originator to flow

downstream, configure the Web service client to use ID assertion.

To use the BasicAuth authentication method, you must specify the method in the Login configuration

section of the assembly tool . See “Configuring the client for basic authentication: specifying the method”

on page 1332 if you have not previously specified this information.

Identity assertion authentication method:

When using the identity assertion (IDAssertion) authentication method, the security token generated is a

<wsse:UsernameToken> element that contains a <wsse:Username> element.

 On the request sender side, a callback handler is invoked to generate the security token. On the request

receiver side, the security token is validated. These two operations, token generation and token validation

operations, are described in the following sections.

Identity assertion token validation:

The request receiver retrieves the IDAssertion security token from the SOAP message and validates it

using a Java Authentication and Authorization Service (JAAS) login module. With identity assertion, special

processing is required to establish trust before asserting the identity as the established identity of the

running thread. This special processing is defined by the <IDAssertion> element in the deployment

descriptor file, ibm-webservices-ext.xmi. If all the validation checks are successful, the asserted identity is

set as the identity of the running thread. If the validation fails, the request is rejected with a SOAP fault

exception.

Chapter 14. Web services 1335

The JAAS login configuration is specified in the<LoginMapping> element of the bindings file. Default

bindings are specified in the ws-security.xml file. However, you can override these bindings using the

application specific ibm-webservices-bnd.xmi file. The configuration information consists of

CallbackHandlerFactory and a ConfigName. CallbackHandlerFactory specifies the name of a class that is

used for creating the JAAS CallbackHandler object. WebSphere Application Server provides the

com.ibm.wsspi.wssecurity.auth.callback.WSCallbackHandlerFactoryImpl CallbackHandlerFactory

implementation. ConfigName specifies a JAAS configuration name entry.

WebSphere Application Server searches the security.xml file for a matching configuration name entry. If a

match is not found it searches the wsjaas.conf file. WebSphere Application Server provides the

system.wssecurity.IDAssertion default configuration entry, which is suitable for the identity assertion

authentication method.

The <IDAssertion> element in the ibm-webservices-ext.xmi deployment descriptor file specifies the

special processing required when using the identity assertion authentication method. The <IDAssertion>

element is composed of two sub-elements: <IDType> and <TrustMode>.

The <IDType> element specifies the method for asserting the identity. The supported values for asserting

the identity are:

v Username

v Distinguished name (DN)

v X.509 certificate

When <IDType> is username, a username token (for example, Bob) is provided. This user name is

mapped to a user in the user registry and is the asserted identity after successful trust validation. When

the <IDType> value is DN, a user name token containing a distinguished name is provided (for example,

cn=Bob Smith, o=ibm, c=us). This DN is mapped to a user in the user registry and this user is the

asserted identity after successful trust validation. When the <IDType> is X509Certificate, a binary security

token containing an X509 certificate is provided and the SubjectDN value from the certificate (for example,

cn=Bob Smith, o=ibm, c=us) is extracted. This SubjectDN value is mapped to a user in the user registry

and this user is the asserted identity after successful trust validation.

The <TrustMode> element specifies how the trust authority, or asserting authority, provides trust

information. The supported values are:

v Signature

v BasicAuth

v No value specified

When the <TrustMode> value is Signature the signature is validated. Then, the signer (for example,

cn=IBM Authority, o=ibm, c=us) is mapped to an identity in the user registry (for example, IBMAuthority).

To ensure that the asserting authority is trusted, the mapped identity (for example, IBMAuthority) is

validated against a list of trusted identities. When the <TrustMode> element is BasicAuth, there is a user

name token with a user name and password, which is the user name and password of the asserting

authority.

The user name and password are validated. If they are successfully validated, that user name (for

example, IBMAuthority) is validated against a list of trusted identities. If a value is not specified for

<TrustMode>, trust is presumed and additional trust validation is not performed. This type of identity

assertion is called presumed trust mode. Use the presumed trust mode only in an environment where the

trust is established using some other mechanism.

If all the validations described previously succeed, the asserted identity (for example, Bob) is set as the

identity of the running thread. If any of the validations fail, the request is rejected with a SOAP fault

exception.

1336 Securing applications and their environment

Important: There is an important distinction between Version 5.x and Version 6.0.x applications. The

information in this article supports Version 5.x applications only that are used with WebSphere

Application Server Version 6.0.x and later. The information does not apply to Version 6.0.x

applications.

Configuring the server to handle BasicAuth authentication information

Important: There is an important distinction between Version 5.x and Version 6 and later applications.

The information in this article supports Version 5.x applications only that are used with

WebSphere Application Server Version 6.0.x and later. The information does not apply to

Version 6.0.x and later applications.

BasicAuth refers to the user ID and the password of a valid user in the registry of the target server. After

a request is received that contains basic authentication information, the server needs to log in to form a

credential. The credential is used for authorization. If the user ID and the password supplied are not

valid, an exception is thrown and the request ends without invoking the resource. For more information on

BasicAuth authentication, see “BasicAuth authentication method” on page 1333.

Complete the following steps to configure the server to handle BasicAuth authentication information:

1. Launch an assembly tool. For more information on the assembly tools, see Assembly tools.

2. Switch to the Java 2 Platform, Enterprise Edition (J2EE) perspective. Click Window > Open

Perspective > J2EE.

3. Click EJB Projects > application_name > ejbModule > META-INF.

4. Right-click the webservices.xml file, and click Open with > Web services editor.

5. Click the Extensions tab, which is located at the bottom of the Web services editor within an assembly

tool such as the Application Server Toolkit or Rational Web Developer.

6. Expand the Request receiver service configuration details > Login configuration section. You can

select the following options:

v BasicAuth

v Signature

v ID assertion

v Lightweight Third Party Authentication (LTPA)

.

7. Select BasicAuth to authenticate the client with a user ID and a password. The client must specify a

valid user ID and password in the server user registry.

You can select multiple login configurations, which means that different types of security information

might be received at the server. The order in which the login configurations are added decides the

order in which they are processed when a request is received. Problems can occur if you have multiple

login configurations added that have security tokens in common. For example, ID assertion contains a

BasicAuth token. For ID assertion to work properly, list ID assertion ahead of BasicAuth in the

processing list or the BasicAuth processing overrides the IDAssertion processing.

After you specify how the server handles BasicAuth authentication information, you must specify how the

server validates the authentication information. See “Configuring the server to validate BasicAuth

authentication information” for more information.

Configuring the server to validate BasicAuth authentication information

Important: There is an important distinction between Version 5.x and Version 6 and later applications.

The information in this article supports Version 5.x applications only that are used with

WebSphere Application Server Version 6.0.x and later. The information does not apply to

Version 6.0.x and later applications.

Chapter 14. Web services 1337

BasicAuth refers to the user ID and the password of a valid user in the registry of the target server. Once

a request is received that contains basic authentication information, the server needs to log in to form a

credential. The credential is used for authorization. If the user ID and the password supplied is invalid, an

exception is thrown and the request ends without invoking the resource. For more information on

BasicAuth authentication, see “BasicAuth authentication method” on page 1333.

Complete the following steps to specify how the server validates the BasicAuth authentication information:

1. Launch an assembly tool. For more information on the assembly tools, see Assembly tools.

2. Switch to the Java 2 Platform, Enterprise Edition (J2EE) perspective. Click Window > Open

Perspective > J2EE.

3. Click EJB Projects > application_name > ejbModule > META-INF.

4. Right-click the webservices.xml file, and click Open with > Web services editor.

5. Click the Binding Configurations tab, which is located at the bottom of the Web services editor within

an assembly tool such as the Application Server Toolkit or Rational Web Developer.

6. Expand the Request receiver binding configuration details > Login mapping section.

7. Click Edit to view the login mapping information or click Add to add new login mapping information.

The login mapping dialog is displayed. Select or enter the following information:

Authentication method

Specifies the type of authentication that occurs. Select BasicAuth to use basic authentication.

Configuration name

Specifies the Java Authentication and Authorization Service (JAAS) login configuration name.

For the BasicAuth authentication method, enter WSLogin for the JAAS login Configuration

name.

Use token valid type

Determines if you want to specify a custom token type. For the default authentication method

selections, you do not need to specify this option.

Token value type URI and Token value type URI local name

When you select BasicAuth, you cannot edit the token value type URI and local name values.

Specifies custom authentication types. For BasicAuth authentication leave these fields blank.

Callback handler factory class name

Creates a JAAS CallbackHandler implementation that understands the following callbacks:

v javax.security.auth.callback.NameCallback

v javax.security.auth.callback.PasswordCallback

v com.ibm.wsspi.wssecurity.auth.callback.BinaryTokenCallback

v com.ibm.wsspi.wssecurity.auth.callback.XMLTokenReceiverCallback

v com.ibm.wsspi.wssecurity.auth.callback.PropertyCallback

Callback handler factory property name and Callback handler factory property value

Specifies callback handler properties for custom callback handler factory implementations. You

do not need to specify any properties for the default callback handler factory implementation.

For BasicAuth, you do not need to enter any property values.

Login mapping property name and Login mapping property value

Specifies properties for a custom login mapping. For the default implementations including

BasicAuth, leave these fields blank.

You must specify how the server handles the BasicAuth authentication method. See “Configuring the

server to handle BasicAuth authentication information” on page 1337 if you have not previously specified

this information.

1338 Securing applications and their environment

Identity assertion

Important: There is an important distinction between Version 5.x and Version 6 and later applications.

The information in this article supports Version 5.x applications only that are used with

WebSphere Application Server Version 6.0.x and later. The information does not apply to

Version 6 and later applications.

Identity assertion is a method for expressing the identity of the sender (for example, user name) in a

SOAP message. When identity assertion is used as an authentication method, the authentication decision

is performed based only on the name of the identity and not on other information such as passwords and

certificates.

ID type

 The Web Services Security implementation in WebSphere Application Server can handle these

identity types:

User name

Denotes the user name, such as the one in the local operating system (for example,

alice). This name is embedded in the <Username> element within the <UsernameToken>

element.

DN Denotes the distinguished name (DN) for the user, such as ″CN=alice, O=IBM, C=US″. This

name is embedded in the <Username> element within the <UsernameToken> element.

X.509 certificate

Represents the identity of the user as an X.509 certificate instead of a string name. This

certificate is embedded in the <BinarySecurityToken> element.

Managing trust

 The intermediary host in the SOAP message itinerary can assert claimed identity of the initial

sender. Two methods (called trust mode) are supported for this assertion:

Basic authentication

The intermediary adds its user name and password pair to the message.

Signature

The intermediary digitally signs the <UsernameToken> element of the initial sender.

Note: This trust mode does not support the X.509 certificate ID type.

Typical scenario

 ID assertion is typically used in the multihop environment where the SOAP message passes

through one or more intermediary hosts. The intermediary host authenticates the initial sender.

The following scenario describes the process:

1. The initial sender sends a SOAP message to the intermediary host with some embedded

authentication information. This authentication information might be a user name and a

password pair with an Lightweight Third Party Authentication (LTPA) token.

2. The intermediary host authenticates the initial sender according to the embedded

authentication information.

3. The intermediary host removes the authentication information from the SOAP message and

replaces it with the <UsernameToken> element, which contains a user name.

4. The intermediary host asserts the trust according to the trust mode.

5. The intermediary host sends the updated SOAP message to the ultimate receiver.

6. The ultimate receiver checks the trust against the intermediary host information according to

the configured trust mode. Also, the trusted ID evaluator is invoked.

Chapter 14. Web services 1339

7. If trust is established by the final receiver, the receiver invokes the Web service under the

authorization of the user name (that is, the initial sender) in the SOAP message.

Securing Web services for Version 5.x applications using identity

assertion authentication

Important: There is an important distinction between Version 5.x and Version 6 and later applications.

The information in this article supports Version 5.x applications only that are used with

WebSphere Application Server Version 6.0.x and later. The information does not apply to

Version 6.0.x and later applications.

WebSphere Application Server provides several different methods to secure your Web services. XML

digital signature is one of these methods. You might also secure your Web services using any of the

following methods:

v XML digital signature

v XML encryption

v Basicauth authentication

v Identity assertion authentication

v Signature authentication

v Pluggable token

With the identity assertion authentication method, the security token generates a <wsee:Username Token>

element that contains a <wsse:Username> element. On the request sender side, a callback handler is

invoked to generate the security token. On the request receiver side, the security token is validated. Unlike

basicauth authentication, trust is established through the use of a security token rather than through user

name and password validation. To use identity assertion authentication to secure Web services, complete

the following tasks:

1. Secure the client for identity assertion authentication.

a. “Configuring the client for identity assertion: specifying the method”

b. “Configuring the client for identity assertion: collecting the authentication method” on page 1341

2. Secure the server for identity assertion authentication.

a. “Configuring the server to handle identity assertion authentication” on page 1342

b. “Configuring the server to validate identity assertion authentication information” on page 1344

After completing these steps, you have secured your Web services using identity assertion authentication.

Configuring the client for identity assertion: specifying the method

You can configure identity assertion authentication. The purpose of identity assertion is to assert the

authenticated identity of the originating client from a Web service to a downstream Web service.

Important: There is an important distinction between Version 5.x and Version 6 and later applications.

The information in this article supports Version 5.x applications only that are used with

WebSphere Application Server Version 6.0.x and later. The information does not apply to

Version 6.0.x and later applications.

This task is used to configure identity assertion authentication. The purpose of identity assertion is to

assert the authenticated identity of the originating client from a Web service to a downstream Web service.

Do not attempt to configure identity assertion from a pure client. Identity assertion works only when you

configure on the client-side of a Web service acting as a client to a downstream Web service.

In order for the downstream Web service to accept the identity of the originating client (just the user

name), you must supply a special trusted BasicAuth credential that the downstream Web service trusts

1340 Securing applications and their environment

and can authenticate successfully. You must specify the user ID of the special BasicAuth credential in a

trusted ID evaluator on the downstream Web service configuration. For more information on trusted ID

evaluators, see “Trusted ID evaluator” on page 1277.

Complete the following steps to specify identity assertion as the authentication method:

 1. Launch an assembly tool. For more information on the assembly tools, see Assembly tools.

 2. Switch to the Java 2 Platform, Enterprise Edition (J2EE) perspective. Click Window > Open

Perspective > J2EE.

 3. Click Application Client Projects > application_name > appClientModule > META-INF.

 4. Right-click the application-client.xml file, select Open with > Deployment descriptor editor.

 5. Click the WS Extension tab, which is located at the bottom of the deployment descriptor editor within

the assembly tool.

 6. Expand the Request sender configuration > Login configuration section.

 7. Select IDAssertion as the authentication method. For more conceptual information on identity

assertion authentication, see “Identity assertion” on page 1339.

 8. Expand the IDAssertion section.

 9. For the ID type, select Username. This value works with all registry types and originating

authentication methods.

10. For the trust mode, select either BasicAuth or Signature.

v By selecting BasicAuth, you must include basic authentication information (user ID and password),

which the downstream Web service has specified in the trusted ID evaluator as a trusted user ID.

See “Configuring the client for signature authentication: collecting the authentication information” on

page 1348 to specify the user ID and password information.

v By selecting Signature the certificate configured in the signature information section used to sign

the data also is that is used as the trusted subject. The Signature is used to create a credential

and user ID, which the certificate mapped to the downstream registry, is used in the trusted ID

evaluator as a trusted user ID.

See “Configuring the client security bindings using an assembly tool” on page 1302 for more information

on the Web services client editor within the assembly tool.

After you specify identity assertion as the authentication method used by the client, you must specify how

to collect the authentication information. See “Configuring the client for identity assertion: collecting the

authentication method” for more information.

Configuring the client for identity assertion: collecting the authentication method

You can configure identity assertion authentication. The purpose of identity assertion is to assert the

authenticated identity of the originating client from a Web service to a downstream Web service.

Important: There is an important distinction between Version 5.x and Version 6 and later applications.

The information in this article supports Version 5.x applications only that are used with

WebSphere Application Server Version 6.0.x and later. The information does not apply to

Version 6.0.x and later applications.

This task is used to configure identity assertion authentication. The purpose of identity assertion is to

assert the authenticated identity of the originating client from a Web service to a downstream Web service.

Do not attempt to configure identity assertion from a pure client. Identity assertion works only when you

configure on the client-side of a Web service acting as a client to a downstream Web service.

In order for the downstream Web service to accept the identity of the originating client (just the user

name), you must supply a special trusted BasicAuth credential that the downstream Web service trusts

Chapter 14. Web services 1341

and can authenticate successfully. You must specify the user ID of the special BasicAuth credential in a

trusted ID evaluator on the downstream Web service configuration. For more information on trusted ID

evaluators, see “Trusted ID evaluator” on page 1277.

Complete the following steps to specify how the client collects the authentication information:

1. Launch an assembly tool. For more information on the assembly tools, see Assembly tools.

2. Switch to the Java 2 Platform, Enterprise Edition (J2EE) perspective. Click Window > Open

Perspective > J2EE.

3. Click Application Client Projects > application_name > appClientModule > META-INF.

4. Right-click the application-client.xml file, select Open with > Deployment descriptor editor.

5. Click the WS Binding tab, which is located at the bottom of the Deployment Descriptor Editor within an

assembly tool.

6. Expand the Security request sender binding configuration > Login binding section.

7. Click Edit to view the login binding information and select IDAssertion. The login binding dialog is

displayed. Select or enter the following information:

Authentication method

The authentication method specifies the type of authentication that occurs. Select IDAssertion

to use identity assertion.

Token value type URI and Token value type Local name

When you select IDAssertion, you cannot edit the token value type Universal Resource

Identifier (URI) and the local name. Specifies custom authentication types. For IDAssertion

authentication, leave these values blank.

Callback handler

Specifies the Java Authentication and Authorization Service (JAAS) callback handler

implementation for collecting the BasicAuth information. Specify the

com.ibm.wsspi.wssecurity.auth.callback.NonPromptCallbackHandler implementation for

IDAssertion.

Basic authentication User ID and Basic authentication Password

In this field, the trust mode entered in the extensions is BasicAuth. Specifies the trusted user

ID and password in these fields. The user ID specified must be an ID that is trusted by the

downstream Web service. The Web service trusts the user ID if it is entered as a trusted ID in

a trusted ID evaluator in the downstream Web service bindings. If the trust mode entered in

the extensions is Signature, you do not need to specify any information in this field.

Property name and Property value

Specifies properties with name and value pairs, for use by custom callback handlers. For

IDAssertion, you do not need to specify any information in this field.

To use the identity assertion authentication method, you must specify the method in the Security

extensions section of an assembly tool. See “Configuring the client for identity assertion: specifying the

method” on page 1340 if you have not previously specified this information.

Configuring the server to handle identity assertion authentication

Important: There is an important distinction between Version 5.x and Version 6 and later applications.

The information in this article supports Version 5.x applications only that are used with

WebSphere Application Server Version 6.0.x and later. The information does not apply to

Version 6.0.x and later applications.

Use this task to configure identity assertion authentication. The purpose of identity assertion is to assert

the authenticated identity of the originating client from a Web service to a downstream Web service. Do

not attempt to configure identity assertion from a pure client.

1342 Securing applications and their environment

For the downstream Web service to accept the identity of the originating client (user name only), you must

supply a special trusted BasicAuth credential that the downstream Web service trusts and can authenticate

successfully. You must specify the user ID of the special BasicAuth credential in a trusted ID evaluator on

the downstream Web service configuration. For more information on trusted ID evaluators, see “Trusted ID

evaluator” on page 1277. The server side passes the special BasicAuth credential into the trusted ID

evaluator, which returns true or false that this ID is trusted. Once it is trusted, the user name of the client

is mapped to the credential, which is used for authorization.

Complete the following steps to configure the server to handle identity assertion authentication information:

1. Launch an assembly tool. For more information on the assembly tools, see Assembly tools.

2. Switch to the Java 2 Platform, Enterprise Edition (J2EE) perspective. Click Window > Open

Perspective > J2EE.

3. Click EJB Projects > application_name > ejbModule > META-INF.

4. Right-click the webservices.xml file, and click Open with > Web services editor.

5. Click the Extensions tab, which is located at the bottom of the Web services editor within the assembly

tool.

6. Expand the Request receiver service configuration details > Login configuration section. The

options you can select are:

v BasicAuth

v Signature

v ID assertion

v Lightweight Third Party Authentication (LTPA)

7. Select IDAssertion to authenticate the client using the identity assertion data provided.

The user ID of the client must be in the target user registry or repository, which is configured on the

Security > Secure administration, applications, and infrastructure panel in the administrative

console for WebSphere Application Server. You can select multiple login configurations, which means

that different types of security information can be received at the server. The order in which the login

configurations are added determines the processing order when a request is received. Problems can

occur if you have multiple login configurations added that have common security tokens. For example,

ID assertion contains a BasicAuth token, which is the trusted token. For ID assertion to work properly,

you must list ID assertion ahead of BasicAuth in the list or BasicAuth processing overrides ID assertion

processing.

8. Expand the IDAssertion section and select both the ID Type and the Trust Mode.

a. For ID Type, the options are:

v Username

v Distinguished name (DN)

v X509certificate

These choices are just preferences and are not guaranteed. Most of the time the Username option

is used. You must choose the same ID Type as the client.

b. For Trust Mode, the options are:

v BasicAuth

v Signature

The Trust Mode refers to the information sent by the client as the trusted ID.

1) If you select BasicAuth, the client sends basic authentication data (user ID and password).

This basicauth data is authenticated to the configured user registry. When the authentication

occurs successfully, the user ID must be part of the trusted ID evaluator trust list.

2) If you select Signature, the client signing certificate is sent. This certificate must be mappable

to the configured user registry. For Local OS, the common name (CN) of the distinguished

name (DN) is mapped to a user ID in the registry. For Lightweight Directory Access Protocol

Chapter 14. Web services 1343

(LDAP), the DN is mapped to the registry for the ExactDN mode. If it is in the CertificateFilter

mode, attributes are mapped accordingly. In addition, the user name from the credential

generated must be in the Trusted ID Evaluator trust list.

For more information on getting started with the Web Services Editor within an assembly tool, see

“Configuring the server security bindings using an assembly tool” on page 1306.

After you specify how the server handles identity assertion authentication information, you must specify

how the server validates the authentication information. See “Configuring the server to validate identity

assertion authentication information” for more information.

Configuring the server to validate identity assertion authentication information

The purpose of identity assertion is to assert the authenticated identity of the originating client from a Web

service to a downstream Web service.

Important: There is an important distinction between Version 5.x and Version 6 and later applications.

The information in this article supports Version 5.x applications only that are used with

WebSphere Application Server Version 6.0.x and later. The information does not apply to

Version 6 and later applications.

Use this task to configure identity assertion authentication. Do not attempt to configure identity assertion

from a pure client.

For the downstream Web service to accept the identity of the originating client (user name only), you must

supply a special trusted BasicAuth credential that the downstream Web service trusts and can authenticate

successfully. You must specify the user ID of the special BasicAuth credential in a trusted ID evaluator on

the downstream Web service configuration. For more information on trusted ID evaluators, see “Trusted ID

evaluator” on page 1277. The server side passes the special BasicAuth credential into the trusted ID

evaluator, which returns a true or false response that this ID is trusted. After it is trusted, the user name

of the client is mapped to the credential, which is used for authorization.

Complete the following steps to validate the identity assertion authentication information:

 1. Launch an assembly tool. For more information on the assembly tools, see Assembly tools.

 2. Switch to the Java 2 Platform, Enterprise Edition (J2EE) perspective. Click Window > Open

Perspective > J2EE.

 3. Click EJB Projects > application_name > ejbModule > META-INF.

 4. Right-click the webservices.xml file, and click Open with > Web services editor.

 5. Click the Binding Configurations tab, which is located at the bottom of the Web services editor within

the assembly tool.

 6. Expand the Request receiver binding configuration details > Login mapping section.

 7. Click Edit to view the login mapping information. Click Add to add new login mapping information.

The login mapping dialog is displayed. Select or enter the following information:

Authentication method

Specifies the type of authentication that occurs. Select IDAssertion to use basic

authentication.

Configuration name

Specifies the Java Authentication and Authorization Service (JAAS) login configuration name.

For the IDAssertion authentication method, enter system.wssecurity.IDAssertion for the

Java Authentication and Authorization Service (JAAS) login configuration name.

Use token value type

Determines if you want to specify a custom token type. For the default authentication method

selections, you do not need to specify this option.

1344 Securing applications and their environment

Token value type URI and Token value type local name

When you select ID assertion, you cannot edit the token value type URI and local name

values. Specifies custom authentication types. For the ID assertion authentication method,

leave these values blank.

Callback handler factory class name

Ccreates a JAAS CallbackHandler implementation that understands the following callbacks:

v javax.security.auth.callback.NameCallback

v javax.security.auth.callback.PasswordCallback

v com.ibm.wsspi.wssecurity.auth.callback.BinaryTokenCallback

v com.ibm.wsspi.wssecurity.auth.callback.XMLTokenReceiverCallback

v com.ibm.wsspi.wssecurity.auth.callback.PropertyCallback

For any of the default authentication methods (BasicAuth, IDAssertion, and Signature), use

the callback handler factory default implementation. Enter the following class name for any of

the default Authentication methods including IDAssertion:

com.ibm.wsspi.wssecurity.auth.callback.WSCallbackHandlerFactoryImpl

This implementation creates the correct callback handler for the default implementations.

Callback handler factory property name and Callback handler factory property value

Specifies callback handler properties for custom callback handler factory implementations.

The default callback handler factory implementation does not need any specified properties.

For ID assertion, leave these values blank.

Login mapping property name and Login mapping property value

Specifies properties for a custom login mapping. For the default implementations including

IDAssertion, leave these values blank.

 8. Expand the Trusted ID evaluator section.

 9. Click Edit to see a dialog that displays all the trusted ID evaluator information. The following table

describes the purpose of this information.

Class name

Refers to the implementation of the trusted ID evaluator that you want to use. Enter the

default implementation as com.ibm.wsspi.wssecurity.id.TrustedIDEvaluatorImpl. If you

want to implement your own trusted ID evaluator, you must implement the

com.ibm.wsspi.wssecurity.id.TrustedIDEvaluator interface.

Property name

Represents the name of this configuration. Enter BasicIDEvaluator.

Property value

Defines the name and value pairs that can be used by the trusted ID evaluator

implementation. For the default implementation, the trusted list is defined here. When a

request comes in and the trusted ID is verified, the user ID, as it appears in the user registry,

must be listed in this property. Specify the property as a name and value pair where the

name is trustedId_n. n is an integer starting from 0 and the value is the user ID associated

with that name. An example list with the trusted names include two properties.

 For example: trustedId_0 = user1, trustedId_1 = user2. The previous example means that

both user1 and user2 are trusted. user1 and user2 must be listed in the configured user

registry

10. Expand the Trusted ID evaluator reference section.

11. Click Enable to add a new entry. The text you enter for the Trusted ID evaluator reference must be

the same as the name entered previously in the Trusted ID evaluator. Make sure that the name

matches exactly because the information is case sensitive. If an entry is already specified, you can

change it by clicking Edit.

Chapter 14. Web services 1345

You must specify how the server handles the identity assertion authentication method. See “Configuring

the server to handle identity assertion authentication” on page 1342 if you have not previously specified

this information.

Securing Web services for version 5.x applications using signature

authentication

WebSphere Application Server provides several different methods to secure your Web services. XML

digital signature is one of these methods.

Important: There is an important distinction between Version 5.x and Version 6 and later applications.

The information in this article supports Version 5.x applications only that are used with

WebSphere Application Server Version 6.0.x and later. The information does not apply to

Version 6 and later applications.

You can secure your Web services by using any of the following methods:

v XML digital signature

v XML encryption

v BasicAuth authentication

v Identity assertion authentication

v Signature authentication

v Pluggable token

With the signature authentication method, the request sender generates a signature security token using a

callback handler. The security token returned by the callback handler is inserted in the SOAP message.

The request receiver retrieves the Signature security token from the SOAP message and validates it using

a Java Authentication and Authorization Service (JAAS) login module. To use signature authentication to

secure Web services, complete the following tasks:

1. Secure the client for signature authentication.

a. “Configuring the client for signature authentication: specifying the method.”

b. “Configuring the client for signature authentication: collecting the authentication information” on

page 1348.

2. Secure the server for signature authentication.

a. “Configuring the server to support signature authentication” on page 1349.

b. “Configuring the server to validate signature authentication information” on page 1350.

After completing these steps, you have secured your Web services using signature authentication.

Configuring the client for signature authentication: specifying the method

Signature authentication, the use of an X.509 certificate to login on the target server, can be configured.

Important: There is an important distinction between Version 5.x and Version 6 and later applications.

The information in this article supports Version 5.x applications only that are used with

WebSphere Application Server Version 6.0.x and later. The information does not apply to

Version 6.0.x and later applications.

This task is used to configure signature authentication. A signature refers to the use of an X.509 certificate

to login on the target server. For more information on signature authentication, see “Signature

authentication method” on page 1347.

Complete the following steps to specify signature as the authentication method:

1. Launch an assembly tool. For more information on the assembly tools, see Assembly tools.

1346 Securing applications and their environment

2. Switch to the Java 2 Platform, Enterprise Edition (J2EE) perspective. Click Window > Open

Perspective > J2EE.

3. Click Application Client Projects > application_name > appClientModule > META-INF.

4. Right-click the application-client.xml file, select Open with > Deployment descriptor editor.

5. Click the WS Extension tab, which is located at the bottom of the deployment descriptor editor within

the assembly tool.

6. Expand the Request sender configuration > Login configuration section. The following login

configuration options are valid for a managed client and Web services acting as a client are:

BasicAuth

Use this option for a managed client.

Signature

Use this option for a managed client.

IDAssertion

Use this option for Web services acting as a client.

7. Select Signature to authenticate the client using the certificate used to digitally sign the request.

For more information on getting started with the Web services client editor within the assembly tool, see

“Configuring the client security bindings using an assembly tool” on page 1302.

After you specify signature as the authentication method, you must specify how to collect the

authentication information. See “Configuring the client for signature authentication: collecting the

authentication information” on page 1348 for more information.

Signature authentication method:

When using the signature authentication method, the security token is generated with a <ds:Signature>

and a <wsse:BinarySecurityToken> element.

 On the request sender side, a callback handler is invoked to generate the security token. On the request

receiver side, a Java Authentication and Authorization Service (JAAS) login module is used to validate the

security token. These two operations, token generation and token validation, are described in the following

sections.

Signature token generation

The request sender generates a Signature security token using a callback handler. The security

token returned by the callback handler is inserted in the SOAP message. The callback handler is

specified in the <LoginBinding> element of the bindings file, ibm-webservicesclient-bnd.xmi.

WebSphere Application Server provides the following callback handler implementation that can be

used with the Signature authentication method:

com.ibm.wsspi.wssecurity.auth.callback.NonPromptCallbackHandler

 You can add your own callback handlers that implement the

javax.security.auth.callback.CallbackHandler implementation.

Security token validation

The request receiver retrieves the Signature security token from the SOAP message and validates

it using a JAAS login module. The <ds:Signature> and <wsse:BinarySecurityToken> elements in

the security token are used to perform the validation. If the validation is successful, the login

module returns a Java Authentication and Authorization Service (JAAS) Subject. This Subject then

is set as the identity of the running thread. If the validation fails, the request is rejected with a

SOAP fault exception.

 The JAAS login configuration is specified in the <LoginMapping> element of the bindings file.

Default bindings are specified in the ws-security.xml file. However, you can override these

bindings using the application-specific ibm-webservices-bnd.xmi file. The configuration information

Chapter 14. Web services 1347

consists of a CallbackHandlerFactory and a ConfigName. The CallbackHandlerFactory specifies

the name of a class that is used for creating the JAAS CallbackHandler object. WebSphere

Application Server provides the

com.ibm.wsspi.wssecurity.auth.callback.WSCallbackHandlerFactoryImp CallbackHandlerFactory

implementation. The ConfigName specifies a JAAS configuration name entry. WebSphere

Application Server searches in the security.xml file for a matching configuration name entry. If a

match is not found, it searches the wsjaas.conf file. WebSphere Application Server provides the

system.wssecurity.Signature default configuration entry, which is suitable for the signature

authentication method.

Remember: The information in this article supports Version 5.x applications only that are used with

WebSphere Application Server Version 6.0.x and later. The information does not apply to

Version 6 and later applications.

Configuring the client for signature authentication: collecting the authentication

information

Important: There is an important distinction between Version 5.x and Version 6 and later applications.

The information in this article supports Version 5.x applications only that are used with

WebSphere Application Server Version 6.0.x and later. The information does not apply to

Version 6.0.x and later applications.

This task is used to configure signature authentication. A signature refers to the use of an X.509 certificate

to login on the target server. For more information on signature authentication, see “Signature

authentication method” on page 1347.

Complete the following steps to specify how the client collects the authentication information for signature

authentication:

1. Launch an assembly tool. For more information on the assembly tools, see Assembly tools.

2. Switch to the Java 2 Platform, Enterprise Edition (J2EE) perspective. Click Window > Open

Perspective > J2EE.

3. Click Application Client Projects > application_name > appClientModule > META-INF.

4. Right-click the application-client.xml file, select Open with > Deployment descriptor editor.

5. Click the WS Binding tab, which is located at the bottom of the deployment descriptor editor within the

assembly tool.

6. Expand the Security request sender binding configuration > Signing information and click Edit to

modify the signing key name and signing key locator. To create new signing information, click Enable.

The certificate that is sent to log in at the server is the one configured in the Signing Information

section. Review the section on “Key locator” on page 1272 to understand how the signing key name

maps to a key within the key locator entry.

The following list describes the purpose of this information. Some of these definitions are based on the

XML-Signature specification, which is located at the following Web address: http://www.w3.org/TR/
xmldsig-core

Canonicalization method algorithm

Canonicalizes the SignedInfo element before it is digested as part of the signature operation.

Digest mehod algorithm

Represents the algorithm that is applied to the data after transforms are applied, if specified, to

yield the <DigestValue> element. The signing of the DigestValue element binds the resource

content to the signer key. The algorithm selected for the client request sender configuration

must match the algorithm selected in the server request receiver configuration.

Signature method algorithm

Represents the algorithm that is used to convert the canonicalized <SignedInfo> value into the

1348 Securing applications and their environment

http://www.w3.org/TR/xmldsig-core
http://www.w3.org/TR/xmldsig-core

<SignatureValue> value. The algorithm selected for the client request sender configuration

must match the algorithm selected in the server request receiver configuration.

Signing key name

Represents the key entry associated with the signing key locator. The key entry refers to an

alias of the key, which is used to sign the request.

Signing key locator

TRepresents a reference to a key locator implementation. For more information on

configuring key locators, see “Key locator” on page 1272.

7. Expand the Security request sender binding configuration > Login binding section.

8. Click Edit to view the login binding information. Then, select or enter the following information:

Authentication method

Specifies the type of authentication that occurs. Select Signature to use signature

authentication.

Token value type URI and Token value type URI local name

When you select Signature, you cannot edit token value type Uniform Resource Identifier

(URI) and local name values. Specifies custom authentication types. For signature

authentication, leave these fields blank.

Callback handler

Specifies the Java Authentication and Authorization Server (JAAS) callback handler

implementation for collecting signature information. Enter the following callback handler for

signature authentication:

com.ibm.wsspi.wssecurity.auth.callback.NonPromptCallbackHandler

 This callback handler is used because the signature method does not require user interaction.

Basic authentication user ID and Basic authentication password

Leave the BasicAuth fields blank when Signature authentication is used.

Property name and property value

This field enables you to enter properties and name and value pairs for use by custom

callback handlers. For signature authentication, you do not need to enter any information.

Other customization entries: There is a basic authentication entry in the Port Qualified Name Binding

Details section. This entry is used for HTTP transport authentication, which might be required if the router

servlet is protected.

Information specified in the Web services security signature authentication section overrides the basic

authentication information specified in the Port Qualified Name Binding Details section for authorizing the

Web service.

To use the signature authentication method, you must specify the authentication method in the Login

config section of an assembly tool. See “Configuring the client for signature authentication: specifying the

method” on page 1346 if you have not previously specified this information.

Configuring the server to support signature authentication

Important: There is an important distinction between Version 5.x and Version 6 and later applications.

The information in this article supports Version 5.x applications only that are used with

WebSphere Application Server Version 6.0.x and later. The information does not apply to

Version 6.0.x and later applications.

Use this task to configure signature authentication at the server. Signature authentication refers to an

X.509 certificate sent by the client to the server. The certificate is used to authenticate to the user registry

configured at the server. After a request is received by the server that contains the certificate, the server

needs to log in to form a credential. The credential is used for authorization. If the certificate supplied

Chapter 14. Web services 1349

cannot be mapped to an entry in the user registry, an exception is thrown and the request ends without

invoking the resource. For more information on signature authentication, see “Signature authentication

method” on page 1347.

1. Launch an assembly tool. For more information on the assembly tools, see Assembly tools.

2. Switch to the Java 2 Platform, Enterprise Edition (J2EE) perspective by clicking Window > Open

perspective > Other > J2EE.

3. Click EJB Projects > application_name > ejbModule > META-INF.

4. Right-click the webservices.xml file, and click Open with > Web services editor.

5. Click the Extensions tab, which is located at the bottom of the Web Services Editor within the

assembly tool.

6. Expand the Request receiver service configuration details > Login configuration section. You can

select from the following options:

v BasicAuth

v Signature

v ID assertion

v Lightweight Third Party Authentication (LTPA)

7. Select Signature to authenticate the client using an X509 certificate. The certificate that is sent from

the client is the certificate that issued for signing the message. You must be able to map this

certificate to the configured user registry. For Local operating system (OS) registries, the common

name (cn) of the distinguished name (DN) is mapped to a user ID in the registry. For Lightweight

Directory Access Protocol (LDAP), you can configure multiple mapping modes:

v EXACT_DN is the default mode that directly maps the DN of the certificate to an entry in the LDAP

server.

v CERTIFICATE_FILTER is the mode that provides the LDAP advanced configuration with a place to

specify a filter that maps specific attributes of the certificate to specific attributes of the LDAP server.

For more information on getting started with the Web services editor within the assembly tool, see

“Configuring the server security bindings using an assembly tool” on page 1306.

After you specify how the server handles signature authentication information, you must specify how the

server validates the authentication information. See “Configuring the server to validate signature

authentication information” for more information.

Configuring the server to validate signature authentication information

Important: There is an important distinction between Version 5.x and Version 6 and later applications.

The information in this article supports Version 5.x applications only that are used with

WebSphere Application Server Version 6.0.x and later. The information does not apply to

Version 6.0.x and later applications.

Use this task to configure signature authentication at the server. Signature authentication refers to an

X.509 certificate sent by the client to the server. The certificate is used to authenticate to the user registry

configured at the server. After a request is received by the server that contains the certificate, the server

needs to log in to form a credential. The credential is used for authorization. If the certificate supplied

cannot be mapped to an entry in the user registry, an exception is thrown and the request ends without

invoking the resource. For more information on signature authentication, see “Signature authentication

method” on page 1347.

Complete the following steps to configure the server to validate signature authentication:

1. Launch an assembly tool. For more information on the assembly tools, see Assembly tools.

2. Switch to the Java 2 Platform, Enterprise Edition (J2EE) perspective by clicking Window > Open

perspective > Other > J2EE.

1350 Securing applications and their environment

3. Click EJB Projects > application_name > ejbModule > META-INF.

4. Right-click the webservices.xml file, and click Open with > Web services editor.

5. Click the Binding Configurations tab, which is located at the bottom of the Web services editor within

the assembly tool.

6. Expand the Request receiver binding configuration details > Login mapping section.

7. Click Edit to view the login mapping information or click Add to add new login mapping information.

The login mapping dialog is displayed and you select (or enter) the following information:

Authentication method

Specifies the type of authentication. Select Signature to use signature authentication.

Configuration name

Specifies the Java Authentication and Authorization Service (JAAS) login configuration name.

For the signature authentication method, enter system.wssecurity.Signature for the JAAS

login configuration name. This specification logs in with the

com.ibm.wsspi.wssecurity.auth.module.SignatureLoginModule JAAS login module.

Use token value type

Determines if you want to specify a custom token type. For the default authentication method

selections, you can leave this field blank.

URI and local name

When you select Signature method, you cannot edit the token value type URI and local name

values. Specifies custom authentication types. For signature authentication, you can leave

this field blank.

Callback handler factory class name

Creates a JAAS CallbackHandler implementation that understands the following callback

handlers:

v javax.security.auth.callback.NameCallback

v javax.security.auth.callback.PasswordCallback

v com.ibm.wsspi.wssecurity.auth.callback.BinaryTokenCallback

v com.ibm.wsspi.wssecurity.auth.callback.XMLTokenReceiverCallback

v com.ibm.wsspi.wssecurity.auth.callback.PropertyCallback

For any of the default authentication methods (BasicAuth, IDAssertion, and Signature), use the

callback handler factory default implementation. Enter the following class name for any of the

default authentication methods including signature:

com.ibm.wsspi.wssecurity.auth.callback.WSCallbackHandlerFactoryImpl

This implementation creates the correct callback handler for the default implementations.

Callback handler factory property name and callback handler factory property value

Specifies callback handler properties for custom callback handler factory implementations. You

do not need to specify any properties for the default callback handler factory implementation.

For signature, you can leave this field blank.

Login mapping property name and login mapping property value

Specifies properties for a custom login mapping to use. For the default implementations

including signature, you can leave this field blank.

Specify how the server handles the signature authentication method. See “Configuring the server to

support signature authentication” on page 1349 if you have not previously specified this information.

Overview of token types

Web services security defines two types of security tokens. The deployment descriptor extension file

defines the types of tokens that the message can accept.

Chapter 14. Web services 1351

Important: There is an important distinction between Version 5.x and Version 6 and later applications.

The information in this article supports Version 5.x applications only that are used with

WebSphere Application Server Version 6.0.x and later. The information does not apply to

Version 6.1x and later applications.

The two types of security tokens that are defined by Web services security are:

v User name token

v Binary security token

A user name token consists of a user name and, optionally, password information. You can include a user

name token directly in the <Security> header within the message. Binary tokens, such as X.509

certificates, Kerberos tickets, Lightweight Third Party Authentication (LTPA) tokens, or other non-XML

formats, require a special encoding for inclusion. The Web services security specification describes how to

encode binary security tokens such as X.509 certificates and Kerberos tickets, and it also describes how

to include opaque encrypted keys. The specification also includes extensibility mechanisms that you can

use to further describe the characteristics of the credentials that are included with a message.

WebSphere Application Server Version 5.0.2 supports user name tokens, which include both user name

and password for basic authentication and user name, which is used for identity assertion. The

WebSphere Application Server Version 5.0.2 binary security token implementation supports both X.509

certificates and LTPA binary security. You extend the implementation to generate other types of tokens.

However, Kerberos tickets are not supported in WebSphere Application Server Version 5.0.2. Each type of

token is processed by a corresponding token generation and validation module. The binary token

generation and validation modules are pluggable that is based on the Java Authentication and

Authorization Service (JAAS) framework. For example, an arbitrary XML-based token format is supported

using the JAAS pluggable framework. WebSphere Application Server Version 5.0.2 does not support an

XML-based token that is used in the SecurityTokenReference.

You can define the types of tokens that the message can accept in the deployment descriptor extension

file, ibm.webservices-ext.xmi. A message receiver might support one or more types of security tokens.

The following example shows that the receiver supports four types of security tokens:

Important: In the following code sample, several lines were split into multiple lines due to the width of the

printed page. See the close bracket for an indication of where each line of code ends.

?xml version="1.0" encoding="UTF-8"?>

<com.ibm.etools.webservice.wsext:WsExtension xmi:version="2.0"

xmlns:xmi="http://www.omg.org/XMI"

xmlns:com.ibm.etools.webservice.wsext=

"http://www.ibm.com/websphere/appserver/schemas/5.0.2/wsext.xmi"

xmi:id="WsExtension_1052760331306" routerModuleName="StockQuote.war">

 <wsDescExt xmi:id="WsDescExt_1052760331306" wsDescNameLink="StockQuoteFetcher">

 <pcBinding xmi:id="PcBinding_1052760331326" pcNameLink="urn:xmltoday-delayed-quotes"

 scope="Session">

 <serverServiceConfig

 xmi:id="ServerServiceConfig_1052760331326"actorURI="myActorURI">

 <securityRequestReceiverServiceConfig

 xmi:id="SecurityRequestReceiverServiceConfig_1052760331326">

 <loginConfig xmi:id="LoginConfig_1052760331326">

 <authMethods xmi:id="AuthMethod_1052760331326" text="BasicAuth"/>

 <authMethods xmi:id="AuthMethod_1052760331327" text="IDAssertion"/>

 <authMethods xmi:id="AuthMethod_1052760331336" text="Signature"/>

 <authMethods xmi:id="AuthMethod_1052760331337" text="LTPA"/>

 </loginConfig>

<idAssertion xmi:id="IDAssertion_1052760331336" idType="Username" trustMode="Signature"/>

1352 Securing applications and their environment

The message sender might choose one of the token types that are supported by the receiver when

sending a message. You can define the type of token to be used by the sending side in the client

descriptor extension file, ibm-webservicesclient-ext.xmi. The following example shows that the sender

chooses to send a UsernameToken to the receiver:

Important: In the following code sample, several lines were split into multiple lines due to the width of the

printed page. See the close bracket for an indication of where each line of code ends.
<?xml version="1.0" encoding="UTF-8"?>

<com.ibm.etools.webservice.wscext:WsClientExtension xmi:version="2.0"

mlns:xmi="http://www.omg.org/XMI"

xmlns:com.ibm.etools.webservice.wscext=

"http://www.ibm.com/websphere/appserver/schemas/5.0.2/wscext.xmi"

xmi:id="WsClientExtension_1052760331496">

<ServiceRefs xmi:id="ServiceRef_1052760331506" serviceRefLink="service/StockQuoteService">

 <portQnameBindings xmi:id="PortQnameBinding_1052760331506"

portQnameLocalNameLink="StockQuote">

 <clientServiceConfig xmi:id="ClientServiceConfig_1052760331506"

actorURI="myActorURI">

 <securityRequestSenderServiceConfig

xmi:id="SecurityRequestSenderServiceConfig_1052760331506" actor="myActorURI">

 <loginConfig xmi:id="LoginConfig_1052760331506" authMethod="BasicAuth"/>

User name token element

You can use the UsernameToken element to propagate a user name and, optionally, password information.

Also, you can use this token type to carry basic authentication information. Both a user name and a

password are used to authenticate the message. A UsernameToken element that contains the user name

is used in identity assertion. Identity assertion establishes the identity of the user based on the trust

relationship.

The following example shows the syntax of the UsernameToken element:

<UsernameToken Id="...">

 <Username>...</Username>

 <Password Type="...">...</Password>

</UsernameToken>

The Web services security specification defines the following password types:

wsse:PasswordText (default)

This type is the actual password for the user name.

wsse:PasswordDigest

The type is the digest of the password for the user name. The value is a base64-encoded SHA1

hash value of the UTF8-encoded password.

WebSphere Application Server supports the default PasswordText type. However, it does not support

password digest because most user registry security policies do not expose the password to the

application software.

The following example illustrates the use of the UsernameToken element:

<S:Envelope xmlns:S="http://www.w3.org/2001/12/soap-envelope"

 xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/04/secext">

 <S:Header>

 ...

 <wsse:Security>

 <wsse:UsernameToken>

 <wsse:Username>Joe</wsse:Username>

 <wsse:Password>ILoveJava</wsse:Password>

 </wsse:UsernameToken>

 </wsse:Security>

 </S:Header>

</S:Envelope>

Chapter 14. Web services 1353

Remember: The information in this article supports Version 5.x applications only that are used with

WebSphere Application Server Version 6.0.x and later. The information does not apply to

Version 6.0.x and later applications.

Nonce, a randomly generated token:

Nonce is a randomly generated, cryptographic token used to prevent the theft of user name tokens used

with SOAP messages. Nonce is used with the basicauth authentication method.

 Without nonce, when a user name token is passed from one machine to another machine using a

non-secure transport, such as HTTP, the token might be intercepted and used in a replay attack. The

same key might be reused when the username token is transmitted between the client and the server,

which leaves it vulnerable to attack. The user name token can be stolen even if you use XML digital

signature and XML encryption.

To help eliminate these replay attacks, the <wsse:Nonce> and <wsu:Created> elements are generated within

the <wsee: usernameToken> element and used to validate the message. The request receiver or response

receiver checks the freshness of the message to verify the difference between when the message is

created and the current time falls within a specified time period. Also, WebSphere Application Server

verifies that the receiver has not processed the token within the specified time period. These two features

are used to lessen the chance that a user name token is used for a replay attack.

Configuring nonce for the application level:

You can configure nonce for the application level using the WebSphere Application Server administrative

console.

 Important: The information in this article supports Version 5.x applications only that are used with

WebSphere Application Server Version 6.0.x and later. The information does not apply to

Version 6 and later applications.

Nonce is a randomly generated, cryptographic token used to thwart the highjacking of username tokens

used with SOAP messages. Nonce is used in conjunction with the BasicAuth authentication method.

You can configure nonce at the application level and cell level.

However, you must consider the order of precedence:

1. Application level

2. Server level

If you configure nonce on the application level and the server level, the values specified for the application

level take precedence over the values specified for the server level.

1. Connect to the administrative console.

Type http://localhost:port_number/ibm/console in your Web browser unless you have changed the

port number.

2. Click Applications > Enterprise applications > application_name.

3. Under Manage modules, click URI_name.

4. Under Web Services Security Properties, click Web services: Server security bindings.

5. Click Edit under Request receiver binding

6. Under Additional properties, click Login mappings > New.

7. Specify (optional) a value, in seconds, for the Nonce maximum age field. This panel is optional and

only valid if the BasicAuth authentication method is specified. If you specify another authentication

method and attempt to specify values for this field, the following error message displays and you must

remove the specified value:

1354 Securing applications and their environment

Nonce is not supported for authentication methods other than

BasicAuth.

If you specify BasicAuth, but do not specify values for the Nonce maximum age field, the Web services

security run time searches for a Nonce Maximum Age value on the server level. If a value is not found

on the server level, the run time searches the cell level. If a value is not found on either the server

level or the cell level, the default is 300 seconds.

The value specified for the Nonce Maximum Age field indicates how long the nonce is valid. You must

specify a minimum of 300 seconds, but the value cannot exceed the number of seconds specified for

the Nonce Cache Timeout field for the server level.

You can specify the Nonce Cache Timeout value for the server level by completing the following steps:

a. Click Servers > Application servers > server_name.

b. Under Security, click Web Services: Default bindings for Web services security.

8. Specify (optional) a value, in seconds, for the Nonce clock skew field. The value specified for the

Nonce Clock Skew field specifies the amount of time, in seconds, to consider when the message

receiver checks the timeliness of the value. This panel is optional and only valid if the BasicAuth

authentication method is specified. If you specify another authentication method and attempt to specify

values for this field, the following error message displays and you must remove the specified value:

Nonce is not supported for authentication methods other than

BasicAuth.

If you specify BasicAuth, but do not specify values for the Nonce clock skew field, the Web services

security run time searches for a Nonce clock skew value on the server level. If a value is not found on

the server level, the run time searches the cell level. If a value is not found on either the server level or

the cell level, the default is 0 seconds.

Consider the following information when you set this value:

v Difference in time between the message sender and the message receiver if the clocks are not

synchronized.

v Time needed to encrypt and transmit the message.

v Time needed to get through network congestion.

9. Restart the server.

Configuring nonce for the server level:

Important: The information in this article supports Version 5.x applications only that are used with

WebSphere Application Server Version 6.0.x and later. The information does not apply to

Version 6.0.x and later applications.

Nonce is a randomly generated, cryptographic token used to prevent the theft of username tokens used

with Simple Object Access Protocol (SOAP) messages. Nonce is used in conjunction with the BasicAuth

authentication method.

This task provides instructions on how to configure nonce for the server level using the WebSphere

Application Server administrative console.

However, you must consider the order of precedence:

1. Application level

2. Server level

If you configure nonce on the application level and the server level, the values specified for the application

level take precedence over the values specified for the server level.

Chapter 14. Web services 1355

In a WebSphere Application Server or WebSphere Application Server Express environment, you must

specify values for the Nonce cache timeout, Nonce maximum age, and Nonce clock skew fields on the

server level to use nonce effectively.

Complete the following steps to configure nonce on the server level:

1. Connect to the administrative console.

Type http://localhost:port_number/ibm/console in your Web browser unless you have changed the

port number.

2. Click Servers > Application servers > server_level.

3. Under Security, click Web Services: Default bindings for Web services security.

4. Specify a value, in seconds, for the Nonce cache timeout field. The value specified for the Nonce

cache timeout field indicates how long the nonce remains cached before it is expunged. You must

specify a minimum of 300 seconds. However, if you do not specify a value, the default is 600 seconds.

This field is required for the server level.

5. Specify (optional) a value, in seconds, for the Nonce maximum age field.

The value specified for the Nonce Maximum Age field indicates how long the nonce is valid. You must

specify a minimum of 300 seconds, but the value cannot exceed the number of seconds specified for

the Nonce cache timeout field on the server level.

6. Specify a value, in seconds, for the Nonce clock skew field. The value specified for the Nonce clock

skew field specifies the amount of time, in seconds, to consider when the message receiver checks the

timeliness of the value. Consider the following information when you set this value:

v Difference in time between the message sender and the message receiver if the clocks are not

synchronized.

v Time needed to encrypt and transmit the message.

v Time needed to get through network congestion.

You must specify at least 0 seconds for the Nonce clock skew field. However, the maximum value

cannot exceed the number of seconds specified in the Nonce maximum age field on the server level. If

you do not specify a value, the default is 0 seconds.

7. Restart the server. If you change the Nonce cache timeout value and do not restart the server, the

change is not recognized by the server.

Binary security token

The ValueType attribute identifies the type of the security token, for example, a Lightweight Third Party

Authentication (LTPA) token. The EncodingType indicates how the security token is encoded, for example,

Base64Binary. The BinarySecurityToken element defines a security token that is binary encoded. The

encoding is specified using the EncodingType attribute. The value type and space are specified using the

ValueType attribute. The Web services security implementation for WebSphere Application Server, Version

5.0.2 supports both LTPA and X.509 certificate binary security tokens.

A binary security token has the following attributes that are used for interpretation:

v Value type

v Encoding type

The following example depicts an LTPA binary security token in a Web services security message header:

<wsse:BinarySecurityToken xmlns:ns7902342339871340177=

 "http://www.ibm.com/websphere/appserver/tokentype/5.0.2"

 EncodingType="wsse:Base64Binary"

 ValueType="ns7902342339871340177:LTPA">

 MIZ6LGPt2CzXBQfio9wZTo1VotWov0NW3Za6lU5K7Li78DSnIK6iHj3hxXgrUn6p4wZI

 8Xg26havepvmSJ8XxiACMihTJuh1t3ufsrjbFQJOqh5VcRvI+AKEaNmnEgEV65jUYAC9

 C/iwBBWk5U/6DIk7LfXcTT0ZPAd+3D3nCS0f+6tnqMou8EG9mtMeTKccz/pJVTZjaRSo

1356 Securing applications and their environment

msu0sewsOKfl/WPsjW0bR/2g3NaVvBy18VlTFBpUbGFVGgzHRjBKAGo+ctkl80nlVLIk

 TUjt/XdYvEpOr6QoddGi4okjDGPyyoDxcvKZnReXww5UsoqlpfXwN4KG9as=

</wsse:BinarySecurityToken></wsse:Security></soapenv:Header>

As shown in the example, the token is Base64Binary encoded.

Important: There is an important distinction between Version 5.x and Version 6 and later applications.

The information in this article supports Version 5.x applications only that are used with

WebSphere Application Server Version 6.0.x and later. The information does not apply to

Version 6 and later applications.

XML token

XML tokens are offered in two formats, Security Assertion Markup Language (SAML) and Extensible rights

Markup Language (XrML).

XML-based security tokens are growing in popularity. Two well-known formats are:

v Security Assertion Markup Language (SAML)

v Extensible rights Markup Language (XrML)

Using textensibility of the <wsse:Security> header in XML-based security tokens, you can directly insert

these security tokens into the header.

SAML assertions are attached to Web services security messages using Web services by placing

assertion elements inside the <wsse:Security> header. The following example illustrates a Web services

security message with a SAML assertion token.

<S:Envelope xmlns:S="...">&

 <wsse:Security xmlns:wsse="...">

 <saml:Assertion

 MajorVersion="1"

 MinorVersion="0"

 AssertionID="SecurityToken-ef375268"

 Issuer="elliotw1"

 IssueInstant="2002-07-23T11:32:05.6228146-07:00"

 xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion">

 ...

 </saml:Assertion>

 </wsse:Security>

 </S:Header>

 <S:Body>

 ...

 </S:Body>

</S:Envelope>

For more information on SAML and XrML, see Web services: Resources for learning.

Important: There is an important distinction between Version 5.x and Version 6 and later applications.

The information in this article supports Version 5.x applications only that are used with

WebSphere Application Server Version 6.0.x and later. The information does not apply to

Version 6.0.x and later applications.

Security token

A security token represents a set of claims made by a client that might include a name, password, identity,

key, certificate, group, privilege, and so on.

Web services security provides a general-purpose mechanism to associate security tokens with messages

for single message authentication. A specific type of security token is not required by Web services

Chapter 14. Web services 1357

security. Web services security is designed to be extensible and support multiple security token formats to

accommodate a variety of authentication mechanisms. For example, a client might provide proof of identity

and proof of a particular business certification.

A security token is embedded in the SOAP message within the SOAP header. The security token within

the SOAP header is propagated from the message sender to the intended message receiver. On the

receiving side, the WebSphere Application Server security handler authenticates the security token and

sets up the caller identity on the running thread.

Remember: The information in this article supports Version 5.x applications only that are used with

WebSphere Application Server Version 6.0.x and later. The information does not apply to

Version 6 and later applications.

Securing Web services for version 5.x applications using a pluggable

token

Important: There is an important distinction between Version 5.x and Version 6 and later applications.

The information in this article supports Version 5.x applications only that are used with

WebSphere Application Server Version 6.0.x and later. The information does not apply to

Version 6.0.x and later applications.

WebSphere Application Server provides several different methods to secure your Web services; a

pluggable token is one of these methods. You might secure your Web services using any of the following

methods:

v XML digital signature

v XML encryption

v Basicauth authentication

v Identity assertion authentication

v Signature authentication

v Pluggable token

Complete the following steps to secure your Web services using a pluggable token:

1. Generate a security token using the Java Authentication and Authorization Service (JAAS)

CallbackHandler interface. The Web services security run time uses the JAAS CallbackHandler

interface as a plug-in to generate security tokens on the client side or when Web services is acting as

a client.

2. Configure your pluggable token. To use pluggable tokens to secure your Web services, you must

configure both the client request sender and the server request receiver. You can configure your

pluggable tokens using either the WebSphere Application Server administrative console or the

Application Server Toolkit. For more information, see the following topics:

v “Configuring pluggable tokens using an assembly tool”

v “Configuring pluggable tokens using the administrative console” on page 1361

Configuring pluggable tokens using an assembly tool

Important: There is an important distinction between Version 5.x and Version 6 and later applications.

The information in this article supports Version 5.x applications only that are used with

WebSphere Application Server Version 6.0.x and later. The information does not apply to

Version 6.0.x and later applications.

This document describes how to configure a pluggable token in the request sender (ibm-
webservicesclient-ext.xmi and ibm-webservicesclient-bnd.xmi file) and request receiver

(ibm-webservices-ext.xmi and ibm-webservices-bnd.xmi file).

1358 Securing applications and their environment

The pluggable token is required for the request sender and request receiver because they are a pair. The

request sender and the request receiver must match for the receiver to accept a request.

Prior to completing these steps, it is assumed that you have already created a Web service that is based

on the Java 2 Platform, Enterprise Edition (J2EE) specification. If not, see Developing Web services

applications to create a Web service that is based on the J2EE specification. See either of the following

topics for an introduction of how to manage Web services security binding information for the server:

v “Configuring the server security bindings using an assembly tool” on page 1306

v “Configuring the server security bindings using the administrative console” on page 1309

You must specify the security constraints in the ibm-webservicesclient-ext.xmi and the

ibm-webservices-ext.xmi files for the required tokens using an assembly tool such as the Application

Server Toolkit or Rational Web Developer.

Complete the following steps to configure the request sender using the ibm-webservicesclient-ext.xmi

and ibm-webservicesclient-bnd.xmi files:

1. Launch an assembly tool. For more information on the assembly tools, see Assembly tools.

2. Switch to the J2EE perspective. Click Window > Open Perspective > J2EE.

3. Click Application Client Projects > application_name > appClientModule > META-INF.

4. Right-click the application-client.xml file, select Open with > Deployment descriptor editor.

5. Click the WS Extension tab. The Web service client security extensions editor is displayed.

a. Under Service References, select an existing service reference or click Add to create a new

reference.

b. Under Port Qname Bindings, select an existing port qualified name for the selected service

reference or click Add to create a new port name binding.

c. Under Request Sender Configuration: Login Configuration, select an exiting authentication method

or type in a new one in the editable list box (Lightweight Third Party Authorization (LTPA) is a

supported token generation when Web services is acting as client).

d. Click File > Save to save the changes.

6. Click the Web services client binding tab. The Web services client binding editor is displayed.

a. Under Port qualified name binding, select an existing entry or click Add to add a new port name

binding. The Web services client binding editor displays for the selected port.

b. Under Login binding, click Edit or Enable. The Login Binding dialog box is displayed.

1) In the Authentication Method field, enter the authentication method. The authentication method

that you enter in this field must match the authentication method defined on the Security

Extension tab for the same Web service port. This field is mandatory.

2) (Optional) Enter the token value type information in the URI and Local name fields. These

fields are ignored for the BasicAuth, Signature, and IDAssertion authentication methods, but

required for other authentication methods. The token value type information is inserted into the

<wsse:BinarySecurityToken>@ValueType element for binary security token and is used as the

namespace for the XML-based token.

3) Enter an implementation of the Java Authentication and Authorization Service (JAAS)

javax.security.auth.callback.CallbackHandler interface. This field is mandatory.

4) Enter the basic authentication information in the User ID and Password fields. The basic

authentication information is passed to the construct of the CallbackHandler implementation.

The use of the basic authentication information depends on the implementation of

CallbackHandler.

5) In the Property field, add name and value pairs. These pairs are passed to the construct of the

CallbackHandler implementation as java.util.Map values.

6) Click OK.

Chapter 14. Web services 1359

Click Disable under Login binding on the Web services client port binding tab to remove the

authentication method login binding.

c. Click File > Save to save the changes.

7. In the Package Explorer window, right-click the webservices.xml file and click Open with > Web

services editor. The Web Services window displays.

a. Click the Security extensions tab. The Web service security extensions editor is displayed.

1) Under Web Service Description Extension, select an existing service reference or click Add to

create a new extension.

2) Under Port Component Binding, select an existing port qualified name for the selected service

reference or click Add to create a new one.

3) Under Request Receiver Service Configuration Details: Login Configuration, select an exiting

authentication method or click Add and enter a new method in the Add AuthMethod field that

displays. You can select multiple authentication methods for the request receiver. The security

token of the incoming message is authenticated against the authentication methods in the order

that they are specified in the list. Click Remove to remove the selected authentication method

or methods.

b. Click File > Save to save the changes.

c. Click the Bindings tab. The Web services bindings editor is displayed.

1) Under Web service description bindings, select an existing entry or click Add to add a new

Web services descriptor.

2) Click the Binding configurations tab. The Web services binding configurations editor is

displayed for the selected Web services descriptor.

3) Under Request receiver binding configuration details: login mapping, click Add to create a new

login mapping or click Edit to edit the selected login mapping. The Login mapping dialog is

displayed.

a) In the Authentication method field, enter the authentication method. The information entered

in this field must match the authentication method defined on the Security Extensions tab

for the same Web service port. This field is mandatory.

b) In the Configuration name field, enter a JAAS login configuration name. This is a mandatory

field. You must define the JAAS login configuration name in the WebSphere Application

Server administrative console under Security > Secure administration, applications, and

infrastructure. Under Authentication, click Java Authentication and Authorization

Service > Application logins. For more information, see “Configuring programmatic logins

for Java Authentication and Authorization Service” on page 552.

c) (Optional) Select Use Token value type and enter the token value type information in the

URI and Local name fields. This information is optional for BasicAuth, Signature and

IDAssertion authentication methods, but required for any other authentication method. The

token value type is used to validate the <wsse:BinarySecurityToken>@ValueType element

for binary security tokens and to validate the namespace of the XML-based token.

d) Under Callback Handler Factory, enter an implementation of the

com.ibm.wsspi.wssecurity.auth.callback.CallbackHandlerFactory interface in the Class name

field. This field is mandatory.

e) Under Callback Handler Factory property, click Add and enter the name and value pairs for

the Callback Handler Factory Property. These name and value pairs are passed as

java.util.Map to the com.ibm.wsspi.wssecurity.auth.callback.CallbackHandlerFactory.init()

method. The use of these name and value pairs is determined by the

CallbackHandlerFactory implementation.

f) Under Login Mapping Property, click Add and enter the name and value pairs for the Login

mapping property. These name and value pairs are available to the JAAS Login Modules

through thecom.ibm.wsspi.wssecurity.auth.callback.PropertyCallback JAAS Callback

interface. Click Remove to delete the selected login mapping.

1360 Securing applications and their environment

g) Click OK.

d. Click File > Save to save the changes.

The previous steps define how to configure the request sender to create security tokens in the Simple

Object Access Protocol (SOAP) message and to configure the request receiver to validate the security

tokens found in the incoming SOAP message. WebSphere Application Server supports pluggable security

tokens.

You can use the authentication method defined in the login bindings and login mappings to generate

security tokens in the request sender and validate security tokens in the request receiver.

After you configure pluggable tokens, you must configure both the client and the server to support

pluggable tokens. See the following topics to configure the client and the server:

v Configuring the client for LTPA token authentication: Specifying LTPA token authentication

v Configuring the client for LTPA token authentication: Collecting the authentication information

v Configuring the server to handle LTPA token authentication

v Configuring the server to validate LTPA token authentication information

Configuring pluggable tokens using the administrative console

Important: There is an important distinction between Version 5.x and Version 6 and later applications.

The information in this article supports Version 5.x applications only that are used with

WebSphere Application Server Version 6.0.x and later. The information does not apply to

Version 6.0.x and later applications.

Prior to completing these steps, it is assumed that you have already created a Web service that is based

on the Java 2 Platform, Enterprise Edition (J2EE) specification. If not, see Developing Web services

applications to create Web services that is based on the J2EE specification. See either of the following

topics for an introduction of how to manage Web services security binding information for the server:

v “Configuring the server security bindings using an assembly tool” on page 1306

v “Configuring the server security bindings using the administrative console” on page 1309

This document describes how to configure a pluggable token in the request sender (ibm-
webservicesclient-ext.xmi and ibm-webservicesclient-bnd.xmi file) and request receiver

(ibm-webservices-ext.xmi and ibm-webservices-bnd.xmi file).

Important: The pluggable token is required for the request sender and request receiver as they are a

pair. The request sender and the request receiver must match for a request to be accepted by

the receiver.

Prior to completing these steps, it is assumed that you deployed a Web services-enabled enterprise

application to the WebSphere Application Server.

Use the following steps to configure the client-side request sender (ibm-webservicesclient-bnd.xmi file) or

server-side request receiver (ibm-webservices-bnd.xmi file) using the WebSphere Application Server

administrative console.

1. Click Applications > Enterprise applications > enterprise_application.

2. Under Manage modules, click URI_name. The URI is the Web services-enabled module.

a. Under Web Services Security Properties, click Web services: client security bindings to edit the

response sender binding information, if Web services is acting as client.

1) Under Response sender binding, click Edit.

2) Under Additional Properties, click Login binding.

3) Select Dedicated login binding to define a new login binding.

Chapter 14. Web services 1361

a) Enter the authentication method, this must match the authentication method defined in IBM

extension deployment descriptor. The authentication method must be unique in the binding

file.

b) Enter an implementation of the JAAS javax.security.auth.callback.CallbackHandler

interface.

c) Enter the basic authentication information (User ID and Password) and the basic

authentication information is passed to the construct of the CallbackHandler

implementation. The usage of the basic authentication information is up to the

implementation of the CallbackHandler.

d) Enter the token value type, it is optional for BasicAuth, Signature and IDAssertion

authentication methods but required for any other authentication method. The token value

type is inserted into the <wsse:BinarySecurityToken>@ValueType for binary security token

and used as the namespace of the XML based token.

e) Click Properties. Define the property with name and value pairs. These pairs are passed to

the construct of the CallbackHandler implementation as java.util.Map.

Select None to deselect the login binding.

b. Under Web Services Security Properties, click Web services: server security bindings to edit the

request receiver binding information.

1) Under Request Receiver Binding, click Edit.

2) Under Additional Properties, click Login mappings.

3) Click New to create new login mapping.

a) Enter the authentication method, this must match the authentication method defined in the

IBM extension deployment descriptor. The authentication method must be unique in the

login mapping collection of the binding file.

b) Enter a JAAS Login Configuration name. The JAAS Login Configuration must be defined

under Security > Global security. Under Authentication, click JAAS Configuration >

Application Logins. For more information, see “Configuring programmatic logins for Java

Authentication and Authorization Service” on page 552.

c) Enter an implementation of the

com.ibm.wsspi.wssecurity.auth.callback.CallbackHandlerFactory interface. This is a

mandatory field.

d) Enter the token value type, it is optional for BasicAuth, Signature and IDAssertion

authentication methods but required for any other authentication method. The token value

type is used to validate against the <wsse:BinarySecurityToken>@ValueType for binary

security token and against the namespace of the XML based token.

e) Enter the name and value pairs for the ″Login Mapping Property″ by clicking Properties .

These name and value pairs are available to the JAAS Login Module or Modules by

com.ibm.wsspi.wssecurity.auth.callback.PropertyCallback JAAS Callback. Note: This is

true when editing existing login mappings but not when creating new login mappings.

f) Enter the name and value pairs for the ″Callback Handler Factory Property″, these name

and value pairs is passed as java.util.Map to the

com.ibm.wsspi.wssecurity.auth.callback.CallbackHandlerFactory.init() method. The

usage of these name and value pairs is up to the CallbackHandlerFactory implementation.

c. Click authentication method link to edit the selected login mapping.

d. Click Remove to remove the selected login mapping or mappings.

3. Click Save .

The previous steps define how to configure the request sender to create security tokens in the Simple

Object Access Protocol (SOAP) message and the request receiver to validate the security tokens found in

the incoming SOAP message. WebSphere Application Server supports pluggable security tokens.

1362 Securing applications and their environment

You can use the authentication method defined in the login bindings and login mappings to generate

security tokens in the request sender and validate security tokens in the request receiver.

Once you have configured pluggable tokens, you must configure both the client and the server to support

pluggable tokens. See the following topics to configure the client and the server:

v “Configuring the client for LTPA token authentication: specifying LTPA token authentication” on page

1364

v “Configuring the client for LTPA token authentication: collecting the authentication method information”

on page 1365

v “Configuring the server to handle LTPA token authentication information” on page 1366

v “Configuring the server to validate LTPA token authentication information” on page 1366

Pluggable token support

Important: There is an important distinction between Version 5.x and Version 6.0.x applications. The

information in this article supports Version 5.x applications only that are used with WebSphere

Application Server Version 6.0.x and later. The information does not apply to Version 6.0.x

applications.

You can extend the WebSphere Application Server login mapping mechanism to handle new types of

authentication tokens. WebSphere Application Server provides a pluggable framework to generate security

tokens on the sender-side of the message and to validate the security token on the receiver-side of the

message. The framework is based on the Java Authentication and Authorization Service (JAAS)

Application Programming Interfaces (APIs). Pluggable security token support provides plug-in points to

support customer security token types including token generation, token validation, and client identity

mapping to a WebSphere Application Server identity that is used by the Java 2 Platform, Enterprise

Edition (J2EE) authorization engine. Moreover, the pluggable token generation and validation framework

supports XML-based tokens to be inserted into the Web service message header and validated on the

receiver-side validation.

Use the javax.security.auth.callback.CallbackHandler implementation to create a new type of security token

following these guidelines:

v Use a constructor that takes a user name (a string or null, if not defined), a password (a char[] or null, if

not defined) and java.util.Map (empty, if properties are not defined).

v Use handle() methods that can process the following implementations:

– javax.security.auth.callback.NameCallback

– javax.security.auth.callback.PasswordCallback

– com.ibm.wsspi.wssecurity.auth.callback.XMLTokenCallback

– com.ibm.websphere.security.auth.callback.WSCredTokenCallbackImpl

If:

1. Either the javax.security.auth.callback.NameCallback or the

javax.security.auth.callback.PasswordCallback implementation is populated with data, then a

<wsse:UsernameToken> element is created.

2. com.ibm.websphere.security.auth.callback.WSCredTokenCallbackImpl is populated, the

<wsse:BinarySecurityToken> element is created from the

com.ibm.websphere.security.auth.callback.WSCredTokenCallbackImpl implementation.

3. com.ibm.wsspi.wssecurity.auth.callback.XMLTokenCallback is populated, a XML-based token is

created based on the Document Object Model (DOM) element that is returned from the

XMLTokenCallback.

Encode the token byte by using the security handler and not by using the

javax.security.auth.callback.CallbackHandler implementation.

Chapter 14. Web services 1363

You can implement the com.ibm.wsspi.wssecurity.auth.callback.CallbackHandlerFactory interface, which is

a factory for instantiating the javax.security.auth.callback.CallbackHandler implementation. For your own

implementation, you must provide the javax.security.auth.callback.CallbackHandler interface. The Web

service security run time instantiates the factory implementation class and passes the authentication

information from the Web services message header to the factory class through the setter methods. The

Web services security run time then invokes the newCallbackHandler() method of the factory

implementation class to obtain an instance of the javax.security.auth.CallbackHandler object. The object is

passed to the JAAS login configuration.

The following is an example the definition of the CallbackHandlerFactory interface:

public interface com.ibm.wsspi.wssecurity.auth.callback.CallbackHandlerFactory {

 public void setUsername(String username);

 public void setRealm(String realm);

 public void setPassword(String password);

 public void setHashMap(Map properties);

 public void setTokenByte(byte[] token);

 public void setXMLToken(Element xmlToken);

 public CallbackHandler newCallbackHandler();

Configuring the client for LTPA token authentication: specifying LTPA token

authentication

To configure Lightweight Third-Party Authentication (LTPA) token authentication, specify LTPA token

authentication. Only configure the client for LTPA token authentication if the authentication mechanism

configured in WebSphere Application Server is LTPA.

Important: There is an important distinction between Version 5.x and Version 6 and later applications.

The information in this article supports Version 5.x applications only that are used with

WebSphere Application Server Version 6.0.x and later. The information does not apply to

Version 6.0.x and later applications.

Use this task to configure Lightweight Third-Party Authentication (LTPA) token authentication. Only

configure the client for LTPA token authentication if the authentication mechanism configured in

WebSphere Application Server is LTPA. When a client authenticates to a WebSphere Application Server,

the credential created contains an LTPA token. When a Web service calls a downstream Web service, you

can configure the first Web service to send the LTPA token from the originating client. Do not attempt to

configure LTPA from a pure client. LTPA works only when you configure the client-side of a Web service

acting as a client to a downstream Web service. For the downstream Web service to validate the LTPA

token, the LTPA keys on both servers must be the same.

Complete the following steps to specify LTPA token as the authentication method:

1. Launch an assembly tool. For more information on the assembly tools, see Assembly tools.

2. Switch to the Java 2 Platform, Enterprise Edition (J2EE) perspective. Click Window > Open

Perspective > J2EE.

3. Click Application Client Projects > application_name > appClientModule > META-INF.

4. Right-click the application-client.xml file, select Open with > Deployment descriptor editor.

5. Click the Extensions tab, which is located at the bottom of the deployment descriptor editor within the

assembly tool.

6. Expand the Request sender configuration > Login configuration section.

7. Select LTPA as the authentication method. For more conceptual information on LTPA authentication,

see “Lightweight Third Party Authentication” on page 1368.

After you specify LTPA token as the authentication method, you must specify how to collect the LTPA

token information. See “Configuring the client for LTPA token authentication: collecting the authentication

method information” on page 1365 for more information.

1364 Securing applications and their environment

Configuring the client for LTPA token authentication: collecting the authentication

method information

To configure Lightweight Third-Party Authentication (LTPA) token authentication, collect the LTPA token

authentication information. Do not configure the client for LTPA token authentication unless the

authentication mechanism configured in WebSphere Application Server is LTPA.

Important: There is an important distinction between Version 5.x and Version 6 and later applications.

The information in this article supports Version 5.x applications only that are used with

WebSphere Application Server Version 6.0.x and later. The information does not apply to

Version 6.0.x and later applications.

Use this task to configure Lightweight Third-Party Authentication (LTPA) token authentication. Do not

configure the client for LTPA token authentication unless the authentication mechanism configured in

WebSphere Application Server is LTPA. When a client authenticates to a WebSphere Application Server,

the credential created contains an LTPA token. When a Web service calls a downstream Web service, you

can configure the first Web service to send the LTPA token from the originating client. Do not attempt to

configure LTPA from a pure client. LTPA works only when you configure the client-side of a Web service

acting as a client to a downstream Web service. In order for the downstream Web service to validate the

LTPA token, the LTPA keys on both servers must be the same.

Complete the following steps to specify how to collect the LTPA token authentication information:

1. Launch an assembly tool. For more information on the assembly tools, see Assembly tools.

2. Switch to the Java 2 Platform, Enterprise Edition (J2EE) perspective. Click Window > Open

Perspective > J2EE.

3. Click Application Client Projects > application_name > appClientModule > META-INF.

4. Right-click the application-client.xml file, select Open with > Deployment descriptor editor.

5. Click the WS Bindings tab, which is located at the bottom of the deployment descriptor editor within

the assembly tool.

6. Expand the Security request sender binding configuration > Login binding section.

7. Click Edit to view the login binding information and select LTPA. If LTPA is not already there, enter it

as an option. The login binding dialog is displayed. Select or enter the following information:

Authentication method

Specifies the type of authentication that occurs. Select LTPA to use identity assertion.

Token value type URI and token value type local name

When you select LTPA, you must edit the token value type URI (Uniform Resource Identifier)

and the local name fields. Specifies values for custom authentication types, which are

authentication methods not mentioned in the specification. For the token value type URI field,

enter the following string: http://www.ibm.com/websphere/appserver/tokentype/5.0.2. For the

local name field, enter the following string: LTPA.

Callback handler

Specifies the Java Authentication and Authorization Service (JAAS) callback handler

implementation for collecting the LTPA information. Specify the

com.ibm.wsspi.wssecurity.auth.callback.LTPATokenCallbackHandler implementation for LTPA.

Basic authentication user ID and basic authentication password

For LTPA, you can leave these fields empty. However, when you omit this information, the

LTPA CallbackHandler implementation attempts to obtain the LTPA token from the invocation

(RunAs) credential. If an invocation (RunAs) credential does not exist, then the LTPA token is

not propagated.

Property name and property value

For LTPA, you can leave these fields blank.

Chapter 14. Web services 1365

See “Configuring the client for LTPA token authentication: specifying LTPA token authentication” on page

1364 if you have not previously specified this information.

Configuring the server to handle LTPA token authentication information

Important: There is an important distinction between Version 5.x and Version 6 and later applications.

The information in this article supports Version 5.x applications only that are used with

WebSphere Application Server Version 6.0.x and later. The information does not apply to

Version 6.0.x and later applications.

This task is used to configure Lightweight Third-Party Authentication (LTPA). LTPA is a type of

authentication mechanism in WebSphere Application Server security that defines a particular token format.

The purpose of the LTPA token authentication is to flow the LTPA token from the first Web service, which

authenticated the originating client, to the downstream Web service. Do not attempt to configure LTPA from

a pure client. Once the downstream Web service receives the LTPA token, it validates the token to verify

that the token has not been modified and has not expired. For validation to be successful, the LTPA keys

used by both the sending and receiving servers must be the same.

Complete the following steps to specify that LTPA is authentication method. The authentication method

indicated in these steps must match the authentication method specified for the client.

1. Launch an assembly tool. For more information on the assembly tools, see Assembly tools.

2. Switch to the Java 2 Platform, Enterprise Edition (J2EE) perspective. Click Window > Open

Perspective > J2EE.

3. Click EJB Projects > application_name > ejbModule > META-INF.

4. Right-click the webservices.xml file, and click Open with > Web services editor.

5. Click the Extensions tab, which is located at the bottom of the Web services editor within the assembly

tool.

6. Expand the Request receiver service configuration details > Login configuration section. You can

select from the following options:

v BasicAuth

v Signature

v ID assertion

v LTPA

7. Select LTPA to authenticate the client using the LTPA token received from the request.

After you specify the authentication method, you must specify the information that the server must validate.

See “Configuring the server to validate LTPA token authentication information” for more information.

Configuring the server to validate LTPA token authentication information

Important: There is an important distinction between Version 5.x and Version 6 and later applications.

The information in this article supports Version 5.x applications only that are used with

WebSphere Application Server Version 6.0.x and later. The information does not apply to

Version 6.0.x and later applications.

This task is used to configure Lightweight Third-Party Authentication (LTPA). LTPA is a type of

authentication mechanism in WebSphere Application Server security that defines a particular token format.

The purpose of the LTPA token authentication is to flow the LTPA token from the first Web service, which

authenticated the originating client, to the downstream Web service. Do not attempt to configure LTPA from

a pure client. Once the downstream Web service receives the LTPA token, it validates the token to verify

that the token has not been modified and has not expired. For validation to be successful, the LTPA keys

used by both the sending and receiving servers must be the same.

1366 Securing applications and their environment

Complete the following steps to specify how the server must validate the LTPA token authentication

information:

1. Launch an assembly tool. For more information on the assembly tools, see Assembly tools.

2. Switch to the Java 2 Platform, Enterprise Edition (J2EE) perspective. Click Window > Open

Perspective > J2EE.

3. Click EJB Projects > application_name > ejbModule > META-INF.

4. Right-click the webservices.xml file, and click Open with > Web services editor.

5. Click the Binding Configurations tab, which is located at the bottom of the Web services editor within

the assembly tool.

6. Expand the Request receiver binding configuration details > Login mapping section.

7. Click Edit to view the login mapping information. The login mapping information is displayed. Select or

enter the following information:

Authentication method

Specifies the type of authentication that occurs. Select LTPA to use LTPA token authentication.

Configuration name

Specifies the Java Authentication and Authorization Service (JAAS) login configuration name.

For the LTPA authentication method, enter WSLogin for the JAAS login configuration name.

This configuration understands how to validate an LTPA token.

Use token value type

Determines if you want to specify a custom token type. For LTPA authentication, you must

select this option because LTPA is considered a custom type. LTPA is not in the Web Services

Security Specification.

Token value type URI and local name

Specifies custom authentication types. If you select Use Token value type you must enter

data into the Token value Type URI (Uniform Resource Identifier) and local name fields. For

the token value type URI field, enter the following string: http://www.ibm.com/websphere/
appserver/tokentype/5.0.2. For the local name, enter the following string: LTPA

Callback handler factory class name

Creates a JAAS CallbackHandler implementation that understands the following callback

handlers:

v javax.security.auth.callback.NameCallback

v javax.security.auth.callback.PasswordCallback

v com.ibm.wsspi.wssecurity.auth.callback.BinaryTokenCallback

v com.ibm.wsspi.wssecurity.auth.callback.XMLTokenReceiverCallback

v com.ibm.wsspi.wssecurity.auth.callback.PropertyCallback

For any of the default authentication methods (BasicAuth, IDAssertion, Signature, and LTPA),

use the callback handler factory default implementation. Enter the following class name for

any of the default authentication methods including LTPA:

com.ibm.wsspi.wssecurity.auth.callback.WSCallbackHandlerFactoryImpl

 This implementation creates the correct callback handler for the default implementations.

Callback handler factory property

Specifies callback handler properties for custom callback handler factory implementations.

Default callback handler factory implementation does not any property specifications. For

LTPA, you can leave this field blank.

Login mapping property

Specifies properties for a custom login mapping. For default implementations including LTPA,

you can leave this field blank.

Chapter 14. Web services 1367

See “Configuring the server to handle LTPA token authentication information” on page 1366 if you have

not previously specified this information.

Lightweight Third Party Authentication:

When you use the lightweight third party authentication (LTPA) method, the <wsse:BinarySecurityToken>

security token is generated. On the request sender side, the security token is generated by invoking a

callback handler. On the request receiver side, the security token is validated by a Java Authentication and

Authorization Service (JAAS) login module.

 The following information describes token generation and token validation operations.

LTPA token generation

The request sender uses a callback handler to generate an LTPA security token. The callback

handler returns a security token that is inserted in the SOAP message. Specify the appropriate

callback handler in the <LoginBinding> element of the bindings file (ibm-webservicesclient-
bnd.xmi). The following callback handler implementation can be used with the LTPA authentication

method:

v com.ibm.wsspi.wssecurity.auth.callback.LTPATokenCallbackHandler

You can add your own callback handlers that implement the

javax.security.auth.callback.CallbackHandler property.

 When using the LTPA authentication method (or any authentication method other than BasicAuth,

Signature or IDAssertion), the TokenValueType attribute of the <LoginBinding> element in the

bindings file (ibm-webservicesclient-bnd.xmi) must be specified. The values to use for the LTPA

TokenValueType attribute are:

v uri=″http://www.ibm.com/websphere/appserver/tokentype/5.0.2″

v localName=″LTPA″

LTPA token validation

The request receiver retrieves the LTPA security token from the SOAP message and validates the

message using a JAAS login module. The <wsse:BinarySecurityToken> security token is used to

perform the validation. If the validation is successful, the login module returns a JAAS Subject.

Subsequently, this Subject is set as the identity of the running thread. If the validation fails, the

request is rejected with a SOAP fault.

 The appropriate JAAS login configuration to use is specified in the bindings file <LoginMapping>

element. Default bindings specified in the ws-security.xml file, but these can be overridden using

the application-specific ibm-webservices-bnd.xmi file. The configuration information consists of a

CallbackHandlerFactory, a ConfigName and a TokenValueType attribute. The

CallbackHandlerFactory specifies the name of a class to use to create the JAAS CallbackHandler

object. A CallbackHandlerFactory implementation is provided

(com.ibm.wsspi.wssecurity.auth.callback.WSCallbackHandlerFactoryImpl). The ConfigName

attribute specifies a JAAS configuration name entry. The Web services security run time first

searches the security.xml file for a matching entry and if a matching entry is not found, the run

time searches the wsjaas.conf file. A default configuration entry suitable for the LTPA

authentication method is provided (WSLogin). An appropriate TokenValueType element is located in

the LTPA LoginMapping section of the default ws-security.xml file.

Remember: The information in this article supports Version 5.x applications only that are used with

WebSphere Application Server Version 6.0.x and later. The information does not apply to

Version 6 and later applications.

1368 Securing applications and their environment

Tuning Web services security for Version 5.x applications

The Java Cryptography Extension (JCE) policy is integrated into the software development kit (SDK)

Version 1.4.x and is no longer an optional package. However, due to export and import regulations, the

default JCE jurisdiction policy file shipped with the SDK enables you to use strong, but limited,

cryptography only. To enforce this default policy, WebSphere Application Server uses a JCE jurisdiction

policy file that might introduce a performance impact. The default JCE jurisdiction policy might have a

performance impact on the cryptographic functions that are supported by Web services security. If you

have Web services applications that use transport level security for XML encryption or digital signatures,

you might encounter performance degradation over previous releases of WebSphere Application Server.

However, IBM and Sun Microsystems provide versions of these jurisdiction policy files that do not have

restrictions on cryptographic strengths. If you are permitted by your governmental import and export

regulations, download one of these jurisdiction policy files. After downloading one of these files, the

performance of JCE and Web Services security might improve.

For WebSphere Application Server platforms using IBM Developer Kit, Java Technology Edition Version

1.4.2, including the AIX, Linux, and Windows platforms, you can obtain unlimited jurisdiction policy files by

completing the following steps:

1. Go to the following Web site: http://www.ibm.com/developerworks/java/jdk/security/index.html

2. Click Java 1.4.2

3. Click IBM SDK Policy files.

The Unrestricted JCE Policy files for SDK 1.4 Web site is displayed.

4. Enter your user ID and password or register with IBM to download the policy files. The policy files are

downloaded onto your machine.

For WebSphere Application Server platforms using the Sun-based Java Development Kit (JDK) Version

1.4.2, including the Solaris environments and the HP-UX platform, you can obtain unlimited jurisdiction

policy files by completing the following steps:

1. Go to the following Web site: http://java.sun.com/j2se/1.4.2/download.html

2. Click Other Downloads.

3. Locate the JCE Unlimited Strength Jurisdiction Policy Files 1.4.2 information and click Download. The

policy files are downloaded onto your machine.

After following either of these sets of steps, two Java Archive (JAR) files are placed in the JVM

jre/lib/security/ directory.

Enabling security for WSIF

Here are the steps to be taken to enable the Web Services Invocation Framework (WSIF) to interact with

a security manager.

WSIF interacts with a security manager in the following ways:

v WSIF runs in the Java 2 platform, Enterprise Edition (J2EE) security context without modification.

v When WSIF is run under a J2EE container, port implementations can use the security context to pass

on security tokens or credentials as necessary.

v WSIF implementations can automatically convert J2EE security context into appropriate context for

onward services.

For WSIF to interact effectively with the WebSphere Application Server security manager, complete the

following step:

To load the WSDL file, enable the FilePermission attribute in the was.policy file. This permission is

required when a WSDL file is referred to using the file:// protocol.

Chapter 14. Web services 1369

http://www.ibm.com/developerworks/java/jdk/security/index.html
http://java.sun.com/j2se/1.4.2/download.html

Security API for the UDDI Version 3 registry

In UDDI Version 1 and Version 2 the security API was part of the Publish API. In UDDI Version 3 the

security API is independent.

Use the UDDI Version 3 Client for Java (see UDDI Version 3 Client) to access programmatically all API

calls and arguments supported by the UDDI Version 3 registry. You can also access the API functions

graphically by using the UDDI user interface, however not all of the functions are available with this

method.

The UDDI Version 3 registry supports the following Security API calls:

discard_authToken

Used to inform a node that a previously obtained authentication token is no longer required and

should be considered invalid if used after this message is received. The token is to be discarded

and the session is effectively ended.

get_authToken

Used to request an authentication token in the form of an authInfo element from a UDDI node.

For full details of the syntax of the above queries, refer to the UDDI Version 3 API specification at

http://www.uddi.org/pubs/uddi_v3.htm.

1370 Securing applications and their environment

http://www.uddi.org/pubs/uddi_v3.htm

Chapter 15. Data access resources

Security of lookups with component managed authentication

External Java clients (stand alone clients or servers from other cells) with Java Naming and Directory

Interface (JNDI) access can look up a Java 2 Connector (J2C) resource such as a data source or Java

Message Service (JMS) queue. However, they are not permitted to take advantage of the component

managed authentication alias defined on the resource. This alias is a default value used when the user

and password are not supplied on the getConnection() call. Therefore, if an external client needs to get a

connection, it must assume responsibility for the authentication by passing it through arguments on the

getConnection() call.

Any client running in the WebSphere Application Server process (such as a Servlet or an enterprise bean)

within the same cell that can look up a resource in the JNDI namespace can obtain connections without

explicitly providing authentication data on the getConnection() call. In this case, if the component’s

res-auth setting is Application, authentication is taken from the component-managed authentication alias

defined on the connection factory. With res-auth set to Container, authentication is taken from the login

configuration defined on the component’s resource-reference. It is important to note that J2C

authentication alias is per cell. An enterprise bean or Servlet in one application server cannot look up a

resource in another server process which is in a different cell, because the alias would not be resolved.

© Copyright IBM Corp. 2006 1371

1372 Securing applications and their environment

Chapter 16. Messaging resources

Configuring authorization security for a Version 5 default messaging

provider

Use this task to configure authorization security for the default messaging provider on a WebSphere

Application Server version 5 node in a deployment manager cell.

To configure authorization security for the version 5 default messaging provider complete the following

steps.

Note: Security for the version 5 default messaging provider is enabled when you enable global security

for WebSphere Application Server on the version 5 node. For more information about enabling

global security, see Enabling security for all application servers.

1. Configure authorization settings to access JMS resources owned by the embedded WebSphere JMS

provider.

Authorization to access JMS resources owned by the embedded messaging subsystem is controlled by

settings in the app_server_root\config\cells\your_cell_name\integral-jms-authorizations.xml file.

The settings grant or deny authenticated users access to messaging resources (queues or topics). As

supplied, the integral-jms-authorisations.xml file grants the following permissions:

v Read and write permissions to all queues.

v Pub, sub, and persist to all topics.

To configure authorization settings, edit the integral-jms-authorisations.xml file according to the

information in this topic and in that file. Please note the file is in Unicode, which requires a binary FTP

to the host from a workstation.

2. Edit the queue-admin-userids element to create a list of userids with administrative access to all

queues. Administrative access is needed to create queues and perform other administrative activities

on queues. For example, consider the following queue-admin-userids section:

<queue-admin-userids>

 <userid>adminid1</userid>

 <userid>adminid2</userid>

</queue-admin-userids>

In this example the userids adminid1 and adminid2 are defined to have administrative access to all

queues.

3. Edit the queue-default-permissions element to define the default queue access permissions. These

permissions are used for queues for which you do not define specific permissions (in queue sections).

If this section is not specified, then access permissions exist only for those queues for which you have

specifically created queue elements.

For example, consider the following queue-default-permissions element:

 <queue-default-permissions>

 <permission>write</permission>

 </queue-default-permissions>

In this example the default access permission for all queues is write. This can be overridden for a

specific queue by creating a queue element that sets its access permission to read.

4. If you want to define specific access permissions for a queue, create a queue element, then define the

following elements:

For example, consider the following queue element:

 <queue>

 <name>q1</name>

 <public>

 </public>

 <authorize>

 <userid>useridr</userid>

© Copyright IBM Corp. 2006 1373

<permission>read</permission>

 </authorize>

 <authorize>

 <userid>useridw</userid>

 <permission>write</permission>

 </authorize>

 <authorize>

 <userid>useridrw</userid>

 <permission>read</permission>

 <permission>write</permission>

 </authorize>

 </queue>

In this example for the queue q1, the userid useridr has read permission, the userid useridw has write

permission, the userid useridrw has both read and write permissions, and all other userids have no

access permissions (<public></public>).

5. Edit topic elements to define the access permissions for publish/subscribe topic destinations.

For topics, you can grant and deny access permissions. Full permission inheritance is supported on

topics. If you do not define specific access permissions for a userid on a specific topic then

permissions are inherited first from the public permissions on that topic then from the parent topic. The

inheritance of access permissions continues until the root topic from which the root permissions are

assumed.

a. If you want to define default access permissions for the root topic, edit a topic element with an

empty name element. If you omit such a topic section, topics have no default topic permissions

other than those defined by specific topic elements. For example, consider the following topic

element for the root topic:

 <topic>

 <name></name>

 <public>

 <permission>+pub</permission>

 </public>

 </topic>

In this example, the default access permission for all topics is set to publish. This can be

overridden by other topic elements for specific topic names.

b. If you want to define access permissions for a specific topic, create a topic element with the name

for the topic then define the access permissions in the public and authorize elements of the topic

element. For example, consider the following topic section:

 <topic>

 <name>a/b/c</name>

 <public>

 <permission>+sub</permission>

 </public>

 <authorize>

 <userid>useridpub</userid>

 <permission>+pub</permission>

 </authorize>

 </topic>

In this example, the subscribe permission is granted to anyone accessing any topic whose name

starts with a/b/c. Also, the userid useridpub is granted publish permission for any topic whose

name starts with a/b/c.

6. Save the integral-jms-authorizations.xml file.

If the dynamic update setting is selected, changes to the integral-jms-authorizations.xml file become active

when the changed file is saved, so there is no need to stop and restarted the JMS server. If the dynamic

update setting is not selected, you need to stop and restart the JMS server to make changes active.

1374 Securing applications and their environment

Authorization settings for Version 5 default JMS resources

Use the integral-jms-authorisations.xml file to view or change the authorization settings for Java Message

Service (JMS) resources owned by the default messaging provider on WebSphere Application Server

version 5 nodes.

Authorization to access default JMS resources owned by the default messaging provider on WebSphere

Application Server nodes is controlled by the following settings in the was_install\config\cells\
your_cell_name\integral-jms-authorisations.xml file.

This structure of the settings in integral-jms-authorisations.xml is shown in the following example.

Descriptions of these settings are provided after the example. To configure authorization settings, follow

the instructions provided in Configuring authorization security for the Version 5 JMS providers

<integral-jms-authorizations>

 <dynamic-update>true</dynamic-update>

 <queue-admin-userids>

 <userid>adminid1</userid>

 <userid>adminid2</userid>

 </queue-admin-userids>

 <queue-default-permissions>

 <permission>write</permission>

 </queue-default-permissions>

 <queue>

 <name>q1</name>

 <public>

 </public>

 <authorize>

 <userid>useridr</userid>

 <permission>read</permission>

 </authorize>

 <authorize>

 <userid>useridw</userid>

 <permission>write</permission>

 </authorize>

 </queue>

 <queue>

 <name>q2</name>

 <public>

 <permission>write</permission>

 </public>

 <authorize>

 <userid>useridr</userid>

 <permission>read</permission>

 </authorize>

 </queue>

 <topic>

 <name></name>

 <public>

 <permission>+pub</permission>

 </public>

 </topic>

 <topic>

 <name>a/b/c</name>

 <public>

 <permission>+sub</permission>

 </public>

 <authorize>

 <userid>useridpub</userid>

Chapter 16. Messaging resources 1375

<permission>+pub</permission>

 </authorize>

 </topic>

</integral-jms-authorizations>

dynamic-update

Controls whether or not the JMS Server checks dynamically for updates to this file.

true (Default) Enables dynamic update support.

false Disables dynamic update checking and improves authorization performance.

queue-admin-userids

This element lists those userids with administrative access to all Version 5 default queue destinations.

Administrative access is needed to create queues and perform other administrative activities on queues.

You define each userid within a separate userid sub element:

<userid>adminid</userid>

Where adminid is a user ID that can be authenticated by IBM WebSphere Application Server.

queue-default-permissions

This element defines the default queue access permissions that are assumed if no permissions are

specified for a specific queue name. These permissions are used for queues for which you do not define

specific permissions (in queue elements). If this element is not specified, then no access permissions exist

unless explicitly authorized for individual queues.

You define the default permission within a separate permission sub element:

<permission>read-write</permission>

Where read-write is one of the following keywords:

read By default, userids have read access to Version 5 default queue destinations.

write By default, userids have write access to Version 5 default queue destinations.

queue

This element contains the following authorization settings for a single queue destination:

name The name of the queue.

public The default public access permissions for the queue. This is used only for those userids that have

no specific authorize element. If you leave this element empty, or do not define it at all, only those

userids with authorize elements can access the queue.

 You define each default permission within a separate permission element.

authorize

The access permissions for a specific userid. Within each authorize element, you define the

following elements:

userid The userid that you want to assign a specific access permission.

permission

An access permission for the associated userid.

 You define each permission within a separate permission element. Each permission

element can contain the keyword read or write to define the access permission.

 For example, consider the following queue element:

 <queue>

 <name>q1</name>

 <public>

 </public>

 <authorize>

 <userid>useridr</userid>

 <permission>read</permission>

 </authorize>

 <authorize>

 <userid>useridw</userid>

 <permission>write</permission>

1376 Securing applications and their environment

</authorize>

 <authorize>

 <userid>useridrw</userid>

 <permission>read</permission>

 <permission>write</permission>

 </authorize>

 </queue>

topic

This element contains the following authorization settings for a single topic destination:

Each topic element has the following sub elements:

name The name of the topic, without wildcards or other substitution characters.

public The default public access permissions for the topic. This is used only for those userids that have

no specific authorize element. If you leave this element empty, or do not define it at all, only those

userids with authorize elements can access the topic.

 You define each default permission within a separate permission element.

authorize

The access permissions for a specific userid. Within each authorize element, you define the

following elements:

userid The userid that you want to assign a specific access permission.

permission

An access permission for the associated userid.

 You define each permission within a separate permission element. Each permission

element can contain one of the following keywords to define the access permission:

+pub Grant publish permission

+sub Grant subscribe permission

+persist

Grant persist permission

-pub Deny publish permission

-sub Deny subscribe permission

-persist

Deny persist permission

Securing WebSphere MQ messaging directories and log files

Use this task to restrict access to the /var/mqm directories and log files needed for WebSphere MQ as a

JMS provider.

Note: The /var file system is used to store all the security logging information for the system, and is used

to store the temporary files for email and printing. Therefore, it is critical that you maintain free

space in /var for these operations and prevent unauthorized access to the file system. If you do not

create a separate file system for messaging data, and /var fills up, all security logging will be

stopped on the system until some free space is available in /var. Also, email and printing will no

longer be possible until some free space is available in /var.

This procedure involves steps that you complete at different stages of installing and using IBM WebSphere

Application Server, as described below. The steps are also described at appropriate points in other tasks,

but are collected here for completeness.

1. Before installing WebSphere MQ, create and mount a file system called /var/mqm. This means that

other system activity is not affected if a large amount of messaging work builds up in /var/mqm.

2. Install WebSphere MQ as a messaging provider.

As part of this stage, the installation program creates the /var/mqm/errors directory used to hold

messaging logging files as well as the directories used to hold the messaging data. During the

installation process these directories are secured with a default set of security attributes to prevent

Chapter 16. Messaging resources 1377

unauthoised access. If you change these permissions you should ensure that the permissions specified

give WebSphere MQ messaging the required access.

Configuring security for EJB 2.1 message-driven beans

Use this task to configure resource security and security permissions for Enterprise JavaBeans (EJB)

Version 2.1 message-driven beans.

The association between connection factories, destinations, and message-driven beans is provided by

listener ports. A listener port allows a deployed message-driven bean associated with the port to retrieve

messages from the associated destination. You create listener ports by specifying their administrative

name, the connection factory JNDI name, and the destination name (other optional properties are also

configurable). Listener ports provide simplified administration of the associations between connection

factories, destinations and message-driven beans, and are managed by a listener manager. The listener

manager is provided by the message listener service to control and monitor the JMS listeners that are

monitoring JMS destinations on behalf of deployed message-driven beans. For more information about

listener ports, see Message-driven beans - listener port components

Messages handled by message-driven beans have no client credentials associated with them. The

messages are anonymous.

To call secure enterprise beans from a message-driven bean, the message-driven bean needs to be

configured with a RunAs Identity deployment descriptor. Security depends on the role specified by the

RunAs Identity for the message-driven bean as an EJB component.

For more information about EJB security, see EJB component security. For more information about

configuring security for your application, see Assembling secured applications.

Connections used by message-driven beans can benefit from the added security of using J2C

container-managed authentication. To enable the use of J2C container authentication aliases and mapping,

define an authentication alias on the J2C activation specification that the message-driven bean is

configured with. If defined, the message-driven bean uses the authentication alias for its JMSConnection

security credentials instead of any application-managed alias.

To set the authentication alias, you can use the administrative console to complete the following steps.

This task description assumes that you have already created an activation specification. If you want to

create a new activation specification, see the related tasks.

v For a message-driven bean listening on a JMS destination of the default messaging provider, set the

authentication alias on a JMS activation specification.

1. To display the JMS activation specification settings, click Resources → JMS Providers → Default

messaging → [Activation Specifications] JMS activation specification

2. If you have already created a JMS activation specification, click its name in the list displayed.

Otherwise, click New to create a new JMS activation specification.

3. Set the Authentication alias property.

4. Click OK

5. Save your changes to the master configuration.

v For a message-driven bean listening on a destination (or endpoint) of another JCA provider, set the

authentication alias on a J2C activation specification.

1. To display the J2C activation specification settings, click Resources → Resource Adapters →

adapter_name → J2C Activation specifications → activation specification_name

2. Set the Authentication alias property.

3. Click OK

4. Save your changes to the master configuration.

1378 Securing applications and their environment

Chapter 17. Mail, URLs, and other J2EE resources

JavaMail security permissions best practices

In many of its activities, the JavaMail API needs to access certain configuration files. The JavaMail and

JavaBeans Activation Framework binary packages themselves already contain the necessary configuration

files. However, the JavaMail API allows the user to define user-specific and installation-specific

configuration files to meet special requirements.

The two locations where such configuration files can exist are <user.home> and <java.home>/lib. For

example, if the JavaMail API needs to access a file named mailcap when sending a message, it first tries

to access <user.home>/.mailcap. If that attempt fails, either due to lack of security permission or a

nonexistent file, the API continues to try<java.home> /lib/mailcap. If that attempts also fails, it tries

META-INF/mailcap in the class path, which actually leads to the configuration files contained in the

mail-impl.jar and activation-impl.jar files. WebSphere Application Server uses the general-purpose

JavaMail configuration files contained in the mail-impl.jar and activation-impl.jar files and does not

put any mail configuration files in <user.home>and <java.home>/lib. File read permission for both the

mail-impl.jar and activation-impl.jar files is granted to all applications to ensure proper functioning of

the JavaMail API, as shown in the following segment of the app.policy file:

grant codeBase "file:${application}" {

 // The following are required by Java mail

 permission java.io.FilePermission "${was.install.root}${/}lib${/}mail-impl.jar", "read";

 permission java.io.FilePermission "${was.install.root}${/}lib${/}activation-impl.jar", "read";

};

JavaMail code attempts to access configuration files at <user.home>and <java.home>/lib causing

AccessControlExceptions to be thrown, since there is no file read permission granted for those two

locations by default. This activity does not affect the proper functioning of the JavaMail API, but you might

see a large amount of JavaMail-related security exceptions reported in the system log, which might swamp

harmful errors that you are looking for. If this situation is a problem, consider adding two more permission

lines to the permission block above. This should eliminate most, if not all, JavaMail-related harmless

security exceptions from the log file. The application permission block in the app.policy file now looks like:

grant codeBase "file:${application}" {

 // The following are required by Java mail

 permission java.io.FilePermission "${was.install.root}${/}lib${/}mail-impl.jar", "read";

 permission java.io.FilePermission "${was.install.root}${/}lib${/}activation-impl.jar", "read";

java.io.FilePermission "${java.home}${/}lib${/}.mailcap", "read";

 permission java.io.FilePermission "${user.home}${/}lib${/}.mailcap", "read";

};

© Copyright IBM Corp. 2006 1379

1380 Securing applications and their environment

Chapter 18. Learn about WebSphere programming extensions

Use this section as a starting point to investigate the WebSphere programming model extensions for

enhancing your application development and deployment.

See Learn about WebSphere applications: Overview and new features for a brief description of each

WebSphere extension.

See the Developing and deploying applications PDF book for a brief description of each WebSphere

extension.

In addition, now your applications can use the Eclipse extension framework. Your applications are

extensible as soon as you define an extension point and provide the extension processing code for the

extensible area of the application. You can also plug an application into another extensible application by

defining an extension that adheres to the target extension point requirements. The extension point can find

the newly added extension dynamically and the new function is seamlessly integrated in the existing

application. It works on a cross Java 2 Platform, Enterprise Edition (J2EE) module basis.

The application extension registry uses the Eclipse plug-in descriptor format and application programming

interfaces (APIs) as the standard extensibility mechanism for WebSphere applications. Developers that

build WebSphere application modules can use WebSphere Application Server extensions to implement

Eclipse tools and to provide plug-in modules to contribute functionality such as actions, tasks, menu items,

and links at predefined extension points in the WebSphere application. Read the information about

Application extension registry in the Developing and deploying applications PDF book.

Scheduler

Securing scheduler tasks

Scheduled tasks are protected using application isolation and administrative roles. This topic describes

how to secure scheduler tasks.

If a task is created using a Java 2 Platform, Enterprise Edition (J2EE) server application, only applications

with the same name can access those tasks. Tasks created with a WASScheduler MBean using the

AdminClient interface or scripting are not part of a J2EE application and have access to all tasks

regardless of the application with which they were created. Tasks created with a WASScheduler MBean

are only accessible from the WASScheduler MBean API and are not accessible from the Scheduler API.

If the Use Administration Roles attribute is enabled on a scheduler and administrative security is enabled

on the Application Server, all Scheduler API methods and WASScheduler MBean API operations enforce

access based on the WebSphere Administration Roles. If either of these attributes are disabled, then all

API methods are fully accessible by all users.

1. Enable security for all application servers.

2. Manage schedulers.

© Copyright IBM Corp. 2006 1381

1382 Securing applications and their environment

Chapter 19. Tuning, hardening, and maintaining

After you have installed WebSphere Application Server, there are several considerations for tuning,

strengthening, and maintaining your security configuration.

The following topics are covered in this section:

v Tuning security configurations

v Hardening security configurations

v Changing keys and passwords

v Securing passwords in files

Tuning security configurations

Performance issues typically involve trade-offs between function and speed. Usually, the more function

and the more processing that are involved, the slower the performance. Consider what type of security is

necessary and what you can disable in your environment. For example, if your application servers are

running in a Virtual Private Network (VPN), consider whether you can disable Secure Sockets Layer

(SSL). If you have a lot of users, can they be mapped to groups and then associated to your Java 2

Platform, Enterprise Edition (J2EE) roles? These questions are things to consider when designing your

security infrastructure.

v Consider the following recommendations for tuning general security.

– Consider disabling Java 2 security manager if you know exactly what code is put onto your server

and you do not need to protect process resources. Remember that in doing so, you put your local

resources at some risk.

– Consider increasing the cache and token timeout if you feel your environment is secure enough. By

increasing these values, you have to re-authenticate less often. This action supports subsequent

requests to reuse the credentials that already are created. The downside of increasing the token

timeout is the exposure of having a token hacked and providing the hacker more time to hack into

the system before the token expires. You can use security cache properties to determine the initial

size of the primary and secondary hashtable caches, which affect the frequency of rehashing and the

distribution of the hash algorithms.

See the article “Security cache properties” on page 269 for a list of these properties.

– Consider changing your administrative connector from Simple Object Access Protocol (SOAP) to

Remote Method Invocation (RMI) because RMI uses stateful connections while SOAP is completely

stateless. Run a benchmark to determine if the performance is improved in your environment.

– Use the wsadmin script to complete the access IDs for all the users and groups to speed up the

application startup. Complete this action if applications contain many users or groups, or if

applications are stopped and started frequently. WebSphere Application Server maps user and group

names to unique access IDs in the authorization table. The exact format of the access ID depends

on the repository. The access ID can only be determined during and after application deployment.

Authorization tables created during assembly time do not have the proper access IDs. See

Commands for the AdminApp object for more information about how to update access IDs.

– Consider tuning the Object Request Broker (ORB) because it is a factor in enterprise bean

performance with or without security enabled. Refer to the ORB tuning guidelines topic.

– If using SSL, enable the SSL session tracking mechanism option as described in the article, Session

management settings.

– In some cases, using the unrestricted Java Cryptography Extension (JCE) policy file can improve

performance. Refer to the article, Tuning Web services security.

v Consider the following steps to tune Common Secure Interoperability version 2 (CSIv2).

© Copyright IBM Corp. 2006 1383

– Consider using Secure Sockets Layer (SSL) client certificates instead of a user ID and password to

authenticate Java clients. Because you are already making the SSL connection, using mutual

authentication adds little overhead while it removes the service context that contains the user ID and

password completely.

– If you send a large amount of data that is not very security sensitive, reduce the strength of your

ciphers. The more data you have to bulk encrypt and the stronger the cipher, the longer this action

takes. If the data is not sensitive, do not waste your processing with 128-bit ciphers.

– Consider putting only an asterisk (*) in the trusted server ID list (meaning trust all servers) when you

use identity assertion for downstream delegation. Use SSL mutual authentication between servers to

provide this trust. Adding this extra step in the SSL handshake performs better than having to fully

authenticate the upstream server and check the trusted list. When an asterisk (*) is used, the identity

token is trusted. The SSL connection trusts the server through client certificate authentication.

– Ensure that stateful sessions are enabled for CSIv2. This is the default, but requires authentication

only on the first request and on any subsequent token expirations.

–

V6.0.x

If you are communicating only with WebSphere Application Server Version 5 or higher

servers, make the Active Authentication Protocol CSI, instead of CSI and SAS. This action removes

an interceptor invocation for every request on both the client and server sides.

Important: SAS is supported only between Version 6.0.x and previous version servers that have

been federated in a Version 6.1 cell.

v Consider the following steps to tune Lightweight Directory Access Protocol (LDAP) authentication.

1. In the administration console, click Security > Secure administration, applications, and

infrastructure.

2. Under User account repository, click the Available realm definitions drop-down list,

selectStandalone LDAP registry and click Configure.

3. Select the Ignore case for authorization option in the standalone LDAP registry configuration,

when case-sensitivity is not important.

4. Select the Reuse connection option.

5. Use the cache features that your LDAP server supports.

6. Choose either the IBM Tivoli Directory Server or SecureWay directory type, if you are using an IBM

Tivoli Directory Server. The IBM Tivoli Directory Server yields improved performance because it is

programmed to use the new group membership attributes to improve group membership searches.

However, authorization must be case insensitive to use IBM Tivoli Directory Server.

7. Choose either iPlanet Directory Server (also known as Sun ONE) or Netscape as the directory if you

are an iPlanet Directory user. Using the iPlanet Directory Server directory can increase performance

in group membership lookup. However, use Role only for group mechanisms.

v Consider the following steps to tune Web authentication.

– Increase the cache and token timeout values if you feel your environment is secure enough. The

Web authentication information is stored in these caches and as long as the authentication

information is in the cache, the login module is not invoked to authenticate the user. This supports

subsequent requests to reuse the credentials that are already created. A disadvantage of increasing

the token timeout is the exposure of having a token stolen and providing the thief more time to hack

into the system before the token expires.

See the article “Security cache properties” on page 269 for a list of these properties.

– Enable single sign-on (SSO). To configure SSO, click Security > Secure administration,

applications, and infrastructure. Under Web security, click Single sign-on (SSO).

SSO is only available when you configure LTPA as the authentication mechanism in the

Authentication mechanisms and expiration panel. Although you can select Simple WebSphere

Authentication Mechanism (SWAM) as the authentication mechanism on the Authentication

mechanisms and expiration panel, SWAM is deprecated in Version 6.1 and does not support SSO.

When you select SSO, a single authentication to one application server is enough to make requests

1384 Securing applications and their environment

to multiple application servers in the same SSO domain. Some situations exist where SSO is not a

desirable and you do not want to use it in those situations.

– Disable or enabling the Web Inbound Security Attribute Propagation option on the Single sign-on

(SSO) panel if the function is not required. In some cases, having the function enabled can improve

performance. This improvement is most likely for higher volume cases where a considerable number

of user registry calls reduces performance. In other cases, having the feature disabled can improve

performance. This improvement is most likely when the user registry calls do not take considerable

resources.

v Consider the following steps to tune authorization.

– Map your users to groups in the user registry. Associate the groups with your Java 2 Platform,

Enterprise Edition (J2EE) roles. This association greatly improves performance when the number of

users increases.

– Judiciously assign method-permissions for enterprise beans. For example, you can use an asterisk

(*) to indicate all the methods in the method-name element. When all the methods in enterprise

beans require the same permission, use an asterisk (*) for the method-name to indicate all methods.

This indication reduces the size of deployment descriptors and reduces the memory that is required

to load the deployment descriptor. It also reduces the search time during method-permission match

for the enterprise beans method.

– Judiciously assign security-constraints for servlets. For example, you can use the *.jsp URL pattern

to apply the same authentication data constraints to indicate all JavaServer Pages (JSP) files. For a

given URL, the exact match in the deployment descriptor takes precedence over the longest path

match. Use the *.jsp, *.do, *.html extension match if no exact matches exist and longest path

matches exist for a given URL in the security constraints.

You always have a trade off between performance, feature, and security. Security typically adds more

processing time to your requests, but for a good reason. Not all security features are required in your

environment. When you decide to tune security, create a benchmark before making any change to ensure

that the change is improving performance.

In a large scale deployment, performance is very important. Running benchmark measurements with

different combinations of features can help you to determine the best performance versus the benefit of

configuration for your environment. Continue to run benchmarks if anything changes in your environment,

to help determine the impact of these changes.

Secure Sockets Layer performance tips

Use this page to learn about Secure Sockets Layer (SSL) performance tips. Be sure to consider that

performance issues typically involve trade-offs between function and speed. Usually, the more function and

the more processing that are involved, the slower the performance.

The following are two types of Secure Sockets Layer (SSL) performance:

v Handshake

v Bulk encryption and decryption

When an SSL connection is established, an SSL handshake occurs. After a connection is made, SSL

performs bulk encryption and decryption for each read-write. The performance cost of an SSL handshake

is much larger than that of bulk encryption and decryption.

To enhance SSL performance, decrease the number of individual SSL connections and handshakes.

Decreasing the number of connections increases performance for secure communication through SSL

connections, as well as non-secure communication through simple Transmission Control Protocol/Internet

Protocol (TCP/IP) connections. One way to decrease individual SSL connections is to use a browser that

supports HTTP 1.1. Decreasing individual SSL connections can be impossible if you cannot upgrade to

HTTP 1.1.

Chapter 19. Tuning, hardening, and maintaining 1385

Another common approach is to decrease the number of connections (both TCP/IP and SSL) between two

WebSphere Application Server components. The following guidelines help to verify the HTTP transport of

the application server is configured so that the Web server plug-in does not repeatedly reopen new

connections to the application server:

v Verify that the maximum number of keep alives are, at minimum, as large as the maximum number of

requests per thread of the Web server (or maximum number of processes for IBM HTTP Server on

UNIX). Make sure that the Web server plug-in is capable of obtaining a keep alive connection for every

possible concurrent connection to the application server. Otherwise, the application server closes the

connection after a single request is processed. Also, the maximum number of threads in the Web

container thread pool should be larger than the maximum number of keep alives, to prevent the keep

alive connections from consuming the Web container threads.

Note: HTTP Transports have been deprecated. For instructions on how to set a maximum keep alive

value for channel based configurations, see HTTP transport channel settings.

v Increase the maximum number of requests per keep alive connection. The default value is 100, which

means the application server closes the connection from the plug-in after 100 requests. The plug-in then

has to open a new connection. The purpose of this parameter is to prevent denial of service attacks

when connecting to the application server and preventing continuous send requests to tie up threads in

the application server.

v Use a hardware accelerator if the system performs several SSL handshakes.

Hardware accelerators currently supported by WebSphere Application Server only increase the SSL

handshake performance, not the bulk encryption and decryption. An accelerator typically only benefits

the Web server because Web server connections are short-lived. All other SSL connections in

WebSphere Application Server are long-lived.

v Use an alternative cipher suite with better performance.

The performance of a cipher suite is different with software and hardware. Just because a cipher suite

performs better in software does not mean a cipher suite will perform better with hardware. Some

algorithms are typically inefficient in hardware, for example, Data Encryption Standard (DES) and

triple-strength DES (3DES); however, specialized hardware can provide efficient implementations of

these same algorithms.

The performance of bulk encryption and decryption is affected by the cipher suite used for an individual

SSL connection. The following chart displays the performance of each cipher suite. The test software

calculating the data was Java Secure Socket Extension (JSSE) for both the client and server software,

which used no cryptographic hardware support. The test did not include the time to establish a

connection, but only the time to transmit data through an established connection. Therefore, the data

reveals the relative SSL performance of various cipher suites for long running connections.

Before establishing a connection, the client enables a single cipher suite for each test case. After the

connection is established, the client times how long it takes to write an integer to the server and for the

server to write the specified number of bytes back to the client. Varying the amount of data had

negligible effects on the relative performance of the cipher suites.

1386 Securing applications and their environment

0

100

200

300

400

SSL_RSA_WITH_RC4_128_MD5

SSL_RSA_WITH_RC4_128_SHA

SSL_RSA_WITH_DES_CBC_SHA

SSL_RSA_WITH_3DES_EDE_CBC_SHA

SSL_DHE_RSA_WITH_DES_CBC_SHA

SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA

SSL_DHE_DSS_WITH_DES_CBC_SHA

SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA

SSL_RSA_EXPORT_WITH_RC4_40_MD5

SSL_RSA_EXPORT_WITH_DES40_CBC_SHA

SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5

SSL_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA

SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA

SSL_RSA_WITH_NULL_MD5

SSL_RSA_WITH_NULL_SHA

NONE(TCP/IP no SSL)

An analysis of the above data reveals the following:

v Bulk encryption performance is only affected by what follows the WITH in the cipher suite name. This is

expected since the portion before the WITH identifies the algorithm used only during the SSL

handshake.

v MD5 and Secure Hash Algorithm (SHA) are the two hash algorithms used to provide data integrity. MD5

is generally faster than SHA, however, SHA is more secure than MD5.

v DES and RC2 are slower than RC4. Triple DES is the most secure, but the performance cost is high

when using only software.

v The cipher suite providing the best performance while still providing privacy is

SSL_RSA_WITH_RC4_128_MD5. Even though SSL_RSA_EXPORT_WITH_RC4_40_MD5 is

cryptographically weaker than RSA_WITH_RC4_128_MD5, the performance for bulk encryption is the

same. Therefore, as long as the SSL connection is a long-running connection, the difference in the

performance of high and medium security levels is negligible. It is recommended that a security level of

high be used, instead of medium, for all components participating in communication only among

WebSphere Application Server products. Make sure that the connections are long running connections.

Tuning security

Use the following procedures to tune the performance, without compromising your security settings.

Enabling security decreases performance. The following tuning parameters provide ways to minimize this

performance impact.

v Disable security on any application servers that do not need security. You can disable security in the

administrative console by clicking Security > Secure administration, applications, and infrastructure

and deselecting the Enable administrative security option.

v Fine-tune the Authentication cache timeout value on the Authentication mechanisms and expiration

panel in the administrative console. For more information, see the “Secure administration, applications,

and infrastructure settings” on page 76 topic.

v Configure the security cache properties. For more information, see the “Security cache properties” on

page 269 topic.

v Enable the Enable SSL ID tracking option on the Session management panel in the administrative

console. For more information, see the Session management settings topic.

v Improve the performance of Web services security by downloading a Java Cryptography Extension

(JCE) unlimited jurisdiction policy file that does not have restrictions on cryptography strength. For more

information, see the “Tuning Web services security for Version 6.1 applications” on page 1229 topic.

Chapter 19. Tuning, hardening, and maintaining 1387

v Read the Secure Sockets Layer performance tips and “Tuning security configurations” on page 1383

topics for more information.

Hardening security configurations

There are several methods that you can use to protect the WebSphere Application Server infrastructure

and applications from different forms of attack. Several different techniques can help with multiple forms of

attack. Sometimes a single attack can leverage multiple forms of intrusion to achieve the end goal.

For example, in the simplest case, network sniffing can be used to obtain passwords and those passwords

can then be used to mount an application-level attack. The following issues are discussed in IBM

WebSphere Developer Technical Journal: WebSphere Application Server V5 advanced security and

system hardening:

v Take preventative measures to protect the infrastructure.

v Make applications less vulnerable to attack.

Securing passwords in files

Password encoding and encryption deters the casual observation of passwords in server configuration and

property files.

The following topics are covered in this section:

v Password encoding and encryption

v Encoding passwords in files

v Enabling custom password encryption

Encoding password in files

Use the PropFilePasswordEncoder utility to encode your passwords in the files. WebSphere Application

Server does not provide a utility for decoding the passwords.

WebSphere Application Server contains several encoded passwords that are not encrypted. WebSphere

Application Server provides the PropFilePasswordEncoder utility, which you can use to encode these

passwords. However, the utility does not encode passwords that are contained within XML or XMI files.

Instead, WebSphere Application Server automatically encodes the passwords in the following XML or XMI

files.

 Table 54. XML and XMI files that contain encoded passwords

File name Additional information

profile_root/config/cells/cell_name/security.xml The following fields contain encoded

passwords:

v LTPA password

v JAAS authentication data

v User registry server password

v LDAP user registry bind password

v Keystore password

v Truststore password

v Cryptographic token device password

war/WEB-INF/ibm_web_bnd.xml Specifies the passwords for the default basic

authentication for the resource-ref bindings

within all the descriptors, except in the Java

cryptography architecture

1388 Securing applications and their environment

http://www-128.ibm.com/developerworks/websphere/techjournal/0406_botzum/0406_botzum.html
http://www-128.ibm.com/developerworks/websphere/techjournal/0406_botzum/0406_botzum.html
http://www-128.ibm.com/developerworks/websphere/techjournal/0406_botzum/0406_botzum.html

Table 54. XML and XMI files that contain encoded passwords (continued)

File name Additional information

ejb jar/META-INF/ibm_ejbjar_bnd.xml Specifies the passwords for the default basic

authentication for the resource-ref bindings

within all the descriptors, except in the Java

cryptography architecture

client jar/META-INF/ibm-appclient_bnd.xml Specifies the passwords for the default basic

authentication for the resource-ref bindings

within all the descriptors, except in the Java

cryptography architecture

ear/META-INF/ibm_application_bnd.xml Specifies the passwords for the default basic

authentication for the run as bindings within all

the descriptors

profile_root/config/cells/cell_name

/nodes/node_name/servers/

server_name/security.xml

The following fields contain encoded

passwords:

v Keystore password

v Truststore password

v Cryptographic token device password

v Session persistence password

v DRS client data replication password

profile_root/config/cells/cell_name

/nodes/node_name/servers/

server_name/resources.xml

The following fields contain encoded

passwords:

v WAS40Datasource password

v mailTransport password

v mailStore password

v MQQueue queue mgr password

v profile_root/config/cells/cell_name

/ws-security.xml

v profile_root/config/cells/cell_name

/nodes/node_name/servers/server_name/ws-security

ibm-webservices-bnd.xmi

ibm-webservicesclient-bnd.xmi

You can use the PropFilePasswordEncoder utility to encode the passwords that are located in the

following files.

 Table 55. Files that you can encode using the PropFilePasswordEncoder utility

File name Additional information

app_server_root

/properties/sas.client.props

Specifies the passwords for the following files:

v com.ibm.ssl.keyStorePassword

v com.ibm.ssl.trustStorePassword

v com.ibm.CORBA.loginPassword

app_server_root

/properties/soap.client.props

Specifies passwords for:

v com.ibm.ssl.keyStorePassword

v com.ibm.ssl.trustStorePassword

v com.ibm.SOAP.loginPassword

app_server_root

/properties/sas.tools.properties

Specifies passwords for:

v com.ibm.ssl.keyStorePassword

v com.ibm.ssl.trustStorePassword

v com.ibm.CORBA.loginPassword

Chapter 19. Tuning, hardening, and maintaining 1389

Table 55. Files that you can encode using the PropFilePasswordEncoder utility (continued)

File name Additional information

app_server_root

/properties/sas.stdclient.properties

Specifies passwords for:

v com.ibm.ssl.keyStorePassword

v com.ibm.ssl.trustStorePassword

v com.ibm.CORBA.loginPassword

app_server_root

/properties/wsserver.key

To encode a password again in one of the previous files, complete the following steps:

1. Access the file using a text editor and type over the encoded password. The new password is shown

is no longer encoded and must be re-encoded.

2. Use the PropFilePasswordEncoder.bat or the PropFilePasswordEncode.sh file in the

app_server_root/profiles/profile_name/bin directory to encode the password again.

V6.0.x

If you are encoding the SAS properties files again, type: PropFilePasswordEncoder

″file_name″ -sas and the PropFilePasswordEncoder file encodes the known SAS properties.

Important: SAS is supported only between Version 6.0.x and previous version servers that have been

federated in a Version 6.1 cell.

If you are encoding files that are not SAS properties files, type PropFilePasswordEncoder ″file_name″

password_properties_list

where:

″file_name″ is the name of the z/SAS properties file, and password_properties_list is the name of the

properties to encode within the file.

Note: Only the password should be encoded in this file using the PropFilePasswordEncoder tool.

Use the PropFilePasswordEncoder utility to encode WebSphere Application Server password files

only. The utility cannot encode passwords that are contained in XML files or other files that contain

open and close tags.

If you reopen the affected files, the passwords are encoded. WebSphere Application Server does not

provide a utility for decoding the passwords.

PropFilePasswordEncoder command reference

The PropFilePasswordEncoder command encodes passwords that are located in plain text property files.

This command encodes both Secure Authentication Server (SAS) property files and non-SAS property

files. After you encode the passwords, a decoding command does not exist.

To encode passwords, you must run this command from the directory:

v

V6.0.x

app_server_root/bin

Important: SAS is supported only between Version 6.0.x and previous version servers that have been

federated in a Version 6.1 cell.

Syntax

The command syntax is as follows:

PropFilePasswordEncoder "file_name"

1390 Securing applications and their environment

Parameters

The following option is available for the PropFilePasswordEncoder command:

V6.0.x

-SAS

This parameter is required if you are encoding passwords in the sas.client.props file.

-help or -?

If you specify this parameter, the script ignores all other parameters and displays usage text.

V6.0.x

The following examples demonstrate the correct syntax:

PropFilePasswordEncoder ″file_name″ password_properties_list

PropFilePasswordEncoder ″file_name″ -SAS

Enabling custom password encryption

After creating the server profile, perform this task to better protect passwords contained in configuration.

Create your custom class for encrypting passwords. For more information, see “Plug point for custom

password encryption” on page 644.

Complete the following steps to enable custom password encryption.

1. Add the following system properties for every server and client process. For server processes, update

the server.xml file for each process. Add these properties as a genericJvmArgument argument

preceded by a -D prefix.

com.ibm.wsspi.security.crypto.customPasswordEncryptionClass=

 com.acme.myPasswordEncryptionClass

com.ibm.wsspi.security.crypto.customPasswordEncryptionEnabled=true

Tip: If the custom encryption class name is

com.ibm.wsspi.security.crypto.CustomPasswordEncryptionImpl, it is automatically enabled when

this class is present in the classpath. Do not define the system properties that are listed

previously when the custom implementation has this package and class name. To disable

encryption for this class, you must specify

com.ibm.wsspi.security.crypto.customPasswordEncryptionEnabled=false as a system property.

2. Add the Java archive (JAR) file containing the implementation class to the app_server_root/classes

directory so that the WebSphere Application Server runtime can load the file.

3. Restart all server processes.

4. Edit each configuration document that contains a password and save the configuration. All password

fields are then run through the WSEncoderDecoder utility, which calls the plug point when it is

enabled. The {custom:alias} tags are displayed in the configuration documents. The passwords, even

though they are encrypted, are still Base64-encoded. They seem similar to encoded passwords, except

for the tags difference.

5. Encrypt any passwords that are in client-side property files using the PropsFilePasswordEncoder

(.bat or .sh) utility. This utility requires that the properties listed previously are defined as system

properties in the script to encrypt new passwords instead of encoding them.

6. To decrypt passwords from client Java virtual machines (JVMs), add the properties listed previously as

system properties for each client utility.

7. Ensure that all nodes have the custom encryption classes in their class paths prior to enabling this

function.

Custom password encryption is enabled.

Chapter 19. Tuning, hardening, and maintaining 1391

If custom password encryption fails or is no longer required, see “Disabling custom password encryption.”

Disabling custom password encryption

If custom password encryption fails or is no longer required, perform this task to disable custom password

encryption.

Enable custom password encryption.

Complete the following steps to disable custom password encryption.

1. Change the com.ibm.wsspi.security.crypto.customPasswordEncryptionEnabled property to be false in

the security.xml file, but leave the com.ibm.wsspi.security.crypto.customPasswordEncryptionClass

property configured. Any passwords in the model that still have the {custom:alias} tag are decrypted

by using the customer password encryption class.

2. If an encryption key is lost, any passwords that are encrypted with that key cannot be retrieved. To

recover a password, retype the password in the password field in plaintext and save the document.

The new password must be written out using encoding with the {xor} tag with scripting or from the

administrative console.

com.ibm.wsspi.security.crypto.customPasswordEncryptionClass=

 com.acme.myPasswordEncryptionClass

com.ibm.wsspi.security.crypto.customPasswordEncryptionEnabled=false

3. Restart all processes to make the changes effective.

4. Edit each configuration document that contains an encrypted password and save the configuration. All

password fields are then run through the WSEncoderDecoder utility, which calls the plug point in the

presence of the {custom:alias} tag. The {xor} tags display in the configuration documents again after

the documents are saved.

5. Decrypt and encode any passwords that are in client-side property files using the

PropsFilePasswordEncoder (.bat or .sh) utility. If the encryption class is specified, but custom

encryption is disabled, running this utility converts the encryption to encoding and causes the {xor}

tags to display again.

6. Disable custom password encryption from the client Java virtual machines (JVMs) by adding the

system properties listed previously to all client scripts. This action enables the code to decrypt

passwords, but this action is not used to encrypt them again. The {xor} algorithm becomes the default

for encoding. Leave the custom password encryption class defined for a time in case any encrypted

passwords still exist in the configuration.

Custom password encryption is disabled.

1392 Securing applications and their environment

Chapter 20. Troubleshooting security configurations

The following topics help to troubleshoot specific problems that are related to configuring and enabling

security configurations.

Refer to Security components troubleshooting tips for instructions on how to troubleshoot errors that are

related to security.

Refer to SPNEGO TAI troubleshooting tips for instructions on how to troubleshoot errors that are related to

diagnosing Simple and Protected GSS-API Negotiation (SPNEGO) trust association interceptor (TAI)

problems and exceptions.

v Errors when configuring or enabling security

v Errors after enabling security

v Access problems after enabling security

v Errors after configuring or enabling Secure Sockets Layer

v Errors configuring Secure Sockets Layer encrypted access

v Single sign-on configuration troubleshooting tips

v Authorization provider troubleshooting tips

Security components troubleshooting tips

This document explains basic resources and steps for diagnosing security-related issues in WebSphere

Application Server.

Basic resources and steps for diagnosing security-related issues in WebSphere Application Server include:

v What “Log files” on page 1394 to look at and what to look for in them.

v What to look at and what to look for “Using SDSF” on page 1395.

v “General approach for troubleshooting security-related issues” on page 1396 to isolating and resolving

security problems.

v When and how to “Trace security” on page 1400.

v An overview and table of “CSIv2 CORBA minor codes” on page 1401.

The following security-related problems are addressed elsewhere in the information center:

v Errors and access problems after enabling security

After enabling security, a degradation in performance is realized. For more information about using

unrestricted policy files, see the Enabling security for the realm section of the Securing applications and

their environment PDF book.

v Errors after enabling SSL, or SSL-related error messages

v Errors trying to configure and enable security

If none of these steps solves the problem, check to see if the problem is identified and documented using

the links in Diagnosing and fixing problems: Resources for learning.

If you do not see a problem that resembles yours, or if the information provided does not solve your

problem, contact IBM support for further assistance.

V6.0.x

For an overview of WebSphere Application Server security components such as Secure

Authentication Services (SAS) and how they work in a distributed or an iSeries environment, refer to the

Securing applications and their environment PDF book.

Important: SAS is supported only between Version 6.0.x and previous version servers that have been

federated in a Version 6.1 cell.

© Copyright IBM Corp. 2006 1393

Log files

When troubleshooting the security component, browse the Java Virtual Machine (JVM) logs for the server

that hosts the resource you are trying to access. The following is a sample of messages you would expect

to see from a server in which the security service has started successfully:

SASRas A CWWSA0001I: Security configuration initialized.

SASRas A CWWSA0002I: Authentication protocol: CSIV2/IBM

SASRas A CWWSA0003I: Authentication mechanism: SWAM

SASRas A CWWSA0004I: Principal name: MYHOSTNAME/aServerID

SASRas A CWWSA0005I: SecurityCurrent registered.

SASRas A CWWSA0006I: Security connection interceptor initialized.

SASRas A CWWSA0007I: Client request interceptor registered.

SASRas A CWWSA0008I: Server request interceptor registered.

SASRas A CWWSA0009I: IOR interceptor registered.

NameServerImp I CWNMS0720I: Do Security service listener registration.

SecurityCompo A CWSCJ0242A: Security service is starting

UserRegistryI A CWSCJ0136I: Custom Registry:com.ibm.ws.security.registry.nt.

NTLocalDomainRegistryImpl has been initialized

SecurityCompo A CWSCJ0202A: Admin application initialized successfully

SecurityCompo A CWSCJ0203A: Naming application initialized successfully

SecurityCompo A CWSCJ0204A: Rolebased authorizer initialized successfully

SecurityCompo A CWSCJ0205A: Security Admin mBean registered successfully

SecurityCompo A CWSCJ0243A: Security service started successfully

SecurityCompo A CWSCJ0210A: Security enabled true

The following is an example of messages from a server which cannot start the security service, in this

case because the administrative user ID and password given to communicate with the user registry is

wrong, or the user registry itself is down or misconfigured:

SASRas A CWWSA0001I: Security configuration initialized.

SASRas A CWWSA0002I: Authentication protocol: CSIV2/IBM

SASRas A CWWSA0003I: Authentication mechanism: SWAM

SASRas A CWWSA0004I: Principal name: MYHOSTNAME/aServerID

SASRas A CWWSA0005I: SecurityCurrent registered.

SASRas A CWWSA0006I: Security connection interceptor initialized.

SASRas A CWWSA0007I: Client request interceptor registered.

SASRas A CWWSA0008I: Server request interceptor registered.

SASRas A CWWSA0009I: IOR interceptor registered.

NameServerImp I CWNMS0720I: Do Security service listener registration.

SecurityCompo A CWSCJ0242A: Security service is starting

UserRegistryI A CWSCJ0136I: Custom Registry:com.ibm.ws.security.

registry.nt.NTLocalDomainRegistryImpl has been initialized

Authenticatio E CWSCJ4001E: Login failed for badID/<null>

javax.security.auth.login.LoginException: authentication failed: bad user/password

The following is an example of messages from a server for which Lightweight Directory Access Protocol

(LDAP) has been specified as the security mechanism, but the LDAP keys have not been properly

configured:

SASRas A CWWSA0001I: Security configuration initialized.

SASRas A CWWSA0002I: Authentication protocol: CSIV2/IBM

SASRas A CWWSA0003I: Authentication mechanism: LTPA

SASRas A CWWSA0004I: Principal name: MYHOSTNAME/anID

SASRas A CWWSA0005I: SecurityCurrent registered.

SASRas A CWWSA0006I: Security connection interceptor initialized.

SASRas A CWWSA0007I: Client request interceptor registered.

SASRas A CWWSA0008I: Server request interceptor registered.

SASRas A CWWSA0009I: IOR interceptor registered.

NameServerImp I CWNMS0720I: Do Security service listener registration.

SecurityCompo A CWSCJ0242A: Security service is starting

UserRegistryI A CWSCJ0136I: Custom Registry:com.ibm.ws.security.registry.nt.

1394 Securing applications and their environment

NTLocalDomainRegistryImpl has been initialized

SecurityServe E CWSCJ0237E: One or more vital LTPAServerObject configuration

attributes are null or not available. The attributes and values are password :

LTPA password does exist, expiration time 30, private key <null>, public key <null>,

and shared key <null>.

A problem with the Secure Sockets Layer (SSL) configuration might lead to the following message. Ensure

that the keystore location and keystore passwords are valid. Also, ensure the keystore has a valid

personal certificate and that the personal certificate public key or certificate authority (CA) root has been

extracted on put into the truststore.

SASRas A CWWSA0001I: Security configuration initialized.

SASRas A CWWSA0002I: Authentication protocol: CSIV2/IBM

SASRas A CWWSA0003I: Authentication mechanism: SWAM

SASRas A CWWSA0004I: Principal name: MYHOSTNAME/aServerId

SASRas A CWWSA0005I: SecurityCurrent registered.

SASRas A CWWSA0006I: Security connection interceptor initialized.

SASRas A CWWSA0007I: Client request interceptor registered.

SASRas A CWWSA0008I: Server request interceptor registered.

SASRas A CWWSA0009I: IOR interceptor registered.

SASRas E CWWSA0026E: [SecurityTaggedComponentAssistorImpl.register]

Exception connecting object to the ORB. Check the SSL configuration to ensure

 that the SSL keyStore and trustStore properties are set properly. If the problem

persists, contact support for assistance. org.omg.CORBA.OBJ_ADAPTER:

ORB_CONNECT_ERROR (5) - couldn’t get Server Subcontract minor code:

4942FB8F completed: No

Using SDSF

When troubleshooting the security component, use System Display and Search Facility (SDSF) to browse

logs for the server that hosts the resource you are trying to access. The following sample of messages

helps you see from a server in which the security service has started successfully:

 +BBOM0001I com_ibm_authMechanisms_type_OID: No OID for this mechanism.

 +BBOM0001I com_ibm_security_SAF_unauthenticated: WSGUEST.

 +BBOM0001I com_ibm_security_SAF_EJBROLE_Audit_Messages_Suppress: 0.

 +BBOM0001I com_ibm_ws_logging_zos_errorlog_format_cbe: NOT SET, 280

 DEFAULT=0.

 +BBOM0001I com_ibm_CSI_performClientAuthenticationRequired: 0.

 +BBOM0001I com_ibm_CSI_performClientAuthenticationSupported: 1.

 +BBOM0001I com_ibm_CSI_performTransportAssocSSLTLSRequired: 0.

 +BBOM0001I com_ibm_CSI_performTransportAssocSSLTLSSupported: 1.

 +BBOM0001I com_ibm_CSI_rmiInboundPropagationEnabled: 1.

 +BBOM0001I com_ibm_CSI_rmiOutboundLoginEnabled: 0.

 +BBOM0001I com_ibm_CSI_rmiOutboundPropagationEnabled: 1.

 +BBOM0001I security_assertedID_IBM_accepted: 0.

 +BBOM0001I security_assertedID_IBM_sent: 0.

 +BBOM0001I security_disable_daemon_ssl: NOT SET, DEFAULT=0.

 +BBOM0001I security_sslClientCerts_allowed: 0.

 +BBOM0001I security_sslKeyring: NOT SET.

 +BBOM0001I security_zOS_domainName: NOT SET.

 +BBOM0001I security_zOS_domainType: 0.

 +BBOM0001I security_zSAS_ssl_repertoire: SY1/DefaultIIOPSSL.

 +BBOM0001I security_EnableRunAsIdentity: 0.

 +BBOM0001I security_EnableSyncToOSThread: 0.

 +BBOM0001I server_configured_system_name: SY1.

 +BBOM0001I server_generic_short_name: BBOC001.

 +BBOM0001I server_generic_uuid: 457

 *** Message beginning with BBOO0222I apply to Java within ***

 *** WebSphere Application Server Security ***

 +BBOO0222I: SECJ6004I: Security Auditing is disabled.

 +BBOO0222I: SECJ0215I: Successfully set JAAS login provider 631

 configuration class to com.ibm.ws.security.auth.login.Configuration.

Chapter 20. Troubleshooting security configurations 1395

+BBOO0222I: SECJ0136I: Custom 632

 Registry:com.ibm.ws.security.registry.zOS.SAFRegistryImpl has been initialized

 +BBOO0222I: SECJ0157I: Loaded Vendor AuthorizationTable: 633

 com.ibm.ws.security.core.SAFAuthorizationTableImpl

General approach for troubleshooting security-related issues

When troubleshooting security-related problems, the following questions are very helpful:

Does the problem occur when security is disabled?

This question is a good litmus test to determine that a problem is security related. However, just

because a problem only occurs when security is enabled does not always make it a security

problem. More troubleshooting is necessary to ensure the problem is really security-related.

Did security seem to initialize properly?

A lot of security code is visited during initialization. So you can see problems there first if the

problem is configuration related.

 The following sequence of messages that are generated in the SystemOut.log indicate normal

code initialization of an application server. This sequence varies based on the configuration, but

the messages are similar:

SASRas A CWWSA0001I: Security configuration initialized.

SASRas A CWWSA0002I: Authentication protocol: CSIV2/IBM

SASRas A CWWSA0003I: Authentication mechanism: SWAM

SASRas A CWWSA0004I: Principal name: BIRKT20/pbirk

SASRas A CWWSA0005I: SecurityCurrent registered.

SASRas A CWWSA0006I: Security connection interceptor initialized.

SASRas A CWWSA0007I: Client request interceptor registered.

SASRas A CWWSA0008I: Server request interceptor registered.

SASRas A CWWSA0009I: IOR interceptor registered.

NameServerImp I CWNMS0720I: Do Security service listener registration.

SecurityCompo A CWSCJ0242A: Security service is starting

UserRegistryI A CWSCJ0136I: Custom Registry:com.ibm.ws.security.registry.nt.

NTLocalDomainRegistryImpl has been initialized

SecurityCompo A CWSCJ0202A: Admin application initialized successfully

SecurityCompo A CWSCJ0203A: Naming application initialized successfully

SecurityCompo A CWSCJ0204A: Rolebased authorizer initialized successfully

SecurityCompo A CWSCJ0205A: Security Admin mBean registered successfully

SecurityCompo A CWSCJ0243A: Security service started successfully

SecurityCompo A CWSCJ0210A: Security enabled true

The following sequence of messages generated in the SDSF active log indicate normal code

initialization of an application server. Non-security messages have been removed from the

sequence that follows. This sequence will vary based on the configuration, but the messages are

similar:

 Trace: 2005/05/06 17:27:31.539 01 t=8E96E0 c=UNK key=P8 (13007002)

 ThreadId: 0000000a

 FunctionName: printProperties

 SourceId: com.ibm.ws390.orb.CommonBridge

 Category: AUDIT

 ExtendedMessage: BBOJ0077I java.security.policy =

 /WebSphere/V6R1M0/AppServer/profiles/default/pr

 Trace: 2005/05/06 17:27:31.779 01 t=8E96E0 c=UNK key=P8 (13007002)

 ThreadId: 0000000a

 FunctionName: printProperties

 SourceId: com.ibm.ws390.orb.CommonBridge

 Category: AUDIT

 ExtendedMessage: BBOJ0077I java.security.auth.login.config =

 /WebSphere/V6R1M0/AppServer/profiles/default/pr

 Trace: 2005/05/06 17:27:40.892 01 t=8E96E0 c=UNK key=P8 (13007002)

 ThreadId: 0000000a

 FunctionName: com.ibm.ws.security.core.SecurityDM

 SourceId: com.ibm.ws.security.core.SecurityDM

 Category: INFO

 ExtendedMessage: BBOO0222I: SECJ0231I: The Security component’s FFDC

 Diagnostic Module com.ibm.ws.security.core.Secur

 red successfully: true.

1396 Securing applications and their environment

Trace: 2005/05/06 17:27:40.892 01 t=8E96E0 c=UNK key=P8 (0000000A)

 Description: Log Boss/390 Error

 from filename: ./bborjtr.cpp

 at line: 932

 error message: BBOO0222I: SECJ0231I: The Security component’s FFDC

 Diagnostic Module com.ibm.ws.security.core.Securit

 d successfully: true.

 Trace: 2005/05/06 17:27:41.054 01 t=8E96E0 c=UNK key=P8 (13007002)

 ThreadId: 0000000a

 FunctionName: com.ibm.ws.security.audit.AuditServiceImpl

 SourceId: com.ibm.ws.security.audit.AuditServiceImpl

 Category: AUDIT

 ExtendedMessage: BBOO0222I: SECJ6004I: Security Auditing is disabled.

 Trace: 2005/05/06 17:27:41.282 01 t=8E96E0 c=UNK key=P8 (13007002)

 ThreadId: 0000000a

 FunctionName: com.ibm.ws.security.core.distSecurityComponentImpl

 SourceId: com.ibm.ws.security.core.distSecurityComponentImpl

 Category: INFO

 ExtendedMessage: BBOO0222I: SECJ0309I: Java 2 Security is disabled.

 Trace: 2005/05/06 17:27:41.282 01 t=8E96E0 c=UNK key=P8 (0000000A)

 Description: Log Boss/390 Error

 from filename: ./bborjtr.cpp

 at line: 932

 error message: BBOO0222I: SECJ0309I: Java 2 Security is disabled.

 Trace: 2005/05/06 17:27:42.239 01 t=8E96E0 c=UNK key=P8 (13007002)

 ThreadId: 0000000a

 FunctionName: com.ibm.ws.security.auth.login.Configuration

 SourceId: com.ibm.ws.security.auth.login.Configuration

 Category: AUDIT

 ExtendedMessage: BBOO0222I: SECJ0215I: Successfully set JAAS login

 provider configuration class to com.ibm.ws.securit

 Configuration.

 Trace: 2005/05/06 17:27:42.253 01 t=8E96E0 c=UNK key=P8 (13007002)

 ThreadId: 0000000a

 FunctionName: com.ibm.ws.security.core.distSecurityComponentImpl

 SourceId: com.ibm.ws.security.core.distSecurityComponentImpl

 Category: INFO

 ExtendedMessage: BBOO0222I: SECJ0212I: WCCM JAAS configuration information

 successfully pushed to login provider clas

 Trace: 2005/05/06 17:27:42.254 01 t=8E96E0 c=UNK key=P8 (0000000A)

 Description: Log Boss/390 Error

 from filename: ./bborjtr.cpp

 at line: 932

 error message: BBOO0222I: SECJ0212I: WCCM JAAS configuration information

 successfully pushed to login provider class.

 Trace: 2005/05/06 17:27:42.306 01 t=8E96E0 c=UNK key=P8 (13007002)

 ThreadId: 0000000a

 FunctionName: com.ibm.ws.security.core.distSecurityComponentImpl

 SourceId: com.ibm.ws.security.core.distSecurityComponentImpl

 Category: INFO

 ExtendedMessage: BBOO0222I: SECJ0240I: Security service initialization

 completed successfully

 Trace: 2005/05/06 17:27:42.306 01 t=8E96E0 c=UNK key=P8 (0000000A)

 Description: Log Boss/390 Error

 from filename: ./bborjtr.cpp

 at line: 932

 error message: BBOO0222I: SECJ0240I: Security service initialization

 completed successfully

 Trace: 2005/05/06 17:27:42.952 01 t=8E96E0 c=UNK key=P8 (13007002)

 ThreadId: 0000000a

 FunctionName: com.ibm.ws.objectpool.ObjectPoolService

 SourceId: com.ibm.ws.objectpool.ObjectPoolService

 Category: INFO

 ExtendedMessage: BBOO0222I: OBPL0007I: Object Pool Manager service

 is disabled.

 Trace: 2005/05/06 17:27:53.512 01 t=8E96E0 c=UNK key=P8 (13007002)

 ThreadId: 0000000a

 FunctionName: com.ibm.ws.security.registry.UserRegistryImpl

 SourceId: com.ibm.ws.security.registry.UserRegistryImpl

 Category: AUDIT

 ExtendedMessage: BBOO0222I: SECJ0136I: Custom

 Registry:com.ibm.ws.security.registry.zOS.SAFRegistryImpl

 has been init

 Trace: 2005/05/06 17:27:55.229 01 t=8E96E0 c=UNK key=P8 (13007002)

 ThreadId: 0000000a

 FunctionName: com.ibm.ws.security.role.PluggableAuthorizationTableProxy

 SourceId: com.ibm.ws.security.role.PluggableAuthorizationTableProxy

 Category: AUDIT

Chapter 20. Troubleshooting security configurations 1397

ExtendedMessage: BBOO0222I: SECJ0157I: Loaded Vendor

 AuthorizationTable: com.ibm.ws.security.core.SAFAuthorizationTab

 Trace: 2005/05/06 17:27:56.481 01 t=8E96E0 c=UNK key=P8 (13007002)

 ThreadId: 0000000a

 FunctionName: com.ibm.ws.security.core.distSecurityComponentImpl

 SourceId: com.ibm.ws.security.core.distSecurityComponentImpl

 Category: INFO

 ExtendedMessage: BBOO0222I: SECJ0243I: Security service started successfully

 Trace: 2005/05/06 17:27:56.481 01 t=8E96E0 c=UNK key=P8 (0000000A)

 Description: Log Boss/390 Error

 from filename: ./bborjtr.cpp

 at line: 932

 error message: BBOO0222I: SECJ0243I: Security service started successfully

 Trace: 2005/05/06 17:27:56.482 01 t=8E96E0 c=UNK key=P8 (13007002)

 ThreadId: 0000000a

 FunctionName: com.ibm.ws.security.core.distSecurityComponentImpl

 SourceId: com.ibm.ws.security.core.distSecurityComponentImpl

 Category: INFO

 ExtendedMessage: BBOO0222I: SECJ0210I: Security enabled true

 Trace: 2005/05/06 17:27:56.483 01 t=8E96E0 c=UNK key=P8 (0000000A)

 Description: Log Boss/390 Error

 from filename: ./bborjtr.cpp

 at line: 932

 error message: BBOO0222I: SECJ0210I: Security enabled true

Is there a stack trace or exception printed in the system log file?

A single stack trace tells a lot about the problem. What code initiated the code that failed? What is

the failing component? Which class did the failure actually come from? Sometimes the stack trace

is all that is needed to solve the problem and it can pinpoint the root cause. Other times, it can

only give us a clue, and can actually be misleading. When support analyzes a stack trace, they

can request additional trace if it is not clear what the problem is. If it seems to be security-related

and the solution cannot be determined from the stack trace or problem description, you are asked

to gather the following trace specification: SASRas=all=enabled:com.ibm.ws.security.*=all=enabled

from all processes involved.

Is this a distributed security problem or a local security problem?

v If the problem is local, that is the code involved does not make a remote method invocation,

then troubleshooting is isolated to a single process. It is important to know when a problem is

local versus distributed because the behavior of the object request broker (ORB), among other

components, is different between the two. When a remote method invocation takes place, an

entirely different security code path is entered.

v

V6.0.x

When you know that the problem involves two or more servers, the techniques of

troubleshooting change. You need to trace all the servers involved simultaneously so that the

trace shows the client and server sides of the problem. Make sure the timestamps on all

machines match as closely as possible so that you can find the request and reply pair from two

different processes. Enable both Secure Authentication Services (SAS) or z/SAS and Security

trace using the trace specification: SASRas=all=enabled:com.ibm.ws.security.*=all=enabled.

For more information on enabling trace, see Enabling trace.

For more information on enabling trace, see Working with Trace.
Is the problem related to authentication or authorization?

Most security problems fall under one of these two categories. Authentication is the process of

determining who the caller is. Authorization is the process of validating that the caller has the

proper authority to invoke the requested method. When authentication fails, typically this failure is

related to either the authentication protocol, authentication mechanism or user registry. When

authorization fails, this is usually related to the application bindings from assembly and deployment

and to the caller’s identity who is accessing the method and the roles that are required by the

method.

Is this a Web or EJB request?

 Web requests have a completely different code path than Enterprise JavaBeans (EJB) requests.

Different security features exist for Web requests than for EJB requests, requiring a completely

different body of knowledge to resolve. For example, when using the Lightweight Third-Party

Authentication (LTPA) authentication mechanism, the single sign-on feature (SSO) is available for

Web requests but not for EJB requests. Web requests involve HTTP header information that is not

1398 Securing applications and their environment

required by EJB requests due to the protocol differences. Also, the Web container or servlet

engine is involved in the entire process. Any of these components can be involved in the problem

and all require consideration during troubleshooting, based on the type of request and where the

failure occurs.

 Secure EJB requests heavily involve the ORB and Naming components since they flow over the

RMI/IIOP protocol. In addition, when Workload Manager (WLM) is enabled, other behavior

changes in the code can be observed. All of these components interact closely for security to work

properly in this environment. At times, trace in any or all of these components might be necessary

to troubleshoot problems in this area.

V6.0.x

The trace specification to begin with is

SASRas=all=enabled:com.ibm.ws.security.*=all=enabled. ORB trace is also very beneficial when

the SAS/Security trace does not seem to pinpoint the problem.

Does the problem seem to be related to the Secure Sockets Layer (SSL)?

 SSL is a totally distinct separate layer of security. Troubleshooting SSL problems is usually

separate from troubleshooting authentication and authorization problems, and you have many

considerations. Usually, SSL problems are first-time setup problems because the configuration can

be difficult. Each client must contain the signer certificate of the server. During mutual

authentication, each server must contain the client’s signer certificate. Also, there can be protocol

differences (SSLv3 vs. Transport Layer Security (TLS)), and listener port problems related to stale

Interoperable Object References (IORs), that is IORs from a server, that reflect the port prior to the

server restarting.

 For SSL problems, sometimes you get a request for an SSL trace to determine what is happening

with the SSL handshake. The SSL handshake is the process that occurs when a client opens a

socket to a server. If anything goes wrong with the key exchange, cipher exchange, and so on, the

handshake fails and the socket is not valid. Tracing JSSE (the SSL implementation that is used in

WebSphere Application Server) involves the following steps:

v Set the following system property on the client and server processes: -Djavax.net.debug=true.

For the server, add the system property to the generic JVM arguments property of the JVM

settings page. For more information on this task, refer to Java virtual machine settings section

of the Administering applications and their environment PDF book.

v Turn on ORB trace as well.

v Recreate the problem.

The SystemOut.log of both processes contain the JSSE trace. You can find trace similar to the

following example:

SSLConnection: install <com.ibm.sslite.e@3ae78375>

>> handleHandshakeV2 <com.ibm.sslite.e@3ae78375>

>> handshakeV2 type = 1

>> clientHello: SSLv2.

SSL client version: 3.0

...

...

...

JSSEContext: handleSession[Socket[addr=null,port=0,localport=0]]

<< sendServerHello.

SSL version: 3.0

SSL_RSA_WITH_RC4_128_MD5

HelloRandom

...

...

...

<< sendCertificate.

<< sendServerHelloDone.

>> handleData <com.ibm.sslite.e@3ae78375>

>> handleHandshake <com.ibm.sslite.e@3ae78375>

>> handshakeV3 type = 16

>> clientKeyExchange.

>> handleData <com.ibm.sslite.e@3ae78375>

>> handleChangeCipherSpec <com.ibm.sslite.e@3ae78375>

>> handleData <com.ibm.sslite.e@3ae78375>

Chapter 20. Troubleshooting security configurations 1399

>> handleHandshake <com.ibm.sslite.e@3ae78375>

>> handshakeV3 type = 20

>> finished.

<< sendChangeCipherSpec.

<< sendFinished.

Trace security

The classes that implement WebSphere Application Server security are:

v com.ibm.ws.security.*

v com.ibm.websphere.security.*

v com.ibm.WebSphereSecurityImpl.*

v SASRas

v com.ibm.ws.wim.* for tracing with a Virtual Member Manager (VMM) repository

To view detailed information on the run time behavior of security, enable trace on the following

components and review the output:

v com.ibm.ws.security.*=all=enabled:com.ibm.WebSphereSecurityImpl.*=

all=enabled:com.ibm.websphere.security.*=all=enabled. This trace statement collects the trace for the

security runtime.

v com.ibm.ws.console.security.*=all=enabled. This trace statement collects the trace for the security

center administrative console.

v

V6.0.x

SASRas=all=enabled. This trace statement collects the trace for SAS (low-level

authentication logic).

v com.ibm.ws.wim.*=all=enabled:com.ibm.websphere.wim.*=all=enabled. This trace statement collects the

trace for VMM.

V6.0.x

Fine tuning SAS traces:

If a subset of classes need to be traced for the SAS/CSIv2 component, a system property can be

specified with the class names comma separated:

com.ibm.CORBA.securityTraceFilter=SecurityConnectionInterceptorImpl, VaultImpl, ...

Fine tuning Security traces:

If a subset of packages need to be traced, specify a trace specification more detailed than

com.ibm.ws.security.*=all=enabled. For example, to trace just dynamic policy code, you can

specify com.ibm.ws.security.policy.*=all=enabled. To disable dynamic policy trace, you can specify

com.ibm.ws.security.policy.*=all=disabled.

Configuring CSIv2, or SAS Trace Settings

Situations arise where reviewing trace for the CSIv2 or SAS authentication protocols can assist in

troubleshooting difficult problems. This section describes how to enable to CSIv2 and SAS trace.

Enabling Client-Side CSIv2 and SAS Trace

To enable CSIv2 and SAS trace on a pure client, the following steps need to be taken:

v Edit the file TraceSettings.properties in the /WebSphere/AppServer/properties

directory.

v In this file, change traceFileName= to point to the path in which you want the ouput file

created. Make sure you put a double backslash (\\) between each subdirectory. For

example, traceFileName=c:\\WebSphere\\AppServer\\logs\\sas_client.log

v In this file, add the trace specification string: SASRas=all=enabled. Any additional trace

strings can be added on separate lines.

v Point to this file from within your client application. On the Java command line where

you launch the client, add the following system property:

-DtraceSettingsFile=TraceSettings.properties.

Note: Do not give the fully qualified path to the TraceSettings.properties file. Make

sure that the TraceSettings.properties file is in your class path.

1400 Securing applications and their environment

Enabling Server-Side CSIv2 and SAS Trace

To enable SAS trace in an application server, complete the following:

v Add the trace specification, SASRas=all=enabled, to the server.xml file or add it to the

Trace settings within the WebConsole GUI.

v Typically it is best to also trace the authorization security runtime in addition to the

authentication protocol runtime. To do this, use the following two trace specifications in

combination: SASRas=all=enabled:com.ibm.ws.security.*=all=enabled.

v When troubleshooting a connection type problem, it is beneficial to trace both CSIv2

and SAS or CSIv2 and z/SAS and the ORB. To do this, use the following three trace

specifications:

SASRas=all=enabled:com.ibm.ws.security.*=all=enabled:ORBRas=all=enabled.

v In addition to adding these trace specifications, for ORB trace there are a couple of

system properties that also need to be set. Go to the ORB settings in the GUI and add

the following two properties: com.ibm.CORBA.Debug=true and

com.ibm.CORBA.CommTrace=true.

CSIv2 CORBA minor codes

Whenever exceptions occur within the security code on either the client or server, the eventual exception

becomes a Common Object Request Broker Architecture (CORBA) exception. Any exception that occurs

gets embedded in a CORBA exception because the CORBA architecture is used by the security service

for its own inter-process communication. CORBA exceptions are generic and indicate a problem in

communication between two components. CORBA minor codes are more specific and indicate the

underlying reason that a component could not complete a request.

The following shows the CORBA minor codes that a client can expect to receive after running a

security-related request such as authentication. It also includes the CORBA exception type that the minor

code appears in.

The following exception shows an example of a CORBA exception where the minor code is 49424300 and

indicates Authentication Failure. Typically, a descriptive message is also included in the exception to assist

in troubleshooting the problem. Here, the detailed message is: ″Exception caught invoking

authenticateBasicAuthData from SecurityServer for user jdoe. Reason:

com.ibm.WebSphereSecurity.AuthenticationFailedException″ which indicates that the authentication failed

for user jdoe.

The completed field in the exception indicates whether the method was completed or not. In the case of a

NO_PERMISSION, never invoke the message; therefore it is always completed:No. Other exceptions that

are caught on the server side can have a completed status of ″Maybe″ or ″Yes″.

org.omg.CORBA.NO_PERMISSION: Caught WSSecurityContextException in

WSSecurityContext.acceptSecContext(),

reason: Major Code[0] Minor Code[0] Message[Exception caught invoking

authenticateBasicAuthData from SecurityServer for user jdoe. Reason:

com.ibm.WebSphereSecurity.AuthenticationFailedException] minor code: 49424300

completed: No

at com.ibm.ISecurityLocalObjectBaseL13Impl.PrincipalAuthFailReason.

map_auth_fail_to_minor_code(PrincipalAuthFailReason.java:83)

 at com.ibm.ISecurityLocalObjectBaseL13Impl.CSIServerRI.receive_request

 (CSIServerRI.java:1569)

 at com.ibm.rmi.pi.InterceptorManager.iterateReceiveRequest

 (InterceptorManager.java:739)

 at com.ibm.CORBA.iiop.ServerDelegate.dispatch(ServerDelegate.java:398)

 at com.ibm.rmi.iiop.ORB.process(ORB.java:313)

 at com.ibm.CORBA.iiop.ORB.process(ORB.java:1581)

 at com.ibm.rmi.iiop.GIOPConnection.doWork(GIOPConnection.java:1827)

Chapter 20. Troubleshooting security configurations 1401

at com.ibm.rmi.iiop.WorkUnitImpl.doWork(WorkUnitImpl.java:81)

 at com.ibm.ejs.oa.pool.PooledThread.run(ThreadPool.java:91)

 at com.ibm.ws.util.CachedThread.run(ThreadPool.java:149)

The following table shows the CORBA minor codes which a client can expect to receive after running a

security-related request such as authentication. It also includes the CORBA exception type that the minor

code would appear in.

 Table 56.

Minor code name Minor code

value (in

hex)

Exception type (all in

the package of

org.omg.CORBA .*)

Minor code description Retry performed (when

authenticationRetryEnabled =

true)

AuthenticationFailed 49424300 NO_PERMISSION This code is a generic

authentication failed error. It

does not give any details about

whether or not the user ID or

password is valid. Some user

registries can choose to use

this type of error code, others

can choose to use the next

three types that are more

specific.

Yes

InvalidUserid 49424301 NO_PERMISSION This code occurs when the

registry returns bad user ID.

Yes

InvalidPassword 49424302 NO_PERMISSION This code occurs when the

registry returns a bad

password.

Yes

InvalidSecurityCredentials 49424303 NO_PERMISSION This is a generic error

indicating that the credentials

are bad for some reason. It

might be that the right attributes

are not set.

Yes, if client has BasicAuth

credential (token based

credential was rejected in the

first place).

InvalidRealm 49424304 NO_PERMISSION This code occurs when the

REALM in the token received

from the client does not match

the server’s current realm.

No

ValidationFailed 49424305 NO_PERMISSION A validation failure occurs when

a token is sent from the client

or server to a target server but

the token format or the

expiration is not valid.

Yes, if client has BasicAuth

credential (token based

credential was rejected in the

first place).

CredentialTokenExpired 49424306 NO_PERMISSION This code is more specific

about why the validation failed.

In this case, the token has an

absolute lifetime and the

lifetime has expired. Therefore,

it is no longer a valid token and

cannot be used.

Yes, if client has BasicAuth

credential (token based

credential was rejected in the

first place).

InvalidCredentialToken 49424307 NO_PERMISSION This is more specific about why

the validation failed. In this

case, the token cannot be

decrypted or the data within the

token is not readable.

Yes, if client has BasicAuth

credential (token based

credential was rejected in the

first place).

SessionDoesNotExist 49424308 NO_PERMISSION This indicates that the CSIv2

session does not exist on the

server. Typically, a retry occurs

automatically and successfully

creates a new session.

Yes

SessionConflictingEvidence 49424309 NO_PERMISSION This indicates that a session

already exists on the server

that matches the context_id

sent over by the client.

However, the information

provided by the client for this

EstablishContext message is

different from the information

originally provided to establish

the session.

Yes

1402 Securing applications and their environment

Table 56. (continued)

Minor code name Minor code

value (in

hex)

Exception type (all in

the package of

org.omg.CORBA .*)

Minor code description Retry performed (when

authenticationRetryEnabled =

true)

SessionRejected 4942430A NO_PERMISSION This indicates that the session

referenced by the client has

been previously rejected by the

server.

Yes

SecurityServerNotAvailable 4942430B NO_PERMISSION This error occurs when the

server cannot contact the local

or remote security server in

order to authenticate or

validate.

No

InvalidIdentityToken 4942430C NO_PERMISSION This error indicates that identity

cannot be obtained from the

identity token when Identity

Assertion is enabled.

No

IdentityServerNotTrusted 4942430D NO_PERMISSION This indicates that the server ID

of the sending server is not on

the target server’s trusted

principal list.

No

InvalidMessage 4942430E NO_PERMISSION This indicates that the CSIv2

message format is not valid for

the receiving server.

No

AuthenticationNotSupported 49421090 NO_PERMISSION This error occurs when a

mechanism does not support

authentication (very rare).

No

InvalidSecurityMechanism 49421091 NO_PERMISSION This is used to indicate that the

specified security mechanism is

not known.

No

CredentialNotAvailable 49421092 NO_PERMISSION This indicates a credential is

not available when it is

required.

No

SecurityMechanismNotSupported 49421093 NO_PERMISSION This error occurs when a

security mechanism that is

specified in the CSIv2 token is

not implemented on the server.

No

ValidationNotSupported 49421094 NO_PERMISSION This error occurs when a

mechanism does not support

validation, such as LocalOS.

This error does not occur since

the LocalOS credential is not a

forwardable credential,

therefore, validation never

needs to be called on this

credential.

No

CredentialTokenNotSet 49421095 NO_PERMISSION This is used to indicate that the

token inside the credential is

null.

No

ServerConnectionFailed 494210A0 COMM_FAILURE This error is used when a

connection attempt fails.

Yes (via ORB retry)

CorbaSystemException 494210B0 INTERNAL This code is a generic CORBA

specific exception in system

code.

No

JavaException 494210B1 INTERNAL This is a generic error that

indicated that an unexpected

Java exception occurred.

No

ValueIsNull 494210B2 INTERNAL This code is used to indicate

that a value or parameter that

passed in is null.

No

EffectivePolicyNotPresent 494210B3 INTERNAL This indicates that an effective

policy object for CSIv2 is not

present. This object is used to

determine what security

configuration features are

specified.

No

NullPointerException 494210B4 INTERNAL This code is used to indicate

that a NullPointerException is

caught in the runtime.

No

Chapter 20. Troubleshooting security configurations 1403

Table 56. (continued)

Minor code name Minor code

value (in

hex)

Exception type (all in

the package of

org.omg.CORBA .*)

Minor code description Retry performed (when

authenticationRetryEnabled =

true)

ErrorGettingClassInstance 494210B5 INTERNAL This indicates a problem

loading a class dynamically.

No

MalFormedParameters 494210B6 INTERNAL This indicates parameters are

not valid.

No

DuplicateSecurityAttributeType 494210B7 INTERNAL This indicates a duplicate

credential attribute that is

specified during the

set_attributes operation.

No

MethodNotImplemented 494210C0 NO_IMPLEMENT This indicates that a method

invoked is not implemented.

No

GSSFormatError 494210C5 BAD_PARAM This code indicates that a

Generic Security Services

(GSS) encoding or decoding

routine has created an

exception.

No

TagComponentFormatError 494210C6 BAD_PARAM This code indicates that a tag

component cannot be read

properly.

No

InvalidSecurityAttributeType 494210C7 BAD_PARAM This code indicates an attribute

type specified during the

set_attributes operation is not a

valid type.

No

SecurityConfigError 494210CA INITIALIZE This code indicates a problem

exists between the client and

server configuration.

No

For current information available from IBM Support on known problems and their resolution, see the IBM

Support page.

IBM Support has documents that can save you time gathering information needed to resolve this problem.

Before opening a PMR, see the IBM Support page.

Errors when trying to configure or enable security

Use this information to troubleshoot problems with configuring or enabling security.

What kind of error are you seeing?

v “″LTPA password not set. validation failed″ message displayed as error in the administrative console

after saving administrative or application security settings ” on page 1405

v “Errors when trying to configure or enable security”

v “The setupClient.bat or setupClient.sh file is not working correctly” on page 1405

v

HP�UX

“Java HotSpot Server VM warning: Unexpected Signal 11 occurred under user-defined signal

handler 0x7895710a message occurs in the native_stdout.log file when enabling security on the

HP-UX11i platform” on page 1405

v “WebSphere Application Server Version 6 is not working correctly with Enterprise Workload Manager

(EWLM)” on page 1405

v If you successfully configured security, but are now having problems accessing Web resources or the

administrative console, refer to Errors or access problems after enabling security.

v “NMSV0610I: A NamingException is being thrown from a javax.naming.Context implementation” on page

1406

For general tips on diagnosing and resolving security-related problems, see the topic Troubleshooting the

security component.

1404 Securing applications and their environment

http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCVS2E
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCVS2E
http://www-1.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCVS2E&q=mustgather

IBM Support has documents and tools that can save you time gathering information needed to resolve

problems as described in Troubleshooting help from IBM. Before opening a problem report, see the

Support page:

v http://www.ibm.com/software/webservers/appserv/was/support/

″LTPA password not set. validation failed″ message displayed as error in the

administrative console after saving administrative or application security settings

This error can be caused if, when configuring WebSphere Application Server security, LTPA is selected as

the authentication mechanism and the LTPA password field is not set. To resolve this problem:

v Select Security > Secure administration, applications and infrastructure > Authentication

mechanisms and expiration .

v Complete the password and confirm password fields.

v Click OK.

v Try setting administrative or application security again.

The setupClient.bat or setupClient.sh file is not working correctly

The setupClient.bat file on Windows operating systems and the setupClient.sh file on Linux and

UNIX-based platforms incorrectly specify the location of the SOAP security properties file.

Windows

In the setupClient.bat file, the correct location is:

set CLIENTSOAP=-Dcom.ibm.SOAP.ConfigURL=file:%WAS_HOME%/properties/soap.client.props

AIX

Linux

In the setupClient.sh file, the CLIENTSOAP variable is:

CLIENTSOAP=-Dcom.ibm.SOAP.ConfigURL=file:$WAS_HOME/properties/soap.client.props

In the setupClient.bat and the setupClient.sh files, complete the following steps:

1. Remove the leading slash (/) after file:.

2. Change sas to soap.

Java HotSpot Server VM warning: Unexpected Signal 11 occurred under

user-defined signal handler 0x7895710a message occurs in the native_stdout.log

file when enabling security on the HP-UX11i platform HP�UX

After you enable security on HP-UX 11i platforms, the following error in the native_stdout.log file occurs,

along with a core dump and WebSphere Application Server does not start:

Java HotSpot(TM) Server VM warning:

Unexpected Signal 11 occurred under user-defined signal handler 0x7895710a

To work around this error, apply the fixes recommended by Hewlett Packard for Java at the following URL:

http://www.hp.com/products1/unix/java/infolibrary/patches.html.

WebSphere Application Server Version 6 is not working correctly with Enterprise

Workload Manager (EWLM)

To use WebSphere Application Server Version 6 with EWLM, you must manually update the WebSphere

Application Serve server.policy files. For example:

grant codeBase "file:/<EWLM_Install_Home>/classes/ARM/arm4.jar" {

 permission java.security.AllPermission;

};

Otherwise, you might encounter a Java 2 security exception for violating the Java 2 security permission.

Chapter 20. Troubleshooting security configurations 1405

http://www.ibm.com/software/webservers/appserv/was/support/
http://www.hp.com/products1/unix/java/infolibrary/patches.html

For more information on configuring server.policy files, refer to the server.policy file permissions section in

the Developing and deploying applications PDF book.

For current information available from IBM Support on known problems and their resolution, see the IBM

Support page.

IBM Support has documents that can save you time gathering information needed to resolve this problem.

Before opening a PMR, see the IBM Support page.

NMSV0610I: A NamingException is being thrown from a javax.naming.Context

implementation

If you use CSIv2 inbound authentication, basic authentication is required, and Java clients running with

com.ibm.CORBA.validateBasicAuth=true might fail with the following exception:

If you use CSIv2 inbound authentication, basic authentication is required, and Java™

clients running with com.ibm.CORBA.validateBasicAuth=true might fail with the

following exception:

NMSV0610I: A NamingException is being thrown from a javax.naming.Context

 implementation. Details follow:

Context implementation: com.ibm.ws.naming.jndicos.CNContextImpl

Context method: lookupExt

Context name: TestaburgerNode01Cell/nodes/TestaburgerNode01/servers/server1

Target name: SecurityServer

Other data: ""

Exception stack trace: javax.naming.NoPermissionException: NO_PERMISSION

exception caught. Root exception is org.omg.CORBA.NO_PERMISSION:

vmcid: 0x49421000 minor code: 92 completed: No

...

SECJ0395E: Could not locate the SecurityServer at host/port:9.42.72.27/9100

to validate the userid and password entered. You may need to specify valid

securityServerHost/Port in (WAS_INSTALL_ROOT)/properties/sas.client.props file.

To fix this problem, modify the com.ibm.CORBA.validateBasicAuth=false property in the

clients.sas.clients.props file and then run the client.

Errors after enabling security

Use this information if you are experiencing errors after security is enabled.

What kind of error are you seeing?

v Authentication error accessing a Web page

v Authorization error accessing a Web page

v Error Message: CWSCJ0314E: Current Java 2 security policy reported a potential violation

v CWMSG0508E: The JMS Server security service was unable to authenticate user ID: error displayed

in SystemOut.log when starting an application server

v Error Message: CWSCJ0237E: One or more vital LTPAServerObject configuration attributes are

null or not available after enabling security and starting the application server

v An AccessControlException is reported in the SystemOut.log

v Error Message: CWSCJ0336E: Authentication failed for user {0} because of the following

exception {1}

For general tips on diagnosing and resolving security-related problems, see the topic Troubleshooting the

security component.

IBM Support has documents and tools that can save you time gathering information needed to resolve

problems as described in Troubleshooting help from IBM. Before opening a problem report, see the

Support page:

1406 Securing applications and their environment

http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCVS2E
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCVS2E
http://www-1.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCVS2E&q=mustgather

v http://www.ibm.com/software/webservers/appserv/was/support/

Authentication error accessing a Web page

Possible causes for authentication errors include:

v Incorrect user name or passwords. Check the user name and password and make sure that they are

correct.

v Security configuration error : User registry type is not set correctly. Check the user registry

property in administrative security settings in the administrative console. Verify that the user registry

property is the intended user registry.

v Internal program error. If the client application is a Java standalone program, this program might not

gather or send credential information correctly.

If the user registry configuration, user ID, and password appear correct, use the WebSphere Application

Server trace to determine the cause of the problem. To enable security trace, use the

com.ibm.ws.security.*=all=enabled trace specification.

Authorization error accessing a Web page

If a user who is supposed to have access to a resource does not, a configuration step is probably missing.

For more information on configuring access to resources, review the chapter Authorizing access to

administrative roles in the Securing applications and their environment PDF book.

Specifically:

v Check the required roles for the accessed Web resource.

v Check the authorization table to make sure that the user, or the groups to which the user belongs, is

assigned to one of the required roles.

v View required roles for the Web resource in the deployment descriptor of the Web resource.

v View the authorization table for the application that contains the Web resource, using the administrative

console.

v Test with a user who is granted the required roles, to see if the user can access the problem resources.

v If the user is required to have one or more of the required roles, use the administrative console to

assign that user to required roles, stop, and restart the application.

If the user is granted required roles, but still fails to access the secured resources, enable security trace,

using com.ibm.ws.security.*=all=enabled as the trace specification. Collect trace information for further

resolution.

Error Message: CWSCJ0314E: Current Java 2 security policy reported a potential

violation on server

If you find errors on your server similar to:

Error Message: CWSCJ0314E: Current Java 2 Security policy reported a potential violation of

Java 2 Security Permission. Please refer to Problem Determination Guide for further information.

{0}Permission/:{1}Code/:{2}{3}Stack Trace/:{4}Code Base Location/:{5}

The Java security manager checkPermission method has reported a SecurityException exception .

The reported exception might be critical to the secure system. Turn on security trace to determine the

potential code that might have violated the security policy. Once the violating code is determined, verify if

the attempted operation is permitted with respect to Java 2 Security, by examining all applicable Java 2

security policy files and the application code.

A more detailed report is enabled by either configuring RAS trace into debug mode, or specifying a Java

property.

Chapter 20. Troubleshooting security configurations 1407

http://www.ibm.com/software/webservers/appserv/was/support/

v Check the trace enabling section for instructions on how to configure Reliability Availability Serviceability

(RAS) trace into debug mode, or

v Specify the following property in the Application Servers > server_name > ProcessDefinition > Java

Virtual Machine panel from the administrative console in the Generic JVM arguments panel:

– Add the java.security.debug run-time flag

– Valid values:

access

Print all debug information including required permission, code, stack, and code base

location.

stack Print debug information including required permission, code, and stack.

failure Print debug information including required permission, and code.

For a review of Java security policies, see the Java 2 Security documentation at http://java.sun.com/j2se/
1.3/docs/guide/security/index.html.

Tip: If the application is running with a Java Mail application programming interface (API), this message

might be benign. You can update the installed Enterprise Application root/META-INF/was.policy file to grant

the following permissions to the application:

v permission java.io.FilePermission ″${user.home}${/}.mailcap″, ″read″;

v permission java.io.FilePermission ″${user.home}${/}.mime.types″, ″read″;

v permission java.io.FilePermission ″${java.home}${/}lib${/}mailcap″, ″read″;

v permission java.io.FilePermission ″${java.home}${/}lib${/}mime.types″, ″read″;

Error message: CWMSG0508E: The JMS Server security service was unable to

authenticate user ID:″ error displayed in SystemOut.log when starting an

application server

This error can result from installing the Java Message Service (JMS) API sample and then enabling

security. You can follow the instructions in the Configure and Run page of the corresponding JMS sample

documentation to configure the sample to work with WebSphere Application Server security.

You can verify the installation of the message-driven bean sample by launching the installation program,

selecting Custom, and browsing the components which are already installed in the Select the features you

like to install panel. The JMS sample is shown as Message-Driven Bean Sample, under Embedded

Messaging.

You can also verify this installation by using the administrative console to open the properties of the

application server that contains the samples. Select MDBSamples and click uninstall.

Error message: CWSCJ0237E: One or more vital LTPAServerObject configuration

attributes are null or not available after enabling security and starting the

application server.

This error message can result from selecting Lightweight Third Party Authentication (LTPA) as the

authentication mechanism, but not generating the LTPA keys. The LTPA keys encrypt the LTPA token.

To resolve this problem:

1. Click Security > Secure administration, applications and infrastructure> Authentication >

Authentication mechanisms and expiration> LTPA

2. Enter a password, which can be anything.

3. Enter the same password in Confirm Password.

4. Click Apply.

5. Click Generate Keys.

6. Click Save.

1408 Securing applications and their environment

http://java.sun.com/j2se/1.3/docs/guide/security/index.html
http://java.sun.com/j2se/1.3/docs/guide/security/index.html

The AccessControlException exception, is reported in the SystemOut.log

The problem is related to the Java 2 security feature of WebSphere Application Server, the API-level

security framework that is implemented in WebSphere Application Server. An exception similar to the

following example displays. The error message and number can vary.

CWSRV0020E: [Servlet Error]-[validator]: Failed to load servlet:

java.security.AccessControlException: access denied

(java.io.FilePermission

app_server_root/systemApps/isclite.ear/isclite.war/WEB-INF/validation.xml read)

For an explanation of Java 2 security, how and why to enable or disable it, how it relates to policy files,

and how to edit policy files, see the Java 2 security topic in the Securing applications and their

environment PDF book.The topic explains that Java 2 security is not only used by this product, but

developers can also implement it for their business applications. Administrators might need to involve

developers, if this exception is created when a client tries to access a resource that is hosted by

WebSphere Application Server.

Possible causes of these errors include:

v Syntax errors in a policy file.

v Syntax errors in permission specifications in the ra.xml file that is bundled in a .rar file. This case

applies to resource adapters that support connector access to CICS or other resources.

v An application is missing the specified permission in a policy file, or in permission specifications in

ra.xml file bundled in a .rar file.

v The class path is not set correctly, preventing the permissions for the resource.xml file for Service

Provider Programming Interface (SPI) from being correctly created.

v A library called by an application, or the application, is missing a doPrivileged block to support access to

a resource.

v Permission is specified in the wrong policy file.

To resolve these problems:

v Check all of the related policy files to verify that the permission shown in the exception, for example

java.io.FilePermission, is specified.

v Look for a related ParserException exception in the SystemOut.log file which reports the details of the

syntax error. For example:

CWSCJ0189E: Caught ParserException while creating template for application policy

profile_root/config/cells/cell_name/nodes/node_name/app.policy

Where:

– cell_name represents the name of your cell.

– profile_name represents the name of your profile.

– node_name represents the name of your node.

The exception is com.ibm.ws.security.util.ParserException: line 18: expected ’;’, found ’grant’

v Look for a message similar to: CWSCJ0325W: The permission permission specified in the policy

file is unresolved.

v Check the call stack to determine which method does not have the permission. Identify the class path of

this method. If it is hard to identify the method, enable the Java2 security Report.

– Configuring RAS trace by specifying com.ibm.ws.security.core.*=all=enabled, or specifying a Java

property.java.security.debug property. Valid values for the java.security.debug property are:

access

Print all debug information including: required permission, code, stack, and code base

location.

stack Print debug information including: required permission, code, and stack.

failure Print debug information including: required permission and code.
– The report shows:

Permission

The missing permission.

Chapter 20. Troubleshooting security configurations 1409

Code Which method has the problem.

Stack Trace

Where the access violation occurred.

CodeBaseLocation

The detail of each stack frame.

Usually, permission and code are enough to identify the problem. The following example illustrates a

report:

Permission:

app_server_root/logs/server1/SystemOut_02.08.20_11.19.53.log :

access denied (java.io.FilePermission

app_server_root/logs/server1/SystemOut_02.08.20_11.19.53.log delete)

Code:

 com.ibm.ejs.ras.RasTestHelper$7 in

{file:app_server_root/installedApps/app1/JrasFVTApp.ear/RasLib.jar

}

Stack Trace:

java.security.AccessControlException: access denied (java.io.FilePermission

app_server_root/logs/server1/SystemOut_02.08.20_11.19.53.log delete

)

 at java.security.AccessControlContext.checkPermission

 (AccessControlContext.java(Compiled Code))

 at java.security.AccessController.checkPermission

 (AccessController.java(Compiled Code))

 at java.lang.SecurityManager.checkPermission

 (SecurityManager.java(Compiled Code))

 .

Code Base Location:

com.ibm.ws.security.core.SecurityManager :

file:/app_server_root/plugins/com.ibm.ws.runtime_6.1.0.jar

 ClassLoader: com.ibm.ws.bootstrap.ExtClassLoader

 Permissions granted to CodeSource

(file:/app_server_root/plugins/com.ibm.ws.runtime_6.1.0.jar <no certificates>

 {

 (java.util.PropertyPermission java.vendor read);

 (java.util.PropertyPermission java.specification.version read);

 (java.util.PropertyPermission line.separator read);

 (java.util.PropertyPermission java.class.version read);

 (java.util.PropertyPermission java.specification.name read);

 (java.util.PropertyPermission java.vendor.url read);

 (java.util.PropertyPermission java.vm.version read);

 (java.util.PropertyPermission os.name read);

 (java.util.PropertyPermission os.arch read);

 }

 (This list continues.)

Where:

- app1 represents the name of your application.

- app_server_root represents the installation root directory for WebSphere Application Server.

- profile_root represents the location and name of a particular profile in your system.

- profile1 or profile_name represents the name of your profile.

- server1 or server_namerepresents the name of your application server.
v If the method is SPI, check the resources.xml file to ensure that the class path is correct.

v To confirm that all of the policy files are loaded correctly, or what permission each class path is granted,

enable the trace with com.ibm.ws.security.policy.*=all=enabled. All loaded permissions are listed in

the trace.log file. Search for the app.policy, was.policy and ra.xml files. To check the permission list for a

class path, search for Effective Policy for classpath.

1410 Securing applications and their environment

v If there are any syntax errors in the policy file or the ra.xml file, correct them with the policy tool. Avoid

editing the policy manually, because syntax errors can result. For additional information about using this

tool, refer to the section Using PolicyTool to edit policy files in the Developing and deploying

applications PDF book.

v If a permission is listed as Unresolved, it does not take effect. Verify that the specified permission name

is correct.

v If the class path that is specified in the resource.xml file is not correct, correct it.

v If a required permission does not exist in either the policy files or the ra.xml file, examine the application

code to see if you need to add this permission. If so, add it to the proper policy file or the ra.xml file.

v If the permission is not granted outside of the specific method that is accessing this resource, modify

the code needs to use a doPrivileged block.

v If this permission does exist in a policy file or a ra.xml file and the permission was loaded correctly, but

the class path still does not have the permission in its list, the location of the permission might not be

correct. Read the Java 2 security chapter in the Securing applications and their environment PDF book

carefully to determine in which policy file or ra.xml file to specify that permission.

Tip: If the application is running with the Java Mail API, you can update the installed Enterprise Application

root/META-INF/was.policy file to grant the following permissions to the application:

v permission java.io.FilePermission ″${user.home}${/}.mailcap″, ″read″;

v permission java.io.FilePermission ″${user.home}${/}.mime.types″, ″read″;

v permission java.io.FilePermission ″${java.home}${/}lib${/}mailcap″, ″read″;

v permission java.io.FilePermission ″${java.home}${/}lib${/}mime.types″, ″read″;

Error Message: CWSCJ0336E: Authentication failed for user {0} because of the

following exception {1}

This error message results if the user ID that is indicated is not found in the Lightweight Directory Access

Protocol (LDAP) user registry. To resolve this problem:

1. Verify that your user ID and password are correct.

2. Verify that the user ID exists in the registry.

3. Verify that the base distinguished name (DN) is correct.

4. Verify that the user filter is correct.

5. Verify that the bind DN and the password for the bind DN are correct. If the bind DN and password are

not specified, add the missing information and retry.

6. Verify that the host name and LDAP type are correct.

Consult with the administrator of the user registry if the problem persists.

Access problems after enabling security

Use this information if you are experiencing access problems after enabling security.

What kind of error are you seeing?

v I cannot access all or part of the administrative console or use the wsadmin tool after enabling security

v I cannot access a Web page after enabling security

v Authentication error accessing a Web page

v Authorization error accessing a Web page

v The client cannot access an enterprise bean after enabling security

v The client never gets prompted when accessing a secured enterprise bean

v I cannot stop an application server, node manager, or node after enabling security

v AccessControlException is reported in SystemOut.log

v After enabling single sign-on, I cannot log on to the administrative console

v The following exception displays in the SystemOut.log file after I start the server and enable security:

″SECJ0306E: No received or invocation credential exists on the thread.″

Chapter 20. Troubleshooting security configurations 1411

For general tips on diagnosing and resolving security-related problems, see the topic Troubleshooting the

security component.

If you do not see a problem that resembles yours, or if the information provided does not solve your

problem, see Troubleshooting help from IBM.

I cannot access all or part of the administrative console or use the wsadmin tool

after enabling security

v If you cannot access the administrative console, or view and update certain objects, look in the

SystemOut log of the application server which hosts the administrative console page for a related error

message.

v You might not have authorized your ID for administrative tasks. This problem is indicated by errors such

as:

– [8/2/02 10:36:49:722 CDT] 4365c0d9 RoleBasedAuth A CWSCJ0305A: Role based authorization

check failed for security name MyServer/myUserId, accessId MyServer/S-1-5-21-882015564-
4266526380-2569651501-1005 while invoking method getProcessType on resource Server and

module Server.

– Exception message: ″CWWMN0022E: Access denied for the getProcessType operation on Server

MBean″

– When running the command: wsadmin -username j2ee -password j2ee: CWWAX7246E: Cannot

establish ″SOAP″ connection to host ″BIRKT20″ because of an authentication failure. Ensure

that user and password are correct on the command line or in a properties file.

To grant an ID administrative authority, from the administrative console, click System Administration >

Console Users and validate that the ID is a member. If the ID is not a member, add the ID with at least

monitor access privileges, for read-only access.

v Verify that the enable_trusted_application flag is set to true. To check the enable_trusted_application

flag value using the administrative console, click Security > Secure administration, applications and

infrastructure. Under Additional properties, click Custom properties > EnableTrustedApplications.

I cannot access a Web page after enabling security

When secured resources are not accessible, probable causes include:

v Authentication errors - WebSphere Application Server security cannot identify the ID of the person or

process. Symptoms of authentication errors include:

On a Netscape browser:

– Authorization failed. Retry? message is displayed after an attempt to log in.

– Accepts any number of attempts to retry login and displays Error 401 message when Cancel is

clicked to stop retry.

– A typical browser message displays: Error 401: Basic realm=’Default Realm’.

On an Internet Explorer browser:

– Login prompt displays again after an attempt to log in.

– Allows three attempts to retry login.

– Displays Error 401 message after three unsuccessful retries.
v Authorization errors - The security function has identified the requesting person or process as not

authorized to access the secured resource. Symptoms of authorization errors include:

– Netscape browser: ″Error 403: AuthorizationFailed″ message is displayed.

– Internet Explorer:

- ″You are not authorized to view this page″ message is displayed.

- ″HTTP 403 Forbidden″ error is also displayed.
v SSL errors - WebSphere Application Server security uses Secure Sockets Layer (SSL) technology

internally to secure and encrypt its own communication, and incorrect configuration of the internal SSL

settings can cause problems. Also you might have enabled SSL encryption for your own Web

application or enterprise bean client traffic which, if configured incorrectly, can cause problems

regardless of whether WebSphere Application Server security is enabled.

1412 Securing applications and their environment

– SSL-related problems are often indicated by error messages that contain a statement such as:

ERROR: Could not get the initial context or unable to look up the starting

context.Exiting. followed by javax.net.ssl.SSLHandshakeException

The client cannot access an enterprise bean after enabling security

If the client access to an enterprise bean fails after security is enabled:

v Review the steps for securing and granting access to resources.

v Browse the server JVM logs for errors relating to enterprise bean access and security. Look up any

errors in the message table.

Errors similar to Authorization failed for /UNAUTHENTICATED while invoking resource

securityName:/UNAUTHENTICATED;accessId:UNAUTHENTICATED not granted any of the required roles

roles indicate that:

– An unprotected servlet or JavaServer Pages (JSP) file accessed a protected enterprise bean. When

an unprotected servlet is accessed, the user is not prompted to log in and the servlet runs as

UNAUTHENTICATED. When the servlet makes a call to an enterprise bean that is protected, the

servlet fails.

To resolve this problem, secure the servlet that is accessing the protected enterprise bean. Make

sure that the runAs property for the servlet is set to an ID that can access the enterprise bean.

– An unauthenticated Java client program is accessing an enterprise bean resource that is protected.

This situation can happen if the file that is read by the sas.client.props properties file that is used

by the client program does not have the securityEnabled flag set to true.

To resolve this problem, make sure that the sas.client.props file on the client side has its

securityEnabled flag set to true.

Errors similar to Authorization failed for valid_user while invoking resource securityName:/
username;accessId:xxxxxx not granted any of the required roles roles indicate that a client

attempted to access a secured enterprise bean resource, and the supplied user ID is not assigned the

required roles for that enterprise bean.

– Check that the required roles for the enterprise bean resource are accessed. View the required roles

for the enterprise bean resource in the deployment descriptor of the Web resource.

– Check the authorization table and make sure that the user or the group that the user belongs to is

assigned one of the required roles. You can view the authorization table for the application that

contains the enterprise bean resource using the administrative console.

If org.omg.CORBA.NO_PERMISSION exceptions occur when programmatically logging on to access a secured

enterprise bean, an authentication exception has occurred on the server. Typically the CORBA exception is

triggered by an underlying com.ibm.WebSphereSecurity.AuthenticationFailedException. To determine the

actual cause of the authentication exception, examine the full trace stack:

1. Begin by viewing the text following WSSecurityContext.acceptSecContext(), reason: in the exception.

Typically, this text describes the failure without further analysis.

2. If this action does not describe the problem, look up the Common Object Request Broker Architecture

(CORBA) minor code. The codes are listed in the article titled Troubleshooting the security components

reference.

For example, the following exception indicates a CORBA minor code of 49424300. The explanation of

this error in the CORBA minor code table reads:

authentication failed error

In this case the user ID or password supplied by the client program is probably not valid:

org.omg.CORBA.NO_PERMISSION: Caught WSSecurityContextException in

WSSecurityContext.acceptSecContext(), reason: Major Code[0] Minor Code[0]

Message[Exception caught invoking authenticateBasicAuthData from SecurityServer

for user jdoe. Reason: com.ibm.WebSphereSecurity.AuthenticationFailedException]

minor code: 49424300 completed:

No at com.ibm.ISecurityLocalObjectBaseL13Impl.PrincipalAuthFailReason.map_auth_fail_to_minor_code

(PrincipalAuthFailReason.java:83)

Chapter 20. Troubleshooting security configurations 1413

A CORBA INITIALIZE exception with CWWSA1477W: SECURITY CLIENT/SERVER CONFIGURATION MISMATCH error

embedded, is received by client program from the server.

This error indicates that the security configuration for the server differs from the client in some fundamental

way. The full exception message lists the specific mismatches. For example, the following exception lists

three errors:

Exception received: org.omg.CORBA.INITIALIZE:

CWWSA1477W: SECURITY CLIENT/SERVER CONFIG MISMATCH:

The client security configuration (sas.client.props or outbound settings in

administrative console) does not support the server security configuration for

the following reasons:

ERROR 1: CWWSA0607E: The client requires SSL Confidentiality but the server does not

 support it.

ERROR 2: CWWSA0610E: The server requires SSL Integrity but the client does not

 support it.

ERROR 3: CWWSA0612E: The client requires client (e.g., userid/password or token),

 but the server does not support it.

 minor code: 0

 completed: No at

com.ibm.ISecurityLocalObjectBaseL13Impl.SecurityConnectionInterceptor.getConnectionKey

(SecurityConnectionInterceptor.java:1770)

In general, resolving the problem requires a change to the security configuration of either the client or the

server. To determine which configuration setting is involved, look at the text following the CWWSA error

message. For more detailed explanations and instructions, look in the message reference, by selecting the

Reference view of the information center navigation and expanding Messages in the navigation tree.

In these particular cases:

v In ERROR 1, the client is requiring SSL confidentiality but the server does not support SSL

confidentiality. Resolve this mismatch in one of two ways. Either update the server to support SSL

confidentiality or update the client so that it no longer requires it.

v In ERROR 2, the server requires SSL integrity but the client does not support SSL integrity. Resolve this

mismatch in one of two ways. Either update the server to support SSL integrity or update the client so

that it no longer requires it.

v In ERROR 3, the client requires client authentication through a user id and password, but the server

does not support this type of client authentication. Either the client or the server needs to change the

configuration. To change the client configuration, modify the SAS.CLIENT.PROPS file for a pure client or

change the outbound configuration for the server in the Security administrative console. To change the

configuration for the target server, modify the inbound configuration in the Security administrative

console.

Similarly, an exception like org.omg.CORBA.INITIALIZE: JSAS0477W: SECURITY CLIENT/SERVER CONFIG

MISMATCH: appearing on the server trying to service a client request indicates a security configuration

mismatch between client and server. The steps for resolving the problem are the same as for the

JSAS1477W exceptions previously described.

Client program never gets prompted when accessing secured enterprise bean

Even though it seems that security is enabled and an enterprise bean is secured, occasions can occur

when the client runs the remote method without prompting. If the remote method is protected, an

authorization failure results. Otherwise, run the method as an unauthenticated user.

Possible reasons for this problem include:

v The server with which you are communicating might not have security enabled. Check with the

WebSphere Application Server administrator to ensure that the server security is enabled. Access the

security settings from within the Security section of the administrative console.

v The client does not have security enabled in the sas.client.props file. Edit the sas.client.props file

to ensure the property com.ibm.CORBA.securityEnabled is set to true.

1414 Securing applications and their environment

v The client does not have a ConfigURL specified. Verify that the property com.ibm.CORBA.ConfigURL is

specified on the command line of the Java client, using the -D parameter.

v The specified ConfigURL does not have a valid URL syntax, or the sas.client.props that is pointed to

cannot be found. Verify that the com.ibm.CORBA.ConfigURL property is valid. Check the Java

documentation for a description of URL formatting rules. Also, validate that the file exists at the specified

path.

Windows

An example of a valid property is C:/WebSphere/AppServer/properties/sas.client.props.

v The client configuration does not support message layer client authentication (user ID and password).

Verify that the sas.client.props file has one of the following properties set to true:

– com.ibm.CSI.performClientAuthenticationSupported=true

– com.ibm.CSI.performClientAuthenticationRequired=true
v The server configuration does not support message layer client authentication, which consists of a user

ID and password. Check with the WebSphere Application Server administrator to verify that user ID and

password authentication is specified for the inbound configuration of the server within the System

Administration section of the administrative console administration tool.

Cannot stop an application server, node manager, or node after enabling security

If you use command-line utilities to stop WebSphere Application Server processes, apply additional

parameters after enabling security to provide authentication and authorization information.

Use the ./stopServer -help command to display the parameters to use.

Use the following command options after enabling security:

v ./stopServer serverName -username name -password password

v ./stopNode -username name -password password

v ./stopManager -username name -password password

If you use the Windows service panel or the net stop command to stop the WebSphere Application Server

processes and the service could not be stopped, update the existing Application Server service using

additional stop arguments. You might need to end the server process from the Task Manager before

updating the service. Use the -stopArgs and the-encodeParams parameters to update the service as

described in the ″Updating an existing Application Server service″ example in the WASService command

chapter of the Administering applications and their environment PDF book..

After enabling single sign-on, I cannot logon to the administrative console

This problem occurs when single sign-on (SSO) is enabled, and you attempt to access the administrative

console using the short name of the server, for example http://myserver:port_number/ibm/console. The

server accepts your user ID and password, but returns you to the logon page instead of the administrative

console.

To correct this problem, use the fully qualified host name of the server, for example http://
myserver.mynetwork.mycompany.com:9060/ibm/console.

The following exception displays in the SystemOut.log file after I start the server

and enable security: ″SECJ0306E: No received or invocation credential exists on

the thread.″

The following message displays when one or more nodes within the cell was not synchronized during

configuration:

SECJ0306E: No received or invocation credential exists on the thread. The Role based

authorization check will not have an accessId of the caller to check. The parameters

are: access check method getServerConfig on resource FileTransferServer and module

FileTransferServer. The stack trace is java.lang.Exception: Invocation and received

credentials are both null.

Chapter 20. Troubleshooting security configurations 1415

Make sure that each of the nodes are synchronized and then restart the deployment manager.

Errors after configuring or enabling Secure Sockets Layer

This topic explains various problems you might encounter after configuring or enabling Secure Sockets

Layer (SSL).

Accessing resources using HTTPS

If you are unable to access resources using a Secure Sockets Layer (SSL) URL (beginning with https:),

or encounter error messages that indicate SSL problems, verify that your HTTP server is configured

correctly for SSL. Browse the welcome page of the HTTP server using SSL by entering the URL:

https://host_name.

If the page works with HTTP, but not HTTPS, the problem is with the HTTP server.

v Refer to the documentation for your HTTP server for instructions on correctly enabling SSL. If you are

using the IBM HTTP Server or Apache, go to: http://www.ibm.com/software/webservers/httpservers/
library.html. Click Frequently Asked Questions> SSL.

v If you use the IBM Key Management (IKeyman) tool to create certificates and keys, remember to stash

the password to a file when creating the Key Database (KDB) file with the IBM Key Management Tool.

1. Go to the directory where the KDB file is created, and see if an .sth file exists.

2. If not, open the KDB file with the IBM Key Management Tool, and click Key Database File > Stash

Password. The following message is displayed: The password has been encrypted and saved in

the file.

If the HTTP server handles SSL-encrypted requests successfully, or is not involved (for example, traffic

flows from a Java client application directly to an enterprise bean that is hosted by WebSphere Application

Server, or the problem displays only after enabling WebSphere Application Server security), what kind of

error are you seeing?

v javax.net.ssl.SSLHandshakeException - The client and server could not negotiate the desired

level of security. Reason: handshake failure

v javax.net.ssl.SSLHandshakeException - The client and server could not negotiate the desired

level of security. Reason: unknown certificate

v javax.net.ssl.SSLHandshakeException - The client and server could not negotiate the desired

level of security. Reason: bad certificate

v org.omg.CORBA.INTERNAL: EntryNotFoundException or NTRegistryImp E CWSCJ0070E: No privilege id

configured for: error when programmatically creating a credential.

For general tips on diagnosing and resolving security-related problems, see “Security components

troubleshooting tips” on page 1393

If you do not see a problem that resembles yours, or if the information provided does not solve your

problem, see Troubleshooting help from IBM

javax.net.ssl.SSLHandshakeException - The client and server could not negotiate

the desired level of security. Reason: handshake failure

If you see a Java exception stack similar to the following example:

[Root exception is org.omg.CORBA.TRANSIENT: CAUGHT_EXCEPTION_WHILE_CONFIGURING_

SSL_CLIENT_SOCKET: CWWJE0080E: javax.net.ssl.SSLHandshakeException - The client

and server could not negotiate the desired level of security. Reason: handshake

failure:host=MYSERVER,port=1079 minor code: 4942F303 completed: No] at

com.ibm.CORBA.transport.TransportConnectionBase.connect

(TransportConnectionBase.java:NNN)

Some possible causes are:

v Not having common ciphers between the client and server.

1416 Securing applications and their environment

http://www.ibm.com/software/webservers/httpservers/library.html
http://www.ibm.com/software/webservers/httpservers/library.html

v Not specifying the correct protocol.

To correct these problems:

1. Review the SSL settings. In the administrative console, click Security > SSL certificate and key

management. Under Configuration settings, click Manage endpoint security configurations >

endpoint_configuration_name. Under Related items, click SSL configurations >

SSL_configuration_name. You can also browse the file manually by viewing the install_root/
properties/sas.client.props file.

2. Check the property that is specified by the com.ibm.ssl.protocol file to determine which protocol is

specified.

3. Check the cipher types that are specified by the com.ibm.ssl.enabledCipherSuites interface. You might

want to add more cipher types to the list. To see which cipher suites are currently enabled, click

Quality of protection settings (QoP), and look for the Cipher Suites property.

4. Correct the protocol or cipher problem by using a different client or server protocol and cipher

selection. Typical protocols are SSL or SSLv3.

5. Make the cipher selection 40-bit instead of 128-bit. For Common Secure Interoperability Version 2

(CSIv2), set both of the following properties to false in the sas.client.props file, or set security

level=medium in the administrative console settings:

v com.ibm.CSI.performMessageConfidentialityRequired=false

v com.ibm.CSI.performMessageConfidentialitySupported=false

javax.net.ssl.SSLHandshakeException: unknown certificate

If you see a Java exception stack similar to the following example, it might be caused by not having the

personal certificate for the server in the client truststore file:

ERROR: Could not get the initial context or unable to look up the starting context.

Exiting. Exception received: javax.naming.ServiceUnavailableException: A

communication failure occurred while attempting to obtain an initial context using

the provider url: "corbaloc:iiop:localhost:2809". Make sure that the host and port

information is correct and that the server identified by the provider url is a

running name server. If no port number is specified, the default port number 2809

is used. Other possible causes include the network environment or workstation

network configuration. [Root exception is org.omg.CORBA.TRANSIENT:

CAUGHT_EXCEPTION_WHILE_CONFIGURING_SSL_CLIENT_SOCKET: CWWJE0080E:

javax.net.ssl.SSLHandshakeException - The client and server could not

negotiate the desired level of security. Reason: unknown

certificate:host=MYSERVER,port=1940 minor code: 4942F303 completed: No]

To correct this problem:

1. Check the client truststore file to determine if the signer certificate from the server personal certificate

is there. For a self-signed server personal certificate, the signer certificate is the public key of the

personal certificate. For a certificate authority (CA)-signed server personal certificate, the signer

certificate is the root CA certificate of the CA that signed the personal certificate.

2. Add the server signer certificate to the client truststore file.

javax.net.ssl.SSLHandshakeException: bad certificate

A Java exception stack error might display if the following situations occur:

v A personal certificate exists in the client keystore that is used for SSL mutual authentication.

v The signer certificate is not extracted into the server truststore file, and thus the server cannot trust the

certificate whenever the SSL handshake is made.

The following message is an example of the Java exception stack error:

ERROR: Could not get the initial context or unable to look

up the starting context. Exiting.

Exception received: javax.naming.ServiceUnavailableException:

A communication failure occurred while attempting to obtain an

initial context using the provider url: "corbaloc:iiop:localhost:2809".

Chapter 20. Troubleshooting security configurations 1417

Make sure that the host and port information is correct and that the

server identified by the provider url is a running name

server. If no port number is specified, the default port number 2809

is used. Other possible causes include the network environment or

workstation network configuration.

[Root exception is org.omg.CORBA.TRANSIENT: CAUGHT_EXCEPTION_WHILE_CONFIGURING_SSL_

CLIENT_SOCKET: CWWJE0080E: javax.net.ssl.SSLHandshakeException - The client and

server could not negotiate the desired level of security. Reason:

bad certificate: host=MYSERVER,port=1940 minor code: 4942F303 completed: No]

To verify this problem, check the server truststore file to determine if the signer certificate from the client

personal certificate is there. For a self-signed client personal certificate, the signer certificate is the public

key of the personal certificate. For a certificate authority-signed client personal certificate, the signer

certificate is the root CA certificate of the CA that signed the personal certificate.

To correct this problem, add the client signer certificate to the server truststore file.

org.omg.CORBA.INTERNAL: EntryNotFoundException or NTRegistryImp E

CWSCJ0070E: No privilege id configured for: error when programmatically

creating a credential

If you encounter the following exception in a client application attempting to request a credential from a

WebSphere Application Server using SSL mutual authentication:

ERROR: Could not get the initial context or unable to look up the starting context.

Exiting. Exception received: org.omg.CORBA.INTERNAL: Trace from server: 1198777258

at host MYHOST on port 0 >>org.omg.CORBA.INTERNAL: EntryNotFoundException minor

code: 494210B0 completed:

No at com.ibm.ISecurityLocalObjectBaseL13Impl.PrincipalAuthFailReason.

map_auth_fail_to_minor_code(PrincipalAuthFailReason.java:99)

or a simultaneous error from the WebSphere Application Server that resembles:

[7/31/02 15:38:48:452 CDT] 27318f5 NTRegistryImp E CWSCJ0070E: No privilege id

configured for: testuser

The cause might be that the user ID sent by the client to the server is not in the user registry for that

server.

To confirm this problem, check that an entry exists for the personal certificate that is sent to the server.

Depending on the user registry mechanism, look at the native operating system user ID or Lightweight

Directory Access Protocol (LDAP) server entries.

To correct this problem, add the user ID to the user registry entry (for example, operating system, LDAP

directory, or other custom registry) for the personal certificate identity.

Errors configuring Secure Sockets Layer encrypted access

You might have errors returned when you are trying to configure Secure Sockets Layer (SSL) for

encrypted access. This article describes some of the common errors you might encounter and makes

suggestions on how to fix the problems.

What kind of error are you seeing?

v “″The Java Cryptographic Extension (JCE) files were not found.″ error when launching iKeyman” on

page 1419

v “″Unable to verify MAC.″ error when the wrong keystore password is used” on page 1419

v “″SSL handshake failure″ error when no trusted certificate is found” on page 1419

v “The certificate alias cannot be found in the keystore” on page 1420

1418 Securing applications and their environment

If you do not see a problem that resembles yours, or if the information provided does not solve your

problem, contact IBM support for further assistance.

″The Java Cryptographic Extension (JCE) files were not found.″ error when

launching iKeyman

You might receive the following error when you attempt to start the iKeyman tool:

"The Java Cryptographic Extension (JCE) files were not found.

Please check that the JCE files have been installed in the correct directory."

When you click OK, the iKeyman tool closes. To resolve this problem:

v Set the JAVA_HOME parameter so that is points to the Java Developer Kit that is shipped with

WebSphere Application Server.

For example, the command is similar to: export JAVA_HOME=/opt/WebSphere/AppServer/java

Windows

If WebSphere Application Server is installed on your c: drive, the command would be: set

JAVA_HOME=c:\WebSphere\AppServer\java

v Rename the file install_dir/java/jre/lib/ext/gskikm.jar to gskikm.jar.org.

The file is located in the install_dir/java/jre/lib/ext/ directory.

″Unable to verify MAC.″ error when the wrong keystore password is used

You might receive the following error when the keystore password is not being used correctly.

CWPKI0033E: The keystore located at "C:/WebSphere/AppServer/profiles/AppSrv01/etc/trust.p12"

 failed to load due to the following error: Unable to verify MAC.

Change the Password field that references this keystore by using the correct password. The default

passwords is WebAS. Only use this password in a production environment.

″SSL handshake failure″ error when no trusted certificate is found

You might receive the following error when you attempt to add the signer to the local truststore:

CWPKI0022E: SSL HANDSHAKE FAILURE: A signer with SubjectDN "CN=BIRKT40.austin.ibm.com,

 O=IBM, C=US" was sent from target host:port "9.65.49.131:9428".

The signer might need to be added to the local truststore C:/WASX_c0602.31/AppServer/profiles/Dmgr09/
etc/trust.p12 that is located in the SSL configuration alias DefaultSSLSettings. The truststore is loaded

from the SSL configuration file file:C:\WASX_c0602.31\AppServer\profiles\Dmgr09/properties/
ssl.client.props.

The extended error message from the SSL handshake exception is:

"No trusted certificate found."

This error indicates that the signer certificate from the specified target host and port has not been located

in the specified truststore, the SSL settings, and the SSL configuration file. If this occurs in a client

process, there are several things that you can do:

v Enable the signer exchange prompt.

v Run the retrieveSigners script. For more information about the location of the signer certificate see the

retrieveSigners command topic in the Securing applications and their environment PDF book.

v Manually export the signers from the server and import them to the client.

If this issue occurs in a server process, then complete one of the following procedures:

v In the administrative console, find the target endpoint (host name and port) and determine the certificate

that is used by the SSL configuration associated with it. Extract the SSL certificate to a file, and import it

into the sending server truststore that is referenced in the error message.

Chapter 20. Troubleshooting security configurations 1419

v In the administrative console, find the sending server truststore. Go to signer certificates, add from Port,

and connect directly to the target host and port, which are indicated in the message, to retrieve the

signer directly into the truststore.

v Manually extract the signer from the target server and host keystore by using the iKeyman utility, and

import the signer into the truststore of the server sending the certificate.

The certificate alias cannot be found in the keystore

You might receive the following error when the certificate alias is not found in the referenced keystore:

CWPKI0023E: The certificate alias "default" specified by the property

 com.ibm.ssl.keyStoreClientAlias is not found in KeyStore

 "c:/WebSphere/AppServer/profiles/Dmgr01/config/cells/myCell/key.p12".

This error indicates that the certificate alias that was specified cannot be found in the referenced keystore.

Either change the certificate alias or make sure that alias exists in the specified keystore.

Single sign-on configuration troubleshooting tips

This topic describes common problems in configuring single sign-on (SSO) between a WebSphere

Application Server and a Domino server and suggests possible solutions.

v Failure to save the Domino Web SSO configuration document

The client must find Domino server documents for the participating SSO Domino servers. The Web

SSO configuration document is encrypted for the servers that you specify. The home server that is

indicated by the client location record must point to a server in the Domino domain where the

participating servers reside. This pointer ensures that lookups can find the public keys of the servers.

If you receive a message stating that one or more of the participating Domino servers cannot be found,

then those servers cannot decrypt the Web SSO configuration document or perform SSO.

When the Web SSO configuration document is saved, the status bar indicates how many public keys

are used to encrypt the document by finding the listed servers, authors, and administrators in the

document.

v Failure of the Domino server console to load the Web SSO configuration document at Domino HTTP

server startup

During configuration of SSO, the server document is configured for Multi-Server in the Session

Authentication field. The Domino HTTP server tries to find and load a Web SSO configuration

document during startup. The Domino server console reports the following information if a valid

document is found and decrypted: HTTP: Successfully loaded Web SSO Configuration.

If a server cannot load the Web SSO configuration document, SSO does not work. In this case, a

server reports the following message: HTTP: Error Loading Web SSO configuration. Reverting to

single-server session authentication.

Verify that only one Web SSO configuration document is in the Web configurations view of the Domino

directory and in the $WebSSOConfigs hidden view. You cannot create more than one document, but

you can insert additional documents during replication.

If you can verify only one Web SSO configuration document, consider another condition. When the

public key of the server document does not match the public key in the ID file, this same error message

can display. In this case, attempts to decrypt the Web SSO configuration document fail and the error

message is generated.

This situation can occur when the ID file is created multiple times, but the Server document is not

updated correctly. Usually, an error message is displayed on the Domino server console stating that the

public key does not match the server ID. If this situation occurs, SSO does not work because the

document is encrypted with a public key for which the server does not possess the corresponding

private key.

To correct a key-mismatch problem:

1. Copy the public key from the server ID file and paste it into the Server document.

1420 Securing applications and their environment

2. Create the Web SSO configuration document again.

v Authentication fails when accessing a protected resource.

If a Web user is repeatedly prompted for a user ID and password, SSO is not working because either

the Domino or the WebSphere Application Server security server cannot authenticate the user with the

Lightweight Directory Access Protocol (LDAP) server. Check the following possibilities:

– Verify that the LDAP server is accessible from the Domino server machine. Use the TCP/IP ping

utility to check TCP/IP connectivity and to verify that the host machine is running.

– Verify that the LDAP user is defined in the LDAP directory. Use the idsldapsearch utility to confirm

that the user ID exists and that the password is correct. For example, you can run the following

command, entered as a single line:

You can use the OS/400 Qshell, a UNIX shell, or a Windows DOS prompt

% ldapsearch -D "cn=John Doe, ou=Rochester, o=IBM, c=US" -w mypassword

-h myhost.mycompany.com -p 389 -b "ou=Rochester, o=IBM, c=US" (objectclass=*)

The percent character (%) indicates the prompt and is not part of the command. A list of directory

entries is expected. Possible error conditions and causes are contained in the following list:

- No such object: This error indicates that the directory entry referenced by either the user’s

distinguished name (DN) value, which is specified after the -D option, or the base DN value, which

is specified after the -b option, does not exist.

- Credentials that are not valid: This error indicates that the password is not valid.

- Cannot contact the LDAP server: This error indicates that the host name or the port specified for

the server is not valid or that the LDAP server is not running.

- An empty list means that the base directory that is specified by the -b option does not contain any

directory entries.
– If you are using the user’s short name or user ID instead of the distinguished name, verify that the

directory entry is configured with the short name. For a Domino directory, verify the Short

name/UserID field of the Person document. For other LDAP directories, verify the userid property of

the directory entry.

– If Domino authentication fails when using an LDAP directory other than a Domino directory, verify the

configuration settings of the LDAP server in the Directory assistance document in the Directory

assistance database. Also verify that the Server document refers to the correct Directory assistance

document. The following LDAP values that are specified in the Directory Assistance document must

match the values specified for the user registry in the WebSphere Application Server administrative

domain:

- Domain name

- LDAP host name

- LDAP port

- Base DN

Additionally, the rules that are defined in the Directory assistance document must refer to the base

distinguished name (DN) of the directory that contains the directory entries of the users.

You can trace Domino server requests to the LDAP server by adding the following line to the server

notes.ini file:

webauth_verbose_trace=1

After restarting the Domino server, trace messages are displayed in the Domino server console as

Web users attempt to authenticate to the Domino server.

v Authorization failure when accessing a protected resource.

After authenticating successfully, if an authorization error message is displayed, security is not

configured correctly. Check the following possibilities:

– For Domino databases, verify that the user is defined in the access-control settings for the database.

Refer to the Domino administrative documentation for the correct way to specify the user’s DN. For

example, for the DN cn=John Doe, ou=Rochester, o=IBM, c=US, the value on the access-control list

must be set as John Doe/Rochester/IBM/US.

Chapter 20. Troubleshooting security configurations 1421

– For resources that are protected by WebSphere Application Server, verify that the security

permissions are set correctly.

- If granting permissions to selected groups, make sure that the user attempting to access the

resource is a member of the group. For example, you can verify the members of the groups by

using the following Web site to display the directory contents: Ldap://myhost.mycompany.com:389/
ou=Rochester, o=IBM, c=US??sub

- If you changed the LDAP configuration information (host, port, and base DN) in a WebSphere

Application Server administrative domain since the permissions were set, the existing permissions

are probably not valid and need to be recreated.

v SSO failure when accessing protected resources.

If a Web user is prompted to authenticate with each resource, SSO is not configured correctly. Check

the following possibilities:

1. Configure both WebSphere Application Server and the Domino server to use the same LDAP

directory. The HTTP cookie that is used for SSO stores the full DN of the user, for example, cn=John

Doe, ou=Rochester, o=IBM, c=US, and the domain name service (DNS) domain.

2. Define Web users by hierarchical names if the Domino directory is used. For example, update the

User name field in the Person document to include names of this format as the first value: John

Doe/Rochester/IBM/US.

3. Specify the full DNS server name, not just the host name or TCP/IP address for Web sites issued to

Domino servers and WebSphere Application Servers that are configured for SSO. For browsers to

send cookies to a group of servers, the DNS domain must be included in the cookie, and the DNS

domain in the cookie must match the Web address. This requirement is why you cannot use cookies

across TCP/IP domains.

4. Configure both Domino and the WebSphere Application Server to use the same DNS domain. Verify

that the DNS domain value is exactly the same, including capitalization. You need the name of the

DNS domain in which WebSphere Application Server is configured. For additional information about

configuring DNS domains for SSO, refer to the Single sign-on topic in the Securing applications and

their environment PDF book.

5. Verify that the clustered Domino servers have the host name populated with the full DNS server

name in the server document. By using the full DNS server name, Domino Internet Cluster Manager

(ICM) can redirect to cluster members using SSO. If this field is not populated, by default, ICM

redirects Web addresses to clustered Web servers by using the host name of the server only. ICM

cannot send the SSO cookie because the DNS domain is not included in the Web address. To

correct the problem:

a. Edit the Server document.

b. Click Internet Protocols > HTTP tab.

c. Enter the full DNS name of the server in the Host names field.
6. If a port value for an LDAP server is specified for a WebSphere Application Server administrative

domain, edit the Domino Web SSO configuration document and insert a backslash character (\) into

the value of the LDAP Realm field before the colon character (:). For example, replace

myhost.mycompany.com:389 with myhost.mycompany.com\:389.

Authorization provider troubleshooting tips

This article describes the issues you might encounter using a Java Authorization Contract for Containers

(JACC) authorization provider. Tivoli Access Manager is bundled with WebSphere Application Server as an

authorization provider. However, you also can plug in your own authorization provider.

Tivoli Access Manager as a Java Authorization Contract for Containers

authorization provider

You might encounter the following issues when using Tivoli Access Manager as a JACC authorization

provider:

v The configuration of JACC might fail.

v The server might fail to start after configuring JACC.

1422 Securing applications and their environment

v The application might not deploy properly.

v The startServer command might fail after you have configured Tivoli Access Manager or a clean

uninstall did not take place after unconfiguring JACC.

v An ″HPDIA0202w An unknown user name was presented to Access Manager″ error might occur.

v An ″HPDAC0778E The specified user’s account is set to invalid″ error might occur.

v An WASX7017E: Exception received while running file ″InsuranceServicesSingle.jacl″ error might occur.

v “Access denied exceptions accessing applications when using JACC” on page 1426

v “An ″HPDBA0219E: An error occurred reading data from an SSL connection″ might occur” on page

1426

External providers for Java Authorization Contract for Containers authorization

provider

You might encounter the following issues when you use an external provider for JACC authorization:

v An ″HPDJA0506E Invalid argument: Null or zero-length user name field for the ACL entry″ error might

occur.

The configuration of JACC might fail

If you have problems configuring JACC, check the following items:

v Ensure that the parameters are correct. For example, you do not want a number after

TAM_Policy_server_hostname:7135, but you do want be a number after

TAM_Authorization_server_hostname:7136 (for example, TAM_Authorization_server_hostname:7136:1).

v If a message such as “server can’t be contacted” is displayed, it is possible that the host names or port

numbers of the Tivoli Access Manager servers are incorrect, or that the Tivoli Access Manager servers

have not started.

v Ensure that the password for the sec_master user is correct.

v Check the SystemOut.log file and search for the AMAS string to see if any error messages are present.

The server might fail to start after configuring JACC

If the server does not start after JACC is configured, check the following items:

v Ensure that WebSphere Application Server and Tivoli Access Manager use the same Lightweight

Directory Access Protocol (LDAP) server.

v If the message “Policy Director Authentication failed″ is displayed, ensure that the:

– WebSphere Application Server LDAP server ID is the same as the “Administrator user” in the Tivoli

Access Manager JACC configuration panel.

– Verify that the Tivoli Access Manager Administrator distinguished name (DN) is correct.

– Verify that the password of the Tivoli Access Manager administrator has not expired and is valid.

– Ensure that the account is valid for the Tivoli Access Manager administrator.

v If a message such as socket can’t be opened for xxxx (where xxxx is a number) is displayed, take

the following actions:

1. Go to the profile_root/etc/tam directory.

2. Change xxxx to an available port number in the amwas.commomconfig.properties file, and the

amwas*cellName_dmgr.properties file if the deployment manager failed to start. If the node failed to

start, change xxx to an available port number in the amwas*cellName_nodeName_.properties file. If

the Application Server failed to start, change xxxx in the

amwas*cellname_nodeName_serverName.properties file.

Chapter 20. Troubleshooting security configurations 1423

The application might not deploy properly

When you click Save, the policy and role information is propagated to the Tivoli Access Manager policy.

This process might take some time to finish. If the save fails, you must uninstall the application and then

reinstall it.

To access an application after it is installed, you must wait 30 seconds, by default, to start the application

after you save.

The startServer command might fail after you configure Tivoli Access Manager or

a clean uninstall did not take place after unconfiguring JACC.

If the cleanup for JACC unconfiguration or start server fails after JACC is configured, take the following

actions:

v Remove Tivoli Access Manager properties files from WebSphere Application Server. For each

application server in a Network Deployment (ND) environment with N servers defined (for example,

server1, server2).

The following files must be removed.

install_root/java/jre/PdPerm.properties

install_root/java/jre/PdPerm.ks

profile_root/etc/tam/*

v Use a utility to clear the security configuration and return the system to the state it was in before you

configure the JACC provider for Tivoli Access Manager. The utility removes all of the

PDLoginModuleWrapper entries as well as the Tivoli Access Manager authorization table entry from the

security.xml file, effectively removing the JACC provider for Tivoli Access Manager. Backup the

security.xml file before running this utility.

Enter the following commands:

install_root/java/jre/bin/java -classpath

"install_root/lib/AMJACCProvider.jar:CLASSPATH"

com.tivoli.pd.as.jacc.cfg.CleanSecXML fully_qualified_path/security.xml

An ″HPDIA0202w An unknown user name was presented to Access Manager″ error

might occur

You might encounter the following error message if you try to use an existing user in a Local Directory

Access Protocol (LDAP) user registry with Tivoli Access Manager:

AWXJR0008E Failed to create a PDPrincipal for principal mgr1.:

AWXJR0007E A Tivoli Access Manager exception was caught. Details are:

"HPDIA0202W An unknown user name was presented to Access Manager."

This problem might be caused by the host name exceeding predefined limits with Tivoli Access Manager

when it is configured against MS Active Directory. In WebSphere Application Server, the maximum length

of the host name can not exceed 46 characters.

Check that the host name is not fully qualified. Configure the machine so that the host name does not

include the host domain.

To correct this error, complete the following steps:

1. On the command line, type the following information to get a Tivoli Access Manager command prompt:

pdadmin -a administrator_name -p administrator_password

The pdadmin administrator_name prompt is displayed. For example:

pdadmin -a administrator1 -p passw0rd

2. At the pdadmin command prompt, import the user from the LDAP user registry to Tivoli Access

Manager by typing the following information:

1424 Securing applications and their environment

user import user_name cn=user_name,o=organization_name,c=country

For example:

user import jstar cn=jstar,o=ibm,c=us

After importing the user to Tivoli Access Manager, you must use the user modify command to set the user

account to valid. The following syntax shows how to use this command:

user modify user_name account-valid yes

For example:

user modify jstar account-valid yes

For information on how to import a group from LDAP to Tivoli Access Manager, see the Tivoli Access

Manager documentation.

An ″HPDAC0778E The specified user’s account is set to invalid″ error might occur

You might encounter the following error message after you import a user to Tivoli Access Manager and

restart the client:

AWXJR0008E Failed to create a PDPrincipal for principal mgr1.:

AWXJR0007E A Tivoli Access Manager exception was caught.

Details are: "HPDAC0778E The specified user’s account is set to invalid."

To correct this error, use the user modify command to set the user account to valid. The following syntax

shows how to use this command:

user modify user_name account-valid yes

For example:

user modify jstar account-valid yes

An ″HPDJA0506E Invalid argument: Null or zero-length user name field for the ACL

entry″ error might occur

You might encounter an error similar to the following message when you propagate the security policy

information from the application to the provider using the wsadmin propagatePolicyToJACCProvider

command:

AWXJR0035E An error occurred while attempting to add member,

 cn=agent3,o=ibm,c=us, to role AgentRole

HPDJA0506E Invalid argument: Null or zero-length user name field for

 the ACL entry

To correct this error, create or import the user, that is mapped to the security role to the Tivoli Access

Manager. For more information on propagating the security policy information, see the documentation for

your authorization provider.

An WASX7017E: Exception received while running file

″InsuranceServicesSingle.jacl″ error might occur

After the JACC provider and Tivoli Access Manager are enabled, when attempting to install the application,

which is configured with security roles using the wsadmin command, the following error might occur:

WASX7017E: Exception received while running file "InsuranceServicesSingle.jacl";

exception information: com.ibm.ws.scripting.ScriptingException: WASX7111E:

Cannot find a match for supplied option:

"[RuleManager, , , cn=mgr3,o=ibm,c=us|cn=agent3,o=ibm,c=us, cn=ManagerGro

up,o=ibm,c=us|cn=AgentGroup,o=ibm,c=us]" for task "MapRolesToUsers

Chapter 20. Troubleshooting security configurations 1425

The $AdminApp MapRolesToUsers task option is no longer valid when Tivoli Access Manager is used as

the authorization server. To correct the error, change MapRolesToUsers to TAMMapRolesToUsers.

Access denied exceptions accessing applications when using JACC

In the case of Tivoli Access Manager, you might see the following error message.

AWXJR0044E: The access decision for Permission, {0}, was denied because either the

PolicyConfiguration or RoleConfiguration objects did not get created successfully at

application installation time. RoleConfiguration exists = {false}, PolicyConfiguration

exists = {false}."

If the access denied exceptions are not expected for the application, check the SystemOut.log files to see

if the security policy information was correctly propagated to the provider.

If the security policy information for the application is successfully propagated to the provider, the audit

statements with the message key SECJ0415I appear. However, if there was a problem propagating the

security policy information to the provider (for example: network problems, JACC provider is not available),

the SystemOut.log files contain the error message with the message keys SECJ0396E (during install) or

SECJ0398E (during modification). The installation of the application is not stopped due to a failure to

propagate the security policy to the JACC provider. Also, in the case of failure, no exception or error

messages appear during the save operation. When the problem causing this failure is fixed, run the

propagatePolicyToJaccProvider tool to propagate the security policy information to the provider without

reinstalling the application. For more information about this task, see the Propagating security policy of

installed applications to a JACC provider using wsadmin scripting topic in the Securing applications and

their environment PDF book.

An ″HPDBA0219E: An error occurred reading data from an SSL connection″ might

occur

An error message (HPDBA0219E) might appear in dmgr SystemOut.log when you install an application on

WebSphere Application Server for Network Deployment (ND) and a managed node with Tivoli Access

Manager is enabled.

If the error occurs, then the security policy data of recently deployed applications might not be immediately

available. The policy data is available based on the server replicate time of the Tivoli Access Manager.

This is defaulted to 30 seconds after all updates have been completed. To ensure that the latest policy

data is available, log on to the pdadmin console and type: server replicate.

SPNEGO trust association interceptor (TAI) troubleshooting tips

Presented here is a list of trouble shooting tips useful in diagnosing Simple and Protected GSS-API

Negotiation (SPNEGO) TAI problems and exceptions.

The IBM Java Generic Security Service (JGSS) and IBM SPNEGO providers use a Java virtual machine

(JVM) custom property to control trace information. The SPNEGO TAI uses the JRas facility to allow an

administrator to trace only specific classes. To debug the TAI using tracing, the following important trace

specifications or JVM customer should be used:

 Table 57. SPNEGO TAI trace specifications

Trace Use

com.ibm.security.jgss.debug Set this JVM Custom Property to all to trace through JGSS code.

Messages appear in the trace.log file, and SystemOut.log.

com.ibm.security.krb5.Krb5Debug Set this JVM Custom Property to all to trace through the

Kerberos5-specific JGSS code. Messages appear in the trace.log file, and

SystemOut.log.

1426 Securing applications and their environment

Table 57. SPNEGO TAI trace specifications (continued)

Trace Use

com.ibm.ws.security.spnego.* Set this trace on using the administrative console > troubleshooting >

Logging and Tracing > server1 > Change Log Detail Levels >

com.ibm.ws.security.spnego.*. Messages appear in the trace.log file.

Problem: WebSphere Application Server and the Active Directory (AD)

Domain Controller’s time are not synchronized within 5 minutes

The time is not synchronized between WebSphere Application Server and AD Domain Controller.

[2/24/06 13:12:46:093 CST] 00000060 Context 2 com.ibm.ws.security.spnego.Context

 begin GSSContext accepted

[2/24/06 13:12:46:093 CST] 00000060 Context E com.ibm.ws.security.spnego.Context

 begin

CWSPN0011E: An invalid SPNEGO token has been encountered while authenticating a

 HttpServletRequest:

0000: 60820160 06062b06 01050502 a1820154 `..` ..+. T

0010: 30820150 a0030a01 01a10b06 092a8648 0..P *.H

0020: 82f71201 0202a282 013a0482 01366082 :.. .6`.

0030: 01320609 2a864886 f7120102 0203007e .2.. *.H. ~

0040: 82012130 82011da0 03020105 a1030201 ..!0

0050: 1ea41118 0f323030 36303232 34313931 200 6022 4191

0060: 3234365a a5050203 016b48a6 03020125 246Z kH. ...%

0070: a9161b14 57535345 432e4155 5354494e WSSE C.AU STIN

0080: 2e49424d 2e434f4d aa2d302b a0030201 .IBM .COM .-0+

0090: 00a12430 221b0448 5454501b 1a773230 ..$0 "..H TTP. .w20

00a0: 30337365 63646576 2e617573 74696e2e 03se cdev .aus tin.

00b0: 69626d2e 636f6dab 81aa1b81 a76f7267 ibm. com. org

00c0: 2e696574 662e6a67 73732e47 53534578 .iet f.jg ss.G SSEx

00d0: 63657074 696f6e2c 206d616a 6f722063 cept ion, maj or c

00e0: 6f64653a 2031302c 206d696e 6f722063 ode: 10, min or c

00f0: 6f64653a 2033370a 096d616a 6f722073 ode: 37. .maj or s

0100: 7472696e 673a2044 65666563 74697665 trin g: D efec tive

0110: 20746f6b 656e0a09 6d696e6f 72207374 tok en.. mino r st

0120: 72696e67 3a20436c 69656e74 2074696d ring : Cl ient tim

0130: 65204672 69646179 2c204665 62727561 e Fr iday , Fe brua

0140: 72792032 342c2032 30303620 61742031 ry 2 4, 2 006 at 1

0150: 3a31323a 34352050 4d20746f 6f20736b :12: 45 P M to o sk

0160: 65776564 ewed

Solution: You can fix this in one of two ways. The preferred way is to synchronize the WebSphere

Application Server system time to within 5 minutes of the AD server’s time. A best practice is to use a time

server to keep all systems synchronized. Or you can add or adjust the clockskew parameter in the

Kerberos configuration file.

Note: The default for the clockskew parameter is 300 seconds (or 5 minutes).

Problem: Getting exception: No factory available to create a name for

mechanism 1.3.6.1.5.5.2

There apparently is no factory available to process the creation of a name for the specific mechanism.

The systemout.log file displays something like this:

[4/8/05 22:51:24:542 EDT] 5003e481 SystemOut O [JGSS_DBG_PROV] Provider

 IBMJGSSProvider version 1.01 does not support mech 1.3.6.1.5.5.2

[4/8/05 22:51:24:582 EDT] 5003e481 ServerCredent >

 com.ibm.ws.security.spnego.ServerCredential initialize ENTRY

Chapter 20. Troubleshooting security configurations 1427

SPNEGO014: Kerberos initialization Failure: org.ietf.jgss.GSSException, major code: 2,

 minor code: 0

 major string: Unsupported mechanism

 minor string: No factory available to create name for mechanism 1.3.6.1.5.5.2

 at com.ibm.security.jgss.i18n.I18NException.throwGSSException

 (I18NException.java:30)

 at com.ibm.security.jgss.GSSManagerImpl.a(GSSManagerImpl.java:36)

 at com.ibm.security.jgss.GSSCredentialImpl.add(GSSCredentialImpl.java:217)

 at com.ibm.security.jgss.GSSCredentialImpl.<init>(GSSCredentialImpl.java:264)

Solution: Check the java.security file to ensure it contains the IBMSPNEGO security provider and that

the provider is defined correctly. The java.security file should contain a line similar to:

security.provider.6=com.ibm.security.jgss.mech.spnego.IBMSPNEGO

Problem: Getting an exception

An exception has occurred when reporting to the client.

You get the following display.

Error authenticating request. Reporting to client

Major code = 11, Minor code = 31

org.ietf.jgss.GSSException, major code: 11, minor code: 31

 major string: General failure, unspecified at GSSAPI level

 minor string: Kerberos error while decoding and verifying token:

 com.ibm.security.krb5.internal.KrbException, status code: 31

 message: Integrity check on decrypted field failed

as the JGSS library is trying to process the SPNEGO token.

Cause: This exception is the result of encoding the ticket using one key and attempting to decode it using

a different key. There are number of possible reasons for this condition:

1. The Kerberos keytab file has not been copied to the server machine after it has been regenerated.

2. The Kerberos configuration points to the wrong Kerberos keytab file.

3. The Kerberos service principal name (SPN) has been defined to the Active Directory more than once;

this can occur because you have another userid with a similarly defined SPN (either exactly the same

name, or one having a different name but with a port defined part of the SPN).

Solution: If the problem is with the Kerberos keytab file, then fix it. If the problem is with multiple SPN

definitions, then remove the extra or conflicting SPN, confirm that the SPN is no longer registered with the

Active Directory, and then add the SPN. The Active Directory may need to be searched for other entries

with SPNs defined that clash with the SPN.

To confirm that the SPN is not registered, the command:

setspn –l userid

should return with the following response:

Cannot find account userid

Problem: Single sign-on is not occurring.

When trace is turned on, the following message appears:

[2/27/06 14:28:04:191 CST] 00000059 SpnegoHandler <

 com.ibm.ws.security.spnego.SpnegoHandler handleRequest: Received a

 non-SPNEGO Authorization Header RETURN

1428 Securing applications and their environment

Cause: The client is returning an NT LAN manager (NTLM) response to the authorize challenge, not a

SPNEGO token. This condition can be occur due to any of the following reasons:

v The client has not been configured properly.

v The client is not using a supported browser. For example, when using Microsoft Internet Explorer 5.5,

SP1 responds with a non-SPNEGO authentication header.

v The user has not logged into the Active Directory domain, or into a trusted domain, or the client used

does not support integrated authentication with Windows – in this case, the SPNEGO TAI is working

properly.

v The user is accessing a service defined on the same machine upon which the client is running (local

host). Microsoft Internet Explorer resolves the host name of the URL to http://localhostsomeURL

instead of a fully qualified name.

v The SPN is not found in the Active Directory. The SPN must be of the format HTTP/server.realm.com.

The command to add the SPN is

setspn –a HTTP/server.realm.com userid

If the SPN is defined incorrectly as HTTP/server.realm.com@REALM.COM with the addition of @REALM.COM,

then delete the user, redefine the user, and redefine the SPN.

Problem: Credential Delegation is not working

An invalid option is detected. When trace is turned on, the following message is displayed:

com.ibm.security.krb5.KrbException, status code: 101 message: Invalid option in

ticket request

Cause: The Kerberos configuration file is not properly configured.

Solution: Ensure that neither renewable, nor proxiable are set to true.

Problem: Unable to get SSO working using RC4-HMAC encryption.

When trace is turned on, you get the following message in the trace:

com.ibm.security.krb5.internal.crypto.KrbCryptoException, status code: 0

 message: Checksum error; received checksum does not match computed checksum

Cause: RC4-HMAC encryption is not supported with a Microsoft Windows 2000 Kerberos key distribution

center (KDC). To confirm this condition, examine the trace and identify where the exception is thrown. The

content of the incoming ticket should be visible in the trace. Although the incoming ticket is encrypted, the

SPN for the service is readable. If a Microsoft Windows 2000 KDC is used and the system is configured to

use RC4-HMAC, the string representing the ticket for userid@REALM (instead of the expected

HTTP/hostname.realm@REALM) is displayed. For example, this is beginning of the ticket received from a

Microsoft Windows 2000 KDC:

0000: 01 00 6e 82 04 7f 30 82 04 7b a0 03 02 01 05 a1 ..n...0.........

0010: 03 02 01 0e a2 07 03 05 00 20 00 00 00 a3 82 03

0020: a5 61 82 03 a1 30 82 03 9d a0 03 02 01 05 a1 0a .a...0..........

0030: 1b 08 45 50 46 44 2e 4e 45 54 a2 18 30 16 a0 03 ...REALM.COM.0..

0040: 02 01 01 a1 0f 30 0d 1b 0b 65 70 66 64 77 61 73 0...userid

0050: 75 6e 69 74 a3 82 03 6e 30 82 03 6a a0 03 02 01 .a.f...n0..j....

The realm is REALM.COM. The service name is userid. A correctly formed ticket for the same SPN is:

0000: 01 00 6e 82 04 56 30 82 04 52 a0 03 02 01 05 a1 ..n..V0..R......

0010: 03 02 01 0e a2 07 03 05 00 20 00 00 00 a3 82 03

0020: 82 61 82 03 7e 30 82 03 7a a0 03 02 01 05 a1 0a .a...0..z.......

0030: 1b 08 45 50 46 44 2e 4e 45 54 a2 2a 30 28 a0 03 ..REALM.COM.0...

0040: 02 01 02 a1 21 30 1f 1b 04 48 54 54 50 1b 17 75 0...HTTP..u

0050: 73 31 30 6b 65 70 66 77 61 73 73 30 31 2e 65 70 serid.realm.com.

0060: 66 64 2e 6e 65 74 a3 82 03 39 30 82 03 35 a0 03 ...n.....90..5..

Chapter 20. Troubleshooting security configurations 1429

Solution: To correct the problem, either use the Single data encryption standard (DES) or use a Microsoft

Windows 2003 Server for a KDC. Remember to regenerate the SPN, and the Kerberos keytab file.

Problem: User receives the following message when accessing a

protected URL through the SPNEGO SSO

Bad Request

Your browser sent a request that this server could not understand.

Size of request header field exceeds server limit.

Authorization: Negotiate YII......

Cause: This message is generated by the Apache/IBM HTTP Server. This server is indicating that the

authorization header returned by the user’s browser is too large. The long string that follows the word

Negotiate (in the error message above) is the SPNEGO token. This SPNEGO token is a wrapper of the

Microsoft Windows Kerberos token. Microsoft Windows includes the user’s PAC information in the

Kerberos token. The more security groups that the user belongs to, the more PAC information is inserted

in the Kerberos token, and the larger the SPNEGO becomes. IBM HTTP Server 2.0 (also Apache 2.0 and

IBM HTTP Server 6.0) limit the size of any acceptable HTTP header to be 8K. In Microsoft Windows

domains having many groups, and with user membership in many groups, the size of the user’s SPNEGO

token may exceed the 8K limit.

Solution: If possible, reduce the number of security groups the user is a member of. IBM HTTP Server

2.0.47 cumulative fix PK01070 allows for HTTP header sizes up to and beyond the Microsoft limit of 12K.

WebSphere Application Server Version 6.0 users can obtain this fix in fixpack 6.0.0.2.

Note: Non-Apache based Web servers may require differing solutions.

Problem: Even with JGSS tracing disabled, some KRB_DBG_KDC

messages appear in the SystemOut.log

Cause: While most of the JGSS tracing is controlled by the com.ibm.security.jgss.debug property, a small

set of messages are controlled by the com.ibm.security.krb5.Krb5Debug property. The

com.ibm.security.krb5.Krb5Debug property has a default value to put some messages to the

SystemOut.log.

Solution: To remove all KRB_DBG_KDC messages from the SystemOut.log, set the JVM property as

follows:

-Dcom.ibm.security.krb5.Krb5Debug=none

.

Problem: HTTP Post parameters are lost during interaction with the

SPNEGO TAI, when stepping down to userid/password login.

Cause: The Microsoft Internet Explorer maintains state during a user’s request. If a request was given the

response of an ″HTTP 401 Authenticate Negotiate″, and the browser responds with a NTLM token

obtained through a userid/password challenge, the browser resubmits the request. If this second request is

given a response of an HTML page containing a redirection to the same URL but with new arguments (via

Javascript) then the browser does not resubmit the POST parameters. To avoid this problem, it is critical to

NOT perform the automatic redirection. If the user clicks on a link, the problem does not occur. See

section 5.2 Client Returns NTLM Token to SPNEGO Challenge for a resolution to the problem,

1430 Securing applications and their environment

Solution: The browser responds to the Authenticate/Negotiate challenge with an NTLM token, not an

SPNEGO token. The SPNEGO TAI sees the NTLM, and returns back a HTTP 403 response, along with

the HTML page. When the browser runs the Javascript redirTimer function, any POST of GET parameters

that were present on the original request are lost.

By leveraging the SPN<id>.NTLMTokenReceivedPage property, an appropriate message page can be

returned to the user. The default message that is returned (in the absence of a user defined property) is:

"<html><head><title>An NTLM Token was Received.</title></head>"

 + "<body>Your browser configuration is correct, but you have not logged into

 a supported Windows Domain."

 + "<p>Please login to the application using the normal login page.</html>";

Using the SPN<id>.NTLMTokenReceivedPage property, you can customize the exact response. It is critical

that the returned HTML not perform a redirection.

When the SPNEGO TAI has been configured to use the shipped default HTTPHeaderFilter class as the

SPN<id>.filterClass, then the SPN<id>.filter can be used to allow the second request to flow directly to the

normal WebSphere Application Server security mechanism. In this way, the user experiences the normal

authentication mechanism.

An example of such a configuration follows. The required SPNEGO TAI properties necessary and the

HTML file content are presented.

 Table 58. SPNEGO TAI properties and HTML

SPNEGO TAI Property Name HTML File Content

com.ibm.ws.security.spnego.SPN1.hostName server.wasteched30.torolab.ibm.com

com.ibm.ws.security.spnego.SPN1.filterClass com.ibm.ws.security.spnego.HTTPHeaderFilter

com.ibm.ws.security.spnego.SPN1.filter request-url!=noSPNEGO

com.ibm.ws.security.spnego.SPN1.NTLMTokenReceivedPage File:///C:/temp/NTLM.html

Note: Observe that the filter property instructs the SPNEGO TAI to NOT intercept any HTTP request that

contains the string “noSPNEGO”.

Here is an example of a generating a helpful response.

<html>

<head>

<title>NTLM Authentication Received </title>

<script language="javascript">

 var purl=""+document.location;

if (purl.indexOf("noSPNEGO")<0) {

 if(purl.indexOf(’?’)>=0) purl+="&noSPNEGO";

 else purl+="?noSPNEGO";

 }

</script>

</head>

<body>

<p>An NTLM token was retrieved in response to the SPNEGO challenge. It is likely that

you are not logged into a Windows domain.

Click on the following link to get the requested website.

<script language="javascript">

 document.write("");

 document.write("Open the same page using the normal authentication

 mechanism.");

 document.write("
");

Chapter 20. Troubleshooting security configurations 1431

</script>

You will not automatically be redirected.

</body>

</html>

1432 Securing applications and their environment

Appendix. Directory conventions

References in product information to app_server_root, profile_root, and other directories infer specific

default directory locations. This topic describes the conventions in use for WebSphere Application Server.

Default product locations when the root user or an administrator user installs the

product

The root user or administrator user (on a Windows system) is capable of registering shared products and

installing into system-owned directories. The following default directories are system-owned directories.

These file paths are default locations. You can install the product and other components in any directory

where you have write access. You can create profiles in any valid directory where you have write access.

Multiple installations of WebSphere Application Server products or components, of course, require multiple

locations.

app_server_root - the install_root for WebSphere Application Server

The following list shows default installation root directories for WebSphere Application Server:

AIX

/usr/IBM/WebSphere/AppServer

HP�UX

/opt/IBM/WebSphere/AppServer

Linux

/opt/IBM/WebSphere/AppServer

Solaris

/opt/IBM/WebSphere/AppServer

Windows

C:\Program Files\IBM\WebSphere\AppServer

profile_root

The following list shows the default directory for a profile named profile_name on each distributed

operating system:

AIX

/usr/IBM/WebSphere/AppServer/profiles/profile_name

HP�UX

/opt/IBM/WebSphere/AppServer/profiles/profile_name

Linux

/opt/IBM/WebSphere/AppServer/profiles/profile_name

Solaris

/opt/IBM/WebSphere/AppServer/profiles/profile_name

Windows

C:\Program Files\IBM\WebSphere\AppServer\profiles\profile_name

plugins_root

The following default installation root is for the Web server plug-ins for WebSphere Application

Server:

AIX

/usr/IBM/HTTPServer/Plugins

HP�UX

/opt/IBM/HTTPServer/Plugins

Linux

/opt/ibm/HTTPServer/Plugins

Solaris

/opt/IBM/HTTPServer/Plugins

Windows

C:\Program Files\IBM\HTTPServer\Plugins

web_server_root

The following default installation root directories are for the IBM HTTP Server:

AIX

/usr/IBM/HTTPServer

© Copyright IBM Corp. 2006 1433

HP�UX /opt/IBM/HTTPServer

Linux

/opt/ibm/HTTPServer

Solaris

/opt/IBM/HTTPServer

Windows

C:\Program Files\IBM\HTTPServer

gskit_root

The following list shows the default installation root directories for Version 7 of the IBM Global

Security Kit (GSKit):

AIX

/usr/ibm/gsk7

HP�UX

/opt/ibm/gsk7

Linux

/opt/ibm/gsk7

Solaris

/opt/ibm/gsk7

Windows

C:\Program Files\IBM\GSK7

app_client_root

The following default installation root directories are for the WebSphere Application Client:

AIX

/usr/IBM/WebSphere/AppClient (J2EE Application client only)

HP�UX

/opt/IBM/WebSphere/AppClient (J2EE Application client only)

Linux

/opt/IBM/WebSphere/AppClient (J2EE Application client only)

Solaris

/opt/IBM/WebSphere/AppClient (J2EE Application client only)

Windows

C:\Program Files\IBM\WebSphere\AppClient

updi_root

The following list shows the default installation root directories for the Update Installer for

WebSphere Software:

AIX

/usr/IBM/WebSphere/UpdateInstaller

HP�UX

/opt/IBM/WebSphere/UpdateInstaller

Linux

/opt/IBM/WebSphere/UpdateInstaller

Solaris

/opt/IBM/WebSphere/UpdateInstaller

Windows

C:\Program Files\IBM\WebSphere\UpdateInstaller

cip_app_server_root

The following list shows the default installation root directories for a customized installation

package (CIP) produced by the Installation Factory.

 A CIP is a WebSphere Application Server product bundled with one or more maintenance

packages, an optional configuration archive, one or more optional enterprise archive files, and

other optional files and scripts:

AIX

/usr/IBM/WebSphere/AppServer/cip/cip_uid

HP�UX

/opt/IBM/WebSphere/AppServer/cip/cip_uid

Linux

/opt/IBM/WebSphere/AppServer/cip/cip_uid

Solaris

/opt/IBM/WebSphere/AppServer/cip/cip_uid

1434 Securing applications and their environment

Windows C:\Program Files\IBM\WebSphere\AppServer\cip\cip_uid

 The cip_uid variable is the CIP unique ID generated during creation of the build definition file. You

can override the generated value in the Build definition wizard. Use a unique value to allow

multiple CIPs to install on the system.

component_root

The component installation root directory is any installation root directory described in this topic.

Some programs are for use across multiple components. In particular, the Update Installer for

WebSphere Software is for use with WebSphere Application Server, Web server plug-ins, the

Application Client, and the IBM HTTP Server. All of these components are part of the product

package.

Default product locations when a non-root user or a non-administrator user

installs the product

The non-root user or non-administrator user (on a Windows system) is not capable of registering shared

products and installing into system-owned directories. The following default directories are user-owned

directories in the home directory of the non-root installer as opposed to being globally shared resources

that are available to all users.

app_server_root

The following list shows the default installation directories for non-root installation of WebSphere

Application Server:

AIX

user_home/IBM/WebSphere/AppServer

HP�UX

user_home/IBM/WebSphere/AppServer

Linux

user_home/IBM/WebSphere/AppServer

Solaris

user_home/IBM/WebSphere/AppServer

Windows

C:\IBM\WebSphere\AppServer

profile_root

The following list shows the default directories for creating profiles:

AIX

user_home/IBM/WebSphere/AppServer/profiles/

HP�UX

user_home/IBM/WebSphere/AppServer/profiles/

Linux

user_home/IBM/WebSphere/AppServer/profiles/

Solaris

user_home/IBM/WebSphere/AppServer/profiles/

Windows

C:\IBM\WebSphere\AppServer\profiles\

web_server_root

The following default installation root directories are for the IBM HTTP Server:

AIX

user_home/IBM/HTTPServer

HP�UX

user_home/IBM/HTTPServer

Linux

user_home/ibm/HTTPServer

Solaris

user_home/IBM/HTTPServer

Windows

C:\IBM\HTTPServer

Appendix. WebSphere Application Server directories 1435

plugins_root

The following list shows the default installation root directories for the Web server plug-ins for

WebSphere Application Server:

AIX

user_home/IBM/HTTPServer/Plugins

HP�UX

user_home/IBM/HTTPServer/Plugins

Linux

user_home/ibm/HTTPServer/Plugins

Solaris

user_home/IBM/HTTPServer/Plugins

Windows

C:\IBM\HTTPServer\Plugins

app_client_root

The following list shows the default installation root directories for the WebSphere Application

Client:

AIX

user_home/IBM/WebSphere/AppServer/AppClient (J2EE Application client only)

HP�UX

user_home/IBM/WebSphere/AppClient (J2EE Application client only)

Linux

user_home/IBM/WebSphere/AppClient (J2EE Application client only)

Solaris

user_home/IBM/WebSphere/AppClient (J2EE Application client only)

Windows

C:\IBM\WebSphere\AppClient

updi_root

The following list shows the default installation directories for non-root installation of WebSphere

Application Server:

AIX

user_home/IBM/WebSphere/UpdateInstaller

HP�UX

user_home/IBM/WebSphere/UpdateInstaller

Linux

user_home/IBM/WebSphere/UpdateInstaller

Solaris

user_home/IBM/WebSphere/UpdateInstaller

Windows

C:\Program Files\IBM\WebSphere\UpdateInstaller

cip_app_server_root

The following list shows the default installation root directories for a WebSphere Application Server

product CIP:

AIX

user_home/IBM/WebSphere/AppServer/cip/cip_uid

HP�UX

user_home/IBM/WebSphere/AppServer/cip/cip_uid

Linux

user_home/IBM/WebSphere/AppServer/cip/cip_uid

Solaris

user_home/IBM/WebSphere/AppServer/cip/cip_uid

Windows

C:\IBM\WebSphere\AppServer\cip\cip_uid

1436 Securing applications and their environment

Notices

References in this publication to IBM products, programs, or services do not imply that IBM intends to

make these available in all countries in which IBM operates. Any reference to an IBM product, program, or

service is not intended to state or imply that only IBM’s product, program, or service may be used. Any

functionally equivalent product, program, or service that does not infringe any of IBM’s intellectual property

rights may be used instead of the IBM product, program, or service. Evaluation and verification of

operation in conjunction with other products, except those expressly designated by IBM, is the user’s

responsibility.

IBM may have patents or pending patent applications covering subject matter in this document. The

furnishing of this document does not give you any license to these patents. You can send license inquiries,

in writing, to:

 IBM Director of Intellectual Property & Licensing

 IBM Corporation

 North Castle Drive

 Armonk, NY 10504-1785

 USA

© Copyright IBM Corp. 2006 1437

1438 Securing applications and their environment

Trademarks and service marks

For trademark attribution, visit the IBM Terms of Use Web site (http://www.ibm.com/legal/us/).

© Copyright IBM Corp. 2006 1439

http://www.ibm.com/legal/us/

	Contents
	How to send your comments
	Chapter 1. Overview and new features for securing applications and their environment
	What is new for security specialists
	Common Criteria (EAL4) support
	Federal Information Processing Standard support
	Identity management capabilities

	Security planning overview

	Chapter 2. How do I secure applications and their environments?
	Chapter 3. Task overview: Securing resources
	Chapter 4. Setting up and enabling security
	Migrating, coexisting, and interoperating – Security considerations
	Interoperating with previous product versions
	Interoperating with a C++ common object request broker architecture client
	Migrating custom user registries
	Migrating trust association interceptors
	Migrating Common Object Request Broker Architecture programmatic login to Java Authentication and Authorization Service (CORBA and JAAS)
	Migrating from the CustomLoginServlet class to servlet filters
	Migrating Java 2 security policy

	Preparing for security at installation time
	Securing your environment before installation
	Securing your environment after installation

	Enabling security
	Administrative security
	Fine-grained administrative security
	Fine-grained administrative security in heterogeneous and single-server environments
	Fine-grained administrative security scenarios

	Application security
	Java 2 security
	Java 2 security policy files
	Access control exception

	Enabling security for the realm
	Secure administration, applications, and infrastructure settings
	Specify extent of protection wizard settings
	Custom properties: Security
	Security custom property collection
	Security custom property settings

	Testing security after enabling it

	Chapter 5. Authenticating users
	Selecting a registry or repository
	User registries and repositories
	Configuring local operating system registries
	Configuring user ID for proper privileges
	Local operating system settings
	Local operating system wizard settings

	Configuring Lightweight Directory Access Protocol user registries
	Standalone LDAP registry settings
	Standalone LDAP registry wizard settings
	Advanced Lightweight Directory Access Protocol user registry settings
	Configuring Lightweight Directory Access Protocol search filters
	Updating LDAP binding information
	Using specific directory servers as the LDAP server
	Locating a user’s group memberships in Lightweight Directory Access Protocol

	Configuring standalone custom registries
	Standalone custom registry settings
	Standalone custom registry wizard settings

	Managing the realm in a federated repository configuration
	Realm configuration settings
	Using a single built-in, file-based repository in a new configuration under Federated repositories
	Changing a federated repository configuration to include a single built-in, file-based repository only
	Configuring a single, Lightweight Directory Access Protocol repository in a new configuration under Federated repositories
	Changing a federated repository configuration to include a single, Lightweight Directory Access Protocol repository only
	Configuring multiple Lightweight Directory Access Protocol repositories in a federated repository configuration
	Configuring a single built-in, file-based repository and one or more Lightweight Directory Access Protocol repositories in a federated repository configuration
	Configuring Lightweight Directory Access Protocol in a federated repository configuration
	Adding an external repository in a federated repository configuration
	Configuring a property extension repository in a federated repository configuration
	Configuring an entry mapping repository in a federated repository configuration
	Configuring supported entity types in a federated repository configuration
	Managing repositories in a federated repository configuration
	Increasing the performance of the federated repository configuration
	Configuring Lightweight Directory Access Protocol entity types in a federated repository configuration
	Configuring group attribute definition settings in a federated repository configuration
	Configuring member attributes in a federated repository configuration
	Configuring dynamic member attributes in a federated repository configuration

	Local operating system registries
	Standalone Lightweight Directory Access Protocol registries
	Dynamic groups and nested group support
	Security failover among multiple LDAP servers

	Federated repositories

	Authentication mechanisms
	Portlet URL security
	Lightweight Third Party Authentication
	Lightweight Third Party Authentication key sets and key set groups

	Trust associations
	Single sign-on
	Single sign-on for HTTP requests using SPNEGO
	Kerberos configuration requirements for SPNEGO TAI
	Global single sign-on principal mapping

	Security attribute propagation
	Default propagation token
	Default authorization token
	Default single sign-on token
	Default authentication token

	Simple WebSphere authentication mechanism
	UserRegistry interface methods

	Authentication protocol for EJB security
	Supported authentication protocols
	Common Secure Interoperability Version 2 features
	Identity assertion
	Identity assertions with trust validation
	Message layer authentication

	Configuring the Lightweight Third Party Authentication mechanism
	Authentication mechanisms and expiration
	Key set group
	Generate Keys
	Authentication cache timeout
	Timeout value for forwarded credentials between servers
	Password
	Confirm password
	Fully qualified key file name
	Internal server ID
	Import Keys
	Export Keys
	Use SWAM-no authenticated communication between servers

	Generating Lightweight Third Party Authentication keys
	Exporting Lightweight Third Party Authentication keys
	Importing Lightweight Third Party Authentication keys
	Disabling automatic generation of Lightweight Third Party Authentication keys
	Managing LTPA keys from multiple WebSphere Application Server cells
	Activating Lightweight Third Party Authentication key versions

	Integrating third-party HTTP reverse proxy servers
	Trust association settings
	Enable trust association

	Trust association interceptor collection
	Interceptor class name

	Trust association interceptor settings
	Interceptor class name

	Implementing single sign-on to minimize Web user authentications
	Configuring single sign-on capability with SPNEGO TAI
	Configuring WebSphere Application Server environment to use SPNEGO
	Configuring the Web browser to use SPNEGO

	Configuring single sign-on capability with Tivoli Access Manager or WebSEAL
	Single sign-on settings
	com.tivoli.pd.jcfg.PDJrteCfg utility for Tivoli Access Manager single sign-on
	com.tivoli.pd.jcfg.SvrSslCfg utility for Tivoli Access Manager single sign-on
	Creating a trusted user account in Tivoli Access Manager
	Configuring WebSEAL for use with WebSphere Application Server
	Configuring Tivoli Access Manager plug-in for Web servers for use with WebSphere Application Server
	Configuring single sign-on using the trust association interceptor
	Configuring single sign-on using trust association interceptor ++
	Configuring global sign-on principal mapping

	Propagating security attributes among application servers
	Configuring the authentication cache
	Security cache properties

	Configuring IIOP authentication
	Configuring Common Secure Interoperability Version 2 inbound authentication
	Common Secure Interoperability inbound authentication settings

	Configuring Common Secure Interoperability Version 2 outbound authentication
	Configuring session management
	Common Secure Interoperability Version 2 outbound authentication settings

	Example: Common Secure Interoperability Version 2 scenarios
	Scenario 1: Basic authentication and identity assertion
	Scenario 2: Basic authentication, identity assertion, and client certificates
	Scenario 3: Client certificate authentication and RunAs system
	Scenario 4: TCP/IP transport using a virtual private network

	Configuring RMI over IIOP
	Configuring inbound transports
	Common Secure Interoperability Version 2 transport inbound settings
	Secure Authentication Service inbound transport settings

	Configuring outbound transports
	Common Secure Interoperability Version 2 outbound transport settings
	Secure Authentication Service outbound transport settings

	Performing identity mapping for authorization across servers in different realms
	Configuring inbound identity mapping
	Configuring outbound mapping to a different target realm

	Common Secure Interoperability Version 2 and Security Authentication Service client configuration
	Common authentication protocol settings for a client configuration
	Security Authentication Service authentication protocol client settings

	Java Authentication and Authorization Service
	Java Authentication and Authorization Service authorization
	Using the Java Authentication and Authorization Service programming model for Web authentication

	Chapter 6. Authorizing access to resources
	Authorization technology
	Administrative roles and naming service authorization
	Role-based authorization
	Administrative roles
	Enterprise bean component security
	Authorization providers
	JACC support in WebSphere Application Server
	JACC providers
	JACC policy context handlers
	JACC policy context identifiers (ContextID) format
	JACC policy propagation
	JACC registration of the provider implementation classes
	Role-based security with embedded Tivoli Access Manager
	Tivoli Access Manager integration as the JACC provider
	Tivoli Access Manager security for WebSphere Application Server

	Delegations
	Programmatic login

	Authorizing access to J2EE resources using Tivoli Access Manager
	Using the default authorization provider
	External authorization provider settings
	External Java Authorization Contract for Containers provider settings

	Enabling an external JACC provider
	Configuring the JACC provider for Tivoli Access Manager using the administrative console
	Administering security users and roles with Tivoli Access Manager
	Configuring Tivoli Access Manager groups
	Configuring additional authorization servers
	Logging Tivoli Access Manager security
	Interfaces that support JACC
	Enabling the JACC provider for Tivoli Access Manager
	Enabling embedded Tivoli Access Manager
	Disabling embedded Tivoli Access Manager client
	Disabling embedded Tivoli Access Manager client using the administrative console
	Forcing the unconfiguration of the Tivoli Access Manager JACC provider

	Authorizing access to administrative roles
	Administrative user roles settings and CORBA naming service user settings
	User (Administrative user roles)
	User (CORBA naming service users)
	Role (Administrative user roles)
	Role (CORBA naming service users)
	Login status (Administrative user roles)

	Administrative group roles and CORBA naming service groups
	Group (CORBA naming service groups)
	Role (CORBA naming service groups)
	Group (Administrative group roles)
	Role (Administrative group roles)

	Assigning users to naming roles
	Propagating administrative role changes to Tivoli Access Manager
	The migrateEAR utility for Tivoli Access Manager

	Chapter 7. Securing communications
	Secure communications using Secure Sockets Layer
	Secure Sockets Layer configurations
	Trust manager control of X.509 certificate trust decisions
	Key manager control of X.509 certificate identities

	Keystore configurations
	Default key store passwords

	Dynamic outbound selection of Secure Sockets Layer configurations
	Central management of Secure Sockets Layer configurations
	Secure Sockets Layer node, application server, and cluster isolation
	Default self-signed certificate configuration
	Secure installation for client signer retrieval
	Certificate expiration monitoring
	Web server plug-in default configuration

	Dynamic configuration updates
	Management scope configurations
	Certificate management using iKeyman
	Certificate management

	Creating a Secure Sockets Layer configuration
	SSL certificate and key management
	Configuration settings
	Use Federal Information Processing Standard (FIPS) algorithms
	Dynamically update the runtime when SSL configuration changes occur

	SSL configurations for selected scopes
	Name
	Direction
	Inherited SSL configuration name
	Inherited certificate alias
	Override inherited values
	SSL configuration
	Update certificate alias list
	Manage certificates
	Certificate alias in key store

	SSL configurations collection
	Name

	SSL configuration settings
	Name
	Trust store name
	Key store name
	Get certificate aliases
	Default server certificate alias
	Default client certificate alias
	Management scope

	Creating a custom trust manager configuration
	Trust and key managers settings
	Trust managers collection
	Trust managers settings
	Example: Developing a custom trust manager for custom SSL trust decisions

	Creating a custom key manager
	Example: Developing a custom key manager for custom Secure Sockets Layer key selection

	Associating a Secure Sockets Layer configuration dynamically with an outbound protocol and remote secure endpoint
	Example: Programmatically specifying an outbound SSL configuration using JSSEHelper API
	Associating Secure Sockets Layer configurations centrally with inbound and outbound scopes
	Selecting an SSL configuration alias directly from an endpoint configuration
	Enabling Secure Sockets Layer client authentication for a specific inbound endpoint
	Manage endpoint security configurations
	Dynamic inbound and outbound endpoint SSL configurations collection
	Dynamic outbound endpoint SSL configuration settings

	Quality of protection (QoP) settings
	Client authentication
	Protocol
	Predefined JSSE provider
	Select provider
	Custom JSSE provider
	Custom provider
	Cipher suite groups
	Update selected ciphers
	Selected ciphers
	Add
	Remove

	ssl.client.props client configuration file

	Creating a keystore configuration
	Changing a keystore password
	Configuring a hardware cryptographic keystore
	Managing keystore configurations remotely
	Key stores and certificates collection
	Name
	Path

	Key store settings
	Name
	Path
	Enable cryptographic operations on hardware device
	Password [new keystore] | Change password [existing keystore]
	Confirm password
	Type
	Read only
	Initialize at startup

	Key managers collection
	Name
	Class name
	Algorithm

	Key managers settings
	Name
	Standard
	Provider
	Algorithm
	Custom
	Class name

	Creating a self-signed certificate
	Replacing an existing self-signed certificate

	Creating a certificate authority request
	Certificate request settings
	Key label
	Key size
	Requested by
	Fingerprint (SHA Digest)
	Signature algorithm

	Personal certificates collection
	Alias
	Issued by
	Issued to
	Serial number
	Expiration

	Personal certificates settings
	Alias
	Version
	Key size
	Common name
	Serial number
	Validity period
	Organization
	Organization unit
	Locality
	State/Province
	Zip code
	Country or region
	Validity period
	Issued to
	Issued by
	Fingerprint (SHA Digest)
	Signature algorithm

	Personal certificate requests collection
	Key label
	Requested by

	Personal certificate requests settings
	File for certificate request
	Key label
	Key size
	Common name
	Organization
	Organizational unit
	Locality
	State/Province
	Zip code
	Country or region

	Extract certificate request
	Key label
	File for certificate request

	Receiving a certificate issued by a certificate authority
	Export certificate to a key file
	Import certificate from a key file
	Receive certificate from CA

	Replace a certificate
	Old certificate
	Replace with
	Delete old certificate after replacement
	Delete old signers

	Extracting a signer certificate from a personal certificate
	Extract certificate
	Certificate alias to extract
	Certificate file name
	Data type

	Extract signer certificate
	File name
	Data type

	Retrieving signers using the retrieveSigners utility at the client
	Changing the signer auto-exchange prompt at the client
	Importing a signer certificate from a truststore to a z/OS keyring
	Exporting a signer certificate from WebSphere Application Server for z/OS to a truststore
	Importing a signer certificate from a truststore to a z/OS keyring
	Exporting a signer certificate from WebSphere Application Server for z/OS to a truststore

	Retrieving signers from a remote SSL port
	Retrieve from port
	Host
	Port
	SSL configuration for outbound connection
	Alias
	Retrieved signer information
	Serial number
	Issued to
	Issued by
	Fingerprint (SHA Digest)
	Expiration

	Adding a signer certificate to a keystore
	Add signer certificate
	Alias
	File name
	Data type

	Signer certificates collection
	Alias
	Issued to
	Fingerprint (SHA digest)
	Expiration

	Signer certificate settings
	Alias
	Version
	Key size
	Serial number
	Validity period
	Issued to
	Issued by
	Fingerprint (SHA Digest)
	Signature algorithm

	Exchanging signer certificates
	Key stores and certificates exchange signers
	[key store] personal certificates
	[key store] signers
	Add
	Remove

	Configuring certificate expiration monitoring
	Manage certificate expiration settings
	Expiration notification threshold
	Expiration check notification
	Automatically replace expiring self-signed certificates
	Delete expiring certificates and signers after replacement
	Enable checking
	Scheduled time of day to check for expired certificates
	Check by calendar
	Weekday
	Repeat interval
	Check by number of days
	Next start date

	Notifications
	Notification name
	Message log
	List of e-mail addresses

	Notifications settings
	Notification name
	Message log
	Email sent to notification list
	Email address to add
	Add
	Remove
	Outgoing mail (SMTP) server

	Key management for cryptographic uses
	Creating a key set configuration
	Active key history collection
	Key alias reference

	Add key alias reference settings
	Alias reference
	Password
	Confirm password

	Key sets collection
	Key set name
	Key store
	Key alias prefix name

	Key sets settings
	Key set name
	Key alias prefix name
	Key password
	Confirm password
	Key generator class name
	Maximum number of keys referenced
	Key store
	Generates key pair

	Creating a key set group configuration
	Example: Retrieving the generated keys from a key set group
	Example: Developing a key or key pair generation class for automated key generation
	Key set groups collection
	Key set group name
	Automatically generate keys

	Key set groups settings
	Key set group name
	Key sets
	Add
	Remove
	Automatically generate keys
	Scheduled time for generation
	Generate on a specific day
	Weekday
	Repeat interval
	Generate at an interval
	Next start date

	Chapter 8. Developing extensions to the WebSphere security infrastructure
	Developing standalone custom registries
	Example: Standalone custom registries
	Result.java file
	UserRegistry.java files

	Implementing custom password encryption
	Developing applications that use programmatic security
	Protecting system resources and APIs (Java 2 security)
	Using PolicyTool to edit policy files
	Configuring Java 2 security policy files
	Configuring static policy files

	Developing with programmatic security APIs for Web applications
	getRemoteUser and getAuthType methods
	Example: Web application code
	Web authentication settings

	Developing with programmatic APIs for EJB applications
	Example: Enterprise bean application code

	Customizing Web application login
	Example: Form login
	Developing servlet filters for form login processing
	Example of servlet filters
	Configuring servlet filters

	Customizing application login with Java Authentication and Authorization Service
	Developing programmatic logins with the Java Authentication and Authorization Service
	Example: Programmatic logins

	Configuring programmatic logins for Java Authentication and Authorization Service
	Login configuration for Java Authentication and Authorization Service
	Configuration entry settings for Java Authentication and Authorization Service
	System login configuration entry settings for Java Authentication and Authorization Service
	Login module settings for Java Authentication and Authorization Service
	Login module order settings for Java Authentication and Authorization Service
	Login configuration settings for Java Authentication and Authorization Service
	Managing J2EE Connector Architecture authentication data entries

	Customizing an application login to perform an identity assertion
	Customization of a server-side Java Authentication and Authorization Service authentication and login configuration
	Custom login module development for a system login configuration
	Example: Getting the caller subject from the thread
	Example: Getting the RunAs subject from the thread
	Example: Overriding the RunAs subject on the thread
	Example: User revocation from a cache

	Enabling identity assertion with trust validation

	Secure transports with JSSE and JCE programming interfaces
	Configuring Federal Information Processing Standard Java Secure Socket Extension files

	Implementing tokens for security attribute propagation
	Implementing a custom propagation token
	Example: com.ibm.wsspi.security.token.PropagationToken implementation
	Example: Custom propagation token login module

	Implementing a custom authorization token
	Example: com.ibm.wsspi.security.token.AuthorizationToken implementation
	Example: custom AuthorizationToken login module

	Implementing a custom single sign-on token
	Example: A com.ibm.wsspi.security.token.SingleSignonToken implementation
	Example: A custom single sign-on token login module
	Example: An HTTP cookie retrieval

	Implementing a custom authentication token
	Example: A com.ibm.wsspi.security.token.AuthenticationToken implementation
	Example: A custom authentication token login module

	Propagating a custom Java serializable object

	Developing a custom interceptor for trust associations
	Trust association interceptor support for Subject creation

	Plug point for custom password encryption
	Enabling custom password encryption

	Chapter 9. Configuring security with scripting
	Enabling and disabling administrative security using scripting
	Enabling and disabling Java 2 security using scripting
	Enabling authentication in the file transfer service using scripting
	Propagating security policy of installed applications to a JACC provider using wsadmin scripting
	Configuring the JACC provider for Tivoli Access Manager using the wsadmin utility
	Disabling embedded Tivoli Access Manager client using wsadmin
	Creating an SSL configuration at the node scope using scripting
	Creating self-signed certificates using scripting
	Automating SSL configurations using scripting
	Updating default key store passwords using scripting
	Commands for the IdMgrConfig group of the AdminTask object
	Commands for the IdMgrRepositoryConfig group of the AdminTask object
	Commands for the IdMgrRealmConfig group of the AdminTask object
	Commands for the WIMManagementCommands group of the AdminTask object
	Commands for the KeyStoreCommands group of the AdminTask object
	Commands for the SSLConfigCommands group of the AdminTask object
	Commands for the DescriptivePropCommands group of the AdminTask object
	Commands for the TrustManagerCommands group of the AdminTask object
	Commands for the keyManagerCommands group of the AdminTask object
	Commands for the SSLConfigGroupCommands group of the AdminTask object
	Commands for the DynamicSSLConfigSelections group of the AdminTask object
	Commands for the ManagementScopeCommands group of the AdminTask object
	Commands for the WSCertExpMonitorCommands group of the AdminTask object
	Commands for the KeySetGroupCommands group of the AdminTask object
	Commands for the KeySetCommands group of the AdminTask object
	Commands for the KeyReferenceCommands group of the AdminTask object
	Commands for the securityEnablement group of the AdminTask object
	Commands for the CertificateRequestCommands group of the AdminTask object
	Commands for the SignerCertificateCommands group of the AdminTask object
	Commands for the PersonalCertificateCommands group of the AdminTask object
	Commands for the SPNEGO TAI group of the AdminTask object
	Commands for the AuthorizationGroupCommands group of the AdminTask object
	Commands for the ChannelFrameworkManagement group of the AdminTask object

	Chapter 10. Web applications
	Securing Web applications using an assembly tool
	Security constraints
	Security settings
	Security role references

	Securing applications during assembly and deployment
	Assigning users and groups to roles
	Adding users and groups to roles using an assembly tool
	Mapping users to roles
	Look up users and groups settings
	Assigning users to RunAs roles

	Updating and redeploying secured applications
	Deploying secured applications

	Chapter 11. SIP applications
	Securing SIP applications
	Configuring security for the SIP container
	Configuring digest authentication and TAI for Tivoli Directory Server
	Configuring digest authentication for Oracle Internet Directory
	Configuring a custom trust association interceptor

	Chapter 12. EJB applications
	Securing enterprise bean applications
	Configuring security for EJB 2.1 message-driven beans

	Chapter 13. Client applications
	Accessing secure resources using SSL and applet clients
	Applet client security requirements

	Chapter 14. Web services
	Configuring HTTP outbound transport level security with the administrative console
	HTTP SSL Configuration collection
	SSL configuration
	HTTP SSL configuration

	Configuring HTTP outbound transport level security with an assembly tool
	Configuring HTTP outbound transport-level security using Java properties
	Transport level security
	HTTP basic authentication
	Configuring HTTP basic authentication with the administrative console
	HTTP basic authentication collection
	Basic authentication ID
	Basic authentication password

	Configuring HTTP basic authentication with an assembly tool
	Configuring HTTP basic authentication programmatically
	Configuring additional HTTP transport properties using the JVM custom property panel in the administrative console
	Configuring additional HTTP transport properties with an assembly tool
	Configuring additional HTTP transport properties using the wsadmin command-line tool
	Provide HTTP endpoint URL information
	Specify endpoint URL prefixes for Web services
	Select default HTTP URL prefix
	Select custom HTTP URL prefix

	
	Publish WSDL zip files settings
	application_name_WSDLFiles.zip
	application_name_ExtendedWSDLFiles.zip

	Securing Web services for Version 6 and later applications based on WS-Security
	What is new for securing Web services
	Web services security specification for Version 6 and later- a chronology
	XML token
	Supported functionality from OASIS specifications

	Web services security enhancements
	High-level architecture for Web services security
	Overview of platform configuration and default bindings
	Security model mixture
	Security considerations for Web services
	Migrating Version 5.x applications with Web services security to Version 6.1 applications
	Migrating the server-side extensions configuration
	Migrating the client-side extensions configuration
	Migrating the server-side bindings file
	Migrating the client-side bindings file
	View Web services client deployment descriptor
	View Web services server deployment descriptor

	Default implementations of the Web services security service provider programming interfaces
	Default configuration
	Basic Security Profile compliance
	Configuring an application for Web services security with an assembly tool
	XML digital signature
	Signing message elements in generator security constraints with keywords
	Signing message elements in generator security constraints with an XPath expression
	Collection certificate store
	Configuring the collection certificate store for the generator binding with an assembly tool
	Trust anchor
	Configuring token generators with an assembly tool
	Key locator
	Configuring key locators for the generator binding with an assembly tool
	Configuring key information for the generator binding with an assembly tool
	Configuring signing information for the generator binding with an assembly tool
	Signing message elements in consumer security constraints with keywords
	Signing message elements in consumer security constraints with an XPath expression
	Configuring the collection certificate store for the consumer binding with an assembly tool
	Trusted ID evaluator
	Configuring token consumers with an assembly tool
	Configuring the key locator for the consumer binding with an assembly tool
	Configuring key information for the consumer binding with an assembly tool
	Configuring signing information for the consumer binding with an assembly tool
	Encrypting the message elements in generator security constraints with keywords
	Encrypting the message elements in generator security constraints with an XPath expression
	XML encryption
	Configuring encryption information for the consumer binding with an assembly tool
	Encrypting message elements in consumer security constraints with keywords
	Encrypting message elements in consumer security constraints with an XPath expression
	Configuring encryption information for the generator binding with an assembly tool
	Adding a stand-alone time stamp to generator security constraints
	Adding a stand-alone time stamp in consumer security constraints
	Security token
	Configuring the security token in generator security constraints
	Configuring the security token requirement in consumer security constraints
	Configuring the caller in consumer security constraints
	Configuring identity assertion

	Configuring trust anchors for the generator binding on the application level
	Trust anchor collection
	Trust anchor configuration settings

	Configuring the collection certificate store for the generator binding on the application level
	Collection certificate store collection
	Collection certificate store configuration settings
	X.509 certificates collection
	X.509 certificate configuration settings
	Certificate revocation list collection
	Certificate revocation list configuration settings

	Username token element
	Nonce, a randomly generated token
	Custom security token propagation
	rrdSecurity.props file
	Configuring the token generator on the application level
	Request generator (sender) binding configuration settings
	Response generator (sender) binding configuration settings
	Callback handler configuration settings
	Key collection
	Key configuration settings
	Web services: Client security bindings collection
	Web services: Server security bindings collection

	Configuring the key locator for the generator binding on the application level
	Key locator collection
	Key locator configuration settings
	Web services security property collection
	Web services security property configuration settings

	Configuring the key information for the generator binding on the application level
	Key information collection
	Key information configuration settings

	Configuring the signing information for the generator binding on the application level
	Signing information collection
	Signing information configuration settings
	Part reference collection
	Part reference configuration settings
	Transforms collection
	Transforms configuration settings

	Configuring the encryption information for the generator binding on the application level
	Encryption information collection
	Encryption information configuration settings
	Encryption information configuration settings

	Configuring trust anchors for the consumer binding on the application level
	Configuring the collection certificate store for the consumer binding on the application level
	Binary security token
	Configuring token consumer on the application level
	Request consumer (receiver) binding configuration settings
	Response consumer (receiver) binding configuration settings

	Configuring the key locator for the consumer binding on the application level
	Configuring the key information for the consumer binding on the application level
	Configuring the signing information for the consumer binding on the application level
	Key information references collection
	Key information reference configuration settings

	Configuring the encryption information for the consumer binding on the application level
	Hardware cryptographic device support for Web Services Security
	Enabling hardware cryptographic devices for Web Services Security
	Configuring hardware cryptographic devices for Web Services Security
	Enabling cryptographic keys stored in hardware devices in Web Services Security

	Retrieving tokens from the JAAS Subject in a server application
	Retrieving tokens from the JAAS Subject in an application
	Configuring trust anchors on the server or cell level
	Configuring the collection certificate store for the server or cell-level bindings
	Distributed nonce caching
	Configuring a nonce on the server or cell level
	Configuring token generators on the server or cell level
	Token generator collection
	Token generator configuration settings
	Algorithm URI collection
	Algorithm URI configuration settings
	Algorithm mapping collection
	Algorithm mapping configuration settings

	Configuring the key locator on the server or cell level
	Configuring the key information for the generator binding on the server or cell level
	Configuring the signing information for the generator binding on the server or cell level
	Configuring the encryption information for the generator binding on the server or cell level
	Configuring trusted ID evaluators on the server or cell level
	Trusted ID evaluator collection
	Trusted ID evaluator configuration settings

	Configuring token consumers on the server or cell level
	Token consumer collection
	Token consumer configuration settings

	Configuring the key information for the consumer binding on the server or cell level
	Configuring the signing information for the consumer binding on the server or cell level
	Configuring the encryption information for the consumer binding on the server or cell level
	Tuning Web services security for Version 6.1 applications

	Securing Web services for Version 5.x applications based on WS-Security
	Web services security specification—a chronology
	Web services security support
	Web services security and Java 2 Platform, Enterprise Edition security relationship
	Web services security model in WebSphere Application Server
	Web services: Default bindings for the Web services security collection
	Nonce cache timeout
	Nonce maximum age
	Nonce clock skew
	Distribute nonce caching
	Enable cryptographic operations on hardware device
	Cryptographic hardware configuration name

	Usage scenario for propagating security tokens
	Web services security constraints
	Sample configuration for Web services security for a version 5.x application

	Overview of authentication methods
	XML digital signature
	Signing parameter configuration settings

	Securing Web services for Version 5.x applications using XML digital signature
	Default configuration for WebSphere Application Server
	Default binding
	Trust anchors
	Configuring trust anchors using an assembly tool
	Configuring trust anchors using the administrative console
	Collection certificate store
	Configuring the client-side collection certificate store using an assembly tool
	Configuring the client-side collection certificate store using the administrative console
	Configuring the server-side collection certificate store using an assembly tool
	Configuring the server-side collection certificate store using the administrative console
	Configuring default collection certificate stores at the server level in the WebSphere Application Server administrative console
	Key locator
	Keys
	Web services security service provider programming interfaces
	Configuring key locators using an assembly tool
	Configuring key locators using the administrative console
	Trusted ID evaluator
	Login mappings
	Configuring the client for request signing: digitally signing message parts
	Configuring the client for request signing: choosing the digital signature method
	Configuring the server for request digital signature verification: Verifying the message parts
	Configuring the server for request digital signature verification: choosing the verification method
	Configuring the server for response signing: digitally signing message parts
	Configuring the server for response signing: choosing the digital signature method
	Configuring the client for response digital signature verification: verifying the message parts
	Configuring the client for response digital signature verification: choosing the verification method
	Configuring the client security bindings using an assembly tool
	Configuring the security bindings on a server acting as a client using the administrative console
	Configuring the server security bindings using an assembly tool
	Configuring the server security bindings using the administrative console

	XML encryption
	Securing Web services for Version 5.x applications using XML encryption
	Login bindings configuration settings
	Request sender
	Configuring the client for request encryption: Encrypting the message parts
	Configuring the client for request encryption: choosing the encryption method
	Request receiver
	Configuring the server for request decryption: decrypting the message parts
	Configuring the server for request decryption: choosing the decryption method
	Response sender
	Configuring the server for response encryption: encrypting the message parts
	Configuring the server for response encryption: choosing the encryption method
	Response receiver
	Configuring the client for response decryption: decrypting the message parts
	Configuring the client for response decryption: choosing a decryption method

	Securing Web services for Version 5.x applications using basicauth authentication
	Configuring the client for basic authentication: specifying the method
	Configuring the client for basic authentication: collecting the authentication information
	Configuring the server to handle BasicAuth authentication information
	Configuring the server to validate BasicAuth authentication information

	Identity assertion
	Securing Web services for Version 5.x applications using identity assertion authentication
	Configuring the client for identity assertion: specifying the method
	Configuring the client for identity assertion: collecting the authentication method
	Configuring the server to handle identity assertion authentication
	Configuring the server to validate identity assertion authentication information

	Securing Web services for version 5.x applications using signature authentication
	Configuring the client for signature authentication: specifying the method
	Configuring the client for signature authentication: collecting the authentication information
	Configuring the server to support signature authentication
	Configuring the server to validate signature authentication information

	Overview of token types
	User name token element
	Binary security token
	XML token

	Security token
	Securing Web services for version 5.x applications using a pluggable token
	Configuring pluggable tokens using an assembly tool
	Configuring pluggable tokens using the administrative console
	Pluggable token support
	Configuring the client for LTPA token authentication: specifying LTPA token authentication
	Configuring the client for LTPA token authentication: collecting the authentication method information
	Configuring the server to handle LTPA token authentication information
	Configuring the server to validate LTPA token authentication information

	Tuning Web services security for Version 5.x applications

	Enabling security for WSIF
	Security API for the UDDI Version 3 registry

	Chapter 15. Data access resources
	Security of lookups with component managed authentication

	Chapter 16. Messaging resources
	Configuring authorization security for a Version 5 default messaging provider
	Authorization settings for Version 5 default JMS resources
	dynamic-update
	queue-admin-userids
	queue-default-permissions
	queue
	topic

	Securing WebSphere MQ messaging directories and log files
	Configuring security for EJB 2.1 message-driven beans

	Chapter 17. Mail, URLs, and other J2EE resources
	JavaMail security permissions best practices

	Chapter 18. Learn about WebSphere programming extensions
	Scheduler
	Securing scheduler tasks

	Chapter 19. Tuning, hardening, and maintaining
	Tuning security configurations
	Secure Sockets Layer performance tips
	Tuning security

	Hardening security configurations
	Securing passwords in files
	Encoding password in files
	PropFilePasswordEncoder command reference

	Enabling custom password encryption
	Disabling custom password encryption

	Chapter 20. Troubleshooting security configurations
	Security components troubleshooting tips
	Errors when trying to configure or enable security
	Errors after enabling security
	Access problems after enabling security
	Errors after configuring or enabling Secure Sockets Layer
	Errors configuring Secure Sockets Layer encrypted access
	Single sign-on configuration troubleshooting tips
	Authorization provider troubleshooting tips
	SPNEGO trust association interceptor (TAI) troubleshooting tips
	Problem: WebSphere Application Server and the Active Directory (AD) Domain Controller's time are not synchronized within 5 minutes
	Problem: Getting exception: No factory available to create a name for mechanism 1.3.6.1.5.5.2
	Problem: Getting an exception
	Problem: Single sign-on is not occurring.
	Problem: Credential Delegation is not working
	Problem: Unable to get SSO working using RC4-HMAC encryption.
	Problem: User receives the following message when accessing a protected URL through the SPNEGO SSO
	Problem: Even with JGSS tracing disabled, some KRB_DBG_KDC messages appear in the SystemOut.log
	Problem: HTTP Post parameters are lost during interaction with the SPNEGO TAI, when stepping down to userid/password login.

	Appendix. Directory conventions
	Notices
	Trademarks and service marks

