L[58 Ll Application Server Network Deployment, Version 6

oS <=n 2
oS

i,
-~ T Y
@ o 2 |

Securing applications and their environment

Note
FBefore using this information, be sure to read the general information under [‘Notices” on page 1011

Compilation date: December 6, 2004

© Copyright International Business Machines Corporation 2004. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents
How to send your comments.

Chapter 1. Overview and new features for securing applications and their environment .
Overview of securing applications and their environment

What is new for security specialists

Enabling security for WSIF

Chapter 2. How do | secure applications and their environments?
Chapter 3. Securing applications and their environment .

Chapter 4. Integratlng IBM WebSphere Appllcatlon Server securlty with eX|st|ng security
systems .

Interoperability issues for securrty

Interoperating with a C++ common object request broker arch|tecture clrent

Interoperating with previous product versions .

Security: Resources for learning .

Chapter 5. Planning to secure your environment. .
Security considerations when adding a Base Application Server node to Network Deployment .
Security considerations specific to a multi-node or process Network Deployment environment
Creating login key files

Preparing truststore files .

Configuring the application server for |nteroperab|I|ty

Chapter 6. Implementing security considerations at installation time .
Securing your environment before installation .

Securing your environment after installation .

Protecting plain text passwords

PropFilePasswordEncoder command reference

Chapter 7. Migrating security configurations from previous releases .

Migrating custom user registries . .

Migrating trust association interceptors

Migrating Common Object Request Broker Arch|tecture programmatrc Iogrn to Java Authent|cat|on and
Authorization Service .

Migrating from the CustomLoglnServIet class to servlet fllters

Chapter 8. Developing secured applications

Developing with programmatic security APIs for Web apphcatlons
Example: Web applications code .
Developing servlet filters for form login processmg

Developing form login pages e e
Example: Form login

Developing with programmatic APIs for EJB applrcat|ons
Example: Enterprise bean application code .

Programmatic login .

Developing programmatic Iogrns wrth the Java Authentlcatlon and Authorlzatlon Servrce
Example: Programmatic logins .

Custom login module development for a system Iogrn confrguratron .

Example: Customizing a server-side Java Authentication and Authorization Serwce authentlcatlon and
login configuration

Example: Getting the Caller Subject from the Thread

© Copyright IBM Corp. 2004

AWN =

~

. 13

.15
. 18
. 18
. 20
.21

. 23
. 31
.32
. 33
. 34
. 34

. 37
. 37
. 38
. 39
.41

. 43
. 43
. 46

. 49
. 52

. 55
. 55
. 57
. 58
. 63
. 64
. 66
. 68
. 70
. 78
. 80
. 82

. 98

. 103

Example: Getting the RunAs Subject from the Thread
Example: Overriding the RunAs Subject on the Thread .
Example: User revocation from a cache. .
Developing your own J2C principal mapping moduIe .
Developing custom user registries .

Example: Custom user registries

UserRegistry interface methods .
Trust association interceptor support for Subject creatlon

Chapter 9. Assembling secured applications .
Enterprise bean component security .
Securing enterprise bean applications
Web component security
Securing Web applications using an assembly tooI
Role-based authorization .

Admin roles .

Naming roles ‘
Adding users and groups to roIes usmg an assembly tool .
Mapping users to RunAs roles using an assembly tool

Chapter 10. Deploying secured applications .
Assigning users and groups to roles .
Security role to user and group mappings .
Security role to user and group selections .
Look up users and groups settings
Delegations . .
Assigning users to RunAs roles
EJB 2.1 method protection level settlngs
RunAs roles to users mapping . .
Updating and redeploying secured apphcatlons .

Chapter 11. Testing security

Chapter 12. Administering security.
Global security .
Configuring global securlty
Enabling global security.
Configuring global security.
Global security and server security
Configuring server security
Server security settings .
Server-level security settings . .
Administrative console and naming service authorlzatlon
Assigning users to administrator roles .
Console groups and CORBA naming service groups .
Assigning users to naming roles

Console users settings and CORBA nammg service user settlngs .

Authentication mechanisms

Configuring authentication mechanlsms
Lightweight Third Party Authentication
Configuring Lightweight Third Party Authentlcatlon
Trust associations . .o
Configuring trust assomaﬂon mterceptors
Single signon .
Configuring single S|gnon .

Single signon using WebSEAL or the T|voI| Access Manager plug in for Web servers .

iv 1BM WebSphere Application Server Network Deployment, Version 6: Securing applications and their environment

. 104
. 105
. 105
. 106
. 108
. 109
. 110
. 116

. 119
. 119
. 120
. 121
. 122
. 124
. 126
. 127
. 128
. 129

. 131
. 132
. 133
. 134
. 135
. 136
. 138
. 139
. 139
. 140

. 143

. 145
. 145
. 146
. 149
. 153
. 154
. 155
. 156
. 157
. 159
. 161
. 162
. 163
. 164
. 165
. 167
. 167
. 168
. 172
. 176
. 178
. 179
. 186

Creating a trusted user account in Tivoli Access Manager . .o
Configuring WebSEAL for use with WebSphere Application Server .

Configuring Tivoli Access Manager plug-in for Web servers for use with WebSphere Appllcatlon

Server .

Configuring single S|gnon usmg the trust assomatlon mterceptor
Configuring single signon using trust association interceptor ++ .
Global signon principal mapping .
Configuring global signon principal mapplng .

User registries . .

Configuring user reg|str|es
Local operating system user reg|str|es .
Configuring local operating system user reglstrles .
Lightweight Directory Access Protocol
Configuring Lightweight Directory Access Protocol user reglstrles
Configuring Lightweight Directory Access Protocol search filters .
Using specific directory servers as the LDAP server . .
Locating a user’s group memberships in Lightweight D|rectory Access Protocol .
Dynamic groups and nested group support
Dynamic and nested group support for the SunONE or |PIanet D|rectory Server
Configuring dynamic and nested group support for the SunONE or iPlanet Directory Server
Dynamic groups and nested group support for the IBM Directory Server.
Configuring dynamic and nested group support for the IBM Directory Server .
Custom user registries . . e .
Configuring custom user reglstrles

Java Authentication and Authorization Service
Java Authentication and Authorization Service authorlzatlon

Configuring application logins for Java Authentication and Authorization Serwce
Login configuration for Java Authentication and Authorization Service . .
Configuration entry settings for Java Authentication and Authorization Service.

System login configuration entry settings for Java Authentication and Authorization SerV|ce.

Login module settings for Java Authentication and Authorization Service.
Login module order settings for Java Authentication and Authorization Service
Login configuration settings for Java Authentication and Authorization Service.
J2EE Connector security

Managing J2EE Connector Archltecture authentlcatlon data entrles

Identity mapping .

Configuring inbound |dent|ty mapplng
Example: Custom login module for mbound mapplng

Configuring outbound mapping to a different target realm .
Example: Using the WSLogin configuration to create a basic authent|cat|on subject
Example: Sample login configuration for RMI_OUTBOUND

Security attribute propagation e e e

Enabling security attribute propagation .

Default PropagationToken .

Implementing a custom PropagatlonToken .
Example: com.ibm.wsspi.security.token. PropagatlonToken |mplementat|on .
Example: custom PropagationToken login module .

Default AuthorizationToken

Implementing a custom AuthonzatlonToken .
Example: com.ibm.wsspi.security.token. Author|zat|onToken |mplementat|on .
Example: custom AuthorizationToken login module.

Default SingleSignonToken

Implementing a custom SlngIeS|gnonToken .
Example: com.ibm.wsspi.security.token. SlngIeS|gnonToken |mplementatlon.
Example: custom SingleSignonToken login module.

Example: HTTP cookie retrieval.

. 186
. 186

. 187

. 188
. 189
. 192
. 193
. 196
. 197
. 198
. 202
. 204
. 205
.21
. 213
. 216
. 217
. 217
. 218
. 218
. 218
. 218
. 220
. 247
. 247
. 249
. 252
. 254
. 255
. 261
. 262
. 262
. 263
. 266
. 267
. 268
. 274
. 277
. 278
. 280
. 282
. 286
. 289
. 294
. 295
. 301
. 304
. 307
. 308
. 313
. 316
. 317
. 318
. 323
. 325

Contents

\'}

Default AuthenticationToken . .
Implementing a custom AuthentlcatlonToken .

Example: com.ibm.wsspi.security.token. AuthentlcatlonToken |mplementat|on

Example: custom AuthenticationToken login module
Propagating a custom Java serializable object
Authorization in WebSphere Application Server .

JACC providers.

Authorization providers settmgs
JACC support in WebSphere Application Server

JACC policy context handlers

JACC policy context identifiers (ContextID) format

JACC policy propagation

JACC registration of the provider |mplementatlon cIasses
Enabling an external JACC provider .

External Java Authorization Contract for Contamers prowder settmgs . .
Propagating security policy of installed applications to a JACC provider using wsadmm .
Configuring a JACC provider .

Interfaces used to support JACC

Tivoli Access Manager integration as the JACC prowder .

Tivoli Access Manager security for WebSphere Application Server .

Creating the security administrative user

Tivoli Access Manager JACC provider conflguratlon

Configuring the JACC provider for Tivoli Access Manager usmg the Wsadmln utlllty

Configuring the JACC provider for Tivoli Access Manager using the administrative console .
Tivoli Access Manager JACC provider settings .

Enabling the JACC provider for Tivoli Access Manager .

Configuring additional authorization servers

Role-based security with embedded Tivoli Access Manager

Administering security users and roles with Tivoli Access Manager .

Configuring Tivoli Access Manager groups . .

Tivoli Access Manager JACC provider configuration propertles

Static role caching properties

Dynamic role caching properties

Object caching properties .

Role-based policy framework propertles

System-dependent configuration properties
Logging Tivoli Access Manager security .

Enabling embedded Tivoli Access Manager

Disabling embedded Tivoli Access Manager client .

Disabling embedded Tivoli Access Manager client using the Adm|n|strat|on Console
Disabling embedded Tivoli Access Manager client using wsadmin .

Forcing the unconfiguration of the Tivoli Access Manager JACC provider

Updating console users and groups .

The Tivoli Access Manager migrateEAR utlllty

Troubleshooting authorization providers .

Authentication protocol for EJB security .

Common Secure Interoperability Version 2 features

Identity assertion .

Message layer authentlcatlon

Secure Sockets Layer client certificate authent|cat|on

Supported authentication protocols
Configuring Common Secure Interoperability Versron 2 and Secunty Authentlcatlon Servrce

authentication protocols .

Common Secure Interoperability VerS|on 2 and Securlty Authentlcatlon SerV|ce cllent conflguratlon

z/OS Secure Authentication Service transport settings

Configuring Common Secure Interoperability Version 2 |nbound authentlcat|on

Vi 1BM WebSphere Application Server Network Deployment, Version 6: Securing applications and their environment

. 328
. 329
. 330
. 336
. 338
. 342
. 343
. 343
. 344
. 347
. 347
. 348
. 349
. 349
. 350
. 352
. 353
. 355
. 358
. 359
. 362
. 362
. 363
. 365
. 367
. 368
. 369
. 369
. 371
. 371
. 372
. 372
. 372
. 373
. 374
. 375
. 375
. 377
. 377
. 377
. 378
. 379
. 379
. 380
. 382
. 385
. 389
. 389
. 390
. 391
. 393

. 393

394

. 397
. 401

Configuring Common Secure Interoperability Version 2 outbound authentication .
Configuring inbound transports .
Configuring outbound transports .
Example: Common Secure Interoperability VerS|on 2 scenarios .
Secure Sockets Layer .
Authenticity .
Confidentiality
Integrity
Configuring Secure Sockets Layer
Configuring Secure Sockets Layer for Web cllent authentlcatron
Configuring Secure Sockets Layer for the Lightweight Directory Access Protocol cIrent
Changing the default Secure Sockets Layer repertoire key files .
Configuring IBM HTTP Server for Secure Sockets Layer mutual authentlcatlon
Configuring the Web server plug-in for Secure Sockets Layer.
Configuring Secure Sockets Layer for Java client authentication .
Secure Sockets Layer configuration repertoire settings . .
Creating a Secure Sockets Layer repertoire configuration entry . .
Configuring Federal Information Processing Standard Java Secure Socket Extensron frles .
Digital certificates . .
Managing digital certificates .
Changes to IBM Developer Kit for Java Technology Edrtlon Versron 1 4 X
Cryptographic token support .
Opening a cryptographic token using the key management ut|I|ty (|Keyman)
Configuring to use cryptographic tokens.
Cryptographic token settings .
Using Java Secure Socket Extension and Java Cryptography Extensron wrth Servlets and enterprrse
bean files .
Java 2 security . . .
Access control exceptlon .
Configuring Java 2 security .
Using PolicyTool to edit policy f|Ies
Migrating Java 2 security policy .

Chapter 13. Configuring security with scripting .
Enabling and disabling global security using scripting .
Enabling and disabling Java 2 security using scripting

Chapter 14. Learn about WebSphere appllcatlons
Web applications . Ce e .o
Security constraints .
EJB applications
Configuring security for message dnven beans that use Ilstener ports
Configuring security for EJB 2.1 message-driven beans .
Client applications. .
Accessing secure resources usmg SSL and applet cIrents .
Web services
Transport level securrty .
Configuring HTTP outbound transport IeveI securrty wrth the admlnrstratrve console.
Configuring HTTP outbound transport level security with an assembly tool .
Configuring HTTP outbound transport-level security using Java properties .
HTTP basic authentication.
Configuring HTTP basic authentlcatlon wrth the admlnlstratlve console
Configuring HTTP basic authentication with an assembly tool .
Configuring HTTP basic authentication programmatically .
Configuring additional HTTP transport properties using the adm|n|strat|ve console .
Configuring additional HTTP transport properties with an assembly tool .

Contents

. 405
. 409
. 412
. 414
. 421
. 423
. 424
. 426
. 427
. 428
. 429
. 431
. 431
. 433
. 438
. 441
. 448
. 449
. 450
. 454
. 463
. 465
. 466
. 466
. 470

. 471
. 475
. 479
. 481
. 482
. 506

. 509
. 509
. 510

. 513
. 513
. 513
. 514
. 514
. 514
. 515
. 515
. 516
. 516
. 516
. 517
. 518
. 519
. 519
. 520
. 521
. 522
. 523

Vii

Configuring additional HTTP transport properties using wsadmin
Provide HTTP endpoint URL information
Publish WSDL zip files settings .
Securing Web services for version 6 appllcatlons based on WS Securlty
Securing Web services for version 5.x applications based on WS-Security .
Configuring UDDI Security Roles . .
Security API for the UDDI V3 Registry

Data access resources . .
Security of lookups with component managed authentrcatron .

Messaging resources
Configuring authorization securrty for a Versron 5 default messagrng provrder
Securing WebSphere MQ messaging directories and log files. ..
Configuring security for message-driven beans that use listener ports.
Configuring security for EJB 2.1 message-driven beans .

Mail, URLs, and other J2EE resources . .
JavaMail security permissions best practices .

Learn about WebSphere programming extensions .
Scheduler . Ce e

Chapter 15. Tuning security configurations
Tuning CSIv2 .o

Tuning LDAP authentlcatlon .

Tuning Web authentication

Tuning authorization .

Security cache properties .

Secure Sockets Layer performance trps
Tuning security .

Chapter 16. Troubleshooting security configurations.
Errors when trying to configure or enable security .
Access problems after enabling security.

Errors after enabling security .

Errors trying to enable or configure Secure Socket Layer (SLL) encrypted access .

Errors after configuring or enabling Secure Sockets Layer .
Security components troubleshooting tips .

Notices .

Trademarks and service marks.

viii 1BMm WebSphere Application Server Network Deployment, Version 6: Securing applications and their environment

. 524
. 525
. 526
. 527
. 826
. 967
. 968
. 969
. 969
. 969
. 969
. 974
. 975
. 976
. 976
. 976
. 977
. 977

. 979
. 980
. 980
. 980
. 981
. 981
. 982
. 983

. 985
. 985
. 987
. 990
. 995
. 995
. 998

. 101

. 1013

How to send your comments

Your feedback is important in helping to provide the most accurate and highest quality information.
» To send comments on articles in the WebSphere Application Server Information Center
1. Display the article in your Web browser and scroll to the end of the article.

2. Click on the Feedback link at the bottom of the article, and a separate window containing an e-mail
form appears.

3. Fill out the e-mail form as instructed, and click on Submit feedback .

* To send comments on PDF books, you can e-mail your comments to: wasdoc@us.ibm.com or fax
them to 919-254-0206.

Be sure to include the document name and number, the WebSphere Application Server version you are
using, and, if applicable, the specific page, table, or figure number on which you are commenting.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information
in any way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2004 ix

X IBM WebSphere Application Server Network Deployment, Version 6: Securing applications and their environment

Chapter 1. Overview and new features for securing
applications and their environment

This topic summarizes the contents and organization of the security documentation, including links to
conceptual overviews and descriptions of new features.

« [‘Overview of securing applications and their environment” on page 2|
« What is new for administrators|

Sections in the security documentation:

[Chapter 4, “Integrating IBM WebSphere Application Server security with existing security|

isystems,” on page 15|
This provides interoperability information. WebSphere Application Server security is an integral part
of your multiple-tier enterprise computing framework. WebSphere Application Server adopts the
open architecture paradigm and provides many plug-in points to integrate with enterprise software
components to provide end-to-end security. WebSphere Application Server plug-in points are
based on standard J2EE specifications wherever applicable. WebSphere Application Server is
actively involved in various standard bodies to externalize and to standardize plug-in interfaces.

|Chapter 5, “Planning to secure your environment,” on page 23|
This examines some typical configuration and common security practices. There are several
communication links from a browser on the Internet, through web servers and product servers, to
the enterprise data at the back end. WebSphere Application Server security is built on a layered
security architecture. This also examines the security protection offered by each security layer and
common security practice for good quality of protection in end-to-end security.

[Chapter 6, “Implementing security considerations at installation time,” on page 37|
This describes how to implement security before, during, and after installing the product.

[Chapter 7, “Migrating security configurations from previous releases,” on page 43|
This describes how to migrate your security configurations from a previous product release.

[Chapter 8, “Developing secured applications,” on page 55|
This describes how to implement declarative and programmatic security while developing,
assembling, and deploying your applications. The product security components provide or
collaborate with other services to provide authentication, authorization, delegation, and data
protection. The product also supports the security features described in the Java 2 Enterprise
Edition (J2EE) specification.

[Chapter 9, “Assembling secured applications,” on page 119
This describes how to use assembly tools to secure applications and the EJB and Web modules
that comprise them.

[Chapter 9, “Assembling secured applications,” on page 119
This describes security tasks and considerations as you are deploying applications onto the
application server and testing that users can access the secured applications.

[Chapter 12, “Administering security,” on page 145|
This describes how to configure and administer security features, including:

* Global security
» Authentication mechanisms (directories and user registries)

» Authorization policies and providers, including Java Authentication and Authorization Service
(JAAS)

* Trust association interceptors
+ Single signon
« Common Secure Interoperability Version 2 (CSIv2)

© Copyright IBM Corp. 2004 1

» Secure Sockets Layer (SSL)
+ Java 2 Security manager
» Security attribute propagation
[Chapter 14, “Learn about WebSphere applications,” on page 513

This provides security instructions that are specific to the various types of applications, such as
Web applications or Web services.

[“Tuning security” on page 983|
Enabling security decreases performance. This describes considerations for increasing
performance.

|Chapter 16, “Troubleshooting security configurations,” on page 985|
This describes how to troubleshoot errors related to security.

Overview of securing applications and their environment

This topic provides links to conceptual overviews of securing applications and the application serving
environment.

[“What is new for security specialists” on page 3|

This topic provides an overview of new and changed features in security.

|[WebSphere security architecture|

This Education on Demand presentation provides an overview of the security architecture.
Additional presentations are available that focus on the following concepts:

« [CSIv2 security overview|

.

- [JAAS client overview|

+ [Resource security overview

[Introduction: Security|

This topic describes how IBM WebSphere Application Server provides security infrastructure and
mechanisms to protect sensitive Java 2 Platform, Enterprise Edition (J2EE) resources and
administrative resources and to address enterprise end-to-end security requirements on
authentication, resource access control, data integrity, confidentiality, privacy, and secure
interoperability.

Chapter 4, “Integrating IBM WebSphere Application Server security with existing security systems,”]
on page 1§|

This topic describes how the product security features relate to the security features of the
environment into which you have added application serving capability.

[Chapter 5, “Planning to secure your environment,” on page 23|

Several communication links from a browser on the Internet, through Web servers and product
servers, to the enterprise data at the back-end. This topic examines some typical configuration and
common security practices. WebSphere Application Server security is built on a layered security
architecture. This section also examines the security protection offered by each security layer and
common security practice for good quality of protection in end-to-end security.

Tutorials

|[Education on Demand| offers:
« |Secure WebSphere Bank application|

2 1BM WebSphere Application Server Network Deployment, Version 6: Securing applications and their environment

ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Security/Presentations/WASv6_Sec_Architecture/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Security/Presentations/WASv6_Sec_CSIv2/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Security/Presentations/WASv6_Sec_JACC/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Security/Presentations/WASv6_Sec_JAAS/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Security/Presentations/WASv6_Sec_Resources/player.html
http://www.ibm.com/developerworks/websphere/library/tutorials/ondemand/
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Security/LabInstructions/WASv6_Secure_WSB.pdf

Samples

The offers:

* Login - Form Login
The Form Login Sample demonstrates a very simple
example of how to use the WebSphere login facilities to
implement and configure login applications. The Sample
uses the J2EE form-based login technology to
customize the look and feel of the login screens. It uses
servlet filters to log the user information and the date
information. The Sample finishes the session by using
the form-based logout function, an IBM extension to the
J2EE specification.

* Login - JAAS Login
The JAAS Login Sample demonstrates how to use the
Java Authentication and Authorization Service (JAAS)
with WebSphere Application Server. The Sample uses
server-side login with JAAS to authenticate a real user
to the WebSphere security run time. Based upon a
successful login, the WebSphere security run time uses
the authenticated Subject to perform authorization
checks on a protected stateless session enterprise
bean. If the Sample runs successfully, it displays all the
principals and public credentials of the authenticated
user.

What is new for security specialists

This topic highlights what is new or changed in Version 6 for users who are responsible for securing

applications and the application serving environment.

The biggest improvement in security involves the set of supported specifications.

External JACC provider support

Java 2 security manager

The Java Authorization Contract for Containers
specification (JACC) version 1.0, introduced in
WebSphere Application Server Version 6 and defined by
Java 2 Platform, Enterprise Edition (J2EE) Version 1.4,
defines a contract between J2EE containers and external
authorization providers. Based on this specification,
WebSphere Application Server enables you to plug in an
external provider to make authorization decisions when
you are accessing a J2EE resource. When you use this
feature, WebSphere Application Server supports Tivoli
Access Manager as the default JACC provider.

For more information, see ['JJACC providers” on page 343

WebSphere Application Server Version 6 provides you
with greater control over the permission granted to
applications for manipulating non-system threads. You can
permit applications to manipulate non-system threads
using the was.policy file. However, these thread control
permissions are disabled, by default.

For more information, seef‘Configuring the was.policy file’|

Chapter 1. Overview and new features - Securing applications and their environment 3

JCA 1.5 support

SSL channel framework

Web authentication using the Java Authentication and
Authorization Service programming model

Web services security

WebSphere Application Server Version 6 supports the
J2EE Connector Architecture (JCA) Version 1.5
specification, which provides new features such as the
inbound resource adapter. For more information, see
|[J2EE Connector Architecture resource adapters|

From a security perspective, Version 6 provides an
enhanced custom principal and credential programming
interface and custom mapping properties at the resource
reference level. The custom JAAS LoginModule, which
was developed for JCA principal and credential mapping
for WebSphere Application Server Version 5.x, continues
to be supported.

The Secure Sockets Layer channel framework
incorporates the new IBMJSSE2 implementation and
separates the security function of Java Secure Sockets
Extension (JSSE) from the network communication
function.

WebSphere Application Server Version 6 enables you to
use the Java Authentication and Authorization Service
(JAAS) programming model to perform Web authentication
in your application code. To use this function, you must
create your own JAAS login configuration by cloning the
WEB_INBOUND login configuration and define a
cookie=true login option. After a successful login using
your login configuration, the Web login session is tracked
by single signon (SSO) token cookies. This option
replaces the SSOAuthenticator interface, which was
deprecated in WebSphere Application Server Version 4.

For more information, see ['Java Authentication and|
|Authorization Service authorization” on page 247 |

WebSphere Application Server Version 6 increases the
extensibility of Web services security by providing a
pluggable architecture. The implementation in WebSphere
Application Server includes many of the features
described in the Organization for the Advancement of
Structured Information Standards (OASIS) Web Services
Security Version 1 standard. As part of this standard,
WebSphere Application Server supports custom,
pluggable tokens that are used for signing and encryption;
pluggable signing and encryption algorithms; pluggable
key locators for locating a key that is used for digital
signature or encryption; signing or encrypting elements in
a Simple Object Access Protocol (SOAP) message; and
specifying the order of the signing or encryption
processes.

Enabling security for WSIF

The Web Services Invocation Framework (WSIF) interacts with a security manager in the following ways:
* WSIF runs in the Java 2 platform, Enterprise Edition (J2EE) security context without modification.
* When WSIF is run under a J2EE container, port implementations can use the security context to pass

on security tokens or credentials as necessary.

4 BM WebSphere Application Server Network Deployment, Version 6: Securing applications and their environment

* WSIF implementations can automatically convert J2EE security context into appropriate context for
onward services.

For WSIF to interact effectively with the WebSphere Application Server security manager, enable the

following permission in the was.policy file: FilePermission to load the WSDL. This permission is required
when a WSDL file is referred to using the file:// protocol.

Chapter 1. Overview and new features - Securing applications and their environment 5

6 1BMm WebSphere Application Server Network Deployment, Version 6: Securing applications and their environment

Chapter 2. How do | secure applications and their

environments?

+ [Develop and deploy secure applications|

« [Secure the application hosting environment|

+ [Troubleshoot security|

Legend for "How do 12..."” links

Documentation Show me Tell me Guide me Teach me

Refer to the detailed |Watch a brief View the presentation |Be led through the Perform the tutorial

steps and reference | multimedia for an overview console pages with sample code
demonstration

Approximate time:
Varies

Approximate time: 3
to 5 minutes

Approximate time:
10 minutes+

Approximate time:

1/2 hour+

Approximate time: 1
hour+

Develop and deploy secure applications

These tasks involve securing your applications during development (optional, programmatic security),

assembly (declarative security), and after deploying them on the application server.

Secure Web applications: Authentication and authorization

Most of the security for an application is configured during the assembly stage. The security
configured during the assembly stage is called declarative security because the security is
declared or defined in the deployment descriptors. The declarative security is enforced by the
security run time. For some applications, declarative security is not sufficient to express the
security model of the application. For these applications, you can use programmatic security.

Documentation

* [Declarative
e |Programmatic

Related documentation topics:

+ [Session security support]

« [Chapter 8, “Developing secured applications,” on page 55|

Secure EJB applications: J2EE authorization

Most of the security for an application is configured during the assembly stage. The security
configured during the assembly stage is called declarative security because the security is
declared or defined in the deployment descriptors. The declarative security is enforced by the
security run time. For some applications, declarative security is not sufficient to express the
security model of the application. For these applications, you can use programmatic security.

© Copyright IBM Corp. 2004

ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Security/Presentations/WASv6_Sec_User_Registry/player.html

Documentation
» |Declarative
» |Programmatici

Use Web services security (WS-Security)

Use any of many methods to integrate message-level security into an application serving
environment. Web services security for WebSphere Application Server is based on standards
included in the Web services security (WS-Security) specification. These standards address how
to provide protection for messages exchanged in a Web service environment. The specification
defines the core facilities for protecting the integrity and confidentiality of a message and provides
mechanisms for associating security-related claims with the message.

Enable Java 2 security

Java 2 security is disabled by default, but is enabled automatically when global security is
enabled. Whether you use it is independent of your decision to use J2EE role-based authorization.
It provides an extra level of access control protection on top of the J2EE role-based authorization.
It particularly addresses the protection of system resources and APIs.

Documentation ell me
» |Console
* [Scripting

Develop JAAS clients

If you write a login module that adds information to the Subject of a system login, refer to this topic
for the main Java Authentication and Authorization Service (JAAS) plug in points for configuring
system logins.

Documentation ell me

Enable resource security (overview)

Applications access many resources for data access, messaging, mail, and other purposes.

Enable resource security: J2C and JDBC data sources

Secure the Java DataBase Connectivity (JDBC) data sources and Java 2 Connector (J2C)
resources used by applications to access data.

8 1BM WebSphere Application Server Network Deployment, Version 6: Securing applications and their environment

ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Security/Presentations/WASv6_Sec_User_Registry/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/WebServices/Simulations/WASv6_WS_Security_Binding.viewlet/WASv6_WS_Security_Binding_viewlet_swf.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/WebServices/Presentations/WASv6_WSSecurity_Overview/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Security/Presentations/WASv6_Sec_Java2_Security/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Security/Presentations/WASv6_Sec_JAAS/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Security/Presentations/WASv6_Sec_Resources/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Security/LabInstructions/WASv6_Secure_WSB.pdf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Security/Simulations/WASv6_Sec_JDBC_J2C.viewlet/WASv6_Sec_JDBC_J2C_viewlet_swf.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Security/Presentations/WASv6_Sec_JDBC_J2C/player.html

Related documentation topics:
« [“Security of lookups with component managed authentication” on page 969
- [‘JavaMail security permissions best practices” on page 976

Enable resource security: JMS resources

Secure the Java Message Service (JMS) resources used by applications to obtain messaging

support.

Secure the application hosting environment

The counterpart of secure your applications, before and after deployment, is to secure the server hosting
environment into which the applications are deployed.

Secure the administrative environment

Use the administrative console to assign users to administrative roles.

Tell me
+ [Security for system|
administratod
* [Securin

administrative
environment

Related documentation topics:
« [“Securing your environment before installation” on page 37| (installing with proper authority)
« [‘Securing your environment after installation” on page 3§ (passwords and such)

Configure security with wsadmin scripting (overview)

Scripting is a non-graphical alternative that you can use to configure and manage WebSphere
Application Server. The WebSphere Application Server wsadmin tool provides the ability to run
scripts. The wsadmin tool supports a full range of product administrative activities.

Documentation

Configure global security

Configure global security, which applies to all applications running in the environment and
determines whether security is used at all, the type of registry against which authentication takes
place, and other values, many of which act as defaults.

Chapter 2. How do | secure applications and their environments?

9

ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Security/Presentations/WASv6_Sec_SIBus/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Security/Presentations/WASv6_Sec_Administration/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Security/Presentations/WASv6_Sec_Administration/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_Admin_Security/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_Admin_Security/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_Admin_Security/player.html

Documentation

* |Console

.

Authenticate users with the local operating system user registry

Configure the product to authenticate users against the local operating system user registry. The
product provides and supports the implementation for Windows operating system registries, AlX,
Solaris and multiple versions of Linux operating systems. The respective operating system APIs

are called by the product processes (servers) for authenticating a user and other security-related
tasks (for example, getting user or group information).

Show me
* |ISWAM
- [CTPA

Authenticate users with an LDAP user registry

Configure the product to authenticate users against a Lightweight Directory Access Protocol
(LDAP) user registry. The product security provides and supports implementation of most major
LDAP directory servers, which can act as the repository for user and group information. These
LDAP servers are called by the product processes (servers) for authenticating a user and other
security-related tasks (for example, getting user or group information). This support is provided by
using different user and group filters to obtain the user and group information. These filters have
default values that you can modify to fit your needs. The custom LDAP feature enables you to use
any other LDAP server (which is not in the product supported list of LDAP servers) for its user
registry by using the appropriate filters.

Authenticate with a custom user registry

After you have implemented and built the UserRegistry interface, you can configure the product to
use your custom user registry to authenticate users.

Set up Single Sign On (SSO)

With single signon (SSO) support, Web users can authenticate once when accessing Web
resources across multiple WebSphere Application Servers. Form login mechanisms for Web
applications require that SSO is enabled.

Documentation

Set up Secure Sockets Layer (SSL) between remote servers or clients and servers

10 1BM™ WebSphere Application Server Network Deployment, Version 6: Securing applications and their environment

ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Security/Presentations/WASv6_Sec_Administration/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Security/Simulations/WASv6_Sec_SWAM_LocalOS.viewlet/WASv6_Sec_SWAM_LocalOS_viewlet_swf.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Security/Simulations/WASv6_Sec_LTPA_LocalOS.viewlet/WASv6_Sec_LTPA_LocalOS_viewlet_swf.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Security/Presentations/WASv6_Sec_User_Registry/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Security/Simulations/WASv6_Sec_Registry_LDAP.viewlet/WASv6_Sec_Registry_LDAP_viewlet_swf.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Security/Presentations/WASv6_Sec_User_Registry/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Security/Simulations/WASv6_Sec_Registry_Custom.viewlet/WASv6_Sec_Registry_Custom_viewlet_swf.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Security/Presentations/WASv6_Sec_User_Registry/player.html

Secure Sockets Layer (SSL) is used by multiple components within WebSphere Application Server
to provide trust and privacy.

Related documentation topics:
. |“Accessing secure resources using SSL and applet clients” on page 515|

Set up CSlv2

Configure Common Secure Interoperability Version 2 (CSIv2) features including SSL client
certificate authentication, message layer authentication, identity assertion, and security attribute
propagation.

Documentation ell me

Configure an authorization provider (JACC)

Configure the product to use an external security provider you have set up to work with
WebSphere Application Server that can support Java 2 Platform, Enterprise Edition (J2EE)
authorization based on the JACC specification.

Documentation ell me

Troubleshoot security problems

Troubleshoot several types of problems related to enabling or configuring security.

Troubleshoot the security subsystem

Troubleshoot several types of problems related to enabling or configuring security.

Documentation

Chapter 2. How do | secure applications and their environments? 11

ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Security/Simulations/WASv6_Sec_SSL.viewlet/WASv6_Sec_SSL_viewlet_swf.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Security/Presentations/WASv6_Sec_SSL/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Security/Presentations/WASv6_Sec_CSIv2/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Security/Presentations/WASv6_Sec_JACC/player.html

12 BM WebSphere Application Server Network Deployment, Version 6: Securing applications and their environment

Chapter 3. Securing applications and their environment

WebSphere Application Server supports the J2EE model for creating, assembling, securing, and deploying
applications. This article provides a high-level description of what is involved in securing resources in a
J2EE environment. Applications are often created, assembled and deployed in different phases and by
different teams.

Consult the J2EE specifications for complete details.

1.

10.

Plan to secure your applications and environment. For more information, see [Chapter 5, “Planning to|
[secure your environment,” on page 23| Complete this step before you install the WebSphere
Application Server.

Consider pre-installation and post-installation requirements. For more information, see
[‘Implementing security considerations at installation time,” on page 37.|For example, during this step,
you learn how to protect security configurations after you install the product.

Migrate your existing security systems. For more information, see |Chapter 7, “Migrating security|
|configurations from previous releases,” on page 43.|

Develop secured applications. For more information, see |Chapter 8, “Developing securedl
lapplications,” on page 55

Assemble secured applications. For more information, see |Chapter 9, “Assembling secured
|app|ications,” on page 119.| Development tools, such as the|Assembling applications|are used to
assemble J2EE modules and to set the attributes in the deployment descriptors.

Most of the steps in assembling J2EE applications involve deployment descriptors; deployment
descriptors play a central role in application security in a J2EE environment.

Application assemblers combine J2EE modules, resolve references between them, and create from
them a single deployment unit, typically an Enterprise Archive (EAR) file. Component providers and
application assemblers can be represented by the same person but do not have to be.

Deploy secured applications. For more information, see [Chapter 10, “Deploying secured applications,’]
ﬁ

Deployer link entities referred to in an enterprise application are mapped to the runtime environment.
The deployer:

* Maps actual users and groups to application roles

 Installs the enterprise application into the environment

* Makes the final adjustments needed to run the application

Test secured applications. For more information, see |[Chapter 11, “Testing security,” on page 143)

Manage security configurations. For more information, see|Chapter 12, “Administering security,” on|

Improve performance by tuning security configurations. For more information, see |Chapter 15,
[Tuning security configurations,” on page 979

Troubleshoot security configurations. For more information, see [Chapter 16, “Troubleshooting security]
[configurations,” on page 985,

Your applications and production environment are secured.

See [‘Security: Resources for learning” on page 21| for more information on the WebSphere Application
Server security architecture.

© Copyright IBM Corp. 2004 13

14 BMm WebSphere Application Server Network Deployment, Version 6: Securing applications and their environment

Chapter 4. Integrating IBM WebSphere Application Server
security with existing security systems

WebSphere Application Server plays an integral part of the multiple-tier enterprise computing framework.
WebSphere Application Server adopts the open architecture paradigm and provides many plug-in points to
integrate with enterprise software components to provide end-to-end security. WebSphere Application
Server plug-in points are based on standard J2EE specifications wherever applicable. WebSphere
Application Server is actively involved in various standard bodies to externalize and to standardize plug-in
interfaces.

In the following example, several typical multiple-tier enterprise network configurations are discussed. In
each case, various WebSphere Application Server plug-in points are used to integrate with other business
components. The discussion starts with a basic multiple-tier enterprise network configuration:

Enterprise
Secure reverse Application "
Information
proxy server SOTVol System
CSlv2 security protocol
Trust Credential U J2EE
association —» . —> Application Server —> B
interceptor mapping Version 6 connector
Security server Access manager
(Authentication) (Authorization) Principal/
credential
JAAS UserRegistry Security Role-based mapping
login module interface authorization engine
U ist JAAS
Serregistry login module

A list of terms used in this discussion follows:

Protocol firewall
Prevents unauthorized access from the Internet to the demilitarized zone. The role of this node is
to provide the Internet traffic access only on certain ports and to block other IP ports.

WebSphere Application Server plug-in
Redirects all the requests for servlets and JSP pages. Also referred to in WebSphere Application
Server literature as Web server redirector was introduced to separate Web server from application
server. The advantage of using Web server redirector is that you can move an application server
and all the application business logic behind the domain firewall.

Domain firewall
Prevents unauthorized access from the demilitarized zone to an internal network. The role of this
firewall is to allow the network traffic originating from the demilitarized zone and note from the
Internet.

Directory
Provides information about the users and their rights in the Web application. The information can

© Copyright IBM Corp. 2004 15

contain user IDs, passwords, certificates, access groups, and so forth. This node supplies the
information to the security services like authentication and authorization service.
Enterprise information system

Represents existing enterprise applications and business data in back-end databases.

WebSphere Application Server provides the infrastructure to run application business logic and
communicate with internal back-end systems and databases Web applications and enterprise beans can
access. WebSphere Application Server has a built in HTTPS server that can accept client requests. A
typical configuration, however, places WebSphere Application Server behind the domain firewall for better
protection. A WebSphere Application Server plug-in to Web server configuration can redirect Web requests

to WebSphere Application Server. WebSphere Application Server provides plug-ins for many popular Web
servers.

You can configure WebSphere Application Server and the Web server plug-in to communicate through
secure SSL channels. You can configure a WebSphere Application Server HTTP server to open
communication channels only with a restricted set of Web server plug-ins. You can configure the HTTP

server to require client certificate authentication with self-signed certificates and to trust only the signer
certificate.

For more information, refer to
For instructions on how to generate self-signed certificates and how to set up secure communications

channels between an HTTP server and the WebSphere Application Server plug-in, refer to|Configuring IHY
lplug-in and the Internal Web Server for SSL{and |[Configuring IHS for SSL Mutual Authentication|

! 1
Browser \ Demilitarized Zone \ Internet Enterprise
1 (DMZ) 1 Information
1 1 Systems
1
_ Web ! Databasg
§ server :=§ — (DB;Z versmn)
8.1 fix pack 6
Q 9
= - > |2 Web.Sph‘ere
Q c Application
S Wi g Server
5 ebSphere 5
o Application [s]
Server plug-in .
CICS
R - _
1 | IBM Directory
! 1 (LDAP)

The WebSphere Application Server plug-in routes HTTP requests according to the virtual host and port
configuration and the URL pattern matching. Client authentication and finer grained access control are
handled by WebSphere Application Server behind the firewall.

In cases where the Web server can contain sensitive data and direct access is not desirable, the following
configuration uses Tivoli WebSEAL to shield a Web server from unauthorized requests. WebSEAL is a
Reverse Proxy Security Server (RPSS) that uses Tivoli Access Manager to perform coarse-grained access
control to filter out unauthorized requests before they reach the domain firewall. WebSEAL uses Tivoli
Access Manager to perform access control as illustrated in the picture. WebSphere Application Server
supports various user registry implementations through the pluggable user registry interface.

WebSphere Application Server ships a Local OS user registry implementation for Windows, AIX, AS/400,
and Lightweight Directory Access Protocol (LDAP).

16 1BMm WebSphere Application Server Network Deployment, Version 6: Securing applications and their environment

WebSphere Application Server also supports users in developing their own custom registry and plug-in
through the pluggable user registry interface. When integrated with a third party security provider,
WebSphere Application Server can share the user registry with the third-party security provider. In the
particular example of integrating with WebSEAL, you can configure WebSphere Application Server to use
the LDAP user registry, which can be shared with WebSEAL and Tivoli Access Manager. Moreover, you
can configure WebSphere Application Server to use the Light Weight Third Party (LTPA) authentication
mechanism, which supports the Trust Association Interceptor plug-in point.

Basically, the RPSS performs authentication and adds proper authentication data into the request header
and then redirects the request to Web server. A trust relationship is formed between an RPSS and
WebSphere Application Server, and the RPSS can assert client identity to WebSphere Application Server
to achieve single signon (SSO) between RPSS and WebSphere Application Server. When the request is
forward to WebSphere Application Server, WebSphere Application Server uses the TAI plug-in for the
particular RPSS server to evaluate the trust relationship and to extract the authenticated client identity.
WebSphere Application Server then maps the client identity to a WebSphere Application Server security
credential. For instructions on setting up a trust association interceptor, refer to[Trust associations}
[Configuring trust association interceptors|

1 1
Browser | Demilitarized Zone | Internet Enterprise
1 (DMZ) 1 | Information
- L 1 Systems
1
1
WebSphere !
3 5 Web Aplication | || Database
% Reverse q;, server psp — (DB2 version
o i rver
& (| Proxy security | 5| S{ erve 8.1 fix pack 6)
El server <
% (WebSeal, g WebSphere [Trust
& and so on) 8 Application Association
Server plug-in Interceptor
|| MQ
CICS
1 1 T
1 1 l
1 1 . IBM Directory
| | Thl.rd-part}/ (LDAP)
| | security provider
1 1

(Tivoli Access Manager,
and so on)

When configured to use the LDAP user registry, WebSphere Application Server uses LDAP to perform
authentication. The client ID and password are passed from WebSphere Application Server to the LDAP
server. You can configure WebSphere Application Server to set up an SSL connection to LDAP so that
passwords are not passed in plain text. To set up an SSL connection from WebSphere Application Server
to the LDAP server, refer to [Configuring SSL for the LDAP client. WebSphere Application Server Version 5
supports the J2EE Connector Architecture (JCA). The connector architecture defines a standard interface
for WebSphere Application Server to connect to heterogeneous enterprise information systems (EIS).
Examples of EIS includes database systems, transaction processing such as CICS, and messaging such
as Message Queue (MQ). The EIS implementation can perform authentication and access control to
protect business data and resources. Resource Adapters authenticate EIS. The authentication data can be
provided either by application code or by WebSphere Application Server. WebSphere Application Server
provides a principal mapping plug-in point. A principal mapping module plug-in maps the authenticated
client principal to a password credential, (that is, user ID and password, for the EIS security domain).
WebSphere Application Server ships a default principal mapping module, which maps any authenticated
client principal to a configured pair of user IDs and passwords.

Each connector can be configured to use a different set of IDs and passwords. For a description on how
to configure JCA principal mapping user IDs and passwords, refer to [Managing J2C Authentication Datal
A principal mapping module is a special purpose Java Authentication and Authorization Service

Chapter 4. Integrating IBM WebSphere Application Server security with existing security systems 17

(JAAS) login module. You can develop your own principal mapping module to fit your particular business
application environment. For detailed steps on developing and configuring a custom principal mapping
module, refer to the articles, [Developing your own Java 2 security mapping module underneath JAAS|
Programmatic Login|and [Managing Java Authentication and Authorization Service (JAAS) Login|

Configuration|

Security and WebSphere MQseries

It is important to note that security logging information on UNIX systems is not protected because of the
world-writeable files in the /var file system of MQseries. MQseries ships the following files with its product:
e -rw-rw-rw- /var/mgm/errorss AMQERRO1.LOG

e -rw-rw-rw- /var/mgm/errorssAMQERRO02.LOG

e -rw-rw-rw- /var/mgm/errorssAMQERRO03.LOG

The previously mentioned files are world-writeable and enable any users on the system to fill up the /var
file system where all the security logging information is stored. This leaves the security information
unprotected because anyone can access the logging information without being tracked.

To work around this problem, create a file system for the embedded messaging component working data
on UNIX. Before you install the embedded messaging component of WebSphere Application Server on
UNIX platforms, consider creating and mounting a journalized file system called /var/mgm. Use a partition
strategy with a separate volume for the WebSphere MQ data. This means that other system activity is not
affected if a large amount of WebSphere MQ work builds up.

To determine the size of the /var/mqgm file system for a server installation, consider the following:
* Maximum number of messages in the system at one time

» Contingency for message buildups, if there is a system problem

» Average size of the message data, plus 500 bytes for the message header

* Number of queues

» Size of log files and error messages

Allow 50MB as a minimum for a WebSphere MQ server. You need less space in the /var/mgn file system
for a WebSphere MQ client (typically 15MB).

Interoperability issues for security

To have interoperability of Security Authentication Service (SAS) between C++ and WebSphere Application
Server, use the Common Secure Interoperability Version 2 (CSIv2) authentication protocol over Remote
Method Invocation over the Internet Inter-ORB Protocol (RMI-IIOP).

Interoperating with a C++ common object request broker architecture
client

You can achieve interoperability of Security Authentication Service between the C++ Common Object
Request Broker Architecture (CORBA) client and WebSphere Application Server using Common Secure
Interoperability Version 2 (CSIv2) authentication protocol over Remote Method Invocation over the Internet
Inter-ORB Protocol (RMI-IIOP). The CSIv2 security service protocol has authentication, attribute and
transport layers. Among the three layers, transport authentication is conceptually simple, however,
cryptographically based transport authentication is the strongest. WebSphere Application Server Enterprise
has implemented the transport authentication layer, so that C++ secure CORBA clients can use it
effectively in making CORBA clients and protected enterprise bean resources work together.

Security authentication from non-Java based C++ client to enterprise beans. WebSphere Application
Server supports security in the CORBA C++ client to access protected enterprise beans. If configured,

18 1BM WebSphere Application Server Network Deployment, Version 6: Securing applications and their environment

C++ CORBA clients can access protected enterprise bean methods using client certificate to achieve
mutual authentication on WebSphere Application Server Enterprise applications.

To support the C++ CORBA client in accessing protected enterprise beans:

Create an environment file for the client, such as current.env. Set the variables listed below
(security_sslKeyring, client_protocol_user, client_protocol_password) in the file.

Point to the environment file using the fully qualified path name through the environment variable
WAS_CONFIG_FILE. For example, in the test shell script test.sh, export
WAS_CONFIG_FILE=/WebSphere/V5R0MO0/AppServer/bin/current.env.

C++ security setting Description

client_protocol_password Specifies the password for the user ID.

client_protocol_user Specifies the user ID to be authenticated at the target
server.

security_sslKeyring Specifies the name of the RACF keyring the client will
use. The keyring must be defined under the user ID that
is issuing the command to run the client.

To support the C++ CORBA client in accessing protected enterprise beans:

1.

Obtain a valid certificate to represent the client and export its public key to the target enterprise bean
server.

A valid certificate is needed to represent the C++ client. Request a certificate from the certificate
authority (CA) or create a self-signed certificate for testing purposes.

Use the Key Management Utility from the Global Security Kit (GSKit) to extract the public key from the
personal certificate and save it in the .arm format. For details, see the related information about how to
[extract the personal certificate of the public key}

Prepare a truststore file for WebSphere Application Server.

Add the extracted client public key in the .arm file from the client to the server key truststore file. The
server can now authenticate the client.

Note: This is done by invoking the Key Management Utility through ikeyman.bat or ikeyman.sh from
WebSphere Application Server installation.

For details, see the article on|Adding truststore files|

3. Configure WebSphere Application Server to support SSL as the authentication mechanism.

a. Start the administrative console.

b. Locate the application server that has the target enterprise bean deployed and configure it to use
SSL client certificate authentication.

If it is a base installation, complete the following steps:

1) Click Security > Global security. Under Authentication, click Authentication protocol >
CSlv2 inbound authentication. Select Supported for the Basic authentication and Client
certificate authentication options. Leave the rest of the options as defaults.

2) Click Security > Global security. Under Authentication, click Authentication protocol >
CSlv2 inbound transport and verify that the SSL-supported option is selected.

If it is a Network Deployment setting, complete the following steps:

1) Click Server > Application Server >server_name_where_the_EJB_resides. Under security,
click Server security. Under Additional properties, click CSI inbound authentication. Select
Supported for the Basic authentication and Client certificate authentication options. Leave the
rest of the options as defaults.

Chapter 4. Integrating IBM WebSphere Application Server security with existing security systems 19

2) Click Server > Application Server >server_name_where_the_EJB_resides. Under security,
click Server security. Under Additional properties, click CSI inbound transport. Verify that the
SSL-Supported option is selected.

For details, see the security articles [Configuring CSIv2 inbound authentication| and |Configuring
[CSIV2 inbound transport]

c. Restart the application server.

The WebSphere Application Server is ready to take a C++ CORBA security client and a mutually
authenticated server and client by using SSL in the transport layer.

4. Configure the C++ CORBA client to use a certificate in performing the mutual authentication.

Client users are accustomed to using property files in their applications because they are helpful in
specifying configuration settings. The following list presents important C++ security settings:

C++ security setting Description
com.ibm.CORBA .bootstrapHostName=ricebella.austin.ibm.com Specifies the target host name.
com.ibm.CORBA .securityEnabled=yes Enables security.
com.ibm.CSl.performTLClientAuthenticationSupported=yes Ensures client is supporting mutual
authentication by certificate
com.ibm.CSl.performTransportAssocSSLTLSSupported=yes Ensures SSL is used, not TCP/IP
com.ibm.ssl.keyFile=C:/ricebella/etc/DummyKeyRingFile. KDB Specifies which key database file to use.
com.ibm.ssl.keyPassword=WebAS Specifies the password for opening the key

database file. WebSphere Application Server
supports a utility called PasswordEncode4cpp
to encode the plain password.

com.ibm.CORBA .translationEnabled=1 Enables the valueType conversion.

To use the property files in running a C++ client, an environment variable WASPROPS, is used to
indicate where a property file or a list of property files exist.

For the complete set of C++ client properties, see the sample property file scclient.props, which is
shipped with the product located in the install root\profiles\profile name\etc directory.

Interoperating with previous product versions

IBM WebSphere Application Server, Version 5.x or later interoperates with the previous product versions
(such as Version 4 and Version 3.5). Interoperability is achieved only when the Lightweight Third Party
Authentication (LTPA) authentication mechanism and Lightweight Directory Access Protocol (LDAP) user
registry are used. Credentials derived from Simple WebSphere Authentication Mechanisms (SWAM) are
not forwardable.

1. Enable security with the LTPA authentication mechanism and the LDAP user registry. Make sure that
the same LDAP user registry is shared by all the product versions.

2. Extract and add Version 5 server certificates into the server key ring file of the previous version.

a. Open the Version 5 server key ring file using the key management utility (iKeyman) and extract the
server certificate to a file.

b. Open the server key ring of the previous product version, using the key management utility and
add the certificate extracted from product Version 5.

3. Extract and add Version 5 server certificates into the server key ring file of the previous version.

a. Open the Version 5 server key ring file using the key management utility (iKeyman) and extract the
server certificate to a file.

b. Open the server key ring of the previous product version, using the key management utility and
add the certificate extracted from product Version 5.

4. Extract and add Version 5 trust certificates into the trust key ring file of the previous product version.

20 1BM WebSphere Application Server Network Deployment, Version 6: Securing applications and their environment

a. Open the Version 5 trust key ring file using the key management utility and extract the trust
certificate to a file.

b. Open the trust key ring file of the previous product version using the key management utility and
add the certificate extracted from Version 5.

5. If single signon (SSO) is enabled, export keys from the Version 5 product and import them into the
previous product version. The Version 4 product requires the fix, PQ61779, and the Version 3.5
product requires the fix, PQ59667, for SSO to function.

6. Verify that the application uses the correct JNDI name. In Version 5, the enterprise beans are
registered with long JNDI names like, (top)/nodes/node_name/servers/server_name/Hel1loHome.
Whereas in previous releases, enterprise beans are registered under a root like, (top)/Hel1oHome.
Therefore, EJB applications from previous versions perform a lookup on the Version 5 enterprise
beans.

You can also create EJB name bindings in Version 5 that are compatible with the previous version. To
create an EJB name binding at the root Version 5, start the administrative console and click
Environment > Naming > Naming Space Bindings > New > EJB > Next. Complete all the fields
and enter a short name (for example, -HelloHome) as the JNDI Name. Click Next and Finish.

7. Stop and restart all the servers.

8. Make sure that the correct naming bootstrap port is used to perform naming lookup. In previous
product versions, the naming bootstrap port is 900. In Version 5, the bootstrap port is 2809.

Security: Resources for learning

Use the following links to find relevant supplemental information about Securing applications and their
environment. The information resides on IBM and non-IBM Internet sites, whose sponsors control the
technical accuracy of the information.

These links are provided for convenience. Often, the information is not specific to the IBM WebSphere
Application Server product, but is useful all or in part for understanding the product. When possible, links
are provided to technical papers and Redbooks that supplement the broad coverage of the release
documentation with in-depth examinations of particular product areas.

View links to additional information about:

« [‘Planning, business scenarios and IT architecture’|
* [*Programming model and decisions’]

* [‘Programming specifications” on page 22

« [*Administration” on page 22|

Planning, business scenarios and IT architecture

« [WebSphere Application Server Library|

« [WebSphere Application Server Support

« [WebSphere Application Server Version 5 Security Redbook|
+ [Accessing the Samples (Samples Gallery)|

The technology sample in the WebSphere Application Server Samples Gallery contains several
security-related samples including the form login sample and the Java Authentication and Authorization
Service (JAAS) login sample.

. |WebSphere Application Server security: Presentation series|

Programming model and decisions
» JSSE Documentation.

Refer to the |nttp://www.ibm.com/developerworks/java/jdk/security/jsseDocs. zip| file for the Javadoc of the
APls, JSSE Reference Guide, and JSSE samples.
* iKeyman documentation.

Look in the |http://www.ibm.com/developerworks/java/jdk/security/iKeymanDocs.zip| file for the Secure
Sockets Layer (SSL) Introduction and iKeyman documentation.

Chapter 4. Integrating IBM WebSphere Application Server security with existing security systems 21

http://www-3.ibm.com/software/webservers/appserv/library.html
http://www-3.ibm.com/software/webservers/appserv/support.html
http://www.redbooks.ibm.com/pubs/pdfs/redbooks/sg246573.pdf
http://www-106.ibm.com/developerworks/websphere/library/techarticles/0409_botzum/0409_botzum.html
http://www.ibm.com/developerworks/java/jdk/security/jsseDocs.zip
http://www.ibm.com/developerworks/java/jdk/security/iKeymanDocs.zip

JCE documentation.
— For the JCA spec and JCE API usage refer to the
[http://www.ibm.com/developerworks/java/jdk/security/jceDocs.zip| file.
— For JCE sample applications refer to the
[http://www.ibm.com/developerworks/java/jdk/security/jceDocs.zip| file.
— For Java Cryptography Architecture Reference refer to the
[http://www.ibm.com/developerworks/java/jdk/security/jceDocs.zip| file.
— For how to implement a JCE provider refer to the
|http://www.ibm.com/deveIoperworks/java/jdk/security/jceDocs.zipl file.
— For the Javadoc of JCE APIs refer to the
[http://www.ibm.com/developerworks/java/jdk/security/jceDocs.zip| file.
— For the 1.4.2 release of the IBM developer kit for the Java platform refer to the
[106.ibm.com/developerworks/java/library/j-ibmsecurity.html| file.

Programming specifications

J2EE Specifications|

EJB Specifications|

Servlet Specifications]

Common Secure Interoperability Version 2 (CSIv2) Specification|
JAAS Specification.

For programming and usage in JAAS, refer to the specification located at
[http://www.ibm.com/developerworks/java/jdk/security] and scroll down to find the JAAS documentation
for your platform. This document contains the following when unpacked:

— login.html - LoginModule Developer’'s Guide

— api.html - Developer’s Guide (JAAS JavaDoc)

— HelloWorld.tar - Sample JAAS Application

Java 2 Platform, Standard Edition, v 1.4.2 API Specification|

Java Authorization Contract for Containers (JSR 115) Specification|

Administration

WebSphere Application Server Version 4.0 Security Redbook: WebSphere Security Model
IBM HTTP Server Support and Documentation|

IBM Directory Server Support and Documentation|

IBM developer kits|

This Web site provides access to the IBM developer kits provided by the IBM Centre for Java
Technology Development. Using this Web site, you can find various security and diagnostic information
including information on the Federal Information Processing Standard, Java Version 1.4.1, Java Version
1.4.2, the iKeyman tool, and the Public Key Cryptography Standards (PKCS).

IBM cryptographic hardware devices|

Supported hardware, software and APIs prerequisite Web site]

WebSphere education on demand: Enabling security best practice tutorials|
http://www.redbooks.ibm.com/abstracts/sg244986.html|?Open|

22 BM WebSphere Application Server Network Deployment, Version 6: Securing applications and their environment

http://www.ibm.com/developerworks/java/jdk/security/jceDocs.zip
http://www.ibm.com/developerworks/java/jdk/security/jceDocs.zip
http://www.ibm.com/developerworks/java/jdk/security/jceDocs.zip
http://www.ibm.com/developerworks/java/jdk/security/jceDocs.zip
http://www.ibm.com/developerworks/java/jdk/security/jceDocs.zip
http://www-106.ibm.com/developerworks/java/library/j-ibmsecurity.html
http://www-106.ibm.com/developerworks/java/library/j-ibmsecurity.html
http://java.sun.com/j2ee/download.html
http://java.sun.com/products/ejb/docs.html
http://java.sun.com/products/servlet/download.html
http://www.omg.org/technology/documents/corba_spec_catalog.htm#CSIv2
http://www.ibm.com/developerworks/java/jdk/security/
http://java.sun.com/j2se/1.4/docs/api/index.html
http://java.sun.com/j2ee/javaacc/
http://www.redbooks.ibm.com/pubs/pdfs/redbooks/sg246520.pdf?#M10.8.newlink.WebSphereSecurityModel
http://www-3.ibm.com/software/webservers/httpservers/support.html
http://www-3.ibm.com/software/network/directory/support/
http://www.ibm.com/developerworks/java/jdk/index.html
http://www.ibm.com/security/cryptocards/html/library.shtml
http://www-3.ibm.com/software/webservers/appserv/doc/latest/prereq.html
http://www.ibm.com/developerworks/websphere/library/tutorials/ondemand/
http://www.redbooks.ibm.com/abstracts/sg244986.html?Open

Chapter 5. Planning to secure your environment

There are several communication links from a browser on the Internet, through Web servers and product
servers, to the enterprise data at the back-end. This section examines some typical configurations and
common security practices. WebSphere Application Server security is built on a layered security
architecture as showed in the following figure. This section also examines the security protection that is
offered by each security layer and common security practice for good quality of protection in end-to-end
security. The following figure illustrates the building blocks that comprise the operating environment for
security within WebSphere Application Server:

WebSphere Security Layers

* Naming * HTML
» Userregistry * Servlet or JSP file WebSphere Application Server resources
* JMXmessage Enterprise beans
beans * Web services
A4
1 1
Access control : :
v_ v
| WebSphere security | WebSphere Application Server security
| J2EE security API |
| corea seaurity (csiv2) | Java security

| Java 2 security |

| Java Virtual Machine (JVM) 1.4 |

| Operating system security | Platform security

* Operating System Security -

The security infrastructure of the underlying operating system provides certain security services for
WebSphere Application Server. These services include the file system security support that secure
sensitive files in the product installation for WebSphere Application Server. The system administrator
can configure the product to obtain authentication information directly from the operating system user
registry.

» Network Security - The Network Security layers provide transport level authentication and message
integrity and encryption. You can configure the communication between separate application servers to
use Secure Sockets Layer (SSL) and HTTPS. Additionally, you can use IP Security and Virtual Private
Network (VPN) for added message protection.

« JVM 1.4 - The JVM security model provides a layer of security above the operating system layer.

» Java 2 Security - The Java 2 Security model offers fine-grained access control to system resources
including file system, system property, socket connection, threading, class loading, and so on.
Application code must explicitly grant the required permission to access a protected resource.

* OMG CSIv2 Security - Any calls made among secure Object Request Brokers (ORB) are invoked over
the Common Security Interoperability Version 2 (CSIv2) security protocol that sets up the security
context and the necessary quality of protection. After the session is established, the call is passed up to
the enterprise bean layer. For backward compatibility, WebSphere Application Server supports the
Secure Authentication Service (SAS) security protocol, which was used in prior releases of WebSphere
Application Server and other IBM products.

» J2EE Security - The security collaborator enforces Java 2 Platform, Enterprise Edition (J2EE)-based
security policies and supports J2EE security APIs.

© Copyright IBM Corp. 2004 23

* WebSphere Security - WebSphere Application Server security enforces security policies and services
in a unified manner on access to Web resources, enterprise beans, and JMX administrative resources.
It consists of WebSphere Application Server security technologies and features to support the needs of
a secure enterprise environment.

WebSphere Application Server Network Deployment installation: The following figure shows a typical
multiple-tier business computing environment for a WebSphere Application Server Network Deployment
installation.

Important: There is a node agent instance on every computer node.

Each product application server consists of a Web container, an EJB container, and the administrative
subsystem. The WebSphere Application Server deployment manager contains only WebSphere
administrative code and the administrative console. The administrative console is a special J2EE Web
application that provides the interface for performing administrative functions. WebSphere Application
Server configuration data is stored in XML descriptor files, which must be protected by operating system
security. Passwords and other sensitive configuration data can be modified using the administrative
console. However, you must protect these passwords and sensitive data. For more information, see
[‘Protecting plain text passwords” on page 39

The administrative console Web application has a setup data constraint that requires the administrative
console servlets and JSP files to be accessed only through an SSL connection when global security is
enabled.

After installation, the administrative console HTTPS port is configured to use DummyServerKeyFile.jks
and DummyServerTrustFile.jks with the default self-signed certificate. Using the dummy key and trust file
certificate is not safe and you need to generate your own certificate to replace dummy ones immediately. It
is more secure if you first enable global security and complete other configuration tasks after global
security is enforced.

Cell

Clustered application servers

. Machine € Machine D
Client
HTTP
r:equests Web - EJB
: container container
1 @ Web server cluster cluster
E Machine B e manager manager
1 p yad
: C Z
! %
1

HTTP |
-> server |/ 1
i Node agent
1
1

w JMS server

-

& =

Application
data
Clients K} Machine A
Deployment Data tier
manager (optional)

Figure 1. Multiple-tier business computing environment.

24

IBM WebSphere Application Server Network Deployment, Version 6: Securing applications and their environment

Global and administrative security:

WebSphere Application Servers interact with each other through CSIv2 and Secure Authentication
Services (SAS) security protocols as well as HTTP and HTTPS protocols.

You can configure these protocols to use Secure Sockets Layer (SSL) when you enable WebSphere
Application Server global security. The WebSphere Application Server administrative subsystem in every
server uses Simple Object Access Protocol (SOAP) Java Management Extensions (JMX) connectors and
Remote Method Invocation over the Internet Inter-ORB Protocol (RMI/IIOP) JMX connectors to pass
administrative commands and configuration data. When global security is disabled, the SOAP JMX
connector uses HTTP protocol and the RMI/IIOP connector uses the TCP/IP protocol. When global
security is enabled, the SOAP JMX connector always uses HTTPS protocol. When global security is
enabled, you can configure the RMI/IIOP JMX connector to either use SSL or to use TCP/IP. It is
recommended that you enable global security and enable SSL to protect the sensitive configuration data.

Global security and administrative security configuration is at the cell level.

When global security is enabled, you can disable application security at each individual application server
by clearing the Enable global security option on the global security panel. The Global security panel is
accessed through the administrative console by clicking Security > Global security. Disabling application
server security does not affect the administrative subsystem in that application server, which is controlled
by the global security configuration only. Both administrative subsystem and application code in an
application server share the optional per server security protocol configuration. For more information, see
[‘Configuring server security” on page 155.|

Security for J2EE resources: Security for J2EE resources is provided by the Web container and the EJB
container. Each container provides two kinds of security: declarative security and programmatic security.

In declarative security, an application security structure includes data integrity and confidentiality,
authentication requirements, security roles, and access control. Access control is expressed in a form that
is external to the application. In particular, the deployment descriptor is the primary vehicle for declarative
security in the J2EE platform. WebSphere Application Server maintains J2EE security policy, including
information derived from the deployment descriptor and specified by deployers and administrators in a set
of XML descriptor files. At run time, the container uses the security policy that is defined in the XML
descriptor files to enforce data constraints and access control.

When declarative security alone is not sufficient to express the security model of an application, you might
use [‘Programmatic login” on page 70[to make access decisions. When global security is enabled and
application server security is not disabled at the server level, J2EE applications security is enforced. When
the security policy is specified for a Web resource, the Web container performs access control when the
resource is requested by a Web client. The Web container challenges the Web client for authentication
data if none is present according to the specified authentication method, ensures the data constraints are
met, and determines whether the authenticated user has the required security role. The Web security
collaborator enforces role-based access control by using an access manager implementation. An access
manager makes authorization decisions that are based on security policy derived from the deployment
descriptor. An authenticated user principal can access the requested servlet or JavaServer Pages (JSP)
file if it has one of the required security roles. Servlets and JSP pages can use the HttpServletRequest
methods isUserInRole and getUserPrincipal.

When global security is enabled and application server security is not disabled, the EJB container enforces
access control on EJB method invocation.

The authentication takes place regardless of whether method permission is defined for the specific EJB
method. The EJB security collaborator enforces role-based access control by using an access manager
implementation. An access manager makes authorization decisions that are based on security policy
derived from the deployment descriptor. An authenticated user principal can access the requested EJB

Chapter 5. Planning to secure your environment 25

method if it has one of the required security roles. EJB code can use the EJBContext methods
isCallerInRole and getCallerPrincipal. Use the J2EE role-based access control to protect valuable
business data from access by unauthorized users from both the Internet and the intranet. Refer to
“Securing Web applications using an assembly tool” on page 122|and [‘Securing enterprise bean|
applications” on page 120/

Role-based security: WebSphere Application Server extends the security, role-based access control to
administrative resources including the JMX system management subsystem, user registries, and JNDI
name space. WebSphere administrative subsystem defines four administrative security roles:

Monitor role
A monitor can view the configuration information and status, but cannot make any changes.

Operator role
An operator can trigger run-time state changes, such as start an application server or stop an
application, but cannot make configuration changes.

Configurator role
A configurator can modify the configuration information, but cannot change the state of the run
time.

Administrator role
An operator as well as a configurator, which additionally can modify sensitive security configuration
and security policy such as setting server ID and password, enable or disable global security and
Java 2 security, and map users and groups to the administrator role.

A user with the configurator role can perform most administrative work including installing new applications
and application servers. There are certain configuration tasks a configurator does not have sufficient
authority to do when global security is enabled, including modifying a WebSphere Application Server
identity and password, LTPA password and keys, and assigning users to administrative security roles.

Those sensitive configuration tasks require the administrative role because the server ID is mapped to the
administrator role.

WebSphere Application Server administrative security is enforced when global security is enabled. It is
recommended that WebSphere Application Server global security be enabled to protect administrative
subsystem integrity. Application server security can be selectively disabled if there is no sensitive
information to protect. For securing administrative security, refer to[‘Assigning users to administrator roles’]
lon page 161| and [‘Assigning users and groups to roles” on page 132

Java 2 security permissions: WebSphere Application Server uses the Java 2 security model to create a
secure environment to run application code. Java 2 security provides a fine-grained and policy-based
access control to protect system resources such as files, system properties, opening socket connections,
loading libraries, and so on. The J2EE Version 1.4 specification defines a typical set of Java 2 security
permissions that Web and EJB components expect to have. These permissions are shown in the following
table.

Table 1. J2EE security permissions set for Web components

Security Permission Target Action
java.lang.RuntimePermission loadLibrary

java.lang.RuntimePermission queuePrintJob

java.net.SocketPermission * connect
java.io.FilePermission * read, write
java.util.PropertyPermission * read

26 1BM WebSphere Application Server Network Deployment, Version 6: Securing applications and their environment

Table 2. J2EE security permissions set for EJB components

Security Permission Target Action
java.lang.RuntimePermission queuePrintJob

java.net.SocketPermission * connect
java.util.PropertyPermission * read

The WebSphere Application Server Java 2 security implementation is based on the J2EE Version 1.4
specification. The specification granted Web components read and write file access permission to any file
in the file system, which might be too broad. The WebSphere Application Server default policy gives Web
components read and write permission to the subdirectory and the subtree where the Web module is
installed. The default Java 2 security policy for all Java virtual machines and WebSphere Application
Server processes are contained in the following policy files:

${java.home}/jre/1ib/security/java.policy
Used as the default policy for the Java virtual machine (JVM).

${USER_INSTALL_ROOT}/properties/server.policy
Used as the default policy for all product server processes

To simplify policy management, WebSphere Application Server policy is based on resource type rather
than code base (location). The following files are the default policy files for WebSphere Application Server
subsystem. These policy files, which are an extension of WebSphere Application Server run time and are
referred to as Service Provider Programming Interfaces (SPI), are shared by multiple J2EE applications:

${WAS_INSTALL ROOT}/profiles/profile name/config/cells/cell name/nodes/node_name/spi.policy
Used for embedded resources defined in the resources.xml file, such as the Java Message
Service (JMS), JavaMail, and JDBC drivers.

${WAS_INSTALL_ROOT}/profiles/profile _name/config/cells/cell name/nodes/node name/library.policy
Used by the shared library that is defined by the WebSphere Application Server administrative
console.

${WAS_INSTALL_ROOT}/profiles/profile name/config/cells/cell_name/nodes/node_name/app.policy
Used as the default policy for J2EE applications.

In general, applications should not require more permissions to run than those recommended by the J2EE
specification to be portable among various application servers. However, some applications might require
more permissions. WebSphere Application Server supports a per application policy file, was.policy, to be
packaged together with each application from granting extra permissions to that application.

Attention: Grant extra permissions to an application after careful consideration because of the potential of
compromising the system integrity.

WebSphere Application Server uses a permission filtering policy file to alert users when an application
requires permissions that are on the filter list during application installation and causes the offended
application installation to fail. For example, it is recommended that you not give the
java.lang.RuntimePermission exitVM permission to an application so that application code cannot
terminate WebSphere Application Server. The filtering policy is defined by the filterMask in
${WAS_INSTALL_ROOT}/profiles/profile_name/config/cells/cell_name/filter.policy. Moreover,
WebSphere Application Server also performs run-time permission filtering that is based on the run-time
filtering policy to ensure that application code is not granted a permission that is considered harmful to
system integrity.

WebSphere Application Server Version 4 supported Java 2 Security, but enforced only three permissions
checking against exitVM, create and set the security manager. Other permission checking is disabled by
default.

Chapter 5. Planning to secure your environment 27

Therefore, many applications developed for prior releases of WebSphere Application Server might not be
Java 2 Security ready. To migrate those applications to WebSphere Application Server Version 6 quickly,
you might temporarily give those applications java.security.AT1Permission in the was.policy file. It is
recommended to test or make those applications Java 2 Security ready; for example, identity what extra
permissions, if any, are required and to grant only those permissions to a particular application. Not
granting applications A11Permission can certainly reduce the risk of compromising system integrity. For
more information on migrating applications to WebSphere Application Server Version 6, refer to
Java 2 security policy” on page 506

The WebSphere Application Server run time uses Java 2 Security to protect sensitive run-time functions;
therefore, it is recommended that you enforce Java 2 security. Applications that are granted with
AT1Permission not only have access to sensitive system resources, but also WebSphere Application
Server run-time resources and can potentially cause damage to both. In cases where an application can
be trusted to be safe, WebSphere Application Server allows Java 2 Security to be disabled on a per
application server basis. You can enforce Java 2 security by default in the security center and disable the
per application server Java 2 Security flag to disable it at the particular application server.

When you specify the Enable global security and Enable Java 2 Security options on the Global security
panel of the administrative console, the information, along with other sensitive configuration data, are
stored in a set of XML configuration files. Both role-based access control and Java 2 Security
permission-based access control are employed to protect the integrity of the configuration data. The
example uses configuration data protection to illustrate how system integrity is maintained.

* When Java 2 security is enforced, the application code cannot access the WebSphere Application
Server run-time classes that manage the configuration data unless it is granted the required WebSphere
Application Server run-time permissions.

* When Java 2 security is enforced, application code cannot access the WebSphere Application Server
configuration XML files unless it has been granted the required file read and write permission.

* The JMX administrative subsystem provides SOAP over HTTP or HTTPS and RMI/IIOP remote
interface to enable application programs to extract and to modify configuration files and data. When
global security is enabled, an application program can modify the WebSphere Application Server
configuration if the application program has presented valid authentication data and the security identity
has the required security roles.

* If a user can disable Java 2 security, then that user can modify the WebSphere Application Server
configuration including the WebSphere Application Server security identity and authentication data along
with other sensitive data. Only users with the administrator security role can disable Java 2 security.

» Because WebSphere Application Server security identity is given to the administrator role, only users
with the administrator role can disable global security, to change server ID and password, and to map
users and groups to administrative roles, and so on.

Other Runtime resources: Other WebSphere Application Server run time resources are protected by a
similar mechanism as described previously. It is very important to enable WebSphere Application Server
global security and to enforce Java 2 Security. J2EE Specification defines several authentication methods
for Web components: HTTP Basic Authentication, Form-Based Authentication, and HTTPS Client
Certificate Authentication. When you use client certificate login, it is more convenient for the browser client
if the Web resources have integral or confidential data constraint. If a browser uses HTTP to access the
Web resource, the Web container automatically redirects the browser to the HTTPS port. The CSlv2
security protocol also supports client certificate authentication. You can also use SSL client authentication
to setup secure communication among a selected set of servers based on a trust relationship.

If you start from the WebSphere Application Server plug-in at the Web server, you can configure SSL
mutual authentication between it and the WebSphere Application Server HTTPS server. When using a
self-signed certificate, you can restrict the WebSphere Application Server plug-in to communicate with only
the selected two WebSphere Application Server servers as shown in the following figure. Suppose you
want to restrict the HTTPS server in WebSphere Application Server A and in WebSphere Application
Server B to accept secure socket connections only from the WebSphere Application Server plug-in W. You
can generate three self-signed certificates using the IKEYMAN and the certificate management utilities.

28 1BM WebSphere Application Server Network Deployment, Version 6: Securing applications and their environment

For example, use certificate W and trust certificate A and B. The HTTPS server of WebSphere Application
Server A is configured to use certificate A and to trust certificate W. The HTTPS server of WebSphere
Application Server B is configured to use certificate B and to trust certificate W. For more information on
IKEYMAN, refer to[‘Starting the key management utility (iKeyman)” on page 457

l l
I I
1 | .
Browser ! ! 1 Enterprise
| | Internet I Information
1 1 ! Systems
I | I
I Demilitarized Zone 1 WebSphere WebSphere | 1[5 base
Fei ezl I
: (DMZ) : Application Application | (DB2 version
. 5| ServerA | Server C 8.1 fix pack 6)
Web
= server = Administrative Administrative
z 2
g > > g
g WebSphere £ | Ma
° Application‘ g WebSphere WebSphere cICs
o Server plug-in a Application Application
w L | > Server B > Server D
Administrative Administrative

IBM Directory WebSphere ﬁ Browse
Application Server

(LDAP)
Deployment Manager,
Administrative
Console

The trust relationship depicted in the previous picture is shown in the following table.

Server Key Trust
WebSphere Application Server plug-in W A B
WebSphere Application Server A A w
WebSphere Application Server B B w

In a Network Deployment installation, the WebSphere Application Server Deployment Manager is a central
point of administration. System management commands are sent from the Deployment Manager to each
individual application server. When global security is enabled, you can configure the WebSphere
Application Servers to require SSL and mutual authentication. Suppose you want to further restrict
WebSphere Application Server A so that it can communicate with WebSphere Application Server C only
and WebSphere Application Server B can communicate with WebSphere Application Server D only.

Attention: As mentioned previously, all WebSphere Application Servers must be able to communicate
with WebSphere Application Server Deployment Manager E; therefore, when using self-signed
certificates, you might configure the CSlv2 and SOAP/HTTPS Key and trust relationship, as
shown in the following table.

Server Key Trust
WebSphere Application Server Server A C E
A

Chapter 5. Planning to secure your environment 29

Server Key Trust

WebSphere Application Server Server B D, E

B

WebSphere Application Server Server C A E

C

WebSphere Application Server Server D B, E

D

WebSphere Application Server E A B,C,D

Deployment Manager E

When WebSphere Application Server is configured to use an Lightweight Directory Access Protocol
(LDAP) user registry, you also can configure SSL with mutual authentication between every application
server and the LDAP server with self-signed certificate so that a password is not passed in clear text from
WebSphere Application Server to the LDAP server. In this example, the node agent processes are not
discussed. Each node agent must communicate with application servers on the same node and with the
Deployment Manager. Node agents also must communicate with LDAP servers when they are configured
to use an LDAP user registry. It is reasonable to let the deployment manager and the node agents use the
same certificate. Suppose application server A and C are on the same computer node. The Node agent
on that node needs to have certificates A and C in its trust file. WebSphere Application Server does not
provide a user registry configuration or management utility. In addition, it does not dictate the user registry
password policy. It is recommended that you use the password policy recommended by your user registry,
including the password length and expiration period.

1. Determine which versions of WebSphere Application Server you are using.
2. Review the WebSphere Application Server security architecture.

3. Review each of the following topics as also defined in Related reference.
+ [‘Global security and server security” on page 154|
« [‘Authentication protocol for EJB security” on page 385|
— [‘Supported authentication protocols” on page 393
— [‘Common Secure Interoperability Version 2 features” on page 389
— [‘ldentity assertion” on page 389
« [‘Authentication mechanisms” on page 165|
— [‘Lightweight Third Party Authentication settings” on page 170|
— [Trust associations” on page 172|
— [‘Single signon” on page 17§|
« [‘User registries” on page 196
— [‘Local operating system user registries” on page 198
— [‘Lightweight Directory Access Protocol” on page 204
« [‘Custom user registries” on page 218|
« [‘Java 2 security” on page 475
— [“Java 2 security policy files” on page 483
« [‘Java Authentication and Authorization Service” on page 247
— [‘Programmatic login” on page 70
« [*J2EE Connector security” on page 263
« [*Access control exception” on page 479
— [‘Role-based authorization” on page 124]
— [‘Administrative console and naming service authorization” on page 158|
« |‘Secure Sockets Layer” on page 421|
— [‘Authenticity” on page 423
- [‘Confidentiality” on page 424
— [‘Integrity” on page 426

30 BM™ WebSphere Application Server Network Deployment, Version 6: Securing applications and their environment

Security considerations when adding a Base Application Server node
to Network Deployment

At some point, you might decide to centralize the configuration of your stand-alone base application
servers by adding them into a Network Deployment cell. If your base application server is currently
configured with security, there are some issues to consider. The major issue when adding a node to the
cell is whether the user registries between the base application server and the Deployment Manager are
the same.

When adding a node to the cell, you automatically inherit both the user registry and the authentication
mechanism of the cell.

For distributed security, all servers in the cell must use the same user registry and authentication
mechanism. To recover from a user registry change, you must modify your applications so that the user
and group to role mappings are correct for the new user registry. To do this, see the article on
lusers and groups to roles” on page 132.]

Another major issue is the SSL public-key infrastructure. Prior to performing addNode with the Deployment
Manager, verify that addNode can communicate as an SSL client with the Deployment Manager. This
requires that the addNode truststore (configured in sas.client.props) contains the signer certificate of the
Deployment Manager personal certificate as found in the keystore (specified in the administrative console).

See the article, [‘Managing digital certificates” on page 454 |

The following are other issues to consider when running the addNode command with security:

1. When attempting to run system management commands such as addNode, you need to explicitly
specify administrative credentials to perform the operation. The addNode command accepts -username
and -password parameters to specify the userid and password, respectively. The user ID and password
that are specified must be an administrative user; for example, a user that is a member of the console
users with Operator or Administrator privileges or the administrative user ID configured in the User
Registry. An example for addNode, addNode CELL_HOST 8879 -includeapps -username user -password
pass. -includeapps is optional, but this option attempts to include the server applications into the
Deployment Manager. The addNode command might fail if the user registries used by the WebSphere
Application Server and the Deployment Manager are not the same. To correct this problem, either
make the user registries the same or turn off security. If you change the user registries, remember to
verify that the users to roles and groups to roles mappings are correct. See |addNode command| for
more information on the addNode syntax.

2. Adding a secured remote node through the administrative console is not supported. You can either
disable security on the remote node before performing the operation or perform the operation from the
command line using the addNode script.

3. Before running the addNode command, you must verify that the truststore files on the nodes can
communicate with the keystore files from the Deployment Manager and vice versa. When using the
default DummyServerKeyFile and DummyServerTrustFile, you should not see this problem as these are
already able to communicate. However, never use these dummy files in a production environment or
anytime sensitive data is being transmitted.

4. After running addNode, the application server is in a new SSL domain. It might contain SSL
configurations that point to keystore and truststore files that are not prepared to interoperate with other
servers in the same domain. Consider which servers will be intercommunicating and ensure that the
servers are trusted within your truststore files.

Proper understanding of the security interactions between distributed servers greatly reduces problems
encountered with secure communications. Security adds complexity because additional function needs to

Chapter 5. Planning to secure your environment 31

be managed. For security to function, it needs thorough consideration during the planning of your
infrastructure. This document helps to reduce the problems that could occur due to inherent security
interactions.

When you have security problems related to the WebSphere Application Server Network Deployment
environment, check the|Chapter 16, “Troubleshooting security configurations,” on page 985| section to see
if you can get information about the problem. When trace is needed to solve a problem, because servers
are distributed, quite often it is required to gather trace on all servers simultaneously while recreating the
problem. This trace can be enabled dynamically or statically, depending on the type problem occurring.

Security considerations specific to a multi-node or process Network
Deployment environment

WebSphere Application Server Network Deployment allows for centralized management of distributed
nodes and application servers. This inherently brings complexity, especially when security is included into
the mix. Because everything is distributed, security plays an even larger role in ensuring that
communications are appropriately secure between applications servers and node agents, and between
node agents (a node specific configuration manager) and the Deployment Manager (a domain-wide,
centralized configuration manager). The following issues should be considered when operating in this
environment, but preferably prior to going to this environment.

Because the processes are distributed, the authentication mechanism that must be used is LTPA. The
LTPA tokens are encrypted and signed and therefore, forwardable to remote processes. However, the
tokens have expirations. The SOAP connector (the default connector) used for administrative security does
not have retry logic for expired tokens, however, the protocol is stateless so a new token is created for
each request (if there is not sufficient time to execute the request with the given time left in the token). An
alternative connector is the RMI connector, which is stateful and has some retry logic to correct expired
tokens by resubmitting the requests after the error is detected. Also, because tokens have time-specific
expiration, the synchronization of the system clocks are crucial to the proper operation of token-based
validation. If the clocks are off by too much (approximately 10-15 minutes), you can encounter
unrecoverable validation failures that can be avoided by having them in sync. Verify that the clock time,
date, and time zones are all the same between systems. It is acceptable for nodes to be across time
zones, provided that the times are correct within the time zones (for example, 5 PM CST = 6 PM EST, and
SO on).

The following are issues to consider when using or planning for a Network Deployment environment.

1. When attempting run system management commands such as stopNode, you must explicitly specify
administrative credentials to perform the operation. Most commands accept -username and -password
parameters to specify the user ID and password, respectively. The user ID and password that are
specified should be an administrative user; for example, a user who is a member of the console users
with Operator or Administrator privileges or the administrative user ID configured in the user registry.
An example for stopNode, stopNode -username user -password pass.

2. Verify that the configuration at the node agents are always synchronized with the Deployment Manager
prior to starting or restarting a node. To manually get the configuration synchronized, issue the
syncNode command from each node that is not synchronized. To synchronize the configuration for
node agents that are started, click System Administration > Nodes and select all started nodes. Click
Synchronize.

3. Verify that the clocks on all systems are in sync including the time zone, time and date. If they are out
of sync, the tokens expire immediately when they reach the target server due to the time differences.

4. Verify that the LTPA token expiration period is long enough to complete your longest downstream
request. Some credentials are cached and therefore the timeout does not always count in the length of
the request.

5. The administrative connector used by default for system management is SOAP. SOAP is a stateless
HTTP protocol. For most situations, this connector is sufficient. When running into a problem using the

32 BM WebSphere Application Server Network Deployment, Version 6: Securing applications and their environment

SOAP connector it might be desirable to change the default connector on all servers from SOAP to
RMI. The RMI connector uses CSIv2, a stateful or interoperable protocol, and can be configured to use
identity assertion (downstream delegation), message layer authentication (BasicAuth or Token), and
client certificate authentication (for server trust isolation). To change the default connector on a given
server, go to Administration Services in Additional Properties for that server.

6. The following error message might occur within the administrative subsystem security. This indicates
that the sending process did not supply a credential to the receiving process. Typically the causes for
this problem are:

* The sending process has security disabled while the receiving process has security enabled. This
typically indicates one of the two processes are not in sync with the cell.

Note: Having security disabled for a specific application server should not have any effect on
administrative security.
* The clocks between the systems are not synchronized; this immediately makes the credential tokens
not valid. Verify that the time, date, and time zones are consistent between the two machines. An
error similar to the following might occur:

[9/18/02 16:48:23:859 CDT] 3b9cef35 RoleBasedAuth A CWSCJ0305I: Role
based authorization check failed for security name <null>,

accessld NO_CRED_NO_ACCESS_ID while invoking method
propagateNotifications:[Ljavax.management.Notification; on resource
NotificationService and module NotificationService.

7. When getting the following error message, validate that the clocks are synchronized between all
servers within the cell, and the configurations are synchronized between all nodes and the Deployment
Manager. An error similar to the following might occur:

[9/18/02 16:48:22:859 CDT] 3bd06f34 LTPAServerObj E CWSCJ0372E:
Validation of the token failed.

Proper understanding of the security interactions between distributed servers greatly reduces problems
encountered with secure communications. Security adds complexity because additional function must be
managed. For security to work properly, it needs thorough consideration during the planning of your
infrastructure. Hopefully, this document will help to reduce the problems that can occur due to inherent
security interactions.

When you have security problems related to the WebSphere Application Server Network Deployment
environment, check the |Chapter 16, “Troubleshooting security configurations,” on page 985 section to find
additional information about the problem. When trace is needed to solve a problem because servers are
distributed, quite often it is required to gather trace on all servers simultaneously while recreating the
problem. This trace can be enabled dynamically or statically, depending on the type problem occurring.

Creating login key files

1. Create a login key file. The authenticating user IDs, passwords, and target realms for each different
target server are specified in the login key file, which is an ASCII file. When the security authentication
service processes the login key file, the passwords in the file are encoded.

2. Add information to the login key file in the following format:

Realm_name User_ID Password

3. Make sure that the data conforms to the following rules:
* One realm name
* One user ID, and one password defined in each entry
* One entry per line
* No blank lines between entries
« Comments on separate lines only

Chapter 5. Planning to secure your environment 33

* Begin any comment with a pound sign (#):
Example:

Sample key file

: First target realm

#argetReaIm serverlD serverPassword

z Second target realm

iargetReaImZ serverlD2 serverPassword2
i End of key file

A sample file named wsserver.key also contains these instructions. After installation, you can locate
this sample file in the install _root/properties directory. You can use or modify the sample file as
needed for testing.

Note: You can place the login key file anywhere on a host machine running the application server.
However, it is recommended that you place the login key file under a securable file system .

After creating the login key files, read the article entitled, [‘Preparing truststore files.”|

Preparing truststore files

Secure Sockets Layer (SSL) protocol protects the communication between WebSphere Application
Servers. To complete the SSL connection, establish a valid truststore file for the WebSphere Application
Server. A truststore file is a key database file that contains the public keys (See|[‘Creating login key files’]

for information about how to create a new keystore file.)

1. Extract the public key of the server by using the key management tool from WebSphere Application
Server. For details, see [‘Configuring the server for request decryption: choosing the decryption|
fmethod” on page 921

2. Add the public key from the WebSphere Application Server as a signer certificate into the requesting
WebSphere Application Server truststore file. For details, see the related information about how to
[Importing signer certificates” on page 462 |

The WebSphere Application Server truststore file is now ready to use for SSL connections with the
WebSphere Application Server.

See [‘Configuring the application server for interoperability”| for interoperability.

Configuring the application server for interoperability

After the truststore file is ready, complete the following steps to configure the WebSphere Application
Server.

1. Configure the enterprise beans that access WebSphere Application Server. Before deploying the
enterprise beans, configure the RunAs Identity.

2. Enable security.
Enable outbound SAS authentication protocol.

4. Specify the truststore file in an Secure Sockets Layer (SSL) configuration alias and configure the
WebSphere Application Server with that alias.

w

34 BM WebSphere Application Server Network Deployment, Version 6: Securing applications and their environment

Set the Request timeout and Locate request timeout values to zero for the Object Request Broker
(ORB) service.

Specify a security property named com.ibm.CORBA .keyFileName for the absolute path of the login key
file created earlier.

Restart the WebSphere Application Server.

Chapter 5. Planning to secure your environment 35

36 1BM WebSphere Application Server Network Deployment, Version 6: Securing applications and their environment

Chapter 6. Implementing security considerations at
installation time

Complete the following tasks to implement security before, during, and after installing WebSphere

Application Server.

1. [“Securing your environment before installation.] This step describes how to install WebSphere
Application Server with the proper authority.

2. [Install the WebSphere Application Server, This step describes how to install WebSphere Application
Server as the root user on a UNIX platform or as an administrator on a Windows platform.
During installation you are prompted to [Chapter 7, “Migrating security configurations from previoug
[releases,” on page 43

3. [“Securing your environment after installation” on page 38 This step provides information on how to
protect password information after you install WebSphere Application Server.

Securing your environment before installation

The following instructions explain how to perform a product installation with proper authority on UNIX
platforms, Linux platforms, Solaris operating environments, and Windows platforms.

UNIX platforms

On UNIX platforms, log on as root and verify that the umask value is 022.
To verify that the umask value is 022, execute the umask command.

To set up the umask value as 022, execute the umask 022 command.
Linux platforms and Solaris operating environments

On Linux platforms or Solaris operating environments, make sure that the /etc directory contains a
shadow password file. The shadow password file is named shadow and is in the /etc directory. If the
shadow password file does not exist, an error occurs after enabling global security and configuring the
user registry as local operating system.

To create the shadow file, run the pwconv command (with no parameters). This command creates an
/etc/shadow file from the /etc/passwd file. After creating the shadow file, you can configure local operating
system security.

Windows platforms

On Windows platforms, the logon user must be a member of the administrator group with the rights of Act
as part of the operating system and Log on as a service.

To add the rights to a user on a Windows 2000 platform:
1. Click Start > Programs > Administrative Tools > Local Security Policy (for domain configuration,
select Domain Security Policies, instead).

2. From the Local Security Settings Panel, click Local Policies > User Rights Assignment and add the
following rights to the user ID:
» Act as part of the operating system
* Log on as a service

© Copyright IBM Corp. 2004 37

Securing your environment after installation

WebSphere Application Server depends on several configuration files created during installation. These
files contain password information and need protection. Although the files are protected to a limited degree
during installation, this basic level of protection is probably not sufficient for your site. Verify that these files
are protected in compliance with the policies of your site.

The files in the install _root\profiles\profile name\config and
install_root\profiles\profile_name\properties , except for those in the following list, need protection.
For example, give permission to the user who logs onto the system for WebSphere Application Server
primary administrative tasks. Other users or groups, such as WebSphere Application Server console users
and console groups, who perform partial WebSphere Application Server administrative tasks, like
configuring, starting servers and stopping servers, need permissions as well.

The files in the install _root\profiles\profile name\properties directory that should not be protected
are:

* TraceSettings.properties
e client.policy

e client_types.xml

* implfactory.properties

* sas.client.props

e sas.stdclient.properties
* sas.tools.properties

* soap.client.props

* wsadmin.properties

* wsjaas_client.conf

1. Secure files on a Windows system:

a. Open the browser for a view of the files and directories on the machine.
Locate and right-click the file or the directory that you want to protect.
Click Properties.

Click the Security tab.

Remove the Everyone entry and any other user or group that you do not want to have access to

the file.

f. Add the users who can access the files with the proper permission.

2. Secure files on UNIX systems. This procedure applies only to the ordinary UNIX file system. If your
site uses access-control lists, secure the files by using that mechanism. Any site-specific requirements
can affect the owner, group, and corresponding privileges. For example, on AlX,

a. Go to the install root directory and change the ownership of the directory configuration and
properties to the user who logs onto the system for WebSphere Application Server primary
administrative tasks. Run the following command: chown -R logon_name directory _name
Where:

* login_name is a specified user or group.

» directory_name is the name of the directory that contains the files.

It is recommended that you assign ownership of the files that contain password information to the

user who runs the application server. If more than one user runs the application server, provide

permission to the group in which the users are assigned in the user registry.

Set up the permission by running the following command: chmod -R 770 directory_name.

Go to the install _root\profiles\profile name\properties directory and set the following file

permission to everybody by running the following command: chmod 777 file names. where

file_names are the following files:

e TraceSettings.properties

e client.policy

® a0 0o

38 BM™ WebSphere Application Server Network Deployment, Version 6: Securing applications and their environment

* client_types.xml

e implfactory.properties

* sas.client.props

e sas.stdclient.properties
* sas.tools.properties

* soap.client.props

* wsadmin.properties

* wsjaas_client.conf

d. Create a group for WebSphere Application Server and put the users who perform full or partial
WebSphere Application Server administrative tasks in that group.

e. If you want to use WebSphere MQ as a JMS provider, restrict access to the /var/mgm directories
and log files used. Give write access to the user ID mgm or members of the mgm user group only.

After securing your environment, only the users given permission can access the files. Failure to
adequately secure these files can lead to a breach of security in your WebSphere Application Server

applications.

If failures occur that are caused by file accessing permissions, check the permission settings.

Protecting plain text passwords

The WebSphere Application Server has several plain text passwords. These passwords are not encrypted,
but are encoded. The following is a list of files with encoded passwords:

Important: WAS_INSTALL_ROOT is a WebSphere Application Server Environment variable that you can
configure through the administrative console by clicking Environment > WebSphere

variables.

File name

Additional information

WAS INSTALL ROOT
\profiles\profile_name\config\cells\cell name\security.xml

The following fields contain encoded

passwords:

* LTPA password

+ JAAS authentication data

» User registry server password

* LDAP user registry bind password

» Key file password

* Trust file password

» Cryptographic token device
password

WAS_INSTALL_ROOT
\profiles\profile _name\properties\sas.client.props

Specifies passwords for:

» com.ibm.ssl.keyStorePassword
* com.ibm.ssl.trustStorePassword
» com.ibm.CORBA.loginPassword

war/WEB-INF/ibm_web_bnd.xm1

Specify passwords for the default basic
authentication for the "resource-ref”
bindings within all descriptors (except in
the Java cryptography architecture)

ejb jar/META-INF/ibm_ejbjar_bnd.xml

Specify passwords for the default basic
authentication for the "resource-ref”
bindings within all descriptors (except in
the Java crytography architecture)

client jar/META-INF/ibm-appclient_bnd.xml

Specify passwords for the default basic
authentication for the "resource-ref”
bindings within all descriptors (except in
the Java crytography architecture)

Chapter 6. Implementing security considerations at installation time

39

File name Additional information

ear/META-INF/ibm_application_bnd.xml Specify passwords for the default basic
authentication for the "run as” bindings
within all descriptors

WAS_INSTALL_ROOT The following fields contain encoded
\profiles\profile_name\config\cells\cell name\nodes\node name\servempasewoedsxm]
* Key file password
* Trust file password
» Cryptographic token device
password
* Authentication target password
» Session persistence password
* DRS Client data replication
password

WAS _INSTALL_ROOT\profiles\profile _name\config\cells\cell name\nodes\Poddotlamehgrfietds \comtaém Bmesdedces . xn
passwords:
* WAS40Datasource password
» mailTransport password
* mailStore password
* MQQueue queue mgr password

For WebSphere Application Server and WebSphere Application Server
Express:

WAS_INSTALL_ROOT\profiles\profile_name\config\cells\cell name\ws-
security.xml

WAS_INSTALL_ROOT\profiles\profile_name\config\cells\cell_name\nodes\node_name\servers\serverl\ws-security

For Network Deployment:
WAS_INSTALL_ROOT\profiles\profile_name\config\cells\cell_name\ws-security.xml

ibm-webservices-bnd.xmi

ibm-webservicesclient-bnd.xmi

WAS_INSTALL_ROOT Specifies passwords for:

\profiles\profile_name\properties\soap.client.propscom.ibm.ssl.trustStoreBastbmussl.keyStorePassword
» com.ibm.ssl.trustStorePassword
» com.ibm.SOAP.loginPassword

WAS_INSTALL_ROOT Specifies passwords for:

\profiles\profile_name\properties\sas.tools.properties » com.ibm.ssl.keyStorePassword
» com.ibm.ssl.trustStorePassword
» com.ibm.CORBA.loginPassword

WAS_INSTALL_ROOT Specifies passwords for:

\profiles\profile name\properties\sas.stdclient.propertiescom.ibm.ssl key@tirePeddweytiorePassword
= com.ibm.ssl.trustStorePassword
» com.ibm.CORBA.loginPassword

1

WAS _INSTALL_ROOT \profiles\profile _name\properties\wsserver.key

To re-encode a password in one of the previous files, complete the following steps:

1. Access the file using a text editor and type over the encoded password in plain text. The new
password is shown in plain text and must be encoded.

2. Use the PropFilePasswordEncoder.bat or PropFilePasswordEncode.sh file in the
WAS_INSTALL_ROOT\profiles\profile_name\bin\ directory to re-encode the password.

If you are re-encoding SAS properties files, type PropFilePasswordEncoder file name -sas and the
PropFilePasswordEncoder file encodes the known SAS properties.

40 1BM WebSphere Application Server Network Deployment, Version 6: Securing applications and their environment

If you are encoding files that are not SAS properties files, type PropFilePasswordEncoder file name
password _properties list

file_name is the name of the z/SAS properties file. password_properties_list is the name of the
properties to encode within the file.

Use the PropFilePasswordEncoder utility to encode WebSphere Application Server password files only.
The utility cannot encode passwords contained in XML files or other files that contain open and close
tags.

If you reopen the affected file or files, the passwords do not display in plain text. Instead, the passwords
appear encoded. WebSphere Application Server does not provide a utility for decoding the passwords.

PropFilePasswordEncoder command reference

Purpose

The PropFilePasswordEncoder command encodes passwords located in plain text property files. This
command encodes both Secure Authentication Server (SAS) property files and non-SAS property files.
After you have encoded the passwords, note that a decoding command does not exist. To encode
passwords, you must run this command from the install dir/bin directory of a WebSphere Application
Server installation.

Syntax

The command syntax is as follows:

PropFilePasswordEncoder file name

Parameters

The following option is available for the PropFilePasswordEncoder command:

-sas
Encodes SAS property files.

The following examples demonstrate the correct syntax.

PropFilePasswordEncoder file name password properties list
PropFilePasswordEncoder file name -SAS

Chapter 6. Implementing security considerations at installation time 41

42 BM WebSphere Application Server Network Deployment, Version 6: Securing applications and their environment

Chapter 7. Migrating security configurations from previous
releases

This article addresses the need to migration your security configurations from a previous release of IBM
WebSphere Application Server to WebSphere Application Server, Version 6. Complete the following steps
to migrate your security configurations:

» Before migrating your configurations, verify that the administrative server of the previous release is
running.

» If security is enabled in the previous release, obtain the server ID and password of the previous
release. This information is needed to log onto the administrative server of the previous release during
migration.

* You can optionally disable security in the previous release before migrating the installation. There is no
logon required during the installation.

1. Start the First steps wizard by launching the firststeps.bat or firststeps.sh file. The first steps file
is located in the following directory:

. Jinstall_root/profiles/profile name/firststeps/firststeps.sh
. install_roof\profiles\profile name\firststeps\firststeps.bat

2. On the First steps wizard panel, click Migration wizard.

3. Follow the instructions provided in the First steps wizard to complete the migration.
For more information on the Migration wizard, see |Using the Migration wizardl

The security configuration of previous WebSphere Application Server releases and its applications are
migrated to the new installation of WebSphere Application Server Version 6.

This task is for migrating an installation.

If custom user registry is used in the previous version, the migration process does not migrate the class
files used by the custom user registry in the <previous_install root>\classes directory. Therefore, after
migration, copy your custom user registry implementation classes to the install_root\classes directory.

If you upgrade from WebSphere Application Server, Version 5.x or 4.0.x to WebSphere Application Server,
Version 6, data associated with Version 5.x or 4.0.x trust associations is not automatically migrated to
Version 6. To migrate trust associations, see [‘Migrating trust association interceptors” on page 46.|

Migrating custom user registries

Before you perform this task, it is assumed that you already have a custom user registry implemented and
are working with WebSphere Application Server Version 5.x or 4.x. The custom registry in WebSphere
Application Server Version 4 is based on the CustomRegistry interface. For WebSphere Application Server
Version 5.x and later, the interface is called the UserRegistry interface. The WebSphere Application Server
Version 4-based custom registry works without any changes to the implementation in WebSphere
Application Server Version 5.x or later except when the implementation is using data sources to connect to
a database during initialization. If the previous implementation is using a data source to access a
database, change the implementation to use JDBC connections to connect to the database. The
WebSphere Application Server Version 4 version of the CustomRegistry interface was deprecated in
WebSphere Application Server Version 5. So, moving your implementation to the WebSphere Application
Server Version 5.x and later based interface is expected.

In WebSphere Application Server Version 5.x and later, in addition to the UserRegistry interface, the
custom user registry requires the Result object to handle user and group information. This file is already
provided in the package and you are expected to use it for the getUsers, getGroups and the
getUsersForGroup methods.

© Copyright IBM Corp. 2004 43

In WebSphere Application Server Version 4.x, it might have been possible to use other WebSphere
Application Server components (for example, datasources) to initialize the custom registry. This is no
longer possible in WebSphere Application Server Version 5 or later, because other components like the
containers are initialized after security and are not available during the registry initialization. In WebSphere
Application Server Version 5, a custom registry implementation is a pure custom implementation,
independent of other WebSphere Application Server components.

In WebSphere Application Server Version 4, if you had display names for users the EJB method
getCallerPrincipal() and the servlet methods getUserPrincipal() and getRemoteUser() returned the
display names. This behavior changed in WebSphere Application Server Version 5.x. By default, these
methods now return the security name instead of the display name. However, if you need the display
names to return, set the WAS_UseDisplayName property to true. See the getUserDisplayName method
description or the Javadoc, for more information.

If the migration tool was used to migrate the WebSphere Application Server Version 4 configuration to
WebSphere Application Server Version 5.x or later, be aware that this migration does not involve any
changes to your existing code. Since the WebSphere Application Server Version 4 custom registry works
in WebSphere Application Server Version 5.x or later without any changes to the implementation (except
when using data sources) you can use the Version 4-based custom registry after the migration without
modifying the code. Consider that the migration tool might not copy your implementation files from Version
4 to Version 5.x or later. You might have to copy them to the class path in the Version 6 setup (preferably
to the classes subdirectoy, just like in Version 4). If you are using the WebSphere Application Server
Network Deployment version, copy the files to the cell and to each of the nodes class paths.

In Version 5.x or later, a case insensitive authorization can occur when using the custom registry. This
authorization is in effect only on the authorization check. This function is useful in cases where your
custom registry returns inconsistent (in terms of case) results for user and group unique IDs.

Note: Setting this flag does not have any effect on the user names or passwords. Only the unique IDs
returned from the registry are changed to lower-case before comparing them with the information in
the authorization table, which is also converted to lowercase during run time.

Before proceeding, look at the UserRegistry interface. See [‘Developing custom user registries” on page]
for a description of each of these methods in detail and the changes from Version 4.

The following steps go through in detail all the changes required to move your WebSphere Application
Server Version 4 custom user registry to the Version 5.x or later custom user registry. The steps are very
simple and involve minimal code changes. The sample implementation file is used as an example when
describing some of the steps.

1. Change your implementation to UserRegistry instead of CustomRegistry. Change:

public class FileRegistrySample implements CustomRegistry
to
public class FileRegistrySample implements UserRegistry

2. Throw the java.rmi.RemoteException in the constructors public FileRegistrySample() throws
java.rmi.RemoteException

3. Change the mapCertificate method to take a certificate chain instead of a single certificate. Change

public String mapCertificate(X509Certificate cert)
to
public String mapCertificate(X509Certificate[]cert)

Having a certificate chain gives you the flexibility to act on the chain instead of one certificate. If you

are only interested in the first certificate just take the first certificate in the chain before processing. In
Version 5, the mapCertificate method is called to map the user in a certificate to a valid user in the

44 B™ WebSphere Application Server Network Deployment, Version 6: Securing applications and their environment

10.

registry, when certificates are used for authentication by the Web or the Java clients (transport layer
certificates, Identity Assertion certificates). In Version 4, this was only called by Web clients since the
Common Secure Interoperability Version 2 (CSIv2) protocol was not supported.

Remove the getUsers() method.

Change the signature of the getUsers(String) method to return a Result object and accept an
additional parameter (int). Change:

public List getUsers(String pattern)
to
public Result getUsers(String pattern, int Timit)

In your implementation, construct the Result object from the list of the users obtained from the
registry (whose number is limited to the value of the limit parameter) and call the setHasMore()
method on the Result object if the total number of users in the registry exceeds the limit value.

Change the signature of the getUsersForGroup(String) method to return a Result object and accept
an additional parameter (int) and throw a new exception called NotimplementedException. Change
the following:

public List getUsersForGroup(String groupName)
throws CustomRegistryException,
EntryNotFoundException {

to

public Result getUsersForGroup(String groupSecurityName, int limit)
throws NotlmplementedException,
EntryNotFoundException,
CustomRegistryException {

In Version 5.x and later, this method is not called directly by the WebSphere Application Server
Security component. However, other components of the WebSphere Application Server like the
WebSphere Business Integration Server Foundation Process Choreographer use this method when
staff assignments are modeled using groups. Since this already is implemented in WebSphere
Application Server Version 4, it is recommended that you change the implementation similar to the
getUsers method as explained in step 5.

Remove the getUniqueUserlds(String) method.
Remove the getGroups() method.

Change the signature of the getGroups(String) method to return a Result object and accept an
additional parameter (int). change the following:

public List getGroups(String pattern)
to

public Result getGroups(String pattern, int Timit)

In your implementation, construct the Result object from the list of the groups obtained from the
registry (whose number is limited to the value of the limit parameter) and call the setHasMore()

method on the Result object if the total number of groups in the registry exceeds the limit value.

Add the createCredential method. This method is not called at this time, so return as null.

public com.ibm.websphere.security.cred.WSCredential
createCredential (String userSecurityName)
throws CustomRegistryException,
NotImplementedException,

Chapter 7. Migrating security configurations from previous releases 45

EntryNotFoundException {
return null;

}

The first and second lines of the previous code example normally appear on one line. However, it
extended beyond the width of the page.

11. To build the Version 5.x and later implementation make sure you have the sas.jar and wssec.jar in
your class path.

sinstall _root%\java\bin\javac -classpath %WAS HOME%\1ib\wssec.jar;
%WAS _HOME%\1ib\sas.jar FileRegistrySample.java

Type the previous lines as one continuous line.

12. Copy the implementation classes to the product class path. The %install root%/1ib/ext directory is
the preferred location. If you are using the Network Deployment product, make sure that you copy
these files to the cell and all the nodes. Without the files in each of the node class paths the nodes
and the application servers in those nodes cannot start when security is on.

13. Use the administrative console to set up the custom registry. Follow the instructions in the
[‘Configuring custom user registries” on page 220|article to set up the custom registry including the
IgnoreCase flag. Make sure that you add the WAS UseDisplayName properties, if required.

Migrates a Version 4 custom registry to the Version 5.x and later custom registry.

This step is required to migrate a custom registry from WebSphere Application Server Version 4 to
WebSphere Application Server Version 5.x and later.

If you are enabling security, make sure you complete the remaining steps. Once completed, save the
configuration and restart all the servers. Try accessing some J2EE resources to verify that the custom
registry migration was successful.

Migrating trust association interceptors

The following topics are addressed in this document:

« [Changes to the product-provided trust association interceptors|
- [Migrating product-provided trust association interceptors|

+ [Changes to the custom trust association interceptors|

« [Migrating custom trust association interceptors|

Changes to the product-provided trust association interceptors

For the product provided implementation for the WebSeal server a new optional property
com.ibm.websphere.security.webseal.ignoreProxy has been added. If this property is set to true or yes,
the implementation does not check for the proxy host names and the proxy ports to match any of the host
names and ports listed in the com. ibm.websphere.security.webseal.hostnames and the
com.ibm.websphere.security.webseal.ports property respectively. For example, if the VIA header contains
the following information:

HTTP/1.1 Fred (Proxy), 1.1 Sam (Apache/1.1),
HTP/1.1 webseal1:7002, 1.1 webseal2:7001

Note: The previous VIA header information was split onto two lines due to the width of the printed page.

and the com.ibm.websphere.security.webseal.ignoreProxy is set to true or yes, the host name Fred is
not be used when matching the host names. By default, this property is not set, which implies that any

46 1BM WebSphere Application Server Network Deployment, Version 6: Securing applications and their environment

proxy host names and ports expected in the VIA header should be listed in the host names and the ports
properties to satisfy the isTargetInterceptor method.

Migrating product-provided trust association interceptors

The properties located in the webseal.properties and trustedserver.properties files are not migrated
from previous versions of the WebSphere Application Server. You must migrate the appropriate properties
to WebSphere Application Server, Version 5 using the trust association panels in the administrative
console. For more information, see [Configuring trust association interceptors|

Changes to the custom trust association interceptors

If the custom interceptor extends,
com.ibm.websphere.security.WebSphereBaseTrustAssociationInterceptor, then implement the following
new method to initialize the interceptor:

public int init (java.util.Properties props);

WebSphere Application Server checks the return status before using the Trust Association implementation.
Zero (0) is the default value for indicating the interceptor was successfully initialized.

However, if a previous implementation of the trust association interceptor returns a different error status

you can either change your implementation to match the expectations or make one of the following

changes:

Method 1:
Add the com.ibm.websphere.security.trustassociation.initStatus property in the trust
association interceptor custom properties. Set the property to the value that indicates that the
interceptor is successfully initialized. All of the other possible values imply failure. In case of
failure, the corresponding trust association interceptor is not used.

Method 2:
Add the com.ibm.websphere.security.trustassociation.ignoreInitStatus property in the trust
association interceptor custom properties. Set the value of this property to true, which tells
WebSphere Application Server to ignore the status of this method. If you add this property to the
custom properties, WebSphere Application Server does not check the return status, which is
similar to previous versions of WebSphere Application Server.

The public int init (java.util.Properties props); method replaces the public int init (String
propsFile) method.

The init(Properties) method accepts a java.util.Properties object which contains the set of properties
required to initialize the interceptor. All the properties set for an interceptor (by using the Custom
Properties link for that interceptor or using scripting) will be sent to this method. The interceptor can then
use these properties to initialize itself. For example, in the product provided implementation for the
WebSEAL server, this method reads the hosts and ports so that a request coming in can be verified to
come from trusted hosts and ports. A return value of 0 implies that the interceptor initialization is
successful. Any other value implies that the initialization was not successful and the interceptor will not be
used.

All the properties set for an interceptor (by using the Custom Properties link in the administrative console
for that interceptor or using scripting) is sent to this method. The interceptor can then use these properties
to initialize itself. For example, in the product-provided implementation for the WebSEAL server, this
method reads the hosts and ports so that an incoming request can be verified to come from trusted hosts
and ports. A return value of 0 implies that the interceptor initialization is successful. Any other value implies
that the initialization was not successful and the interceptor is ignored.

Chapter 7. Migrating security configurations from previous releases 47

Note: The init(String) method still works if you want to use it instead of implementing the

In Network Deployment, where the location of the file name can vary for different nodes, use the variable

init(Properties) method. The only requirement is that the file name containing the custom trust
association properties should now be entered using the Custom Properties link of the interceptor
in the administrative console or by using scripts. You can enter the property using either of the
following methods. The first method is used for backward compatibility with previous versions of
WebSphere Application Server.

Method 1:

The same property names used in the previous release are used to obtain the file name.
The file name is obtained by concatenating the .config to the
com.ibm.websphere.security.trustassociation.types property value. If the file name is
called myTAI.properties and is located in the C:/WebSphere/AppServer/properties
directory, set the following properties:

e com.ibm.websphere.security.trustassociation.types = myTAItype

* com.ibm.websphere.security.trustassociation.myTAItype.config =
C:/WebSphere/AppServer/properties/myTAI.properties
Method 2:

You can set the com.ibm.websphere.security.trustassociation.initPropsFile property in
the trust association custom properties to the location of the file. For example, set the

following property:

com.ibm.websphere.security.trustassociation.initPropsFile=
C:/WebSphere/AppServer/properties/myTAI.properties

The previous line of code was split into two lines due to the width of the screen. Type as

one continuous line.

${USER_INSTALL_ROOT} to refer to the WebSphere Application Server installation directory.

However, it is highly recommended that your implementation be changed to implement the init(Properties)

method instead of relying on init (String propsfile) method.

Migrating custom trust association interceptors

The trust associations from previous versions of WebSphere Application Server are not automatically
migrated to version 5.x and later. Users can manually migrate these trust associations using the following

steps:

1.

48

Recompile the implementation file, if necessary.

For more information, refer to the "Changes to the custom trust association interceptors” section

previously discussed in this document.
To recompile the implementation file, type the following:

%WAS_HOME%/java/bin/javac -classpath %WAS HOME%/1ib/wssec.jar;
%WAS_HOME%/1ib/j2ee.jar <your implementation file>.java

Note: The previous line of code was broken into two lines due to the width of the page. Type the code

as one continuous line.

Copy the custom trust association interceptor class files to a location in your product class path. It is

suggested that you copy these class files into the WAS_HOME%/1ib/ext directory.

In Network Deployment, you must copy this class file into the class path of each node and cell.

Start the WebSphere Application Server

Enable security to use the trust association interceptor. The properties located in your custom trust
association properties file and in the trustedserver.properties file are not migrated from previous
versions of WebSphere Application Server to version 5. You must migrate the appropriate properties to

IBM WebSphere Application Server Network Deployment, Version 6: Securing applications and their environment

WebSphere Application Server, version 5.x or later using the trust association panels in the GUI. For
more information, see |[Configuring trust association interceptors}

Migrating Common Object Request Broker Architecture programmatic
login to Java Authentication and Authorization Service

WebSphere Application Server fully supports the Java Authentication and Authorization Service (JAAS) as
programmatic login APIs. See [‘Configuring application logins for Java Authentication and Authorization

Service” on page 249 and |“Developing programmatic logins with the Java Authentication and Authorizationl
Service” on page 78,|for more details on JAAS support.

This document outlines the deprecated Common Object Request Broker Architecture (CORBA)
programmatic login APIs and the alternatives provided by JAAS. The following are the deprecated CORBA
programmatic login APIs:
* ${user.install.root}/installedApps/sampleApp.ear/default_app.war/WEB-
INF/classes/LoginHelper. java.
The sampleApp is not included in Version 5.x and later.
* ${user.install.root}/installedApps/sampleApp.ear/default_app.war/WEB-
INF/classes/ServerSideAuthenticator. java.
The sampleApp is not included in Version 5.x and later.
« com.ibm.l[ExtendedSecurity._LoginHelper.
This API is included with the product, but is deprecated.
« org.omg.SecurityLevel2.Credentials.

This API is included with the product, but not recommended to use.

The APIs provided in WebSphere Application Server Version 5.x and later are a combination of standard
JAAS APls and a product implementation of standard JAAS interfaces.

The following information is only a summary; refer to the JAAS documentation for your platform located at:
[ttp://www.ibm.com/developerworks/java/jdk/security/ .
* Programmatic login APlIs:
— javax.security.auth.login.LoginContext
— javax.security.auth.callback.CallbackHandler interface: The WebSphere Application Server product
provides the following implementation of the javax.security.auth.callback.CallbackHandler interface:
com.ibm.websphere.security.auth.callback.WSCallbackHandlerimpl
Provides a non-prompt CallbackHandler when the application pushes basic authentication
data (user ID, password, and security realm) or token data to product LoginModules. This
APl is recommended for server-side login.
com.ibm.websphere.security.auth.callback.WSGUICallbackHandlerimpl
Provides a login prompt CallbackHandler to gather basic authentication data (user ID,
password, and security realm). This APl is recommended for client-side login.

Note: If this APl is used on the server side, the server is blocked for input.
com.ibm.websphere.security.auth.callback.WSStdinCallbackHandlerimpl

Provides a stdin login prompt CallbackHandler to gather basic authentication data (user ID,

password, and security realm). This APl is recommended for client-side login.

Note: If this APl is used on the server side, the server is blocked for input.
— javax.security.auth.callback.Callback interface:
javax.security.auth.callback.NameCallback
Provided by JAAS to pass the user name to the LoginModules interface.
javax.security.auth.callback.PasswordCallback
Provided by JAAS to pass the password to the LoginModules interface.

Chapter 7. Migrating security configurations from previous releases 49

http://www.ibm.com/developerworks/java/jdk/security/

1.

com.ibm.websphere.security.auth.callback.WSCredTokenCallbackimpl
Provided by the product to perform a token-based login. With this API, an application can
pass a token-byte array to the LoginModules interface.
— javax.security.auth.spi.LoginModule interface

WebSphere Application Server provides LoginModules implementation for client and server-side
login. Refer to [‘Configuring application logins for Java Authentication and Authorization Service” on|
|page 24g for details.
javax.security.Subject:
com.ibm.websphere.security.auth.WSSubject
An extension provided by the product to invoke remote J2EE resources using the credentials in
the javax.security.Subject
com.ibm.websphere.security.cred.WSCredential
After a successful JAAS login with the WebSphere Application Server LoginModules intefaces, a
com.ibm.websphere.security.cred.WSCredential credential is created and stored in the
Subject.
com.ibm.websphere.security.auth.WSPrincipal
An authenticated principal, that is created and stored in a Subject that is authenticated by the
WebSphere LoginModules interface.

Use the following as an example of how to perform programmatic login using the CORBA-based
programmatic login APIs: The CORBA-based programmatic login APIs are replaced by JAAS login.

public class TestClient {

private void performLogin() {

// Get the ID and password of the user.
String userid = customGetUserid();
String password = customGetPassword();

// Create a new security context to hold authentication data.
LoginHelper loginHelper = new LoginHelper();

try {

// Provide the ID and password of the user for authentication.
org.omg.SecuritylLevel2.Credentials credentials =
ToginHelper.login(userid, password);

// Use the new credentials for all future invocations.
ToginHelper.setInvocationCredentials(credentials);

// Retrieve the name of the user from the credentials
// so we can tell the user that login succeeded.

String username = loginHelper.getUserName(credentials);
System.out.printin(”Security context set for user: "+username);
} catch (org.omg.SecuritylLevel2.lLoginFailed e) {

// Handle the LoginFailed exception.

}

}

Use the following example to migrate the CORBA-based programmatic login APIs to the JAAS
programmatic login APIs. The following example assumes that the application code is granted for the
required Java 2 security permissions. For more information, see [‘Configuring application logins fot
Uava Authentication and Authorization Service” on page 249,]]“Configuring Java 2 security” on page 481|
and the JAAS documentation located at: |http://www.ibm.com/developerworks/java/jdk/security/

50 BM™ WebSphere Application Server Network Deployment, Version 6: Securing applications and their environment

http://www.ibm.com/developerworks/java/jdk/security/

public class TestClient {

private void performLogin() ({
// Create a new JAAS LoginContext.
javax.security.auth.login.LoginContext 1c = null;

try {

// Use GUI prompt to gather the BasicAuth data.

1c = new javax.security.auth.login.LoginContext("WSLogin",

new com.ibm.websphere.security.auth.callback.WSGUICallbackHandlerImpl());

// create a LoginContext and specify a CallbackHandler implementation

// CallbackHandler implementation determine how authentication data is collected
// in this case, the authentication date is collected by Tlogin prompt

// and pass to the authentication mechanism implemented by the LoginModule.

} catch (javax.security.auth.login.LoginException e) {

System.err.printin("ERROR: failed to instantiate a LoginContext and the exception:
+ e.getMessage());

e.printStackTrace();

"

// may be javax.security.auth.AuthPermission "createLoginContext” is not granted
// to the application, or the JAAS Login Configuration is not defined.
}

if (1c != null)

try {

1c.Togin(); // perform Togin
javax.security.auth.Subject s = 1c.getSubject();
// get the authenticated subject

// Invoke a J2EE resources using the authenticated subject
com.ibm.websphere.security.auth.WSSubject.doAs (s,

new java.security.PrivilegedAction() {

public Object run() {

try {

bankAccount.deposit(100.00); // where bankAccount is an protected EJB
} catch (Exception e) {

System.out.printTn("ERROR: error while accessing EJB resource, exception:
+ e.getMessage());

e.printStackTrace();

}

return null;

}
}
)s

// Retrieve the name of the principal from the Subject

// so we can tell the user that login succeeded,

// should only be one WSPrincipal.

java.util.Set ps =
s.getPrincipals(com.ibm.websphere.security.auth.WSPrincipal.class);
java.util.Iterator it = ps.iterator();

while (it.hasNext()) {

com.ibm.websphere.security.auth.WSPrincipal p =
(com.ibm.websphere.security.auth.WSPrincipal) it.next();
System.out.printin(”"Principal: ” + p.getName());

Chapter 7. Migrating security configurations from previous releases

51

}

} catch (javax.security.auth.login.LoginException e) {
System.err.printin(”ERROR: Togin failed with exception: ” + e.getMessage());
e.printStackTrace();

// login failed, might want to provide relogin Tlogic
}
}

Migrating from the CustomLoginServlet class to servlet filters

The CustomLoginServlet class was deprecated in Version 5. Those applications using the
CustomLoginServlet class to perform authentication now need to use form-based login. Using the
form-based login mechanism, you can control the look and feel of the login screen. In form-based login, a
login page is specified that displays when retrieving the user ID and password information. You also can
specify an error page that displays when authentication fails.

If login and error pages are not enough to implement the CustomLoginServlet class, use servlet filters.
Servlet filters can dynamically intercept requests and responses to transform or use the information
contained in the requests or responses. One or more servlet filters attach to a servlet or a group of
servlets. Servlet filters also can attach to JSP files and HTML pages. All the attached servlet filters are
called before invoking the servlet.

Both form-based login and servlet filters are supported by any Servlet 2.3 specification-compliant Web
container. A form login servlet performs the authentication and servlet filters can perform additional
authentication, auditing, or logging tasks.

To perform pre-login and post-login actions using servlet filters, configure these servlet filters for either
form login page or for /j_security check URL. The j security check is posted by the form login page
with the j_username parameter, containing the user name and the j_password parameter containing the
password. A servlet filter can use user name and password information to perform more authentication or
meet other special needs.

1. Develop a form login page and error page for the application, as described in [‘Developing form login|
pages” on page 63|

2. Configure the form login page and the error page for the application as described in ['Securing Web|
fapplications using an assembly tool” on page 122.|

3. Develop servlet filters if additional processing is required before and after form login authentication.
Refer to [‘Developing servlet filters for form login processing” on page 58| for details.

4. Configure the servlet filters developed in the previous step for either the form login page URL or for the
/3i_security_check URL. Use an assembly tool or development tools like Rational Application
Developer to configure filters. After configuring the servlet filters, the web-xm1 file contains two stanzas.
The first stanza contains the servlet filter configuration, the servlet filter, and its implementation class.
The second stanza contains the filter mapping section and a mapping of the servlet filter to the URL. In
this case, the servlet filter maps to /j_security_check.

<filter id="Filter_ 1">
<filter-name>LoginFilter</filter-name>
<filter-class>LoginFilter</filter-class>
<description>Performs pre-login and post-login operation</description>
<init-param>
<param-name>ParamName</param-name>
<param-value>ParamValue</param-value>

52 B™ WebSphere Application Server Network Deployment, Version 6: Securing applications and their environment

<init-param>
</filet>

<filter-mapping>
<filter-name>LoginFilter</filter-name>
<url-pattern>/j_security_check</url-pattern>
</filter-mapping>

This migration results in an application that uses form-based login and servlet filters without the use of the
CustomLoginServlet class.

The use of form-based login and servlet filters by the new application are used to replace the

CustomLoginServlet class. Servlet filters also are used to perform additional authentication, auditing and
logging.

Chapter 7. Migrating security configurations from previous releases 53

54 B™ WebSphere Application Server Network Deployment, Version 6: Securing applications and their environment

Chapter 8. Developing secured applications

IBM WebSphere Application Server provides security components that provide or collaborate with other
services to provide authentication, authorization, delegation, and data protection. WebSphere Application
Server also supports the security features described in the Java 2 Platform, Enterprise Edition (J2EE)
specification. An application goes through three stages before it is ready to run:

* Development

* Assembly

* Deployment

Most of the security for an application is configured during the assembly stage. The security configured
during the assembly stage is called declarative security because the security is declared or defined in the
deployment descriptors. The declarative security is enforced by the security run time. For some
applications, declarative security is not sufficient to express the security model of the application. For these
applications, you can use programmatic security.

1. |Develop secure Web applicationsl

2. Develop secure Web applications. For more information, see |“Developing with programmatic security{
[APIs for Web applications.’]

3. Develop servlet filters for form login processing. For more information, see |“Developing servlet filters|
[for form login processing” on page 58|

4. Develop form login pages. For more information, see|‘Developing form login pages” on page 63

5. Develop enterprise bean component applications. For more information, see |“Developing witH
|programmatic APIs for EJB applications” on page 66.|

6. Develop with Java Authentication and Authorization Service to log in programmatically. For more
information, see [‘Developing programmatic logins with the Java Authentication and Authorization|
[Service” on page 78]

7. Develop your own Java 2 security mapping module. For more information, see [‘Configuring application|
[logins for Java Authentication and Authorization Service” on page 249

8. Develop custom user registries. For more information, see [‘Developing custom user registries” on pagel
9. Develop a custom interceptor for trust associations. For more information, see [‘Trust association|
[interceptor support for Subject creation” on page 116|

Developing with programmatic security APIs for Web applications

Programmatic security is used by security-aware applications when declarative security alone is not
sufficient to express the security model of the application. Programmatic security consists of the following
methods of the HitpServletRequest interface:
getRemoteUser()
Returns the user name the client used for authentication. Returns null if no user is authenticated.
isUserinRole
(String role name): Returns true if the remote user is granted the specified security role. If the
remote user is not granted the specified role, or if no user is authenticated, it returns false.
getUserPrincipal()
Returns the java.security.Principal object containing the remote user name. If no user is
authenticated, it returns null.

When the isUserInRole() method is used, declare a security-role-ref element in the deployment descriptor
with a role-name subelement containing the role name passed to this method. Since actual roles are
created during the assembly stage of the application, you can use a logical role as the role name and
provide enough hints to the assembler in the description of the security-role-ref element to link that role to
the actual role. During assembly, the assembler creates a role-link subelement to link the role name to the

© Copyright IBM Corp. 2004 55

actual role. Creation of a security-role-ref element is possible if development tools such as Rational Web
Developer is used. You also can create the security-role-ref element during assembly stage using an
assembly tool.

1. Add the required security methods in the servlet code.

2. Create a security-role-ref element with the role-name field. If a security-role-ref element is not created
during development, make sure it is created during the assembly stage.

A programmatically secured servlet application.

This step is required to secure an application programmatically. This action is particularly useful is when a
Web application wants to access external resources and wants to control the access to external resources
using its own authorization table (external-resource to remote-user mapping). In this case, use the
getUserPrincipal() or getRemoteUser() methods to get the remote user and then it can consult its own
authorization table to perform authorization. The remote user information also can help retrieve the
corresponding user information from an external source such as a database or from an enterprise bean.
You can use the isUserInRole() method in a similar way.

After development, a security-role-ref element can be created:

<security-role-ref>

<description>Provide hints to assembler for linking this role
name to an actual role here<\description>
<role-name>Mgr<\role-name>

</security-role-ref>

During assembly, the assembler creates a role-link element:

<security-role-ref>

<description>Hints provided by developer to map the role
name to the role-Tink</description>
<role-name>Mgr</role-name>
<role-link>Manager</role-1link>

</security-role-ref>

You can add programmatic servlet security methods inside any servlet doGet(), doPost(), doPut(),
doDelete() service methods. The following example depicts using a programmatic security API:

public void doGet(HttpServletRequest request,
HttpServietResponse response) {

// to get remote user using getUserPrincipal()
java.security.Principal principal = request.getUserPrincipal();
String remoteUser = principal.getName();

// to get remote user using getRemoteUser()
remoteUser = request.getRemoteUser();

// to check if remote user is granted Mgr role
boolean isMgr = request.isUserInRole("Mgr”);

// use the above information in any way as needed by
// the application

56 1BM WebSphere Application Server Network Deployment, Version 6: Securing applications and their environment

}

After developing an application, use an assembly tool to create roles and to link the actual roles to role
names in the security-role-ref elements. For more information, see |“Securing Web applications using an|
lassembly tool” on page 122

Example: Web applications code

The following example depicts a Web application or servlet using the programmatic security model. The
following example is one usage and not necessarily the only usage of the programmatic security model.
The application can use the information returned by the getUserPrincipal(), isUserInRole() and
getRemoteUser() methods in any other way that is meaningful to that application. Using the declarative
security model whenever possible is strongly recommended.

File : HelloServlet.java
public class HelloServlet extends javax.servlet.http.HttpServlet ({

public void doPost(
javax.servlet.http.HttpServietRequest request,
javax.servlet.http.HttpServletResponse response)
throws javax.servlet.ServletException, java.io.IOException {
}

public void doGet(
javax.servlet.http.HttpServletRequest request,
javax.servlet.http.HttpServietResponse response)
throws javax.servlet.ServletException, java.io.IOException {

String s = "Hello";

// get remote user using getUserPrincipal()
java.security.Principal principal = request.getUserPrincipal();
String remoteUserName = "";
if(principal != null)
remoteUserName = principal.getName();
// get remote user using getRemoteUser()

String remoteUser = request.getRemoteUser();

// check if remote user is granted Mgr role
boolean isMgr = request.isUserInRole("Mgr");

// display Hello username for managers and bob.
if (isMgr || remoteUserName.equals("bob"))
s = "Hello " + remoteUserName;

String message = "<html> \n" +
"<head><title>Hello Servlet</title></head>\n" +
"<body> /n +"
"<hl1> " +s+ </hl>/n " +
byte[] bytes = message.getBytes();

// displays "Hello" for ordinary users

// and displays "Hello username" for managers and "bob".
response.getOutputStream() .write(bytes);

Chapter 8. Developing secured applications

57

}

After developing the servlet, you can create a security role reference for the HelloServlet as shown in the
following example:

<security-role-ref>
<description> </description>
<role-name>Mgr</role-name>
</security-role-ref>

Developing serviet filters for form login processing

You can control the look and feel of the login screen using the form-based login mechanism. In
form-based login, you specify a login page that is used to retrieve the user ID and password information.
You also can specify an error page that displays when authentication fails.

If additional authentication or additional processing is required before and after authentication, servlet
filters are an option. Servlet filters can dynamically intercept requests and responses to transform or use
the information contained in the requests or responses. One or more servlet filters can attach to a servlet
or a group of servlets. Servlet filters also can attach to JSP files and HTML pages. All the attached servlet
filters are called before the servlet is invoked.

Both form-based login and servlet filters are supported by any servlet version 2.3 specification complaint
Web container. The form login servlet performs the authentication and servlet filters perform additional
authentication, auditing, or logging information.

To perform pre-login and post-login actions using servlet filters, configure these filters for either form login
page support or for the /j_security_check URL. The j_security_check is posted by a form login page with
the j_username parameter containing the user name and the j_password parameter containing the
password. A servlet filter can use the user name parameter and password information to perform more
authentication or other special needs.

A servlet filter implements the javax.servlet.Filter class. There are three methods in the filter class that

need implementing:

+ init(javax.servlet.FilterConfig cfg). This method is called by the container exactly once when the
servlet filter is placed into service. The FilterConfig passed to this method contains the init-parameters
of the servlet filter. Specify the init-parameters for a servlet filter during configuration using the assembly
tool.

» destroy(). This method is called by the container when the servlet filter is taken out of a service.

» doFilter(ServietRequest req, ServietResponse res, FilterChain chain). This method is called by the
container for every servlet request that maps to this filter before invoking the servlet. FilterChain passed
to this method can be used to invoke the next filter in the chain of filters. The original requested servlet
executes when the last filter in the chain calls the chain.doFilter() method. Therefore, all filters should
call the chain.doFilter() method for the original servlet to execute after filtering. If an additional
authentication check is implemented in the filter code and results in failure, the original servlet does not
be execute. The chain.doFilter() method is not called and can be redirected to some other error page.

If a servlet maps to many servlet filters, servlet filters are called in the order that is listed in the deployment
descriptor of the application (web.xm1).

An example of a servlet filter follows: This login filter can map to /j_security_check to perform pre-login and
post-login actions.

58 BM™ WebSphere Application Server Network Deployment, Version 6: Securing applications and their environment

import javax.servlet.x*;
public class LoginFilter implements Filter {
protected FilterConfig filterConfig;

// Called once when this filter is instantiated.

// 1f mapped to j_security_check, called

// very first time j_security_check is invoked.

public void init(FilterConfig filterConfig) throws ServletException {
this.filterConfig = filterConfig;
}

public void destroy() {
this.filterConfig = null;
}

// Called for every request that is mapped to this filter.
// If mapped to j_security_check,
// called for every j security check action
public void doFilter(ServietRequest request,
ServletResponse response, FilterChain chain)

throws java.io.IOException, ServletException {

// perform pre-login action here

chain.doFilter(request, response);
// calls the next filter in chain.

// j_security check if this filter is
// mapped to j_security check.
// perform post-login action here.

}
}

Place the servlet filter class file in the WEB-INF/classes directory of the application.
Configuring servlet filters

IBM Rational Application Developer or an assembly tool can configure the servlet filters. There are two
steps in configuring a servlet filter.

1. Name the servlet filter and assign the corresponding implementation class to the servlet filter.

Optionally, assign initialization parameters that get passed to the init() method of the servlet
filter.After configuring the servlet filter, the application deployment descriptor, web.xml, contains a
servlet filter configuration similar to the following example:

<filter id="Filter_ 1">
<filter-name>LoginFilter</filter-name>
<filter-class>LoginFilter</filter-class>
<description>Performs pre-Togin and post-Togin
operation</description>
<init-param>// optional
<param-name>ParameterName</param-name>

Chapter 8. Developing secured applications 59

<param-value>ParameterValue</param-value>
</init-param>
</filter>
2. Map the servlet filter to URL or servlet.

After mapping the servlet filter to a servlet or a URL, the application deployment descriptor (web.xm1)
contains servlet mapping similar to the following example:

<filter-mapping>
<filter-name>LoginFilter</filter-name>
<url-pattern>/j_security_check</url-pattern>
/I can be servlet <servlet>servletName</serviet>
</ffilter-mapping>

You can use servlet filters to replace the CustomLoginServlet, and to perform additional authentication,
auditing, and logging.

The WebSphere Application Server Samples Gallery provides a form login sample that demonstrates how
to use the WebSphere Application Server login facilities to implement and configure form login procedures.
The sample integrates the following technologies to demonstrate the WebSphere Application Server and
Java 2 Platform, Enterprise Edition (J2EE) login functionality:

* J2EE form-based login
» J2EE servlet filter with login
* IBM extension: form-based login

The form login sample is part of the Technology Samples package. For more information on how to access
the form login sample, see [Accessing the Samples (Samples Gallery)|

Example: Servlet filters
This example illustrates one way the servlet filters can perform pre-login and post-login processing during
form login.

Servlet filter source code: LoginFilter.java

[x%

*

A servlet filter example: This example filters j_security_check and
performs pre-login action to determine if the user trying to log in

is in the revoked list. If the user is on the revoked list, an error is
sent back to the browser.

This filter reads the revoked Tist file name from the FilterConfig
passed in the init() method. It reads the revoked user list file and
creates a revokedUsers Tist.

When the doFilter method is called, the user logging in is checked
to make sure that the user is not on the revoked Users list.

E I R R R RN R I

*
S~

import javax.servlet.=*;
import javax.servlet.http.*;
import java.io.=*;

public class LoginFilter implements Filter {

protected FilterConfig filterConfig;

60 1BM WebSphere Application Server Network Deployment, Version 6: Securing applications and their environment

java.util.List revokelist;

[**

* init() : init() method called when the filter is instantiated.

* This filter is instantiated the first time j_security_check is

* invoked for the application (When a protected servlet in the

* application is accessed).

*/

public void init(FilterConfig filterConfig) throws ServletException {
this.filterConfig = filterConfig;

// read revoked user 1ist
revokelList = new java.util.ArrayList();
readConfig();

[**
% destroy() : destroy() method called when the filter is taken
* out of service.
*/
public void destroy() {
this.filterConfig = null;
revokelList = null;

}

[**

* doFilter() : doFilter() method called before the servilet to
* which this filteris mapped is invoked. Since this filter is
* mapped to j _security check,this method is called before

* j _security check action is posted.

*/

public void doFilter(ServletRequest request, ServletResponse response,

FilterChain chain) throws java.io.IOException, ServletException {

HttpServietRequest req = (HttpServletRequest)request;
HttpServietResponse res = (HttpServletResponse)response;

// pre login action

// get username
String username = req.getParameter(”j_username”);

// if user is in revoked list send error

if (revokeList.contains(username)) {
res.sendError(javax.servlet.http.HttpServietResponse.SC_UNAUTHORIZED) ;
return;

}

// call next filter in the chain : let j_security check authenticate
/] user

chain.doFilter(request, response);

// post login action

Chapter 8. Developing secured applications

61

}
[**

x readConfig() : Reads revoked user 1ist file and creates a revoked
* user list.
*/
private void readConfig() {
if (filterConfig != null) {

// get the revoked user 1ist file and open it.

BufferedReader in;

try
String filename = filterConfig.getInitParameter(”RevokedUsers”);
in = new BufferedReader(new FileReader(filename));

} catch (FileNotFoundException fnfe)
return;

}

// read all the revoked users and add to revokelList.
String userName;
try
while ((userName = in.readLine()) != null)
revokeList.add (userName) ;
} catch (IOException ioe) {
}

}

Important: In the previous code sample, the line that begins public void doFilter(ServietRequest
request was broken into two lines due to the width of the page. The public void
doFilter(ServietRequest request line and the line after it are one continuous line.

Portion of the web.xm1 file showing the LoginFilter configured and mapped to j_security_check:

<filter id="Filter_1">
<filter-name>LoginFilter</filter-name>
<filter-class>LoginFilter</filter-class>

<description>Performs pre-login and post-login operation</description>
<init-param>
<param-name>RevokedUsers</param-name>
<param-value>c:\WebSphere\AppServeninstalledApps\
<app-name>\revokedUsers.Ist</param-value>

</init-param>

</filter-id>

<filter-mapping>
<filter-name>LoginFilter</filter-name>
<url-pattern>/j_security_check</url-pattern>
</filter-mapping>

62 1BM WebSphere Application Server Network Deployment, Version 6: Securing applications and their environment

An example of a revoked user list file:

userl
cn=userl,o=ibm,c=us
user99
cn=user99,o0=ibm,c=us

Developing form login pages

A Web client or browser can authenticate a user to a Web server using one of the following mechanisms:

» HTTP basic authentication: A Web server requests the Web client to authenticate and the Web client
passes a user ID and password in the HTTP header.

» HTTPS client authentication: This mechanism requires a user (Web client) to possess a public key
certificate. The Web client sends the certificate to a Web server that requests the client certificates. This
is a strong authentication mechanism and uses the Hypertext Transfer Protocol with Secure Sockets
Layer (HTTPS) protocol.

* Form-based Authentication: A developer controls the look and feel of the login screens using this
authentication mechanism.

The Hypertext Transfer Protocol (HTTP) basic authentication transmits a user password from the Web
client to the Web server in simple base64 encoding. Form-based authentication transmits a user password
from the browser to the Web server in plain text. Therefore, both HTTP basic authentication and
form-based authentication are not very secure unless the HTTPS protocol is used.

The Web application deployment descriptor contains information about which authentication mechanism to
use. When form-based authentication is used, the deployment descriptor also contains entries for login
and error pages. A login page can be either an HTML page or a JavaServer Pages (JSP) file. This login
page displays on the Web client side when a secured resource (servlet, JSP file, HTML page) is accessed
from the application. On authentication failure, an error page displays. You can write login and error pages
to suit the application needs and control the look and feel of these pages. During assembly of the
application, an assembler can set the authentication mechanism for the application and set the login and
error pages in the deployment descriptor.

Form login uses the servlet sendRedirect() method, which has several implications for the user. The

sendRedirect() method is used twice during form login:

» The sendRedirect() method initially displays the form login page in the Web browser. It later redirects
the Web browser back to the originally requested protected page. The sendRedirect(String URL)
method tells the Web browser to use the HTTP GET (not the HTTP POST) request to get the page
specified in the URL. If HTTP POST is the first request to a protected servlet or JavaServer Pages
(JSP) file, and no previous authentication or login occurred, then HTTP POST is not delivered to the
requested page. However, HTTP GET is delivered because form login uses the sendRedirect() method,
which behaves as an HTTP GET request that tries to display a requested page after a login occurs.

» Using HTTP POST, you might experience a scenario where an unprotected HTML form collects data
from users and then posts this data to protected servlets or JSP files for processing, but the users are
not logged in for the resource. To avoid this scenario, structure your Web application or permissions so
that users are forced to use a form login page before the application performs any HTTP POST actions
to protected servlets or JSP files.

1. Create a form login page with the required look and feel including the required elements to perform
form-based authentication. For an example, see |“Example: Form login” on page 64|

2. Create an error page. You can program error pages to retry authentication or display an appropriate
error message.

3. Place the login page and error page in the Web archive (WAR) file relative to the top directory. For
example, if the login page is configured as /1ogin.html in the deployment descriptor, place it in the top
directory of the WAR file. An assembler can also perform this step using the assembly tool.

Chapter 8. Developing secured applications 63

4. Create a form logout page and insert it to the application only if required. This step is required when a
Web application requires a form-based authentication mechanism.

See the [‘Example: Form login’] article for sample form login pages.

The WebSphere Application Server Samples Gallery provides a form login sample that demonstrates how
to use the WebSphere Application Server login facilities to implement and configure form login procedures.
The sample integrates the following technologies to demonstrate the WebSphere Application Server and
Java 2 Platform, Enterprise Edition (J2EE) login functionality:

* J2EE form-based login
» J2EE servlet filter with login
* IBM extension: form-based login

The form login sample is part of the Technology Samples package. For more information on how to access
the form login sample, see [Accessing the Samples (Samples Gallery),

After developing login and error pages, add them to the Web application. Use the assembly tool to
configure an authentication mechanism and insert the developed login page and error page in the
deployment descriptor of the application.

Example: Form login

For the authentication to proceed appropriately, the action of the login form must always be
J_security _check. The following example shows how to code the form into the HTML page:

<form method="POST" action="j_security_check">
<input type="text” name="j username”>

<input type="text” name="j password”>

<\form>

use the j_username input field to get the user name and use the j_password input field to get the user
password.

On receiving a request from a Web client, the Web server sends the configured form page to the client
and preserves the original request. When the Web server receives the completed Form page from the
Web client, it extracts the user name and password from the form and authenticates the user. On
successful authentication, the Web server redirects the call to the original request. If authentication fails,
the Web server redirects the call to the configured error page.

The following example depicts a login page in HTML (Togin.htm1):

<IDOCTYPE HTML PUBLIC ”-//W3C/DTD HTML 4.0 Transitional//EN">

<html>

<META HTTP-EQUIV = "Pragma” CONTENT="no-cache”>

<title> Security FVT Login Page </title>

<body>

<h2>Form Login</h2>

<FORM METHOD=POST ACTION="j_security_check”>

<p>

 Enter user ID and password:

 User ID <input type="text” size="20" name="j username”>
 Password <input type="password” size="20" name="j password”>

 And then click this button:

64 1BM WebSphere Application Server Network Deployment, Version 6: Securing applications and their environment

<input type="submit” name="login” value="Login">
</p>

</form>
</body>
</html>

The following example depicts an error page in a JSP file:

<!DOCTYPE HTML PUBLIC "-//W3C/DTD HTML 4.0 Transitional//EN">

<html>

<head><title>A Form Togin authentication failure occurred</head></title>
<body>

<H1>A Form login authentication failure occurred</H1>

<P>Authentication may fail for one of many reasons. Some possibilities include:
<0L>

The user-id or password may be entered incorrectly; either misspelled or the
wrong case was used.

The user-id or password does not exist, has expired, or has been disabled.
</0L>

</p>

</body>
</html>

After an assembler configures the Web application to use form-based authentication, the deployment
descriptor contains the login configuration as shown:

<login-config id="LoginConfig 1">
<auth-method>FORMauth-method>FORM>

<realm-name>Example Form-Based Authentication Area</realm-name>
<form-Togin-config id="FormLoginConfig 1">
<form-login-page>/login.html</form-login-page>
<form-error-page>/error.jsp</form-error-page>
</form-login-config>

</login-config>

A sample Web application archive (WAR) file directory structure showing login and error pages for the
previous login configuration:

META-INF
META-INF/MANIFEST.MF
login.html
error.jsp
WEB-INF/
WEB-INF/classes/
WEB-INF/classes/aServiet.class

Form logout
Form logout is a mechanism to log out without having to close all Web-browser sessions. After logging out

the form logout mechanism, access to a protected Web resource requires reauthentication. This feature is
not required by J2EE specifications, but is provided as an additional feature in WebSphere security.

Chapter 8. Developing secured applications 65

Suppose that it is desirable to log out after logging into a Web application and perform some actions. A
form logout works in the following manner:

1. The logout-form URI is specified in the Web browser and loads the form.

2. The user clicks Submit on the form to log out.

3. The WebSphere security code logs the user out.

4. Upon logout, the user is redirected to a logout exit page.

Form logout does not require any attributes in a deployment descriptor. It is an HTML or JSP file that is
included with the Web application. The form-logout page is like most HTML forms except that like the
form-login page, it has a special post action. This post action is recognized by the Web container, which
dispatches it to a special internal WebSphere form-logout servlet. The post action in the form-logout page
must be ibm_security Togout.

You can specify a logout-exit page in the logout form and the exit page can represent an HTML or JSP file
within the same Web application to which that the user is redirected after logging out. The logout-exit page
is specified as a parameter in the form-logout page. If no logout-exit page is specified, a default logout
HTML message is returned to the user. Here is a sample form logout HTML form. This form configures the
logout-exit page to redirect the user back to the login page after logout.

<!DOCTYPE HTML PUB1iC "-//W3C/DTD HTML 4.0 Transitional//EN">
<html>
<META HTTP-EQUIV = "Pragma” CONTENT="no-cache”>
<title>Logout Page </title>
<body>
<h2>Sample Form Logout</h2>
<FORM METHOD=POST ACTION="ibm_security_logout” NAME="1ogout”>
<p>

 Click this button to log out:
<input type="submit” name="logout” value="Logout">
<INPUT TYPE="HIDDEN" name="logoutExitPage” VALUE="/Togin.html">
</p>
</form>
</body>
</html>

The WebSphere Application Server samples gallery provides a form login sample that demonstrates how
to use the WebSphere Application Server login facilities to implement and configure form login procedures.
The sample integrates the following technologies to demonstrate the WebSphere Application Server and
Java 2 Platform, Enterprise Edition (J2EE) login functionality:

» J2EE form-based login
« J2EE servlet filter with login
* |IBM extension: form-based login

The form login sample is part of the Technology Samples package. For more information on how to access
the form login sample, see IAccessing the Samples (Samples Gallery)|.

Developing with programmatic APIs for EJB applications

Programmatic security is used by security-aware applications when declarative security alone is not
sufficient to express the security model of the application. The javax.ejb.EJBContext interface provides
two methods whereby the bean provider can access security information about the enterprise bean caller.

66 1BM WebSphere Application Server Network Deployment, Version 6: Securing applications and their environment

» IsCallerinRole(String rolename): Returns true if the bean caller is granted the specified security role
(specified by role name). If the caller is not granted the specified role, or if the caller is not
authenticated, it returns false. If the specified role is granted Everyone access, it always returns true.

» getCallerPrincipal(): Returns the java.security.Principal object containing the bean caller name. If the
caller is not authenticated, it returns a principal containing UNAUTHENTICATED name.

You can enable a login module to indicate which principal class is returned by these calls.
Refer to for more information.

When the isCallerInRole() method is used, declare a security-role-ref element in the deployment
descriptor with a role-name subelement containing the role name passed to this method. Since actual
roles are created during the assembly stage of the application, you can use a logical role as the role name
and provide enough hints to the assembler in the description of the security-role-ref element to link that
role to actual role. During assembly, assembler creates a role-link sub element to link the role-name to the
actual role. Creation of a security-role-ref element is possible if development tools such as Rational Web
Developer is used. You also can create the security-role-ref element during the assembly stage using an
assembly tool.

1. Add the required security methods in the EJB module code.

2. Create a security-role-ref element with a role-name field for all the role names used in the
isCallerInRole() method. If a security-role-ref element is not created during development, make sure
it is created during the assembly stage.

A programmatically secured EJB application.

Hard coding security policies in applications is strongly discouraged. The Java 2 Platform, Enterprise
Edition (J2EE) security model capabilities of declaratively specifying security policies is encouraged
wherever possible. Use these APIs to develop security-aware EJB applications. An example where this
implementation is useful is when an EJB application wants to access external resources and wants to
control the access to these external resources using its own authorization table (external-resource to user
mapping). In this case, use the getCallerPrincipal() method to get the caller identity and then the
application can consult its own authorization table to perform authorization. The caller identification also
can help retrieve the corresponding user information from an external source, such as database or from
another enterprise bean. You can use the isCallerinRole() method in a similar way.

After development, a security-role-ref element can be created:

<security-role-ref>

<description>Provide hints to assembler for linking this role-name to
actual role here<\description>

<role-name>Mgr<\role-name>

</security-role-ref>

During assembly, the assembler creates a role-link element:

<security-role-ref>

<description>Hints provided by developer to map role-name to role-Tink</description>
<role-name>Mgr</role-name>

<role-link>Manager</role-1link>

</security-role-ref>

You can add programmatic EJB component security methods (isCallerinRole() and getCallerPrincipal())

inside any business methods of an enterprise bean. The following example of programmatic security APIs
includes a session bean:

Chapter 8. Developing secured applications 67

public class aSessionBean implements SessionBean {

// SessionContext extends EJBContext. If it is entity bean use EntityContext
javax.ejb.SessionContext context;

// The following method will be called by the EJB container

// automatically

public void setSessionContext(javax.ejb.SessionContext ctx) {
context = ctx; // save the session bean’s context

}

private void aBusinessMethod() {

// to get bean’s caller using getCallerPrincipal()
java.security.Principal principal = context.getCallerPrincipal();
String callerld= principal.getName();

// to check if bean’s caller is granted Mgr role
boolean isMgr = context.isCallerInRole("Mgr”);

// use the above information in any way as needed by the
//application

}

After developing an application, use an assembly tool to create roles and to link the actual roles to role
names in the security-role-ref elements. For more information, see [‘Securing enterprise bean applications’|

on page 120.

Example: Enterprise bean application code

The following EJB component example illustrates the use of isCallerinRole() and getCallerPrincipal()
methods in an EJB module. Using that declarative security is recommended. The following example is one
way of using the isCallerinRole() and getCallerPrincipal() methods. The application can use this result in
any way that is suitable.

A remote interface
File : Hello.java

package tests;

import java.rmi.RemoteException;

[x%

* Remote interface for Enterprise Bean: Hello

*/

public interface Hello extends javax.ejb.EJBObject {

68 1BM WebSphere Application Server Network Deployment, Version 6: Securing applications and their environment

public abstract String getMessage()throws RemoteException;
public abstract void setMessage(String s)throws RemoteException;

}

A home interface

File : HelloHome.java

package tests;

[**

* Home interface for Enterprise Bean: Hello

*/

public interface HelloHome extends javax.ejb.EJBHome {
[**
* Creates a default instance of Session Bean: Hello
*/

public tests.Hello create() throws javax.ejb.CreateException,
java.rmi.RemoteException;

}

A bean implementation
File : HelloBean.java

package tests;
[x%
* Bean implementation class for Enterprise Bean: Hello
*/
public class HelloBean implements javax.ejb.SessionBean {
private javax.ejb.SessionContext mySessionCtx;
[**
* getSessionContext
*/
public javax.ejb.SessionContext getSessionContext() {
return mySessionCtx;
}
[**
* setSessionContext
*/
public void setSessionContext(javax.ejb.SessionContext ctx) {
mySessionCtx = ctx;
}
[x*
* ejbActivate
*/
public void ejbActivate() {
}
[**
* ejbCreate
*/
public void ejbCreate() throws javax.ejb.CreateException {
}
[x%
* ejbPassivate
*/
public void ejbPassivate() {
}

Chapter 8. Developing secured applications

69

[**

* ejbRemove

*/

public void ejbRemove() {
}

public java.lang.String message;

//business methods

// all users can call getMessage()
public String getMessage() throws java.rmi.RemoteException {
return message;

}

// all users can call setMessage() but only few users can set new message.
public void setMessage(String s) throws java.rmi.RemoteException {

// get bean’s caller using getCallerPrincipal()
java.security.Principal principal = mySessionCtx.getCallerPrincipal();
java.lang.String callerld= principal.getName();

// check if bean’s caller is granted Mgr role
boolean isMgr = mySessionCtx.isCallerInRole("Mgr”);

// only set supplied message if caller is "bob” or caller is granted Mgr role
if (isMgr || callerId.equals(”bob”))

message = S;
else

message = "Hello”;

}

After development of the entity bean, create a security role reference in the deployment descriptor under
the session bean, Hello:

<security-role-ref>

<description>0Only Managers can call setMessage() on this bean (Hello)</description>
<role-name>Mgr</role-name>

</security-role-ref>

For an explanation of how to create a <security-role-ref> element, see f‘Securing enterprise bean|
|app|ications” on page 120.| Use the information under Map security-role-ref and role-name to role-link to
create the element.

Programmatic login

Programmatic login is a type of form login that supports application presentation site-specific login forms
for the purpose of authentication.

When enterprise bean client applications require the user to provide identifying information, the writer of
the application must collect that information and authenticate the user. You can broadly classify the work of
the programmer in terms of where the actual user authentication is performed:

* In a client program

70 1BM WebSphere Application Server Network Deployment, Version 6: Securing applications and their environment

* In a server program

Users of Web applications can receive prompts for authentication data in many ways. The <login-config>
element in the Web application deployment descriptor file defines the mechanism used to collect this
information. Programmers who want to customize login procedures, rather than relying on general purpose
devices like a 401 dialog window in a browser, can use a form-based login to provide an
application-specific HTML form for collecting login information.

No authentication occurs unless global security is enabled. If you want to use form-based login for Web
applications, you must specify FORM in the auth-method tag of the <login-config> element in the
deployment descriptor of each Web application.

Applications can present site-specific login forms by using the WebSphere Application Server form-login
type. The Java 2 Platform, Enterprise Edition (J2EE) specification defines form login as one of the
authentication methods for Web applications. WebSphere Application Server provides a form-logout
mechanism.

Java Authentication and Authorization Service programmatic login

Java Authentication and Authorization Service (JAAS) is a new feature in WebSphere Application Server. It
is also mandated by the J2EE 1.3 Specification. JAAS is a collection of strategic authentication APIs that
replace the CORBA programmatic login APIs. WebSphere Application Server provides some extensions to
JAAS:

Before you begin developing with programmatic login APIs, consider the following points :

» For the pure Java client application or client container application, initialize the client Object Request
Broker (ORB) security prior to performing a JAAS login. Do this by executing the following code prior to
the JAAS login:

import java.util.Hashtable;
import javax.naming.Context;
import javax.naming.InitialContext;

// Perform an InitialContext and default Tookup prior to logging

// in to initialize ORB security and for the bootstrap host/port

// to be determined for SecurityServer lookup. If you do not want
// to validate the userid/password during the JAAS Togin, disable
// the com.ibm.CORBA.validateBasicAuth property in the

// sas.client.props file.

Hashtable env = new Hashtable();
env.put (Context.INITIAL_CONTEXT_FACTORY,
"com.ibm.websphere.naming.WsnInitialContextFactory”);
env.put(Context.PROVIDER URL,
"corbaloc:iiop:myhost.mycompany.com:2809");
Context initialContext = new InitialContext(env);
Object obj = initialContext.lookup("");

For more information, see ['Example: Programmatic logins” on page 80.|

» For the pure Java client application or client container application, make sure that the host name and
the port number of the target JNDI bootstrap properties are specified properly. See the
|app|ications that use CosNaming (CORBA Naming interface)| section for details.

* If the application uses custom JAAS login configuration, make sure that the custom JAAS login
configuration is properly defined. See the [‘Configuring application logins for Java Authentication and|
[Authorization Service” on page 249 section for details.

Chapter 8. Developing secured applications 71

* Some of the JAAS APIs are protected by Java 2 security permissions. If these APIs are used by
application code, make sure that these permissions are added to the application was.policy file. See
“Adding the was.policy file to applications” on page 498| to the application, [‘Using PolicyTool to edit
policy files” on page 482 and [‘Configuring the was.policy file” on page 493[sections for details. For more
details of which APIs are protected by Java 2 Security permissions, check the IBM Developer Kit, Java
edition; JAAS and the WebSphere Application Server public APls Javadoc for more details. The
following list indicates the APIs used in the samples code provided in this documentation.

— javax.security.auth.login.LoginContext constructors are protected by
javax.security.auth.AuthPermission "createLoginContext”.

— javax.security.auth.Subject.doAs() and com.ibm.websphere.security.auth.WSSubject.doAs() are
protected by javax.security.auth.AuthPermission "doAs”".

— javax.security.auth.Subject.doAsPrivileged() and
com.ibm.websphere.security.auth. WSSubject.doAsPrivileged() are protected by
javax.security.auth.AuthPermission "doAsPrivileged”.

« com.ibm.websphere.security.auth.WSSubject: Due to a design oversight in the JAAS 1.0,
javax.security.auth.Subject.getSubject() does not return the Subject associated with the thread of
execution inside a java.security.AccessController.doPrivileged() code block. This can present an
inconsistent behavior that is problematic and causes undesirable effort. The
com.ibm.websphere.security.auth. WSSubject API provides a work around to associate Subject to thread
of execution. The com.ibm.websphere.security.auth.WSSubject API extends the JAAS model to J2EE
resources for authorization checks. The Subject associated with the thread of execution within
com.ibm.websphere.security.auth. WSSubject.doAs() or
com.ibm.websphere.security.auth. WSSubject.doAsPrivileged() code block is used for J2EE resources
authorization checks.

» Ul support for defining new JAAS login configuration: You can configure JAAS login configuration in the
administrative console and store it in the WebSphere Configuration API. Applications can define new
JAAS login configuration in the administrative console and the data is persisted in the configuration
repository (stored in the WebSphere Configuration API). However, WebSphere Application Server still
supports the default JAAS login configuration format (plain text file) provided by the JAAS default
implementation. But if there are duplication login configurations defined in both the WebSphere
Configuration APl and the plain text file format, the one in the WebSphere Configuration API takes
precedence. There are advantages to defining the login configuration in the WebSphere Configuration
API:

— Ul support in defining JAAS login configuration.

— You can manage the JAAS configuration login configuration centrally.

— The JAAS configuration login configuration is distributed in a Network Deployment installation.

* JAAS login configurations For WebSphere Application Server: WebSphere Application Server provides
JAAS login configurations for application to perform programmatic authentication to the WebSphere
Application Server security run time. These JAAS login configurations for WebSphere Application Server
perform authentication to the configured authentication mechanism (SWAM or LTPA) and user registry
(Local OS, LDAP, or Custom) based on the authentication data supplied. The authenticated Subject
from these JAAS login configurations contain the required Principal and Credentials that can be used by
WebSphere Application Server security run time to perform authorization checks on J2EE role-based
protected resources. Here is the JAAS login configurations provided by WebSphere Application Server:
— WSLogin JAAS login configuration: A generic JAAS login configuration that a Java Client, client

container application, servlet, JSP file, enterprise bean, and so on, can use to perform authentication
based on a user ID and password, or a token to the WebSphere Application Server security run time.
However, this does not honor the CallbackHandler specified in the Client Container deployment
descriptor.

— ClientContainer JAAS login configuration: This JAAS login configuration honors the CallbackHandler
specified in the client container deployment descriptor. The login module of this login configuration
uses the CallbackHandler in the client container deployment descriptor if one is specified, even if the
application code specified one CallbackHandler in the LoginContext. This is for client container
application.

— Subject authenticated with the previously mentioned JAAS login configurations contain a
com.ibm.websphere.security.auth. WSPrincipal and a com.ibm.websphere.security.auth. WSCredential.

72 1BM WebSphere Application Server Network Deployment, Version 6: Securing applications and their environment

If the authenticated Subject is passed the in com.ibm.websphere.security.auth.WSSubject.doAs() (or
the other doAs() methods), the WebSphere Application Server security run time can perform
authorization checks on J2EE resources, based on the Subject
com.ibm.websphere.security.auth.WSCredential.

» Customer-defined JAAS login configurations: You can define other JAAS login configurations. See
|“Configuring application logins for Java Authentication and Authorization Service” on page 249| section
for details. Use these login configurations to perform programmatic authentication to the customer
authentication mechanism. However, the subjects from these customer-defined JAAS login
configurations might not be used by WebSphere Application Server security run time to perform
authorization checks if the subject does not contain the required principal and credentials.

Finding the root cause login exception from a JAAS login

If you get a LoginException after issuing the LoginContext.login() API, you can find the root cause
exception from the configured user registry. In the login modules, the registry exceptions are wrapped by a
com.ibm.websphere.security.auth.WSLoginFailedException. This exception has a getCause() method that
allows you to pull out the exception that was wrapped after issuing the above command.

Note: You are not always guaranteed to get an exception of type WSLoginFailedException, but you
should note that most of the exceptions generated from the user registry show up here.

The following is a LoginContext.login() APl example with associated catch block. WSLoginFailedException
has to be casted to com.ibm.websphere.security.auth.WSLoginFailedException if you want to issue the
getCause() API.

Note: The determineCause() example below can be used for processing CustomUserRegistry exception
types.

try
{

}

catch (LoginException Te)

{
// drill down through the exceptions as they might cascade through the runtime
Throwable root_exception = determineCause(le);

1c.login();

// now you can use "root_exception” to compare to a particular exception type
// for example, if you have implemented a CustomUserRegistry type, you would
// know what to Took for here.

}

/* Method used to drill down into the WSLoginFailedException to find the
"root cause” exception */

public Throwable determineCause(Throwable e)

{

Throwable root_exception = e, temp_exception = null;

// keep looping until there are no more embedded WSLoginFailedException or
// WSSecurityException exceptions

while (true)

{

if (e instanceof com.ibm.websphere.security.auth.WSLoginFailedException)

{

Chapter 8. Developing secured applications 73

temp_exception = ((com.ibm.websphere.security.auth.WSLoginFailedException)
e).getCause();
}
else if (e instanceof com.ibm.websphere.security.WSSecurityException)
{
temp_exception = ((com.ibm.websphere.security.WSSecurityException)
e).getCause();
}
else if (e instanceof javax.naming.NamingException)

// check for Ldap embedded exception

{

temp_exception = ((javax.naming.NamingException)e).getRootCause();

}

else if (e instanceof your_custom_exception_here)

{
// your custom processing here, if necessary

}

else

{
// this exception is not one of the types we are looking for,
// lets return now, this is the root from the WebSphere
// Application Server perspective
return root_exception;

}

if (temp_exception != null)

{

// we have an exception, let’s go back an see if this has another
// one embedded within it.
root_exception = temp_exception;
e = temp_exception;
continue;
}
else
{
// we finally have the root exception from this call path, this
// has to occur at some point
return root_exception;

}

Finding the root cause login exception from a Servlet filter

You can also receive the root cause exception from a servlet filter when addressing post-Form Login
processing. This is suitable because it shows the user what happened. The following API can be issued to
obtain the root cause exception:

Throwable t = com.ibm.websphere.security.auth.WSSubject.getRootLoginException();
if (t 1= null)

t = determineCause(t);

Note: Once you have the exception you can run it through the determineCause() example above to get

the native registry root cause.

IBM WebSphere Application Server Network Deployment, Version 6: Securing applications and their environment

Enabling root cause login exception propagation to pure Java clients

Currently, the root cause does not get propagated to a pure client for security reasons. However, you
might want to propagate the root cause to a pure client in a trusted environment. If you want to enable
root cause login exception propagation to a pure client, click Security > Global Security > Custom

Properties on the WebSphere Application Server administrative console and set the following property:

com.ibm.websphere.security.registry.propagateExceptionsToClient=true
Non-prompt programmatic login

WebSphere Application Server provides a non-prompt implementation of the
javax.security.auth.callback.CallbackHandler interface, which is called

com.ibm.websphere.security.auth.callback.WSCallbackHandlerimpl. Using this interface, an application can

push authentication data to the WebSphere LoginModule instance to perform authentication. This

capability proves useful for server-side application code to authenticate an identity and to use that identity

to invoke downstream J2EE resources.
javax.security.auth.login.LoginContext Tc = null;

try {

1c = new javax.security.auth.login.LoginContext("WSLogin",

new com.ibm.websphere.security.auth.callback.WSCallbackHandlerImpl("user”,
"securityrealm”, "securedpassword”));

// create a LoginContext and specify a CallbackHandler implementation

// CallbackHandler implementation determine how authentication data is collected
// in this case, the authentication data is "push” to the authentication mechanism
// implemented by the LoginModule.

} catch (javax.security.auth.login.LoginException e) {

System.err.printIn("ERROR: failed to instantiate a LoginContext and the exception:
+ e.getMessage());

e.printStackTrace();

n

// may be javax.security.auth.AuthPermission "createlLoginContext” is not granted
// to the application, or the JAAS Tlogin configuration is not defined.
}

if (1c !'= null)

try {

1c.login(); // perform login
javax.security.auth.Subject s = 1c.getSubject();
// get the authenticated subject

// Invoke a J2EE resource using the authenticated subject
com.ibm.websphere.security.auth.WSSubject.doAs (s,

new java.security.PrivilegedAction() {

public Object run() {

try {

bankAccount.deposit(100.00); // where bankAccount is a protected EJB
} catch (Exception e) {

System.out.printin("ERROR: error while accessing EJB resource, exception:
+ e.getMessage());

e.printStackTrace();

}

return null;

”

Chapter 8. Developing secured applications

75

}

}
)5
} catch (javax.security.auth.login.LoginException e) {
System.err.printin("ERROR: Tlogin failed with exception: " + e.getMessage());
e.printStackTrace();

// login failed, might want to provide relogin Tlogic

}

You can use the com.ibm.websphere.security.auth.callback.WSCallbackHandlerimpl callback handler with
a pure Java client, a client application container, enterprise bean, JavaServer page (JSP) files, servlet, or
other Java 2 Platform, Enterprise Edition (J2EE) resources. See [‘Example: Programmatic logins” on page|

for more information about object request broker (ORB) security initialization requirements in a Java
pure client.

User interface prompt programmatic login

WebSphere Application Server also provides a user interface implementation of the
javax.security.auth.callback.CallbackHandler implementation to collect authentication data from user
through user interface login prompts. This callack handler,
com.ibm.websphere.security.auth.callback.WSGUICallbackHandTerImpl, presents a user interface login
panel to prompt users for authentication data.

javax.security.auth.login.LoginContext 1c = null;

try {
1c = new javax.security.auth.login.LoginContext("WSLogin",

new com.ibm.websphere.security.auth.callback.WSGUICallbackHandlerImpl());

// create a LoginContext and specify a CallbackHandler implementation

// CallbackHandler implementation determine how authentication data is collected
// in this case, the authentication date is collected by GUI login prompt

// and pass to the authentication mechanism implemented by the LoginModule.

} catch (javax.security.auth.login.LoginException e) {

System.err.printIn("ERROR: failed to instantiate a LoginContext and the exception:
+ e.getMessage());

e.printStackTrace();

”

// may be javax.security.auth.AuthPermission "createlLoginContext” is not granted
// to the application, or the JAAS Tlogin configuration is not defined.
}

if (1c != null)

try {

1c.Togin(); // perform Togin
javax.security.auth.Subject s = 1c.getSubject();
// get the authenticated subject

// Invoke a J2EE resources using the authenticated subject
com.ibm.websphere.security.auth.WSSubject.doAs (s,

new java.security.PrivilegedAction() {

public Object run() {

try {

bankAccount.deposit(100.00); // where bankAccount is a protected enterprise bean
} catch (Exception e) {

76 1BM WebSphere Application Server Network Deployment, Version 6: Securing applications and their environment

n

System.out.printTn("ERROR: error while accessing EJB resource, exception:
+ e.getMessage());

e.printStackTrace();

}

return null;

}

}

)s

} catch (javax.security.auth.login.LoginException e) {
System.err.printIn("ERROR: Togin failed with exception: " + e.getMessage());
e.printStackTrace();

// login failed, might want to provide relogin logic

}

Attention: Do not use the com.ibm.websphere.security.auth.callback. WSGUICallbackHandlerlmpl callback
handler for server-side resources (like enterprise bean, servlet, JSP file, or any other server
side resources). The user interface login prompt blocks the server for user input. This behavior
is not desirable for a server process.

Stdin prompt programmatic login

WebSphere Application Server also provides a stdin implementation of the
javax.security.auth.callback.CallbackHandler interface to collect authentication data from a user through
stdin, which is called com. ibm.websphere.security.auth.callback.WSStdinCallbackHandlerImpl. This
callback handler prompts a user for authentication data.

javax.security.auth.login.LoginContext Tc = null;

try {
1c = new javax.security.auth.login.LoginContext("WSLogin",
new com.ibm.websphere.security.auth.callback.WSStdinCallbackHandlerImpl());

// create a LoginContext and specify a CallbackHandler implementation

// CallbackHandler implementation determine how authentication data is collected

// in this case, the authentication date is collected by stdin prompt

// and pass to the authentication mechanism implemented by the LoginModule.

} catch (javax.security.auth.login.LoginException e) {

System.err.printin("ERROR: failed to instantiate a LoginContext and the exception:
" + e.getMessage());

e.printStackTrace();

// may be javax.security.auth.AuthPermission "createlLoginContext” is not granted
// to the application, or the JAAS Tlogin configuration is not defined.
}

if (1c !'= null)

try {

Tc.login(); // perform login
javax.security.auth.Subject s = 1c.getSubject();
// get the authenticated subject

// Invoke a J2EE resource using the authenticated subject
com.ibm.websphere.security.auth.WSSubject.doAs (s,

new java.security.PrivilegedAction() {

public Object run() {

Chapter 8. Developing secured applications 77

try {
bankAccount.deposit(100.00);

// where bankAccount is a protected enterprise bean

} catch (Exception e) {

System.out.printTn("ERROR: error while accessing EJB resource, exception:
+ e.getMessage());

e.printStackTrace();

}

return null;

}

}

)s

} catch (javax.security.auth.login.LoginException e) {

System.err.printIn("ERROR: Tlogin failed with exception: " + e.getMessage());

e.printStackTrace();

”

// login failed, might want to provide relogin Tlogic

}

Do not use the com.ibm.websphere.security.auth.callback.WSStdinCallbackHandlerimpl callback handler
for server side resources (like enterprise beans, servlets, JSP files, and so on). The input from the stdin
prompt is not sent to the server environment. Most servers run in the background and do not have a
console. However, if the server does have a console, the stdin prompt blocks the server for user input.
This behavior is not desirable for a server process.

Developing programmatic logins with the Java Authentication and
Authorization Service

Java Authentication and Authorization Service represents the strategic application programming interfaces
(API) for authentication.

JAAS replaces the CORBA programmatic login APls

WebSphere Application Server provides some extension to JAAS:
+ Refer to the [Developing applications that use CosNaming (CORBA Naming interface)| article for details
on how to set up the environment for thin client applications to access remote resources on a server.
 If the application uses custom JAAS login configuration, verify that it is properly defined. See the
[Configuring application logins for Java Authentication and Authorization Service” on page 249 article for
details.
* Some of the JAAS APlIs are protected by Java 2 Security permissions. If these APIs are used by
application code, verify that these permissions are added to the application was.policy file. See[Adding|
the was.policy file to applications” on page 498 [‘Using PolicyTool to edit policy files” on page 482/and
“Configuring the was.policy file” on page 493|articles for details. For more details on which APIs are
protected by Java 2 Security permissions, check the IBM Application Developer Kit, Java Technology
Edition; JAAS and WebSphere Application Server public APls Javadoc in|“Security: Resources forI
[learning” on page 21| Some of the APIs used in the sample code in this documentation and the Java 2
Security permissions required by these APIs follow:
— Jjavax.security.auth.login.LoginContext constructors are protected by
javax.security.auth.AuthPermission "createLoginContext”
— javax.security.auth.Subject.doAs() and com.ibm.websphere.security.auth. WSSubject.doAs() are
protected by javax.security.auth.AuthPermission "doAs”
— javax.security.auth.Subject.doAsPrivileged() and
com.ibm.websphere.security.auth. WSSubject.doAsPrivileged() are protected by
javax.security.auth.AuthPermission "doAsPrivileged”

78 1BM WebSphere Application Server Network Deployment, Version 6: Securing applications and their environment

« Enhanced model to J2EE resources for authorization checks. Due to a design oversight in JAAS
Version 1.0, the javax.security.auth.Subject.getSubject() method does not return the Subject
associated with the thread of execution inside a java.security.AccessController.doPrivileged() code
block. This can present an inconsistent behavior, which might have undesirable effects. The
com.ibm.websphere.security.auth.WSSubject provides a workaround to associate a Subject to a thread
of execution. The com.ibm.websphere.security.auth.WSSubject extends the JAAS model to J2EE
resources for authorization checks. If the Subject associates with the thread of execution within the
com.ibm.websphere.security.auth.WSSubject.doAs() method or if the
com.ibm.websphere.security.auth.WSSubject.doAsPrivileged() code block contains product
credentials, the Subject is used for J2EE resources authorization checks.

» User Interface support for defining new JAAS login configuration. You can configure JAAS login
configuration in the administrative console and store it in the WebSphere Common Configuration Model.
Applications can define a new JAAS login configuration in the administrative console and the data is
persisted in the configuration repository (stored in the WebSphere Common Configuration Model).
However, WebSphere Application Server still supports the default JAAS login configuration format (plain
text file) provided by the JAAS default implementation. If there are duplication login configurations
defined in both the WebSphere Common Configuration and the plain text file format, the one in the
WebSphere Common Configuration takes precedence. There are advantages to defining the login
configuration in the WebSphere Common Configuration:

— Ul support in defining JAAS login configuration

— JAAS configuration login configuration can be managed centrally

— JAAS configuration login configuration is distributed in a Network Deployment installation

» Application support for programmatic authentication. WebSphere Application Server provides JAAS
login configurations for applications to perform programmatic authentication to the WebSphere security
run time. These configurations perform authentication to the WebSphere-configured authentication
mechanism (Simple WebSphere Authentication Mechanism (SWAM) or Lightweight Third Party
Authentication (LTPA)) and user registry (Local OS, Lightweight Directory Access Protocol (LDAP) or
Custom) based on the authentication data supplied. The authenticated Subject from these JAAS login
configurations contains the required Principal and Credentials that the WebSphere security run time can
use to perform authorization checks on J2EE role-based protected resources. Here are the JAAS login
configurations provided by the WebSphere Application Server:

— WSLogin JAAS login configuration. A generic JAAS login configuration can use Java clients, client
container applications, servlets, JSP files, and EJB components to perform authentication based on a
user ID and password, or a token to the WebSphere security run time. However, this does not honor
the CallbackHandler specified in the client container deployment descriptor.

— ClientContainer JAAS login configuration. This JAAS login configuration honors the
CallbackHandler specified in the client container deployment descriptor. The login module of this
login configuration uses the CallbackHandler in the client container deployment descriptor if one is
specified, even if the application code specified one CallbackHandler in the LoginContext. This is for
a client container application.

A Subject authenticated with the previously mentioned JAAS login configurations contains a
com.ibm.websphere.security.auth.WSPrincipal principal and a
com.ibm.websphere.security.cred.WSCredential credential. If the authenticated Subject is passed in
com.ibm.websphere.security.auth.WSSubject.doAs() or the other doAs() methods, the product
security run time can perform authorization checks on J2EE resources based on the Subject
com.ibm.websphere.security.cred.WSCredential.

+ Customer-defined JAAS login configurations. You can define other JAAS login configurations to

perform programmatic authentication to your authentication mechanism. See the

application logins for Java Authentication and Authorization Service” on page 249 article for details. For
the product security run time to perform authorization checks, the subjects from these customer-defined

JAAS login configurations must contain the required principal and credentials.

* Naming requirements for programmatic login on a pure Java client. When programmatic login
occurs on a pure Java client and the property com.ibm.CORBA.validateBasicAuth equals true, it is
necessary for the security code to know where the SecurityServer resides. Typically, the default
InitialContext is sufficient when a java.naming.provider.url property is set as a system property or
when the property is set in the jndi.properties file. In other cases it is not desirable to have the same

Chapter 8. Developing secured applications 79

java.naming.provider.url properties set in a system wide scope. In this case, there is a need to
specify security specific bootstrap information in the sas.client.props file. The following steps present
the order of precedence for determining how to find the SecurityServer in a pure Java client:

1. Use the sas.client.props file and look for the following properties:

com.ibm.CORBA.securityServerHost=myhost.mydomain
com.ibm.CORBA.securityServerPort=mybootstrap port

If you specify these properties, you are guaranteed that security looks here for the SecurityServer. The
host and port specified can represent any valid WebSphere host and bootstrap port. The
SecurityServer resides on all server processes and therefore it is not important which host or port you
choose. If specified, the security infrastructure within the client process look up the SecurityServer
based on the information in the sas.client.props file.

2. Place the following code in your client application to get a new InitialContext():

import java.util.Hashtable;
import javax.naming.Context;
import javax.naming.InitialContext;

// Perform an InitialContext and default Tookup prior to lTogging
// in so that target realm and bootstrap host/port can be
// determined for SecurityServer Tookup.

Hashtable env = new Hashtable();

env.put(Context.INITIAL CONTEXT FACTORY, .
com.ibm.websphere.naming.WsnInitialContextFactory");

env.put(Context.PROVIDER URL,
"corbaloc:iiop:myhost.mycompany.com:2809");

Context initialContext = new InitialContext(env);

Object obj = initialContext.lookup("");

// programmatic login code goes here.

Complete this step prior to executing any programmatic login. It is in this code that you specify a URL
provider for your naming context, but it must point to a valid WebSphere Application Server within the
cell that you are authenticating to. This allows thread specific programmatic logins going to different
cells to have a single system-wide SecurityServer location.

3. Use the new default InitialContext() method relying on the naming precedence rules. These rules are
defined in the article,|[Example: Getting the default initial context.

See the article, ['Example: Programmatic logins.”|

Example: Programmatic logins

The following example illustrates how application programs can perform a programmatic login using Java
Authentication and Authorization Service (JAAS):

LoginContext Ic = null;

try {
lc = new LoginContext("WSLogin",

new WSCallbackHandlerlmpl("userName”, "realm”, "password"));
} catch (LoginException le) {
System.out.printin("Cannot create LoginContext. " + le.getMessage());
/I insert error processing code
} catch(SecurityException se) {
System.out.printlin("Cannot create LoginContext.” + se.getMessage();

80 1BM™ WebSphere Application Server Network Deployment, Version 6: Securing applications and their environment

/I Insert error processing

}

try {
Ic.login();

} catch(LoginExcpetion le) {
System.out.printlin("Fails to create Subject. " + le.getMessage());
/I Insert error processing code

As shown in the example, the new LoginContext is initialized with the WSLogin login configuration and the
WSCallbackHandlerImpl CallbackHandler. Use the WSCallbackHandlerImpl instance on a server-side
application where prompting is not desirable. A WSCallbackHandTerImpl instance is initialized by the
specified user ID, password, and realm information. The present WSLoginModuleImpl class implementation
that is specified by WSLogin can only retrieve authentication information from the specified
CallbackHandler. You can construct a LoginContext with a Subject object, but the Subject is disregarded
by the present WSLoginModuleImpl implementation. For product client container applications, replace
WSLogin by ClientContainer login configuration, which specifies the WSC1ientLoginModuleImp]
implementation that is tailored for client container requirements.

For a pure Java application client, the product provides two other CallbackHandler implementations:
WSStdinCallbackHandlerImpl and WSGUICallbackHandlerImpl, which prompt for user ID, password, and
realm information on the command line and pop-up panel, respectively. You can choose either of these
product CallbackHandTer implementations depending on the particular application environment. You can
develop a new CallbackHandler if neither of these implementations fit your particular application
requirement.

You also can develop your own LoginModule if the default WSLoginModuleImpl implementation fails to meet
all your requirements. This product provides utility functions that the custom LoginModule can use, which
are described in the next section.

In cases where there is no java.naming.provider.url set as a system property or in the jndi.properties
file, a default InitialContext does not function if the product server is not at the Tocalhost:2809 location.
In this situation, perform a new InitialContext programmatically ahead of the JAAS login. JAAS needs to
know where the SecurityServer resides to verify that the user ID or password entered is correct, prior to
doing a commit(). By performing a new InitialContext in the way specified below, the security code has
the information needed to find the SecurityServer location and the target realm.

Attention: The first line starting with env.put was split into two lines because it extends beyond the width
of the printed page.

import java.util. Hashtable;
import javax.naming.Context;
import javax.naming.InitialContext;

/I Perform an InitialContext and default lookup prior to logging in so that target realm
/I and bootstrap host/port can be determined for SecurityServer lookup.

Hashtable env = new Hashtable();

env.put(Context.INITIAL_CONTEXT_FACTORY,
"com.ibm.websphere.naming.WsnlnitialContextFactory”);

env.put(Context. PROVIDER_URL, "corbaloc:iiop:myhost.mycompany.com:2809");

Context initialContext = new InitialContext(env);

Object obj = initialContext.lookup("");

Chapter 8. Developing secured applications 81

LoginContext Ic = null;

try {
Ic = new LoginContext("WSLogin",

new WSCallbackHandlerlImpl("userName”, "realm”, "password"));

} catch (LoginException le) {
System.out.printin("Cannot create LoginContext.
/I insert error processing code

} catch(SecurityException se) {
System.out.printlin("Cannot create LoginContext.” + se.getMessage();
/I Insert error processing

”

+ le.getMessage());

}

try {
Ic.login();

} catch(LoginException le) {
System.out.printlin("Fails to create Subject. " + le.getMessage());
/I Insert error processing code

}

Custom login module development for a system login configuration

For WebSphere Application Server, there are multiple Java Authentication and Authorization Service
(JAAS) plug in points for configuring system logins. WebSphere Application Server uses system login
configurations to authenticate incoming requests, outgoing requests, and internal server logins. Application
login configurations are called by Java 2 Platform, Enterprise Edition (J2EE) applications for obtaining a
Subject based on specific authentication information. This login configuration enables the application to
associate the Subject with a specific protected remote action. The Subject is picked up on the outbound
request processing. The following list are the main system plug in points. If you write a login module that
adds information to the Subject of a system login, these are the main login configurations to plug in:

+ WEB_INBOUND
* RMI_OUTBOUND
* RMI_INBOUND

* DEFAULT

WEB_INBOUND login configuration

The WEB_INBOUND login configuration authenticates Web requests. Figure 1 shows an example of a
configuration using a Trust Association Interceptor (TAl) that creates a Subject with the initial information
that is passed into the WEB_INBOUND login configuration. If the trust association interceptor is not
configured, the authentication process goes directly to the WEB_INBOUND system login configuration,
which consists of all of the login modules combined in Figure 1. Figure 1 shows where you can plug in
custom login modules and where the ltpaLoginModule and wsMapDefaultinboundLoginModule are
required.

Figure 1

82 iBM™ WebSphere Application Server Network Deployment, Version 6: Securing applications and their environment

Web request
requiring
authorization

|

thanticatad Web
Authenticated? Already)
container
Authenticat '«——— IBM required 1
uienticate ItpaLoginModule authentication
l —l modules
Trust Custom Custom
association login login
interceptor? module module
Seci:;:,er?;me wsMapDefaultinboundLoginModule
Use trust
association or unique |.D. —l
interceptor
Optional CIletF)m
custom credential mgglur]e
Hashtable
Trust in Subject
association

Web authentication

interceptor plug points

Single application server

For more detailed information on the WEB_INBOUND configuration including its associated callbacks, see
"RMI_INBOUND, WEB_INBOUND, DEFAULT" in [‘System login configuration entry settings for Java|
lAuthentication and Authorization Service” on page 255.|

RMI_OUTBOUND login configuration

The RMI_OUTBOUND login configuration is a plug point for handling outbound requests. WebSphere
Application Server uses this plug point to create the serialized information that is sent downstream based
on the Subject passed in (the invocation Subject) and other security context information such as
PropagationTokens. A custom login module can use this plug point to change the identity. For more
information, see [‘Configuring outbound mapping to a different target realm” on page 277 Figure 2 shows
where you can plug in custom login modules and shows where the wsMapCSlv20utboundLoginModule is
required.

Figure 2

Chapter 8. Developing secured applications 83

Outbound
RMI request

!

Common Secure
Interoperability version 2

Already established
\ Remote
enterprise bean
container

session established RMI outbound
authentication
plug points
Authenticate
1
Custom Custom
login — wsMapCSIv20utoundLoginModule login
module module T
1 Possibly modified
IBM required Subject and pr ti

authentication module attributes. Opportunity

for mapping, if needed.

Single application server

For more information on the RMI_OUTBOUND login configuration including its associated callbacks, see

"BMI_OUTBOUND" in[‘System login configuration entry settings for Java Authentication and Authorization|
[Service” on page 255

RMI_INBOUND login configuration

The RMI_INBOUND login configuration is a plug point that handles inbound authentication for enterprise
bean requests. WebSphere Application Server uses this plug point for either an initial login or a
propagation login. For more information about these two login types, see [‘Security attribute propagation’|
During a propagation login, this plug point is used to de-serialize the information received
from an upstream server. A custom login module can use this plug point to change the identity, handle
custom tokens, add custom objects into the Subject, and so on. For more information on changing the
identity using a Hashtable, which is referenced in figure 3, see [‘Configuring inbound identity mapping” on|
Figure 3 shows where you can plug in custom login modules and shows that the
ltpaLoginModule and wsMapDefaultinboundLoginModule are required.

Figure 3

84 BM WebSphere Application Server Network Deployment, Version 6: Securing applications and their environment

RMI inbound
request

|

Already authenticated
\ Enterprise
bean

Authenticated?

RMI inbound container
authentication y
lug points
Authenticate PR
Custom Custom Custom
login login login
module module module
T ItpaLoginModule wsMapDefaultinboundLoginModule
Optional custom credential \ IBM required /
Hashtable in Subject authentication modules

Single application server

For more information on the RMI_INBOUND login configuration including its associated callbacks, see
"RMI_INBOUND, WEB_INBOUND, DEFAULT" in [‘System login configuration entry settings for Java|
lAuthentication and Authorization Service” on page 255.|

DEFAULT login configuration

The DEFAULT login configuration is a plug point that handles all of the other types of authentication
requests, including administrative Simple Object Access Protocol (SOAP) requests and internal
authentication of the server ID. Propagation logins typically do not occur at this plug point.

For more information on the DEFAULT login configuration including its associated callbacks, see
"RMI_INBOUND, WEB_INBOUND, DEFAULT" in [‘System login configuration entry settings for Java|
[Authentication and Authorization Service” on page 255.|

Writing a login module

When you write a login module that plugs into a WebSphere Application Server application login or system
login configuration, read the JAAS programming model located atjhttp://java.sun.com/products/jaas, The
JAAS programming model provides basic information about JAAS. However, before writing a login module
for the WebSphere Application Server environment, read the following sections in this article

* Useable callbacks

» Shared state variables

* Initial versus propagation logins
» Sample custom login module

Useable callbacks

Each login configuration must document the callbacks that are recognized by the login configuration.
However, the callbacks are not always passed data. Thus, the login configuration must contain logic to
know when specific information is present and how to use the information. For example, if you write a
custom login module that can plug into all four of the pre-configured system login configurations mentioned

Chapter 8. Developing secured applications 85

http://java.sun.com/products/jaas

previously, three sets of callbacks might be presented to authenticate a request. Other callbacks might be
present for other reasons, including propagation and making other information available to the login
configuration.

Login information can be presented in the following combinations:

User name (NameCallback) and password (PasswordCallback)
This information is a typical authentication combination.

User name only (NameCallback)

This information used for identity assertion, Trust Association Interceptor (TAIl) logins, and
certificate logins.

Token (WSCredTokenCallbackimpl)
This information is for Lightweight Third Party Authentication (LTPA) token validation.

Propagation token list (WSTokenHolderCallback)
This information is used for a propagation login.

The first three combinations are used for typical authentication. However, when the
WSTokenHolderCallback is present in addition to one of the first three information combinations, the login
is called a propagation login. A propagation login means that some security attributes are propagated to
this server from another server. The servers can reuse these security attributes if the authentication
information validates successfully. In some cases, a WSTokenHolderCallback might not have sufficient
attributes for a full login. Thus, check the requiresLogin() method on the WSTokenHolderCallback to
determine if a new login is required. You can always ignore the information returned by the requiresLogin()
method, but, as a result, you might duplicate information.

The following is a list of the callbacks that might be present in the system login configurations. The list
includes a description of their responsibility.

Callback Description

callbacks[0] = new javax.security. This callback handler collects the user name for the login.

auth.callback.NameCallback The result can be the user name for a basic authentication

("Username: "); login (user name and password) or a user name for an
identity assertion login.

callbacks[1] = new javax.security. This callback handler collects the password for the login.

auth.callback.PasswordCallback

("Password: ", false);

callbacks[2] = new com.ibm. This callback handler collects the Lightweight Third Party

websphere.security.auth.callback. Authentication (LTPA) token, or other token type, for the

WSCredTokenCallbackImp]l login. It is typically present when a user name and

("Credential Token: "); password is not present.

callbacks[3] = new com.ibm. This callback handler collects the ArrayList of TokenHolder

wsspi.security.auth.callback. objects that are returned from a call to the

WSTokenHolderCallback WSOpaqueTokenHelper.

("Authz Token List: "); createTokenHolderListFromOpaqueToken () API using the

Common Secure Interoperability version 2 (CSIv2)
authorization token as input.

callbacks[4] = new com.ibm. This callback handler collects the HTTP servlet request
websphere.security.auth.callback. object, if present. It enables login modules to get
WSServietRequestCallback information from the HTTP request for use in the login.
("HttpServletRequest: "); This callback handler is presented from the

WEB_INBOUND login configuration only.

86 1BM WebSphere Application Server Network Deployment, Version 6: Securing applications and their environment

Callback

Description

callbacks[5] = new com.ibm.

WSServietResponseCallback
("HttpServletResponse: ");

websphere.security.auth.callback.

This callback handler collects the HTTP servlet response
object, if present. It enables login modules to put
information into the HTTP response as a result of the
login. An example of this situation might be adding the
SingleSignonCookie to the response.This callback handler
is presented from the WEB_INBOUND login configuration
only.

callbacks[6] = new com.ibm.

WSAppContextCallback
("ApplicationContextCallback: ");

websphere.security.auth.callback.

This callback handler collects the Web application context
used during the login. It consists of a HashMap, which
contains the application name and the redirect URL, if
present. This callback handler is presented from the

WEB_INBOUND login configuration only.

Shared state variables

Shared state variables are used to share information between login modules during the login phase. The
following list contains recommendations for using the shared state variables:

* When you have a custom login module, use the shared state variables to communicate to a WebSphere
Application Server login module using a documented shared state variable as shown in the following
table.

» Try not to update the Subject until the commit phase. If you call the abort() method, you must remove
any objects added to the Subject.

* Enable the login module that adds information into the shared state Map during login to remove this
information during commit in case the same shared state is used for another login.

« If an abort or logout occurs, clean up the information in the login configuration for the shared state and
the Subject.

The com.ibm.wsspi.security.token.AttributeNameConstants. WSCREDENTIAL_PROPERTIES_KEY shared
state variable can inform the WebSphere Application Server login configurations about asserted privilege
attributes. This variable references the com.ibm.wsspi.security.cred.propertiesObject property. You should
associate a java.util.Hashtable with this property. This hashtable contains properties used by WebSphere
Application Server for login purposes and ignores the callback information. This hashtable enables a
custom login module, which is carried out first in the login configuration, to map user identities or enable
WebSphere Application Server to avoid making unnecessary user registry calls if you already have the
required information. For more information, see [‘Configuring inbound identity mapping” on page 268.|

If you want to access the objects that WebSphere Application Server creates during a login, refer to the
following shared state variables.

Login module in which variables are set:

ltpaLoginModule, swamLoginModule, and wsMapDefaultinboundLoginModule

Shared state variable
com.ibm.wsspi.security.auth.callback.Constants. WSPRINCIPAL_KEY

Purpose
Specifies the com.ibm.websphere.security.auth. WSPrincipal object. See the WebSphere
Application Server Javadoc for application programming interface (API) usage. This shared state
variable is for read-only purposes. Do not set this variable in the shared state for custom login
modules.

Login module in which variables are set:

Chapter 8. Developing secured applications 87

ltpaLoginModule, swamLoginModule, and wsMapDefaultinboundLoginModule

Shared state variable
com.ibm.wsspi.security.auth.callback.Constants. WSCREDENTIAL_KEY

Purpose
Specifies the com.ibm.websphere.security.cred.WSCredential object. See the WebSphere
Application Server Javadoc for APl usage. This shared state variable is for read-only purposes. Do
not set this variable in the shared state for custom login modules.

Login module in which variables are set:

wsMapDefaultinboundLoginModule

Shared state variable
com.ibm.wsspi.security.auth.callback.Constants. WSAUTHZTOKEN_KEY

Purpose
Specifies the default com.ibm.wsspi.security.token.AuthorizationToken object. Login modules can
use this object to set custom attributes plugged in after wsMapDefaultinboundLoginModule. The
information set here is propagated downstream and available to the Application. See the
WebSphere Application Server Javadoc for API usage.

Initial versus propagation logins

As mentioned previously, some logins are considered initial logins because of the following reasons:
» It is the first time authentication information is presented to WebSphere Application Server.

* The login information is received from a server that does not propagate security attributes so this
information must be gathered from a user registry.

Other logins are considered propagation logins when a WSTokenHolderCallback is present and contains
sufficient information from a sending server to recreate all the required objects needed by WebSphere
Application Server run time. In cases where there is sufficient information for WebSphere Application
Server run time, the information you might add to the Subject is likely exists from the previous login. To
verify if your object is present, you can get access to the ArrayList present in the WSTokenHolderCallback,
and search through this list looking at each TokenHolder getName() method. This search is used to
determine if WebSphere Application Server is deserializing your custom object during this login. Check the
class name returned from the getName() method using the String startsWith() method because the run
time might add additional information at the end of the name to know which Subject set to add the custom
object after de-serialization.

The following code snippet can be used in your login() method to determine when sufficient information is
present. For another example, see [‘Configuring inbound identity mapping” on page 268

Sample code

// This is a hint provided by WebSphere Application Server that
// sufficient propagation information does not exist and, therefore,
// a Togin is required to provide the sufficient information. In this
// situation, a Hashtable login might be used.
boolean requiresLogin = ((com.ibm.wsspi.security.auth.callback.
WSTokenHolderCallback) callbacks[1]).requiresLogin();

if (requiresLogin)
{

// Check to see if your object exists in the TokenHolder Tist,
if not, add it.

88 1BM WebSphere Application Server Network Deployment, Version 6: Securing applications and their environment

else

}

java.util.ArraylList authzTokenlList

= ((WSTokenHolderCallback) callbacks[6]).
getTokenHolderList () ;boolean found =

false;

if (authzTokenList != null)
{

Iterator tokenListIterator = authzTokenList.iterator();

while (tokenlListIterator.hasNext())
{
com.ibm.wsspi.security.token.TokenHolder th = (com.ibm.wsspi.security.token.
TokenHolder) tokenListIterator.next();

if (th != null && th.getName().startsWith(”com.acme.myCustomClass”))
{
found=true;
break;
}
}
if (!found)
{
// go ahead and add your custom object.

}
}

// This code indicates that sufficient propagation information is present.
// User registry calls are not needed by WebSphere Application Server to
// create a valid Subject. This code might be a no-op in your login module.

Sample custom login module

You can use the following sample to get ideas on how to use some of the callbacks and shared state
variables.

pubTic
{

customLoginModule()

// Defines your login module variables
com.ibm.wsspi.security.token.AuthenticationToken customAuthzToken = null;
com.ibm.wsspi.security.token.AuthenticationToken defaultAuthzToken = null;
com.ibm.websphere.security.cred.WSCredential credential = null;
com.ibm.websphere.security.auth.WSPrincipal principal = null;

private javax.security.auth.Subject _subject;

private javax.security.auth.callback.CallbackHandler callbackHandler;
private java.util.Map _sharedState;

private java.util.Map _options;

public void initialize(Subject subject, CallbackHandler callbackHandler,
Map sharedState, Map options)

{

_subject = subject;
_callbackHandler = callbackHandler;
_sharedState = sharedState;
_options = options;

}

Chapter 8. Developing secured applications

89

public boolean Togin() throws LoginException

{

boolean succeeded = true;

// Gets the CALLBACK information

javax.security.auth.callback.Callback callbacks[] = new javax.security.
auth.callback.Callback[7];

callbacks[0] = new javax.security.auth.callback.NameCallback(
"Username: ");

callbacks[1] = new javax.security.auth.callback.PasswordCallback(
"Password: ", false);

callbacks[2] = new com.ibm.websphere.security.auth.callback.
WSCredTokenCallbackImpl ("Credential Token: ");

callbacks[3] = new com.ibm.wsspi.security.auth.callback.
WSServletRequestCallback ("HttpServietRequest: ”);

callbacks[4] = new com.ibm.wsspi.security.auth.callback.
WSServietResponseCallback ("HttpServletResponse: ");

callbacks[5] = new com.ibm.wsspi.security.auth.callback.
WSAppContextCallback ("ApplicationContextCallback: ");

callbacks[6] = new com.ibm.wsspi.security.auth.callback.
WSTokenHolderCallback ("Authz Token List: ");

try

{

callbackHandler.handle(callbacks);

}

catch (Exception e)

{

// Handles exceptions

throw new WSLoginFailedException (e.getMessage(), e);

}

// Sees which callbacks contain information

uid = ((NameCallback) callbacks[0]).getName();

char password[] = ((PasswordCallback) callbacks[1]).getPassword();

byte[] credToken = ((WSCredTokenCallbackImpl) callbacks[2]).getCredToken();

javax.servlet.http.HttpServlietRequest request = ((WSServietRequestCallback)
callbacks[3]).getHttpServietRequest();

javax.servlet.http.HttpServletResponse response = ((WSServletResponseCallback)
callbacks[4]).getHttpServletResponse();

java.util.Map appContext = ((WSAppContextCallback)
callbacks[5]).getContext();

java.util.List authzTokenList = ((WSTokenHolderCallback)
callbacks[6]).getTokenHolderList();

// Gets the SHARED STATE information

principal = (WSPrincipal) _sharedState.get(com.ibm.wsspi.security.
auth.callback.Constants.WSPRINCIPAL_KEY);

credential = (WSCredential) _sharedState.get(com.ibm.wsspi.security.
auth.callback.Constants.WSCREDENTIAL KEY);

defaultAuthzToken = (AuthorizationToken) _sharedState.get(com.ibm.
wsspi.security.auth.callback.Constants.WSAUTHZTOKEN KEY);

// What you tend to do with this information depends upon the scenario
// that you are trying to accomplish. This example demonstrates how to

90 BM WebSphere Application Server Network Deployment, Version 6: Securing applications and their environment

// access various different information:

// - Determine if a login is initial versus propagation

// - Deserialize a custom authorization token (For more information, see
// ['Security attribute propagation" on page 282

// - Add a new custom authorization token (For more information, see

// PSecurity attribute propagation" on page 28ﬂ

// - Look for a WSCredential and read attributes, if found.

// - Look for a WSPrincipal and read attributes, if found.

// - Look for a default AuthorizationToken and add attributes, if found.
// - Read the header attributes from the HttpServletRequest, if found.
// - Add an attribute to the HttpServiletResponse, if found.

// - Get the web application name from the appContext, if found.

// - Determines if a login is initial versus propagation. This is most
// useful when login module is first.
boolean requiresLogin = ((WSTokenHolderCallback) callbacks[6]).requiresLogin();

// initial login - asserts privilege attributes based on user identity
if (requiresLogin)

{

// If you are validating a token from another server, there is an
// application programming interface (API) to get the uniqueID from it.
if (credToken != null && uid == null)
{
try
{
String uniqueID = WSSecurityPropagationHelper.
validateLTPAToken(credToken);
String realm = WSSecurityPropagationHelper.getRealmFromUniquelD
(uniquelD);
// Now set it to the UID so you can use that to either map or
// login with.
uid = WSSecurityPropagationHelper.getUserFromUniqueID (uniquelD);
}
catch (Exception e)
{
// handle exception

}

}
// Adds a Hashtable to shared state.
// Note: You can perform custom mapping on the NameCallback value returned
// to change the identity based upon your own mapping rules.

uid = mapUser (uid);

// Gets the default InitialContext for this server.
javax.naming.InitialContext ctx = new javax.naming.InitialContext();

// Gets the local UserRegistry object.
com.ibm.websphere.security.UserRegistry reg = (com.ibm.websphere.security.
UserRegistry) ctx.lookup(”"UserRegistry”);

// Gets the user registry uniqueID based on the uid specified in the
// NameCallback.
String uniqueid = reg.getUniqueUserId(uid);
uid = WSSecurityPropagationHelper.getUserFromUniqueID (uniquelID);

Chapter 8. Developing secured applications

91

// Gets the display name from the user registry based on the uniquelD.
String securityName = reg.getUserSecurityName(uid);

// Gets the groups associated with this uniquelD.
java.util.List groupList = reg.getUniqueGroupIds(uid);

// Creates the java.util.Hashtable with the information you gathered from
// the UserRegistry.
java.util.Hashtable hashtable = new java.util.Hashtable();
hashtable.put(com.ibm.wsspi.security.token.AttributeNameConstants.
WSCREDENTIAL UNIQUEID, uniqueid);
hashtable.put(com.ibm.wsspi.security.token.AttributeNameConstants.
WSCREDENTIAL SECURITYNAME, securityName);
hashtable.put(com.ibm.wsspi.security.token.AttributeNameConstants.
WSCREDENTIAL GROUPS, grouplList);

// Adds a cache key that is used as part of the Tookup mechanism for
// the created Subject. The cache key can be an Object, but should
// implement the toString() method. Make sure the cacheKey contains
// enough information to scope it to the user and any additional
// attributes that you use. If you do not specify this property the
// Subject is scoped to the WSCREDENTIAL UNIQUEID returned, by default.
hashtable.put(com.ibm.wsspi.security.token.AttributeNameConstants.
WSCREDENTIAL_CACHE_KEY,
"myCustomAttribute” + uniqueid);

// Adds the hashtable to the sharedState of the Subject.
_sharedState.put(com.ibm.wsspi.security.token.AttributeNameConstants.
WSCREDENTIAL PROPERTIES KEY,hashtable);

1
// propagation login - process propagated tokens
else
{
// - Deserializes a custom authorization token. For more information, see

// ['Security attribute propagation" on page 282.|
// This can be done at any login module plug in point (first,
// middle, or Tlast).
if (authzTokenList != null)
{
// Iterates through the Tist Tooking for your custom token
for (int i=0; i<authzTokenList.size(); i++)
{
TokenHolder tokenHolder = (TokenHolder)authzTokenList.get(i);

// Looks for the name and version of your custom AuthorizationToken
// implementation
if (tokenHolder.getName().equals(”com.ibm.websphere.security.token.
CustomAuthorizationTokenImpl”) && tokenHolder.getVersion() == 1)
{
// Passes the bytes into your custom AuthorizationToken constructor
// to deserialize
customAuthzToken = new
com.ibm.websphere.security.token.
CustomAuthorizationTokenImpl (tokenHolder.getBytes());

92 BM WebSphere Application Server Network Deployment, Version 6: Securing applications and their environment

// - Adds a new custom authorization token (For more information,
// see ['Security attribute propagation" on page 282)
// This can be done at any login module plug in point (first, middle,
// or last).

else

{

// Gets the PRINCIPAL from the default AuthenticationToken. This must

// match all of the tokens.
defaultAuthToken = (com.ibm.wsspi.security.token.AuthenticationToken)
sharedState.get(com.ibm.wsspi.security.auth.callback.Constants.
WSAUTHTOKEN_KEY) ;
String principal = defaultAuthToken.getPrincipal();

// Adds a new custom authorization token. This is an initial login.
// Pass the principal into the constructor
customAuthzToken = new com.ibm.websphere.security.token.
CustomAuthorizationTokenImpl(principal);

// Adds any initial attributes

if (customAuthzToken != null)

{
customAuthzToken.addAttribute("keyl”, "valuel”);
customAuthzToken.addAttribute("keyl”, "value2”);
customAuthzToken.addAttribute("key2”, "valuel”);
customAuthzToken.addAttribute("key3”, "something different”);
}

}

1

// - Looks for a WSCredential and read attributes, if found.
// This is most useful when plugged in as the last login module.
if (credential != null)
{
try
{
// Reads some data from the credential
String securityName = credential.getSecurityName();
java.util.ArraylList = credential.getGrouplds();
}
catch (Exception e)
{
// Handles exceptions
throw new WSLoginFailedException (e.getMessage(), e);
}
}

// - Looks for a WSPrincipal and read attributes, if found.
// This is most useful when plugged as the last Togin module.
if (principal != null)

{

try

{

// Reads some data from the principal

Chapter 8. Developing secured applications

93

String principalName = principal.getName();
}
catch (Exception e)
{
// Handles exceptions
throw new WSLoginFailedException (e.getMessage(), e);
}
}

// - Looks for a default AuthorizationToken and add attributes, if found.
// This is most useful when plugged in as the Tast login module.
if (defaultAuthzToken != null)
{
try
{
// Reads some data from the defaultAuthzToken
String[] myCustomValue = defaultAuthzToken.getAttributes ("myKey”);
// Adds some data if not present in the defaultAuthzToken
if (myCustomValue == null)
defaultAuthzToken.addAttribute ("myKey”, "myCustomData”);
1
catch (Exception e)
{
// Handles exceptions
throw new WSLoginFailedException (e.getMessage(), e);
}
}

// - Reads the header attributes from the HttpServietRequest, if found.
// This can be done at any login module plug in point (first, middle,
// or last).
if (request !'= null)
{
java.util.Enumeration headerEnum = request.getHeaders();
while (headerEnum.hasMoreElements())
{
System.out.println ("Header element: ” + (String)headerEnum.nextElement());
}
}

// - Adds an attribute to the HttpServletResponse, if found
// This can be done at any login module plug in point (first, middle,
// or last).

if (response != null)

{

response.addHeader ("myKey”, "myValue”);

}

// - Gets the web application name from the appContext, if found
// This can be done at any login module plug in point (first, middle,
// or last).
if (appContext != null)
{
String appName = (String) appContext.get(com.ibm.wsspi.security.auth.
callback.Constants.WEB_APP_NAME);

}

94 BM WebSphere Application Server Network Deployment, Version 6: Securing applications and their environment

return succeeded;

}

public boolean commit() throws LoginException

{

boolean succeeded = true;

// Add any objects here that you have created and belong in the

// Subject. Make sure the objects are not already added. If you added

// any sharedState variables, remove them before you exit. If the abort()
// method gets called, make sure you cleanup anything added to the

// Subject here.

if (customAuthzToken != null)
{
// Sets the customAuthzToken token into the Subject
try
{
// Do this in a doPrivileged code block so that application code
// does not need to add additional permissions
java.security.AccessController.doPrivileged(new java.security.PrivilegedAction()
{
public Object run()
{
try
{
// Adds the custom authorization token if it is not
// null and not already in the Subject
if ((customAuthzTokenPriv != null) &&
(! subject.getPrivateCredentials().contains(customAuthzTokenPriv)))
{

_subject.getPrivateCredentials().add(customAuthzTokenPriv);

1
}
catch (Exception e)
{
throw new WSLoginFailedException (e.getMessage(), e);
}

return null;

1
}

catch (Exception e)

{

throw new WSLoginFailedException (e.getMessage(), e);
}
1

return succeeded;

}
public boolean abort() throws LoginException
{

boolean succeeded = true;

Chapter 8. Developing secured applications

95

// Makes sure to remove all objects that have already been added (both into the
// Subject and shared state).

if (customAuthzToken != null)
{
// remove the customAuthzToken token from the Subject
try
{
final AuthorizationToken customAuthzTokenPriv = customAuthzToken;
// Do this in a doPrivileged block so that application code does not need
// to add additional permissions
java.security.AccessController.doPrivileged(new java.security.PrivilegedAction()
{
public Object run()
{
try
{
// Removes the custom authorization token if it is not
// null and not already in the Subject
if ((customAuthzTokenPriv != null) &&
(_subject.getPrivateCredentials().
contains(customAuthzTokenPriv)))
{
_subject.getPrivateCredentials().
remove (customAuthzTokenPriv);
}
}
catch (Exception e)
{
throw new WSLoginFailedException (e.getMessage(), e);

}

return null;

}
1
}

catch (Exception e)

{

throw new WSLoginFailedException (e.getMessage(), e);

}
}

return succeeded;

}

public boolean Togout() throws LoginException

{

boolean succeeded = true;

// Makes sure to remove all objects that have already been added
// (both into the Subject and shared state).

if (customAuthzToken != null)
{

96 1BM WebSphere Application Server Network Deployment, Version 6: Securing applications and their environment

// Removes the customAuthzToken token from the Subject
try
{
final AuthorizationToken customAuthzTokenPriv = customAuthzToken;
// Do this in a doPrivileged code block so that application code does
// not need to add additional permissions
java.security.AccessController.doPrivileged(new java.security.
PrivilegedAction()
{
public Object run()
{
try
{
// Removes the custom authorization token if it is not null and not
// already in the Subject
if ((customAuthzTokenPriv != null) && (_subject.
getPrivateCredentials().
contains(customAuthzTokenPriv)))

{

_subject.getPrivateCredentials().remove(customAuthzTokenPriv);

1
1
catch (Exception e)
{
throw new WSLoginFailedException (e.getMessage(), e);
}

return null;

}

s
}
catch (Exception e)
{

throw new WSLoginFailedException (e.getMessage(), e);
}

}

return succeeded;

}

After developing your custom login module for a system login configuration, you can configure the system
login using either the administrative console or using the wsadmin utility. To configure the system login
using the administrative console, click Security > JAAS Configuration > System logins. For more
information on using the wsadmin utility for system login configuration, see [‘Example: Customizing a|
server-side Java Authentication and Authorization Service authentication and login configuration” on pa e|
98.]Also refer to the [‘Example: Customizing a server-side Java Authentication and Authorization Service
authentication and login configuration” on page 9§ article for information on system login modules and to
determine whether to add additional login modules.

Chapter 8. Developing secured applications 97

Example: Customizing a server-side Java Authentication and
Authorization Service authentication and login configuration

WebSphere Application Server supports plugging in a custom Java Authentication and Authorization
Service (JAAS) login module before or after the WebSphere Application Server system login module.
However, WebSphere Application Server does not support the replacement of the WebSphere Application
Server system login modules, which are used to create WSCredential and WSPrincipal in the Subject. By
using a custom login module, you can either make additional authentication decisions or add information to
the Subject to make additional, potentially finer-grained, authorization decisions inside a Java 2 Platform,
Enterprise Edition (J2EE) application.

WebSphere Application Server enables you to propagate information downstream that is added to the
Subject by a custom login module. For more information, see [‘Security attribute propagation” on page 282
To determine which login configuration to use for plugging in your custom login modules, see the
descriptions of the login configurations located in the |*System login configuration entry settings for Java|
[Authentication and Authorization Service” on page 255| article.

WebSphere Application Server supports the modification of the system login configuration through the
administrative console and by using the wsadmin scripting utility. To configure the system login
configuration using the administrative console, click Security. Under Authentication, click JAAS
Configuration > System logins.

Refer to the following code sample to configure a system login configuration using the wsadmin tool. The
following sample JACL script adds a custom login module into the Lightweight Third-party Authentication
(LTPA) Web system login configuration:

Attention: Lines 32, 33, and 34 in the following code sample were split onto two lines because of the
width of the printed page.

1. ###########H AR AR AR AR A AR AR AR AR A A

2. #

3. # Open security.xml

4. #

5. ######tHEHRRAFAAAAREA AR AAA AR AR AR

6

7.

8. set sec [$AdminConfig getid /Cell:hillside/Security:/]
9.

10.

11. ########FFFHFHRRR AR A FAFHHR AR A AR R AR

12. #

13. # Locate systemLoginConfig

14. #

15. #########FHHHER AR AF AR AR AR AR A

16.

17.

18. set slc [$AdminConfig showAttribute $sec systemLoginConfig]
19.

20. set entries [Tindex [$AdminConfig showAttribute $slc entries] 0]
21.

22.

23. ###H#HHHRR A AAAAAAAARAAAAAAFRRR A AAAAAAS

24. #

25. # Append a new LoginModule to LTPA_WEB

26. #

98 BM WebSphere Application Server Network Deployment, Version 6: Securing applications and their environment

27.
28.
29.
30.
31.
32.

33.

34.

35.
36.
37.
38.
39.
40.
41.
42.
43.
44,
45,
46.
47.

Attention:

#H#H# AR AR A AR A AR AR AR RA AR AR AR AR

foreach entry $entries {
set alias [$AdminConfig showAttribute $entry alias]
if {$alias == "LTPA_WEB"} {

set newJAASLoginModuleId [$AdminConfig create JAASLoginModule

$entry {{moduleClassName

"com.ibm.ws.security.common.auth.module.proxy.WSLoginModuleProxy”}}]

set newPropertyld [$AdminConfig create Property
$newJAASLoginModuleld {{name delegate}{value
"com.ABC.security.auth.CustomLoginModule”}}]

$AdminConfig modify $newJAASLoginModuleld
{{authenticationStrategy REQUIRED}}

break

}

iddgadddssdddasdddasaddgaddddsaddtaadddaii
#

save the change

#
Rdgsdddgsdddgsaddgsaddasdddasdadasdadiadi

$AdminConfig save

script using the following command:

Wsadmin -f sample.jacl

The wsadmin scripting utility inserts a new object to the end of the list. To insert the custom
LoginModule before the AuthenLoginModule, delete the AuthenLoginModule and then recreate it after
inserting the custom LoginModule. Save the sample script into a file, sample.jacl, executing the sample

You can use the following sample JACL script to remove the current LTPA_WEB login configuration and all
the LoginModules:

48.
49,
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.

idgddsadssddsddsdasddsadaddsddsddadaadad
#

Open security.xml

#
idgddssdasddsddsddsddaddsddsadasdadasdiad

set sec [$AdminConfig getid /Cell:hillside/Security:/]

idgddsadsddsddsddsddssddaddaddsddsadadad
#

Locate systemLoginConfig

#
idgddsadasddsddsddsddaddsddsadasdaddsdiad

set slc [$AdminConfig showAttribute $sec systemLoginConfig]

Chapter 8. Developing secured applications

99

67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.

You

set entries [Tindex [$AdminConfig showAttribute $sic entries] 0]

idddsdsddsdsdaddsdsdsddsdsdaddsdagdadsdaii
#
Remove the LTPA WEB login configuration
#
idddadddadadddadddtadadaddtada g

foreach entry §entries {
set alias [$AdminConfig showAttribute $entry alias]
if {$alias == "LTPA WEB"} {
$AdminConfig remove $entry
break

iddgadddsddddgsdddaddddgadddasdddtaadddaii
#

save the change

#
ddgsdddssdddsdddsadasdddsaddaadddaai

$AdminConfig save

can use the following sample JACL script to recover the original LTPA_WEB configuration:

Attention: Lines 122, 124, and 126 in the following code sample were split onto two or more lines

92.
93.
94.
95.
96.
97.
98.
99.

100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.

100

because of the width of the printed page. The two lines of code for line 122 are normally one
continuous line. The three lines of code for line 124 are normally one continuous line. Also, the
three lines of code for line 126 are normally one continuous line.

ddgsdddsdddsdddsadiaadisaddaadddaii
#

Open security.xml

#
iddgaddsgddtgsdddaddddgadddasaddtaadddaii

set sec [$AdminConfig getid /Cell:hillside/Security:/]

ifgddgsddsdtsddssdsddsddsddsddasdsdaadiad
#

Locate systemLoginConfig

#
idgddsaddsddsddsadsdddaddsddsadasdtaddadad

set slc [$AdminConfig showAttribute $sec systemLoginConfig]

set entries [lindex [$AdminConfig showAttribute $sic entries] 0]

IBM WebSphere Application Server Network Deployment, Version 6: Securing applications and their environment

115. ##########EFHEFHEAAHRAH AR R AR AFRAH RS

116. #

117. # Recreate the LTPA_WEB Togin configuration

118. #

119. ##########E##EAHHRAHRAHEAARAAARAHRAH RS

120.

121.

122. set newJAASConfigurationEntryId [$AdminConfig create JAASConfigurationEntry
$slc {{alias LTPA_WEB}}]

123.

124. set newJAASLoginModuleld [$AdminConfig create JAASLoginModule
$newJAASConfigurationEntryld
{{moduleClassName
"com.ibm.ws.security.common.auth.module.proxy.WSLoginModuleProxy”}}]

125.

126. set newPropertyld [$§AdminConfig create Property
$newJAASLoginModuleld {{name delegate}
{value "com.ibm.ws.security.web.AuthenLoginModule”}}]

127.

128. $AdminConfig modify $newJAASLoginModuleld {{authenticationStrategy REQUIRED}}

129.

130.

131. ##########E##EAHHRA AR AR AR AA AR AR

132. #

133. # save the change

134. #

135. #########HEFHEFFEAAHRAH AR AA AR AF RS

136.

137. $AdminConfig save

The WebSphere Application Server Version ItpaLoginModule and AuthenLoginModule use the shared state
to save state information so that custom LoginModules can modify the information. The ltpaLoginModule
initializes the callback array in the login() method using the following code. The callback array is created
by ItpaLoginModule only if an array is not defined in the shared state area. In the following code sample,
the error handling code was removed to make the sample concise. If you insert a custom LoginModule
before the ItpaLoginModule, custom LoginModule might follow the same style to save the callback into the
shared state.

Attention: In the following code sample, several lines of code have been split onto two lines because of
the width of the printed page. Each of these split lines are one continuous line.

138. Callback callbacks[] = null;

139. if (!sharedState.containsKey(
com.ibm.wsspi.security.auth.callback.Constants.
CALLBACK_KEY)) {

140. callbacks = new Callback[3];

141. callbacks[0] = new NameCallback("Username: ");

142. callbacks[1] = new PasswordCallback(”Password: ", false);

143. callbacks[2] = new com.ibm.websphere.security.auth.callback.
WSCredTokenCallbackImpl("Credential Token: ");

144, try {

145, callbackHandler.handle(callbacks);

146. } catch (java.io.IOException e) {

147. e

148. } catch (UnsupportedCallbackException uce) {

149. e

Chapter 8. Developing secured applications 101

150. }

151. sharedState.put(
com.ibm.wsspi.security.auth.callback.Constants.CALLBACK KEY,
callbacks);

152. } else {

153. callbacks = (Callback [])

sharedState.get(com.ibm.wsspi.security.auth.callback.
Constants.CALLBACK KEY);
154. }

ltpaLoginModule and AuthenLoginModule generate both a WSPrincipal and a WSCredential object to
represent the authenticated user identity and security credentials. The WSPrincipal and WSCredential
objects also are saved in the shared state. A JAAS login uses a two-phase commit protocol. First, the login
methods in login modules, which are configured in the login configuration, are called. Then, their commit
methods are called. A custom LoginModule, which is inserted after the ItpaLoginModule and the
AuthenLoginModule, can modify the WSPrincipal and WSCredential objects before they are committed.
The WSCredential and WSPrincipal objects must exist in the Subject after the login is completed. Without
these objects in the Subject, WebSphere Application Server run-time code rejects the Subject when it is
used to make any security decisions.

AuthenLoginModule uses the following code to initialize the callback array:

Attention: In the following code sample, several lines of code have been split onto two lines because of
the width of the printed page. Each of these split lines are one continuous line.

155. Callback callbacks[] = null;

156. if (!sharedState.containsKey(
com.ibm.wsspi.security.auth.callback.Constants.
CALLBACK_KEY)) {

157. callbacks = new Callback[6];

158. callbacks[0] = new NameCallback("Username: ");

159. callbacks[1] = new PasswordCallback(”Password: ", false);
160. callbacks[2] =

new com.ibm.websphere.security.auth.callback.WSCredTokenCallbackImpl (
"Credential Token: ");

161. callbacks[3] =
new com.ibm.wsspi.security.auth.callback.WSServletRequestCallback(
"HttpServietRequest: ");

162. callbacks[4] =
new com.ibm.wsspi.security.auth.callback.WSServietResponseCallback(
"HttpServletResponse: ");

163. callbacks[5] =
new com.ibm.wsspi.security.auth.callback.WSAppContextCallback(
"ApplicationContextCallback: ");

164. try {

165. callbackHandler.handle(callbacks);

166. } catch (java.io.IOException e) {

167. Ce

168. } catch (UnsupportedCallbackException uce {

169. e

170. }

171. sharedState.put(com.ibm.wsspi.security.auth.callback.
Constants.CALLBACK KEY, callbacks);

172. } else {

173. callbacks = (Callback []) sharedState.get(

com.ibm.wsspi.security.auth.callback.

102 BM™ WebSphere Application Server Network Deployment, Version 6: Securing applications and their environment

Constants.CALLBACK KEY);
174. }

Three more objects, which contain callback information for the login, are passed from the Web container to
the AuthenLoginModule: a java.util.Map, a HttpServletRequest, and a HttpServietResponse object.
These objects represent the Web application context. The WebSphere Application Server Version 5.1
application context, java.util.Map object, contains the application name and the error page URL. You can
obtain the application context, java.util.Map object, by calling the getContext() method on the
WSAppContextCallback object. The java.util.Map object is created with the following deployment
descriptor information.

Attention: In the following code sample, several lines of code have been split onto two lines because of
the width of the printed page. Each of these split lines are one continuous line.

175. HashMap appContext = new HashMap(2);

176. appContext.put(
com.ibm.wsspi.security.auth.callback.Constants.WEB APP_NAME,
web_application_name);

177. appContext.put(
com.ibm.wsspi.security.auth.callback.Constants.REDIRECT URL,
errorPage) ;

The application name and the HttpServietRequest object might be read by the custom LoginModule to
perform mapping functions. The error page of the form-based login might be modified by a custom
LoginModule. In addition to the JAAS framework, WebSphere Application Server supports the Trust
Association Interface (TAl).

Other credential types and information can be added to the caller Subject during the authentication
process using a custom LoginModule. The third-party credentials in the caller Subject are managed by
WebSphere Application Server as part of the security context. The caller Subject is bound to the thread of
execution during the request processing. When a Web or EJB module is configured to use the caller
identity, the user identity is propagated to the downstream service in an EJB request. WSCredential and
any third-party credentials in the caller Subject are not propagated downstream. Instead, some of the
information can be regenerated at the target server based on the propagated identity. Add third-party
credentials to the caller Subject at the authentication stage. The caller Subject, which is returned from the
WSSubject.getCallerSubject() method, is read-only and thus cannot be modified. For more information on
the WSSubject, see [‘Example: Getting the Caller Subject from the Thread.”|

Example: Getting the Caller Subject from the Thread

The Caller subject (or "received subject”) contains the user authentication information used in the call for
this request. This subject is returned after issuing the WSSubject.getCallerSubject() API to prevent
replacing existing objects. The subject is marked read-only. This API can be used to get access to the
WSCredential (documented in the Javadoc information) so that you can put or set data in the hashmap
within the credential.

Most data within the subject is not propagated downstream to another server. Only the credential token
within the WSCredential is propagated downstream (and a new caller subject generated).

try

{

javax.security.auth.Subject caller_subject;
com.ibm.websphere.security.cred.WSCredential caller_cred;

caller_subject = com.ibm.websphere.security.auth.WSSubject.getCallerSubject();

Chapter 8. Developing secured applications 103

if (caller_subject != null)
{
caller _cred = caller_subject.getPublicCredentials
(com.ibm.websphere.security.cred.WSCredential.class).iterator().next();
String CALLERDATA = (String) caller_cred.get ("MYKEY");
System.out.printin("My data from the Caller credential is: " + CALLERDATA);
}
}
catch (WSSecurityException e)
{
// log error
}
catch (Exception e)
{
// log error

}

Requirement: You need the following Java 2 Security permissions to execute this API: permission
javax.security.auth.AuthPermission "wssecurity.getCallerSubject;”.

Example: Getting the RunAs Subject from the Thread

The RunAs subject (or invocation subject) contains the user authentication information for the RunAs
mode set in the application deployment descriptor for this method.

The RunAs subject (or invocation subject) contains the user authentication information for the RunAs
mode set in the application deployment descriptor for this method. This subject is marked read-only when
returned from theWSSubject.getRunAsSubject() application programming interface (API) to prevent
replacing existing objects. You can use this API to get access to the WSCredential (documented in the
Javadoc information) so that you can put or set data in the hashmap within the credential.

Note: Most data within the Subject is not propagated downstream to another server. Only the credential
token within the WSCredential is propagated downstream and a new Caller subject is generated.

try

{

javax.security.auth.Subject runas_subject;
com.ibm.websphere.security.cred.WSCredential runas_cred;

runas_subject = com.ibm.websphere.security.auth.WSSubject.getRunAsSubject();

if (runas_subject != null)

{

runas_cred = runas_subject.getPublicCredentials(
com.ibm.websphere.security.cred.WSCredential.class).iterator().next();

String RUNASDATA = (String) runas_cred.get ("MYKEY");

System.out.printin("My data from the RunAs credential is: " + RUNASDATA);

}
}
catch (WSSecurityException e)
{
/I log error
}

catch (Exception e)

104 1BM WebSphere Application Server Network Deployment, Version 6: Securing applications and their environment

{

/I log error

}

Requirements: You need the following Java 2 Security permissions to run this API: permission
javax.security.auth.AuthPermission "wssecurity.getRunAsSubject;”.

Example: Overriding the RunAs Subject on the Thread

To extend the function provided by the Java Authentication and Authorization Service (JAAS) application
programming interfaces (APIs), you can set the RunAs subject (or invocation subject) with a different valid
entry that is used for outbound requests on this execution thread.

Gives flexibility for associating the Subject with all remote calls on this thread whether using a
WSSubject.doAs () to associate the subject with the remote action or not. For example:

try
{

Jjavax.security.auth.Subject runas_subject, caller_subject;

runas_subject = com.ibm.websphere.security.auth.WSSubject.getRunAsSubject();
caller_subject = com.ibm.websphere.security.auth.WSSubject.getCallerSubject();

// set a new RunAs subject for the thread, overriding the one declaratively set
com.ibm.websphere.security.auth.WSSubject.setRunAsSubject(caller_subject);

// do some remote calls

// restore back to the previous runAsSubject

com. ibm.websphere.security.auth.WSSubject.setRunAsSubject (runas_subject);
iatch (WSSecurityException e)

{// log error

iatch (Exception e)

{

// 1og error

}

You need the following Java 2 Security permissions to run these APIs:

permission javax.security.auth.AuthPermission "wssecurity.getRunAsSubject”;
permission javax.security.auth.AuthPermission "wssecurity.getCallerSubject”;
permission javax.security.auth.AuthPermission "wssecurity.setRunAsSubject”;

Example: User revocation from a cache

In WebSphere Application Server, Version 5.0.2 and later, revocation of a user from the security cache
using an MBean interface is supported. The following Java Command Language (JACL) revokes a user
when given the realm and user ID, and cycles through all security administration MBean instances
returned for the entire cell when run from the Deployment Manager WSADMIN. The command also purges
the user from the cache during each process.

Note: This procedure can be called from another JACL script.

Chapter 8. Developing secured applications 105

Attention: In some of the following lines of code, the lines have been split onto two or more lines.

proc revokeUser {realm userid} {
global AdminControl AdminConfig

if {[catch {$AdminControl queryNames WebSphere:type=SecurityAdmin,x*}
result]} {
puts stdout "\$AdminControl queryNames WebSphere:type=SecurityAdmin,x
caught an exception $result\n”
return
} else {
if {$result !'= {}} {
foreach secBean $result {
if {$secBean != {} || $secBean != "null"} {
if {[catch {$AdminControl invoke $secBean
purgeUserFromAuthCache "$realm $userid”} result]} {
puts stdout "\$AdminControl invoke $secBean
purgeUserFromAuthCache $realm $userid caught an
exception $result\n”
return
} else {
puts stdout "\nUser $userid has been purged from the
cache of process $secBean\n”
}
} else {
puts stdout "unable to get securityAdmin Mbean, user
$userid not revoked”
}
}
} else {
puts stdout "Security Mbean was not found\n”
return
}
}

return true

Developing your own J2C principal mapping module

You can develop your own J2C mapping module if your application requires more sophisticated mapping
functions. The mapping LoginModule that you might have developed on WebSphere Application Server
Version 5 is still supported in WebSphere Application Server Version 6. The Version 5 LoginModules can
be used in the connection factory mapping configuration (that is, they can be defined on the resource).
They also can also be used in the resource manager connection factory reference mapping configuration.
A Release 5 mapping LoginModule is not able to take advantage of the custom mapping properties.

If you want to develop a new mapping LoginModule in Version 6, use the programming interface described
in the following sections.

Migrate your Version 5 mapping LoginModule to use the new programming model to take advantage of the
new custom properties as well as the mapping configuration isolation at application scope. Note that
mapping LoginModules developed using the WebSphere Application Server Release 6 cannot be used at
the deprecated resource connection factory mapping configuration.

Resource Reference Mapping LoginModule invocation

106 1BM™ WebSphere Application Server Network Deployment, Version 6: Securing applications and their environment

A com.ibm.wsspi.security.auth.callback.WSMappingCallbackHandler class, which implements the
javax.security.auth.callback.CallbackHandler interface, is a new WebSphere Application Service Provider
Programming Interface (SPI) in WebSphere Application Server Version 6.

Application code uses the com.ibm.wsspi.security.auth.callback.WSMappingCallbackHandlerFactory helper
class to retrieve a CallbackHandler object:

package com.ibm.wsspi.security.auth.callback;

public class WSMappingCallbackHandlerFactory {
private WSMappingCallbackHandlerFactory;
public static CallbackHandler getMappingCallbackHandler(
ManagedConnectionFactory mcf,
HashMap mappingProperties);
}

The WSMappingCallbackHandler class implements the CallbackHandler interface:
package com.ibm.wsspi.security.auth.callback;

public class WSMappingCallbackHandler implements CallbackHandler {

public WSMappingCallbackHandler(ManagedConnectionFactory mcf,

HashMap mappingProperties);

public void handle(Callback[] callbacks) throws IOException,
UnsupportedCallbackException;

WSMappingCallbackHandler can handle two new callback types defined in Release 6:

com.ibm.wsspi.security.auth.callback.WSManagedConnectionFactoryCallback
com.ibm.wsspi.security.auth.callback.WSMappingPropertiesCallback

The two Callback types should be used by new LoginModules that are used at the resource manager
connection factory reference mapping configuration. The WSManagedConnectionFactoryCallback provides
a ManagedConnectionFactory instance that should be set in the PasswordCredential. It allows a
ManagedConnectionFactory instance to determine whether a PasswordCredential instance is used for
sign-on to the target EIS instance. The WSMappingPropertiesCallback provides a HashMap that contains
custom mapping properties. The property name "com.ibm.mapping.authDataAlias” is reserved for setting
the authentication data alias.

The WebSphere Application Server Release 6 WSMappingCallbackHandle continues to support the two
WebSphere Application Server Release 5 Callback types that can be used by older mapping
LoginModules. The two Callbacks defined below can only be used by LoginModules that are used by login
configuration at the connection factory. For backward compatibility, WebSphere Application Server Release
6 passes the authentication data alias, if defined in the list of custom properties under the
“com.ibm.mapping.authDataAlias” property name, via the WSAuthDataAliasCallback to Release 5
LoginModules:

com.ibm.ws.security.auth.j2c.WSManagedConnectionFactoryCallback
com.ibm.ws.security.auth.j2c.WSAuthDataAliasCallback

Connection Factory Mapping LoginModule Invocation

The WSPrincipalMappingCallbackHandler class handles two Callback types:
WSManagedConnectionFactoryCallback and WSMappingPropertiesCallback:
com.ibm.wsspi.security.auth.callback.WSManagedConnectionFactoryCallback
com.ibm.wsspi.security.auth.callback.WSMappingPropertiesCallback

The WSPrincipalMappingCallbackHandler and the two Callbacks are deprecated in WebSphere Application
Server Release 6 and should not be used by new development work.

Mapping LoginModule Resource Reference Mapping Properties

Chapter 8. Developing secured applications 107

You can pass arbitrary custom properties to your mapping LoginModule. The following example shows
how the WebSphere Application Server default mapping LoginModule looks for the authentication data
alias property.
try {
wspm_callbackHandler.handle(callbacks);
String userID = null;
String password = null;
String alias = null;
wspm_properties = ((WSMappingPropertiesCallback)callbacks[1]).getProperties();

if (wspm_properties != null) {
alias = (String) wspm_properties.get(com.ibm.wsspi.security.auth.callback.Constants.MAPPING_ALIAS);
if (alias != null) {
alias = alias.trim();
}

}
} catch (UnsupportedCallbackException unsupportedcallbackexception) {
. . . // error handling

The WebSphere Application Server Version 6 default mapping LoginModule requires one mapping property
to define the authentication data alias. The property name, MAPPING_ALIAS, is defined in the
Constants.class in the com.ibm.wsspi.security.auth.callback package.

MAPPING_ALIAS = "com.ibm.mapping.authDataAlias”

When you specify the Use default method > Select authentication data entry authentication method
on the Map resource references to resources panel, the administrative console automatically creates a
MAPPING_ALIAS entry with the selected authentication data alias value in the mapping properties. If you
choose to create your own custom login configuration and then use the default mapping LoginModule,
you'll have to set this property manually on the mapping properties for the resource factory reference.

In a custom login module, you can use the WSSubject.getRunAsSubject() method to retrieve the subject
that represents the identity of the current running thread. The identity of the current running thread is
known as theRunAs identity. The RunAs subject typically contains a WSPrincipal in the principal set and a
WSCredential in the public credential set. The subject instance that is created by your mapping module
contains a Principal instance in the principals set and a PasswordCredential or an
org.ietf.jgss.GSSCredential instance in the set of private credentials.

The GenericCredential interface that was defined in Java Cryptography Architecture (JCA) Spec Version
1.0 has been removed in the JCA Version 1.5 spec. The GenericCredentail interface is supported by
WebSphere Application Server Version 6 to support older resource adapters that might have been
programmed to the GenericCredential interface.

Developing custom user registries

WebSphere Application Server security supports the use of custom registries in addition to Local OS and
Lightweight Directory Access Protocol (LDAP) registries for authentication and authorization purposes. A
custom user registry is a customer implemented user registry which implements the UserRegistry Java
interface as provided by WebSphere Application Server. A custom implemented user registry can support
virtually any type or notion of an accounts repository from a relational database, flat file, and so on. The
custom user registry provides considerable flexibility in adapting WebSphere Application Server security to
various environments where some notion of a user registry, other than LDAP or LocalOS, already exist in
the operational environment.

Implementing a custom user registry is a software development effort. Use the methods defined in the
UserRegistry interface to make calls to the desired registry to obtain user and group information. The

108 1BM WebSphere Application Server Network Deployment, Version 6: Securing applications and their environment

interface defines a very general set of methods, for encapsulating a wide variety of registries. You can
configure a custom user registry as the active user registry when configuring WebSphere Application
Server global security.

Make sure that your implementation of the custom registry does not depend on any WebSphere
Application Server components such as data sources, enterprise beans, and so on. Do not have this
dependency because security is initialized and enabled prior to most of the other WebSphere Application
Server components during startup. If your previous implementation used these components, make a
change that will eliminate the dependency. For example, if your previous implementation used data
sources to connect to a database, use Java DataBase Connectivity (JDBC) to connect to the database.

For backward compatibility, the WebSphere Application Server Version 4 custom registry is also supported.

Refer to the|“Migrating custom user registries” on page 43| for more information on migrating. If your

previous implementation uses data sources to connect to a database, change the implementation to use

JDBC connections. However, it is recommended that you use the new interface to implement your custom

registry.

1. _If not familiar with the custom user registry concept, refer to the article, [‘Custom user registries” on|
This section explains each of the methods in the interface in detail and the changes for
these methods from the version 4 release.

2. Implement all the methods in the interface except for the CreateCredential method, which is
implemented by WebSphere Application Server. [‘FileRegistrySample.java file” on page 227 is provided
for reference.

3. Build your implementation. You need the %install root%/1ib/sas.jar and
%install _root%/1ib/wssec.jar files in your class path. For example: %install root%\java\bin\javac
-classpath %install root%\1ib\wssec.jar;%install _root%\1ib\sas.jar
yourImplementationFile.java.

4. Copy the class files generated in the previous step to the product class path. The preferred location is
the %install _root%/1ib/ext directory. This should be copied to all the product processes (cell, all
NodeAgents) class path.

5. Follow the steps in [‘Configuring custom user registries” on page 220|to configure your implementation
using the administrative console. This step is required to implement custom user registries in Version
5.x or later.

If you enabling security, make sure you complete the remaining steps. Once this is done, make sure you
save and synchronize the configuration and restart all the servers. Try accessing some J2EE resources to
verify that the custom registry implementation is successful.

Example: Custom user registries

A custom user registry is a customer-implemented user registry that implements the UserRegistry Java
interface as provided by WebSphere Application Server. A custom-implemented user registry can support
virtually any type or form of an accounts repository from a relational database, flat file, and so on. The
custom user registry provides considerable flexibility in adapting WebSphere Application Server security to
various environments where some form of a user registry, other than Lightweight Directory Access Protocol
(LDAP) or Local OS, already exist in the operational environment.

Implementing a custom user registry is a software development effort. You must use the methods defined
in the UserRegistry interface to make calls to the desired registry for obtaining user and group information.
The interface defines a very general set of methods, so it can encapsulate a wide variety of registries. You
can configure a custom user registry as the active user registry when configuring the product global
security.

If you are using the WebSphere Application Server Version 4.x CustomRegistry interface, you can plug in

your registry without any changes. However, using the new interface to implement your custom registry is
recommended.

Chapter 8. Developing secured applications 109

To view a sample custom registry, refer to the following files:
- [‘FileRegistrySample.java file” on page 227|

« [‘users.props file” on page 246

« [“groups.props file” on page 246|

UserRegistry interface methods

Implementing this interface enables WebSphere Application Server security to use custom registries. This
capability should extend the java.rmi file. With a remote registry, you can complete this process remotely.

Implementation of this interface must provide implementations for:
* initialize(java.util.Properties)

» checkPassword(String,String)

* mapCertificate(X509Certificate[])
» getRealm

» getUsers(String,int)

» getUserDisplayName(String)

» getUniqueUserld(String)

» getUserSecurityName(String)
 isValidUser(String)

» getGroups(String,int)

» getGroupDisplayName(String)
+ getUniqueGroupld(String)

» getUniqueGrouplds(String)

» getGroupSecurityName(String)
» isValidGroup(String)

» getGroupsForUser(String)

» getUsersForGroup(String,int)

» createCredential(String)

public void initialize(java.util.Properties props)
throws CustomRegistryException,
RemoteException;

This method is called to initialize the UserRegistry method. All the properties defined in the Custom User
Registry panel propagate to this method.

For the sample, the initialize method retrieves the names of the registry files containing the user and group
information.

This method is called during server bring up to initialize the registry. This method is also called when
validation is performed by the administrative console, when security is on. This method remains the same
as in version 4.x.

public String checkPassword(String userSecurityName, String password)
throws PasswordCheckFailedException,
CustomRegistryException,
RemoteException;

The checkPassword method is called to authenticate users when they log in using a name (or user ID) and
a password. This method returns a string which, in most cases, is the user being authenticated. Then, a
credential is created for the user for authorization purposes. This user name is also returned for the
enterprise bean call, getCallerPrincipal (), and the servlet calls, getUserPrincipal() and
getRemoteUser(). See the getUserDisplayName method for more information if you have display names in
your registry. In some situations, if you return a user other than the one who is logged in, verify that the
user is valid in the registry.

110 BM WebSphere Application Server Network Deployment, Version 6: Securing applications and their environment

For the sample, the mapCertificate method gets the distinguished name (DN) from the certificate chain
and makes sure it is a valid user in the registry before returning the user. For the sample, the
checkPassword method checks the name and password combination in the registry and (if they match)
returns the user being authenticated.

This method is called for various scenarios. It is called by the administrative console to validate the user
information once the registry is initialized. It is also called when you access protected resources in the
product for authenticating the user and before proceeding with the authorization. This method is the same
as in version 4.x.

public String mapCertificate(X509Certificate[] cert)
throws CertificateMapNotSupportedException,
CertificateMapFailedException,
CustomRegistryException,
RemoteException;

The mapCertificate method is called to obtain a user name from an X.509 certificate chain supplied by
the browser. The complete certificate chain is passed to this method and the implementation can validate
the chain if needed and get the user information. A credential is created for this user for authorization
purposes. If browser certificates are not supported in your configuration, you can throw the exception,
CertificateMapNotSupportedException. The consequence of not supporting certificates is authentication
failure if the challenge type is certificates, even if valid certificates are in the browser.

This method is called when certificates are provided for authentication. For Web applications, when the
authentication constraints are set to CLIENT-CERT in the web.xm1 file of the application, this method is
called to map a certificate to a valid user in the registry. For Java clients, this method is called to map the
client certificates in the transport layer, when using the transport layer authentication. Also, when the
Identity Assertion Token (when using the CSlv2 authentication protocol) is set to contain certificates, this
method is called to map the certificates to a valid user.

In WebSphere Application Server Version 4.x, the input parameter was the X509Certificate. In WebSphere
Application Server Version 5.x and later, this parameter changes to accept an array of X509Certificate
certificates (such as a certificate chain). In version 4.x, this parameter was called only for Web
applications, but in version 5.x and lateryou can call this method for both Web and Java clients.

public String getRealm()
throws CustomRegistryException,
RemoteException;

The getRealm method is called to get the name of the security realm. The name of the realm identifies the
security domain for which the registry authenticates users. If this method returns a null value, a default
name of customRealm is used.

For the sample, the getRealm method returns the string, customRealm. One of the calls to this method is
when the registry information is validated. This method is the same as in version 4.x.

public Result getUsers(String pattern, int Timit)
throws CustomRegistryException,
RemoteException;

The getUsers method returns the list of users from the registry. The names of users depend on the pattern
parameter. The number of users are limited by the limit parameter. In a registry that has many users,
getting all the users is not practical. So the limit parameter is introduced to limit the number of users
retrieved from the registry. A limit of 0 indicates to return all the users that match the pattern and might
cause problems for large registries. Use this limit with care.

Chapter 8. Developing secured applications 111

The custom registry implementations are expected to support at least the wildcard search (*). For
example, a pattern of (*) returns all the users and a pattern of (b*) returns the users starting with b.

The return parameter is an object of type com.ibm.websphere.security.Result. This object contains two
attributes, a java.util.List and a java.lang.boolean. The list contains the users returned and the
Boolean flag indicates if there are more users available in the registry for the search pattern. This Boolean
flag is used to indicate to the client whether more users are available in the registry.

In the sample, the getUsers retrieves the required number of users from the registry and sets them as a
list in the result object. To find out if there are more users than requested, the sample gets one more user
than requested and if it finds the additional user, it sets the Boolean flag to true. For pattern matching, the
match method in the RegExpSample class is used, which supports wildcard characters such as the asterisk
(*) and question mark (?).

This method is called by the administrative console to add users to roles in the various map users to roles
panels. The administrative console uses the Boolean set in the result object to indicate that more entries
matching the pattern are available in the registry.

In WebSphere Application Server Version 4.x, this method specifies to take only the pattern parameter.
The return is a list. In WebSphere Application Server Version 5.x or later, this method is changed to take
one additional parameter, the limit. Ideally, your implementation should change to take the limit value and
limit the users returned. The return is changed to return a result object, which consists of the list (as in
version 4) and a flag indicating if more entries exist. So, when the list returns, use the
Result.setList(List) to set the List in the result object. If there are more entries than requested in the
limit parameter, set the Boolean attribute to true in the result object, using Result.setHasMore() method.
The default for the Boolean attribute in the result object is false.

public String getUserDisplayName(String userSecurityName)
throws EntryNotFoundException,
CustomRegistryException,
RemoteException;

The getUserDisplayName method returns a display name for a user, if one exists. The display name is an
optional string that describes the user that you can set in some registries. This is a descriptive name for
the user and does not have to be unique in the registry.

For example in Windows systems, you can display the full name of the user.
If you do not need display names in your registry, return null or an empty string for this method.

Note: In WebSphere Application Server Version 4.x, if display names existed for any user these names
were useful for the EJB method call getCallerPrincipal() and the servlet calls
getUserPrincipal() and getRemoteUser(). If the display names were not the same as the security
name for any user, the display names are returned for the previously mentioned enterprise beans
and servlet methods. Returning display names for these methods might become problematic is
some situations because the display names might not be unique in the registry. Avoid this problem
by changing the default behavior to return the user’s security name instead of the user’s display
name in this version of the product. However, if you want to have the same behavior as in Version
4, set the property WAS UseDisplayName to true in the Custom Registry Properties panel in the
administrative console. For more information on how to set properties for the custom registry, see
the section on Setting Properties for Custom Registries.

In the sample, this method returns the display name of the user whose name matches the user name
provided. If the display name does not exist this returns an empty string.

112 BM WebSphere Application Server Network Deployment, Version 6: Securing applications and their environment

This method can be called by the product to present the display names in the administrative console, or
using the command line using the wsadmin tool. Use this method only for displaying. This method is the
same as in Version 4.0.

public String getUniqueUserId(String userSecurityName)
throws EntryNotFoundException,
CustomRegistryException,
RemoteException;

This method returns the unique ID of the user given the security name.

In the sample, this method returns the uniqueld of the user whose name matches the supplied name. This
method is called when forming a credential for a user and also when creating the authorization table for
the application.

public String getUserSecurityName(String uniqueUserId)
throws EntryNotFoundException,
CustomRegistryException,
RemoteException;

This method returns the security name of a user given the unique ID. In the sample, this method returns
the security name of the user whose unique ID matches the supplied ID.

This method is called to make sure a valid user exists for a given uniqueUserld. This method is called to
get the security name of the user when the uniqueUserld is obtained from a token.

public boolean isValidUser(String userSecurityName)
throws CustomRegistryException,
RemoteException;

This method indicates whether the given user is a valid user in the registry.

In the Sample, this method returns true if the user is found in the registry, otherwise this method returns
false. This method is primarily called in situations where knowing if the user exists in the directory
prevents problems later. For example, in the mapCertificate call, once the name is obtained from the
certificate if the user is found to be an invalid user in the registry, you can avoid trying to create the
credential for the user.

public Result getGroups(String pattern, int Timit)
throws CustomRegistryException,
RemoteException;

The getGroups method returns the list of groups from the registry. The names of groups depend on the
pattern parameter. The number of groups is limited by the limit parameter. In a registry that has many
groups, getting all the groups is not practical. So, the limit parameter is introduced to limit the number of
groups retrieved from the registry. A limit of 0 implies to return all the groups that match the pattern and
can cause problems for large registries. Use this limit with care. The custom registry implementations are
expected to support at least the wildcard search (*). For example, a pattern of (*) returns all the users and
a pattern of (b*) returns the users starting with b.

The return parameter is an object of type com.ibm.websphere.security.Result. This object contains two
attributes, a java.util.List and a java.lang.boolean. The list contains the groups returned and the
Boolean flag indicates whether there are more groups available in the registry for the pattern searched.
This Boolean flag is used to indicate to the client if more groups are available in the registry.

Chapter 8. Developing secured applications 113

In the sample, the getUsers retrieves the required number of groups from the registry and sets them as a
list in the result object. To find out if there are more groups than requested, the sample gets one more
user than requested and if it finds the additional user, it sets the Boolean flag to true. For pattern
matching, the match method in the RegExpSample class is used. It supports wildcards like *, 2.

This method is called by the administrative console to add groups to roles in the various map groups to
roles panels. The administrative console will use the boolean set in the Result object to indicate that more
entries matching the pattern are available in the registry.

In WebSphere Application Server Version 4, this method is used to take the pattern parameter only and
returns a list. In WebSphere Application Server Version 5.x or later, this method is changed to take one
additional parameter, the limit. Change to take the limit value and limit the users returned. The return is
changed to return a result object, which consists of the list (as in version 4) and a flag indicating whether
more entries exist. Use the Result.setList(List) to set the list in the result object. If there are more
entries than requested in the limit parameter, set the Boolean attribute to true in the result object using
Result.setHasMore(). The default for the Boolean attribute in the result object is false.

public String getGroupDisplayName(String groupSecurityName)
throws EntryNotFoundException,
CustomRegistryException,
RemoteException;

The getGroupDisplayName method returns a display name for a group if one exists. The display name is an
optional string describing the group that you can set in some registries. This name is a descriptive name
for the group and does not have to be unique in the registry. If you do not need to have display names for
groups in your registry, return null or an empty string for this method.

In the sample, this method returns the display name of the group whose name matches the group name
provided. If the display name does not exist, this method returns an empty string.

The product can call this method to present the display names in the administrative console or through
command line using the wsadmin tool. This method is only used for displaying.

public String getUniqueGroupId(String groupSecurityName)
throws EntryNotFoundException,
CustomRegistryException,
RemoteException;

This method returns the unique ID of the group given the security name.

In the sample, this method returns the unique ID of the group whose name matches the supplied name.
This method is called when creating the authorization table for the application.

public List getUniqueGroupIds(String uniqueUserld)
throws EntryNotFoundException,
CustomRegistryException,
RemoteException;

This method returns the unique IDs of all the groups to which a user belongs.
In the sample, this method returns the unique ID of all the groups that contain this uniqueUserID. This
method is called when creating the credential for the user. As part of creating the credential, all the

groupUniquelds in which the user belongs are collected and put in the credential for authorization
purposes when groups are given access to a resource.

114 BM WebSphere Application Server Network Deployment, Version 6: Securing applications and their environment

public String getGroupSecurityName(String uniqueGrouplId)
throws EntryNotFoundException,
CustomRegistryException,
RemoteException;

This method returns the security name of a group given its unique ID.

In the sample, this method returns the security name of the group whose unique ID matches the supplied
ID. This method verifies that a valid group exists for a given uniqueGroupld.

public boolean isValidGroup(String groupSecurityName)
throws CustomRegistryException,
RemoteException;

This method indicates if the given group is a valid group in the registry.

In the sample, this method returns true if the group is found in the registry, otherwise the method returns
false. This method can be used in situations where knowing whether the group exists in the directory
might prevent problems later.

public List getGroupsForUser(String userSecurityName)
throws EntryNotFoundException,
CustomRegistryException,
RemoteException;

This method returns all the groups to which a user belongs whose name matches the supplied name. This
method is similar to the getUniqueGroupIds method with the exception that the security names are used
instead of the unique IDs.

In the sample, this method returns all the group security names that contain the userSecurityName.

This method is called by the administrative console or the scripting tool to verify that the users entered for
the RunAs roles are already part of that role in the users and groups to role mapping. This check is
required to ensure that a user cannot be added to a RunAs role unless that user is assigned to the role in
the users and groups to role mapping either directly or indirectly (through a group that contains this user).
Since a group in which the user belongs can be part of the role in the users and groups to role mapping,
this method is called to check if any of the groups that this user belongs to mapped to that role.

public Result getUsersForGroup(String groupSecurityName, int Timit)
throws NotImplementedException,
EntryNotFoundException,
CustomRegistryException,
RemoteException;

This method retrieves users from the specified group. The number of users returned is limited by the limit
parameter. A limit of 0 indicates to return all the users in that group. This method is not directly called by
the WebSphere Application Server security component. However, this can be called by other components.
For example, this method issued by the process choreographer when staff assignments are modeled using
groups. In rare situations, if you are working with a registry where getting all the users from any of your
groups is not practical (for example, if there are a large number of users), you can throw the
NotImplementedException exception for the particular groups. In this case, verify that if the process
choreographer is installed (or if it is installed later) the staff assignments are not modeled using these
particular groups. If there is no concern about returning the users from groups in the registry, it is
recommended that you do not throw the NotImplemented exception when implementing this method.

Chapter 8. Developing secured applications 115

The return parameter is an object of type com.ibm.websphere.security.Result. This object contains two
attributes, java.util.List and java.lang.boolean. The list contains the users returned and the Boolean
flag, which indicates whether there are more users available in the registry for the search pattern. This
Boolean flag indicates to the client whether users are available in the registry.

In the example, this method gets one user more than the requested number of users for a group if the limit
parameter is not set to 0. If it succeeds in getting one more user, it sets the Boolean flag to true.

In WebSphere Application Server Version 4, this getUsers method was mandatory for the product. For
WebSphere Application Server Version 5.x or later, this method can throw the exception
NotImplementedException exception in situations where it is not practical to get the requested set of users.
However, this exception should be thrown in rare situations, as other components can be affected. In
version 4, this method accepted only the pattern parameter and the returned a list. In version 5, this
method accepts one additional parameter, the limit. Change your implementation to take the limit value
and limit the users returned. The return changes to return a result object, which consists of the list (as in
version 4) and a flag indicating whether more entries exist. When the list is returned, use the
Result.setList(List) method to set the list in the Result object. If there are more entries than requested
in the limit parameter, set the Boolean attribute to true in the result object using Result.setHasMore().
The default for the Boolean attribute in the Result object is false.

Attention: The first two lines of the following code sample is one continuous line.

pubTic com.ibm.websphere.security.cred.WSCredential
createCredential (String userSecurityName)
throws NotImplementedException,
EntryNotFoundException,
CustomRegistryException,
RemoteException;

In this release of the WebSphere Application Server, this method is not called. You can return null. In the
example, a null is returned.

Trust association interceptor support for Subject creation

The new Trust Association Interceptor (TAl) interface,

com.ibm.wsspi.security.tai. TrustAssociationInterceptor, supports several new features and is different from
the existing com.ibm.websphere.security. TrustAssociationInterceptor interface. Although the existing
interface is still supported, it is being deprecated in a future release.

The new TAI interface supports a multi-phase, negotiated authentication process. For example, some
systems require a challenge response protocol back to the client. The two key methods in this new
interface are:

Key method name
public boolean isTargetinterceptor (HttpServietRequest req)

The isTargetinterceptor method determines whether the request originated with the proxy server
associated with the interceptor. The implementation code must examine the incoming request
object and determine if the proxy server forwarding the request is a valid proxy server for this
interceptor. The result of this method determines whether the interceptor processes the request.

Method result
A true value tells WebSphere Application Server to have the TAl handle the request.

A false value, tells WebSphere Application Server to ignore the TAI.

116 1BM WebSphere Application Server Network Deployment, Version 6: Securing applications and their environment

The negotiateValidateandEstablishTrust method determines whether to trust the proxy server from
which the request originated. The implementation code must authenticate the proxy server. The
authentication mechanism is proxy-server specific. For example, in the product implementation for
the WebSEAL server, this method retrieves the basic authentication information from the HTTP
header and validates the information against the user registry used by WebSphere Application
Server. If the credentials are invalid, the code throws the WebTrustAssociationException, which
indicates that the proxy server is not trusted and the request is denied. If the credentials are valid,
the code returns a TAIResult, which indicates the status of the request processing along with the
client identity (Subject and principal name) to be used for authorizing the Web resource.

Key method name
public TAIResult negotiateValidateandEstablishTrust (HttpServlietRequest req, HttpServletResponse
res)

Method result
Returns a TAIResult, which indicates the status of the request processing. The request object can
be queried and the response object can be modified.

The TAIResult class has three static methods for creating a TAIResult. The TAIResult create methods take
an int type as the first parameter. WebSphere Application Server expects the result to be a valid HTTP
request return code and is interpreted in one of the following ways:

 If the value is HttpServletResponse.SC_OK, this response tells WebSphere Application Server that the
TAIl has completed its negotiation. The response also tells WebSphere Application Server use the
information in the TAIResult to create a user identity.

» Other values tell WebSphere Application Server to return the TAI output, which is placed into the
HttpServietResponse, to the Web client. Typically, the Web client provides additional information and
then places another call to the TAI.

The created TAIResults have the following meanings:

TAIResult Explanation

public static TAIResult create(int Indicates a status to WebSphere Application Server. The status should not be

status); SC_OK because the identity information is provided.

public static TAIResult create(int Indicates a status to WebSphere Application Server and provides the user ID

status, String principal); or the unique ID for this user. WebSphere Application Server creates
credentials by querying the user registry.

public static TAIResult create(int Indicates a status to WebSphere Application Server, the user ID or the unique

status, String principal, Subject ID for the user, and a custom Subject. If the Subject contains a Hashtable, the

subject); principal is ignored. The contents of the Subject becomes part of the eventual

user Subject.

All of the following examples are within the negotiateValidateandEstablishTrust() method of a TAI.
The following code sample indicates that additional negotiation is required:

// Modify the HttpServietResponse object

// The response code is meaningful only on the client

return TAIResult.create(HttpServietResponse.SC CONTINUE);

The following code sample indicates that the TAl has determined the user identity. WebSphere Application
Server receives the user ID only and then it queries the user registry for additional information:

// modify the HttpServietResponse object
return TAIResult.create(HttpServietResponse.SC OK, userid);

Chapter 8. Developing secured applications 117

The following code sample indicates that the TAl had determined the user identity. WebSphere Application
Server receives the complete user information that is contained in the Hashtable. For more information on
the Hashtable, see [‘Configuring inbound identity mapping” on page 268 In this code sample, the
Hashtable is placed in the public credential portion of the Subject:

// create Subject and place Hashtable in it

Subject subject = new Subject;
subject.getPublicCredentials().add(hashtable);

//the response code is meaningful only the client

return TAIResult.create(HttpServietResponse.SC OK, "ignored”, subject);

The following code sample indicates that there is an authentication failure. WebSphere Application Server
fails the authentication request:

//10g error message

/I

throw new WebTrustAssociationFailedException(”"TAI failed for this reason”);
There are a few additional methods on the TrustAssociationInterceptor interface that are discussed in the

Java documentation. These methods are used for initialization, shut down, and for identifying the TAI to
WebSphere Application Server.

118 1BM WebSphere Application Server Network Deployment, Version 6: Securing applications and their environment

Chapter 9. Assembling secured applications

There are several assembly tools that are graphical user interfaces for assembling enterprise (J2EE)
applications. You can use these tools to assemble an application and secure EJB and Web modules in
that application. An EJB module consists of one or more beans. You can enforce security at the EJB
method level. A Web module consists of one or more Web resources (an HTML page, a JSP file or a
servlet). You can also enforce security for each Web resource. You can use an assembly tool to secure an
EJB module (Java archive (JAR) file) or a Web module (Web archive (WAR) file) or an application
(enterprise archive (EAR) file). You can create an application, an EJB module, or a Web Module and
secure them using an assembly tool or development tools like the IBM Rational Application Developer.

1. Secure EJB applications using an assembly tool. For more information, see [“Securing enterprise bean|
[applications” on page 120,

2. Secure Web applications using an assembly tool. For more information, see|“Securing Web
[applications using an assembly tool” on page 122 |

3. Add users and groups to roles while assembling secured application using an assembly tool. For more
information, see [‘Adding users and groups to roles using an assembly tool” on page 128.|

4, Map users to RunAs roles using an assembly tool. For more information, see |“Mapping users to|
[RunAs roles using an assembly tool” on page 129.|

5. [“Adding the was.policy file to applications” on page 498

6. Assemble the application components that you just secured using an assembly tool. For more
information, see |[Assembling applications]

After securing an application, the resulting .ear file contains security information in its deployment
descriptor. The EJB module security information is stored in the ejb-jar.xml file and the Web module
security information is stored in the web.xm1 file. The application.xml file of the application EAR file
contains all the roles used in the application. The user and group to roles mapping is stored in the
ibm-application-bnd.xmi file of the application EAR file.

The was.policy file of the application EAR contains the permissions granted for the application to access
system resources.

This task is required to secure EJB modules and Web modules in an application. This task is also required
for applications to run properly when Java 2 security is enabled. If the was.policy file is not created and it
does not contain required permissions, the application might not be able to access system resources.

After securing an application, you can install an application using the administrative console. When you
install a secured application, refer to the [Chapter 10, “Deploying secured applications,” on page 131|article
to complete this task.

Enterprise bean component security

An EJB module consists of one or more beans. You can use development tools such as Rational Web
Developer to develop an EJB module. You can also enforce security at the EJB method level.

You can assign a set of EJB methods to a set of one or more roles. When an EJB method is secured by
associating a set of roles, grant at least one role in that set so that you can access that method. To
exclude a set of EJB methods from being accessed by anyone mark them excluded. You can give
everyone access to a set of enterprise beans method by clearing those methods. You can run enterprise
beans as a different identity (runAs identity) before invoking other enterprise beans.

© Copyright IBM Corp. 2004 119

Securing enterprise bean applications

You can protect enterprise bean methods by assigning security roles to them. Before you assign security
roles, you need to know which EJB methods need protecting and how to protect them.

1.

In an assembly tool, import your EJB JAR file or an application archive (EAR) file that contains one or
more Web modules. For more information, see the Importing EJB files| article or the [Importing
fenterprise applications| article.

In the Project Explorer , click the EJB Projects directory and click the name of your application.

Right-click the Deployment descriptor and select Open with > Deployment Descriptor Editor. If you
selected an EJB . jar file, an EJB deployment descriptor editor opens. If you selected an application
.ear file, an application deployment descriptor editor opens. To see online information about the editor,
press F1 and click the editor name.

Create security roles. You can create security roles at the application level or at the EJB module level.
If you create a security role at the EJB module level, the role displays in the application level. If a
security role is created at the application level, the role does not appear in all the EJB modules. You
can copy and paste one or more EJB module security roles that you create at application level:

» Create a role at an EJB module level. In an EJB deployment descriptor editor, select the Assembly
tab. Under Security Roles, click Add. In the Add Security Role wizard, name and describe the
security role; then click Finish.

» Create a role at the application level. In an application deployment descriptor editor, select the
Security tab. Under the list of security roles, click Add. In the Add Security Role wizard, name and
describe the security role; then click Finish.

Create method permissions. Method permissions map one or more methods to a set of roles. An
enterprise bean has four types of methods: Home methods, Remote methods, LocalHome methods
and Local methods. You can add permissions to enterprise beans on the method level. You cannot add
a method permission to an enterprise bean unless you already have one or more security roles
defined. For Version 2.0 EJB projects, there is an unchecked option that specifies that the selected
methods from the selected beans do not require authorization to execute. To add a method permission
to an enterprise bean:

a. On the Assembly tab of an EJB deployment descriptor editor, under Method Permissions, click
Add. The Add Method Permission wizard opens.

b. Select a security role from the list of roles found and click Next.

c. Select one or more enterprise beans from the list of beans found. You can click Select All or
Deselect All to select or deselect all of the enterprise beans in the list. Click Next.

d. Select the methods that you want to bind to your security role. The Method Elements page lists all
methods associated with the enterprise bean(s). You can click Apply to All or Deselect All to
quickly select or clear multiple methods. It selects only the * method for each bean. Creating a
method permission for the exact method signature overrides the default () method permission
setting. The * method represents all methods within the bean. There are * for each interface as
well. By not selecting all of the individual methods in the tree, you can set other permissions on the
remaining methods.

e. Click Finish.
After the method permission is created, you can see the new method permission in the tree. Expand
the tree to see the bean and methods defined in the method permission.

Exclude user access to methods. Users cannot access excluded methods. Any method in the
enterprise beans that is not assigned to a role or is not excluded, is deselected during the application
installation by the deployer.

a. On the Assembly tab of an EJB deployment descriptor editor, under Excludes List, click Add.
The Exclude List wizard opens.

Select one or more enterprise beans from the list of beans found and click Next.
Select one or more of the method elements for the security identity and click Finish.

120 1BM™ WebSphere Application Server Network Deployment, Version 6: Securing applications and their environment

7. Map the security-role-ref and role-name to the role-link. When developing enterprise beans, you can
create the security-role-ref element. The security-role-ref element contains only the role-name field.
The role-name field determines if the caller is in a specified role(isCallerInRole()) and contains the
name of the role that is referenced in the code. Since you create security roles during the assembly
stage, the developer uses a logical rolename in the role-name field and provides enough information
in the description field for the assembler to map the actual role (role-link). The security-role-ref
element is located at the EJB level. Enterprise beans can have zero or more security-role-ref elements.

a. On the Reference tab of an EJB deployment descriptor editor, under the list of references, click
Add. The Add Reference wizard opens.

Select Security role reference and click Next.

Name the security role reference, select a security role to link the reference to, describe the
security role reference, and click Finish.

d. Map every role-name used during development to the role (role-link) using the previous steps.

8. Specify the RunAs Identity for enterprise beans components. The RunAs Identity of the enterprise
bean is used to invoke the next enterprise beans in the chain of EJB invocations. When the next
enterprise beans are invoked, the RunAsIdentity passes to the next enterprise beans for performing
an authorization check on the next enterprise bean. If the RunAs Identity is not specified, the client
identity is propagated to the next enterprise bean. The RunAs Identity can represent each of the
enterprise beans or can represent each method in the enterprise beans.

a. On the Access tab of an EJB deployment descriptor editor, next to the Security Identity (Bean
Level) field, click Add. The Add Security Identity wizard opens.

b. Select the appropriate run as mode, describe the security identity, and click Next. Select the Use
identity of caller mode to instruct the security service to not make changes to the credential
settings for the principal. Select the Use identity assigned to specific role (below) mode to use
a principal that has been assigned to the specified security role for running the bean methods. This
association is part of the application binding in which the role is associated with the user ID and
password of a user who is granted that role. If you select the Use identity assigned to specific
role (below) mode , you must specify a role name and role description.

c. Select one or more enterprise beans from the list of beans found and click Next. If Next is
unavailable, click Finish.
d. Optional: On the Method Elements page, select one or more of the method elements for the
security identity and click Finish.
9. Close the deployment descriptor editor and, when prompted, click Yes to save the changes.

After securing an EJB application, the resulting . jar file contains security information in its deployment
descriptor. The security information of the EJB modules is stored in the ejb-jar.xml file.

After securing an EJB application using an assembly tool, you can install the EJB application using the
administrative console. During the installation of a secured EJB application, follow the steps in the
[Chapter 10, “Deploying secured applications,” on page 131|article to complete the task of securing the
EJB application.

Web component security

A Web module consists of servlets, JSP files, server-side utility classes, static Web content (HTML,
images, sound files, cascading style sheets (CSS)), and client-side classes (applets). You can use
development tools such as Rational Application Developer to develop a Web module and enforce security
at the method level of each Web resource.

You can identify a Web resource by its URI pattern. A Web resource method can be any HTTP method
(GET, POST, DELETE, PUT, for example). You can group a set of URI patterns and a set of HTTP
methods together and assign this grouping a set of roles. When a Web resource method is secured by
associating a set of roles, grant a user at least one role in that set to access that method. You can exclude

Chapter 9. Assembling secured applications 121

anyone from accessing a set of Web resources by assigning an empty set of roles. A servlet or a JSP file
can run as different identities (RunAs identity) before invoking another enterprise bean component. All the
secured Web resources require the user to log in by using a configured login mechanism. There are three
types of Web login authentication mechanisms: basic authentication, form-based authentication and client
certificate-based authentication.

For more detailed information on Web security see the [product architectural overview| article.

Securing Web applications using an assembly tool

There are three types of Web login authentication mechanisms that you can configure on a Web
application: basic authentication, form-based authentication and client certificate-based authentication.
Protect Web resources in a Web application by assigning security roles to those resources.

To secure Web applications, determine the Web resources that need protecting and determine how to
protect them.

1. In an assembly tool, import your Web archive (WAR) file or an application archive (EAR) file that
contains one or more Web modules. For more information, see the [mporting WAR files| article or the
[[mporting enterprise applications|

2. In the Project Explorer, locate your Web application.

3. Right-click the deployment descriptor and select Open With > Deployment Descriptor Editor. The
Deployment Descriptor window opens. To see online information about the editor, press F1 and click
the editor name. If you selected Web archive (WAR) file, a Web deployment descriptor editor opens. If
you selected an enterprise application (EAR) file, an application deployment descriptor editor opens.

4. Create security roles either at the application level or at Web module level. If a security role is created
at the Web module level, the role also displays in the application level. If a security role is created at
the application level, the role does not display in all the Web modules. You can copy and paste a
security role at the application level to one or more Web module security roles.

* Create a role at a Web-module level. In a Web deployment descriptor editor, select the Security
tab. Under Security Roles, click Add.. Enter the security role name, describe the security role, and
click Finish.

« Create a role at the application level. In an application deployment descriptor editor, select the
Security tab. Under the list of security roles, click Add. In the Add Security Role wizard, name and
describe the security role; then click Finish.

5. Create security constraints. Security constraints are a mapping of one or more Web resources to a set
of roles.

a. On the Security tab of a Web deployment descriptor editor, click Security Constraints. On the

Security Constraints tab that opens, you can do the following:

* Add or remove security constraints for specific security roles.

* Add or remove Web resources and their HTTP methods.

» Define which security roles are authorized to access the Web resources.

» Specify None, Integral, or Confidential constraints on user data. None means that the application
requires no transport guarantees. Integral means that data cannot be changes in transit between
client and server. And Confidential means that data content cannot be observed while it is in
transit. Integral and Confidential usually require the use of SSL.

Under Security Constraints, click Add.
Under Constraint name, specify a display name for the security constraint and click Next.
Type a name and description for the Web resource collection.

Select one or more HTTP methods. The HTTP method options are: GET, PUT, HEAD, TRACE,
POST, DELETE, and OPTIONS.

f. Beside the Patterns field, click Add.

® a0 0o

122 BM™ WebSphere Application Server Network Deployment, Version 6: Securing applications and their environment

g. Specify a URL Pattern. For example, type - /*, *.jsp, /hello. Consult the Servlet specification
Version 2.4 for instructions on mapping URL patterns to servlets. Security run time uses the exact
match first to map the incoming URL with URL patterns. If the exact match is not present, the
security run time uses the longest match. The wild card (*.,*.jsp) URL pattern matching is used
last.

h. Click Finish.
i. Repeat these steps to create multiple security constraints.

6. Map security-role-ref and role-name elements to the role-link element. During the development of a
Web application, you can create the security-role-ref element. The security-role-ref element contains
only the role-name field at this stage. The role-name field contains the name of the role that is
referenced in the servlet or JSP code to determine if the caller is in a specified role (isUserlnRole()).
Since security roles are created during the assembly stage, the developer uses a logical role name in
the role-name field and provides enough description in the description field for the assembler to map
the role actual (role-link). The Security-role-ref element is at the servlet level. A servlet or JSP file can
have zero or more security-role-ref elements.

a. Go to the References tab of a Web deployment descriptor editor. On the References tab, you can
add or remove the name of an enterprise bean reference to the deployment descriptor. There are 5
types of references you can define on this tab:

» EJB reference

» Service reference

* Resource reference

* Message destination reference

» Security role reference

* Resource environment reference

Under the list of EJB references, click Add.
Specify a name and a type for the reference in the Name and Ref Type fields.
Select either Enterprise Beans in the workplace or Enterprise Beans not in the workplace.

Optional: If you select Enterprise Beans not in the workplace, select the type of enterprise bean
in the Type field. You can specify either an entity bean or a session bean.

Optional: Click Browse to specify values for the local home and local interface in the Local home
and Local fields before you click Next.

g. Map every role-name used during development to the role (role-link) using the previous steps.
Every role name used during development maps to the actual role.

7. Specify the RunAs identity for servlets and JSP files. The RunAs identity of a servlet is used to invoke
enterprise beans from within the servlet code. When enterprise beans are invoked, the RunAs identity
is passed to the enterprise bean for performing an authorization check on the enterprise beans. If the
RunAs identity is not specified, the client identity is propagated to the enterprise beans. The RunAs
identity is assigned at the servlet level.

a. On the Servlets tab of a Web deployment descriptor editor, under Servlets and JSPs, click Add.
The Add Servlet or JSP wizard opens.

b. Specify the servlet or JavaServer page (JSP) settings including the name, initialization parameters,
and URL mappings and click Next.

Specify the class file destination.

Click Next to specify additional settings or click Finish.

Under Run As on the Servlets tab, select the security role and describe the role.
Specify a RunAs identity for each servlet and JSP file used by your Web application.

8. Configure the login mechanism for the Web module. This configured login mechanism applies to all the
servlets, JavaServer page (JSP) files and HTML resources in the Web module.

a. On the Pages tab of a Web deployment descriptor editor, under Login, select the required

authentication method. Available method values include: Unspecified, Basic, Digest, Form, and
Client-Cert.[

® oo 0o

—

=0 a0

Chapter 9. Assembling secured applications 123

b. Specify a realm name.

c. If you select the Form authentication method, select a login page and an error page URLs (for
example: /Togin.jsp and /error. jsp). The specified login and error pages are present in the .war
file.

d. Install the client certificate on the browser or Web client and place the client certificate in the server
trust keyring file, if C1ientCert is selected.

9. Close the deployment descriptor editor and, when prompted, click Yes to save the changes.

After securing a Web application, the resulting WAR file contains security information in its deployment
descriptor. The Web module security information is stored in the web.xm1 file. When you work in the Web
deployment descriptor editor, you also can edit other deployment descriptors in the Web project, including
information on bindings and IBM extensions in the ibm-web-bnd.xmi and ibm-web-ext.xmi files.

After using an assembly tool to secure a Web application, you can install the Web application using the
administrative console. During the Web application installation, complete the steps in the |Chapter 10,

[‘Deploying secured applications,” on page 131| article to finish securing the Web application.

Role-based authorization

Use authorization information to determine whether a caller has the necessary privileges to request a
service.

The following figure illustrates the process used during authorization. Web resource access from a Web
client is handled by a Web collaborator. The EJB resource access from a Java client (can be enterprise
beans or a servlet) is handled by an EJB Collaborator. The EJB collaborator and the Web collaborator
extract the client credentials from the object request broker (ORB) current object. The client credentials are
set during the authentication process as received credentials in the ORB Current. The resource and the
received credentials are presented to WSAccessManager to check whether access is permitted to the
client for accessing the requested resource.

The access manager module contains two main modules:

* Resource permission module helps determine the required roles for a given resource. It uses a resource
to roles mapping table that is built by the security run time during application startup. To build the
resource-to-role mapping table, the security run time reads the deployment descriptor of the enterprise
beans or the Web module (ejb-jar.xml or web.xml)

» Authorization table module consults a role to user or group table to determine whether a client is
granted one of the required roles. The role to user or group mapping table, also known as the
authorization table, is created by the security run time during application startup.

— To build the authorization table, the security run time reads the application binding file
(ibm-application-bnd.xmi file).

124 BM WebSphere Application Server Network Deployment, Version 6: Securing applications and their environment

Authentication

WebSphere Application Server

CSIV2/SAS, TCPI/IP, o
sSSL authorization resource | roles
Enterprise beans data Access manager
EJB collaborator (2) module
resource access
o @l | @\ resource resource
1 received resource and (4)/v permission
credentials credentials /
ORB WebSphere ‘@s
current object Access .
Manager \rolcis, credentials
T resource and \
(2) credentials \
received (3) () authorization /
HTTP or HTTPS | Ccredentials / True/False table el ;rsoeur;s
\
Web client |——— Web (2/
M collaborator authorization
> data
Web resource access

Use authorization information to determine whether a caller has the necessary privilege to request a
service. You can store authorization information many ways. For example, with each resource, you can
store an access-control list, which contains a list of users and user privileges. Another way to store the
information is to associate a list of resources and the corresponding privileges with each user. This list is
called a capability list.

WebSphere Application Server uses the Java 2 Enterprise Edition (J2EE) authorization model. In this

model, authorization information is organized as follows:

» During the assembly of an application, permission to invoke methods is granted to one or more roles. A
role is a set of permissions; for example, in a banking application, roles can include teller, supervisor,
clerk, and other industry-related positions. The teller role is associated with permissions to run methods
related to managing the money in an account, such as the withdraw and deposit methods. The teller
role is not granted permission to close accounts; this permission is given to the supervisor role. The
application assembler defines a list of method permissions for each role; this list is stored in the
deployment descriptor for the application.

There are two special subjects that are not defined by the J2EE model, but are worth understanding:
AllAuthenticatedUsers and Everyone. A special subject is a product-defined entity independent of the user
registry. It is used to generically represent a class of users or groups in the registry.

» AllAuthenticatedUsers is a special subject that permits all authenticated users to access protected
methods. As long as the user can authenticate successfully, the user is permitted access to the
protected resource.

» Everyone is a special subject that permits unrestricted access to a protected resource. Users do not
have to authenticate to get access; this special subject provides access to protected methods as if the
resources are unprotected.

During the deployment of an application, real users or groups of users are assigned to the roles. When a
user is assigned to a role, the user gets all the method permissions that are granted to that role.

Chapter 9. Assembling secured applications 125

The application deployer does not need to understand the individual methods. By assigning roles to
methods, the application assembler simplifies the job of the application deployer. Instead of working with a
set of methods, the deployer works with the roles, which represent semantic groupings of the methods.

Users can be assigned to more than one role; the permissions granted to the user are the union of the
permissions granted to each role. Additionally, if the authentication mechanism supports the grouping of
users, these groups can be assigned to roles. Assigning a group to a role has the same effect as
assigning each individual user to the role.

A best practice during deployment is to assign groups, rather than individual users to roles for the following

reasons:

* Improves performance during the authorization check. Typically far fewer groups exist than users.

» Provides greater flexibility, by using group membership to control resource access.

» Supports the addition and deletion of users from groups outside of the product environment. This action
is preferred to adding and removing them to WebSphere Application Server roles. Stop and restart the
enterprise application for these changes to take effect. This action can be very disruptive in a production
environment.

At run time, WebSphere Application Server authorizes incoming requests based on the user’s identification
information and the mapping of the user to roles. If the user belongs to any role that has permission to
execute a method, the request is authorized. If the user does not belong to any role that has permission,
the request is denied.

The J2EE approach represents a declarative approach to authorization, but it also recognizes that you
cannot deal with all situations declaratively. For these situations, methods are provided for determining
user and role information programmatically. For Enterprise JavaBeans, the following two methods are
supported by WebSphere Application Server:

« getCallerPrincipal: This method retrieves the user identification information.

» isCallerinRole: This method checks the user identification information against a specific role.

For servlets, the following methods are supported by WebSphere Application Server:
» getRemoteUser

» isUserInRole

» getUserPrincipal

These methods correspond in purpose to the enterprise bean methods.

For more information on the J2EE security authorization model see the following Web site:
[ttp://java.sun.com|

Admin roles

The J2EE role-based authorization concept has been extended to protect the WebSphere Application
Server administrative subsystem. A number of administrative roles have been defined to provide degrees
of authority needed to perform certain WebSphere administrative functions from either the Web-based
administrative console or the system management scripting interface. The authorization policy is only
enforced when global security is enabled. The following table describes the admin roles:

Admin roles

Role Description

monitor Least privileged that basically allows a user to view the
WebSphere Application Server configuration and current
state.

configurator Monitor privilege plus the ability to change the
WebSphere Application Server configuration.

126 1BM WebSphere Application Server Network Deployment, Version 6: Securing applications and their environment

http://java.sun.com

Admin roles

operator Monitor privilege plus the ability to change runtime state,
such as starting or stopping services for example.

administrator Operator and configurator privilege, plus additional
privileges granted solely to the administrator role.
Examples include:

* Modifying the server user ID and password
» Mapping users and groups to the administrator role

The identity specified when enabling global security is automatically mapped to the administrator role.
Users, groups, can be added or removed from the admin roles from the WebSphere Application Server
administrative console at anytime. However, a server restart is required for the changes to take effect. A
best practice is to map a group or groups, rather than specific users, to admin roles because it is more
flexible and easier to administer in the long run. By mapping a group to an admin role, adding or removing
users to or from the group occurs outside of WebSphere Application Server and does not require a server
restart for the change to take effect.

In addition to mapping user or groups, a special-subject can also be mapped to the admin roles. A
special-subject is a generalization of a particular class of users. The AllAuthenticated special subject
means that the access check of the admin role ensures that the user making the request has at least been
authenticated. The Everyone special subject means that anyone, authenticated or not, can perform the
action, as if security was not enabled.

Naming roles

The J2EE role-based authorization concept has been extended to protect the WebSphere CosNaming
service.

CosNaming security offers increased granularity of security co