
WebSphere Application Server

Programming Guide for Edge Components

Version 6.0.1

GC31-6856-01

���

WebSphere Application Server

Programming Guide for Edge Components

Version 6.0.1

GC31-6856-01

���

Note

Before using this information and the product it supports, be sure to read the general information under “Notices” on page

55.

Second edition (March 2005)

This edition applies to:

 WebSphere Application Server, Version 6.0.1

and to all subsequent releases and modifications until otherwise indicated in new editions.

Order publications through your IBM representative or through the IBM branch office serving your locality.

© Copyright International Business Machines Corporation 2005. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Figures v

About this book vii

Who should read this book vii

What you should already know vii

Conventions and terminology used in this book . . vii

Accessibility viii

Related documents and Web sites viii

How to send your comments viii

Chapter 1. Overview of Edge

components customization 1

Caching Proxy customization 1

Load Balancer customization 1

Locating sample code 1

Chapter 2. The Caching Proxy API . . . 3

Overview of the Caching Proxy API 3

General procedure for writing API programs . . . 3

Server process steps 4

Guidelines 7

Plug-in functions 8

Predefined functions and macros 15

Caching Proxy configuration directives for API

steps 21

Compatibility with other APIs 24

Porting CGI programs 24

Caching Proxy API reference information 24

Variables 24

Authentication and authorization 33

Variant caching 36

API examples 36

Chapter 3. Custom advisors 37

Advisors provide load-balancing information . . . 37

Standard advisor function 37

Creating a custom advisor 38

Normal mode and replace mode 38

Advisor naming conventions 39

Compilation 39

Running a custom advisor 39

Required routines 40

Search order 40

Naming and file path 40

Custom advisor methods and function calls . . 40

Examples 44

Standard advisor 44

Side stream advisor 45

Two port advisor 46

WebSphere Application Server advisor 51

Using data returned from advisors 52

Notices 55

Trademarks 56

Index 59

© Copyright IBM Corp. 2005 iii

iv WebSphere Application Server: Programming Guide for Edge Components

Figures

1. Flowchart of steps in the proxy server process 5

2. HTTP_ and PROXY_ variable prefixes . . . 25

3. Proxy server authentication and authorization

process 34

© Copyright IBM Corp. 2005 v

vi WebSphere Application Server: Programming Guide for Edge Components

About this book

This section describes the purpose, organization, and conventions of this

document, the WebSphere® Application Server Programming Guide for Edge

Components.

Who should read this book

This book describes the application programming interfaces (APIs) that are

available for customizing the Edge components of WebSphere Application Server,

Version 6.0.1. This information is intended for programmers who write plug-in

applications and make other customizations. Network designers and system

administrators also might be interested in this information as an indication of the

types of customization that are possible.

What you should already know

Using the information in this book requires understanding of programming

procedures using the Java™ or C programming languages, depending on the API

that you plan to use. The methods and structures available in each exposed

interface are documented, but you must know how to construct your own

application, compile it for your system, and test it. Sample code is provided for

some interfaces, but the samples are provided only as examples for constructing

your own application.

Conventions and terminology used in this book

This documentation uses the following typographical and keying conventions.

 Table 1. Conventions used in this book

Convention Meaning

Bold When referring to graphical user interfaces (GUIs), bold face indicates menus, menu

items, labels, buttons, icons, and folders. It also can be used to emphasize command

names that otherwise might be confused with the surrounding text.

Monospace Indicates text you must enter at a command prompt. Monospace also indicates screen

text, code examples, and file excerpts.

Italics Indicates variable values that you must provide (for example, you supply the name of

a file for fileName). Italics also indicates emphasis and the titles of books.

Ctrl-x Where x is the name of a key, indicates a control-character sequence. For example,

Ctrl-c means hold down the Ctrl key while you press the c key.

Return Refers to the key labeled with the word Return, the word Enter, or the left arrow.

% Represents the Linux and UNIX® command-shell prompt for a command that does not

require root privileges.

Represents the Linux and UNIX command-shell prompt for a command that requires

root privileges.

C:\ Represents the Windows command prompt.

Entering commands When instructed to “enter” or “issue” a command, type the command and then press

Return. For example, the instruction “Enter the ls command” means type ls at a

command prompt and then press Return.

[] Enclose optional items in syntax descriptions.

© Copyright IBM Corp. 2005 vii

Table 1. Conventions used in this book (continued)

Convention Meaning

{ } Enclose lists from which you must choose an item in syntax descriptions.

| Separates items in a list of choices enclosed in { }(braces) in syntax descriptions.

... Ellipses in syntax descriptions indicate that you can repeat the preceding item one or

more times. Ellipses in examples indicate that information was omitted from the

example for the sake of brevity.

Accessibility

Accessibility features help a user who has a physical disability, such as restricted

mobility or limited vision, to use software products successfully. These are the

major accessibility features in WebSphere Application Server, Version 6.0.1:

v You can use screen-reader software and a digital speech synthesizer to hear what

is displayed on the screen. You can also use voice recognition software, such as

IBM® ViaVoice™, to enter data and to navigate the user interface.

v You can operate features by using the keyboard instead of the mouse.

v You can configure and administer Application Server features by using standard

text editors or command-line interfaces instead of the graphical interfaces

provided. For more information about the accessibility of particular features,

refer to the documentation about those features.

Related documents and Web sites

v Concepts, Planning, and Installation for Edge Components, GC31-6855-00

v Caching Proxy Administration Guide, GC31-6857-00

v Load Balancer Administration Guide, GC31-6858-00

v IBM home Web site www.ibm.com/

v IBM WebSphere Application Server www.ibm.com/software/webservers/appserv/

v IBM WebSphere Application Server library Web site

www.ibm.com/software/webservers/appserv/library.html

v IBM WebSphere Application Server support Web site

www.ibm.com/software/webservers/appserv/support.html

v IBM WebSphere Application Server Information Center

www.ibm.com/software/webservers/appserv/infocenter.html

v IBM WebSphere Application Server Edge Components Information Center

www.ibm.com/software/webservers/appserv/ecinfocenter.html

How to send your comments

Your feedback is important in helping to provide the most accurate and

high-quality information. If you have any comments about this book or any other

documentation about the Edge components of WebSphere Application Server:

v Send your comments by e-mail to fsdoc@us.ibm.com. Be sure to include the

name of the book, the part number of the book, the version of WebSphere

Application Server, and, if applicable, the specific location of the text you are

commenting on (for example, a page number or table number).

viii WebSphere Application Server: Programming Guide for Edge Components

http://www.ibm.com/
http://www.ibm.com/software/webservers/appserv/
http://www.ibm.com/software/webservers/appserv/library.html
http://www.ibm.com/software/webservers/appserv/support.html
http://www.ibm.com/software/webservers/appserv/infocenter.html
http://www.ibm.com/software/webservers/appserv/ecinfocenter.html
mailto:fsdoc@us.ibm.com

Chapter 1. Overview of Edge components customization

This book discusses the application programming interfaces (APIs) provided for

the Edge components of WebSphere Application Server. (The Edge components of

WebSphere Application Server include Caching Proxy and Load Balancer.) Several

interfaces are provided that enable administrators to customize their installations,

to alter how the Edge components interact with each other, or to enable interaction

with other software systems.

Note: Caching Proxy is available on all supported platforms except those running

on Itanium 2 and AMD Opteron 64-bit processors.

The APIs in this document address several categories.

Caching Proxy customization

The Caching Proxy has several interfaces written into its processing sequence

where custom processing can be added or substituted for standard processing.

Customizations that can be executed include altering or augmenting tasks like the

following:

v Client authentication

v Request authorization

v Translating URLs to physical file paths

v Servicing requests

v Logging

v Responding to error conditions

Custom application programs, which are also known as Caching Proxy plug-ins,

are called at predetermined points in the proxy server’s processing sequence.

The Caching Proxy API has been used to implement certain system features. For

example, the proxy server’s LDAP support is implemented as a plug-in.

Chapter 2, “The Caching Proxy API,” on page 3 describes the interface in detail

and includes steps for configuring the proxy server to use plug-in programs.

Load Balancer customization

The Load Balancer can be customized by writing your own advisors. Advisors

perform the actual load measurement on the servers. With a custom advisor, you

can use a method that you provide and that is relevant to your system to measure

the load. This is especially important if you have customized or proprietary Web

server systems.

Chapter 3, “Custom advisors,” on page 37 provides detailed information about

writing and using custom advisors. It includes sample advisor code.

Locating sample code

Sample code for these APIs is included on the Edge Components CD-ROM, in the

samples directory. Additional code samples are available from the WebSphere

Application Server Web site, www.ibm.com/software/webservers/appserv/

© Copyright IBM Corp. 2005 1

http://www.ibm.com/software/webservers/appserv/

2 WebSphere Application Server: Programming Guide for Edge Components

Chapter 2. The Caching Proxy API

This section discusses the Caching Proxy application programming interface (API):

what it is, why it is useful, and how it works.

Note: Caching Proxy is available on all supported platforms except those running

on Itanium 2 and AMD Opteron 64-bit processors.

Overview of the Caching Proxy API

The API is an interface to the Caching Proxy that enables you to extend the proxy

server’s base functions. You can write extensions, or plug-ins, to do customized

processing, including the following examples:

v Enhancing the basic authentication routine, or replacing it with a site-specific

process.

v Adding error-handling routines to track problems or alert for serious conditions.

v Detecting and tracking information that comes in from the requesting client,

such as server referrals and user agent codes.

The Caching Proxy API provides the following benefits:

v Efficiency

– The API is designed specifically for the threaded processing system used by

the Caching Proxy.
v Flexibility

– The API contains rich and versatile functions.

– The API is platform independent and language neutral. It runs on all Caching

Proxy platforms, and plug-in applications can be written in most of the

programming languages supported by these platforms.
v Ease of use

– Simple data types are passed by reference instead of by value (for example,

long *, char *).

– Each function has a fixed number of parameters.

– C language bindings are included.

– Plug-ins do not impact allocated memory; plug-in applications allocate and

free memory independently of other Caching Proxy processes.

General procedure for writing API programs

Before writing your Caching Proxy plug-in programs, you need to understand how

the proxy server works. The behavior of the proxy server can be divided into

several distinct processing steps. For each of these steps, you can supply your own

customized functions using the API. For example, do you want to do something

after a client request is read but before performing any other processing? Or maybe

you want to perform special routines during authentication and then again after

the requested file is sent.

A library of predefined functions is provided with the API. Your plug-in programs

can call the predefined API functions in order to interact with the proxy server

process (for example, to manipulate requests, to read or write request headers, or

© Copyright IBM Corp. 2005 3

to write to the proxy server’s logs). These functions should not be confused with

the plug-in functions that you write, which are called by the proxy server. The

predefined functions are described in “Predefined functions and macros” on page

15.

You instruct the proxy server to call your plug-in functions at the appropriate steps

by using the corresponding Caching Proxy API directives in your server

configuration file. These directives are described in “Caching Proxy configuration

directives for API steps” on page 21.

This document includes the following:

v A basic explanation of the Caching Proxy steps that can be customized (see

“Server process steps”)

v Guidelines for writing plug-ins (see “Guidelines” on page 7)

v Prototypes for the customized functions that you can write for each step

performed by the server, and their return codes (see “Plug-in function

prototypes” on page 8)

v Definitions of predefined functions and macros that you can call from within

your plug-ins, and their return codes (see “Predefined functions and macros” on

page 15)

v Caching Proxy API configuration directives (see “Caching Proxy configuration

directives for API steps” on page 21)

You can use these components and procedures to write your own Caching Proxy

plug-in programs.

Server process steps

The basic operation of the proxy server can be broken up into steps based on the

type of processing that the server performs during that phase. Each step includes a

juncture at which a specified part of your program can run. By adding API

directives to your Caching Proxy configuration file (ibmproxy.conf), you indicate

which of your plug-in functions you want to be called during a particular step.

You can call several plug-in functions during a particular process step by including

more than one directive for that step.

Some steps are part of the server request process. In other words, the proxy server

executes these steps each time it processes a request. Other steps are performed

independently of request processing; that is, the server executes these steps

regardless of whether a request is being processed.

Your compiled program resides in a shared object, for example, a DLL or .so file,

depending on your operating system. As the server proceeds through its request

process steps, it calls the plug-in functions associated with each step until one of

the functions indicates that it has handled the request. If you specify more than

one plug-in function for a particular step, the functions are called in the order in

which their directives appear in the configuration file.

If the request is not handled by a plug-in function (either you did not include a

Caching Proxy API directive for that step, or your plug-in function for that step

returned HTTP_NOACTION), the server performs its default action for that step.

Note: This is true for all steps except the Service step; the Service step does not

have a default action.

4 WebSphere Application Server: Programming Guide for Edge Components

Figure 1 depicts the steps of the proxy server process and defines the processing

order for the steps that are related to request processing.

Four of the steps on the diagram are executed independently from the processing

of any client request. These steps are related to the running and maintenance of the

proxy server. They include the following:

v Server Initialization

v Midnight

v GC Advisor

v Server Termination

The following list explains the purpose of each step pictured in Figure 1. Note that

not all steps are guaranteed to be called for a particular request.

Server Initialization

PreExit

Name Translation

Authorization

Object Type

Service

Transmogrifier

Log

Server Termination

Authentication

Error

. . . Read request from client

. . . Send request to next server

. . . Receive response from next server

CGI
Proxy Advisor
Static File (cache or file system)

Open
Write
Close
Error

Midnight

PostExit

GC Advisor

PostAuthorization

Figure 1. Flowchart of steps in the proxy server process

Chapter 2. The Caching Proxy API 5

Server Initialization

Performs initialization when the proxy server is started and before any

client requests are accepted.

Midnight

Runs a plug-in at midnight, with no request context. This step is shown

separately in the diagram because it is not part of the request process; in

other words, its execution is independent of any request.

GC Advisor

Influences garbage collection decisions for files in the cache. This step is

shown separately in the diagram because it is not part of the request

process; in other words, its execution is independent of any request.

Garbage collection is done when the cache size reaches the maximum

value. (Information about configuring cache garbage collection is included

in the WebSphere Application Server Caching Proxy Administration Guide.)

PreExit

 Performs processing after a request is read but before anything else is

done.

 If this step returns an indication that the request was processed

(HTTP_OK), the server bypasses the other steps in the request process and

performs only the Transmogrifier, Log, and PostExit steps.

Name Translation

Translates the virtual path (from a URL) to the physical path.

Authorization

 Uses stored security tokens to check the physical path for protections,

ACLs, and other access controls, and generates the WWW-Authenticate

headers required for basic authentication. If you write your own plug-in

function to replace this step, you must generate these headers yourself.

 See “Authentication and authorization” on page 33 for more information.

Authentication

 Decodes, verifies, and stores security tokens.

 See “Authentication and authorization” on page 33 for more information.

Object Type

Locates the file system object indicated by the path.

Post Authorization

 Performs processing after authorization and object location but before the

request is satisfied.

 If this step returns an indication that the request was processed

(HTTP_OK), the server bypasses the other steps in the request process and

performs only the Transmogrifier, Log, and PostExit steps.

Service

Satisfies the request (by sending the file, running the CGI, etc.)

Proxy Advisor

Influences proxy and caching decisions.

Transmogrifier

Gives write access to the data portion of the response sent to the client.

Log Enables customized transaction logging.

6 WebSphere Application Server: Programming Guide for Edge Components

Error Enables customized responses to error conditions.

PostExit

Cleans up resources allocated for request processing.

Server Termination

Performs clean-up processing when an orderly shutdown occurs.

Guidelines

v Write your program, following the syntax and guidelines provided for the

server’s plug-in functions. Give each of your plug-in functions a unique function

name and call the server’s predefined functions as needed.

On AIX® systems, you need an export file (for example, libmyapp.exp) that lists

your plug-in functions, and you must link with the Caching Proxy API import

file, libhttpdapi.exp.

On Linux, HP-UX, and Solaris systems, you must link with the libhttpdapi and

libc libraries.

On Windows® systems, you need a module definition file (.def) that lists your

plug-in functions, and you must link with HTTPDAPI.LIB.

Be sure to include HTAPI.h and to use the HTTPD_LINKAGE macro in your

function definitions. This macro ensures that all the functions use the same

calling conventions.

v The server runs in a multithreaded environment; therefore, your plug-ins must

be thread safe. If your application is reentrant, performance does not decrease.

v Keep the actions in your plug-ins to a thread scope. Do not perform any actions

at a process scope, for example, exiting, changing the user ID, or registering a

signal handler.

v Do not use global variables, or, if you must use them, protect global variables

with a mutual exclusion semaphore.

v Remember to set the Content-Type header if you are using the HTTPD_write()

function to send data back to the client.

v Always check return codes and provide conditional processing where necessary.

v Compile and link your program, referring to the documentation for your

compiler to build a shared object (for example, a DLL or .so file) as required for

your operating system.

Use the following compile and link commands as a guideline.

– AIX, using IBM CSet++

- Compile:

cc_r -c -qdbxextra -qcpluscmt foo.c

- Link:

cc_r -bM:SRE -bnoentry -o libfoo.so foo.o -bI:libhttpdapi.exp

 -bE:foo.exp

(This command is shown on two lines for readability only.)
– HP-UX, using HP C/ANSI C Developer’s Bundle and HP aC++ Compiler

- Compile:

cc -Ae -c +Z +DAportable

- Link:

aCC +Z -mt -c +DAportable

– Linux, using the Gnu Compiler C (GCC) Version 3.2.X

- Compile:

Chapter 2. The Caching Proxy API 7

gcc -c foo.c

- Link:

ld -G -Bsymbolic -o libfoo.so foo.o -lhttpdapi -lc

– Solaris, using Sun Workshop

- Compile:

cc -mt -Bsymbolic -c foo.c

- Link:

cc -mt -Bsymbolic -G -o libfoo.so foo.o -lhttpdapi -lc

– Windows, using Microsoft® Visual C++

- Compile:

cl /c /MD /DWIN32 foo.c

- Link:

link httpdapi.lib foo.obj /def:foo.def /out:foo.dll /dll

To specify exports, use one of these methods:

– Add _declspec(dllexport) definitions in the source.

– Specify /EXPORT:entryname on the LIB command line.

– Create a module definition file with an EXPORTS statement.
v Add Caching Proxy API directives to your configuration file to associate your

program’s plug-in functions with the appropriate steps. There is a separate

directive for each step in the server request process. Stop and restart your server

to make the new directives take effect.

Note: The Caching Proxy does not unload shared objects (DLL or .so files) even

at restart. You must stop and then start the server in order to release

shared objects.

v Test your program rigorously before using it in a production environment.

Because the Caching Proxy is a threaded server, you must apply more rigorous

testing than is necessary for a forking server. Errors in your program can cause

the proxy server to fail because the proxy server calls your program directly, and

they both run in the same process space.

Plug-in functions

Follow the syntax presented in “Plug-in function prototypes” to write your own

program functions for the defined request processing steps.

Each of your functions must fill in the return code parameter with a value that

indicates what action was taken:

v The code HTTP_NOACTION (value 0) means that no relevant action was taken. If

this code is returned, the proxy server takes its default action for this step.

v One of the valid HTTP return codes indicates that the plug-in function handled

the step. (See “HTTP return codes and values” on page 14 for a list of valid

return codes.) If a valid HTTP return code is given, no other plug-in functions

are called to handle that step of this request.

Plug-in function prototypes

The function prototypes for each Caching Proxy step show the format to use and

explain the type of processing they can perform. Note that the function names are

not predefined. You must give your functions unique names, and you can choose

your own naming conventions. For ease of association, this document uses names

that relate to the server’s processing steps.

8 WebSphere Application Server: Programming Guide for Edge Components

In each of these plug-in functions, certain predefined API functions are valid. Some

predefined functions are not valid for all steps. The following predefined API

functions are valid when called from all of these plug-in functions:

v HTTPD_set

v HTTPD_extract

v httpd_setvar

v httpd_getvar

v HTTPD_log* functions

Additional valid or invalid API functions are noted in the function prototype

descriptions.

The value of the handle parameter sent to your functions can be passed as the first

argument to the predefined functions. Predefined API functions are described in

“Predefined functions and macros” on page 15.

Server Initialization

 void HTTPD_LINKAGE ServerInitFunction (

 unsigned char *handle,

 unsigned long *major_version,

 unsigned long *minor_version,

 long *return_code

)

A function defined for this step is called once when your module is loaded

during server initialization. It is your opportunity to perform initialization

before any requests have been accepted.

 Although all server initialization functions are called, a error return code

from a function in this step causes the server to ignore all other functions

configured in the same module as the function that returned the error

code. (That is, any other functions contained in the same shared object as

the function that returned the error are not called.)

 The version parameters contain the proxy server’s version number; these

are supplied by the Caching Proxy.

PreExit

 void HTTPD_LINKAGE PreExitFunction (

 unsigned char *handle,

 long *return_code

)

A function defined for this step is called for each request after the request

has been read but before any processing has occurred. A plug-in at this

step can be used to access the client’s request before it is processed by the

Caching Proxy.

 Valid return codes for the preExit function are the following:

v 0 (HTTP_NOACTION)

v 200 (HTTP_OK)

v HTTP errors in the 4xx or 5xx series (for example, 404,

HTTP_NOT_FOUND)

Other return codes must not be used.

Chapter 2. The Caching Proxy API 9

If this function returns HTTP_OK, the proxy server assumes that the

request has been handled. All subsequent request processing steps are

bypassed, and only the response steps (Transmogrifier, Log, and PostExit)

are performed.

 All predefined API functions are valid during this step.

Midnight

 void HTTPD_LINKAGE MidnightFunction (

 unsigned char *handle,

 long *return_code

)

A function defined for this step runs daily at midnight and contains no

request context. For example, it can be used to invoke a child process to

analyze logs. (Note that extensive processing during this step can interfere

with logging.)

Authentication

 void HTTPD_LINKAGE AuthenticationFunction (

 unsigned char *handle,

 long *return_code

)

A function defined for this step is called for each request based on the

request’s authentication scheme. This function can be used to customize

verification of the security tokens that are sent with a request.

Name Translation

 void HTTPD_LINKAGE NameTransFunction (

 unsigned char *handle,

 long *return_code

)

A function defined for this step is called for each request. A URL template

can be specified in the configuration file directive if you want the plug-in

function to be called only for requests that match the template. The Name

Translation step occurs before the request is processed and provides a

mechanism for mapping URLs to objects such as file names.

Authorization

 void HTTPD_LINKAGE AuthorizationFunction (

 unsigned char *handle,

 long *return_code

)

A function defined for this step is called for each request. A URL template

can be specified in the configuration file directive if you want the plug-in

function to be called only for requests that match the template. The

Authorization step occurs before the request is processed and can be used

to verify that the identified object can be returned to the client. If you are

doing basic authentication, you must generate the required

WWW-Authenticate headers.

Object Type

 void HTTPD_LINKAGE ObjTypeFunction (

 unsigned char *handle,

 long *return_code

)

10 WebSphere Application Server: Programming Guide for Edge Components

A function defined for this step is called for each request. A URL template

can be specified in the configuration file directive if you want the plug-in

function to be called only for requests that match the template. The Object

Type step occurs before the request is processed and can be used to check

whether the object exists, and to perform object typing.

PostAuthorization

 void HTTPD_LINKAGE PostAuthFunction (

 unsigned char *handle,

 long *return_code

)

A function defined for this step is called after the request has been

authorized but before any processing has occurred. If this function returns

HTTP_OK, the proxy server assumes that the request has been handled.

All subsequent request steps are bypassed, and only the response steps

(Transmogrifier, Log, and PostExit) are performed.

 All server predefined functions are valid during this step.

Service

 void HTTPD_LINKAGE ServiceFunction (

 unsigned char *handle,

 long *return_code

)

A function defined for this step is called for each request. A URL template

can be specified in the configuration file directive if you want the plug-in

function to be called only for requests that match the template. The Service

step satisfies the request, if it was not satisfied in the PreExit or

PostAuthorization steps.

 All server predefined functions are valid during this step.

 Refer to the Enable directive in the WebSphere Application Server Caching

Proxy Administration Guide for information on configuring your Service

function to be executed based on the HTTP method rather than on the

URL.

Transmogrifier

The functions called in this process step can be used to filter response data

as a stream. Four plug-in functions for this step are called in sequence, and

each acts as a segment of pipe through which the data flows. That is, the

open, write, close, and error functions that you provide are called, in that

order, for each response. Each function processes the same data stream, in

turn.

 For this step, you must implement the following four functions. (Your

function names do not need to match these names.)

v Open

void * HTTPD_LINKAGE openFunction (

 unsigned char *handle,

 long *return_code

)

The open function performs any initialization (such as buffer allocation)

required to process the data for this stream. Any return code other than

HTTP_OK causes this filter to abort (the write and close functions are

not called). Your function can return a void pointer so that you can

Chapter 2. The Caching Proxy API 11

allocate space for a structure and have the pointer passed back to you in

the correlator parameter of the subsequent functions.

v Write

void HTTPD_LINKAGE writeFunction (

 unsigned char *handle,

 unsigned char *data, /* response data sent by the

 origin server */

 unsigned long *length, /* length of response data */

 void *correlator, /* pointer returned by the

 ’open’ function */

 long *return_code

)

The write function processes the data and can call the server’s

predefined HTTPD_write() function with the new or changed data. The

plug-in must not attempt to free the buffer passed to it or expect the

server to free the buffer it receives.

If you decide not to change the data during the scope of your write

function, you still must call the HTTPD_write() function during the

scope of either your open, write, or close function in order to pass the

data for the response to the client. The correlator argument is the pointer

to the data buffer that was returned in your open routine.

v Close

void HTTPD_LINKAGE closeFunction (

 unsigned char *handle,

 void *correlator,

 long *return_code

)

The close function performs any clean-up actions (such as flushing and

freeing the correlator buffer) required to complete processing the data

for this stream. The correlator argument is the pointer to the data buffer

that was returned in your open routine.

v Error

void HTTPD_LINKAGE errorFunction (

 unsigned char *handle,

 void *correlator,

 long *return_code

)

The error function enables performance of clean-up actions, such as

flushing or freeing the buffered data (or both) before an error page is

sent. At this point, your open, write, and close functions are called to

process the error page. The correlator argument is the pointer to the data

buffer that was returned in your open routine.

Notes:

v When writing a plug-in for the Transmogrifier step, you must call

HTTPD_open(), HTTPD_write(), and HTTPD_close() at some time

during the scope of your open, write, and close functions.

HTTPD_write() can be called only after the HTTPD_open() function has

been called. The purpose of these predefined functions is to give control

to the server so that the next function in the sequence can be invoked.

v Calling the HTTPD_* functions is necessary for your Transmogrifier API

step and the server to perform correctly. For example, if HTTPD_open()

and HTTPD_close() are not called, headers are not returned to the client.

v Be aware that undesirable effects can occur if data filtering applications

are not properly selective in their filtering of data streams. It is possible

12 WebSphere Application Server: Programming Guide for Edge Components

that CGIs will not work if filtered incorrectly, GIF files will not be

displayed, and other binary streams will not work as expected.

v It is not necessary for the plug-in to buffer content body. The Caching

Proxy automatically determines the content length.

v It is desirable to call HTTPD_open() when you are ready to give control

of the headers to the server. However, if you need to set a header later

in the API program, you can wait until the write or close function to call

the HTTPD_open() function.

Note: You must set any headers by using HTTPD_set() or httpd_setvar()

before calling the HTTPD_open() function.

v The data stream does not include headers. Plug-ins must use set and

extract functions to manipulate headers. The plug-in’s open function is

not invoked until all headers have been read.

v You can use multiple transmogrifier plug-ins, which are invoked in the

order in which they appear in the configuration file.

v SSL tunneling is not passed through the transmogrifier plug-ins.

GC Advisor

 void HTTPD_LINKAGE GCAdvisorFunction (

 unsigned char *handle,

 long *return_code

)

A function defined for this step is called for each file in the cache during

garbage collection. This function enables you to influence which files are

kept and which files are discarded. For more information, see the GC_*

variables.

Proxy Advisor

 void HTTPD_LINKAGE ProxyAdvisorFunction (

 unsigned char *handle,

 long *return_code

)

A function defined for this step is invoked during service of each proxy

request. For example, it can be used to set the USE_PROXY variable.

Log

 void HTTPD_LINKAGE LogFunction (

 unsigned char *handle,

 long *return_code

)

A function defined for this step is called for each request after the request

has been processed and the communication to the client has been closed. A

URL template can be specified in the configuration file directive if you

want the plug-in function to be called only for requests that match the

template. This function is called regardless of the success or failure of the

request processing. If you do not want your log plug-in to override the

default log mechanism, set your return code to HTTP_NOACTION instead

of HTTP_OK.

Error

 void HTTPD_LINKAGE ErrorFunction (

 unsigned char *handle,

 long *return_code

)

Chapter 2. The Caching Proxy API 13

A function defined for this step is called for each request that fails. A URL

template can be specified in the configuration file directive if you want the

plug-in function to be called only for failed requests that match the

template. The Error step provides an opportunity for you to customize the

error response.

PostExit

 void HTTPD_LINKAGE PostExitFunction (

 unsigned char *handle,

 long *return_code

)

A function defined for this step is called for each request, regardless of the

success or failure of the request. This step enables you to do clean-up tasks

for any resources allocated by your plug-in to process the request.

Server Termination

 void HTTPD_LINKAGE ServerTermFunction (

 unsigned char *handle,

 long *return_code

)

A function defined for this step is called when an orderly shutdown of the

server occurs. It enables you to clean up resources allocated during the

Server Initialization step. Do not call any HTTP_* functions in this step

(the results are unpredictable). If you have more than one Caching Proxy

API directive in your configuration file for Server Termination, they will all

be called.

Note: Because of a current limitation in Solaris code, the Server

Termination plug-in step is not executed when the ibmproxy -stop

command is used to shut down the Caching Proxy on Solaris

platforms. Refer to the WebSphere Application Server Caching Proxy

Administration Guide for information about starting and stopping the

Caching Proxy.

HTTP return codes and values

These return codes follow the HTTP 1.1 specification, RFC 2616, published by the

World Wide Web Consortium (www.w3.org/pub/WWW/Protocols/). Your plug-in

functions must return one of these values.

 Table 2. HTTP return codes for Caching Proxy API functions

Value Return code

0 HTTP_NOACTION

100 HTTP_CONTINUE

101 HTTP_SWITCHING_PROTOCOLS

200 HTTP_OK

201 HTTP_CREATED

202 HTTP_ACCEPTED

203 HTTP_NON_AUTHORITATIVE

204 HTTP_NO_CONTENT

205 HTTP_RESET_CONTENT

206 HTTP_PARTIAL_CONTENT

300 HTTP_MULTIPLE_CHOICES

14 WebSphere Application Server: Programming Guide for Edge Components

Table 2. HTTP return codes for Caching Proxy API functions (continued)

301 HTTP_MOVED_PERMANENTLY

302 HTTP_MOVED_TEMPORARILY

302 HTTP_FOUND

303 HTTP_SEE_OTHER

304 HTTP_NOT_MODIFIED

305 HTTP_USE_PROXY

307 HTTP_TEMPORARY_REDIRECT

400 HTTP_BAD_REQUEST

401 HTTP_UNAUTHORIZED

403 HTTP_FORBIDDEN

404 HTTP_NOT_FOUND

405 HTTP_METHOD_NOT_ALLOWED

406 HTTP_NOT_ACCEPTABLE

407 HTTP_PROXY_UNAUTHORIZED

408 HTTP_REQUEST_TIMEOUT

409 HTTP_CONFLICT

410 HTTP_GONE

411 HTTP_LENGTH_REQUIRED

412 HTTP_PRECONDITION_FAILED

413 HTTP_ENTITY_TOO_LARGE

414 HTTP_URI_TOO_LONG

415 HTTP_BAD_MEDIA_TYPE

416 HTTP_BAD_RANGE

417 HTTP_EXPECTATION_FAILED

500 HTTP_SERVER_ERROR

501 HTTP_NOT_IMPLEMENTED

502 HTTP_BAD_GATEWAY

503 HTTP_SERVICE_UNAVAILABLE

504 HTTP_GATEWAY_TIMEOUT

505 HTTP_BAD_VERSION

Predefined functions and macros

You can call the server’s predefined functions and macros from your own plug-in

functions. You must use their predefined names and follow the format described

below. In the parameter descriptions, the letter i indicates an input parameter, the

letter o indicates an output parameter, and i/o indicates that a parameter is used

for both input and output.

Each of these functions returns one of the HTTPD return codes, depending on the

success of the request. These codes are described in “Return codes from predefined

functions and macros” on page 21.

Chapter 2. The Caching Proxy API 15

Use the handle provided to your plug-in as the first parameter when calling these

functions. Otherwise, the function returns an HTTPD_PARAMETER_ERROR error

code. NULL is not accepted as a valid handle.

HTTPD_authenticate()

Authenticates a user ID or password, or both. Valid only in PreExit,

Authentication, Authorization, and PostAuthorization steps.

 void HTTPD_LINKAGE HTTPD_authenticate (

 unsigned char *handle, /* i; handle */

 long *return_code /* o; return code */

)

HTTPD_cacheable_url()

Returns whether the specified URL content is cacheable according to the

Caching Proxy’s standards.

 void HTTPD_LINKAGE HTTPD_cacheable_url (

 unsigned char *handle, /* i; handle */

 unsigned char *url, /* i; URL to check */

 unsigned char *req_method, /* i; request method for the URL */

 long *retval /* o; return code */

)

The return value HTTPD_SUCCESS indicates that the URL content is

cacheable; HTTPD_FAILURE indicates the content is not cacheable.

HTTPD_INTERNAL_ERROR also is a possible return code for this

function.

HTTPD_close()

(Valid only in the Transmogrifier step.) Transfers control to the next close

routine in the stream stack. Call this function from the Transmogrifier

open, write, or close functions after any desired processing is done. This

function notifies the proxy server that the response has been processed and

the Transmogrifier step is complete.

 void HTTPD_LINKAGE HTTPD_close (

 unsigned char *handle, /* i; handle */

 long *return_code /* o; return code */

)

HTTPD_exec()

Executes a script to satisfy this request. Valid in the PreExit, Service,

PostAuthorization, and Error steps.

 void HTTPD_LINKAGE HTTPD_exec (

 unsigned char *handle, /* i; handle */

 unsigned char *name, /* i; name of script to run */

 unsigned long *name_length, /* i; length of the name */

 long *return_code /* o; return code */

)

HTTPD_extract()

Extracts the value of a variable associated with this request. The valid

variables for the name parameter are the same as those used in the CGI.

See “Variables” on page 24 for more information. Note that this function is

valid in all steps; however, not all variables are valid in all steps.

 void HTTPD_LINKAGE HTTPD_extract (

 unsigned char *handle, /* i; handle */

 unsigned char *name, /* i; name of variable to extract */

 unsigned long *name_length, /* i; length of the name */

 unsigned char *value, /* o; buffer in which to put

 the value */

 unsigned long *value_length, /* i/o; buffer size */

 long *return_code /* o; return code */

)

16 WebSphere Application Server: Programming Guide for Edge Components

If this function returns the code HTTPD_BUFFER_TOO_SMALL, the buffer

size you requested was not big enough for the extracted value. In this case,

the function does not use the buffer but updates the value_length

parameter with the buffer size that you need in order to successfully

extract this value. Retry the extraction with a buffer that is at least as big

as the returned value_length.

Note: If the variable being extracted is for an HTTP header, the

HTTPD_extract() function will extract only the first matching

occurrence, even if the request contains multiple headers with the

same name. The httpd_getvar() function can be used instead of

HTTPD_extract(), and also offers other benefits. Refer to 17 for more

information.

HTTPD_file()

Sends a file to satisfy this request. Valid only in the PreExit, Service, Error,

PostAuthorization, and Transmogrifier steps.

 void HTTPD_LINKAGE HTTPD_file (

 unsigned char *handle, /* i; handle */

 unsigned char *name, /* i; name of file to send */

 unsigned long *name_length, /* i; length of the name */

 long *return_code /* o; return code */

)

httpd_getvar()

The same as HTTPD_extract(), except that it is easier to use because the

user does not have to specify lengths for the arguments.

 const unsigned char * /* o; value of variable */

HTTPD_LINKAGE

httpd_getvar(

 unsigned char *handle, /* i; handle */

 unsigned char *name, /* i; variable name */

 unsigned long *n /* i; index number for the array

 containing the header */

)

The index for the array containing the header begins with 0. To obtain the

first item in the array, use the value 0 for n; to obtain the fifth item, use the

value 4 for n.

Note: Do not discard or change the contents of the returned value. The

returned string is null terminated.

HTTPD_log_access()

Writes a string to the server’s access log.

 void HTTPD_LINKAGE HTTPD_log_access (

 unsigned char *handle, /* i; handle */

 unsigned char *value, /* i; data to write */

 unsigned long *value_length, /* i; length of the data */

 long *return_code /* o; return code */

)

Note that escape symbols are not required when writing the percent

symbol (%) in server access logs.

HTTPD_log_error()

Writes a string to the server’s error log.

Chapter 2. The Caching Proxy API 17

void HTTPD_LINKAGE HTTPD_log_error (

 unsigned char *handle, /* i; handle */

 unsigned char *value, /* i; data to write */

 unsigned long *value_length, /* i; length of the data */

 long *return_code /* o; return code */

)

Note that escape symbols are not required when writing the percent

symbol (%) in server error logs.

HTTPD_log_event()

Writes a string to the server’s event log.

 void HTTPD_LINKAGE HTTPD_log_event (

 unsigned char *handle, /* i; handle */

 unsigned char *value, /* i; data to write */

 unsigned long *value_length, /* i; length of the data */

 long *return_code /* o; return code */

)

Note that escape symbols are not required when writing the percent

symbol (%) in server event logs.

HTTPD_log_trace()

Writes a string to the server’s trace log.

 void HTTPD_LINKAGE HTTPD_log_trace (

 unsigned char *handle, /* i; handle */

 unsigned char *value, /* i; data to write */

 unsigned long *value_length, /* i; length of the data */

 long *return_code /* o; return code */

)

Note that escape symbols are not required when writing the percent

symbol (%) in server trace logs.

HTTPD_open()

(Valid only in the Transmogrifier step.) Transfers control to the next routine

in the stream stack. Call this from the Transmogrifier open, write, or close

functions after any desired headers are set and you are ready to begin the

write routine.

 void HTTPD_LINKAGE HTTPD_open (

 unsigned char *handle, /* i; handle */

 long *return_code /* o; return code */

)

HTTPD_proxy()

Makes a proxy request. Valid in the PreExit, Service, and PostAuthorization

steps.

Note: This is a completion function; the request is complete after this

function.

void HTTPD_LINKAGE HTTPD_proxy (

 unsigned char *handle, /* i; handle */

 unsigned char *url_name, /* i; URL for the

 proxy request */

 unsigned long *name_length, /* i; length of URL */

 void *request_body, /* i; body of request */

 unsigned long *body_length, /* i; length of body */

 long *return_code /* o; return code */

)

HTTPD_read()

Reads the body of the client’s request. Use HTTPD_extract() for headers.

18 WebSphere Application Server: Programming Guide for Edge Components

Valid only in the PreExit, Authorization, PostAuthorization, and Service

steps and is useful only if a PUT or POST request has been done. Call this

function in a loop until HTTPD_EOF is returned. If there is no body for this

request, this function fails.

 void HTTPD_LINKAGE HTTPD_read (

 unsigned char *handle, /* i; handle */

 unsigned char *value, /* i; buffer for data */

 unsigned long *value_length, /* i/o; buffer size

 (data length) */

 long *return_code /* o; return code */

)

HTTPD_restart()

Restarts the server after all active requests have been processed. Valid in all

steps except for Server Initialization, Server Termination, and

Transmogrifier.

 void HTTPD_LINKAGE HTTPD_restart (

 long *return_code /* o; return code */

)

HTTPD_set()

Sets the value of a variable associated with this request. The variables that

are valid for the name parameter are the same as those used in the CGI.

See “Variables” on page 24 for more information.

 Note that you can also create variables with this function. Variables that

you create are subject to the conventions for HTTP_ and PROXY_ prefixes,

which are described in “Variables” on page 24. If you create a variable that

begins with HTTP_, it is sent as a header in the response to the client,

without the HTTP_ prefix. For example, to set a Location header, use

HTTPD_set() with the variable name HTTP_LOCATION. Variables created

with a PROXY_ prefix are sent as headers in the request to the content

server. Variables created with a CGI_ prefix are passed to CGI programs.

 This function is valid in all steps; however, not all variables are valid in all

steps.

 void HTTPD_LINKAGE HTTPD_set (

 unsigned char *handle, /* i; handle */

 unsigned char *name, /* i; name of value to set */

 unsigned long *name_length, /* i; length of the name */

 unsigned char *value, /* i; buffer with value */

 unsigned long *value_length, /* i; length of value */

 long *return_code /* o; return code */

)

Note: You can use the httpd_setvar() function to set a variable value

without having to specify a buffer and length. Refer to 19 for

information.

httpd_setvar()

The same as HTTPD_set(), except that it is easier to use because the user

does not have to specify lengths for the arguments.

 long /* o; return code */

HTTPD_LINKAGE httpd_setvar (

 unsigned char *handle, /* i; handle */

 unsigned char *name, /* i; variable name */

 unsigned char *value, /* i; new value */

 unsigned long *addHdr /* i; add header or replace it */

)

The addHdr parameter has four possible values:

Chapter 2. The Caching Proxy API 19

v HTTPD_SETVAR_REPLACE — Replace all occurrences of the header

variable with the new value.

v HTTPD_SETVAR_REPLACE_ADD — If the header variable exists,

replace its first occurrence with the new value; if the variable does not

exist, append the new value to the headers.

v HTTPD_SETVAR_ADD — Append this value to the headers.

v HTTPD_SETVAR_REMOVE_ALL — Delete all occurrences of this header

variable.

These values are defined in HTAPI.h.

httpd_variant_insert()

Inserts a variant into the cache.

 void HTTPD_LINKAGE httpd_variant_insert (

 unsigned char *handle, /* i; handle */

 unsigned char *URI, /* i; URI of this object */

 unsigned char *dimension, /* i; dimension of variation */

 unsigned char *variant, /* i; value of the variant */

 unsigned char *filename, /* i; file containing the object */

 long *return_code /* o; return code */

)

Notes:

1. The dimension argument refers to the header by which this object

varies from the URI. For instance, in the example above, a possible

dimension value is User-Agent.

2. The variant argument refers to the value of the header for the header

given in the dimension argument. This varies from the URI. For

instance, in the example above, a possible value for the variant

argument is the following:

Mozilla 4.0 (compatible; BatBrowser 94.1.2; Bat OS)

3. The filename argument must point to a null-terminated copy of the file

name in which the user has saved the modified content. The user is

responsible for removing the file; this action is safe after return from

this function. The file contains only the body with no headers.

4. When caching variants, the server updates the content-length header

and adds a Warning: 214 header. Strong entity tags are removed.

httpd_variant_lookup()

Determines if a given variant exists in the cache.

 void HTTPD_LINKAGE httpd_variant_lookup (

 unsigned char *handle, /* i; handle */

 unsigned char *URI, /* URI of this object */

 unsigned char *dimension, /* i; dimension of variation */

 unsigned char *variant, /* i; value of the variant */

 long *return_code); /* o; return code */

HTTPD_write()

Writes the body of the response. Valid in the PreExit, Service, Error, and

Transmogrifier steps.

 If you do not set the content type before calling this function for the first

time, the server assumes that you are sending a CGI data stream.

 void HTTPD_LINKAGE HTTPD_write (

 unsigned char *handle, /* i; handle */

 unsigned char *value, /* i; data to send */

 unsigned char *value_length, /* i; length of the data */

 long *return_code); /* o; return code */

20 WebSphere Application Server: Programming Guide for Edge Components

Note: To set response headers, refer to 19.

Note: After an HTTPD_* function returns, it is safe for you to free any memory

that you passed with it.

Return codes from predefined functions and macros

The server will set the return code parameter to one of these values, depending on

the success of the request:

 Table 3. Return codes

Value Status code Explanation

-1 HTTPD_UNSUPPORTED The function is not supported.

0 HTTPD_SUCCESS The function succeeded, and the output

fields are valid.

1 HTTPD_FAILURE The function failed.

2 HTTPD_INTERNAL_ERROR An internal error was encountered and

processing for this request cannot

continue.

3 HTTPD_PARAMETER_ERROR One or more invalid parameters was

passed.

4 HTTPD_STATE_CHECK The function is not valid in this process

step.

5 HTTPD_READ_ONLY (Returned only by HTTPD_set and

httpd_setvar.) The variable is read-only

and cannot be set by the plug-in.

6 HTTPD_BUFFER_TOO_SMALL (Returned by HTTPD_set, httpd_setvar,

and HTTPD_read.) The buffer provided

was too small.

7 HTTPD_AUTHENTICATE_FAILED (Returned only by HTTPD_authenticate.)

The authentication failed. Examine the

HTTP_RESPONSE and HTTP_REASON

variables for more information.

8 HTTPD_EOF (Returned only by HTTPD_read.)

Indicates the end of the request body.

9 HTTPD_ABORT_REQUEST The request was aborted because the

client provided an entity tag that did not

match the condition specified by the

request.

10 HTTPD_REQUEST_SERVICED (Returned by HTTPD_proxy.) The

function that was called completed the

response for this request.

11 HTTPD_RESPONSE_ALREADY_

COMPLETED

The function failed because the response

for that request has already been

completed.

12 HTTPD_WRITE_ONLY The variable is write-only and cannot be

read by the plug-in.

Caching Proxy configuration directives for API steps

Each step in the request process has a configuration directive that you use to

indicate which of your plug-in functions you want to call and execute during that

step. You can add these directives to your server’s configuration file

Chapter 2. The Caching Proxy API 21

(ibmproxy.conf) by manually editing and updating it, or by using the API Request

Processing form in the Caching Proxy Configuration and Administration forms.

API usage notes

v Except for the Service and NameTrans directives, the API directives for each step

do not need to appear in any particular order in the configuration file. Note that

the order of multiple entries for one API directive is significant, as described

later in this list.

v It is not necessary to include an entry for every API step. If you do not have a

plug-in for a particular step, omit the corresponding directive and the standard

processing for that step will be used.

v The Service and NameTrans directives work like the other mapping directives

(for example, the Pass directive) and are dependent on their occurrence and

placement relative to other mapping directives within the configuration file. For

example, a rule for /cgi-bin/foo.so must appear before the rule for /cgi-bin/*.

This means that the server processes the Service, NameTrans, Exec, Fail, Map,

Pass, Proxy, ProxyWAS, and Redirect directives in their sequence within the

configuration file. When the server successfully maps a URL to a file, it does not

read or process any other of these directives. (The Map directive is an exception.

Refer to the WebSphere Application Server Caching Proxy Administration Guide for

complete information about proxy server mapping rules.)

v You can have more than one configuration directive for a step. For example, you

can include two NameTrans directives, each pointing to a different plug-in

function. When the server performs the name translation step, it processes your

name translation functions in the order in which they appear within the

configuration file.

Note: If a plug-in function provided with the Caching Proxy uses the same API

directive as a plug-in you have written, place your plug-in’s directive

after the system plug-in directive.

v Certain plug-in functions do not have to be executed for every request:

– Several directives include a URL mask. Specifying a URL mask with these

directives causes the plug-in application to be called only for requests whose

URLs match that pattern. Refer to “API directives and syntax” for information

about which steps can use URL masks and to “API directive variables” on

page 23 for information about how to use this feature.

– Specify an authentication scheme with the Authentication directive to indicate

that you want the plug-in to be called only for certain types of authentication.

Currently, only basic authentication is supported by the HTTP protocol. See

“API directive variables” on page 23 for additional information.
v If the server fails to load a specific plug-in function, or if you have a ServerInit

directive that does not return an OK return code, no other plug-in functions for

that compiled Caching Proxy plug-in are called. Any processing specific to that

plug-in that was done up to this point is ignored. Other Caching Proxy plug-ins

that you include in these directives, and their functions, are not affected.

API directives and syntax

These configuration file directives must appear in the ibmproxy.conf file as one

line, with no spaces other than those explicitly specified here. Although line breaks

appear for readability in some of the syntax examples, there must be no spaces at

those points in the actual directive.

 Table 4. Caching Proxy plug-in API directives

ServerInit /path/file:function_name init_string

22 WebSphere Application Server: Programming Guide for Edge Components

Table 4. Caching Proxy plug-in API directives (continued)

PreExit /path/file:function_name

Authentication type /path/file:function_name

NameTrans /URL /path/file:function_name

Authorization /URL /path/file:function_name

ObjectType /URL /path/file:function_name

PostAuth /path/file:function_name

Service /URL /path/file:function_name

Midnight /path/file:function_name

Transmogrifier /path/file:open_function_name: write_function_name:

close_function_name:error_function

Log /URL /path/file:function_name

Error /URL /path/file:function_name

PostExit /path/file:function_name

ServerTerm /path/file:function_name

ProxyAdvisor /path/file:function_name

GCAdvisor /path/file:function_name

API directive variables

The variables in these directives have the following meanings:

type Used only with the Authentication directive to specify whether or not your

plug-in function is called. Valid values are the following:

v Basic — The plug-in function is called only for basic authentication

requests.

v * — The plug-in function is called for all requests. Currently, only basic

authentication is supported by HTTP protocol. For nonbasic

authentication requests, you can return an error code indicating that this

type of authentication is not supported.

URL Specifies the requests for which your plug-in function is called. Requests

with URLs that match this template will cause the plug-in function to be

used. URL specifications in these directives are virtual (they do not include

the protocol) but are preceded by a slash (/). For example,

/www.ics.raleigh.ibm.com is correct, but http://www.ics.raleigh.ibm.com

is not. You can specify this value as a specific URL or as a template.

v specific URL — The plug-in function is called only for that exact URL.

v URL template — The plug-in function is called for all URLs that match

the template. Templates can include the wildcard character * and can be

specified in the forms /URL* or /* or *

Note: A URL template is required with the Service directive if you want

path translation to occur.

path/file

The fully qualified file name of your compiled program.

function_name

The name that you gave your plug-in function within your program.

Chapter 2. The Caching Proxy API 23

The Service directive requires an asterisk (*) after the function name if you

want to have access to path information.

init_string

This optional part of the ServerInit directive can contain any text that you

want to pass to your plug-in function. Use httpd_getvar() to extract the

text from the INIT_STRING variable.

 For additional information, including syntax, for these directives, see the WebSphere

Application Server Caching Proxy Administration Guide.

Compatibility with other APIs

The Caching Proxy API is backward-compatible with ICAPI and GWAPI, through

version 4.6.1.

Porting CGI programs

Use the following guidelines for porting CGI applications written in C to use the

Caching Proxy API:

v Remove your main() entry point, or rename it so that you can build a DLL.

v Eliminate global variables or protect them with a mutual exclusion semaphore.

v Change the following calls in your programs:

– Change printf() header calls to HTTPD_set() or httpd_setvar().

– Change printf() data calls to HTTPD_write().

– Change getenv() calls to HTTPD_extract() or httpd_getvar(). Note that this

returns unallocated memory, so you must free the result.
v Remember that the server runs in a multithreaded environment, and your

plug-in functions must be thread safe. If the functions are reentrant, performance

does not decrease.

v Remember to set the Content-Type header if you are using HTTPD_write() to

send data back to the client.

v Check your code meticulously for memory leaks.

v Think about your error paths. If you generate error messages yourself and send

them back as HTML, you must return HTTPD_OK from your service function or

functions.

Caching Proxy API reference information

Variables

When writing API programs, you can use Caching Proxy variables that provide

information about the remote client and server system.

Notes:

v User-defined variable names cannot have a prefix of SERVER_. The Caching

Proxy API function reserves any variable starting with SERVER_ for the server

and, therefore, these variables are read-only. In addition, the prefixes HTTP_ and

PROXY_ also are reserved for HTTP headers.

v All request headers sent by the client (such as Set-Cookie) are prefixed by

HTTP_, and their values can be extracted. To access variables that are request

headers, prefix the variable name with HTTP_. You can also create new variables

using the httpd_setvar() predefined function. For details about these headers, see

“Return codes from predefined functions and macros” on page 21.

24 WebSphere Application Server: Programming Guide for Edge Components

v Two variable prefixes, HTTP_ and PROXY_, are used to denote whether a

variable applies to headers for the request or for the response. The HTTP_ prefix

refers to variables that flow between the client and the Caching Proxy. The

PROXY_ prefix refers to variables that flow between the Caching Proxy and the

origin server (or the next server in a proxy chain). These variables are valid only

during the request processing steps.

– Extracting an HTTP_* variable gives you the value of a header that was in the

client’s request to the proxy server.

– Setting an HTTP_* variable sets the response header that is sent from the

proxy server to the client.

– Extracting a PROXY_* variable gives you the value for a header returned

from the content server to the proxy server.

– Setting a PROXY_* variable sets the request header that is sent from the

proxy server to the content server (or to the next server in a proxy chain).

Figure 2 demonstrates the use of these prefixes as the Caching Proxy handles a

client request.

v Some variables are read-only. Read-only variables represent values that you can

extract from a request or a response and use in the httpd_getvar() predefined

function. A return code of HTTPD_READ_ONLY results if you try to change

read-only variables by using the httpd_setvar() function.

v Variables not identified as read-only can be read and set in the httpd_getvar() or

httpd_setvar() predefined functions. These variables represent values that you

can extract from a request or response; or values that you can set or create when

processing a request or response.

Variable definitions

Note: Header variables that do not begin with HTTP_ or PROXY_ prefixes are

ambiguous. To avoid ambiguity, always use the HTTP_ or PROXY_ prefix

with variable names for headers.

ACCEPT_RANGES

Contains the value of the Accept-Ranges response header, which specifies

whether the content server can respond to range requests. Use

PROXY_ACCEPT_RANGES to extract the header value that is sent by the

content server to the proxy. Use HTTP_ACCEPT_RANGES to set the

header value that is sent from the proxy to the client.

Note: ACCEPT_RANGES is ambiguous. To eliminate ambiguity, use

HTTP_ACCEPT_RANGES and PROXY_ACCEPT_RANGES instead.

Figure 2. HTTP_ and PROXY_ variable prefixes. Legend: 1—Client machine 2—Caching

Proxy 3—Origin server

Chapter 2. The Caching Proxy API 25

ALL_VARIABLES

Read-only. Contains all of the CGI variables. For example:

 ACCEPT_RANGES BYTES

 CLIENT_ADDR 9.67.84.3

AUTH_STRING

Read-only. If the server supports client authentication, this string contains

the undecoded credentials to be used to authenticate the client.

AUTH_TYPE

Read-only. If the server supports client authentication and the script is

protected, this variable contains the method used to authenticate the client.

For example, Basic.

CACHE_HIT

Read-only. Identifies whether or not the proxy request was found in the

cache. Values returned include the following:

v 0 - The request was not found in the cache.

v 1 - The request was found in the cache.

CACHE_MISS

Write-only. Used to force a cache miss. Valid values are the following:

v 0 - Do not force a cache miss.

v 1 - Force a cache miss.

CACHE_TASK

Read-only. Identifies whether the cache was used. Values returned include

the following:

v 0 - The request did not access or update the cache.

v 1 - The request was served from cache.

v 2 - The requested object was in the cache but needed to be revalidated.

v 3 - The requested object was not in the cache and possibly has been

added.

This variable can be used in the PostAuthorization, PostExit, ProxyAdvisor,

or Log steps.

CACHE_UPDATE

Read-only. Identifies whether or not the proxy request updated the cache.

Values returned include the following:

v 0 - The cache was not updated.

v 1 - The cache was updated.

CLIENT_ADDR or CLIENTADDR

Same as REMOTE_ADDR.

CLIENTMETHOD

Same as REQUEST_METHOD.

CLIENT_NAME or CLIENTNAME

Same as REMOTE_HOST.

CLIENT_PROTOCOL or CLIENTPROTOCOL

Contains the name and version of the protocol that the client is using to

make the request. For example, HTTP/1.1.

CLIENT_RESPONSE_HEADERS

Read-only. Returns a buffer containing the headers that the server sends to

the client.

26 WebSphere Application Server: Programming Guide for Edge Components

CONNECTIONS

Read-only. Contains the number of connections being served, or the

number of active requests. For example, 15.

CONTENT_CHARSET

Character set of the response for text/*, for example, US ASCII. Extracting

this variable applies to the content-charset header from the client. Setting it

affects the content-charset header in the request to the content server.

CONTENT_ENCODING

Specifies the encoding used in the document, for example, x-gzip.

Extracting this variable applies to the content-encoding header from client.

Setting it affects the content-charset header in the request to the content

server.

CONTENT_LENGTH

Extracting this variable applies to the header from the client’s request.

Setting it affects the value of the header in the request to the content

server.

 Note: CONTENT_LENGTH is ambiguous. To eliminate ambiguity, use

HTTP_CONTENT_LENGTH and PROXY_CONTENT_LENGTH.

CONTENT_TYPE

Extracting this variable applies to the header from the client’s request.

Setting it affects the value of the header in the request to the content

server.

 Note: CONTENT_TYPE is ambiguous. To eliminate ambiguity, use

HTTP_CONTENT_TYPE and PROXY_CONTENT_TYPE.

CONTENT_TYPE_PARAMETERS

Contains other MIME attributes, but not the character set. Extracting this

variable applies to the header from the client request. Setting it affects the

value of header in the request to the content server.

DOCUMENT_URL

Contains the Uniform Request Locator (URL). For example:

http://www.anynet.com/~userk/main.htm

DOCUMENT_URI

Same as DOCUMENT_URL.

DOCUMENT_ROOT

Read-only. Contains the document root path, as defined by pass rules.

ERRORINFO

Specifies the error code to determine the error page. For example, blocked.

EXPIRES

Defines when documents stored in a proxy’s cache expire. Extracting this

variable applies to the header from client request. Setting it affects the

value of header in the request to the content server. For example:

Mon, 01 Mar 2002 19:41:17 GMT

GATEWAY_INTERFACE

Read-only. Contains the version of the API that the server is using. For

example, ICSAPI/2.0.

GC_BIAS

Write-only. This floating-point value influences the garbage collection

decision for the file being considered for garbage collection. The value

Chapter 2. The Caching Proxy API 27

entered is multiplied by the Caching Proxy’s quality setting for that file

type to determine ranking. Quality settings range from 0.0 to 0.1 and are

defined by the AddType directives in the proxy configuration file

(ibmproxy.conf).

GC_EVALUATION

Write-only. This floating-point value determines whether to remove (0.0) or

keep (1.0) the file being considered for garbage collection. Values between

0.0 and 1.0 are ordered by rank, that is, a file with the GC_EVALUATION

value 0.1 is more likely to be removed than a file with the

GC_EVALUATION value 0.9.

GC_EXPIRES

Read-only. Identifies how many seconds remain until the file under

consideration expires in the cache. This variable can be extracted only by a

GC Advisor plug-in.

GC_FILENAME

Read-only. Identifies the file being considered for garbage collection. This

variable can be extracted only by a GC Advisor plug-in.

GC_FILESIZE

Read-only. Identifies the size of the file being considered for garbage

collection. This variable can be extracted only by a GC Advisor plug-in.

GC_LAST_ACCESS

Read-only. Identifies when the file was last accessed. This variable can be

extracted only by a GC Advisor plug-in.

GC_LAST_CHECKED

Read-only. Identifies when the files were last checked. This variable can be

extracted only by a GC Advisor plug-in.

GC_LOAD_DELAY

Read-only. Identifies how long it took to retrieve the file. This variable can

be extracted only by a GC Advisor plug-in.

HTTP_COOKIE

When read, this variable contains the value of the Set-Cookie header set by

the client. It can also be used to set a new cookie in the response stream

(between the proxy and the client). Setting this variable causes the creation

of a new Set-Cookie header in the document request stream, regardless of

whether or not a duplicate header exists.

HTTP_HEADERS

Read-only. Used to extract all of the client request headers.

HTTP_REASON

Setting this variable affects the reason string in the HTTP response. Setting

it also affects the reason string in the proxy’s response to the client.

Extracting this variable returns the reason string in the response from the

content server to the proxy.

HTTP_RESPONSE

Setting this variable affects the response code in the HTTP response.

Setting it also affects the status code in the proxy’s response to the client.

Extracting this variable returns the status code in the response from the

content server to the proxy.

HTTP_STATUS

Contains the HTTP response code and reason string. For example, 200 OK.

28 WebSphere Application Server: Programming Guide for Edge Components

HTTP_USER_AGENT

Contains the value of the User-Agent request header, which is the name of

the client Web browser, for example, Netscape Navigator / V2.02. Setting

this variable affects the header in the proxy’s response to the client.

Extracting it applies to the header from the client’s request.

INIT_STRING

Read-only. The ServerInit directive defines this string. This variable can be

read only during the Server Initialization step.

LAST_MODIFIED

Extracting this variable applies to the header from the client request.

Setting it affects the value of the header in the request to the content

server. For example:

Mon, 01 Mar 1998 19:41:17 GMT

LOCAL_VARIABLES

Read-only. All the user-defined variables.

MAXACTIVETHREADS

Read-only. The maximum number of active threads.

NOTMODIFIED_TO_OK

Forces a full response to the client. Valid in the PreExit and ProxyAdvisor

steps.

ORIGINAL_HOST

Read-only. Returns the host name or destination IP address of a request.

ORIGINAL_URL

Read-only. Returns the original URL sent in the client request.

OVERRIDE_HTTP_NOTRANSFORM

Enables modification of data in the presence of a Cache-Control:

no-transform header. Setting this variable affects the response header to the

client.

OVERRIDE_PROXY_NOTRANSFORM

Enables modification of data in the presence of a Cache-Control:

no-transform header. Setting this variable affects the request to the content

server.

PASSWORD

For basic authentication, contains the decoded password. For example,

password.

PATH Contains the fully translated path.

PATH_INFO

Contains the additional path information as sent by the Web browser. For

example, /foo.

PATH_TRANSLATED

Contains the decoded or translated version of the path information

contained in PATH_INFO. For example:

d:\wwwhome\foo

/wwwhome/foo

PPATH

Contains the partially translated path. Use this in the Name Translation

step.

Chapter 2. The Caching Proxy API 29

PROXIED_CONTENT_LENGTH

Read-only. Returns the length of the response data actually transferred

through the proxy server.

PROXY_ACCESS

Defines whether the request is a proxy request. For example, NO.

PROXY_CONTENT_TYPE

Contains the Content-Type header of the proxy request made through

HTTPD_proxy(). When information is sent with the method of POST, this

variable contains the type of data included. You can create your own

content type in the proxy server configuration file and map it to a viewer.

Extracting this variable applies to the header value from the content server

response. Setting it affects the header for the request to the content server.

For example:

application/x-www-form-urlencoded

PROXY_CONTENT_LENGTH

The Content-Length header of the proxy request made through

HTTPD_proxy(). When information is sent with the method of POST, this

variable contains the number of characters of data. Servers typically do not

send an end-of-file flag when they forward the information using standard

input. If needed, you can use the CONTENT_LENGTH value to determine

the end of the input string. Extracting this variable applies to the header

value from the content server response. Setting it affects the header for the

request to the content server. For example:

7034

PROXY_COOKIE

When read, this variable contains the value of the Set-Cookie header set by

the origin server. It also can be used to set a new cookie in the request

stream. Setting this variable causes the creation of a new Set-Cookie header

in the document request stream, regardless of whether or not a duplicate

header exists.

PROXY_HEADERS

Read-only. Used to extract the Proxy headers.

PROXY_METHOD

Method for the request made through HTTPD_proxy(). Extracting this

variable applies to the header value from the content server response.

Setting it affects the header for the request to the content server.

QUERY_STRING

When information is sent by using a method of GET, this variable contains

the information that follows a question mark (?) in a query. This

information must be decoded by the CGI program. For example:

NAME=Eugene+T%2E+Fox&ADDR=etfox%7Cibm.net&INTEREST=xyz

RCA_OWNER

Read-only. Returns a numeric value, giving the node that owned the

requested object. This variable can be used in the PostExit, ProxyAdvisor,

or Log steps, and is meaningful only when the server is part of a cache

array using remote cache access (RCA).

RCA_TIMEOUTS

Read-only. Returns a numeric value, containing the total (aggregate)

number of timeouts on RCA requests to all peers. You can use this variable

in any step.

30 WebSphere Application Server: Programming Guide for Edge Components

REDIRECT_*

Read-only. Contains a redirection string for the error code that corresponds

to the variable name (for example, REDIRECT_URL). A list of possible

REDIRECT_ variables can be found in online documentation for the

Apache Web server at http://httpd.apache.org/docs-2.0/custom-error.html.

REFERRER_URL

Read-only. Contains the last URL location of the browser. It allows the

client to specify, for the server’s benefit, the address (URL) of the resource

from which the Request-URL was obtained. For example:

http://www.company.com/homepage

REMOTE_ADDR

Contains the IP address of the Web browser, if available. For example,

45.23.06.8.

REMOTE_HOST

Contains the host name of the Web browser, if available. For example,

www.raleigh.ibm.com.

REMOTE_USER

If the server supports client authentication and the script is protected, this

variable contains the user name passed for authentication. For example,

joeuser.

REQHDR

Read-only. Contains a list of the headers sent by the client.

REQUEST_CONTENT_TYPE

Read-only. Returns the content type of the request body. For example:

application/x-www-form-urlencoded

REQUEST_CONTENT_LENGTH

Read-only. When information is sent with the method of POST, this

variable contains the number of characters of data. Servers typically do not

send an end-of-file flag when they forward the information using standard

input. If needed, you can use the CONTENT_LENGTH value to determine

the end of the input string. For example, 7034.

REQUEST_METHOD

Read-only. Contains the method (as specified with the METHOD attribute

in an HTML form) used to send the request. For example, GET or POST.

REQUEST_PORT

Read-only. Returns the port number specified in the URL, or a default port

based on the protocol.

RESPONSE_CONTENT_TYPE

Read-only. When information is sent with the method of POST, this

variable contains the type of data included. You can create your own

content type in the proxy server configuration file and map it to a viewer.

For example, text/html.

RESPONSE_CONTENT_LENGTH

Read-only. When information is sent with the method of POST, this

variable contains the number of characters of data. Servers typically do not

send an end-of-file flag when they forward the information using standard

input. If needed, you can use the CONTENT_LENGTH value to determine

the end of the input string. For example, 7034.

Chapter 2. The Caching Proxy API 31

RULE_FILE_PATH

Read-only. Contains the fully qualified file system path and file name of

the configuration file.

SSL_SESSIONID

Read-only. Returns the SSL session ID if the current request is received on

an SSL connection. Returns NULL if the current request is not received on

an SSL connection.

SCRIPT_NAME

Contains the URL of the request.

SERVER_ADDR

Read-only. Contains the local IP address of the proxy server.

SERVER_NAME

Read-only. Contains the proxy server host name or IP address of the

content server for this request. For example, www.ibm.com.

SERVER_PORT

Read-only. Contains the port number of the proxy server to which the

client request was sent. For example, 80.

SERVER_PROTOCOL

Read-only. Contains the name and version of the protocol used to make the

request. For example, HTTP/1.1.

SERVER_ROOT

Read-only. Contains the directory where the proxy server program is

installed.

SERVER_SOFTWARE

Read-only. Contains the name and version of the proxy server.

STATUS

Contains the HTTP response code and reason string. For example, 200 OK.

TRACE

Determines how much information will be traced. Returned values include:

v OFF - No tracing.

v V - Verbose mode.

v VV - Very Verbose mode.

v MTV - Much Too Verbose mode.

URI Read/Write. Same as DOCUMENT_URL.

URI_PATH

Read-only. Returns the path portion only for a URL.

URL Read/Write. Same as DOCUMENT_URL.

URL_MD4

Read-only. Returns the file name of the potential cache file for the current

request.

USE_PROXY

Identifies the proxy to chain to for the current request. Specify the URL.

For example, http://myproxy:8080.

USERID

Same as REMOTE_USER.

32 WebSphere Application Server: Programming Guide for Edge Components

USERNAME

Same as REMOTE_USER.

Authentication and authorization

First, a short review of the terminology:

Authentication

The verification of the security tokens associated with this request in order

to ascertain the identity of the requester.

Authorization

A process that uses security tokens to determine whether the requester has

access to the resource.

 Figure 3 on page 34 depicts the proxy server’s authentication and authorization

process.

Chapter 2. The Caching Proxy API 33

As demonstrated in Figure 3, the initiation of the authorization process is the first

step in the server’s authorization and authentication process.

In the Caching Proxy, authentication is part of the authorization process; it occurs

only when authorization is required.

Authentication and authorization process

The proxy server follows these steps when processing a request that requires

authorization.

1. First, the proxy server examines its configuration file to determine whether or

not there is an authorization directive.

v If an authorization directive is present in the configuration file, the server

calls the authorization function defined in the directive and begins

authentication with step 2 on page 35.

Figure 3. Proxy server authentication and authorization process

34 WebSphere Application Server: Programming Guide for Edge Components

v If there is no authorization directive, the server performs a default

authorization and then proceeds directly to the authentication procedures in

step 3.
2. The proxy server begins the authentication process by checking to see if the

HTTP_authenticate header is present in the client request.

v If the header is present, the server continues the authentication process (see

step 3).

v If the header is not present, authentication must be performed by another

method.
3. The proxy server checks to see if there is an authentication directive present in

the proxy configuration file.

v If an authentication directive is present in the configuration file, the server

calls the authentication function defined in the directive.

v If there is no directive, the server performs a default authentication.

If your Caching Proxy plug-in provides its own authorization process, it overrides

the default server authorization and authentication. Therefore, if you have

authorization directives in your configuration file, the plug-in functions associated

with them must also handle any necessary authentication. The predefined

HTTPD_authenticate() function is provided for you to use.

 There are three ways to provide for authentication in your authorization plug-ins:

v Write your own separate authorization and authentication plug-ins. In your

proxy configuration file, use both the Authorization and the Authentication

directives to specify these functions. Be sure to include the

HTTPD_authenticate() function call in your authorization plug-in function.

When the Authorization step is executed, it performs your authorization plug-in

function, which, in turn, calls your authentication plug-in function.

v Write your own authorization plug-in function, but have it call the default server

authentication. In your proxy configuration file, use the Authorization directive

to specify your function. In this case, you do not need the Authentication

directive. Be sure to call the HTTPD_authenticate() function in your

authorization plug-in function.

When the Authorization step is executed, it performs your authorization plug-in

function, which, in turn, calls the default server authentication.

v Write your own authorization plug-in function and include all required

authentication processing in it. Do not use the HTTPD_authenticate() function in

your authorization plug-in. In your proxy configuration file, use the

Authorization directive to specify your authorization plug-in. In this case, you

do not need the Authentication directive.

When the Authorization step is executed, it performs your authorization plug-in

function and any authentication it includes.

If your Caching Proxy plug-in does not provide its own authorization process, you

can still provide customized authentication by using the following method:

v Write your own authentication plug-in function. In your proxy configuration file,

use the Authentication directives to specify your function. In this case, you do

not need the Authorization directive.

When the Authorization step is executed, it performs the default server

authorization, which, in turn, calls your authentication plug-in function.

Remember the following points:

Chapter 2. The Caching Proxy API 35

v If you do not have any Authorization directives in your configuration file, or if

their specified plug-in functions decline to handle the request by returning

HTTP_NOACTION, the server’s default authorization occurs.

v If you have Authorization directives in your configuration file and their plug-in

functions include HTTPD_authenticate(), the server calls any authentication

functions specified in the Authentication directives. If you have not defined any

Authentication directives, or if their specified plug-in functions decline to handle

the request by returning HTTP_NOACTION, the server’s default authentication

occurs.

v If you have Authorization directives in your configuration file but their plug-in

functions do not include HTTPD_authenticate(), no authentication functions are

called by the server. You must write your own authentication processing as part

of your authorization plug-in functions or make your own calls to other

authentication modules.

v The Caching Proxy automatically generates a challenge (prompting the browser

to return a user ID and password) if your authorization function returns the

codes 401 or 407. However, you must still configure a protection setup in the

Caching Proxy so that this action occurs correctly.

Variant caching

Use variant caching to cache data that is a modified form of the original document

(the URI). The Caching Proxy handles variants generated by the API. Variants are

different versions of a base document.

In general, when origin servers send variants, they fail to identify them as such.

The Caching Proxy supports only variants created by plug-ins (for example, code

page conversion). If a plug-in creates a variant based on criteria that are not in the

HTTP header, it must include a PreExit or PostAuthorization step function to

create a pseudoheader so that the Caching Proxy can correctly identify the existing

variant.

For example, use a Transmogrifier API program to modify the data that users

request based on the value of the User-Agent header that the browser sends. In the

close function, save the modified content to a file or specify a buffer length and

pass the buffer as the data argument. Then use the variant caching functions

httpd_variant_insert() and httpd_variant_lookup() to put the content in the cache.

API examples

To help you get started with your own Caching Proxy API functions, look at the

sample programs provided in the samples directory of the Edge components

installation CD-ROM. Additional information is available on the WebSphere

Application Server Web site, www.ibm.com/software/webservers/appserv/.

36 WebSphere Application Server: Programming Guide for Edge Components

http://www.ibm.com/software/webservers/appserv/

Chapter 3. Custom advisors

This section discusses writing custom advisors for the Load Balancer.

Advisors provide load-balancing information

Advisors are software agents that work within Load Balancer to provide

information about the load on a given server. A different advisor exists for each

standard protocol (HTTP, SSL, and others). Periodically, the Load Balancer base

code performs an advisor cycle, during which it individually evaluates the status

of all servers in its configuration.

By writing your own advisors for the Load Balancer, you can customize how your

server machines’ load is determined.

Standard advisor function

In general, advisors work to enable load balancing in the following manner.

1. Periodically, the advisor opens a connection with each server and sends it a

request message. The content of the message is specific to the protocol running

on the server; for instance, the HTTP advisor sends a HEAD request to the

server.

2. The advisor listens for a response from the server. After getting the response,

the advisor calculates and reports the load value for that server. Different

advisors calculate the load value in different ways, but most standard advisors

measure the time the server takes to respond, then reports that value in

milliseconds as the load.

3. The advisor reports the load to the Load Balancer’s manager function. The load

appears in the Port column of the manager report. The manager uses the

advisor’s reported load along with weights set by the administrator to

determine how to load balance incoming requests to the servers.

4. If a server does not respond, the advisor returns a negative value (-1) for the

load. The manager uses this information to determine when to suspend service

for a particular server.

Standard advisors provided with the Load Balancer include advisors for the

following functions. Detailed information about these advisors is available in the

WebSphere Application Server Load Balancer Administration Guide

v Connect

v DB2

v DNS

v FTP

v HTTP

v HTTPS

v IMAP

v LDAP

v NNTP

v Ping

v POP3

© Copyright IBM Corp. 2005 37

v Reach

v Self

v SMTP

v SSL

v Telnet

v WebSphere Application Server

v WebSphere Application Server Caching Proxy

v Workload Manager

To support proprietary protocols for which standard advisors are not provided,

you must write custom advisors.

Creating a custom advisor

A custom advisor is a small piece of Java code, provided as a class file, that is

called by the Load Balancer base code to determine the load on a server. The base

code provides all necessary administrative services, including starting and

stopping an instance of the custom advisor, providing status and reports, recording

history information in a log file, and reporting advisor results to the manager

component.

When the Load Balancer base code calls a custom advisor, the following steps

happen.

1. The Load Balancer base code opens a connection with the server machine.

2. If the socket opens, the base code calls the specified advisor’s GetLoad

function.

3. The advisor’s GetLoad function performs the steps that the user has defined for

evaluating the server’s status, including waiting for a response from the server.

The function terminates execution when the response is received.

4. The Load Balancer base code closes the socket with the server and reports the

load information to the manager. Depending on whether the custom advisor

operates in normal mode or in replace mode, the base code sometimes does

additional calculations after the GetLoad function terminates.

Normal mode and replace mode

Custom advisors can be designed to interact with the Load Balancer in either

normal mode or replace mode.

The choice for the mode of operation is specified in the custom advisor file as a

parameter in the constructor method. (Each advisor operates in only one of these

modes, based on its design.)

In normal mode, the custom advisor exchanges data with the server, and the base

advisor code times the exchange and calculates the load value. The base code then

reports this load value to the manager. The custom advisor returns the value zero

to indicate success, or negative one to indicate an error.

To specify normal mode, set the replace flag in the constructor to false.

In replace mode, the base code does not perform any timing measurements. The

custom advisor code performs whatever operations are specified, based on its

unique requirements, and then returns an actual load number. The base code

accepts the load number and reports it, unaltered, to the manager. For best results,

38 WebSphere Application Server: Programming Guide for Edge Components

normalize your load numbers between 10 and 1000, with 10 representing a fast

server and 1000 representing a slow server.

To specify replace mode, set the replace flag in the constructor to true.

Advisor naming conventions

Custom advisor file names must follow the form ADV_name.java, where name is

the name that you choose for your advisor. The complete name must start with the

prefix ADV_ in uppercase letters, and all subsequent characters must be lowercase

letters. The requirement for lowercase letters ensures that the command for

running the advisor is not case sensitive.

According to Java conventions, the name of the class defined within the file must

match the name of the file.

Compilation

Custom advisors must be written in the Java language and compiled with a Java

compiler that is installed on the development machine. The following files are

referenced during compilation:

v The custom advisor file

v The base classes file, ibmnd.jar, which is found in the install_path/servers/lib

directory

Your classpath environment variable must point to both the custom advisor file

and the base classes file during the compilation. A compile command might have

the following format:

javac -classpath /opt/ibm/edge/lb/servers/lib/ibmnd.jar ADV_name.java

This example uses the default Linux and UNIX installation path. The advisor file is

named ADV_name.java, and the advisor file is stored in the current directory.

The output of the compilation is a class file, for example, ADV_name.class. Before

starting the advisor, copy the class file to the

install_path/servers/lib/CustomAdvisors/ directory.

Note: Custom advisors can be compiled on one operating system and run on

another. For example, you can compile your advisor on a Windows system,

copy the resulting class file (in binary format) to a Linux machine, and run

the custom advisor there.

Running a custom advisor

To run the custom advisor, you must first copy the advisor’s class file to the

lib/CustomAdvisors/ subdirectory on the Load Balancer machine. For example,

for a custom advisor named myping, the file path is

install_path/servers/lib/CustomAdvisors/ADV_myping.class

Configure the Load Balancer, start its manager function, and issue the command to

start your custom advisor. The custom advisor is specified by its name, excluding

the ADV_ prefix and the file extension:

dscontrol advisor start myping port_number

The port number specified in the command is the port on which the advisor will

open a connection with the target server.

Chapter 3. Custom advisors 39

Required routines

Like all advisors, a custom advisor extends the functionality of the advisor base

class, which is called ADV_Base. The advisor base performs most of the advisor’s

functions, such as reporting loads back to the manager for use in the manager’s

weight algorithm. The advisor base also performs socket connect and close

operations and provides send and receive methods for use by the advisor. The

advisor is used only for sending and receiving data on the specified port for the

server that is being investigated. The TCP methods provided within the advisor

base are timed to calculate load. A flag within the constructor of the advisor base

overwrites the existing load with the new load returned from the advisor, if

desired.

Note: Based on a value set in the constructor, the advisor base supplies the load to

the weight algorithm at specified intervals. If the advisor has not completed

processing and cannot return a valid load, the advisor base uses the

previously reported load.

Advisors have the following base class methods:

v A constructor routine. The constructor calls the base class constructor.

v An ADV_AdvisorInitialize method. This method provides a way to perform

additional steps after the base class completes its initialization.

v A getLoad routine. The base advisor class performs the socket opening; the

getLoad function only needs to issue the appropriate send and receive requests

to complete the advising cycle.

Details about these required routines appear later in this section.

Search order

Custom advisors are called after native, or standard, advisors have been searched.

If the Load Balancer does not find a specified advisor among the list of standard

advisors, it consults the list of custom advisors. Additional information about using

advisors is available in the WebSphere Application Server Load Balancer Administration

Guide.

Naming and file path

Remember the following requirements for custom advisor names and paths.

v The custom advisor must be named in lowercase alphabetic characters in order

to eliminate case sensitivity when an operator types commands on a command

line. The advisor name must be prefixed with ADV_

v The custom advisor class must be located within the subdirectory

lib/CustomAdvisors. The default location for this directory is

/opt/ibm/edge/lb/servers/lib/CustomAdvisors on Linux and UNIX systems,

and C:\Program Files\IBM\edge\lb\servers\lib\CustomAdvisors\ on

Windows systems.

Custom advisor methods and function calls

Constructor (provided by advisor base)

void ADV_Base Constructor (

 string sName;

 string sVersion;

 int iDefaultPort;

40 WebSphere Application Server: Programming Guide for Edge Components

int iInterval;

 string sDefaultLogFileName;

 boolean replace

)

sName

The name of the custom advisor.

sVersion

The version of the custom advisor.

iDefaultPort

The port number on which to contact the server if no port number is specified

in the call.

iInterval

The interval at which the advisor will query the servers.

sDefaultLogFileName

This parameter is required but not used. The only acceptable value is a null

string, ""

replace

Whether or not this advisor functions in replace mode. Possible values are the

following:

v true – Replace the load calculated by the advisor base code with the value

reported by the custom advisor.

v false – Add the load value reported by the custom advisor to the load value

calculated by the advisor base code.

ADV_AdvisorInitialize()

void ADV_AdvisorInitialize()

This method is provided to perform any initialization that might be required for

the custom advisor. This method is called after the advisor base module starts.

In many cases, including the standard advisors, this method is not used and its

code consists of a return statement only. This method can be used to call the

suppressBaseOpeningSocket method, which is valid only from within this method.

getLoad()

int getLoad(

 int iConnectTime;

 ADV_Thread *caller

)

iConnectTime

The length of time, in milliseconds, that it took the connection to complete.

This load measurement is performed by the advisor base code and passed to

the custom advisor code, which can use or ignore the measurement when

returning the load value. If the connection fails, this value is set to -1.

caller

The instance of the advisor base class where advisor base methods are

provided.

Function calls available to custom advisors

The methods, or functions, described in the following sections can be called from

custom advisors. These methods are supported by the advisor base code.

Chapter 3. Custom advisors 41

Some of these function calls can be made directly, for example, function_name(),

but others require the prefix caller. Caller represents the base advisor instance that

supports the custom advisor that is being executed.

ADVLOG()

The ADVLOG function allows a custom advisor to write a text message to the

advisor base log file. The format follows:

void ADVLOG (int logLevel, string message)

logLevel

The status level at which the message is written to the log file. The advisor log

file is organized in stages; the most urgent messages are given status level 0

and less urgent messages receive higher numbers. The most verbose type of

message is given status level 5. These levels are used to control the types of

messages that the user receives in real time (The dscontrol command is used to

set verbosity). Catastrophic errors should always be logged at level 0.

message

The message to write to the log file. The value for this parameter is a standard

Java string.

getAdvisorName()

The getAdvisorName function returns a Java string with the suffix portion of your

custom advisor’s name. For example, for an advisor named ADV_cdload.java, this

function returns the value cdload.

This function takes no parameters.

Note that it is not possible for this value to change during one instantiation of an

advisor.

getAdviseOnPort()

The getAdviseOnPort function returns the port number on which the calling

custom advisor is running. The return value is a Java integer (int), and the function

takes no parameters.

Note that it is not possible for this value to change during one instantiation of an

advisor.

caller.getCurrentServer()

The getCurrentServer function returns the IP address of the current server. The

return value is a Java string in the standard dotted decimal form, for example,

128.0.72.139

Typically, this address changes each time you call your custom advisor, because the

advisor base code queries all server machines in series.

This function takes no parameters.

caller.getCurrentCluster()

The getCurrentCluster function call returns the IP address of the current server

cluster. The return value is a Java string in the standard dotted decimal form, for

example, 128.0.72.139

Typically, this address changes each time you call your custom advisor, because the

advisor base code queries all server clusters in series.

42 WebSphere Application Server: Programming Guide for Edge Components

This function takes no parameters.

getInterval()

The getInterval function returns the advisor interval, that is, the number of seconds

between advisor cycles. This value is equal to the default value set in the custom

advisor’s constructor, unless the value has been modified at run time by using the

dscontrol command.

The return value is a Java integer (int). The function takes no parameters.

caller.getLatestLoad()

The getLatestLoad function allows a custom advisor to obtain the latest load value

for a given server object. The load values are maintained in internal tables by the

advisor base code and the manager daemon.

int caller.getLatestLoad (string cluster_IP, int port, string server_IP)

The three arguments together define one server object.

cluster_IP

The cluster IP address of the server object for which to obtain the current load

value. This argument must be a Java string in the standard IP address notation,

for example, 245.145.62.81

port

The port number of the server object for which to obtain the current load

value.

server_IP

The IP address of the server object for which to obtain the current load value.

This argument must be a Java string in the standard IP address notation, for

example, 192.255.201.3

 The return value is an integer.

v A positive return value represents the actual load value assigned for the object

that was queried.

v The value -1 indicates that the server asked about is down.

v The value -2 indicates that the status of the server asked about is unknown.

This function call is useful if you want to make the behavior of one protocol or

port dependent on the behavior of another. For example, you might use this

function call in a custom advisor that disabled a particular application server if the

Telnet server on that same machine was disabled.

caller.receive()

The receive function gets information from the socket connection.

caller.receive(stringbuffer *response)

The parameter response is a string buffer into which the retrieved data is placed.

Additionally, the function returns an integer value with the following significance:

v 0 indicates data was sent successfully.

v A negative number indicates an error.

caller.send()

The send function uses the established socket connection to send a packet of data

to the server, using the specified port.

caller.send(string command)

Chapter 3. Custom advisors 43

The parameter command is a string containing the data to send to the server. The

function returns an integer value with the following significance:

v 0 indicates data was sent successfully.

v A negative number indicates an error.

suppressBaseOpeningSocket()

The suppressBaseOpeningSocket function call allows a custom advisor to specify

whether the base advisor code opens a TCP socket to the server on the custom

advisor’s behalf. If your advisor does not use direct communication with the server

to determine its status, it might not be necessary to open this socket.

This function call can be issued only once, and it must be issued from the

ADV_AdvisorInitialize routine.

The function takes no parameters.

Examples

The following examples show how custom advisors can be implemented.

Standard advisor

This sample source code is similar to the standard Load Balancer HTTP advisor. It

functions as follows:

1. A send request, a ″HEAD/HTTP″ command, is issued.

2. A response is received. The information is not parsed, but the response causes

the getLoad method to terminate.

3. The getLoad method returns 0 to indicate success or -1 to indicate a failure.

This advisor operates in normal mode, so the load measurement is based on the

elapsed time in milliseconds required to perform the socket open, send, receive,

and close operations.

package CustomAdvisors;

import com.ibm.internet.lb.advisors.*;

public class ADV_sample extends ADV_Base implements ADV_MethodInterface {

 static final String ADV_NAME ="Sample";

 static final int ADV_DEF_ADV_ON_PORT = 80;

 static final int ADV_DEF_INTERVAL = 7;

 static final string ADV_SEND_REQUEST =

 "HEAD / HTTP/1.0\r\nAccept: */*\r\nUser-Agent: " +

 "IBM_Load_Balancer_HTTP_Advisor\r\n\r\n";

//--------

// Constructor

 public ADV_sample() {

 super(ADV_NAME, "3.0.0.0-03.31.00",

 ADV_DEF_ADV_ON_PORT, ADV_DEF_INTERVAL, "",

 false);

 super.setAdvisor(this);

 }

//--------

// ADV_AdvisorInitialize

 public void ADV_AdvisorInitialize() {

 return; // usually an empty routine

 }

//--------

44 WebSphere Application Server: Programming Guide for Edge Components

// getLoad

 public int getLoad(int iConnectTime, ADV_Thread caller) {

 int iRc;

 int iLoad = ADV_HOST_INACCESSIBLE; // initialize to inaccessible

 iRc = caller.send(ADV_SEND_REQUEST); // send the HTTP request to

 // the server

 if (0 <= iRc) { // if the send is successful

 StringBuffer sbReceiveData = new StringBuffer(""); // allocate a buffer

 // for the response

 iRc = caller.receive(sbReceiveData); // receive the result

 // parse the result here if you need to

 if (0 <= iRc) { // if the receive is successful

 iLoad = 0; // return 0 for success

 } // (advisor’s load value is ignored by

 } // base in normal mode)

 return iLoad;

 }

}

Side stream advisor

This sample illustrates suppressing the standard socket opened by the advisor

base. Instead, this advisor opens a side stream Java socket to query a server. This

procedure can be useful for servers that use a different port from normal client

traffic to listen for an advisor query.

In this example, a server is listening on port 11999 and when queried returns a

load value with a hexadecimal int ″4″. This sample runs in replace mode, that is,

the last parameter of the advisor constructor is set to true and the advisor base

code uses the returned load value rather than the elapsed time.

Note the call to supressBaseOpeningSocket() in the initialization routine.

Suppressing the base socket when no data will be sent is not required. For

example, you might want to open the socket to ensure that the advisor can contact

the server. Examine the needs of your application carefully before making this

choice.

package CustomAdvisors;

import java.io.*;

import java.net.*;

import java.util.*;

import java.util.Date;

import com.ibm.internet.lb.advisors.*;

import com.ibm.internet.lb.common.*;

import com.ibm.internet.lb.server.SRV_ConfigServer;

public class ADV_sidea extends ADV_Base implements ADV_MethodInterface {

 static final String ADV_NAME = "sidea";

 static final int ADV_DEF_ADV_ON_PORT = 12345;

 static final int ADV_DEF_INTERVAL = 7;

 // create an array of bytes with the load request message

 static final byte[] abHealth = {(byte)0x00, (byte)0x00, (byte)0x00,

 (byte)0x04};

 public ADV_sidea() {

 super(ADV_NAME, "3.0.0.0-03.31.00", ADV_DEF_ADV_ON_PORT,

 ADV_DEF_INTERVAL, "",

 true); // replace mode parameter is true

 super.setAdvisor(this);

 }

Chapter 3. Custom advisors 45

//--------

// ADV_AdvisorInitialize

 public void ADV_AdvisorInitialize()

 {

 suppressBaseOpeningSocket(); // tell base code not to open the

 // standard socket

 return;

 }

//--------

// getLoad

 public int getLoad(int iConnectTime, ADV_Thread caller) {

 int iRc;

 int iLoad = ADV_HOST_INACCESSIBLE; // -1

 int iControlPort = 11999; // port on which to communicate with the server

 string sServer = caller.getCurrentServer(); // address of server to query

 try {

 socket soServer = new Socket(sServer, iControlPort); // open socket to

 // server

 DataInputStream disServer = new DataInputStream(

 soServer.getInputStream());

 DataOutputStream dosServer = new DataOutputStream(

 soServer.getOutputStream());

 int iRecvTimeout = 10000; // set timeout (in milliseconds)

 // for receiving data

 soServer.setSoTimeout(iRecvTimeout);

 dosServer.writeInt(4); // send a message to the server

 dosServer.flush();

 iLoad = disServer.readByte(); // receive the response from the server

 } catch (exception e) {

 system.out.println("Caught exception " + e);

 }

 return iLoad; // return the load reported from the server

 }

}

Two port advisor

This custom advisor sample demonstrates the capability to detect failure for one

port of a server based upon both its own status and on the status of a different

server daemon that is running on another port on the same server machine. For

example, if the HTTP daemon on port 80 stops responding, you might also want to

stop routing traffic to the SSL daemon on port 443.

This advisor is more aggressive than standard advisors, because it considers any

server that does not send a response to have stopped functioning, and marks it as

down. Standard advisors consider unresponsive servers to be very slow. This

advisor marks a server as down for both the HTTP port and the SSL port based on

a lack of response from either port.

To use this custom advisor, the administrator starts two instances of the advisor:

one on the HTTP port, and one on the SSL port. The advisor instantiates two static

global hash tables, one for HTTP and one for SSL. Each advisor tries to

communicate with its server daemon and stores the results of this event in its hash

table. The value that each advisor returns to the base advisor class depends on

46 WebSphere Application Server: Programming Guide for Edge Components

both the ability to communicate with its own server daemon and the ability of the

partner advisor to communicate with its daemon.

The following custom methods are used.

v ADV_nte() is a simple container object to hold information about a server. These

objects are stored in the hash table as table elements. Each object has a time

stamp that is used to determine whether the element is current.

v putNte() and getNte() are synchronized methods that ensure that the two

advisor instances access the hash table in a controlled fashion.

v getLoadHTTP is a method that queries the responsiveness of an HTTP server. It

is a low-level routine and does not gather or use information about SSL.

v getLoadSSL() is a method that queries the responsiveness of an SSL server. It is a

low-level routine and does not gather or use information about HTTP.

v getLoad() is the entry point routine for this custom advisor. It can handle both

protocols and can store and fetch information from the hash table. This is the

routine that links the two ports.

The following error conditions are detected.

v Unresponsive server machine — The base advisor classes periodically send a

ping signal to the server address. If the address is not reachable, the base

advisor classes marks the server down. Neither of the two instances of the

custom advisor is called, and both servers on that machine are marked down.

v One daemon on a server machine becomes unresponsive, but the other is

working — When the base code attempts to open a socket with the server, the

connection is refused, and the base advisor for this protocol marks the server as

down. The custom advisor code for that protocol is not called. Although the

custom advisor for the other protocol continues communicating with its server, it

learns from the hash table that the other custom advisor cannot communicate

with its server daemon. Therefore, the second protocol’s advisor also marks its

server as down.

v One daemon does not send a response, but the other daemon does — The

custom advisor for the unresponding protocol detects the failure to

communicate, marks the server as down, and stores the data in the hash table.

The custom advisor for the other port learns that information from the hash

table and marks its server as down.

This sample is written to link ports 80 for HTTP and 443 for SSL, but it can be

tailored to any combination of ports.

package CustomAdvisors;

import java.io.*;

import java.net.*;

import java.util.*;

import java.util.Date;

import com.ibm.internet.lb.advisors.*;

import com.ibm.internet.lb.common.*;

import com.ibm.internet.lb.manager.*;

import com.ibm.internet.lb.server.SRV_ConfigServer;

//--------

// Define the table element for the hash tables used in this custom advisor

class ADV_nte implements Cloneable {

 private string sCluster;

 private int iPort;

 private string sServer;

 private int iLoad;

 private Date dTimestamp;

Chapter 3. Custom advisors 47

//--------

// constructor

 public ADV_nte(string sClusterIn, int iPortIn, string sServerIn,

 int iLoadIn) {

 sCluster = sClusterIn;

 iPort = iPortIn;

 sServer = sServerIn;

 iLoad = iLoadIn;

 dTimestamp = new Date();

 }

//--------

// check whether this element is current or expired

 public boolean isCurrent(ADV_twop oThis) {

 boolean bCurrent;

 int iLifetimeMs = 3 * 1000 * oThis.getInterval(); // set lifetime as

 // 3 advisor cycles

 Date dNow = new Date();

 Date dExpires = new Date(dTimestamp.getTime() + iLifetimeMs);

 if (dNow.after(dExpires)) {

 bCurrent = false;

 } else {

 bCurrent = true;

 }

 return bCurrent;

 }

//--------

// value accessor(s)

 public int getLoadValue() { return iLoad; }

//--------

// clone (avoids corruption between threads)

 public synchronized Object Clone() {

 try {

 return super.clone();

 } catch (cloneNotSupportedException e) {

 return null;

 }

 }

}

//--------

// define the custom advisor

public class ADV_twop extends ADV_Base

 implements ADV_MethodInterface, ADV_AdvisorVersionInterface {

 static final int ADV_TWOP_PORT_HTTP = 80;

 static final int ADV_TWOP_PORT_SSL = 443;

 //--------

 // define tables to hold port-specific history information

 static HashTable htTwopHTTP = new Hashtable();

 static HashTable htTwopSSL = new Hashtable();

 static final String ADV_TWOP_NAME = "twop";

 static final int ADV_TWOP_DEF_ADV_ON_PORT = 80;

 static final int ADV_TWOP_DEF_INTERVAL = 7;

 static final string ADV_HTTP_REQUEST_STRING =

48 WebSphere Application Server: Programming Guide for Edge Components

"HEAD / HTTP/1.0\r\nAccept: */*\r\nUser-Agent: " +

 "IBM_LB_Custom_Advisor\r\n\r\n";

 //--------

 // create byte array with SSL client hello message

 public static final byte[] abClientHello = {

 (byte)0x80, (byte)0x1c,

 (byte)0x01, // client hello

 (byte)0x03, (byte)0x00, // SSL version

 (byte)0x00, (byte)0x03, // cipher spec len (bytes)

 (byte)0x00, (byte)0x00, // session ID len (bytes)

 (byte)0x00, (byte)0x10, // challenge data len (bytes)

 (byte)0x00, (byte)0x00, (byte)0x03, // cipher spec

 (byte)0x1A, (byte)0xFC, (byte)0xE5, (byte)Ox20, // challenge data

 (byte)0xFD, (byte)0x3A, (byte)0x3C, (byte)0x18,

 (byte)0xAB, (byte)0x67, (byte)0xB0, (byte)0x52,

 (byte)0xB1, (byte)0x1D, (byte)0x55, (byte)0x44, (byte)0x0D, (byte)0x0A };

 //--------

 // constructor

 public ADV_twop() {

 super(ADV_TWOP_NAME, VERSION, ADV_TWOP_DEF_ADV_ON_PORT,

 ADV_TWOP_DEF_INTERVAL, "",

 false); // false = load balancer times the response

 setAdvisor (this);

 }

 //--------

 // ADV_AdvisorInitialize

 public void ADV_AdvisorInitialize() {

 return;

 }

 //--------

 // synchronized PUT and GET access routines for the hash tables

 synchronized ADV_nte getNte(Hashtable ht, String sName, String sHashKey) {

 ADV_nte nte = (ADV_nte)(ht.get(sHashKey));

 if (null != nte) {

 nte = (ADV_nte)nte.clone();

 }

 return nte;

 }

 synchronized void putNte(Hashtable ht, String sName, String sHashKey,

 ADV_nte nte) {

 ht.put(sHashKey,nte);

 return;

 }

 //--------

 // getLoadHTTP - determine HTTP load based on server response

 int getLoadHTTP(int iConnectTime, ADV_Thread caller) {

 int iLoad = ADV_HOST_INACCESSIBLE;

 int iRc = caller.send(ADV_HTTP_REQUEST_STRING); // send request message

 // to server

 if (0 <= iRc) { // did the request return a failure?

 StringBuffer sbReceiveData = new StringBuffer("") // allocate a buffer

 // for the response

 iRc = caller.receive(sbReceiveData); // get response from server

 if (0 <= iRc) { // did the receive return a failure?

 if (0 < sbReceiveData.length()) { // is data there?

Chapter 3. Custom advisors 49

iLoad = SUCCESS; // ignore retrieved data and

 // return success code

 }

 }

 }

 return iLoad;

 }

 //--------

 // getLoadSSL() - determine SSL load based on server response

 int getLoadSSL(int iConnectTime, ASV_Thread caller) {

 int iLoad = ADV_HOST_INACCESSIBLE;

 int iSocket = caller.getAdvisorSocket(); // send hex request to server

 CMNByteArrayWrapper cbawClientHello = new CMNByteArrayWrapper(

 abClientHello);

 int iRc = SRV_ConfigServer.socketapi.sendBytes(iSocket, cbawClientHello);

 if (0 <= iRc) { // did the request return a failure?

 StringBuffer sbReceiveData = new StringBuffer(""); // allocate buffer

 // for the response

 iRc = caller.receive(sbReceiveData); // get a response from

 // the server

 if (0 <= iRc) { // did the receive return a failure?

 if (0 < sbReceiveData.length()) { // is data there?

 iLoad = SUCCESS; // ignore retrieved data and return success code

 }

 }

 }

 return iLoad;

 }

 //--------

 // getLoad - merge results from the HTTP and SSL methods

 public int getLoad(int iConnectTime, ADV_Thread caller) {

 int iLoadHTTP;

 int iLoadSSL;

 int iLoad;

 int iRc;

 String sCluster = caller.getCurrentCluster(); // current cluster address

 int iPort = getAdviseOnPort();

 String sServer = caller.getCurrentServer();

 String sHashKey = sCluster = ":" + sServer; // hash table key

 if (ADV_TWOP_PORT_HTTP == iPort) { // handle an HTTP server

 iLoadHTTP = getLoadHTTP(iConnectTime, caller); // get the load for HTTP

 ADV_nte nteHTTP = newADV_nte(sCluster, iPort, sServer, iLoadHTTP);

 putNte(htTwopHTTP, "HTTP", sHashKey, nteHTTP); // save HTTP load

 // information

 ADV_nte nteSSL = getNte(htTwopSSL, "SSL", sHashKey); // get SSL

 // information

 if (null != nteSSL) {

 if (true == nteSSL.isCurrent(this)) { // check the time stamp

 if (ADV_HOST_INACCESSIBLE != nteSSL.getLoadValue()) { // is SSL

 // working?

 iLoad = iLoadHTTP;

 } else { // SSL is not working, so mark the HTTP server down

 iLoad= ADV_HOST_INACCESSIBLE;

 }

 } else { // SSL information is expired, so mark the

 // HTTP server down

 iLoad = ADV_HOST_INACCESSIBLE;

 }

50 WebSphere Application Server: Programming Guide for Edge Components

} else { // no load information about SSL, report

 // getLoadHTTP() results

 iLoad = iLoadHTTP;

 }

 }

 else if (ADV_TWOP_PORT_SSL == iPort) { // handle an SSL server

 iLoadSSL = getLoadSSL(iConnectTime, caller); // get load for SSL

 ADV_nte nteSSL = new ADV_nte(sCluster, iPort, sServer, iLoadSSL);

 putNte(htTwopSSL, "SSL", sHashKey, nteSSL); // save SSL load info.

 ADV_nte nteHTTP = getNte(htTwopHTTP, "SSL", sHashKey); // get HTTP

 // information

 if (null != nteHTTP) {

 if (true == nteHTTP.isCurrent(this)) { // check the timestamp

 if (ADV_HOST_INACCESSIBLE != nteHTTP.getLoadValue()) { // is HTTP

 // working?

 iLoad = iLoadSSL;

 } else { // HTTP server is not working, so mark SSL down

 iLoad = ADV_HOST_INACCESSIBLE;

 }

 } else { // expired information from HTTP, so mark SSL down

 iLoad = ADV_HOST_INACCESSIBLE;

 }

 } else { // no load information about HTTP, report

 // getLoadSSL() results

 iLoad = iLoadSSL;

 }

 }

 //--------

 // error handler

 else {

 iLoad = ADV_HOST_INACCESSIBLE;

 }

 return iLoad;

 }

}

WebSphere Application Server advisor

A sample custom advisor for WebSphere Application Server is included in the

install_path/servers/samples/CustomAdvisors/ directory. The full code is not

duplicated in this document.

v ADV_was.java is the advisor source code file that is compiled and run on the

Load Balancer machine.

v LBAdvisor.java.servlet is the servlet source code that must be renamed to

LBAdvisor.java, compiled, and run on the WebSphere Application Server

machine.

The complete advisor is only slightly more complex than the sample. It adds a

specialized parsing routine that is more compact than the StringTokenizer example

shown above.

The more complex part of the sample code is in the Java servlet. Among other

methods, the servlet contains two methods required by the servlet specification:

init() and service(), and one method, run(), that is required by the Java.lang.thread

class.

v init() is called once by the servlet engine at initialization time. This method

creates a thread named _checker that runs independently of calls from the

advisor and sleeps for a period of time before resuming its processing loop.

Chapter 3. Custom advisors 51

v service() is called by the servlet engine each time the servlet is invoked. In this

case, the method is called by the advisor. The service() method sends a stream of

ASCII characters to an output stream.

v run() contains the core of the code execution. It is called by the start() method

that is called from within the init() method.

The relevant fragments of the servlet code appear below.

...

 public void init(ServletConfig config) throws ServletException {

 super.init(config);

 ...

 _checker = new Thread(this);

 _checker.start();

 }

 public void run() {

 setStatus(GOOD);

 while (true) {

 if (!getKeepRunning())

 return;

 setStatus(figureLoad());

 setLastUpdate(new java.util.Date());

 try {

 _checker.sleep(_interval * 1000);

 } catch (Exception ignore) { ; }

 }

 }

 public void service(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 ServletOutputStream out = null;

 try {

 out = res.getOutputStream();

 } catch (Exception e) { ... }

 ...

 res.setContentType("text/x-application-LBAdvisor");

 out.println(getStatusString());

 out.println(getLastUpdate().toString());

 out.flush();

 return;

 }

 ...

Using data returned from advisors

Whether you use a standard call to an existing part of the application server or

add a new piece of code to be the server-side counterpart of your custom advisor,

you possibly want to examine the load values returned and change server

behavior. The Java StringTokenizer class, and its associated methods, make this

investigation easy to do.

The content of a typical HTTP command might be GET /index.html HTTP/1.0

A typical response to this command might be the following.

HTTP/1.1 200 OK

Date: Mon, 20 November 2000 14:09:57 GMT

Server: Apache/1.3.12 (Linux and UNIX)

Content-Location: index.html.en

52 WebSphere Application Server: Programming Guide for Edge Components

Vary: negotiate

TCN: choice

Last-Modified: Fri, 20 Oct 2000 15:58:35 GMT

ETag: "14f3e5-1a8-39f06bab;39f06a02"

Accept-Ranges: bytes

Content-Length: 424

Connection: close

Content-Type: text/html

Content-Language: en

<!DOCTYPE HTML PUBLIC "-//w3c//DTD HTML 3.2 Final//EN">

<HTML><HEAD><TITLE>Test Page</TITLE></HEAD>

<BODY><H1>Apache server</H1>

<HR>

<P><P>This Web server is running Apache 1.3.12.

<P><HR>

<P>

</BODY></HTML>

The items of interest are contained in the first line, specifically the HTTP return

code.

The HTTP specification classifies return codes that can be summarized as follows:

v 2xx return codes are successes

v 3xx return codes are redirections

v 4xx return codes are client errors

v 5xx return codes are server errors

If you know very precisely what codes the server can possibly return, your code

might not need to be as detailed as this example. However, keep in mind that

limiting the return codes you detect might limit the future flexibility of your

program.

The following example is a stand-alone Java program that contains a minimal

HTTP client. The example invokes a simple, general-purpose parser for examining

HTTP responses.

import java.io.*;

import java.util.*;

import java.net.*;

public class ParseTest {

 static final int iPort = 80;

 static final String sServer = "www.ibm.com";

 static final String sQuery = "GET /index.html HTTP/1.0\r\n\r\n";

 static final String sHTTP10 = "HTTP/1.0";

 static final String sHTTP11 = "HTTP/1.1";

 public static void main(String[] Arg) {

 String sHTTPVersion = null;

 String sHTTPReturnCode = null;

 String sResponse = null;

 int iRc = 0;

 BufferedReader brIn = null;

 PrintWriter psOut = null;

 Socket soServer= null;

 StringBuffer sbText = new StringBuffer(40);

 try {

 soServer = new Socket(sServer, iPort);

 brIn = new BufferedReader(new InputStreamReader(

 soServer.getInputStream()));

 psOut = new PrintWriter(soServer.getOutputStream());

 psOut.println(sQuery);

Chapter 3. Custom advisors 53

psOut.flush();

 sResponse = brIn.readLine();

 try {

 soServer.close();

 } catch (Exception sc) {;}

 } catch (Exception swr) {;}

 StringTokenizer st = new StringTokenizer(sResponse, " ");

 if (true == st.hasMoreTokens()) {

 sHTTPVersion = st.nextToken();

 if (sHTTPVersion.equals(sHTTP110) || sHTTPVersion.equals(sHTTP11)) {

 System.out.println("HTTP Version: " + sHTTPVersion);

 } else {

 System.out.println("Invalid HTTP Version: " + sHTTPVersion);

 }

 } else {

 System.out.println("Nothing was returned");

 return;

 }

 if (true == st.hasMoreTokens()) {

 sHTTPReturnCode = st.nextToken();

 try {

 iRc = Integer.parseInt(sHTTPReturnCode);

 } catch (NumberFormatException ne) {;}

 switch (iRc) {

 case(200):

 System.out.println("HTTP Response code: OK, " + iRc);

 break;

 case(400): case(401): case(402): case(403): case(404):

 System.out.println("HTTP Response code: Client Error, " + iRc);

 break;

 case(500): case(501): case(502): case(503):

 System.out.println("HTTP Response code: Server Error, " + iRc);

 break;

 default:

 System.out.println("HTTP Response code: Unknown, " + iRc);

 break;

 }

 }

 if (true == st.hasMoreTokens()) {

 while (true == st.hasMoreTokens()) {

 sbText.append(st.nextToken());

 sbText.append(" ");

 }

 System.out.println("HTTP Response phrase: " + sbText.toString());

 }

 }

}

54 WebSphere Application Server: Programming Guide for Edge Components

Notices

Second edition (March 2005)

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you

any license to these patents. You can send license inquiries, in writing, to:

IBM Corporation

Attn.: G71A/503

P.O. box 12195

3039 Cornwallis Rd.

Research Triangle Park, N.C. 27709-2195

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any country

where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

DOCUMENT “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS

OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OR CONDITIONS OF NON-INFRINGEMENT,

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states

do not allow disclaimer of express or implied warranties in certain transactions,

therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the document. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 2005 55

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

ATTN: Software Licensing

11 Stanwix Street

Pittsburgh, PA 15222-9183

U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM International Program

License Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples may include

the names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

If you are viewing this information softcopy, the photographs and color

illustrations may not appear.

Trademarks

The following terms are trademarks of IBM Corporation in the United States, other

countries, or both:

v AIX

v IBM

v ViaVoice

v WebSphere

56 WebSphere Application Server: Programming Guide for Edge Components

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the

United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

Intel, Intel Inside (logos), MMX and Pentium are trademarks of Intel Corporation

in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or

both.

Other company, product, or service names may be trademarks or service marks of

others.

Notices 57

58 WebSphere Application Server: Programming Guide for Edge Components

Index

A
ADV_AdvisorInitialize() 40, 41

ADV_Base 40

advisor 1, 36

custom 38

library functions 39

naming conventions 39

standard 37

advisor constructor 40

advisor cycle 37

ADVLOG() 42

API functions
Caching Proxy 15

authentication 33

calling plug-ins for Basic type

only 22

configuration file directive 23

function prototype 10

proxy server step 6

using the Caching Proxy plug-in

API 35

authorization 33

configuration file directive 23

function prototype 10

proxy server step 6

using the Caching Proxy plug-in

API 35

C
caching

variant 36

Caching Proxy plug-in API
compiling programs 7

configuration directives 21

configuration file directives 22

order for different processing

steps 22

order for one processing step 22

order for Service and Name

Translation processing steps 22

function prototypes 8

guidelines for writing programs 7

overview 3

procedure for writing programs 3

Caching Proxy plug-in functions
calling for particular requests

only 22

Caching Proxy steps 4

caller.getCurrentServer() 42

caller.getLatestLoad() 43

caller.receive() 43

caller.send() 43

CGI programs
porting to the Caching Proxy plug-in

API 24

code samples 1, 36

compiling
Caching Proxy plug-in API

programs 7

compiling (continued)
custom advisors 39

configuration file directives (Caching

Proxy) 22

constructor 40

custom advisor 38

constructor 40

library functions 39

naming conventions 39

custom advisor modes 38

custom advisors 1, 36

E
error

configuration file directive 23

function prototype 13

proxy server step 6

examples
for the Caching Proxy plug-in

API 36

examples (See also sample code) 1

custom advisors 44

G
GC advisor

configuration file directive 23

function prototype 13

proxy server step 6

getAdviseOnPort() 42

getAdvisorName() 42

getCurrentServer() 42

getInterval() 43

getLatestLoad() 43

getLoad() 38, 40, 41

guidelines for Caching Proxy plug-in API

programs 7

GWAPI 24

H
HTTP return codes 14

for Caching Proxy plug-in API

functions 14

HTTPD_authenticate() 16, 35, 36

HTTPD_cacheable_url() 16

HTTPD_close() 16

HTTPD_exec() 16

HTTPD_extract() 16

HTTPD_file() 17

httpd_getvar() 17

HTTPD_log_access() 17

HTTPD_log_error() 17

HTTPD_log_event() 18

HTTPD_log_trace() 18

HTTPD_open() 18

HTTPD_proxy() 18

HTTPD_read() 18

HTTPD_restart() 19

HTTPD_set() 19

httpd_setvar() 19

httpd_variant_insert() 20, 36

httpd_variant_lookup() 20, 36

HTTPD_write() 20

I
ibmnd.jar file 39

ibmproxy.conf file 21, 22

ICAPI 24

iConnectTime 41

L
library functions

Caching Proxy plug-in API (See also

HTTPD_*) 15

Load Balancer custom advisors 39

Load Balancer advisors 1, 36

log
configuration file directive 23

function prototype 13

proxy server step 6

M
method handler 11

midnight
configuration file directive 23

function prototype 10

proxy server step 6

N
name translation

configuration file directive 23

function prototype 10

proxy server step 6

naming conventions for custom

advisors 39

normal mode 38

O
object type

configuration file directive 23

function prototype 10

proxy server step 6

P
porting CGI programs for the Caching

Proxy plug-in API 24

post authorization
function prototype 11

proxy server step 6

© Copyright IBM Corp. 2005 59

postAuthorization
configuration file directive 23

postExit
configuration file directive 23

function prototype 14

proxy server step 7

predefined functions
Caching Proxy 15

preExit
configuration file directive 23

function prototype 9

proxy server step 6

proxy advisor
configuration file directive 23

function prototype 13

proxy server step 6

proxy configuration file modifications for

plug-ins 21

R
receive() 43

replace mode 38

return codes
for Caching Proxy plug-in API library

functions 21

HTTP 14

S
sample code 1

custom advisors 1, 44

for the Caching Proxy plug-in API 1,

36

processing returned advisor data 52

side stream advisor 45

standard advisor 44

two-port advisor 46

WebSphere Application Server

advisor 51

search order
for Load Balancer advisors 40

send() 43

server initialization
configuration file directive 22

function prototype 9

proxy server step 6

server process
steps 4

server request process
steps 4

server termination
configuration file directive 23

function prototype 14

proxy server step 7

service
configuration file directive 23

function prototype 11

proxy server step 6

side stream advisor
code sample 45

standard advisor 37

code sample 44

steps
Caching Proxy 4

suppressBaseOpeningSocket() 44

suppressBaseOpeningSocket() (continued)
example 45

system plug-ins (Caching Proxy) 22

T
transmogrifier

configuration file directive 23

function prototype 11

proxy server step 6

two-port advisor
code sample 46

U
URL template for Caching Proxy plug-in

API directives 23

V
variant caching 36

W
WebSphere Application Server

custom advisor code sample 51

60 WebSphere Application Server: Programming Guide for Edge Components

����

Printed in USA

GC31-6856-01

Sp
in
e
in
fo
rm
at
io
n:

 �
�

�

W
eb

Sp
he

re

Ap

pl
ic

at
io

n
Se

rv
er

Pr

og
ra

m
m

in
g

G
ui

de

fo

r
Ed

ge

Co

m
po

ne
nt

s
Ve

rs
io

n
6.

0.1

G
C

31
-6

85
6-

01

	Contents
	Figures
	About this book
	Who should read this book
	What you should already know
	Conventions and terminology used in this book
	Accessibility
	Related documents and Web sites
	How to send your comments

	Chapter 1. Overview of Edge components customization
	Caching Proxy customization
	Load Balancer customization
	Locating sample code

	Chapter 2. The Caching Proxy API
	Overview of the Caching Proxy API
	General procedure for writing API programs
	Server process steps
	Guidelines
	Plug-in functions
	Plug-in function prototypes
	HTTP return codes and values

	Predefined functions and macros
	Return codes from predefined functions and macros

	Caching Proxy configuration directives for API steps
	API usage notes
	API directives and syntax
	API directive variables

	Compatibility with other APIs
	Porting CGI programs

	Caching Proxy API reference information
	Variables
	Variable definitions

	Authentication and authorization
	Authentication and authorization process

	Variant caching
	API examples

	Chapter 3. Custom advisors
	Advisors provide load-balancing information
	Standard advisor function

	Creating a custom advisor
	Normal mode and replace mode
	Advisor naming conventions
	Compilation
	Running a custom advisor
	Required routines
	Search order
	Naming and file path
	Custom advisor methods and function calls
	Constructor (provided by advisor base)
	ADV_AdvisorInitialize()
	getLoad()
	Function calls available to custom advisors
	ADVLOG()
	getAdvisorName()
	getAdviseOnPort()
	caller.getCurrentServer()
	caller.getCurrentCluster()
	getInterval()
	caller.getLatestLoad()
	caller.receive()
	caller.send()
	suppressBaseOpeningSocket()

	Examples
	Standard advisor
	Side stream advisor
	Two port advisor
	WebSphere Application Server advisor
	Using data returned from advisors

	Notices
	Trademarks

	Index

