
XML -- table of contents

           0.3.2: What are application server configuration files?

Development

           4.2.3: Incorporating XML
               4.2.3.2: Specifying XML document structure
               4.2.3.3: Providing XML document content
               4.2.3.4: Rendering XML documents
               4.2.3.6: Using DOM to incorporate XML documents into applications
                   4.2.3.6.1: Quick reference to DOM object interfaces
               4.2.3.7: SiteOutliner sample



0.3.2: What are application server configuration files?
Application server configuration files define the administrative configuration of your WebSphere Application
Server product installation. That is, applicationconfiguration files describe the available application servers,
their configurations, andtheir contents.

WebSphere Application Server Advanced Edition Version 3.5 stored administrative data in a database. Version
4.0 (non-Single Server Edition) also stores administrative datain a database.

Version 4.0 (Single Server Edition) does not use a database. Instead, it uses application server configuration
files, which are flattened, XML versions of the administrative database. When you start the product, the XML is
parsedto determine the contents of the application server being started.

Location of the application server configuration files

One or more configuration files are provided for you to copy and modify. The followingfile contains a
configuration for a default application server and several other applications and resources that you can use as
examples or defaults:

product_installation_root/config/server-cfg.xml

It also contains the administrative application, thin-admin.

A second file contains a very basic configuration on which you can build:

product_installation_root/config/template-server-cfg.xml

A third file contains a stripped down version of the default server-cfg.xml file.It contains just the configuration
for the administration application. The admin-server-cfg.xml is provided in case you want to run the
administrative console application in a separate application server instance.

product_installation_root/config/admin-server-cfg.xml

Use the console to edit files

Use the administrative console to modify configurationfiles, rather than modifying them directly.

How can I tell which one I am editing?

To determine which configuration file that you are currently using theadministrative console to edit, start the
administrative console. Look for the server configuration file name,under the banner, towards the top left corner
of the screen.

Note, a different configuration file could be in use by the runningapplication server.

http://localhost/0802_makepdf/aes_orig/nav_xmlnav/root.html
http://localhost/0802_makepdf/aes_orig/nav_xmlnav/root.html
http://localhost/0802_makepdf/aes_orig/nav_xmlnav/root.html
http://localhost/0802_makepdf/aes_orig/nav_xmlnav/06060003.html
http://localhost/0802_makepdf/aes_orig/nav_xmlnav/06060003a.html
http://localhost/0802_makepdf/aes_orig/nav_xmlnav/06060003a.html


4.2.3: Incorporating XML
IBM WebSphere Application Server provides XML Document Structure Services, which consist of a document
parser, a document validator, and a document generator for server-side XML processing.

See article 4.1.1.2 for all of the details about XML supportin the product.If you are just becoming familiar with
XML, start with article 0.33, a primer on XML concepts, vocabulary, and uses.

Other related information provides guidance on the following topics:

Structure -- defining and obeying the syntax for an XML tag set●   

Content -- determining the mechanism for filling XML tags with data●   

Presentation -- determining the mechanism for formatting and displaying XML content●   

In addition, some special topics are covered, including DOM objects andmanipulation of Channel Definition
Format (CDF) files as illustrated bythe SiteOutliner example.

When you install IBM WebSphere Application Server, the core XML APIs are automatically added to the
appropriate class path, enabling you to serve static XML documents as soon as the product is installed.

To serve XML documents that are dynamically generated, use the core APIs to develop servlets or Web
applications that generate XML documents (for example, the applications might read the document content
from a database) and then deploy those components on your application server.



4.2.3.2: Specifying XML document structure
The structure of an XML document is governed by syntax rules for its tag set. Those tags are defined formally
in an XML-based grammar, such as a Document Type Definition (DTD). At the time of this publication, DTD
is the most widely-implemented grammar. Therefore, this article discusses options for using DTDs.

Options for XML document structure include:

Do not use a DTD. Not using a DTD enables maximum flexibility in evolving XML document structure, but
this flexibility limits the ability to share the documents among users and applications. An XML document can
be parsed without a DTD. If the parser does not find an inline DTD or a reference to an external DTD, the
parser proceeds using the actual structure of the tags within the document as an implied DTD. The processor
evaluates the document to determine whether it meets the rules for well-formedness.

Use a public DTD. Various industry and other interest groups are developing DTDs for categories of
documents, such as chemical data and archival documents. Many of these DTDs are in the public domain and
are available over the Internet. Using an industry standard DTD maximizes sharing documents among
applications that act on the grammar. If the standard DTD does not accomodate the schema the applications
need, flexibility is limited.

Several industry and interest groups have developed and proposed DTD grammars for the types of documents
they produce and exchange. To make it easier for you to use those grammars, local copies are installed with the
product. Use the grammars as examples in developing your own grammars as well as for creating and validating
XML documents of those types. The library is located atproduct_installation_root\web\xml\grammar\

Develop a DTD. If none of the public DTDs meet an enterprise's needs and enforcing document validity is a
requirement, the XML implementers can develop a DTD. Developing a DTD requires careful analysis of the
information (data) that the documents will contain.

For DTD updates,visit the XML Industry Portal.For details about the DTD specifications and sample DTDs,
refer toIBM's developerWorkssite for education and other DTD resources.

http://localhost/0802_makepdf/aes_orig/nav_xmlnav/root.html


4.2.3.3: Providing XML document content
The content of an XML document is the actual data that appears within the document tags. XML implementers
must determine the source and the mechanism for putting the data into the document tags. The options include:

Static content. XML document content is created and stored on the Web server as static files. The XML
document author composes the document to include valid XML tags and data in a manner similar to how
HTML authors compose static HTML files. This approach works well for data that is not expected to change or
that will change infrequently. Examples are journal articles, glossaries, and literature.

Dynamically generated content. XML document content can be dynamically generated from a database and
user input. In this scenario, XML-capable servlets, Java beans, and even inline Java code within a JavaServer
Page (JSP) file can be used to generate the XML document content.

A hybrid of static and dynamically generated content. This scenario involves a prudent combination of static
and dynamically generated content.

You can also use XSL to add to or remove information from existing XML content.For details, see the Related
information.



4.2.3.4: Rendering XML documents
Options for presenting XML documents include:

Present the XML document in an XML-enabled browser. An XML-enabled browser can parse a document,
apply its XSL stylesheet, and present the document to the user. Searching and enabling users to modify an XML
document are other possible functions of XML-enabled browsers.

Present the XML document to a browser that converts XML to HTML. Until XML-enabled browsers are
readily available, presenting XML documents to users will involve converting the XML document to HTML.
That conversion can be handled by conversion-capable browsers. Another option is to use JavaScript or
ActiveX controls embedded within the XML document. Microsoft Internet Explorer Version 5 is an
XML-to-HTML converter. HTML is not the only format to which XML documents can be converted. It's just
the easiest to implement given the commerically available browsers and user agents.

Send an HTML file to the browser. If the users do not have XML-capable browsers, the XML document must
be converted at the server before being transmitted to the browser. The server-side XML application that
handles the conversion could also determine the capability of the browser before converting the document to
HTML, to avoid unnecessary processing if the browser is XML-capable. The XSL processor included with this
product supports such server-side functions.

Using XSL to convert XML documents to other formats

IBM WebSphere Application Server includes the Lotus XSL processor and its open-sourceversion, Xalan, for
formatting and converting XML documents. Processing can be done at the server or at the browser, to HTML or
to other XML-compliant markup languages.For sample code, see the Xalan documentation.

Converting XML documents at the server

One option for presenting an XML document is for the server to convert the XML document to HTML and
return the HTML document to the client. On the server side, this typically requires the creation of a servletto
handle the processing of one data stream (the XML document)with another (the XSL document).The output of
that process is then forwarded back to the browser.

Server-side processing often requires the passing in of parameters through theXSL processor to customize the
output.For an example, see the Xalan documentation.



4.2.3.6: Using DOM to incorporate XML documents
into applications
The Document Object Model (DOM) is an API for representing XML and HTML documentsas objects that can
be accessed by object-oriented programs, such as business logic, for the purposes of creating, navigating,
manipulating, and modifying the documents.

Article 0.33.3 introduces DOM concepts and vocabulary. Article 4.1.1.2 tells youwhere to find the DOM
specification and org.w3c.dom package.

Article 4.2.3.6.1 providesa quick reference so that you can jump right into DOM development, referring to
thepackage and specification as needed.



4.2.3.6.1: Quick reference to DOM object interfaces
This section highlights a few of the object interfaces. Refer to theDOM Specification for details (see article
4.1.1.2).

Node methods

Node methods include:

Method Description

hasChildNodes Returns a boolean to indicate whether a node has children

appendNode Appends a new child node to the end of the list of children for a
parent node

insertBefore Inserts a child node before the existing child node

removeChild Removes the specified child node from the node list and returns
the node

replaceChild Replaces the specified child node with the specified new node and
returns the new node

Document methods

The Document object represents the entire XML document. Document methods include:

Method Description

createElement Creates and returns an Element (tag) of the type specified. If the
document will be validated against a DTD, that DTD must contain
an Element declaration for the created element.

createTextNode Creates a Text node that contains the specified string

createComment Creates a Comment node with the specified content (enclosed
within <!-- and --> tags)

createAttribute Creates an Attribute node of the specified name. Use the
setAttribute method of Element to set the value of the Attribute. If
the document will be validated against a DTD, that DTD must
contain an Attribute declaration for the created attribute.

createProcessingInstruction Creates a Processing Instruction with the specified name and data
(enclosed within <? and ?> tags). A processing instruction is an
instruction to the application (such as an XML document formatter)
that receives the XML document.

Element methods

Element node methods include:

Method Description

getAttribute Returns the value of the specified attribute or empty string

setAttribute Adds a new attribute-value pair to the element



removeAttribute Removes the specified attribute from the element

getElementsByTagName Returns a list of the element descendants that have the specified
tag name

A Text node can be a child of an Element or Attribute node and contains the textual content (character data) for
the parent node. If the content does not include markup, all of the content is placed within a single Text node. If
the content includes markup, that markup is placed in one or more Text nodes that are siblings of the Text node
that contains the non-markup content.

The Text node extends the CharacterData interface, which has methods for setting, getting, replacing, inserting,
and making other modifications to a Text node. In addition to those methods, the Text node adds a method:

Method Description

splitText Splits the Text node at the specified offset. Returns a new Text node, which contains
the original content starting at the offset. The original Text node contains the content
from the beginning to the offset.



4.2.3.7: SiteOutliner sample
The SiteOutliner servlet illustrates how to use the XML Document Structure Services to generate and view a
Channel Definition Format (CDF) file for a target directory on the servlet's Web server. Use Lotus Notes 5 (the
Headlines page), Microsoft Internet Explorer 4 Channel Bar, PointCast, Netscape Navigator 4.06, orother
CDF-capable viewers to view and manipulate the CDF file.

SiteOutliner is part of the WebSphere Samples Gallery. When you open the gallery,follow the links to
SiteOutliner to run it on your local machine.


	Numbx: 
	L: 
	C: 
	R: 

	P1: 
	Numbers: 
	Numbx: 
	L: 
	C: 
	R: 1



	P2: 
	Numbers: 
	Numbx: 
	L: 2
	C: 
	R: 



	P3: 
	Numbers: 
	Numbx: 
	L: 
	C: 
	R: 3



	P4: 
	Numbers: 
	Numbx: 
	L: 4
	C: 
	R: 



	P5: 
	Numbers: 
	Numbx: 
	L: 
	C: 
	R: 5



	P6: 
	Numbers: 
	Numbx: 
	L: 6
	C: 
	R: 



	P7: 
	Numbers: 
	Numbx: 
	L: 
	C: 
	R: 7



	P8: 
	Numbers: 
	Numbx: 
	L: 8
	C: 
	R: 



	P9: 
	Numbers: 
	Numbx: 
	L: 
	C: 
	R: 9



	P10: 
	Numbers: 
	Numbx: 
	L: 10
	C: 
	R: 





