L[58 Ll Application Server Network Deployment, Version 6

s W
o0

Ml
or Y

Using the administrative clients

Note
FBefore using this information, be sure to read the general information under [‘Notices” on page 581

Compilation date: December 3, 2004

© Copyright International Business Machines Corporation 2004. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

How to send your comments . Vi
Chapter 1. Overview and new features for administering applications and their environments 1
Overview of administering applications and their environments .2
Getting started with WebSphere Application Server . 3
Introduction: System administration .o .3
Introduction: Administrative console . .4
Introduction: Administrative scripting (wsadmln) . 4
Introduction: Administrative commands . .5
Introduction: Administrative programs. .5
Introduction: Administrative configuration data . 6
Welcome to basic administrative architecture . . 6
Introduction: Servers. .7
Introduction: Application servers .7
Introduction: Web servers . . 8
Introduction: Clusters .9
Introduction: Environment .10
Introduction: Cell-wide settings. .1
Chapter 2. How do | administer applications and their environments? 13
Chapter 3. Using the administrativeclients .19
Chapter 4. Using the administrativeconsole .21
Starting and stopping the administrative console .21
Login settings. . . 22
Save changes to the master conflguratlon .o e e e e28
Setting the session timeout for the administrative console e e e e e s 24
Administrative consoleareas25
Taskbar25
Navigationtree025
Workspace . . . 24 5
Administrative console buttons 2t
Administrative console page features . . . 22
Administrative console navigation tree actlons R 0
Administrative console taskbar actions. .. .30
Specifying console preferences L . L L o000 0003t
Preferences settings . . . < A
Administrative console preference settlngs N 124
Administrative console scope settings e88
Accessing help and product information from the admlnlstratlve console e 7
Administrative console: Resources for learning. .3
Chapter 5. Using scripting (wsadmin)37
Getting started with scripting . . . R Y
Java Management Extensions (JMX) A e e e e e38
WebSphere Application Server configuration model |
8 - T e 24
Jython . . . P o1 |
Scripting objects S P - Y 4
Starting the wsadmin scrlptlng cllent T (€]
Scripting: Resources for learning .106
Deploying applications using scripting .107

© Copyright IBM Corp. 2004 iii

Installing applications with the wsadmin tool .107

Uninstalling applications with the wsadmintool . 109
Managing deployed applications using scripting .10
Starting applications with scripting . . . e B K0
Updating installed applications with the wsadmln tool e R A
Stopping applications with scripting . . . e)
Listing the modules in an installed appllcat|on W|th scrlptlng e A 15
Querying application state using scripting . . . A =10
Disabling application loading in deployed targets usmg scnptmg e P20
Configuring applications for session management using scripting T)
Configuring applications for session management in Web modules using scrlptlng 125
Exporting applications using scripting. .129
Configuring a shared library using scripting . . . T K10
Configuring a shared library for an application using scrlptlng e e e e1838
Setting background applications using scripting .136
Configuring servers with scripting .137
Creating a server using scripting . . . T R 1<
Configuring the Java virtual machine using scrlptlng I R 1<
Configuring enterprise bean containers using scripting . . . I KC1¢)
Configuring a Performance Manager Infrastructure service usmg scrlptlng143
Limiting the growth of Java virtual machine log files using scripting. 145
Configuring an ORB service using scripting .146
Configuring for processes using scripting P <)
Configuring transaction properties for a server using scnptmg I e
Setting port numbers kept in the serverindex.xml file using scripting 151
Disabling components using scripting. .152
Disabling services using scripting .1583
Dynamic caching with scripting . . . e R
Configuring connections to Webservers W|th sorlptlng e e e e155
Regenerating the node plug-in configuration using scripting 155
Creating new virtual hosts using templates with scripting 156
Managing servers with scripting. .. .157
Stopping a node using scripting. .157
Starting servers using scripting .157
Stopping servers using scripting .158
Querying server state using scripting. . . . T E1¢)
Listing running applications on running servers usmg scrlptlng P [610)
Starting listener ports using scripting .162
Managing generic servers using scripting e et
Setting development mode for server objects using scrlptlng C e e1e8
Disabling parallel startup using scripting. 164
Removing multicast endpoints using scripting. 164
Obtaining server version information with scripting. 165
Clustering servers with scripting. .166
Creating clusters using scripting .166
Creating cluster members using scripting .167
Starting a cluster using scripting . 168
Querying cluster state using scripting. 168
Stopping clusters using scripting .169
Configuring security with scripting . . . C e e e o189
Enabling and disabling global security usmg scrlptlng e ¢
Enabling and disabling Java 2 security using scripting17
Configuring data access with scripting .17
Configuring a JDBC provider using scripting .172
Configuring new data sources using scripting. .173
Configuring new connection pools using scripting174

iv 1BM WebSphere Application Server Network Deployment, Version 6: Using the administrative clients

Configuring new data source custom properties using scripting 174

Configuring new J2CAuthentication data entries using scripting 175
Configuring new WAS40 data sources using scripting. 176
Configuring new WAS40 connection pools using scripting177
Configuring new WAS40 custom properties using scripting. 178
Configuring new J2C resource adapters using scripting e £
Configuring custom properties for J2C resource adapters using scrlptmg e k<10
Configuring new J2C connection factories using scripting 181
Configuring new J2C authentication data entries using scripting 183
Configuring new J2C activation specs using scripting. 184
Configuring new J2C administrative objects using scripting. 185
Testing data source connections using scripting.187
Configuring messaging with scripting. . . . e e e e188
Configuring the message listener service usmg scnptlng e e e e188
Configuring new JMS providers using scripting .189
Configuring new JMS destinations using scripting19
Configuring new JMS connections using scripting KB
Configuring new WebSphere queue connection factories usmg scrlptlng P e
Configuring new WebSphere topic connection factories using scripting 193
Configuring new WebSphere queues using scripting19
Configuring new WebSphere topics using scripting. e 5]
Configuring new MQ queue connection factories using scnptmg N K [
Configuring new MQ topic connection factories using scripting197
Configuring new MQ queues using scripting .19
Configuring new MQ topics using scripting.200
Configuring mail, URLs, and resource environment entrles W|th scr|pt|ng = (O} |
Configuring new mail providers using scripting .201
Configuring new mail sessions using scripting .202
Configuring new protocols using scripting .208
Configuring new custom properties using scripting. . . . e e e e s 204
Configuring new resource environment providers using scrlptlng o T 2{0)
Configuring custom properties for resource environment providers using scrlptmg206
Configuring new referenceables using scripting -l 0 1 4
Configuring new resource environment entries using scrlptlng A208
Configuring custom properties for resource environment entries using scnptmg e 209
Configuring new URL providers using scripting . . . =2 L0
Configuring custom properties for URL providers using scrlptlng e e e .2
Configuring new URLs using scripting 2
Configuring custom properties for URLs using scnptmg 2 <
Troubleshooting with scripting . . . 2
Tracing operations with the wsadmin tool 2
Configuring traces using scripting 2 1)
Turning traces on and off in servers processes usmg scrlptlng - [
Dumping threads in server processes using scripting217
Setting up profile scripts to make tracing easier using scripting217
Scripting reference material218
Wsadmin tool . . . 2 <
Commands for the HeIp object 22922
Commands for the AdminConfig object .236
Commands for the AdminControl object. .260
Commands for the AdminApp object .28
Commands for the AdminTask object. .359
Administrative command invocation syntax. .508
Properties used by scripted administraton. .509
Chapter 6. Using Ant to automatetasks. .513

Contents V

ws_ant command . .
Ant tasks for deployment and server operatlon .
Ant tasks for building application code

Chapter 7. Using administrative programs (JMX) .
Creating a custom Java administrative client program using WebSphere Appllcatlon Server
administrative Java APIs e e e
Developing an administrative client program .
Extending the WebSphere Application Server adm|n|strat|ve system W|th custom MBeans
Best practices for standard, dynamic, and open MBeans .
Creating and registering standard, dynamic, and open custom MBeans .
Java 2 security permissions . .
Developing administrative programs for muIt|pIe Java 2 PIatform Enterprlse Ed|t|on appllcatlon
servers . .
Deploying and managlng a custom Java admlnlstratlve cllent program W|th multlple Java 2 PIatform
Enterprise Edition application servers . . .
Migrating Java Management Extensions V1.0 to Java Management Exten3|ons V1 2 .
Java Management Extensions interoperability
Managed object metadata . .
Managing applications through programmlng
Installing an application through programming
Uninstalling an application through programming
Updating an application through programming
Adding to, updating, or deleting part of an application through programmmg
Preparing a module and adding it to an existing application through programming .
Preparing and updating a module through programming. e
Deleting a module through programming
Adding a file through programming
Updating a file through programming .
Deleting a file through programming .

Chapter 8. Using command line tools.

Example: Security and the command line tools .

startServer command

stopServer command

startManager command.

stopManager command .

startNode command .

stopNode command .

addNode command . .
Best practices for adding nodes usrng command Ilne tools .

serverStatus command .

removeNode command .

cleanupNode command.

syncNode command .

backupConfig command

restoreConfig command

EARExpander command

GenPluginCfg command

Notices

Trademarks and service marks .

Vi 1BM WebSphere Application Server Network Deployment, Version 6: Using the administrative clients

. 513
. 513
. 514

. 515

. 516
. 516
. 521
. 522
. 523
. 525

. 526

. 528
. 529
. 530
. 531
. 532
. 533
. 536
. 539
. 541
. 543
. 546
. 548
. 550
. 552
. 554

. 557
. 557
. 558
. 559
. 560
. 562
. 563
. 564
. 566
. 569
. 570
. 571
. 572
. 573
. 574
. 575
. 576
. 577

. 581

. 583

How to send your comments

Your feedback is important in helping to provide the most accurate and highest quality information.
» To send comments on articles in the WebSphere Application Server Information Center
1. Display the article in your Web browser and scroll to the end of the article.

2. Click on the Feedback link at the bottom of the article, and a separate window containing an e-mail
form appears.

3. Fill out the e-mail form as instructed, and click on Submit feedback .

* To send comments on PDF books, you can e-mail your comments to: wasdoc@us.ibm.com or fax
them to 919-254-0206.

Be sure to include the document name and number, the WebSphere Application Server version you are
using, and, if applicable, the specific page, table, or figure number on which you are commenting.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information
in any way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2004 vii

viii 1BMm WebSphere Application Server Network Deployment, Version 6: Using the administrative clients

Chapter 1. Overview and new features for administering
applications and their environments

This topic summarizes the contents and organization of the administration documentation, including links
to conceptual overviews and descriptions of new features.

« [‘Overview of administering applications and their environments” on page 2|
* What is new for administrators

Sections in the administration documentation:

Setting up the application server environment
This section is for the administrator who is responsible for integrating application serving
capabilities into an existing network environment. It looks at the product as part of a larger system,
typically a production environment or realistic test environment. This section reiterates some
installation and customization activities, including topology planning and creating product
configurations. It carries the focus into the administrative realm, discussing port configuration and
other network concerns. See also Overview and new features for installing an application server
environment.

This information expands the topology planning discussion by describing how to set up and
maintain logical administrative domains of cells and nodes, and how to balance workload through
clustering and high availability configurations.

|Chapter 3, “Using the administrative clients,” on page 19|
This section describes the many options available for administering your applications and the
servers to which the applications are deployed. Options include the graphical administrative
console; scripting with the wsadmin tool; programmatic administration using Java Management
Extensions (JMX) and MBeans; and a wide array of command-line tools, including ANT.

Starting and stopping quick reference
This section summarizes what can be started and stopped, including applications and the
application servers on which these applications are deployed.

Class loading
This section describes how to configure class loaders. It includes both configuration that is
performed during application assembly (packaging) and configuration performed at the server. The
product run-time environment uses class loaders to find and load new classes for an application.
Class loaders are part of the Java virtual machine (JVM) code and are responsible for finding and
loading class files.

Deploying and administering applications
This section describes how to deploy applications onto application servers, and then how to
administer the deployed applications. It includes installing applications, starting applications,
exporting application files, updating applications, removing applications, and other common tasks.

Administer WebSphere applications
This section provides administrative instructions that are specific to the various types of
applications. For example, you can focus on administering your Web applications in their Web
container; or aspects of Web services support; or the messaging or security subsystems.

Troubleshooting deployment
This section describes how to identify and handle a variety of problems encountered during
development, assembly, and deployment activities.

Troubleshooting administration
This section describes how to identify and handle a variety of problems encountered during
administrative activities.

© Copyright IBM Corp. 2004 1

Overview of administering applications and their environments

This topic provides links to conceptual overviews of administering your applications and application serving
environment.

What is new for administrators

This topic provides an overview of new and changed features of system administration.

|“Introduction: System administration” on page :_i]

This topic describes the administration of WebSphere Application Server, Version 6 products and
the applications that run on them.

Presentations from [Education on Demand|

The following presentations provide a quick overview:
« |System management architecture|
* |Administrative security|
+ [Administrative clients overview
[Start, stop, and monitor processes]|
[Other commands|
[Browser-based administrative console]
[Scripting - wsadmin|
[Custom Java administrative client (JMX)
» Topologies and logical administrative domains
[Resource scoping|
[Cells, deployment managers, and node agents|
[Build cells - Add and remove nodes|
[Manage node groups|
» Applications and application resources
— [Application management overview|
-
[Installing and uninstalling applications|
[Managed application resources - Enhanced EAR files|
[Fine grained application updates|
» Servers
— |Server templates|
[Custom services|
— [Manage Web server nodeg|
- ‘Application servers and cluster members|
— [Creating cluster members|
» Configuration management
— |Configuration repository|
— [Configuration archives]
— [File synchronization|

2 1BM WebSphere Application Server Network Deployment, Version 6: Using the administrative clients

http://www.ibm.com/developerworks/websphere/library/tutorials/ondemand/
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_Architecture/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_Admin_Security/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_AdminClient/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_StartStop_Monitor/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_Commands/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_AdminConsole/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_ScriptingAdmin/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_Custom_Java_Client/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_Res_Scopes/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_CellNode_Config/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_ND_BuildCell/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_NodeGroup/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_App_Admin_Overview/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_JDBC/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_App_Install/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/ApplicationManagement/LabInstructions/WASv6_EnhancedEARLab.pdf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/ApplicationManagement/LabInstructions/WASv6_ ApplUpdateLab.pdf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_Server_Templates/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_Custom_Services/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/WebServer_And_Plugin/Presentations/WASv6_WebServer/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_AppServer_Config/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_Cluster/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_ConfigRepository/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_Configuration_Archives/player.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_ND_FileSync/player.html

Getting started with WebSphere Application Server

Note: If you prefer to browse PDF versions of this documentation using|Adobe Reader see the Getting
Started PDF files that are available from
www.ibm.com/software/webservers/appserv/infocenter.html|

IBM WebSphere Application Server products provide a next-generation application server on an
industry-standard foundation. Each product addresses a distinct set of scenarios and needs. WebSphere
Application Server, Version 6 product offerings are described in Packaging.

Planning

See Planning the installation (diagrams) for a description of typical scenarios for each WebSphere
Application Server product.

Installing

See Task overview: Installing for a description of installing the WebSphere Application Server product and
other installable components on the product disc.

Configuring

See Using the Profile creation wizard for a description of installing profiles that define a deployment
manager, a managed node, or a stand-alone Application Server.

Migrating

See Migration and coexistence overview and Migrating and coexisting for a description of how to migrate
applications and configuration data from a previous version of WebSphere Application Server.

Using the Samples Gallery

See Accessing the Samples (Samples Gallery) for a description of the set of Samples that ship with each
product. The Samples demonstrate common Web application tasks.

Deploying applications
The information center describes a way to sample WebSphere Application Server functionality by quickly

deploying Web components, such as servlets and JSP files. The method is not recommended as an
official development method. See Fast paths for WebSphere Application Server to get started.

Introduction: System administration

Note: If you would prefer to browse PDF versions of this documentation using your|Adobe Reader see
the System Administration PDF files available from
www.ibm.com/software/webservers/appserv/infocenter.html|

A variety of tools are provided for administering the WebSphere Application Server product:
» Console

The administrative console is a graphical interface that provides many features to guide you through
deployment and systems administration tasks. Use it to explore available management options.

For more information, refer to ['Introduction: Administrative console” on page 4|

Administrative agents

Chapter 1. Overview and new features for administering applications and their environments 3

http://www.adobe.com/products/acrobat/readermain.html
http://www.ibm.com/software/webservers/appserv/infocenter.html
http://www.adobe.com/products/acrobat/readermain.html
http://www.ibm.com/software/webservers/appserv/infocenter.html

Servers, nodes and node agents, cells and the deployment manager are fundamental concepts in the
administrative universe of the product. It is also important to understand the various processes in the
administrative topology and the operating environment in which they apply.

For more information, refer to ['Welcome to basic administrative architecture” on page 6.

» Scripting
The WebSphere administrative (wsadmin) scripting program is a powerful, non-graphical command
interpreter environment enabling you to run administrative operations in a scripting language. You can
also submit scripting language programs to run. The wsadmin tool is intended for production
environments and unattended operations.

For more information, refer to r‘lntroduction: Administrative scripting (wsadmin).’1
+ Commands

Command-line tools are simple programs that you run from an operating system command-line prompt
to perform specific tasks, as opposed to general purpose administration. Using the tools, you can start
and stop application servers, check server status, add or remove nodes, and complete similar tasks.
For more information, refer to [‘Introduction: Administrative commands” on page 5/

* Programming

The product supports a Java programming interface for developing administrative programs. All of the
administrative tools supplied with the product are written according to the API, which is based on the
industry standard Java Management Extensions (JMX) specification.

For more information, refer to ['Introduction: Administrative programs” on page 5.|
* Data

Product configuration data resides in XML files that are manipulated by the previously-mentioned
administrative tools.

For more information, refer to [‘Introduction: Administrative configuration data” on page 6.

Introduction: Administrative console

The |administrative consolelis a graphical interface for performing deployment and system administration
tasks. It runs in your Web browser. Your actions in the console modify a set of XML configuration files.

You can use the console to perform tasks such as:

* Add, delete, start, and stop application servers

» Deploy new applications to a server

« Start and stop existing applications, and modify certain configurations

* Add and delete Java 2 Platform, Enterprise Edition (J2EE) resource providers for applications that
require data access, mail, URLs, and so on

* Manage variables, shared libraries, and other configurations that can span multiple application servers
» Configure product security, including access to the administrative console

» Collect data for performance and troubleshooting purposes

* Find the product version information. It is located on the front page of the console.

[‘Starting and stopping the administrative console” on page 21|helps you begin using the console so that
you can explore the available options. See also the Reference > Administrator > Settings section of the
information center navigation. It lists the settings or properties you can configure.

Introduction: Administrative scripting (wsadmin)

The WebSphere administrative (wsadmin) scripting program is a powerful, non-graphical command
interpreter environment enabling you to run administrative operations in a scripting language. The wsadmin
tool is intended for production environments and unattended operations. You can use the wsadmin tool to
perform the same tasks that you can perform using the administrative console.

4 BM WebSphere Application Server Network Deployment, Version 6: Using the administrative clients

The following list highlights the topics and tasks available with scripting:

« [Getting started with scripting| Provides an introduction to WebSphere Application Server scripting and
information about using the wsadmin tool. Topics include information about the scripting languages and
the scripting objects, and instructions for starting the wsadmin tool.

. |Dep|oying applications| Provides instructions for deploying and uninstalling applications. For example,
stand-alone Java archive files and Web archive files, the administrative console, remote enterprise
archive (EAR) files, file transfer applications, and so on.

[Managing deployed applications| Includes tasks that you perform after the application is deployed. For
example, starting and stopping applications, checking status, modifying listener address ports, querying
application state, configuring a shared library, and so on.

|Configuring servers| Provides instructions for configuring servers, such as creating a server, modifying
and restarting the server, configuring the Java virtual machine, disabling a component, disabling a
service, and so on.

» |Configuring connections to Web servers| Includes topics such as regenerating the plug-in, creating new
virtual host templates, modifying virtual hosts, and so on.

[Managing servers| Includes tasks that you use to manage servers. For example, stopping nodes,
starting and stopping servers, querying a server state, starting a listener port, and so on.

+ [Clustering servers| Includes topics about clusters, such as creating clusters, creating cluster members,
querying a cluster state, removing clusters, and so on.

[Configuring security] Includes security tasks, for example, enabling and disabling global security,
enabling and disabling Java 2 security, and so on.

« |Configuring data access|Includes topics such as configuring a Java DataBase Connectivity (JDBC)
provider, defining a data source, configuring connection pools, and so on.

[Configuring messaging| Includes topics about messaging, such as Java Message Service (JMS)

connection, JMS provider, WebSphere queue connection factory, MQ topics, and so on.

+ [Configuring mail, URLs, and resource environment entries| Includes topics such as mail providers, mail
sessions, protocols, resource environment providers, referenceables, URL providers, URLs, and so on.

« [Dynamic caching| Includes caching topics, for example, creating, viewing and modifying a cache

instance.

[Troubleshooting| Provides information about how to troubleshoot using scripting. For example, tracing,

thread dumps, profiles, and so on.

« [Obtaining product information| Includes tasks such as querying the product identification.

« [Scripting reference material|Includes all of the reference material related to scripting. Topics include the
syntax for the wsadmin tool and for the administrative command framework, explanations and examples
for all of the scripting object commands, the scripting properties, and so on.

Introduction: Administrative commands

[Command-line tools| are simple programs that you run from an operating system command-line prompt to
perform specific tasks, as opposed to general purpose administration. Using the tools, you can start and
stop application servers, check server status, add or remove nodes, and complete similar tasks.

See Reference > Commands in the information center navigation for the names and syntax of all the
commands that are available with the product. A subset of these commands are particular to system
administration purposes.

Introduction: Administrative programs

The product supports a[Java programming interface for developing administrative programs| All of the
administrative tools supplied with the product are written according to the API, which is based on the
industry standard Java Management Extensions (JMX) specification. You can write a Java program that

Chapter 1. Overview and new features for administering applications and their environments 5

performs any of the administrative features of the WebSphere Application Server administrative tools. You
can also extend the basic WebSphere Application Server administrative system to include your own
managed resources.

Introduction: Administrative configuration data

Administrative tasks typically involve defining new configurations of the product or performing operations
on managed resources within the environment. IBM WebSphere Application Server configuration data is
kept in files. Because all product configuration involves changing the content of those files, it is useful to
know the structure and content of the configuration files.

The WebSphere Application Server product includes an implementation of the Java Management
Extension (JMX) specification. All operations on managed resources in the product go through JMX
functions. This setup means a more standard framework underlying your administrative operations as well
as the ability to tap into the systems management infrastructure programmatically.

Welcome to basic administrative architecture

This article discusses basic concepts in the administrative architecture to help you understand system
administration in a WebSphere Application Server environment. The fundamental concepts for WebSphere
Application Server administration include software processes called servers, topological units referenced
as nodes and cells, and the configuration repository used for storing configuration information.

Servers perform the actual running of the code. Several types of servers exist depending on the
configuration. Each server runs in its own Java virtual machine (JVM). The application server is the
primary run-time component in all WebSphere Application Server configurations. All WebSphere
Application Server configurations can have one or more application servers. In some configurations, each
application server functions as a separate entity. No workload distribution or common administration
among application servers exists. In other configurations, workload can be distributed between servers and
administration can be done from a central point.

A node is a logical group of WebSphere Application Server-managed server processes that share a
common configuration repository. A node is associated with a single WebSphere Application Server profile.
A WebSphere Application Server node does not necessarily have a one-to-one association with a system.
One computer can host arbitrarily many nodes, but a node cannot span multiple computer systems. A
node can contain zero or more application servers.

The configuration repository holds copies of the individual component configuration documents that define
the configuration of a WebSphere Application Server environment. All configuration information is stored in
xml files.

A cell is a grouping of nodes into a single administrative domain. A cell can consist of multiple nodes, all
administered from a deployment manager server. When a node becomes part of a cell (a federated node),
a node agent server is installed on the node to work with the deployment manager server to manage the
WebSphere Application Server environment on that node.

When a node is a standalone node, not part of a cell, the configuration repository is fully contained on the
node. When a node is part of a cell, the configuration and application files for all nodes in the cell are
centralized into a cell master configuration repository. This centralized repository is managed by the
deployment manager server and synchronized to local copies that are held on each node. The local copy
of the repository that is given to each node contains just the configuration information needed by that
node, not the full configuration that is maintained by the deployment manager.

WebSphere Application Server types

This section discusses the three server types that interact to perform system administration.

6 1BM WebSphere Application Server Network Deployment, Version 6: Using the administrative clients

Application Server: A WebSphere Application Server provides the functions that are required to support
and host user applications. An application server runs on only one node, but one node can support many
application servers.

Node agent: When a node is federated, a node agent is created and installed on that node. The node
agent works with the deployment manager to perform administrative activities on the node.

Deployment manager: With the deployment manager, you can administer multiple application servers
from one centralized manager. The deployment manager works with the node agent on each node to
manage all the servers in a distributed topology.

The following diagram depicts the concepts that are discussed in this article.

The concepts that are discussed in this article form the basis of WebSphere Application Server
administration. More detailed descriptions can be found in other sections.

Introduction: Servers

Application servers

Application servers provide the core functionality of the WebSphere Application Server product family. They
extend the ability of a Web server to handle Web application requests, and much more. An application
server enables a server to generate a dynamic, customized response to a client request.

For additional overview, refer to|“Introduction: Application servers.’]

Clusters

Workload management optimizes the distribution of client processing tasks. Incoming work requests are
distributed to the application servers that can most effectively process the requests. Workload
management also provides failover when servers are not available, improving application availability.

Clusters are sets of application servers that are managed together and participate in workload
management. The servers that are members of a cluster can be on different host machines, as opposed to
the servers that are part of the same node and must be located on the same host machine.

For additional overview, refer to[“Introduction: Clusters” on page 9/

Introduction: Application servers
Overview

An application server is a Java Virtual Machine (JVM) that is running user applications. The application
server collaborates with the Web server to return a dynamic, customized response to a client request.
Application code, including servlets, JavaServer Pages (JSP) files, enterprise beans and their supporting
classes, runs in an application server. Conforming to the Java 2 platform, Enterprise Edition (J2EE)
component architecture, servlets and JSP files run in a Web container, and enterprise beans run in an
Enterprise JavaBeans (EJB) container.

To begin creating and managing an application server, see Administering application servers.

You can define multiple application servers, each running its own JVM. Enhance the operation of an
application server by using the following options:

Chapter 1. Overview and new features for administering applications and their environments 7

» Configure transport chains to provide networking services to such functions as the service integration
bus component of IBM service integration technologies, WebSphere Secure Caching Proxy, and the
high availability manager core group bridge service. See Configuring transport chains for more
information.

* Plug into an application server to define a hook point that runs when the server starts and shuts down.
See Custom services for more information.

» Define command-line information that passes to a server when it starts or initializes. See
[command” on page 55§ for more information.

» Tuning application sServers

* Enhance the performance of the application server JVM. See Using the JVM for more information.

» Use an Object Request Broker (ORB) for RMI/IIOP communication. See Managing object request
brokers for more information.

Asynchronous messaging

The product supports asynchronous messaging based on the Java Messaging Service (JMS) of a JMS
provider that conforms to the JMS specification version 1.1.

The JMS functions of the default messaging provider in WebSphere Application Server are served by one
or more messaging engines (in a service integration bus) that runs within application servers.

In a deployment manager cell, there can be WebSphere Application Server version 5 nodes. If a version 5
node is configured to use V5 Default Messaging (the version 5 Embedded Messaging), there can be at
most one JMS server on that node.

Generic Servers

In distributed platforms, the Generic Servers feature allows you create a generic server as an application
server instance within the WebSphere Application Server administration, and associate it with a
non-WebSphere server or process. The generic server can be associated with any server or process
necessary to support the application server environment, including:

* A Java server

* A C or C++ server or process

* A CORBA server

* A Remote Method Invocation (RMI) server

After you define a generic server, you can use the Application Server administrative console to start, stop,
and monitor the associated non-WebSphere server or process when stopping or starting the applications
that rely on them.

For more information, refer to Creating generic servers.

Introduction: Web servers

In the WebSphere Application Server product, an application server works with a Web server to handle
requests for dynamic content, such as servlets, from Web applications. SeeISupported Hardware and
for this product for the most current information about supported Web servers.

The application server and Web server communicate using Web server plug-ins. Communicating with Web
servers describes how to set up your Web server and Web server plug-in environment and how to create
a Web server definition. The Web server definition associates a Web server with a previously defined
managed or unmanaged node. After you define the Web server to a node, you can use the administrative
console to perform the following functions for that Web server.

If the Web server is defined to a managed node, you can:
* Check the status of the Web server

8 IBM WebSphere Application Server Network Deployment, Version 6: Using the administrative clients

http://www.ibm.com/software/webservers/appserv/doc/latest/prereq.html
http://www.ibm.com/software/webservers/appserv/doc/latest/prereq.html

* Generate a plug-in configuration file for that Web server.
* Propagate the plug-in configuration file after it is generated.

If the Web server is an IBM HTTP Server (IHS) and the IHS Administration server is installed and properly
configured, you can also:

» Display the IBM HTTP Server Error log (error.log) and Access log (access.log) files.

» Start and stop the server.

» Display and edit the IBM HTTP Server configuration file (httpd.conf).

If the Web server it is defined to an unmanaged node, you can:
* Check the status of the Web server
* Generate a plug-in configuration file for that Web server.

If the Web server is an IBM HTTP Server (IHS) and the IHS Administration server is installed and properly
configured, you can also:

» Display the IBM HTTP Server Error log (error.log) and Access log (access.log) files.
» Start and stop the server.

» Display and edit the IBM HTTP Server configuration file (httpd.conf).

* Propagate the plug-in configuration file after it is generated.

You can not propagate an updated plug-in configuration file to a non-IHS Web server that is defined to an
unmanaged node. You must manually install an updated plug-in configuration file to a Web server that is
defined to an unmanaged node. Web servers defined to an unmanaged node are typically remote Web
servers. Remote Web servers are Web servers that are not located on the same machine as the
WebSphere Application Server.

After you set up your Web server and Web server plug-in, whenever you deploy a Web application, you
must specify a Web server as the deployment target that serves as a router for requests to the Web
application. The configuration settings in the plug-in configuration file (plugin-cfg.xml) for each Web server
are based on the applications that are routed through that Web server. If the Web server plug-in
configuration service is enabled, a Web server plug-in’s configuration file is automatically regenerated
whenever a new application is associated with that Web server.

Note: Before starting the Web server, make sure you are authorized to run any Application Response
Measurement (ARM) agent associated with that Web server.

Refer to your Web server documentation for information on how to administer that Web server. For tips on
tuning your Web server plug-in, see Web server plug-in tuning tips.

Introduction: Clusters

Clusters are groups of servers that are managed together and participate in workload management. A
cluster can contain nodes or individual application servers. A node is usually a physical computer system
with a distinct host IP address that is running one or more application servers. Clusters can be grouped
under the configuration of a cell, which logically associates many servers and clusters with different
configurations and applications with one another depending on the discretion of the administrator and what
makes sense in their organizational environments.

Clusters are responsible for balancing workload among servers. Servers that are a part of a cluster are
called cluster members. When you install an application on a cluster, the application is automatically
installed on each cluster member.

Because each cluster member contains the same applications, you can distribute client tasks in distributed
platforms according to the capacities of the different machines by assigning weights to each server.

Chapter 1. Overview and new features for administering applications and their environments 9

In distributed platforms, assigning weights to the servers in a cluster improves performance and failover.
Tasks are assigned to servers that have the capacity to perform the task operations. If one server is
unavailable to perform the task, it is assigned to another cluster member. This reassignment capability has
obvious advantages over running a single application server that can become overloaded if too many
requests are made.

Node groups bound clusters. All cluster members of a given cluster must be members of the same node
group. For more information about clusters and node groups, see Clusters and node groups.

To learn more about clusters, see Clusters and workload management and Balancing workloads with
clusters for more information.

Core groups

A group of clusters can be defined as a core group. All of the application servers defined as a member of
one of the clusters included in a core group are automatically members of that core group. Individual
application servers that are not members of a cluster can also be defined as a member of a core group.
The use of core groups enables WebSphere Application Server to provide high availability for applications
that must always be available to end users. You can also configure core groups to communicate with each
other using the core group bridge. The core groups can communicate within the same cell or across cells.

To learn more about core groups, see Setting up a high availability environment.

Introduction: Environment
The environment of the product applies to the configuring of Web server plug-ins, variables, and objects
that you want consistent throughout a cell.

Web servers

In the WebSphere Application Server product, an application server works with a Web server to handle
requests for Web applications. The application Server and Web server communicate using a WebSphere
HTTP plug-in for the Web server.

For more information, refer to [‘Introduction: Web servers” on page 8.|

Cell-wide settings

Cell-wide settings are sets of configuration data that are stored in files in the cell directory. These
configuration files are replicated to every node in the cell. Several different configuration settings apply to
the entire cell. These settings include the definition of virtual hosts, shared libraries, and any variables that
must be consistent throughout the entire cell.

For more information, refer to |“Introduction: Cell-wide settings” on page 11.|

Variables

A variable is a configuration property that can be used to provide a parameter for any value in the system.
A variable has a name and a value to use in place of that name wherever the variable name is located
within the system.

For more information, refer to Configuring WebSphere variables.

10 1BM WebSphere Application Server Network Deployment, Version 6: Using the administrative clients

Introduction: Cell-wide settings

The configuration data for WebSphere Application Server is stored in XML files. The XML files exist in one
of several directories in the configuration repository tree.

The directory in which a configuration file exists determines its scope, or how broadly or narrowly that data
applies. Files in an individual server directory apply to that specific server only. Files in a node-level
directory apply to every server on that node. Files in the cell directory apply to every server on every node
within the entire cell.

Cell-wide settings are configuration files in the cell directory. The files are replicated to every node in the

cell. Several different configuration settings apply to the entire cell. These settings include the definition of
virtual hosts, shared libraries, and any variables that you want consistent throughout the entire cell.

Chapter 1. Overview and new features for administering applications and their environments 11

12 BM WebSphere Application Server Network Deployment, Version 6: Using the administrative clients

Chapter 2. How do | administer applications and their
environments?

Establish the application serving environment

Secure the application serving environment - see Security
Set up Web access for applications

Set up resources for applications to use

Configure class loaders - see development and deployment
Deploy and administer applications

Use the administrative clients

Troubleshoot deployment and administration

Establish the application serving environment

The following tasks involve establishing application serving capability in your network environment,
whether you use single or clustered application servers. Servers can be grouped into administrative
domains known as nodes and cells.

See also the overview:

Version 6 topology and terminology

Create WebSphere profiles

Profiles are the files that define a stand-alone Application Server node, a managed node, or a
deployment manager node. A profile also includes all of the files that the node can change.

Administer nodes

A node is a grouping of managed servers. Use this task to view information about and manage
nodes.

Administer node agents

Node agents are administrative agents that represent a node to your system and manage the
servers on that node. Node agents monitor application servers on a host system and route
administrative requests to servers. A node agent is created automatically when a node is added to
a cell.

Administer cells

When you installed the WebSphere Application Server Network Deployment product, a cell was
created. A cell provides a way to group one or more nodes of your Network Deployment product.
You probably will not need to reconfigure the cell. Use this task to view information about and
manage a cell.

Administer configurations

© Copyright IBM Corp. 2004 13

Application server configuration files define the available application servers, their configurations,
and their contents. You should periodically save changes to your administrative configuration. You
can change the default locations of configuration files, as needed.

Configure remote file services

Configuration data for the WebSphere Application Server product resides in files. Two services
help you reconfigure and otherwise manage these files: the file transfer service and file
synchronization service. By default, the file transfer service is always configured and enabled at a
node agent, so you do not need to take additional steps to configure this service. However, you
might need to configure the file synchronization service.

Administer application servers

Create, configure, and operate application server processes. An application server configuration
provides settings that control how an application server provides services for running enterprise
applications and their components.

Administer other server types

One step in the process of creating an application server is to specify a template. A server
template is used to define the configuration settings of the new server. You have the option of
specifying the default server template or choosing a template that is based on a server that
already exists. The default template will be used if you do not specify a different template when
you create the server.

You can create other types of servers, to represent Web servers in your topology, or for other
purposes. There are two types of generic servers: (1) Non-Java applications or processes, or (2)
Java applications or processes. A custom service provides the ability to plug into a WebSphere
application server to define a hook point that runs when the server starts and shuts down.

Balance workloads by clustering application servers

To monitor application servers and manage the workloads of servers, use server clusters and
cluster members provided by the Network Deployment product.

Establishing high availability (HA) for failover

Planning ahead for high availability support is important in order to avoid the risk of a failure
without failover coverage. The application server runtime of the infrastructure managed by a high
availability manager includes such entities as cells and clusters. These components relate closely
to core groups, high availability groups, and the policy that defines the high availability
infrastructure. In a properly configured high availability environment, a high availability manager
can reassess the environment it is managing and accept new components as they are added to
the environment.

Administer the UDDI registry

The UDDI Registry is supplied as a J2EE application file, uddi.ear. Change its configuration
properties using the assembly tools. You can use either the WebSphere Application Server

administrative console or the Java Management Extensions (JMX) management interface to
manage UDDI Registries.

14 BMm WebSphere Application Server Network Deployment, Version 6: Using the administrative clients

Set up Web access for applications

These tasks involve enabling HTTP requests for applications on the application server.

Administer communication with Web servers (plug-ins)

The product provides plug-ins for supported Web servers, to enable the Web servers to pass
requests to the application server, for applications running on the application server.

Administer HTTP sessions

Configure the service that the product provides for managing HTTP sessions: Session Manager.

Administer IBM HTTP Server Version 6.x

The product provides a complementary Web server with its own documentation that can be
installed into the information center.

Set up resources for applications to use

Make a variety of resources available to your applications that are deployed on the application server.

Provide access to nhaming and directory resources (JNDI)

Configure naming. Naming is used by clients of WebSphere Application Server applications to
obtain references to objects related to those applications, such as Enterprise JavaBeans (EJB)
homes. These objects are bound into a mostly hierarchical structure, referred to as a name space.
The name space structure consists of a set of name bindings, each consisting of a name relative
to a specific context and the object bound with that name.

Provide access to relational databases (JDBC resources)

Configure data sources that applications use to access the data from databases.

Provide access to messaging resources (default messaging provider)

Use one of various ways to implement a messaging provider for use with WebSphere Application
Server. A messaging provider enables use of the Java Messaging Service (JMS) and other
message resources in the product.

Use IBM service integration technologies

Establish workload balancing and high availability (HA) of messaging engines

Access Service Integration (SI) bus resources

Chapter 2. How do | administer applications and their environments? 15

Deploy and administer applications

These tasks involve deploying applications onto the application server, then administering the applications.

Install applications

Installable modules include enterprise archive (EAR), enterprise bean (EJB), Web archive (WAR),
resource adapter (connector or RAR), and application client files.

Start and stop applications

You can start an application that is not running (has a status of Stopped) or stop an application
that is running (has a status of Started).

Update applications

Update deployed applications or modules using the administrative console or wsadmin scripting.
Learn which changes are candidates for hot deployment and dynamic reloading, in which you can
make various changes to applications and their modules without having to stop the server and
start it again.

Deploy applications rapidly (WebSphere Rapid Deployment)

Take advantage of new rapid deployment capabilities. WebSphere rapid deployment offers the
following advantages: You do not need to assemble your J2EE application files prior to
deployment. You do not need to use other installation tools mentioned in this table to deploy the
files. Refer to the Rapid deployment tools documentation in the information center.

Enhanced EAR files

Deploy and administer Web services applications

To deploy Web services that are based on the Web Services for Java 2 platform, Enterprise
Edition (J2EE) specification, you need an enterprise application, also known as an enterprise
archive (EAR) file that has been configured and enabled for Web services. You can use either the
administrative console or the wsadmin scripting interface to deploy an EAR file.

Use the administrative clients

A variety of tools are provided for administering the product.

Choose an administrative client

Learn about and decide among the available administrative clients, including a graphical console,
scripting (wsadmin), command line tools, and Java Management Extensions (JMX) programs.

Use the administrative console

16 1BM WebSphere Application Server Network Deployment, Version 6: Using the administrative clients

The administrative console is a Web-based tool that you use to administer the product. The
administrative console supports a full range of product administrative activities.

Use scripting (wsadmin)

Scripting is a non-graphical alternative that you can use to configure and manage WebSphere
Application Server. The WebSphere Application Server wsadmin tool provides the ability to run
scripts. The tool supports a full range of product administrative activities.

See also:

 Start, stop, monitor processes

» Other administrative commands

* Custom Java administrative clients (JMX)

Troubleshoot deployment and administration

Troubleshoot problems that occur when you are deploying applications onto the application server, or
when you are administering an established application serving environment.

Troubleshoot deployment

Troubleshoot problems that occur either during deployment or shortly afterwards, when you try to

access an application that you just deployed for the first time.

Troubleshoot administration

Review some possible causes, based on the error you are seeing.

Chapter 2. How do | administer applications and their environments?

17

18 1BM WebSphere Application Server Network Deployment, Version 6: Using the administrative clients

Chapter 3. Using the administrative clients

The product provides a variety of administrative clients for deploying and administering your applications
and application serving environment, including configurations and logical administrative domains.

« [Chapter 4, “Using the administrative console,” on page 21|
The administrative console is a graphical, browser-based tool.
[‘Getting started with scripting” on page 37|

Scripting is a non-graphical alternative that you can use to configure and administer your applications
and application serving environment. The WebSphere Application Server wsadmin tool provides the
ability to run scripts. The wsadmin tool supports a full range of product administrative activities.

[Chapter 6, “Using Ant to automate tasks,” on page 513

To support using Apache Ant with Java 2 Platform, Enterprise Edition (J2EE) applications running on
IBM WebSphere Application Server, the product provides a copy of the Ant tool and a set of Ant tasks
that extend the capabilities of Ant to include product-specific functions.

|Chapter 7, “Using administrative programs (JMX),” on page 515|

The product supports access to the administrative functions through a set of Java classes and methods,

under the Java Management Extensions (JMX) specification. You can write a Java program that

performs any of the administrative features of the other administrative clients. You also can extend the

basic product administrative system to include your own managed resources.
[Chapter 8, “Using command line tools,” on page 557|

Several command-line tools are available that you can use to start, stop, and monitor WebSphere
server processes and nodes. These tools work on local servers and nodes only. They cannot operate
on a remote server or node.

© Copyright IBM Corp. 2004

19

20 1B™ WebSphere Application Server Network Deployment, Version 6: Using the administrative clients

Chapter 4. Using the administrative console

The administrative console is a Web-based tool that you use to manage the IBM WebSphere Application
Server product as well as the Network Deployment product. The administrative console supports a full
range of product administrative activities.

1. Distributed platforms: [Start the server for the administrative console JFor the Network Deployment
product, the administrative console belongs to the deployment manager (dmgr) process, which you
start with the [startmanager command|

2. [Access the administrative console}

3. [Change the session timeout for the administrative console| (Optional)
4. |Browse the administrative console
5
6

Specify console preferences.|

. |Access help |

Starting and stopping the administrative console

This topic describes how to set up the administrative console environment, to access the administrative
console, and to log out of the administrative console.

To access the administrative console, you must start it and then log in. After you finish working in the
console, save your work and log out.

1. Start the administrative console.

a. Distributed platforms: |Verify that the administrative console runs on the serverl application serve|1
[for the WebSphere base product.| Verify that the administrative console runs on the deployment
manager for the Network Deployment product. Use the wasadmin |startManager command|to start
the deployment manager.

b. Enable cookies in the Web browser that you use to access the administrative console for the
administrative console to work correctly.

c. Distributed platforms: In the same Web browser, type
http://your fully qualified server_name:9060/ibm/console, where
your_fully_qualified_server_name is the fully qualified host name for the machine that contains the
administrative server. When the administrative console is on the local machine,
your_fully_qualified_server_name can be Tocalhost unless security is enabled. On Windows
platforms, use the actual host name if Tocalhost is not recognized. If security is enabled, your
request is redirected to https://your_fully qualified _server_name:9043/ibm/console, where
your_fully_qualified_server_name is the fully qualified host name for the machine that contains the
administrative server.

For a listing of supported Web browsers, see [WebSphere Application Server system requirements|
at

http://www.ibm.com/software/webservers/

appserv/doc/latest/prereq.html

The Web address appears on two lines for printing purposes. Enter the Web address on one line in
your browser.

d. Wait for the console to load into the browser. A[Login page|is displayed after the console starts.

If you cannot start the administrative console because the console port conflicts with an application
that is already running on the machine, change the port number in the install root/profiles/profile
name/config/cells/cell_name/ nodes/node_name/servers/server_name/server.xml file and the
install_root/profiles/profile name/config/cells/cell name/virtualhosts.xml files. Change all the
occurrences of port 9060 (or the port that is selected during profile creation for WebSphere Application
Server) to the port for the console. Alternatively, shut down the other application that uses the
conflicting port before starting the WebSphere Application Server product.

© Copyright IBM Corp. 2004 21

http://www.ibm.com/software/webservers/appserv/doc/latest/prereq.html

2. Log into the console.
a. Enter your user name or user ID.
The user ID lasts only for the duration of the session for which it was used to log in.

Changes made to server configurations are saved to the user ID. Server configurations also are
saved to the user ID if a session timeout occurs.
If you enter an ID that is already in use (and in session), you are prompted to do one of the
following actions:
» Force the existing user ID out of session. The configuration file that is used by the existing user
ID is saved in the temporary area.
* Wait for the existing user ID to log out or time out of the session.
» Specify a different user ID.
b. If the console is secure, you must also enter a password for the user name. The console is secure
if someone has taken the following actions for the console:
» Specified security user IDs and passwords
* Enabled global security
c. Click OK.

3. Stop the administrative console. Click System administration > Save changes to Master Repository
> Save to save work. Then click Logout to exit the console.

If you close the browser before saving your work, when you next log in under the same user ID, you
can recover any unsaved changes.

Login settings
Use this page to specify the user for the WebSphere Application Server administrative console. If you are
using global security, then you must also specify a password.

When you specify a user, you can resume work done previously with the product. After you type in a user
ID, and password if you are using global security, click OK to proceed to the next page and access the
administrative console.

To view this page, start the administrative console.

Logging into the administrative console
When you log into the administrative console, you can optionally specify a user ID if the console is not
secure. If the administrative console is secure, you must specify a user ID and password.

User ID

Specifies a string that identifies the user. The user ID must be unique to the administrative server.
Concurrent administrative console sessions must use unique user IDs.

Work that you do with the product and then save before exiting the product is saved to a configuration that

is identified by the user ID that you enter. To later access work done under that user ID, specify the same
user ID in the Login page.

Data type String

Password

If you use global security, specify a password.

22 BM WebSphere Application Server Network Deployment, Version 6: Using the administrative clients

Resolving conflicts during login
Conflicts can result if you log into the administrative console with a user ID that is already in use.

Another user is currently logged in with the same user name

Specifies whether to log out the user and to continue work with the user ID that is specified, or to return to
the Login page and specify a different user ID, or wait for the user to log out.

This field is displayed if:
» The user closed a Web browser while browsing the administrative console and did not first log out, then
opened a new browser and tried to access the administrative console with the same user ID.

» The user opened a Web browser to access the administrative console while accessing the
administrative console in another open Web browser with the same user ID.

» The user opens a Web browser and attempts to log into the console with the same user ID that is
already in use by another user who logged into the console from another Web browser on another
computer.

Recovering prior changes
You can either recover changes that you made to the configuration from a prior session or use the master
configuration. The default is to recover changes from a prior session.

Recover changes made in a prior session

When enabled, this setting specifies that you want to use the same administrative configuration used for
the last user’s session. This option recovers changes made by the user since the last saving of the
administrative configuration for the user’s session.

This field is displayed only if the user changed the administrative configuration and then logged out without
saving the changes.

Work with the master configuration

When enabled, this setting specifies to use the default administrative configuration instead of the
configuration that was last used for the user’'s session. Changes that are made to the user’s session since
the last saving of the administrative configuration are lost.

This field is displayed only if the user changed the administrative configuration and then logged out without
saving the changes.

Resolving login failures
When the administrative console is enabled with global security, you must type in a valid user ID and
password. If the user ID, password, or both are not valid, you receive the following message:

Unable to process Togin. Please check User ID and password and try again.

Resolve the problem by entering a valid user ID and password as defined in the WebSphere Application
Server security documentation.

Save changes to the master configuration

Use this page to update the master repository with your administrative console changes, to discard your
administrative console changes and continue working with the master repository, or to continue working
with your administrative console changes that are not saved to the master repository.

Until you save changes to the master repository, the administrative console uses a local workspace to
track your changes.

Chapter 4. Using the administrative console 23

Total changed documents

Specifies the total number of documents that you changed for your session, but that are not saved to the
master repository. By clicking the +/- toggle key, you can see additional information about the changed
documents:

+ Changed items

When you change your local configuration, each path and configuration file that you can apply the
update to in the master repository is displayed in the list.

» Status

Can contain the following options:

— Added: If you save your changes to the master repository, a new configuration file is created on the
indicated path.

— Updated: If you save your changes to the master repository, an existing configuration file is updated
on the indicated path.

— Deleted: If you save your changes to the master repository, an existing configuration file is deleted
on the indicated path.

Synchronize changes with nodes
Specifies whether you want to force node synchronization at the time that you save your changes to the
master repository rather than when node synchronization normally occurs.

Setting the session timeout for the administrative console

This topic describes how to change the session timeout from the default value for the administrative
console.

Ensure that you have the proper permissions to change the
${WAS_HOME}/systemApps/adminconsole.ear/deployment.xml file.

Determine whether the default session timeout value of 30 minutes is acceptable. Some reasons that you
might change the default value are:

» Users in secure environments might need shorter session timeout periods to ensure security, encase
they leave their machine and forget to log off the console.

» Users might need longer session timeout periods if they respond slower than typical users for
accessibility reasons.

» Users in secure environments might not want the administrative console timeout value to conflict with
Lightweight Third-Party Authentication (LTPA) cookie timeouts

Do the following actions to change the timeout value:
1. Edit the ${WAS_HOME}/systemApps/adminconsole.ear/deployment.xml file in a text editor.

2. Locate the xml statement <tuningParams xmi:id="TuningParams_1088453565469"
maxInMemorySessionCount="1000" allowOverflow="true" writeFrequency="TIME BASED WRITE"
writeInterval="10" writeContents="ONLY_UPDATED_ATTRIBUTES" invalidationTimeout="30">

3. Change the invalidationTimeout value to the desired session timeout. The default is 30.
4. Save the ${WAS_HOME}/systemApps/adminconsole.ear/deployment.xml file.
5. Restart the console.

Once you restart the console, the change takes effect.

Manage WebSphere Application Server through the administrative console.

24 BM WebSphere Application Server Network Deployment, Version 6: Using the administrative clients

Administrative console areas

Use the administrative console to create and manage objects in the WebSphere Application Server
configuration such as resources, applications, and servers. Additionally, use the administrative console to
view product messages. This topic describes the main areas that display on the administrative console.

To view the administrative console, ensure that the application server for the administrative console is
running. Point a Web browser at the Web address for the administrative console, enter your user ID and, if
needed, a password on the Login page.

You can resize the width of the navigation tree and workspace simultaneously by dragging the border
between them to the left or the right. The change in width does not persist between administrative console
user sessions.

The console has the following main areas.

Taskbar

The taskbar offers options for logging out of the console, accessing product information, and accessing
support.

Navigation tree

The navigation tree on the left side of the console offers links to console pages that you use to create and
manage components in a WebSphere Application Server administrative cell.

Click a plus sign (+) beside a tree folder or item to expand the tree for the folder or item. Click a minus
sign (-) to collapse the tree for the folder or item. Click an item in the tree view to toggle its state between
expanded and collapsed.

Workspace

The workspace on the right side of the console contains pages that you use to create and manage
configuration objects such as servers and resources. Click links in the navigation tree to view the different
types of configured objects. Within the workspace, click configured objects to view their configurations,
run-time status, and options. Click Welcome in the navigation tree to display the workspace Home page,
which contains links to information on using the WebSphere Application Server product.

Administrative console buttons

This page describes the button choices that are available on various pages of the administrative console,

depending on which product features you enable.

» Check all. Selects each resource that is listed on the administrative console panel, in preparation for
performing an action against the selected resources.

* Uncheck all. Removes all the listed resources from each selection so that no action is performed
against any of the resources.

* Filter the view. Produces a dialog box for specifying the resources to view in the table on this
administrative console page.

Hide the filter view. Hides the dialog box for specifying the resources to view in the table on this
administrative console page.

When you produce the dialog box, select the column to filter and enter the filter criteria.

Column to filter
Select the column to filter from the drop-down list. When you apply the filter, only those items in
the selected column that meet the filter criteria are displayed.

For example, select Names to enter criteria by which to filter application server names.
Filter criteria
Enter a string that must be found in the name of a collection entry to qualify the entry to display

Chapter 4. Using the administrative console 25

in the collection table. The string can contain percent sign (%), asterisk (*), or question mark (?)
symbols as wildcard characters. For example, enter *App* to find any application server whose
name contains the string App.

Prefix each of the following characters () ~* % { } \ + $ with a backslash (\) so that the
regular expression engine performing the search correctly matches the search criteria. For
example, to search for all Java DataBase Connectivity (JDBC) providers containing (XA) in the
provider name, specify the following string:
*\ (XA\)
Clear filter criteria. Clears your filter changes and restores the most recently saved values.
Abort. Stops a transaction that is not yet in the prepared state. All operations that the transaction
completed are undone.
Activate. Activates a group member.
Add. Adds the selected or typed item to a list, or produces a dialog for adding an item to a list.
Add Node. Displays the Add Node page, in which you specify the host name and SOAP connector port
for a node that you want added to a cell.
Apply. Saves your changes to a page without exiting the page.
Back. Displays the previous page or item in a sequence. The administrative console does not support
using the Back and Forward options of a browser, which can cause intermittent problems. Use Back or
Cancel on the administrative console panels instead.
Balance. Balances active members in high availability groups across servers that host the high
availability groups. The administrator must first determine which groups have active members and select
those groups before selecting Balance.
Browse. Opens a dialog that enables you to look for a file on your system.
Calculate groups. Calculates the number of high availability groups that are returned based on the
match set.
Cancel. Exits the current page or dialog, discarding unsaved changes. The administrative console does
not support using the Back and Forward options of a browser, which can cause intermittent problems.
Use Cancel on the administrative console panels instead.
Change. In the context of security, you can search the user registry for a user ID for an application to
run under. In the context of container properties, you can change the data source that the container is
using.
Clear. Clears your changes and restores the most recently saved values.
Clear selections. Clears any selected cells in the tables on this tabbed page.
Close. Exits the dialog.
Commit. Releases all locks that are held by a prepared transaction and forces the transaction to
commit.
Copy. Creates copies of the selected application servers.
Create. Saves your changes to all the tabbed pages in a dialog and exits the dialog.
Create tables. Develops scheduler database tables.
Deactivate. Deactivates a group member. The group member must be in the active state to be
deactivated. The deactivate option causes the group member to move to the idle state. The group policy
overrides which members are activated and deactivated for a group. The policy is enforced for every
member state change. If the deactivate option conflicts with the group policy, the policy resets who is
the active member of the group.
Delete. Removes the selected instance.
Details. Shows the details about a transaction.
Disable. Disables a group or group member. When you disable a group or group member, the active
group or group member is first deactivated. If the deactivate option is successful, the group or group
member moves to the disable state. A disabled group or group member cannot be activated.
Done. Saves your changes to all the tabbed pages in a dialog and exits the dialog.
Down. Moves through a list.
Drop tables. Removes scheduler database tables.
Dump. Activates a dump of a traced application server.
Edit. Lets you edit the selected item in a list, or produces a dialog box for editing the item.
Enable. Enables a group or a group member.

26 1BM WebSphere Application Server Network Deployment, Version 6: Using the administrative clients

Export. Accesses a page for exporting enterprise archive (EAR) files for an enterprise application.
Export DDL. Accesses a page for exporting data definition language (DDL) files for an enterprise
application.

Export Keys. Exports Lightweight Third-Party Authentication (LTPA) keys to other domains.

Export route table. Exports the route table information for a selected cluster to a binary file in the
configuration.

Filter. Produces a dialog box for specifying the resources to view in the tables on this tabbed page.
Finish. Forces a transaction to finish, regardless of whether its outcome has been reported to all
participating applications.

First. Displays the first record in a series of records.

Full resynchronize. Synchronizes the user’s configuration immediately. Click full resynchronize on the
Nodes page if automatic configuration synchronization is disabled, or if the synchronization interval is
set to a long time, and a configuration change is made to the cell repository that needs to be replicated
to that node. Clicking this option clears all synchronization optimization settings and performs
configuration synchronization again, so no mismatches occur between node and cell configuration after
this operation is performed. This operation can take awhile to perform.

Force delete. Forces the removal of a node that is not removed properly from the cell in the master
repository. The Remove node action is preferred over the Force delete action to delete a node from
the configuration. If you click Force delete, but the node still exists in the configuration, uninstall the
node or run the removeNode command by using the -force parameter on that node. Force delete
action is equivalent to running the cleanupNode command at the deployment manager.

Generate keys. Generates new LTPA keys. When security is turned on for the first time with LTPA as
the authentication mechanism, LTPA keys are automatically generated with the password entered in the
panel. To generated new keys, use this option after the server is up with security turned on. Clicking this
option generates the keys and propagates them to all active servers (cell, node, and application
servers). The new keys can be used to encrypt and decrypt the LTPA tokens. Click Save on the console
taskbar to save the new keys and the password in the repository.

Immediate stop. Stops the server, but bypasses the normal server quiesce process that supports
in-flight requests to complete before shutting down the entire server process. This shutdown mode is
faster than the normal server stop processing, but some application clients can receive exceptions.
Import keys. Imports new LTPA keys from other domains. To support single signon (SSO) in
WebSphere Application Server across multiple WebSphere domains (cells), share LTPA keys and a
password among the domains. After exporting the keys from one of the cells into a file, click this option
to import the keys into all the active servers (cell, node, and application servers). The new keys can be
used to encrypt and decrypt the LTPA token. Click Save on the console taskbar to save the new keys
and the password in the repository.

Install. Displays the Preparing for application installation page, which you use to deploy an application,
an enterprise bean, or a Web component onto an application server.

Install RAR. Opens a dialog that is used to install a Java 2 Platform, Enterprise Edition Connector
Architecture (JCA) connector and to create a resource adapter.

Manage transactions. Displays a list of active transactions running on a server. You can forcibly finish
any transaction that has stopped processing because a transactional resource is not available.

Modify. Opens a dialog that is used to change a specification.

Move. Moves the selected application servers to a different location in the administrative cell. When
prompted, specify the target location.

Move down. Moves downward through a list.

Move up. Moves upward through a list.

New. Displays a page that you use to define a new instance. For example, clicking New on the
Application Servers page displays a page on which you can configure a new application server.

Next. Displays the next page, frame, or item in a sequence.

OK. Saves your changes and exits the page.

Ping. Attempts to contact selected application servers.

Previous. Displays the previous page, frame, or item in a sequence.

Quit. Exits a dialog box and discards any unsaved changes.

Refresh. Refreshes the view of data for instances that are currently listed on this tabbed page.

Chapter 4. Using the administrative console 27

Regenerate encryption key. Regenerates a key for global data replication. If you are using the DES or
TRIPLE_DES encryption type, regenerate a key at regular intervals (for example, monthly) to enhance
security.

Remove. Deletes the selected item.

Remove file. Removes the specified file from the selected application or module.

Remove node. Deletes the selected node.

Reset. Clears your changes on the tab or page and restores the most recently saved values.

Restart. Stops the selected objects and starts them again.

Restart all servers on node. Stops all application servers on the node and starts them again.
Retrieve new. Retrieves a new record.

Rollout update. Sequentially updates an application that is installed on multiple cluster members
across a cluster. After you update application files or a configuration, click Rollout update to install the
configuration or the updated files for an application on all the cluster members of a cluster on which the
application is installed. The Rollout update option applies the following steps to each cluster member in
sequence:

1. Saves an updated configuration.

2. Stops the cluster member.

3. Updates the application on the node by synchronizing the configuration.

4. Restarts the cluster member.

This action enables you to update an application on multiple cluster members while providing
continuous availability of the application.

Save. Saves the changes in your local configuration to the master configuration.

Select. For resource analysis, lets you select a scope in which to monitor resources.

Set. Saves your changes to settings in a dialog.

Settings. Displays a dialog for editing servlet-related resource settings.

Settings in use. Displays a dialog showing the settings in use.

Show groups. Displays a collection of high availability groups, based on the match set.

Show servers. Displays a collection of servers that are contained in the high availability groups that
match the match set.

Start. In the context of application servers, starts selected application servers. In the context of data
collection, starts collecting data for the tables on this tabbed page.

Stop. In the context of server components such as application servers, stops the selected server
components. In the context of a data collection, stops collecting data for the tables on a tabbed page. In
the context of nodes, stops servers on the selected nodes. In the context of deployment managers,
stops the deployment manager server.

Synchronize. Synchronizes the user’s configuration immediately. Click Synchronize on the Nodes page
if automatic configuration synchronization is disabled, or if the synchronization interval is set to a long
time, and a configuration change is made to the cell repository that needs replicating to that node. A
node synchronization operation is performed using the normal synchronization optimization algorithm.
This operation is fast, but might not fix problems from manual file edits that occur on the node. It is
possible for the node and cell configuration to be out of synchronization after this operation is
performed. If problems persist, use Full Resynchronize.

Terminate. Deletes the Application Server process or another process that cannot be stopped by the
Stop or Immediate Stop commands. Some application clients can receive exceptions. Always attempt
an immediate stop before using this option.

Test connection After you define and save a data source, you can select this option to ensure that the
parameters in the data source definition are correct. On the Collection panel, you can select multiple
data sources and test them simultaneously.

Uninstall. Deletes a deployed application from the WebSphere Application Server configuration
repository. Also deletes application binary files from the file system.

Update. Replaces an application that is deployed on a server with an updated application. As part of
the updating, you might need to complete steps on the Preparing for application installation and Update
application pages.

Update resource list. Updates the data on a table. Discovers and adds new instances to the table.

28 1BM WebSphere Application Server Network Deployment, Version 6: Using the administrative clients

» Use cell CSI. Enables Object Management Group (OMG) Common Secure Interoperability (CSI)
protocol.

» Use cell SAS. Enables IBM Secure Authentication Service (SAS).

» Use cell Security. Enables cell security.

» Verify tables. Validates the mapping between the table names, scheduler resource, and data sources.

» View. Opens a dialog on a file.

Administrative console page features

This topic provides information about the basic elements of an administrative console page, such as the
various tabs.

Administrative console pages are arranged in a few basic patterns. Understanding their layout and
behavior will help you use them more easily.

Collection pages

Use collection pages to manage a collection of existing administrative objects. A collection page typically

contains one or more of the following elements:

Scope and Preferences
These are described in[‘Administrative console scope settings” on page 33 and[‘Administrative]
fconsole preference settings” on page 32

Table of existing objects
The table displays existing administrative objects of the type specified by the collection page. The
table columns summarize the values of the key settings for these objects. If no objects exist yet,
an empty table is displayed. Use the available buttons to create a new object.

Buttons for performing actions
The available buttons are described on the Administrative console buttons help panel. In most
cases, you need to select one or more of the objects in the table, then click a button. The action
will be applied to the selected objects.

Sort toggle buttons
Following column headings in the table are icons for sort ascending () and sort descending (v).
By default, items such as names are sorted in descending order (alphabetically). To enable
another sorting order, click on the icons for the column whose items you want sorted.

Detail pages

Use detail pages to configure specific administrative objects, such as an application server. A detail page

typically contains one or more of the following elements:

Configuration tabbed page
This tabbed page is for modifying the configuration of an administrative object. Each configuration
page has a set of general properties specific to the administrative object. Other sets of properties
display on the page, but vary depending on the administrative object.

Runtime tabbed page
This tabbed page displays the configuration that is currently in use for the administrative object. It
is read-only in most cases. Some detail pages do not have runtime tabs.

Local Topology tabbed page
This tabbed page displays the topology that is currently in use for the administrative object. View
the topology by expanding and collapsing the different levels of the topology. Some detail pages
do not have local topology tabs.

Buttons for performing actions
Buttons to perform specific actions display on the configuration tabbed page and the runtime
tabbed page. The displayed buttons vary based on the administrative object. The available buttons
are described on the Administrative console buttons help panel.

Wizard pages

Chapter 4. Using the administrative console 29

Use wizard pages to complete a configuration process comprised of several steps. Be aware that wizards
show or hide certain steps depending on the characteristics of the specific object you are configuring.

Administrative console navigation tree actions

Use the navigation tree of the administrative console to access pages for creating and managing servers,
applications, resources, and other components.

To view the navigation tree, go to the WebSphere Application Server administrative console and look at
the tree on the left side of the console. The tree provides navigation to configuration tasks and run-time
information. The main topics available on the navigation tree are detailed in the following section. To use
the tree, expand a main topic and select an item from the expanded list to display a page on which you
can perform the administrative task.

Servers
Configure application servers, clusters, generic servers, Web servers, and core groups.

Applications
Install applications onto servers and manage the installed applications.

Resources
Configure resources and to view information on resources that exist in the administrative cell.

Security
Access the Security Center, which you use to secure applications and servers.

Environment
Configure hosts, WebSphere Application Server variables, and other components.

System Administration
Configure console settings, and manage components and users of a Network Deployment product.

Troubleshooting
Check for configuration errors and problems, view log files, and enable and disable tracing on a distributed
platform.

Monitoring and Tuning
Monitor and tune your Application Server performance and analyze performance data.

Service Integration
limplement message-oriented and service-oriented applications.

UDDI

Publish and discover information about Web services.

Administrative console taskbar actions

Use the taskbar of the administrative console to log out of the administrative console and to access the
console help.

To view the taskbar, go to the WebSphere Application Server administrative console and look at the
horizontal bar near the top of the console. The taskbar provides the following actions.

Logout

Logs you out of the administrative console session and displays the Login page. If you made changes to
the administrative configuration since last saving the configuration to the master repository, the Save page
is displayed before returning to the Login page.

» Click Save to save the changes to the master repository.

30 BM™ WebSphere Application Server Network Deployment, Version 6: Using the administrative clients

» Click Discard to exit the session without saving changes.

+ Click Logout to exit the session without saving changes but with the opportunity to recover your
changes when you return to the console.

Help

Opens a new Web browser to online help for the WebSphere Application Server product.

Support

Displays support links that vary based on the products that extend the WebSphere Application Server. Use
the support page to access product information such as Frequently Asked Questions (FAQs), technical
notes (Technotes), hints and tips, and news. You can additionally install the Support Advisor Search
application so that when you click on the support link, a new Web browser that contains the Support
Advisor Search application opens. The Support Advisor Search application displays the support links on
the support page, but additionally provides federated search capabilities into IBM knowledge databases.

Specifying console preferences

Use this topic to customize how much data displays on an administrative console panel.

Throughout the administrative console are pages that have Preferences fields, Scope fields, and Filter
radio buttons. By selecting these fields and radio buttons you can customize how much data is shown.

For example, examine the Preferences field for the Enterprise Applications page:

1. Go to the navigation tree of the administrative console and click Applications > Enterprise
Applications.

2. Expand Preferences.

3. For the Maximum rows field, specify the maximum number of rows to display when the collection is
large. The default is 20. Rows that exceed the maximum number display on subsequent pages.

4. Select Retain filter criteria if you want to retain the last filter criteria that is entered in the filter
function. When you return to the Applications page, the page initially uses the retained filter criteria to
display the collection of applications in the table following the preferences. Otherwise, clear Retain
filter criteria and the last filter criteria is not retained.

5. Click Apply to apply your selections or click Reset to return to the default values. The default is not to
enable (not have a check mark beside) Retain filter criteria.

Other pages have similar fields and radio buttons that you can use to specify console preferences. While
Preferences fields, Scope fields, and Filter buttons control how much data is shown in the console, the
Preferences option controls general behavior of the console. Click System administration > Console
settings > Preferences to view the |Preferences page|

Preferences settings

Use the Preferences page to specify whether you want the administrative console workspace to refresh
automatically after changes, the default scope to be the administrative console node, confirmation dialogs
to display, and the workspace banner and descriptions to display.

To view this administrative console page, click System administration > Console settings >
Preferences.

Turn on workSpace auto-refresh
Specifies whether you want the administrative console workspace to redraw automatically after the
administrative configuration changes.

Chapter 4. Using the administrative console 31

The default is for the workspace to redraw automatically. If you direct the console to create a new instance
of, for example, an application server, the Application Servers page refreshes automatically and shows the
new server name in the collection of servers.

Specifying that the workspace not redraw automatically means that you must access a page again by
clicking the console navigation tree or links on collection pages to see the changes that are made to the
administrative configuration.

Default true (selected)

No confirmation on workspace discard
Specifies whether the confirmation dialog is displayed after a request is receive to discard the workspace.
The default is to display confirmation dialogs.

Default false (cleared)

Use default scope (administrative console node)
Specifies whether the default scope is the administrative console node. The default scope not is not the
console node.

Default false (cleared)

Show banner
Specifies whether the WebSphere Application Server banner along the top of the administrative console is
displayed. The default is for the banner to display.

Default true (selected)

Show Descriptions
Specifies whether information on the right of the console is shown. The default is to show the information.

Data type Boolean
Default true

Administrative console preference settings
Use the preference settings to specify how you want information displayed on an administrative console
page.

Maximum rows
Indicates the maximum number of rows to display per page when the collection is large.

Filter history
Indicates whether to use the same filter criteria to display this page the next time you visit it.

Select the Retain filter criteria check box to retain the last filter criteria entered. When you return to the
page, retained filter criteria control the application collection that is displayed n the table.

Show confirmation for stop command
Select the check box if you want a confirmation that the stop command is successful.

Show confirmation for immediate stop command
Select the check box if you want a confirmation that the immediate stop command is successful.

32 BM™ WebSphere Application Server Network Deployment, Version 6: Using the administrative clients

Show confirmation for terminate command
Select the check box if you want a confirmation that the terminate command is successful.

Administrative console scope settings

Use this page to specify the level at which a resource is visible on the administrative console panel. A
resource can be visible in the administrative console collection table at the cell, node, cluster, or server
scope. By changing the value for Scope you can see other variables that apply to a resource and might
change the contents of the collection table.

Click Browse next to a field to see choices for limiting the scope of the field. If a field is read-only, you
cannot change the scope. For example, if only one server exists, you cannot switch the scope to a
different server.

You always create resources at the current scope that is selected in the administrative console panel,
even though the resources might be visible at more than one scope.

Resources such as JDBC providers, namespace bindings, or shared libraries can be defined at multiple
scopes. Resources that are defined at more specific scopes override duplicate resources that are defined
at more general scopes.

» The application scope has precedence over all the scopes.

* The server scope has precedence over the node, cell, and cluster scopes.
* The cluster scope has precedence over the node and cell scopes.

* The node scope has precedence over the cell scope.

Despite the scope of a defined resource, the resource properties only apply at an individual server level.
For example, if you define the scope of a data source at the cell level, all the users in that cell can look up
and use that data source, which is unique within that cell. However, resource property settings are local to
each server in the cell. For example, if you define the maximum connections as 10, then each server in
that cell can have 10 connections.

The cell scope is the most general scope and does not override any other scope. The recommendation is
that you generally specify a more specific scope than the cell scope. When you define a resource at a
more specific scope, you provide greater isolation for the resource. When you define a resource at a more
general scope, you provide less isolation. Greater exposure to cross-application conflicts occur for a
resource that you define at a more general scope.
Cell Limits the visibility to all servers on the named cell. The resource factories within the cell scope
are:
+ Defined for all servers within this cell
« Overridden by any resource factories that are defined within application, server, cluster and
node scopes that are in this cell and have the same Java Naming and Directory Interface
(JNDI) name

The resource providers that are required by the resource factories must be installed on every node
within the cell before applications can bind or use them.

Cluster
Limits the visibility to all the servers on the named cluster. All cluster members must at least be at
Version 6 to use cluster scope for the cluster. The resource factories that are defined within the
cluster scope:
» Are available for all the members of this cluster to use
» Qverride any resource factories that have the same JNDI name that is defined within the cell

scope

The resource factories that are defined within the cell scope are available for this cluster to use, in
addition to the resource factories, that are defined within this cluster scope.

Chapter 4. Using the administrative console 33

Node Limits the visibility to all the servers on the named node. The node scope is the default scope for
most resource types. The resource factories that are defined within the node scope:
» Are available for servers on this node to use
» Override any resource factories that have the same JNDI name defined within the cell scope

The resource factories that are defined within the cell scope are available for servers on this node
to use, in addition to the resource factories that are defined within this node scope.

Server
Limits the visibility to the named server. The server scope is the most specific scope for defining
resources. The resource factories that are defined within the server scope:
* Are available for applications that are deployed on this server
» OQOverride any resource factories that have the same JNDI name defined within the node and cell

scopes

The resource factories that are defined within the node and cell scopes are available for this
server to use, in addition to the resource factories that are defined within this server scope.
Application
Limits the visibility to the named application. Application scope resources cannot be configured
from the console. Use the WebSphere Application Server Toolkit (AST) or the wsadmin tool to
view or modify the application scope resource configuration. The resource factories that are
defined within the application scope are available for this application to use only. The application
scope overrides all other scopes.

You can configure resources and WebSphere Application Server variables under all five scopes. You can
configure namespace bindings and shared libraries only under cell, node, and server scopes.

Accessing help and product information from the administrative
console

This topic describes how to use administrative console help and how to link to product documentation from
the administrative console.

You must have a connection to the Internet to access information about WebSphere Application Server
from the Welcome page of the administrative console.

All of the helps panels that you can access from the administrative console, you can access from the
WebSphere Application Server Information Center. This article describes how to access the help panels,
the information center, and other product documentation from the administrative console.

» Click Welcome on the administrative console navigation tree. In the workspace to the right of the
navigation tree, select the appropriate links to access the WebSphere Application Server Information
Center, the WebSphere Application Server product information, and the WebSphere Application Server
technical information on developerWorks.

» Access help in the following ways:

— Click Help on the administrative console task bar to open a new Web browser for online help.

- Click on the Help index tab and select from the list of help panels to view administrative console
help information.

- Click on the Search tab, provide search terms, and then click Search. Under Results, select a
help panel that contains the search information.

— Click the ? icon on the task bar for the particular administrative console panel to open a new Web
browser and view the help panel for the corresponding administrative console panel. The help panel
is displayed in the Help index for the administrative console.

— In the help portal that is on the right side of the administrative console panel, do one or all of the
following tasks:

34 B™ WebSphere Application Server Network Deployment, Version 6: Using the administrative clients

- Click a field label or a list marker in the administrative console panel for the help to display under
Field help. Alternatively, place the cursor over the field label or the list marker for the
corresponding help to display at the cursor.

- Click the link under Page help to access the help panel for the administrative console panel. The
help panel is the same help panel that displays when you click the ? icon.
- Expand the task help to view related tasks.

You can continue to access help information from the administrative console. Alternatively, you can access
the help information from the WebSphere Application Server Information Center.

You can continue to access the WebSphere Application Server Information Center, the WebSphere
Application Server product information, and the WebSphere Application Server technical information on
develoi erWorks from the administrative console. Alternatively you can access the information from the

IBM Web site.

Administrative console: Resources for learning

Use the following links to find relevant supplemental information about the IBM WebSphere Application
Server administrative console. The information resides on IBM and non-IBM Internet sites, whose
sponsors control the technical accuracy of the information.

These links are provided for convenience. Often, the information is not specific to the IBM WebSphere
Application Server product, but is useful all or in part for understanding the product. When possible, links
are provided to technical papers and Redbooks that supplement the broad coverage of the release
documentation with in-depth examinations of particular product areas.

View links to additional information:

Administration
+ [IBM WebSphere Application Server Redbooks]

This site contains a listing of all WebSphere Application Server Redbooks.
+ [IBM developerWorks WebSphere|

This site is the home of technical information for developers working with WebSphere products. You can
download WebSphere software, take a fast path to developerWorks zones, such as VisualAge Java or
WebSphere Application Server, learn about WebSphere products through a newcomers page, tutorials,
technology previews, training, and Redbooks, get answers to questions about WebSphere products, and
join the WebSphere community, where you can keep up with the latest developments and technical
papers.

« [WebSphere Application Server Support page]

Take advantage of the Web-based Support and Service resources from IBM to quickly find answers to
your technical questions. You can easily access this extensive Web-based support through the IBM
Software Support portal at URL http://www-3.1ibm.com/software/support/ and search by product
category, or by product name. For example, if you are experiencing problems specific to WebSphere
Application Server, click WebSphere Application Server in the product list. The WebSphere Application
Server Support page appears.

Chapter 4. Using the administrative console 35

http://www.ibm.com/
http://publib-b.boulder.ibm.com/Redbooks.nsf/Portals/WebSphere
http://www7b.software.ibm.com/wsdd/
http://www-3.ibm.com/software/webservers/appserv/support.html

36 BM™ WebSphere Application Server Network Deployment, Version 6: Using the administrative clients

Chapter 5. Using scripting (wsadmin)

The WebSphere administrative (wsadmin) scripting program is a powerful, non-graphical command
interpreter environment enabling you to run administrative operations in a scripting language. The wsadmin
tool is intended for production environments and unattended operations. You can use the wsadmin tool to
perform the same tasks that you can perform using the administrative console.

The following list highlights the topics and tasks available with scripting:

« [Getting started with scripting| Provides an introduction to WebSphere Application Server scripting and
information about using the wsadmin tool. Topics include information about the scripting languages and
the scripting objects, and instructions for starting the wsadmin tool.

- [Deploying applications| Provides instructions for deploying and uninstalling applications. For example,
stand-alone Java archive files and Web archive files, the administrative console, remote Enterprise
Archive (EAR) files, file transfer applications, and so on.

[Managing deployed applications| Includes tasks that you perform after the application is deployed. For
example, starting and stopping applications, checking status, modifying listener address ports, querying
application state, configuring a shared library, and so on.

[Configuring servers Provides instructions for configuring servers, such as creating a server, modifying
and restarting the server, configuring the Java virtual machine, disabling a component, disabling a
service, and so on.

. |Configuring connections to Web servers| Includes topics such as regenerating the plug-in, creating new
virtual host templates, modifying virtual hosts, and so on.

. |Managing servers| Includes tasks that you use to manage servers. For example, stopping nodes,
starting and stopping servers, querying a server state, starting a listener port, and so on.

[Clustering servers| Includes topics about clusters, such as creating clusters, creating cluster members,
querying a cluster state, removing clusters, and so on.

+ [Configuring security| Includes security tasks, for example, enabling and disabling global security,
enabling and disabling Java 2 security, and so on.

[Configuring data access|Includes topics such as configuring a Java DataBase Connectivity (JDBC)
provider, defining a data source, configuring connection pools, and so on.

+ [Configuring messaging| Includes topics about messaging, such as Java Message Service (JMS)
connection, JMS provider, WebSphere queue connection factory, MQ topics, and so on.

[Configuring mail, URLs, and resource environment entries| Includes topics such as mail providers, mail
sessions, protocols, resource environment providers, referenceables, URL providers, URLs, and so on.
[Troubleshooting| Provides information about how to troubleshoot using scripting. For example, tracing,
thread dumps, profiles, and so on.

» [Scripting reference materiall Includes all of the reference material related to scripting. Topics include the

syntax for the wsadmin tool and for the administrative command framework, explanations and examples
for all of the scripting object commands, the scripting properties, and so on.

Getting started with scripting

Scripting is a non-graphical alternative that you can use to configure and manage WebSphere Application
Server. The WebSphere Application Server wsadmin tool provides the ability to run scripts. The wsadmin
tool supports a full range of product administrative activities.

© Copyright IBM Corp. 2004 37

The following figure illustrates the major components involved in a wsadmin scripting solution:

Java virtual machine

External tools 4__».‘-—}@
and programs Server

Figure 1: A WebSphere Application Server scripting solution

Resources

The wsadmin tool supports two scripting languages: Jacl and Jython. Five objects are available when you
use scripts:

* AdminControl: Use to run operational commands.

» AdminConfig: Use to run configurational commands to create or modify WebSphere Application Server
configurational elements.

* AdminApp: Use to administer applications.
* AdminTask: Use to run administrative commands.
* Help: Use to obtain general help.

The scripts use these objects to communicate with MBeans that run in WebSphere Application Server
processes. MBeans are Java objects that represent Java Management Extensions (JMX) resources. JMX
is an optional package addition to Java 2 Platform Standard Edition (J2SE). JMX is a technology that
provides a simple and standard way to manage Java objects.

To perform a task using scripting, you must first perform the following steps:

1. Choose a scripting language. The wsadmin tool only supports |Jacl| and [Jython| scripting languages.
Jacl is the language specified by default. If you want to use the Jython scripting language, use the
-lang option or specify it in the wsadmin.properties file.

2. [Start the wsadmin scripting clienf interactively, as an individual command, in a script, or in a profile.

Before you perform any task using scripting, make sure that you are familiar with the following concepts:
- [Java Management Extensions (JMX)|

[WebSphere Application Server configuration model

.

[Jac! syntax or [Jython syntax

« [Scripting objects|

Optionally, you can customize your scripting environment. For more information, see [Scripting environment|
Hpropenie .

After you become familiar with the scripting concepts, choose a scripting language, and start the scripting
client, you are ready to perform tasks using scripting.

Java Management Extensions (JMX)

Java Management Extensions (JMX) is a framework that provides a standard way of exposing Java
resources, for example, application servers, to a system management infrastructure. Using the JMX
framework, a provider can implement functions, such as listing the configuration settings, and editing the
settings. This framework also includes a notification layer that management applications can use to
monitor events such as the startup of an application server.

JMX key features

38 iBM™ WebSphere Application Server Network Deployment, Version 6: Using the administrative clients

The key features of the WebSphere Application Server Version 6 implementation of JMX include:
» All processes that run the JMX agent.
* All run-time administration that is performed through JMX operations.

» Connectors that are used to connect a JMX agent to a remote JMX-enabled management application.
The following connectors are supported:

— SOAP JMX Connector
— Remote Method Invocation over the Internet Inter-ORB Protocol (RMI-1IOP) JMX Connector

» Protocol adapters that provide a management view of the JMX agent through a given protocol.
Management applications that connect to a protocol adapter are usually specific to a given protocol.

* The ability to query and update the configuration settings of a run-time object.

» The ability to load, initialize, change, and monitor application components and resources during
run-time.

JMX architecture

The JMX architecture is structured into three layers:

* Instrumentation layer - Dictates how resources can be wrapped within special Java beans, called
managed beans (MBeans).

* Agent layer - Consists of the MBean server and agents, which provide a management infrastructure.
The services that are implemented include:

— Monitoring
— Event notification
— Timers

* Management layer - Defines how external management applications can interact with the underlying
layers in terms of protocols, APIs, and so on. This layer uses an implementation of the distributed
services specification (JSR-077), which is not yet part of the Java 2 platform, Enterprise Edition (J2EE)
specification.

The layered architecture of JMX is summarized in the following figure:

| Management Application |

L D
| Connector | | Adapter |
Y \ Agent Layer

MBean Server

Y Y
Agent Agent Agent Services
services services | (a5 MBeans)
v Java virtual machine ‘} Instrumentation Layer
Resource 1 Resource 2
MBean MBean
Manages Manages

Reqource 1 Resource 2

Managed Resources

Figure 1: JMX architecture

Chapter 5. Using scripting (wsadmin) 39

JMX distributed administration

The following figure shows how the JMX architecture fits into the overall distributed administration topology
of a Network Deployment environment:

Clients, Multi-cell,

management, & other EMS
(Tivoli, BMC)
Deployment Manager

MBean
Server

Node Agent
Configuration
Repository Service
To other
Nodes Master

i

files
To Other \
Application Servers

Application Server / \
- Configuration

Distribution Service

Configuration /

files

Figure 2: WebSphere Application Server distributed administration of JMX

The key points of this distributed administration architecture include:
* Internal MBeans that are local to the Java virtual machine (JVM) register with the local MBean server.

» External MBeans have a local proxy to their MBean server. The proxy registers with the local MBean
server. Using the MBean proxy the local MBean server can pass the message to an external MBean
server that is located on:

— A node agent that has an MBean proxy for all the servers within its node. The MBean proxies for
other nodes are not used.

— The deployment manager has MBean proxies for all the node agents in the cell.
JMX Mbeans

WebSphere Application Server provides a number of MBeans, each of which have different functions and
operations available. For example, an application server MBean can expose operations such as start and
stop. An application MBean can expose operations such as install and uninstall. Some JMX usage
scenarios that you can encounter include:

» External programs that are written to control the Network Deployment run time and its WebSphere
resources by programmatically accessing the JMX API.

» Third-party applications that include custom JMX MBeans as part of the deployed code, supporting the
JMX API management of application components and resources.

The following example illustrates how to obtain an MBean:

40 BM™ WebSphere Application Server Network Deployment, Version 6: Using the administrative clients

Using Jacl:
set am [$AdminControl queryNames type=ApplicationManager,process=serverl,=]

Using Jacl:
am = AdminControl.queryNames('type=ApplicationManager,process=serverl,x"')

Each WebSphere Application Server runtime MBean may have attributes, operations, and notifications.
The complete documentation for each MBean supplied with WebSphere Application Server is available in
an html table that is installed in each copy of the WebSphere Application Server product. Under the main
install directory for the product, there is a directory named web. And under that directory is another
directory called mbeanDocs. In the mbeanDocs directory are several html files, one for each supplied with
WebSphere Application Server. There is also an index.html file that ties all the individual MBean files
together in a top-level navigation tree. Each MBean provides summary of its attributes, operations, and
notifications.

JMX benefits

The use of JMX for management functions in WebSphere Application Server provides the following
benefits:

* Enables the management of Java applications without significant investment.
* Relies on a core-managed object server that acts as a management agent.

» Java applications can embed a managed object server and make some of its functionality available as
one or several MBeans that are registered with the object server.

* Provides a scalable management architecture.
« Every JMX agent service is an independent module that can be plugged into the management agent.

* The API is extensible, allowing new WebSphere Application Server and custom application features to
be easily added and exposed through this management interface.

* Integrates existing management solutions.

« JMX smart agents are capable of being managed through HTML browsers or by various management
protocols such as Web services, Java Message Service (JMS), and Simple Network Management
Protocol (SNMP).

» Each process is self sufficient when it comes to the management of its resources. No central point of
control exists. In principle, a JMX-enabled management client can be connected to any managed
process and interact with the MBeans that are hosted by that process.

* JMX provides a single, flat, domain-wide approach to system management. Separate processes interact
through MBean proxies that support a single management client to seamlessly navigate through a
network of managed processes.

» Defines the interfaces that are necessary for management only.
* Provides a standard API for exposing application and administrative resources to management tools.

WebSphere Application Server configuration model

Configuration data is stored in several XML files. The server runtime reads these files when started and
responds to the component settings stored there. The configuration data includes settings for the runtime
itself, such as JVM options, thread pool sizes, container setting, and port numbers the server will use.
Other configuration files define J2EE resources to which the server will connect to obtain data needed by
the application logic. Security settings are stored in a separate document from the server and resource
configuration. Applcation-specific configuration, such as deployment target lists, session configuration, and
cache settings, are stored in files under the root directory of each application.

Chapter 5. Using scripting (wsadmin) 41

The configuration model for WebSphere Application Server is large and complex. When viewing the XML
data in the various configuration files, you can discern relationship between the configuration objects.
Understanding these relationships between configuration objects is essential when writing wsadmin scripts
that perform configuration functions.

Full documentation of all of the WebSphere configuration objects is available in an html table that is
installed in each copy of the WebSphere product. Under the main install directory for the product, there is
a directory named web. And under that directory is another directory called configDocs. In the configDocs
directory are several subdirectories, one for each configuration package in the model. There is also an
index.html file that ties all the individual configuration packages together in a top-level navigation tree.
Each configuration package lists all the supported configuration classes. Each configuration class lists all
the supported properties. Properties with names that end with the special @ character imply that property
is actually a reference to some other configuration object within the configuration data. Properties with
names that end with an * imply that property is actaully a list of other configuration objects.

Jacl
Jacl is an alternate implementation of TCL, and is written entirely in Java code.

The wsadmin tool uses Jacl V1.3.1. The following information is a basic summary of the Jacl syntax:
Basic syntax:

The basic syntax for a Jacl command is the following:
Command argl arg2 arg3 ...

The command is either the name of a built-in command or a Jacl procedure. For example:

puts stdout {Hello, world!}
=> Hello, world!

In this example, the command is puts which takes two arguments, an 1/O stream identifier and a string.
The puts command writes the string to the I/O stream along with a trailing new line character. The
arguments are interpreted by the command. In the example, stdout is used to identify the standard output
stream. The use of stdout as a name is a convention employed by the puts command and the other I/O
commands. stderr identifies the standard error output, and stdin identifies the standard input.

Variables

The set command assigns a value to a variable. This command takes two arguments: the name of the
variable and the value. Variable names can be any length and are case sensitive. You do not have to
declare Jacl variables before you use them. The interpreter will create the variable when it is first assigned
a value. For example:

set a b

=> 5

set b $a
=>5

The second example assigns the value of variable a to variable b. The use of dollar sign ($) is indicates
variable substitution. You can delete a variable with the unset command, for example:

unset varNamel varName2 ...

You can pass any number of variables to the unset command. The unset command will give error if a
variable is not already defined. You can delete an entire array or just a single array element with the unset
command. Using the unset command on an array is a easy way to clear out a big data structure. The
existence of a variable can be tested with the info exists command. You may have to test for the
existence of the variable because the incr parameter requires that a variable exist first, for example:

42 BM WebSphere Application Server Network Deployment, Version 6: Using the administrative clients

if ![info exists foobar] {set foobar 0} else {incr foobar}
Command substitution:

The second form of substitution is command substitution. A nested command is delimited by square
brackets, []. The Jacl interpreter evaluates everything between the brackets and evaluates it as a
command. For example:

set len [string Tength foobar]
= f

In this example, the nested command is the following: string Tength foobar. The string command
performs various operations on strings. In this case, the command asks for the length of the string foobar.
If there are several cases of command substitution within a single command, the interpreter processes
them from left bracket to right bracket. For example:

set number "1 2 3 4"
=> 1234

set one [lindex $number 0]
:>1

set end [lindex $number end]

= 4

set another {123 456 789}

=> 123 456 789

set stringlen [string length [lindex $another 1]]
=> 3

set TistLen [1length [lindex $another 1]
= 1

Math expressions:

The Jacl interpreter does not evaluate math expressions. Use the expr command to evaluate math
expressions. The interpreter treats the expr command similar to other commands and leaves the
expression parsing up the expr command implementation. The implementation of the expr command
takes all arguments, concatenates them into a single string, and parses the string as a math expression.
After the expr command computes the answer, it his formatted into a string and returned. For example:

expr 7.2 / 3
=> 2.4

Backslash substitution:

The final type of substitution done by the Jacl interpreter is backslash substitution. Use this to quote
characters that have special meaning to the interpreter. For example, you can specify a literal dollar sign,
brace, or bracket by quoting it with a backslash. If you are using lots of backslashes, instead you can
group things with curly braces to turn off all interpretation of special characters. There are cases where
backslashes are required. For example:

set dollar "This is a string \$contain dollar char"
=> This is a string $contain dollar char

set x $dollar
=> This is a string $contain dollar char

set group {$ {} [1 { [} 1}
=${30{[1}]

You can also use backslashes to continue long commands on multiple lines. A new line without the

backslash terminates a command. A backslashes that are the last character on a line convert into a space.
For example:

Chapter 5. Using scripting (wsadmin) 43

set totallLength [expr [string Tlength "first string"] + \
[string length "second string"]]
=> 25

Grouping with braces and double quotes:

Use double quotes and curly braces to group words together. Quotes allow substitutions to occur in the
group and curly braces prevent substitution. This rule applies to command, variable, and backslash
substitutions. For example:

set s Hello
=> Hello

puts stdout "The length of $s is [string length $s]."
=> The Tength of Hello is 5.

puts stdout {The length of $s is [string Tength §s].}
=> The length of $s is [string Tength $s].

In the second example, the Jacl interpreter performs variable and command substitution on the second
argument from the puts command. In the third command, substitutions are prevented so the string is
printed as it is.

On distributed systems, special care must also be taken with path descriptions because the Jacl language
uses the backslash character (\) as an escape character. To fix this, either replace each backslash with a
forward slash, or use double backslashes in distributed path statements. For example: C:/ or C:\\

Procedures and scope:

Jacl uses the proc command to define procedures. The basic syntax to define a procedure is the
following:

proc name arglist body

The first argument is the name of the procedure being defined. The name is case sensitive, and in fact it
can contain any characters. Procedure names and variable names do not conflict with each other. The
second argument is a list of parameters to the procedures. The third argument is a command, or more
typically a group of commands that form the procedure body. Once defined, a Jacl procedure is used just
like any of the built-in commands. For example:

proc divide {x y} {
set result [expr x/y]
puts $result

1

Inside the script, this is how to call devide procedure:
divide 20 5

And it will give the result like below:
4

It is not really necessary to use the variable c¢ in this example. The procedure body could also written as:
return [expr sqrt($a * $a + $b = $b)]

The return command is optional in this example because the Jacl interpreter returns the value of the last
command in the body as the value of the procedure. So, the procedure body could be reduced to:

expr sqrt(fa =+ $a + $b = $b)

The result of the procedure is the result returned by the last command in the body. The return command
can be used to return a specific value.

44 B™ WebSphere Application Server Network Deployment, Version 6: Using the administrative clients

There is a single, global scope for procedure names. You can define a procedure inside another
procedure, but it is visible everywhere. There is a different name space for variables and procedures
therefore you may have a procedure and a variable with the same name without a conflict. Each
procedure has a local scope for variables. Variables introduced in the procedures only exist for the
duration of the procedure call. After the procedure returns, those variables are undefined. If the same
variable name exists in an outer scope, it is unaffected by the use of that variable name inside a
procedure. Variables defined outside the procedure are not visible to a procedure, unless the global scope
commands are used.

» global command - Global scope is the top level scope. This scope is outside of any procedure. You
must make variables defined at the global scope accessible to the commands inside procedure by using
the global command. The syntax for the global command is the following:

global varNamel varName2 ...
Comments
Use the pound character (#) to make comments.
Command line arguments
The Jacl shells pass the command line arguments to the script as the value of the argv variable. The
number of command line arguments is given by argc variable. The name of the program, or script, is not

part of argv nor is it counted by argc. Instead, it is put into the argv0 variable. The argv variable is a list.
Use the lindex command to extract items from the argument list, for example:

set first [lindex $argv 0]
set second [lindex $argv 1]

Strings and pattern matching

String are the basic data item in the Jacl language. There are multiple commands that you can use to
manipulate strings. The general syntax of the string command is the following:

string operation stringvalue otherargs

The operation argument determines the action of the string. The second argument is a string value. There
may be additional arguments depending on the operation.

The following table includes a summary of the string command:

Command Description

string compare str1 str2 Compares strings lexicographically. Returns 0 if equal, -1
if str1 sorts before str2, elsel.

string first str1 str2 Returns the index in str2 of the first occurrences of str1,
or -1 if str1 is not found.

string index string index Returns the character at the specified index.

string last str1 str2 Returns the index in str2 of the last occurence of str1, or
-1 if str1 is not found.

string length string Returns the number of character in string.

string match pattern str Returns 1 if str matches the pattern, else 0.

string range str i j Returns the range of characters in str from i to j

string tolower string Returns string in lower case.

string toupper string Returns string in upper case.

string trim string ?chars? Trims the characters in chars from both ends of string.

chars defaults to white space.

Chapter 5. Using scripting (wsadmin) 45

string trimleft string ?chars? Trims the characters in chars from the beginning of string.
chars defaults to white space.

string trimright string ?chars? Trims the characters in chars from the end of string.
chars defaults to white space.

string wordend str ix Returns the index in str of the character after the word
containing the character at index ix.

string wordstart str ix Returns the index in str of the first character in the word
containing the character at index ix.

The append command

The first argument of the append command is a variable name. It concatenates the remaining arguments
onto the current value of the named variable. For example:

set foo z
= 7

append foo a b c
=> zabc

The regexp command

The regexp command provides direct access to the regular expression matcher. The syntax is the
following:

regexp ?flags? pattern string ?match subl sub2 ...?

The return value is 1 if some part of the string matches the pattern. Otherwise, the return value will be 0.
The pattern does not have to match the whole string. If you need more control than this, you can anchor
the pattern to the beginning of the string by starting the pattern with ~, or to the end of the string by ending
the pattern with dollar sign, $. You can force the pattern to match the whole string by using both
characters. For example:

set textl "This is the first string"
=> This is the first string

regexp "first string" $textl
= 1

regexp "second string" $textl
=> 0

Jacl data structures

The basic data structure in the Jacl language is a string. There are two higher level data structures: lists
and arrays. Lists are implemented as strings and the structure is defined by the syntax of the string. The
syntax rules are the same as for commands. Commands are a particular instance of lists. Arrays are
variables that have an index. The index is a string value so you can think of arrays as maps from one
string (the index) to another string (the value of the array element).

Jacl lists
The lists of the Jacl language are strings with a special interpretation. In the Jacl language, a list has the

same structure as a command. A list is a string with list elements separated by white space. You can use
braces or quotes to group together words with white space into a single list element.

46 1BM WebSphere Application Server Network Deployment, Version 6: Using the administrative clients

The following table includes commands that are related to lists:

Command

Description

list arg1 arg2

Creates a list out of all its arguments.

lindex list i Returns the i'th element from list.
llength list Returns the number of elements in list.
Irange list i j Returns the i'th through j’'th elements from list.

lappend listVar arg arg ...

Appends elements to the value of listVar

linsert list index arg arg ...

Inserts elements into list before the element at position
index. Returns a new list.

Ireplace list i j arg arg ...

Replaces elements i through j of list with the args. Return
a new list.

Isearch mode list value

Returns the index of the element in list that matches the
value according to the mode, which is -exact, -glob, or
-regexp, -glob is the default. Return -1 if not found.

Isort switches list

Sorts elements of the list according to the switches:
-ascii, -integer, -real, -increasing, -decreasing, -command
command. Return a new list.

concat arg arg arg ...

Joins multiple lists together into one list.

join list joinString

Merges the elements of a list together by separating them
with joinString.

split string splitChars

Splits a string up into list elements, using (and discarding)
the characters in splitChars as boundaries between list
elements.

Arrays

Arrays are the other primary data structure in the Jacl language. An array is a variable with a string-valued
index, so you can think of an array as a mapping from strings to strings. Internally an array is implemented
with a hash table. The cost of accessing each element is about the same. The index of an array is
delimited by parentheses. The index can have any string value, and it can be the result of variable or
command substitution. Array elements are defined with the set command, for example:

set arr(index) value

Substitute the dollar sign ($) to obtain the value of an array element, for example:

set foo $arr(index)

For example:
set fruit(best) kiwi
=> kiwi

set fruit(worst) peach
=> peach

set fruit(ok) banana
=> banana

array get fruit
=> ok banana worst peach best kiwi

array exists fruit
=> 1

Chapter 5. Using scripting (wsadmin) 47

The following table includes array commands:

Command

Description

array exists arr

Returns 1 if arr is an array variable.

array get arr

Returns a list that alternates between an index and the
corresponding array value.

array names arr ?pattern?

Return the list of all indices defined for arr, or those that
match the string match pattern.

array set arr list

Initializes the array arr from list, which should have the
same form as the list returned by get.

array size arr

Returns the number of indices defined for arr.

array startsearch arr

Returns a search token for a search through arr.

array nextelement arr id

Returns the value of the next element in array in the
search identified by the token id. Returns an empty string
if no more elements remain in the search.

array anymore arr id

Returns 1 if more elements remain in the search.

array donesearch arr id

Ends the search identified by id.

Control flow commands

The following looping commands exist:
* while

» foreach

e for

The following are conditional commands:
o if
* switch

The following is an error handling command:
e catch

The following commands fine-tune control flow:
* break

e continue

* return

* error

If Then Else

The if command is the basic conditional command. If an expression is true, then execute one command
body, otherwise execute another command body. The second command body (the else clause) is optional.

The syntax of the command is the following:
if boolean then bodyl else body2

The then and else keywords are optional. For example:

if {$x = 0}
puts stderr "Divide by zero!"
} else {

set sTope [expr $y/$x]

48 BM WebSphere Application Server Network Deployment, Version 6: Using the administrative clients

Switch

Use the switch command to branch to one of many commands depending on the value of an expression.
You can choose based on pattern matching as well as simple comparisons. Any number of pattern-body
pairs can be specified. If multiple patterns match, only the body of the first matching pattern is evaluated.
The general form of the command is the following:

switch flags value patl bodyl pat2 body?2

You can also group all the pattern-body pairs into one argument:
switch flags value {patl bodyl pat2 body2 ...}

There are four possible flags that determines how value is matched.

» -exact Matches the value exactly to one of the patterns.

* -glob Uses glob-style pattern matching.

* -regexp Uses regular expression pattern matching.

* -- No flag (or end of flags). Useful when value can begin with a dash (-).

For example:

switch -exact -- $value {

foo {doFoo; incr count(foo)}
bar {doBar; return $count(foo)}
default {incr count(other)}

}

If the pattern that is associated with the last body is default, then the command body is started if no other
patterns match. The default keyword only works on the last pattern-body pair. If you use the default
pattern on an earlier body, it will be treated as a pattern to match the literal string default.

Foreach

The foreach command loops over a command body and assigns a loop variable to each of the values in a
list. The syntax is the following:

foreach loopVar valuelist commandBody

The first argument is the name of a variable. The command body runs one time for each element in the
loop with the loop variable having successive values in the list. For example:

set numbers {1 3 5 7 11 13}

foreach num $numbers {

puts $num

}

The result from the previous example will be the following output, assuming that only one server exists in
the environment. If there is more than one server, the information for all servers returns:

1
3
5
7
11
13

While

The while command takes two arguments; a test and a command body, for example:
while booleanExpr body

Chapter 5. Using scripting (wsadmin) 49

The while command repeatedly tests the boolean expression and runs the body if the expression is true
(non-zero). For example:

set i 0

while {$§i < 5} {

puts "i is §i"

incr i}

The result from the previous example will be like the following output, assuming that there is only one
server. If there is more then one servers, it will print all of the servers:

is 0

is 1
is 2
is 3
is 4

—_ e e e

For

The for command is similar to the C language for statement. It takes four arguments, for example:
for initial test final body

The first argument is a command to initialize the loop. The second argument is a boolean expression
which determines if the loop body will run. The third argument is a command that runs after the loop body:
For example:

set numbers {1 3 5 7 11 13}

for {set i 0} {$i < [11ength $numbers]} {incr i 1} {

puts "i is §i"

}

The result from previous example will be like the following output, assuming that there is only one server
in the environment. If there is more then one server, it will print all of the servers:

is 1

is 3

is 5

is 7

is 11

is 13

D N O PR

Break and continue

You can control loop execution with the break and continue commands. The break command causes an
immediate exit from a loop. The continue command causes the loop to continue with the next iteration.

Catch

An error will occur if you call a command with the wrong number of arguments or if the command detects
some error condition particular to its implementation. An uncaught error prevents a script from running.
Use the catch command trap such errors. The catch command takes two arguments, for example:

catch command ?resultVar?

The first argument is a command body. The second argument is the name of a variable that will contain
the result of the command or an error message if the command raises an error. The catch command
returns a value of zero if no error was caught or a value of one if the command catches an error. For
example:

catch {expr 20 / 5} result

50 1BM™ WebSphere Application Server Network Deployment, Version 6: Using the administrative clients

catch {expr text / 5} result

==>]

puts $result

==> syntax error in expression "text / 5"

Return

The return command is used to return from a procedure. It is needed if you want something to return
before the end of the procedure body or if a contrast value needs to be returned.

Namespaces

Jacl keeps track of named entities such as variables, in namespaces. The wsadmin tool also adds entries
to the global namespace for the scripting objects, such as, the AdminApp object

When you run a proc command, a local namespace is created and initialized with the names and the
values of the parameters in the proc command. Variables are held in the local namespace while you run
the proc command. When you stop the proc command, the local namespace is erased. The local
namespace of the proc command implements the semantics of the automatic variables in languages such
as C and Java.

While variables in the global namespace are visible to the top level code, they are not visible by default
from within a proc command. To make them visible, declare the variables globally using the global
command. For the variable names that you provide, the global command creates entries in the local
namespace that point to the global namespace entries that actually define the variables.

If you use a scripting object provided by the wsadmin tool in a proc, you must declare it globally before
you can use it, for example:
proc { ... } {
global AdminConfig
... [$AdminConfig ...]
}

For more information about Jacl, see the [Scripting: Resources for Learning article.

Jython

Jython is an alternate implementation of Python, and is written entirely in Java.
The wsadmin tool uses Jython V2.1. The following information is a basic summary of the Jython syntax:
Basic function

The function is either the name of a built-in function or a Jython function. For example:

print "Hello, World!"
=> Hello, World!

import sys
sys.stdout.write("Hello World!\n")
=> Hello World!

In the example, print identifies the standard output stream. You can use the built-in module by running
import statements such as the previous example. The statement import runs the code in a module as part
of the importing and returns the module object. sys is a built-in module of the Python language. In the
Python language, modules are name spaces which are places where names are created. Names that
reside in modules are called attributes. Modules correspond to files and the Python language creates a
module object to contain all the names defined in the file. In other words, modules are name spaces.

Chapter 5. Using scripting (wsadmin) 51

Variable

To assign objects to names, the target of an assignment should be on the left side of an equal sign (=)
and the object that you are assigning on the right side. The target on the left side can be a name or object
component, and the object on the right side can be an arbitrary expression that computes an object. The
following rules exist for assigning objects to names:

« Assignments create object references.
* Names are created when you assign them.
* You must assign a name before referencing it.

Variable name rules are similar to the rules for the C language, for example:
* An underscore character (_) or a letter plus any number of letters, digits or underscores

The following reserved words can not be used for variable names:

and assert break class continue
def del elif else except
exec inally for from global
if importin is lambda

not or pass print raise
return try while

For example:

a =5

print a

=> 5

b= a

print b

=> §

textl, text2, text3, textd = 'good', 'bad', 'pretty', 'ugly'
print text3
=> pretty

The second example assigns the value of variable a to variable b.
Types and operators

The following list contains a few of the built-in object types:
* Numbers. For example:

8, 3.133, 999L, 3+4j

numl = int(10)

print numl
=> 10

» Strings. For example:

'name', "name's",

print str(12345)
=> '12345"

» Lists. For example:

x = [1, [2, 'free'], 5]
y = [0, 1, 2, 3]
y.append(5)

print y

=> [0,]" 29 3’ 5]

y.reverse()

52 Bm™ WebSphere Application Server Network Deployment, Version 6: Using the administrative clients

print y
=>[5, 3,2, 1, 0]

y.sort()
print y
=> [0,]', 2’ 3, 5]

print Tist("apple")

= [|a|’ |p|’ |p|’ |'||’ |e|]
print 1ist((1,2,3,4,5))

=> [1, 29 39 49 5]

test = "This is a test"
test.index("test")
=> 10

test.index('s"')
= 3

The following list contains a few of the operators:

X ory
y is evaluated only if x is false. For example:

print 0 or 1
=>]

x and y

y is evaluated only if x is true. For example:

print 0 and 1
= 0

X+y,X-y

Addition and concatenation, subtraction. For example:

print 6 + 7
=> 13

textl = 'Something'
text2 = ' else'
print textl + text2
=> Something else

listl = [0, 1, 2, 3]
list2 = [4, 5, 6, 7]
print Tistl + 1ist2
=> [09 19 29 3: 4: 5: 6: 7]

print 10 - 5
=> 5

X Y, Xy, X%y

Multiplication and repetition, division, remainder and format. For example:

print 5 * 6
=> 30

print 'test' * 3
=> test test test

print 30 / 6
=> 5

print 32 % 6
= 2

X[il, x[i:jl, x(...)

Chapter 5. Using scripting (wsadmin)

53

Indexing, slicing, function calls. For example:

test = "This is a test"
print test[3]

=> g

print test[3:10]
=> s is a

print test[5:]

=> is a test
print x[:-4]
=> This is a print len(test)
=> 14
e <, <=, >, >=, ==, <>, = isis not
Comparison operators, identity tests. For example:
11 =1[1, ('a', 3)]
12 = [1, ('a', 2)]
11 <12, 11 ==12, 11 > 12, 11 <= 12, 11 =12, 11 is 12, 11 is not 12
=> (0, 0, 1, 1, 1, 0, 1)

Backslash substitution

If a statement needs to span multiple lines, you can also add a black slash (\) at the end of the previous
line to indicate you are continuing on the next line. For example:

text = "This is a tests of a long lines" \
" continuing lines here."
print text

=> This is a tests of a Tong lines continuing lines here.
Functions and scope

Jython uses the def statement to define functions. Functions related statements include:
e def, return

The def statement creates a function boject and assigns it to a name. Thereturn statement sends a
result object back to the caller. This is optional, and if it is not present, a function exits so that control
flow falls off the end of the function body.

* global

The global statement declares module-level variables that are to be assigned. By default, all names
assigned in a function are local to that function and exist only while the function runs. To assign a name
in the enclosing module, list functions in a global statement.

The basic syntax to define a function is the following:

def name (argl, arg2, ... ArgN):
statements
return value

where name is the name of the function being defined. It is followed by an open parenthesis, a close
parenthesis and a colon. The arguments inside parenthesis include a list of parameters to the procedures.
The next line after the colon is the body of the function. A group of commands that form the body of the
function. After you define a Jython function, it is used just like any of the built-in functions. For example:
def intersect(seql, seq2):
try:
res = []
for x in seql:

54 Bm WebSphere Application Server Network Deployment, Version 6: Using the administrative clients

if x in seq2:
res.append(x)
return res
except:

To call the function above, use the following command:

sl = "SPAM"
s2 = "SCAM"
intersect(sl, s2)
=> [S, A, M]

intersect([1,2,3], (1.4))
=> [1]

Comments
Make comments in the Jython language with the pound character (#).
Command line arguments

The Jython shells pass the command line arguments to the script as the value of the sys.argv. The name
of the program, or script, is not part of sys.argv. sys.argv is an array, so you use the index command to
extract items from the argument list, for example:

import sys

first = sys.argv[0]

second = sys.argv[1]

arglen = len(sys.argv)

Basic statements

There are two looping statements: while and for. The conditional statement is if. The error handling
statement is try. Finally, there are some statements to fine-tune control flow: break, continue and pass.
The following is a list of syntax rules in Python:

» Statements run one after another until you say otherwise. Statements normally end at the end of the
line they appear on. When statements are too long to fit on a single line you can also add a back sash
(\) at the end of the prior line to indicate you are continuing on the next line.

* Block and statement boundaries are detected automatically. There are no braces, or begin or end
delimiter, around blocks of code. Instead, the Python language uses the indentation of statements under
a header in order to group the statements in a nested block. Block boundaries are detected by line
indentation. All statements indented the same distance to the right belong to the same block of code
until that block is ended by a line less indented.

« Compound statements = header; ’’, indented statements. All compound statements in the Python
language follow the same pattern: a header line terminated with a colon, followed by one or more
nested statements indented under the header. The indented statements are called a block.

» Spaces and comments are usually ignored. Spaces inside statements and expressions are almost
always ignored (except in string constants and indentation), so are comments.

If
The if statement selects actions to perform. The if statement may contain other statements, including
other if statements. The if statement can be followed by one or more optional elif statements and ends

with an optional else block.

The general format of an if looks like the following:

Chapter 5. Using scripting (wsadmin) 55

if testl
statementsl
elif test2
statements?2
else test3
statements3

For example:

weather = 'sunny'
if weather == 'sunny':
print "Nice weather"
elif weather == 'raining':
print "Bad weather"
else:
print "Uncertain, don't plan anything"

While

The while statement consists of a header line with a test expression, a body of one or more indented
statements, and an optional else statement that runs if control exits the loop without running into a break
statement. The while statement repeatedly executes a block of indented statements as long as a test at
the top keeps evaluating a true value. The general format of an while looks like the following:
while testl

statementsl

else
statements2

For example:

a=0; b=10

while a < b:
print a
a=a+t+1l

For

The for statement begins with a header line that specifies an assignment target or targets, along with an
object you want to step through. The header is followed by a block of indented statements which you want
to repeat.

The general format of an while looks like the following:

for target in object:
statements

else:

statements

It assigns items in the sequence object to the target, one by one, and runs the loop body for each. The
loop body typically uses the assignment target to refer to the current item in the sequence as if it were a
cursor stepping through the sequence. For example:
sum = 0
for x in [1, 2, 3, 4]:

sum = sum + X

Break, continue, and pass
You can control running a loop the break, continue and pass statements. The break statement jumps out
of the closest enclosing loop (past the entire loop statement). The continue statements jumps to the top of

the closest enclosing loop (to the header line of the loop), and the pass statement is an empty statement
placeholder.

56 B™ WebSphere Application Server Network Deployment, Version 6: Using the administrative clients

Try

A statement will raise an error if it is called with the wrong number of arguments, or if it detects some error
condition particular to its implementation. An uncaught error aborts execution of a script. The try statement
is used to trap such errors. Python try statements come in two flavors, one that handles exceptions and
one that executes finalization code whether exceptions occur or not. The try, except, else statement
starts with a try header line followed by a block of indented statements, then one or more optional except
clauses that name exceptions to be caught, and an optional else clause at the end. The try, finally
statements starts with a try header line followed by a block of indented statements, then finally clause that
always runs on the way out whether an exception occurred while the try block was running or not.

The general format of the try, except, else function looks like the following:

try:

statements
except name:
Statements
except name, data:
statements

else

statements

For example:

try:
myfunction()
except:
import sys
print 'uncaught exception', sys.exc_type, sys.exc_value

try:
myfilereader()
except EOFError:
break
else:
process next line here

The general format of a try and finally looks like the following:

try:
statements

finally:
Sstatements

For example:

def divide(x, y):
return x / y

def tester(y):
try:
print divide(8, y)
finally:
print 'on the way out...'

For more information about the Jython language, see the IScripting: Resources for Learnind article.

Scripting objects

The wsadmin tool operates on configurations and running objects through the following set of management
objects: AdminConfig, AdminControl, AdminApp, AdminTask, and Help. Each of these objects has
commands that you can use to perform administrative tasks. To use the scripting objects, specify the
scripting object, a command, and command parameters. For example:

Chapter 5. Using scripting (wsadmin) 57

Using Jacl:
$AdminConfig attributes ApplicationServer

Using Jython:
print AdminConfig.attributes('ApplicationServer')

where AdminConfig is the scripting object, attributes is the command, and ApplicationServer is the
command parameter.

To find out more specific information about each of the scripting objects, including command and
command parameter information, see |AdminConfig JAdminApp} |AdminControl} |AdminTask} or|{Help}

WebSphere Application Server system management separates administrative functions into two categories:
functions that work with the configuration of WebSphere Application Server installations, and functions that
work with the currently running objects in WebSphere Application Server installations.

Scripts work with both categories of objects. For example, an application server is divided into two distinct
entities. One entity represents the configuration of the server that resides persistently in a repository on
permanent storage. You can create, query, change, or remove this configuration without starting an
application server process. The AdminConfig object, the AdminTask object, and the AdminApp object
handle configuration functionality. You can invoke configuration functions with or without being connected
to a server.

The second entity represents the running instance of an application server by a Java Management
Extensions (JMX) MBean. This instance can have attributes that you can interrogate and change, and
operations that you can invoke. These operational actions taken against a running application server do
not have an effect on the persistent configuration of the server. The attributes that support manipulation
from an MBean differ from the attributes that the corresponding configuration supports. The configuration
can include many attributes that you cannot query or set from the running object. The WebSphere
Application Server scripting support provides functions to locate configuration objects, and running objects.
Objects in the configuration do not always represent objects that are currently running. The AdminControl
object manages running objects.

You can use the Help object to obtain information about the AdminConfig, AdminApp, AdminControl, and
AdminTask objects, to obtain interface information about running MBeans, and to obtain help for warnings
and error messages.

Help object for scripted administration
The Help object provides general help, online information about running MBeans, and help on messages.

Use the Help object to obtain general help for the other objects supplied by the wsadmin tool for scripting:
the AdminApp, AdminConfig, AdminTask, and AdminControl objects. For example, using Jacl, $Help
AdminApp or using Jython, Help.Adminapp(), provides information about the AdminApp object and the
available commands.

The Help object also to provides interface information about MBeans running in the system. The
commands that you use to get online information about the running MBeans include: all, attributes,
classname, constructors, description, notification, operations.

You can also use the Help object to obtain information about messages using the message command.
The message command provides aid to understand the cause of a warning or error message and find a
solution for the problem. For example, you receive a WASX7115E error when running the AdminApp install
command to install an application, use the following example:

Using Jacl:
$Help message WASX7115E

58 iBm™ WebSphere Application Server Network Deployment, Version 6: Using the administrative clients

Using Jython:
print Help.message('WASX7115E")

Example output:

Explanation: wsadmin failed to read an ear file when

preparing to copy it to a temporary Tocation for AdminApp

processing. User action: Examine the wsadmin.traceout

log file to determine the problem; there may be file permission problems.

The user action specifies the recommended action to correct the problem. It is important to understand
that in some cases the user action may not be able to provide corrective actions to cover all the possible
causes of an error. It is an aid to provide you with information to troubleshoot a problem.

To see a list of all available commands for the Help object, see the|Commands for the Help object| article
or you can also use the Help command, for example:

Using Jacl:
$Help help

Using Jython:
print Help.help()

AdminApp object for scripted administration

Use the AdminApp object to manage applications. This object communicates with the WebSphere
Application Server run time application management object to make application inquires and changes, for
example:

 Installing and uninstalling applications
» Listing applications
» Editing applications or modules

Since applications are part of configuration data, any changes that you make to an application is kept in
the configuration session, similar to other configuration data. Be sure to save your application changes so
that the data transfers from the configuration session to the master repository.

With the application already installed, the AdminApp object can update application metadata, map virtual
hosts to Web modules, and map servers to modules. You must perform any other changes, such as,
specifying a library for the application to use or setting session management configuration properties,
using the AdminConfig object.

You can run the commands for the AdminApp object in local mode. If a server is running, it is not
recommended that you run the scripting client in local mode because any configuration changes that are
made in local mode will not be reflected in the running server configuration and vice versa. If you save a
conflicting configuration, you could corrupt the configuration. In a deployment manager environment,
configuration updates are available only if a scripting client is connected to a deployment manager. When
connected to a node agent or a managed application server, you will not be able to update the
configuration because the configuration for these server processes are copies of the master configuration
which resides in the deployment manager. The copies are created on a node machine when a
configuration synchronization occurs between the deployment manager and the node agent. Make
configuration changes to the server processes by connecting a scripting client to a deployment manager.
For this reason, to change a configuration, do not run a scripting client in local mode on a node machine.
It is not a supported configuration.

To see a list of all available commands for the AdminApp object, see the [Commands for the AdminApp
article or you can also use the Help command, for example:

Chapter 5. Using scripting (wsadmin) 59

Using Jacl:
$AdminApp help

Using Jython:
print AdminApp.help()

Listing applications with the wsadmin tool:

Before starting this task, the wsadmin tool must be running. See the|“Starting the wsadmin scripting cIient”|
on page 103 article for more information.

Query the configuration and create a list of installed applications, for example:
» Using Jacl:

$AdminApp 1ist
* Using Jython:

AdminApp.Tist()

where:

$ is a Jacl operator for substituting a variable name with its
value

AdminApp is an object allowing application objects management

list is an AdminApp command

Example output:

DefaultApplication
SampTeApp
applserv2

Editing application configurations with the wsadmin tool:

Before starting this task, the wsadmin tool must be running. See the [‘Starting the wsadmin scripting client’]
article for more information.

1. Edit the entire application or a single application module. Use one of the following commands:

* The following command uses the installed application and the command option information to edit
the application:

— Using Jacl:
$AdminApp edit appname {options}

— Using Jython list:
AdminApp.edit('appname', ['options'])

— Using Jython string:
AdminApp.edit('appname', '[options]')

where:

$ is a Jacl operator for substituting a variable name with its
value

AdminApp is an object allowing application objects management

edit is an AdminApp command

appname is the name of application or application module to edit.
For the application module name, use the module name
returned from listModules command as the value.

60 1BM™ WebSphere Application Server Network Deployment, Version 6: Using the administrative clients

{options} is a list of edit options and tasks similar to the ones for
the install command

» The following command changes the application information by prompting you through a series of
editing tasks:

— Using Jacl:
$AdminApp editInteractive appname
— Using Jython:
AdminApp.editinteractive('appname')

where:

$ is a Jacl operator for substituting a variable name with its
value

AdminApp is an object allowing application objects management

editInteractive is an AdminApp command

appname is the name of application or application module to edit.
For the application module name, use the module name
returned from listModules command as the value.

2. Save the configuration changes. See the [‘Saving configuration changes with the wsadmin tool” or|
article for more information.

3. In a network deployment environment only, synchronize the node. See the [‘Synchronizing nodes with|
[the wsadmin tool” on page 69| article for more information.

AdminControl object for scripted administration

The AdminControl scripting object is used for operational control. It communicates with MBeans that
represent live objects running a WebSphere server process. It includes commands to query existing
running objects and their attributes and invoke operation on the running objects. In addition to the
operational commands, the AdminControl object supports commands to query information on the
connected server, convenient commands for client tracing, reconnecting to a server, and start and stop
server for network deployment environment.

Many of the operational commands have two sets of signatures so that they can either invoke using string
based parameters or using Java Management Extension (JMX) objects as parameters. Depending on the
server process to which a scripting client is connected, the number and type of MBeans available varies. If
a scripting client is connected to a deployment manager, then all MBeans in all server processes are
visible. If a scripting client is connected to a node agent, all MBeans in all server processes on that node
are accessible. When connected to an application server, only MBeans running in that application server
are visible.

The following steps provide a general method to manage the cycle of an application:
* Install the application.

 Edit the application.

* Update the application.

* Uninstall the application.

To see a list of all available commands for the AdminControl object, see the [Commands for the|
IAdminControl object article or you can also use the Help command, for example:

Using Jacl:
$AdminControl help

Using Jython:

Chapter 5. Using scripting (wsadmin) 61

print AdminControl.help()
ObjectName, Attribute, and AttributeList classes:

WebSphere Application Server scripting commands use the underlying Java Management Extensions
(JMX) classes, ObjectName, Attribute, and AttributeList, to manipulate object names, attributes and
attribute lists respectively.

The WebSphere Application Server ObjectName class uniquely identifies running objects. The ObjectName
class consists of the following elements:
* The domain name WebSphere.
» Several key properties, for example:
— type - Indicates the type of object that is accessible through the MBean, for example,
ApplicationServer, and EJBContainer.
— name - Represents the display name of the particular object, for example, MyServer.
— node - Represents the name of the node on which the object runs.
— process - Represents the name of the server process in which the object runs.
— mbeanIdentifier - Correlates the MBean instance with corresponding configuration data.

When ObjectName classes are represented by strings, they have the following pattern:
[domainName] : property=value[,property=value] *

For example, you can specify WebSphere:name="My Server”,type=ApplicationServer,node=nl,* to specify
an application server named My Server on node n1. (The asterisk (*) is a wildcard character, used so that
you do not have to specify the entire set of key properties.) The AdminControl commands that take strings
as parameters expect strings that look like this example when specifying running objects (MBeans). You
can obtain the object name for a running object with the getObjectName command.

Attributes of these objects consist of a name and a value. You can extract the name and value with the
getName and the getValue methods that are available in the javax.management.Attribute class. You can
also extract a list of attributes.

Example: Collecting arguments for the AdminControl object: Verify that the arguments parameter is
a single string. Each individual argument in the string can contain spaces. Collect each argument that
contains spaces in some way.

* An example of how to obtain an MBean follows:

Using Jacl:
set am [$AdminControl queryNames type=ApplicationManager,process=serverl,*]
Using Jython:
am = AdminControl.queryNames ('type=ApplicationManager,process=serverl,*")
* Multiple ways exist to collect arguments that contain spaces. Choose one of the following alternatives:

Using Jacl:

— $AdminControl invoke $am startApplication {"JavaMail Sample”}

— $AdminControl invoke $am startApplication {{JavaMail Sample}}

— $AdminControl invoke $am startApplication "\"JavaMail Sample\"”
Using Jython:

— AdminControl.invoke(am, ’startApplication’, ’[JavaMail Sample]’)
— AdminControl.invoke(am, ’startApplication’, ’\"JavaMail Sample\”’)

Example: Identifying running objects: In the WebSphere Application Server, MBeans represent running
objects. You can interrogate the MBean server to see the objects it contains. Use the AdminControl object
to interact with running MBeans.

* Use the queryNames command to see running MBean objects. For example:

Using Jacl:

62 1BM WebSphere Application Server Network Deployment, Version 6: Using the administrative clients

$AdminControl queryNames *
Using Jython:
print AdminControl.queryNames('*")

This command returns a list of all MBean types. Depending on the server to which your scripting client

attaches, this list can contain MBeans that run on different servers:

— If the client attaches to a stand-alone WebSphere Application Server, the list contains MBeans that
run on that server.

— If the client attaches to a node agent, the list contains MBeans that run in the node agent and
MBeans that run on all application servers on that node.

— If the client attaches to a deployment manager, the list contains MBeans that run in the deployment
manager, all of the node agents communicating with that deployment manager, and all application
servers on the nodes served by those node agents.

The list that the queryNames command returns is a string representation of JMX ObjectName objects. For

example:

WebSphere:cel1=MyCell,name=TraceService,mbeanIdentifier=TraceService,
type=TraceService,node=MyNode,process=serverl

This example represents a TraceServer object that runs in server? on MyNode.

The single queryNames argument represents the ObjectName object for which you are searching. The
asterisk ("*") in the example means return all objects, but it is possible to be more specific. As shown in
the example, ObjectName has two parts: a domain, and a list of key properties. For MBeans created by
the WebSphere Application Server, the domain is WebSphere. If you do not specify a domain when you
invoke queryNames, the scripting client assumes the domain is WebSphere. This means that the first
example query above is equivalent to:

Using Jacl:

$AdminControl queryNames WebSphere:=*

Using Jython:

AdminControl.queryNames ('WebSphere:x")

WebSphere Application Server includes the following key properties for the ObjectName object:

— name

— type

— cell

— node

— process

— mbeanldentifier

These key properties are common. There are other key properties that exist. You can use any of these
key properties to narrow the scope of the queryNames command. For example:

Using Jacl:

$AdminControl queryNames WebSphere:type=Server,node=myNode,*

Using Jython:

AdminControl.queryNames('WebSphere:type=Server,node=myNode,*")

This example returns a list of all MBeans that represent server objects running the node myNode. The,
* at the end of the ObjectName object is a JMX wildcard designation. For example, if you enter the
following:

Using Jacl:

$AdminControl queryNames WebSphere:type=Server,node=myNode

Using Jython:

print AdminControl.queryNames ('WebSphere:type=Server,node=myNode")

you get an empty list back because the argument to queryNames is not a wildcard. There is no Server
MBean running that has exactly these key properties and no others.

Chapter 5. Using scripting (wsadmin) 63

» If you want to see all the MBeans representing applications running on a particular node, invoke the
following example:

Using Jacl:

$AdminControl queryNames WebSphere:type=Application,node=myNode,*

Using Jython:

print AdminControl.queryNames ('WebSphere:type=Application,node=myNode,*")

Specifying running objects using the wsadmin tool:

Before starting this task, the wsadmin tool must be running. See the|“Starting the wsadmin scripting cIient”|
on page 103 article for more information.

Perform the following steps to specify running objects:

1. Obtain the configuration ID with one of the following ways:
* Obtain the object name with the completeObjectName command, for example:
— Using Jacl:
set var [$AdminControl completeObjectName template]
— Using Jython:
var = AdminControl.completeObjectName(template)

where:

set is a Jacl command

var is a variable name

$ is a Jacl operator for substituting a variable name with its
value

AdminControl is an object that enables the manipulation of MBeans
running in a WebSphere server process

completeObjectName is an AdminControl command

template is a string containing a segment of the object name to be

matched. The template has the same format as an object
name with the following pattern:

[domainName] :property=value[,property=value] *. See
|Object name, Attribute, Attribute list|for more information.

If there are several MBeans that match the template, the completeObjectName command only
retuns the first match. The matching MBean object name is then assigned to a variable.

To look for server? MBean in mynode, use the following example:
— Using Jacl:
set serverl [$§AdminControl completeObjectName node=mynode,type=Server,name=serverl,x]
— Using Jython:
serverl = AdminControl.completeObjectName ('node=mynode,type=Server,name=serverl ")
* Obtain the object name with the queryNames command, for example:
— Using Jacl:

set var [$AdminControl queryNames template]
— Using Jython:
var = AdminControl.queryNames (template)

where:

set is a Jacl command

var is a variable name

64 BM WebSphere Application Server Network Deployment, Version 6: Using the administrative clients

is a Jacl operator for substituting a variable name with its

value
AdminControl is an object that enables the manipulation of MBeans
running in a WebSphere Application server process.
queryNames is an AdminControl command
template is a string containing a segment of the object name to be

matched. The template has the same format as an object
name with the following pattern:
[domainName] :property=value[,property=value]*

2. If there are more than one running objects returned from the queryNames command, the objects are
returned in a list syntax. One simple way to retrieve a single element from the list is to use the lindex
command in Jacl and split command in Jython. The following example retrieves the first running object
from the server list:

Using Jacl:

set allServers [$AdminControl queryNames type=Server,x]
set aServer [lindex $allServers 0]

Using Jython:
allServers = AdminControl.queryNames('type=Server,*")
get line separator

import java
lineSeparator = java.lang.System.getProperty('line.separator')

aServer = allServers.split(lineSeparator)[0]

For other ways to manipulate the list and then perform pattern matching to look for a specified
configuration object, refer to the |[Jacl syntax|

You can now use the running object in with other AdminControl commands that require an object name as
a parameter.

Identifying attributes and operations for running objects with the wsadmin tool:

Before starting this task, the wsadmin tool must be running. See the [‘Starting the wsadmin scripting client’]

on page 103 article for more information.

Use the Help object attributes or operations commands to find information on a running MBean in the
server.

1. [Specify a running object|

2. Use the attributes command to display the attributes of the running object:

Using Jacl:

$Help attributes MBeanObjectName
Using Jython:
Help.attributes(MBeanObjectName)

where:
$ is a Jacl operator for substituting a variable name with its
value
Help is the object that provides general help and information
for running MBeans in the connected server process
attributes is a Help command

Chapter 5. Using scripting (wsadmin) 65

MBeanObjectName is the string representation of the MBean object name
obtained in step 2

3. Use the operations command to find out the operations supported by the MBean:
» Using Jacl:
$Help operations MBeanObjectname
or
$Help operations MBeanObjectname operationName
* Using Jython:
Help.operations (MBeanObjectname)
or
Help.operations(MBeanObjectname, operationName)

where:

$ is a Jacl operator for substituting a variable name with its
value

Help is the object that provides general help and information
for running MBeans in the connected server process

operations is a Help command

MBeanObjectname is the string representation of the MBean object name
obtained in step number 2

operationName (optional) is the specified operation for which you want to
obtain detailed information

If you do not provide the operationName, all operations supported by the MBean return with the
signature for each operation. If you specify operationName, only the operation that you specify returns
and it contains details which include the input parameters and the return value. To display the
operations for the server MBean, use the following example:

» Using Jacl:

set server [$AdminControl completeObjectName type=Server,name=serverl,*]
$Help operations $server

* Using Jython:

server = AdminControl.completeObjectName('type=Server,name=serverl,*")
print Help.operations(server)

To display detailed information about the stop operation, use the following example:
* Using Jacl:

$Help operations $server stop
* Using Jython:

print Help.operations(server, 'stop')

Performing operations on running objects using the wsadmin tool:

Before starting this task, the wsadmin tool must be running. See the [‘Starting the wsadmin scripting client’]
on page 103 article for more information.

Perform the following steps to perform operations on running objects:
1. Obtain the object name of the running object. For example:
* Using Jacl:
$AdminControl completeObjectName name
* Using Jython:

66 1BM WebSphere Application Server Network Deployment, Version 6: Using the administrative clients

AdminControl.completeObjectName (name)

where:

is a Jacl operator for substituting a variable name with its
value

AdminControl

is an object that enables the manipulation of MBeans
running in a WebSphere server process

completeObjectName

is an AdminControl command

name

is a fragment of the object name. It is used to find the
matching object name. For example:
type=Server,name=servl,*. It can be any valid
combination of domain and key properties. For example,
type, name, cell, node, process, etc.

* Using Jacl:

Set the s1 variable to the running object, for example:

set s1 [$AdminControl completeObjectName type=Server,name=serverl,x*]

* Using Jython:

sl = AdminControl.completeObjectName('type=Server,name=serverl,*")

where:
set is a Jacl command
sl is a variable name
$ is a Jacl operator for substituting a variable name with its

value

AdminControl

is an object that enables the manipulation of MBeans
running in a WebSphere server process

completeObjectName is an AdminControl command

type is the object name property key

Server is the name of the object

name is the object name property key

serverl is the name of the server where the operation will be

invoked

3. Invoke the operation. For example:
» Using Jacl:
$AdminControl invoke $s1 stop
* Using Jython:
AdminControl.invoke(sl, 'stop')

where:

is a Jacl operator for substituting a variable name with its
value

AdminControl

is an object that enables the manipulation of MBeans
running in a WebSphere server process

invoke is an AdminControl command
sl is the ID of the server specified in step number 3
stop is an operation to be invoked on the server

Chapter 5. Using scripting (wsadmin) 67

The following example is for operations that require parameters:
* Using Jacl:

set traceServ [$AdminControl completeObjectName type=TraceService,process=serverl,=]
$AdminControl invoke $traceServ appendTraceString "com.ibm.ws.management.*=all=enabled"

* Using Jython:

traceServ = AdminControl.completeObjectName('type=TraceService,process=serverl,*"')
AdminControl.invoke(traceServ, 'appendTraceString', "com.ibm.ws.management.x=all=enabled")

Modifying attributes on running objects with the wsadmin tool:

Before starting this task, the wsadmin tool must be running. See the|“Starting the wsadmin scripting client”|
on page 103 article for more information.

Perform the following steps to modify attributes on running objects:
1. Obtain the name of the running object, for example:
» Using Jacl:
$AdminControl completeObjectName name
* Using Jython:
AdminControl.completeObjectName (name)

where:
$ is a Jacl operator for substituting a variable name with its
value
AdminControl is an object that enables the manipulation of MBeans
running in a WebSphere server process
completeObjectName is an AdminControl command
name is a fragment of the object name. It is used to find the

matching object name. For example:
type=TraceService,node=mynode,*. It can be any valid
combination of domain and key properties. For example,
type, name, cell, node, process, etc.

2. Set the ts1 variable to the running object, for example:
* Using Jacl:
set tsl [$AdminControl completeObjectName name]
* Using Jython:

tsl = AdminControl.completeObjectName (name)

where:

set is a Jacl command

tsl is a variable name

$ is a Jacl operator for substituting a variable name with its
value

AdminControl is an object that enables the manipulation of MBeans
running in a WebSphere server process

completeObjectName is an AdminControl command

name is a fragment of the object name. It is used to find the

matching object name. For example:
type=TraceService,node=mynode,*. It can be any valid
combination of domain and key properties. For example,
type, name, cell, node, process, etc.

68 BM WebSphere Application Server Network Deployment, Version 6: Using the administrative clients

3. Modify the running object, for example:

Using Jacl:

$AdminControl setAttribute $tsl ringBufferSize 10
Using Jython:

AdminControl.setAttribute(tsl, 'ringBufferSize', 10)

where:

$ is a Jacl operator for substituting a variable name with its
value

AdminControl is an object that enables the manipulation of MBeans
running in a WebSphere server process

setAttribute is an AdminControl command

tsl evaluates to the ID of the server specified in step humber
3

ringBufferSize is an attribute of modify objects

10 is the value of the ringBufferSize attribute

You can also modify multiple attribute name and value pairs, for example:

Using Jacl:

set tsl [$AdminControl completeObjectName type=TraceService,process=serverl,x]
$AdminControl setAttributes $tsl {{ringBufferSize 10}
{traceSpecification com.ibm.*=all=disabled}}

Using Jython list:

tsl = AdminControl.completeObjectName('type=TraceService,process=serverl,*")
AdminControl.setAttributes(tsl, [['ringBufferSize', 10],
['traceSpecification', 'com.ibm.x=all=disabled']])

Using Jython string:

tsl =AdminControl.completeObjectName('type=TraceService,process=serverl,*")
AdminControl.setAttributes(tsl, '[[ringBufferSize 10]
[traceSpecification com.ibm.*=all=disabled]]")

The new attribute values are returned to the command line.

Synchronizing nodes with the wsadmin tool:

This article only applies to network deployment installations. A node synchronization is necessary in order
to propagate configuration changes to the affected node or nodes. By default this occurs periodically, as
long as the node can communicate with the deployment manager. It is possible to cause this to happen
explicitly by performing the following steps:

1. Set the variable for node synchronize.

Using Jacl:

set Syncl [$AdminControl completeObjectName type=NodeSync,node=myNodeName,*]
Using Jython:

Syncl = AdminControl.completeObjectName ('type=NodeSync,node=myNodeName ,*")

where:

set

is a Jacl command

Syncl

is a variable name

$

is a Jacl operator for substituting a variable name with its
value

Chapter 5. Using scripting (wsadmin) 69

AdminControl is an object that enables the manipulation of MBeans
running in a WebSphere server process

completeObjectName is an AdminControl command

type=NodeSync,node=myNodeName is a fragment of the object name whose complete name
is returned by this command. It is used to find the
matching object name which is, in this case, the
SyncNode object for the node myNodeName, where
myNodeName is the name of the node that you use to
synchronize configuration changes. For example:
type=Server, name=servl. It can be any valid
combination of domain and key properties. For example,
type, name, cell, node, process, etc.

Example output:

WebSphere:platform=common,cell=myNetwork,version=5.0,name=node
Sync,mbeanIdentifier=nodeSync,type=NodeSync,node=myBaseNode,
process=nodeagent

2. Synchronize by issuing the following command:
» Using Jacl:
$AdminControl invoke $Syncl sync
* Using Jython:
AdminControl.invoke(Syncl, 'sync')

where:

$ is a Jacl operator for substituting a variable name with its
value

AdminControl is an object that enables the manipulation of MBeans
running in a WebSphere server process

invoke is an AdminControl command

Syncl evaluates to the ID of the server specified in step number
7

sync is an attribute of modify objects

Example output:
true
You will receive an output value of true if the synchronization completes.

When the synchronization is complete, the files created in the c:/WebSphere/DeploymentManager/config
directory now exists on the mynode node in the c:/WebSphere/AppServer/config directory.

AdminConfig object for scripted administration

Use the AdminConfig object to manage the configuration information that is stored in the repository. This
object communicates with the WebSphere Application Server configuration service component to make
configuration inquires and changes. You can use it to query existing configuration objects, create
configuration objects, modify existing objects, remove configuration objects, and obtain help.

Updates to the configuration through a scripting client are kept in a private temporary area called a
workspace and are not copied to the master configuration repository until you run a save command. The
workspace is a temporary repository of configuration information that administrative clients including the
administrative console use. The workspace is kept in the wstemp subdirectory of your WebSphere
Application Server installation. The use of the workspace allows multiple clients to access the master
configuration. If the same update is made by more than one client, it is possible that updates made by a

70 1BM™ WebSphere Application Server Network Deployment, Version 6: Using the administrative clients

scripting client will not save because there is a conflict. If this occurs, the updates will not be saved in the
configuration unless you change the default save policy with the setSaveMode command.

The AdminConfig commands are available in both connected and local modes. If a server is currently
running, it is not recommended that you run the scripting client in local mode because the configuration
changes made in the local mode is not reflected in the running server configuration and vice versa. In
connnected mode, the availability of the AdminConfig commands depend on the type of server to which a
scripting client is connected in a Network Deployment installation.

The AdminConfig commands are available only if a scripting client is connected to a deployment manager.
When connected to a node agent or an application server, the AdminConfig commands will not be
available because the configuration for these server processes are copies of the master configuration that
resides in the deployment manager. The copies are created in a nhode machine when configuration
synchronization occurs between the deployment manager and the node agent. You should make
configuration changes to the server processes by connecting a scripting client to a deployment manager.
For this reason, to change a configuration, do not run a scripting client in local mode on a node machine.
It is not a supported configuration.

The following steps provide a general method to update a configuration object:
 |dentify the configuration type and the corresponding attributes.

* Query an existing configuration object to obtain a configuration ID to use.

* Modify the existing configuration object or create a one.

+ Save the configuration.

To see a list of all available commands for the AdminConfig object, see the [Commands for the]
I[AdminConfig object| article or you can also use the Help command, for example:

Using Jacl:
$AdminConfig help

Using Jython:
print AdminConfig.help()

Creating configuration objects using the wsadmin tool:

Before starting this task, the wsadmin tool must be running. See the [‘Starting the wsadmin scripting client’]
article for more information.

Perform this task if you want to create an object. To create new objects from the default template, use the
create command. Alternatively, you can create objects using an existing object as a template with the
createUsingTemplate command.

1. Use the AdminConfig object listTemplates command to list available templates:
» Using Jacl:
$AdminConfig TistTemplates JDBCProvider
* Using Jython:
AdminConfig.listTemplates('JDBCProvider')

where:
$ is a Jacl operator for substituting a variable name with its
value
AdminConfig is an object representing the WebSphere Application
Server configuration

Chapter 5. Using scripting (wsadmin) 71

listTemplates is an AdminConfig command

JDBCProvider is an object type

2. Assign the ID string that identifies the existing object to which the new object is added. You can add
the new object under any valid object type. The following example uses a node as the valid object

type:
* Using Jacl:

set nl1 [$AdminConfig getid /Node:mynode/]
* Using Jython:

nl = AdminConfig.getid('/Node:mynode/")

where:

set is a Jacl command

$ is a Jacl operator for substituting a variable name with its
value

nl is a variable name

AdminConfig is an object representing the WebSphere Application
Server configuration

getid is an AdminConfig command

Node is an object type

mynode is the host name of the node where the new object is

added

3. Specify the template that you want to use:
» Using Jacl:
set t1 [$AdminConfig listTemplates JDBCProvider "DB2 JDBC Provider (XA)"]
* Using Jython:
tl = AdminConfig.listTemplates('JDBCProvider', 'DB2 JDBC Provider (XA)')

where:

set is a Jacl command

$ is a Jacl operator for substituting a variable name with its
value

tl is a variable name

AdminConfig is an object representing the WebSphere Application
Server configuration

lTistTemplates is an AdminConfig command

JDBCProvider is an object type

DB2 JDBC Provider (XA) is the name of the template to use for the new object

If you supply a string after the name of a type, you get back a list of templates with display names that
contain the string you supplied. In this example, the AdminConfig listTemplates command returns the
JDBCProvider template whose name matches DB2 JDBC Provider (XA). This example assumes that
the variable that you specify here only holds one template configuration ID. If the environment contains
multiple templates with the same string, for example, DB2 JDBC Provider (XA), the variable will hold
the configuration IDs of all of the templates. Be sure to identify the specific template that you want to
use before you perform the next step, creating an object using a template.

4. Create the object with the following command:
» Using Jacl:

72 1BM WebSphere Application Server Network Deployment, Version 6: Using the administrative clients

$AdminConfig createUsingTemplate JDBCProvider $nl {{name newdriver}} $t1
* Using Jython:
AdminConfig.createUsingTemplate('JDBCProvider', nl, [['name', 'newdriver']], t1)

where:

$ is a Jacl operator for substituting a variable name with its
value

AdminConfig is an object representing the WebSphere Application
Server configuration

createUsingTemplate is an AdminConfig command

JDBCProvider is an object type

nl evaluates the ID of the host node specified in step
number 3

name is an attribute of JDBCProvider objects

newdriver is the value of the name attribute

tl evaluates the ID of the template specified in step number
4

All create commands use a template unless there are no templates to use. If a default template exists,
the command creates the object.

5. Save the configuration changes. See the[‘Saving configuration changes with the wsadmin tool” on
article for more information.

6. In a network deployment environment only, synchronize the node. See the [‘Synchronizing nodes with|
[the wsadmin tool” on page 69| article for more information.

Interpreting the output of the AdminConfig attributes command using scripting:

Before starting this task, the wsadmin tool must be running. See the [‘Starting the wsadmin scripting client’]
article for more information.

The attributes command is a wsadmin tool on-line help feature. When you issue the attributes command,
the information that displays does not represent a particular configuration object. It represents information
about configuration object types, or object metadata. This article discusses how to interpret the attribute
type display.
» Simple attributes

Using Jacl:

$AdminConfig attributes ExampleTypel
"attrl String"

Types do not display as fully qualified names. For example, String is used for java.lang.String. There
are no ambiguous type names in the model. For example, x.y.ztype and a.b.ztype. Using only the
final portion of the name is possible, and it makes the output easier to read.

* Multiple attributes
Using Jacl:

$AdminConfig attributes ExampleType2

"attrl String" "attr2 Boolean" "attr3 Integer"

All input and output for the scripting client takes place with strings, but attr2 Boolean indicates that
true or false are appropriate values. The attr3 Integer indicates that string representations of
integers ("42") are needed. Some attributes have string values that can take only one of a small
number of predefined values. The wsadmin tool distinguishes these values in the output by the special
type name ENUM, for example:

Using Jacl:

Chapter 5. Using scripting (wsadmin) 73

$AdminConfig attributes ExampleType3

"attr4 ENUM(ALL, SOME, NONE)"

where: attrd is an ENUM type. When you query or set the attribute, one of the values is ALL, SOME, or
NONE. The value A_FEW results in an error.

Nested attributes

Using Jacl:

$AdminConfig attributes ExampleType4

"attr5 String" "ex5 ExampleType5"

The ExampleType4 object has two attributes: a string, and an ExampleType5 object. If you do not know
what is contained in the ExampleType5 object, you can use another attributes command to find out.
The attributes command displays only the attributes that the type contains directly. It does not
recursively display the attributes of nested types.

Attributes that represent lists

The values of these attributes are object lists of different types. The * character distinguishes these
attributes, for example:

Using Jacl:

$AdminConfig attributes ExampleTypeb

"ex6 ExampleTypebx"

In this example, objects of the ExampleTypeb type contain a single attribute, ex6. The value of this
attribute is a list of ExampleType6 type objects.

Reference attributes

An attribute value that references another object. You cannot change these references using modify
commands, but these references display because they are part of the complete representation of the
type. Distinguish reference attributes using the @ sign, for example:

Using Jacl:

$AdminConfig attributes ExampleType6
"attr7 Boolean" "ex7 ExampleType7@"

ExampleTypeb objects contain references to ExampleType7 type objects.
Generic attributes

These attributes have generic types. The values of these attributes are not necessarily this generic type.
These attributes can take values of several different specific types. When you use the AdminConfig
attributes command to display the attributes of this object, the various possibilities for specific types are
shown in parentheses, for example:

Using Jacl:

$AdminConfig attributes ExampleType8

"name String" "beast AnimalType(HorseType, FishType, ButterflyType)"

In this example, the beast attribute represents an object of the generic AnimalType. This generic type is
associated with three specific subtypes. The wsadmin tool gives these subtypes in parentheses after the
name of the base type. In any particular instance of ExampleType8, the beast attribute can have a value
of HorseType, FishType, or ButterflyType. When you specify an attribute in this way, using a modify or
create command, specify the type of AnimalType. If you do not specify the AnimalType, a generic
AnimalType object is assumed (specifying the generic type is possible and legitimate). This is done by
specifying beast:HorseType instead of beast.

Specifying configuration objects using the wsadmin tool:

Before starting this task, the wsadmin tool must be running. See the [‘Starting the wsadmin scripting client’]
on page 103 article for more information.

To manage an existing configuration object, identify the configuration object and obtain configuration ID of
the object to be used for subsequent manipulation.

Obtain the configuration ID with one of the following ways:

74 1BM WebSphere Application Server Network Deployment, Version 6: Using the administrative clients

« Obtain the ID of the configuration object with the getid command, for example:

— Using Jacl:

set var [$AdminConfig getid /type:name/]
— Using Jython:
var = AdminConfig.getid('/type:name/")

where:

set is a Jacl command

var is a variable name

$ is a Jacl operator for substituting a variable name with its
value

AdminConfig is an object representing the WebSphere Application
Server configuration

getid is an AdminConfig command

/type:name/

is the hierarchical containment path of the configuration
object

type

is the object type

Note: The name of the object type that you input here is
the one based on the XML configuration files and does
not have to be the same name that the administrative
console displays.

name

is the optional name of the object

You can specify multiple /type:name/ in the string, for example, /type:name/type:name/type:name/.
If you just specify the type in the containment path without the name, include the colon, for example,
/type:/. The containment path must be a path containing the correct hierarchical order. For
example, if you specify /Server:serverl/Node:node/ as the containment path, you will not receive a
valid configuration ID because Node is parent of Server and should come before Server in the

hierarchy.

This command returns all the configuration IDs that match the representation of the containment and

assigns them to a variable.

To look for all the server configuration IDs resided in mynode, use the following example:

— Using Jacl:

set nodeServers [$AdminConfig getid /Node:mynode/Server:/]

— Using Jython:

nodeServers = AdminConfig.getid('/Node:mynode/Server:/")
To look for server1 configuration ID resided in mynode, use the following example:

— Using Jacl:

set serverl [$§AdminConfig getid /Node:mynode/Server:serverl/]

— Using Jython:

serverl = AdminConfig.getid('/Node:mynode/Server:serverl/")
To look for all the server configuration IDs, use the following example:

— Using Jacl:

set servers [$AdminConfig getid /Server:/]
— Using Jython:

servers = AdminConfig.getid('/Server:/")

« Obtain the ID of the configuration object with the list command, for example:

— Using Jacl:
set var [$AdminConfig list type]

or

Chapter 5. Using scripting (wsadmin) 75

set var [$AdminConfig Tist type scopeld]
— Using Jython:

var = AdminConfig.list('type')

or

var = AdminConfig.list('type', 'scopeld')

where:

set is a Jacl command

var is a variable name

$ is a Jacl operator for substituting a variable name with its
value

AdminConfig is an object representing the WebSphere Application
Server configuration

Tist is an AdminConfig command

type is the object type
Note: The name of the object type that you input here is
the one based on the XML configuration files and does
not have to be the same name that the administrative
console displays.

scopeld is the configuration ID of a cell, node, or server object

This command returns a list of configuration object IDs of a given type. If you specify the scopeld,
the list of objects returned is within the scope specified. The list returned is assigned to a variable.

To look for all the server configuration IDs, use the following example:
— Using Jacl:
set servers [$§AdminConfig Tist Server]
— Using Jython:
servers = AdminConfig.list('Server')
To look for all the server configuration IDs in mynode, use the following example:
— Using Jacl:

set scopeid [$AdminConfig getid /Node:mynode/]
set nodeServers [$AdminConfig Tist Server $scopeid]

— Using Jython:

scopeid = AdminConfig.getid('/Node:mynode/")
nodeServers = AdminConfig.list('Server', scopeid)

2. If there are more than more configuration IDs returned from the getid or list command, the IDs are
returned in a list syntax. One way to retrieve a single element from the list is to use the lindex
command. The following example retrieves the first configuration ID from the server object list:

» Using Jacl:

set allServers [$AdminConfig getid /Server:/]
set aServer [lindex $allServers 0]

* Using Jython:
allServers = AdminConfig.getid('/Server:/"')
get line separator

import java
lTineSeparator = java.lang.System.getProperty('line.separator')

arrayAllServers = allServers.split(1ineSeparator)
aServer = arrayAll1Servers[0]

For other ways to manipulate the list and then perform pattern matching to look for a specified

configuration object, refer to the [Jacl syntax.

76 1BM WebSphere Application Server Network Deployment, Version 6: Using the administrative clients

You can now use the configuration ID in any subsequent AdminConfig commands that require a
configuration ID as a parameter.

Listing attributes of configuration objects using the wsadmin tool:

Before starting this task, the wsadmin tool must be running. See the|“Starting the wsadmin scripting cIient”|
on page 103 article for more information.

Perform the following steps to create a list of attributes of configuration objects:
1. List the attributes of a given configuration object type, using the attributes command, for example:
» Using Jacl:
$AdminConfig attributes type
* Using Jython:
AdminConfig.attributes('type')

where:
$ is a Jacl operator for substituting a variable name with its
value
AdminConfig is an object representing the WebSphere Application
Server configuration
attributes is an AdminConfig command
type is an object type

This command returns a list of attributes and its data type.
To get a list of attributes for the JDBCProvider type, use the following example command:
» Using Jacl:
$AdminConfig attributes JDBCProvider
* Using Jython:
AdminConfig.attributes('JDBCProvider")

2. List the required attributes of a given configuration object type, using the required command, for
example:

» Using Jacl:
$AdminConfig required type
* Using Jython:
AdminConfig.required('type')

where:
$ is a Jacl operator for substituting a variable name with its
value
AdminConfig is an object representing the WebSphere Application
Server configuration
required is an AdminConfig command
type is an object type

This command returns a list of required attributes.
To get a list of required attributes for the JDBCProvider type, use the following example command:
* Using Jacl:
$AdminConfig required JDBCProvider
* Using Jython:
AdminConfig.required('JDBCProvider"')

Chapter 5. Using scripting (wsadmin) 77

3. List attributes with defaults of a given configuration object type, using the defaults command, for

example:
* Using Jacl:
$AdminConfig defaults type
* Using Jython:
AdminConfig.defaults('type')

where:
$ is a Jacl operator for substituting a variable name with its
value
AdminConfig is an object representing the WebSphere Application
Server configuration
defaults is an AdminConfig command
type is an object type

This command returns a list of all attributes, types, and defaults.
To get a list of attributes with defaults displayed for the JDBCProvider type, use the following example

command:
* Using Jacl:

$AdminConfig defaults JDBCProvider

* Using Jython:

AdminConfig.defaults('JDBCProvider')

Modifying configuration objects with the wsadmin tool:

Before starting this task, the wsadmin tool must be running. See thel“Starting the wsadmin scripting client’]

on page 103 article for more information.

Perform the following steps to modify a configuration object:
1. Retrieve the configuration ID of the objects that you want to modify, for example:

» Using Jacl:

set jdbcProviderl [$AdminConfig getid /JDBCProvider:myJdbcProvider/]

* Using Jython:

jdbcProviderl = AdminConfig.getid('/JDBCProvider:myJdbcProvider/")

where:

set is a Jacl command

jdbcProviderl is a variable name

$ is a Jacl operator for substituting a variable name with its
value

AdminConfig is an object representing the WebSphere Application
Server configuration

getid is an AdminConfig command

/JDBCProvider:myJdbcProvider/

is the hierarchical containment path of the configuration
object

JDBCProvider

is the object type

mydJdbcProvider

is the optional name of the object

2. Show the current attribute values of the configuration object with the show command, for example:

78 1BM WebSphere Application Server Network Deployment, Version 6: Using the administrative clients

» Using Jacl:
$AdminConfig show $jdbcProviderl
* Using Jython:
AdminConfig.show(jdbcProviderl)

where:

$ is a Jacl operator for substituting a variable name with its
value

AdminConfig is an object representing the WebSphere Application
Server configuration

show is an AdminConfig command

jdbcProviderl evaluates to the ID of host node specified in step number
2

3. Modify the attributes of the configuration object, for example:

» Using Jacl:

$AdminConfig modify $jdbcProviderl {{description "This is my new description"}}

* Using Jython list:

AdminConfig.modify(jdbcProviderl, [['description', "This is my new description"]])

* Using Jython string:
AdminConfig.modify(jdbcProviderl,

'"[[description "This is my new description"]]")

where:

$ is a Jacl operator for substituting a variable name with its
value

AdminConfig is an object representing the WebSphere Application
Server configuration

modi fy is an AdminConfig command

jdbcProviderl evaluates to the ID of host node specified in step number
3

description is an attribute of server objects

This is my new description is the value of the description attribute

You can also modify several attributes at the same time. For example:

» Using Jacl:

{{namel vall} {name2 val2} {name3 val3}}

* Using Jython list:

[['namel', 'vall']l, ['name2', 'val2'l, ['name3', 'val3']]

* Using Jython string:

'"[[namel vall]l [name2 val2] [name3 val3]]'

4. Save the configuration changes. See the |“Saving configuration changes with the wsadmin tool” od

article for more information.

5. In a network deployment environment only, synchronize the node. See the|“Synchronizing nodes with|

[the wsadmin tool” on page 69| article for more information.

Removing configuration objects with the wsadmin tool:

Before starting this task, the wsadmin tool must be running. See the [‘Starting the wsadmin scripting client’]

on page 103 article for more information.

Chapter 5. Using scripting (wsadmin) 79

Use this task to delete a configuration object from the configuration repository. This action only affects the
configuration. If there is a running instance of a configuration object when you remove the configuration,

the change has no effect on the running instance.

1. Assign the ID string that identifies the server you want to remove:

Using Jacl:

set s1 [$AdminConfig getid /Node:mynode/Server:myserver/]

Using Jython:

sl = AdminConfig.getid('/Node:mynode/Server:myserver/")

where:

set is a Jacl command

sl is a variable name

$ is a Jacl operator for substituting a variable name with its
value

AdminConfig is an object representing the WebSphere Application
Server configuration

getid is an AdminConfig command

Node is an object type

mynode is the host name of the node from which the server is
removed

Server is an object type

myserver is the name of the server to remove

2. Remove the configuration object. For example:
» Using Jacl:
$AdminConfig remove $sl
* Using Jython:
AdminConfig.remove(sl)

where:
$ is a Jacl operator for substituting a variable name with its
value
AdminConfig is an object representing the WebSphere Application
Server configuration
remove is an AdminConfig command
sl evaluates the ID of the server specified in step number 2

3. Save the configuration changes. See the [‘Saving configuration changes with the wsadmin tool” on

page 84 article for more information.

4. In a network deployment environment only, synchronize the node. See the|“Synchronizing nodes with|

the wsadmin tool” on page 69| article for more information.

The WebSphere Application Server configuration no longer contains a specific server object. Running

servers are not affected.

Changing the WebSphere Application Server configuration using wsadmin:

80 BM™ WebSphere Application Server Network Deployment, Version 6: Using the administrative clients

Before starting this task, the wsadmin tool must be running. See the [‘Starting the wsadmin scripting client’|
article for more information. For this task, the wsadmin scripting client must be connected to
the deployment manager server in a network deployment environment.

You can use the wsadmin AdminConfig and AdminApp objects to make changes to the WebSphere
Application Server configuration. The purpose of this article is to illustrate the relationship between the
commands used to change the configuration and the files used to hold configuration data. This discussion
assumes that you have a network deployment installation, but the concepts are very similar for a

WebSphere Application Server installation.
1. Set a variable for creating a server:
» Using Jacl:
set nl [$AdminConfig getid /Node:mynode/]
* Using Jython:
nl = AdminConfig.getid('/Node:mynode/")

where:

set is a Jacl command

nl is a variable name

$ is a Jacl operator for substituting a variable name with its
value

AdminConfig is an object representing the WebSphere Application
Server configuration

getid is an AdminConfig command

Node is the object type

mynode is the name of the object that will be modified

2. Create a server with the following command:
» Using Jacl:

set servl [$AdminConfig create Server $nl {{name myserv}}]

* Using Jython list:

servl = AdminConfig.create('Server', nl, [['name', 'myserv']])

* Using Jython string:

servl = AdminConfig.create('Server', nl, '[[name myserv]]"')

where:

set is a Jacl command

servl is a variable name

$ is a Jacl operator for substituting a variable name with its
value

AdminConfig is an object representing the WebSphere Application
Server configuration

create is an AdminConfig command

Server is an AdminConfig object

nl evaluates to the ID of host node specified in step number
2

name is an attribute

myserv is the value of the name attribute

After this command completes, some new files can be seen in a workspace used by the deployment

Chapter 5. Using scripting (wsadmin) 81

manager server on behalf of this scripting client. A workspace is a temporary repository of configuration
information that administrative clients use. Any changes made to the configuration by an administrative
client are first made to this temporary workspace. For scripting, only when a save command is invoked
on the AdminConfig object, these changes are transferred to the real configuration repository.
Workspaces are kept in the wstemp subdirectory of a WebSphere Application Server installation.

3. Make a configuration change to the server with the following command:
» Using Jacl:
$AdminConfig modify §servl {{stateManagement {{initialState STOP}}}}
* Using Jython list:
AdminConfig.modify(servl, [['stateManagement', [['initialState', 'STOP']]]1])
* Using Jython string:
AdminConfig.modify(servl, '[[stateManagement [[initialState STOP]]]]')

where:

$ is a Jacl operator for substituting a variable name with its
value

AdminConfig is an object representing the WebSphere Application
Server configuration

modi fy is an AdminConfig command

servl evaluates to the ID of host node specified in step number
3

stateManagement is an attribute

initialState is a nested attribute within the stateManagement attribute

STOP is the value of the initialState attribute

This command changes the initial state of the new server. After this command completes, one of the
files in the workspace is changed.

4. [Install an application on the server)
5. Save the configuration changes. See the [‘Saving configuration changes with the wsadmin tool” on

article for more information.

6. In a network deployment environment only, synchronize the node. See the [‘Synchronizing nodes with|
the wsadmin tool” on page 69 article for more information.

Modifying nested attributes with the wsadmin tool:

The attributes for a WebSphere Application Server configuration object are often deeply nested. For
example, a JDBCProvider object has an attribute factory, which is a list of the J2EEResourceFactory type
objects. These objects can be DataSource objects that contain a connectionPool attribute with a
ConnectionPool type that contains a variety of primitive attributes.

1. [Invoke the AdminConfig object commands interactively, in a script, or use the wsadmin -c commands|
from an operating system command prompt |

2. Obtain the configuration ID of the object, for example:
Using Jacl:
set t1 [$AdminConfig getid /DataSource:TechSamp/]
Using Jython:
t1=AdminConfig.getid('/DataSource:TechSamp/")

where:

set is a Jacl command

tl is a variable name

82 BM WebSphere Application Server Network Deployment, Version 6: Using the administrative clients

$ is a Jacl operator for substituting a variable name with its

value

AdminConfig is an object representing the WebSphere Application
Server configuration

getid is an AdminConfig command

DataSource is the object type

TechSamp is the name of the object that will be modified

3. Modify one of the object parents and specify the location of the nested attribute within the parent, for
example:

Using Jacl:

$AdminConfig modify $t1 {{connectionPool {{reapTime 2003}}}}
Using Jython list:

AdminConfig.modify(tl, [["connectionPool", [["reapTime", 200311]1])
Using Jython string:

AdminConfig.modify(tl, '[[connectionPool [[reapTime 2003]1]11")

where:

$ is a Jacl operator for substituting a variable name with its
value

AdminConfig is an object representing the WebSphere Application
Server configuration

modi fy is an AdminConfig command

tl evaluates to the configuration ID of the datasource in step
number 2

connectionPool is an attribute

reapTime is a nested attribute within the connectionPool attribute

2003 is the value of the reapTime attribute

4. Save the configuration by issuing an AdminConfig save command. For example:
Using Jacl:
$AdminConfig save
Using Jython:
AdminConfig.save()

Use the reset command of the AdminConfig object to undo changes that you made to your workspace
since your last save.

An alternative way to modify nested attributes is to modify the nested attribute directly, for example:

Using Jacl:

set techsamp [$AdminConfig getid /DataSource:TechSamp/]
set pool [$AdminConfig showAttribute $techsamp connectionPool]
$AdminConfig modify $pool {{reapTime 2003}}

Using Jython list:

techsamp=AdminConfig.getid('/DataSource:TechSamp/")
pool=AdminConfig.showAttribute(techsamp, 'connectionPool")
AdminConfig.modify(pool,[['reapTime',2003]])

Chapter 5. Using scripting (wsadmin) 83

Using Jython string:

techsamp=AdminConfig.getid('/DataSource:TechSamp/")
pool=AdminConfig.showAttribute(techsamp,'connectionPool")
AdminConfig.modify(pool,'[[reapTime 2003]]")

In this example, the first command gets the configuration id of the DataSource, and the second command
gets the connectionPool attribute. The third command sets the reapTime attribute on the ConnectionPool
object directly.

Saving configuration changes with the wsadmin tool:

The wsadmin tool uses the workspace to hold configuration changes. You must save your changes to
transfer the updates to the master configuration repository. If a scripting process ends and you have not
saved your changes, the changes are discarded. Use the following commands to save the configuration
changes:
* Using Jacl:

$AdminConfig save
» Using Jython:

AdminConfig.save()

where:

$ is a Jacl operator for substituting a variable name with its
value

AdminConfig is an object representing the WebSphere Application
Server configuration

save is an AdminConfig command

If you are using interactive mode with the wsadmin tool, you will be prompted to save your changes before
they are discarded. If you are using the -c option with the wsadmin tool, changes are automatically saved.

You can use the reset command of the AdminConfig object to undo changes that you made to your
configuration since your last save.

AdminTask object for scripted administration

Use the AdminTask object to access a set of administrative commands that provide an alternative way to
access the configuration commands and the running object management commands. The administrative
commands run simple and complex commands. They provide more user friendly and task-oriented
commands. The administrative commands are discovered dynamically when you start a scripting client.
The set of available administrative commands depends on the edition of WebSphere Application Server
you install. You can use the AdminTask object commands to access these commands.

Administrative commands are grouped based on their function. You can use administrative command
groups to find related commands. For example, the administrative commands that are related to server
management are grouped into a server management command group. The administrative commands that
are related to the security management are grouped into a security management command group. An
administrative command can be associated with multiple command groups because it can be useful for
multiple areas of system management. Both administrative commands and administrative command
groups are uniquely identified by their name.

Two run modes are always available for each administrative command, namely the batch and interactive

mode. When you use an administrative command in interactive mode, you go through a series of steps to
collect your input interactively. This process provides users a text-based wizard and a similar user

84 BM™ WebSphere Application Server Network Deployment, Version 6: Using the administrative clients

experience to the wizard in the administrative console. You can also use the help command to obtain help
for any administrative command and the AdminTask object.

The administrative commands do not replace any existing configuration commands or running object
management commands but provide a way to access these commands and organize the inputs.
Depending on the administrative command, it can be available in connected or local mode. The set of
available administrative commands is determined when you start a scripting client in connected or local
mode. If a server is running, it is not recommended that you run the scripting client in local mode because
any configuration changes made in local mode are not reflected in the running server configuration and
vice versa. If you save a conflicting configuration, you could corrupt the configuration. In a deployment
manager environment, configuration updates are available only if a scripting client is connected to a
deployment manager. When connected to a node agent or a managed application server, you will not be
able to update the configuration because the configuration for these server processes are copies of the
master configuration which resides in the deployment manager. The copies are created on a node
machine when a configuration synchronization occurs between the deployment manager and the node
agent. Make configuration changes to the server processes by connecting a scripting client to a
deployment manager. For this reason, to change a configuration, do not run a scripting client in local mode
on a node machine. It is not a supported configuration.

Obtaining online help using scripting:

There are three levels of online help available with the administrative commands. The top level help
provides general information for the AdminTask object and the commands associated with it. The second
level help provides information about all of the available administrative commands and command groups.
The third level help provides specific help on a command group, a command, or a step. Command group
specific help provides descriptions for the command group that you specify and the commands that belong
to the associated group. Command specific help provides description for the specified command, its
parameters, and steps, if any. Step specific help provides a description for the specified step and the
associated parameters. For command and step specific help, required parameters are marked with a * in
the help output.

» To obtain general help, use the following examples:
Using Jacl:
$AdminTask help
Using Jython:
print AdminTask.help()
Example output:

WASX8001I: The AdminTask object enables the execution of available
admin commands. AdminTask commands operate in two modes:
the default mode is one which AdminTask communicates with the
WebSphere server to accomplish its task. A local mode is also
available in which no server communication takes place. The local
mode of operation is invoked by bringing up the scripting client
using the command Tine "-conntype NONE" option or setting the
"com.ibm.ws.scripting.connectiontype=NONE" property in
wsadmin.properties file.

The number of admin commands varies and depends on your WebSphere install.
Use the following help commands to obtain a Tist of supported commands
and their parameters:

help -commands
list all the admin commands
help -commandGroups
list all the admin command groups
help commandName
display detailed information for
the specified command
help commandName stepName

Chapter 5. Using scripting (wsadmin) 85

display detailed information for
the specified step belonging to
the specified command
help commandGroupName
display detailed information for
the specified command group

There are various flavors to invoke an admin command:

commandName
invokes an admin command that does not require any argument.

commandName targetObject
invokes an admin command with the specified target object
string, for example, the configuration object name of a
resource adapter. The expected target object varies with
the admin command invoked. Use help command to get
information on the target object of an admin command.

commandName options
invokes an admin command with the specified option
strings. This invocation syntax is used to invoke an
admin command that does not require a target object. It
is also used to enter interactive mode if "-interactive
mode is included in the options string.

commandName targetObject options
invokes an admin command with the specified target
object and options strings. If "-interactive" is
included in the options string, then interactive mode
is entered. The target object and options strings vary
depending on the admin command invoked. Use help
command to get information on the target
object and options.

» To list the available command groups, use the following examples:
Using Jacl:
$AdminTask help -commandGroups
Using Jython:
print AdminTask.help('-commandGroups')
Example output:
WASX8005I: Available admin command groups:

ClusterConfigCommands - Commands for configuring application
server clusters and cluster members.

JCAManagement - A group of admin commands that helps to configure
Java2 Connector Architecture(J2C) related resources.

» To list the available commands, use the following examples:
Using Jacl:
$AdminTask help -commands
Using Jython:
print AdminTask.help('-commands')
Example output:
WASX8004I: Available administrative commands:

copyResourceAdapter - copy the specified J2C resource adapter to the specified scope
createCluster - Creates a new application server cluster.

createClusterMember - Creates a new member of an application server cluster.
createJ2CConnectionFactory - Create a J2C connection factory

deleteCluster - Delete the configuration of an application server cluster.
deleteClusterMember - Deletes a member from an application server cluster.
listConnectionFactoryInterfaces - list all of the

86 1BM WebSphere Application Server Network Deployment, Version 6: Using the administrative clients

defined connection factory interfaces on the

specified J2C resource adapter.

listJ2CConnectionFactories - List J2C connection factories that have a specified
connection factory interface defined in the specified J2C resouce adapter
createJ2CAdminObject - Create a J2C administrative object.
1istAdminObjectInterfaces - List all the defined administrative object interfaces
on the specified J2C resource adapter.

interface on the specified J2C resource adapter.

1istJ2CAdminObjects - List the J2C administrative objects that have a specified
administrative object interface defined in the specified J2C resource adapter.
createJ2CActivationSpec - Create a J2C activation specification.
listMessagelListenerTypes - 1ist all of the defined messagelListener

type on the specified J2C resource adapter.

listJ2CActivationSpecs - List the J2C activation specifications that have a
specified message listener type defined in the specified J2C resource adapter.

To obtain help about a command group, use the following examples:
Using Jacl:

$AdminTask help JCAManagement

Using Jython:

print AdminTask.help('JCAManagement')

Example output:

WASX80071: Detailed help for command group: JCAManagement

Descript