
WebSphere Application Server Enterprise Services

Internationalization Service

Note!
Before using this information and the product it supports, be sure to read the general information under “Notices”on
page 24 .

© IBM Corporation 2001 US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

Contents

The Internationalization Service 2
Computers with differing endian
architectures or code sets

2

Computers located in different locales 2
Computers located in different time zones
...

3

The Internationalization Service solution
...

3

Using the Internationalization Service 5
Enabling or disabling the
Internationalization Service

5

Enabling Internationalization context
within application servers

5

Enabling Internationalization context
within Enterprise JavaBean Java
application clients

6

Disabling Internationalization context
within application servers

6

Disabling Internationalization context
within Enterprise JavaBean Java
application clients

7

Managing Internationalization context 7
Configuring the programming
environment

7

Gaining access to the
Internationalization context API

7

Accessing caller locales and time zone
...

8

Accessing invocation locales and time
zone ...

9

Tracing Internationalization Service
function ..

11

Examples and reference 13
The programming model 13

Internationalization context 13
Internationalization context management
...

14

Thread association considerations
...

15

The JNDI environment 15
Internationalization context application
programming interface

15

Handling exceptions 17
Programming examples 17

Enterprise JavaBeans Java client
(contained) ..

18

Enterprise JavaBeans servlet 19
Enterprise JavaBeans session bean
...

21

Verifying service configuration 22

Contents

WebSphere Application Server Enterprise Services - Page 3

WebSphere Application Server Enterprise Services - Page 1

The Internationalization Service
In a distributed client-server environment, application processes may run on different
machines configured to different locales corresponding to different cultural conventions; they
can also be located across geographical boundaries. With the advent of Internet based
business computational models, like eCommerce, the possibility is ever increasing that
applications will have clients and servers operating in different locales and geographical
regions. With respect to internationalization, this heterogeneity introduces new challenges to
the task of designing a sound client-server infrastructure.

For example, clients and servers could:

• “Reside in computers having different endian architectures or code sets” on page 2

• “Be located in different locales” on page 2

• “Be located in different time zones” on page 3

The traditional solution for solving locale and time zone mismatch problems is to pass one
or more extra parameters on all business methods necessary for conveying either the
client's locale or time zone to the server. Though simple, this technique has serious
limitations within Enterprise JavaBeans applications:

• It is intrusive, requiring that one or more parameters be added to all bean methods in the
call chain to locale-sensitive or time zone-sensitive methods.

• It is inherently error-prone.

• It can be impracticable within applications that do not afford modification, such as a
legacy application.

The Internationalization Service offers a solution to these challenges. For more information,
see “The Internationalization Service solution” on page 3.

Computers with differing endian architectures or code sets
Clients and servers can reside in computers having different endian architectures: a client
could reside in a little-endian CPU, while the server code runs in a big-endian one. As a
more complex instance, a client may want to invoke a business method on a server running
in a code set different from that of the client.

A client-server infrastructure must define precise endian and code set tracking and
conversion rules. As prominent reference examples of client-server architectures, both
CORBA and J2EE have addressed the problems of endian and code set mismatches. The
language neutral CORBA formalism uses byte order indicator in all marshalled data streams
to indicate the byte order of the originating machine; in case of an endian mismatch, the
receiving side can perform byte swapping for endian correction. The code set mismatch is
addressed by CORBA using a comprehensive framework for code set conversion. J2EE has
nearly eliminated the aforementioned problems in a unique way by relying on its Java Virtual
Machine (JVM), which encodes all string data in UCS-2 and externalizes everything in big
endian format.

The JVM employs a set of platform-specific programs for interfacing with the native platform.
These programs perform any necessary code set conversions between UCS-2 and the
native code set of a platform.

Computers located in different locales
Client and server processes can execute in geographical locations having different time

WebSphere Application Server Enterprise Services - Page 2

zones. For example, a Spanish client may invoke a business method upon an object
residing on an American server. Some business methods can be locale sensitive in nature;
for example, given a business method that returns a sorted list of strings, the Spanish client
will expect that list to be sorted according to the Spanish collating sequence, not in the
server's English collating sequence. Since data retrieval and sorting procedures run on the
server, the locale of the client must be available in order to perform a legitimate sort.

A similar consideration applies in the instances where the server has to return strings
containing date, time or currency, exception messages, and so on, formatted according to
the client's cultural expectations. Neither the CORBA nor the J2EE specifications have
architecturally addressed the locale mismatch problem, and other options involving extra
parameters are not practical or have limitations. For example, requiring an extra parameter
could require interface changes, which is a serious concern for deployed applications.

Computers located in different time zones
Client and server processes can execute in geographical locations having different time
zones. To date, all internationalization literature and resources have concentrated mainly on
code set and locale related issues. They have mostly ignored the time zone issue, even
though business methods can be sensitive to time zone as well as to locele.

For example, consider a simple eCommerce application for buying, selling, or trading stocks
based on requests originating from its subscribers. Assume that the server is placed in Wall
Street in a computer configured for the Eastern Standard Time (EST) time zone. Depending
on market volatility, the result of a stock purchase request originating from a Central
Standard Time (CST) client can vary dramatically if the eCommerce application does not
account for the time zone differential between client and server.

Other time zone sensitive operations include time stamping messages logged to a server
and resource (file, database) accesses. The concept of Daylight Savings Time (DST) further
complicates the time zone issue. Neither the CORBA nor the J2EE specifications address
the issues adequately and traditional methods of solving the problem are limited.

The Internationalization Service solution
The WebSphere Enterprise Internationalization Service solves the locale and time zone
mismatch problems without the traditional limitations by managing the distribution of
Internationalization context (locale and time zone) across the various components of
Enterprise JavaBean applications, including Java client applications, Enterprise JavaBeans,
and servlets. Server-side components can use the Internationalization context API to access
distributed Internationalization context and then localize computations according to the
locale or time zone of remote, client-side components.

The service works by associating an Internationalization context with every thread of
execution within an application. When a client-side program invokes a remote business
method, the Internationalization Service transparently interposes by obtaining the context
associated with the current thread and attaching it to the outgoing request. At the
server-side, the Internationalization Service again interposes by detaching the caller’s
context from the incoming request and associating it with the thread on which the remote
business method will run. The service will propagate this context on subsequent remote
business method invocations in the same manner and thus distribute the context of the
originating request over the call chain.

This basic operation is precisely defined by the service’s Internationalization context
management policies, which specify how context propagates over all supported component
types, the context under which a component executes, and the usage guidelines an
end-user will follow to programmatically access context using the Internationalization

WebSphere Application Server Enterprise Services - Page 3

context API.

To programmatically manage Internationalization context, an application component first
resolves the appropriate Internationalization Service API references. Depending on the API
reference employed and the applicable context management policy, a component can
access different types of Internationalization context elements, such as the caller locale or
the invocation time zone.

For information about Internationalization context types and how to programmatically
manage them, see:

• “Internationalization context” on page 13

• “Managing Internationalization context” on page 7

• “Internationalization context application programming interface” on page 15

To utilize Internationalization context within an application, the service must be enabled in
the Enterprise JavaBeans client container (if the application has an Enterprise JavaBeans
client program) and in all application servers containing the application’s Enterprise
JavaBeans and servlets.

Information about configuring Internationalization service function appear in:

• “Enabling or disabling the Internationalization Service” on page 5

• “Tracing Internationalization Service Function” on page 11

WebSphere Application Server Enterprise Services - Page 4

Using the Internationalization Service
This section discusses the tasks involved in setting up and using the Internationalization
Service. Topics included in this section include:

• “Enabling or disabling the Internationalization Service” on page 5

• “Managing Internationalization context” on page 7

• “Tracing Internationalization Service function” on page 11

Enabling or disabling the Internationalization Service

This section describes how end-users enable and disable the Internationalization Service to
manage context within application servers and within Enterprise JavaBean contained client
programs.

For more information, see:

• “Enabling Internationalization context within application servers” on page 5

• “Enabling Internationalization context within Enterprise JavaBean Java application
clients” on page 6

• “Disabling Internationalization context within application servers” on page 6

• “Disabling Internationalization context within Enterprise JavaBean Java application
clients” on page 7

Enabling Internationalization context within application servers

Any Enterprise JavaBean or Servlet can utilize Internationalization context whenever the
Internationalization Service is enabled within the containing application server.

The Internationalization Service is enabled within application servers using the Custom tab.
The Custom tab lists all Enterprise Services available to a particular application server and
provides access to the configuration properties of each.

Perform the following steps to enable Internationalization context within an application
server:

1. View the Custom tab:

a Start the WebSphere Administration Client tool.

b Select the application server requiring the Internationalization Service.

c In the right-hand pane, click the Custom tab.

• If the Custom tab does not list the Internationalization Service entry, a new entry
for Internationalization Service must be added. Go to “step 2” on page 5.

• If the Custom tab lists the Internationalization Service entry, then the
Internationalization Service properties can be viewed and edited. Go to “step 3” on
page 6.

2. Add a new Internationalization Service entry to the Custom tab:

a From the Custom tab, click Add.
The Add Custom Service dialog is displayed.

b In the Add Custom Service dialog, enter the properties as indicated in “step 3” on
page 6.

c Click OK.
The Add Custom Service dialog closes.

WebSphere Application Server Enterprise Services - Page 5

d Click Apply.
Your changes are saved.

3. Verify or edit the Internationalization Service properties:

a From the Custom tab, click Edit.
The Edit Custom Service dialog is displayed.

b Click the General tab.

c In the Classname field, verify or type the following entry:
com.ibm.ws.i18n.context.ServiceInit

d If not already selected, select the Enabled check box.

e Click OK.
The Edit Custom Service dialog closes.

f Click Apply to save any changes.
Your changes are saved.

These settings cause the Internationalization Service to initialize when starting or restarting
the corresponding application server.

Enabling Internationalization context within Enterprise JavaBean Java
application clients

The Internationalization Service is enabled to manage Internationalization context within
contained Enterprise JavaBean Java application clients whenever the i18nctx.jar file
appears in the CLASSPATH constructed by the launchclient utility. When invoking a client
application, launchclient correctly configures the CLASSPATH to include i18nctx.jar, then
initializes the service for use within that application.

Disabling Internationalization context within application servers

The Internationalization Service can be disabled within application servers using the
Custom services tab. The Custom services tab lists all Enterprise Services available to a
particular application server and provides access to the configuration properties of each.

Perform the following steps to disable Internationalization context within an application
server:

1. View the Custom services tab:

a Start the WebSphere Administration Client tool.

b Select the application server for which you want to disable the Internationalization
context.

c In the right-hand pane, click the Custom tab.

• If the Custom tab lists the Internationalization Service entry and indicates that it is
enabled, then go to “step 2” on page 6to disable the Internationalization context.

• Otherwise, the Internationalization Service is disabled and no further action is
required. Close the WebSphere Administration Client tool.

2. Edit the Internationalization Service configuration properties:

a From the Custom tab, click Edit.
The Edit Custom Service dialog is displayed.

b Clear the Enabled box.

c Click OK.

WebSphere Application Server Enterprise Services - Page 6

The Edit Custom Service dialog closes. Your changes are saved.

These settings keep the Internationalization Service from initializing (that is, they disable the
Internationalization context) when starting or restarting the corresponding application server.

Disabling Internationalization context within Enterprise JavaBean Java
application clients

The Internationalization Service is normally enabled to manage Internationalization context
within contained Enterprise JavaBean Java application clients. To disable
Internationalization context, you must ensure that the i18nctx.jar Jar file is not included
in the CLASSPATH.

Because the CLASSPATH is included automatically when the launchclient utility constructs
the CLASSPATH, you must remove the i18nctx.jar Jar file from the WAS_HOME/lib
directory (where WAS_HOME represents the directory in which WebSphere Advanced
Edition is installed). This prevents the file from being included in the CLASSPATH
constructed by the launchclient utility.

Caution: Removing the i18nctx.jar Jar file from the WAS_HOME/lib directory disables
any application server in your installation from using the Internationalization Service.

Managing Internationalization context

Enterprise JavaBean components can programmatically manage Internationalization
Context using the Internationalization context Application Programming Interface (API). This
section describes how to access both caller and invocation Internationalization context
elements within Enterprise JavaBean application clients, servlets, and Enterprise
JavaBeans.

For additional information, see:

• “Configuring the programming environment” on page 7

• “Gaining access to the Internationalization context API” on page 7

• “Accessing caller locales and time zone” on page 8

• “Accessing invocation locales and time zone” on page 9

Configuring the programming environment

The java.util and com.ibm.websphere.i18n.context packages contain all classes
necessary to utilize the Internationalization Service within an Enterprise JavaBean
application.

Classes specific to the Internationalization Service reside in the
WAS_HOME/lib/i18nctx.jar Jar file (where WAS_HOME is the directory in which
WebSphere Enterprise Extensions is installed). Be sure to add the i18nctx.jar Jar file to
the CLASSPATH when compiling application components that import Internationalization
Service classes.

Gaining access to the Internationalization context API

In the Enterprise JavaBeans environment, the Internationalization Service supplies a JNDI
binding to an implementation of the UserInternationalization interface under the
java:comp/websphere/UserInternationalization name. Applications requiring access to the
service can perform a lookup on that JNDI name, as shown in the following code snippet:

WebSphere Application Server Enterprise Services - Page 7

import com.ibm.websphere.i18n.context.*;
import javax.naming.*;
public class MyApplication {
...
//--
// Resolve a reference to the UserInternationalization interface.
//--
InitialContext initCtx = null;
UserInternationalization userI18n = null;
try {

initCtx = new InitialContext();
userI18n = (UserInternationalization)initCtx.lookup(
"java:comp/websphere/UserInternationalization");

}
catch (NamingException nnfe) {

// UserInternationalization URL is unavailable.
}
catch (NamingException ne) {

// InitialContext could not be instantiated.
}
...

Once an application component resolves a reference to the UserInternationalization
interface, it can use this reference to create references to the Internationalization and
InvocationInternationalization interfaces, which afford access to both caller and invocation
locales and time zone. See the following code snippet:
...
//--
// Resolve references to the Internationalization and
// InvocationInternationalization interfaces.
//--
Internationalization callerI18n = null;
InvocationInternationalization invocationI18n = null;
try {

callerI18n = userI18n.getCallerInternationalization();
invocationI18n = userI18n.getInvocationInternationalization();

}
catch (IllegalStateException iae) {

// An Internationalization interface(s) is unavailable.
}
...

Suggestion: Internationalization context API references need to be resolved only once over
the lifecycle of any application component. Therefore, when developing server-side
application components (for example, servlets and Enterprise JavaBeans), resolve the
Internationalization context API references within the initialization methods of such
components (for example, within the init() method of servlets, or within the
ejbCreate() method of Enterprise JavaBeans). See “Programming examples” on page 17
for more information.

Accessing caller locales and time zone

Every invocation of an application component has an associated caller Internationalization
context associated with the thread running that invocation. Caller context is propagated
using the Internationalization Service and middleware to the target of a request, such as
remote Enterprise JavaBean or servlet service methods.

To obtain caller locales and time zone, an application component first resolves a reference
to the Internationalization interface, and then calls the appropriate accessor method. Details
for obtaining this reference can be found in “Gaining access to the Internationalization
context API” on page 7 .

The Internationalization interface contains the following methods to get caller
Internationalization context elements:

Locale [] getLocales()

WebSphere Application Server Enterprise Services - Page 8

Returns the list of caller locales associated with the current thread.

Locale getLocale()
Returns the first in the list of caller locales associated with the current thread.

TimeZone getTimeZone()
Returns the caller SimpleTimeZone associated with the current thread.

For complete information about Internationalization interface methods, see sections:

• “Internationalization Context Application Programming Interface” on page 15

• “Programming Examples” on page 17

The following code snippet illustrates the basic usage of the Internationalization interface:
//--
// Internationalization context imports.
//--
import com.ibm.websphere.i18n.context.*;
...
public class MyApplication {
...
//--
// Resolve the Internationalization context API here. See the
// “Gaining access to the Internationalization Context API” on page 7
// topic for complete details.
//--
UserInternationalization userI18n = null;
Internationalization callerI18n = null;
...
//--
// Obtain the desired Internationalization context element.
//--
java.util.Locale [] myLocales = callerI18n.getLocales();
java.util.Locale myLocale = callerI18n.getLocale();
java.util.SimpleTimeZone myTimeZone = callerI18n.getTimezone();
...
//--
// Utilize the caller context element to perform a locale or
// time zone sensitive computation, for example:
//--
DateFormat df = DateFormat.getDateInstance(myLocale);
String localizedDate = df.getDateInstance().format(aDateInstance);
...

Internationalization interface methods are utilized in the same manner and are available
within all Enterprise JavaBean application components; however their semantics vary
slightly depending upon a component's type. For instance, when obtaining a caller
Internationalization context element within a Java client application the service returns the
corresponding default or process-based element; in contrast, when obtaining caller locales
within a servlet service method (for example, doPost() or doGet()), the service returns the
locales propagated within the corresponding HTML request. See “Internationalization
context management” on page 14for a discussion of how the service propagates
Internationalization context throughout an application.

Accessing invocation locales and time zone

Every invocation of an application component has an associated invocation
Internationalization context associated with the running thread. Invocation context is that
under which a request, such as a remote business method implementation, executes; it is
propagated on subsequent invocations using the Internationalization Service and
middleware.

To access invocation locales and time zone, an application component must first resolve a
reference to the InvocationInternationalization interface of the Internationalization context
API. For more information, see “Gaining access to the Internationalization context API” on
page 7 .

WebSphere Application Server Enterprise Services - Page 9

The InvocationInternationalization interface contains methods to both get and set invocation
Internationalization context elements:

Locale [] getLocales()
Returns the list of invocation locales associated with the current thread.

Locale getLocale()
Returns the first in the list of invocation locales associated with the current thread.

TimeZone getTimeZone()
Returns the invocation SimpleTimeZone associated with the current thread.

setLocales(Locale [])
Sets the list of invocation locales associated with the current thread to the supplied
list.

setLocale(Locale)
Sets the list of invocation locales associated with the current thread to a list
containing the supplied locale.

setTimeZone(TimeZone)
Sets the invocation time zone associated with the current thread to the supplied
SimpleTimeZone.

setTimeZone(String)
Sets invocation time zone associated with the current thread to a SimpleTimeZone
having the supplied ID.

For complete information about Internationalization interface methods, see:

• “Internationalization Context Application Programming Interface” on page 15

• “Programming Examples” on page 17

The following code snippets illustrate the use of the InvocationInternationalization interface:
//--
// Internationalization context imports.
//--
import com.ibm.websphere.i18n.context.*;
...
public class MyApplication {
...
//--
// Resolve the Internationalization context API. For details,
// see “Gaining access to the Internationalization Context API” on
page 7
.
//--
UserInternationalization userI18n = null;
Internationalization invocationI18n = null;
...
//--
// Obtain the desired invocation context element.
//--
java.util.Locale [] myLocales = invocationI18n.getLocales();
java.util.Locale myLocale = invocationI18n.getLocale();
java.util.SimpleTimeZone myTimeZone = invocationI18n.getTimezone();
...
//--
// Utilize an invocation context element to perform a locale or
// time zone sensitive computation, for example:
//--
DateFormat df = DateFormat.getDateInstance(myLocale);
String localizedDate = df.getDateInstance().format(aDateInstance);
...

The InvocationInternalization interface allows read and write access to invocation
Internationalization context within application components. However, according to

WebSphere Application Server Enterprise Services - Page 10

Internationalization context management policies, only Enterprise JavaBean application
clients have write access to invocation Internationalization context elements. Differences in
how application components may utilize InvocationInternationalization methods are
explained in “Internationalization context management” on page 14.

In the following code snippet, locale (en,GB) and simple time zone (GMT) transparently
propagate on the call to myBusinessMethod(). Server-side application components, such as
myEjb, may utilize the InvocationInternationalization interface to obtain these context
elements.
...
//--
// Set the invocation context that will propagate on subsequent
// remote business method calls.
//--
Locale localeToPropagate = new Locale("en", "GB");
SimpleTimeZone timeZoneToPropagate =

(SimpleTimeZone)SimpleTimeZone.getTimeZone("GMT");
invocationI18n.setLocale(localeToPropagate);
invocationI18n.setTimeZone(timeZoneToPropagate);
myEjb.myBusinessMethod();

Internationalization context management policies also stipulate that server-side application
components (for example, Enterprise JavaBeans and servlets) always run under the caller's
context, if it exists, or otherwise that of the containing server process. In addition, such
components cannot set invocation context elements.

Thus, within server-side application components the Internationalization and
InvocationInternationalization interfaces are semantically equivalent, and either can be used
to obtain the context associated with the thread on which that component is running. For
instance, both interfaces can be used to obtain the list of locales propagated to a servlet
service doPost().

Because the model specifies read-only access to server-side invocation context, calls to set
invocation context elements within server-side application components result in a
java.lang.IllegalStateException.

Tracing Internationalization Service function

You can enable an application server to emit trace statements regarding Internationalization
Service function by specifying the trace string to an application server's Trace Service.

To enable trace using an application server's Trace Service:

1. In the WebSphere Advanced Administrative Console window, expand WebSphere
administrative domain > Nodes > node > Application servers > application_server .

The properties related to the selected application server are displayed in the right-hand
pane.

Note: node represents the node on which the application server is located and
application_server represents the name of the application server for which you are
enabling the trace.

2. In the right-hand pane of the WebSphere Advanced Administrative Console window,
select the Services tab.

3. On the Services tab, select Trace services from the list of services.

4. On the Trace services pop-up menu, click Edit Properties.

The Trace Service dialog is displayed.

WebSphere Application Server Enterprise Services - Page 11

5. Click Edit Properties.

The Trace Service Properties dialog is displayed.

6. In the Trace Specification box, enter the following as a continuous string (no spaces
and no line breaks):

com.ibm.ws.i18n.context.*=all=enabled:
com.ibm.websphere.i18n.context.*=all=enabled:
com.ibm.II18nContextImpl.*=all=enabled:
com.ibm.II18nContextImpl.util.*=all=enabled

7. Click OK.

The Trace Service Properties dialog closes.

8. Click Apply.

The changes are applied.

Notes:

1. Clicking Apply enables the trace and makes the trace persistent across server shutdown
and restart.

2. Within this procedure, you can specify an output file to which to log application server
trace messages, including those generated by the Internationalization Service.

Restart the application server. Messages tracing function of the Internationalization Service
output to the file specified in the Trace Service Properties dialog.

WebSphere Application Server Enterprise Services - Page 12

Examples and reference
This section provides the reference information you can use to assist you when setting up
and using the Internationalization Service. Topics included in this section include:

• “The programming model” on page 13

• “Programming examples” on page 17

• “Verifying service configuration” on page 22

The programming model
This section describes the types used to programmatically compose and manage
Internationalization context within an Enterprise JavaBean application. All programming
types mentioned in this section are contained in the java.util and
com.ibm.websphere.i18n.context packages.

For more information, see:

• “Internationalization context” on page 13

• “Internationalization context management” on page 14

• “Thread association considerations” on page 15

• “The JNDI environment” on page 15

• “Internationalization context application programming interface” on page 15

• “Handling exceptions” on page 17

Internationalization context
Internationalization context consists of a fixed-length list (array) of locales and a time zone
(where a locale is an instance of the java.util.Locale class and time zone is an instance of
the java.util.SimpleTimeZone class). Refer to the Java SDK API documentation for a
complete description of each type.

Note: For this release, the Internationalization Service does not support Java SDK
TimeZone types other than java.util.SimpleTimeZone. Unsupported TimeZone types silently
map to default SimpleTimeZone when supplied to service API methods.

Enterprise JavaBean applications use the service to access and manage the following types
of Internationalization context:

Caller context
Caller context is a locale list and time zone that propagates from calling application
components on remote business methods and requests; it is the context associated
with an incoming request. Caller context is accessible within all application
components, but is manageable neither declaratively nor programmatically and
defaults to that of the process (for example, java.util.Locale.getDefault()
or java.util.SimpleTimeZone.getDefault()) whenever it is unavailable.

Invocation context
Invocation context is a locale list and time zone that propagates to target application
components on remote business methods; it is the context under which a
component or business method executes. Invocation context is manageable both
declaratively and programmatically according to the applicable Internationalization
Service context management policies. In particular, these polices specify API
access restrictions, how invocation context propagates on remote requests, and the
context under which a target request executes.

To make these terms more concrete, imagine a simple JavaBean application having a client

WebSphere Application Server Enterprise Services - Page 13

that invokes remote bean method, myBeanMethod(). On the client-side, the application
can utilize the service to access caller or invocation context. When the application calls
myBeanMethod(), the service attaches the invocation context to the outgoing request. On
the server-side, the service detaches the caller context from the incoming request and
makes it available to the implementation of myBeanMethod(), which can utilize the
Internationalization service API to access it.

These terms are important in describing how the WebSphere Application Server manages
Internationalization context on behalf of an application.

Internationalization context management
The Internationalization Service transparently propagates locales and time zone across the
various components of an Enterprise JavaBean application, including (contained) Java
clients, Enterprise JavaBeans and servlets. How the service propagates Internationalization
context is determined by its context management policies.

For this release, the following context management policies correspond to whether an
application component is contained on the client-side or on the server-side:

Client-side Internationalization
Enterprise JavaBean client application components deployed within J2EE client
containers, only, are subject to the Client-side Internationalization (CSI) policy.

In CSI, client applications can programmatically get and set the invocation
context elements (that is, locales and time zone) associated with the current
thread by using the Internationalization context API. Invocation context elements
set using the API persist until set again or until the application exits. Clients may
also get the caller context elements associated with the current thread. In a client
application, caller context is always the default locale and time zone of the
process.

On remote bean method calls originating from a client application, the service
propagates all invocation context elements associated to the current thread with
the outgoing request. If an invocation context element is non-null (that is, it was
set using the API) the service propagates the specified element; otherwise, the
service propagates the default element that is associated with the process at that
time.

Server-side Internationalization
Enterprise JavaBean application components deployed within J2EE server-side
containers are subject to the Server-side Internationalization (SSI) policy. SSI is a
simple, immutable policy that uniformly specifies how Internationalization context
propagates across the Web and Enterprise JavaBean container boundaries and
defines access privileges to Internationalization context within contained application
components.

In SSI, server-side application components always run under the caller’s
Internationalization context. More specifically, the service associates the context
of an incoming business method request to the thread on which that method will
execute. The incoming (or caller) context is associated as both the caller and
invocation context for that method and persists until the method returns.

This policy is applied directly to Enterprise JavaBean methods: On incoming
remote bean method requests, the service associates the caller’s context to the
thread on which the request will execute. SSI is defined slightly differently with
respect to servlet service methods (for example, doGet() or doPost())
because they are invoked using HTML browser clients: On incoming servlet

WebSphere Application Server Enterprise Services - Page 14

service requests originating from an HTML browser client, the service associates
the list of locales, propagated by the browser within the HTTP header, and the
server’s default time zone to the thread on which the servlet service method will
execute.

For remote bean method calls originating from either a servlet or Enterprise
JavaBean method, the service propagates all invocation context elements
associated to the current thread on the outgoing request. If an invocation context
element is non-null (that is, it was set using the API) the service propagates the
specified element; otherwise, the service propagates the default element
associated with the server process at that time. This is identical to CSI, except
that in SSI, invocation context is always that of the caller. This management
policy could be referred to as 'RunAsCaller/DefaultToServer'.

Enterprise JavaBeans implementations and Servlets can use the
Internationalization service API to programmatically get both caller and
invocation context elements (that is, locales and time zone) associated with the
current thread, but cannot set them. This restriction enforces the
'RunAsCaller/DefaultToServer' context management strategy and ensures that
the invocation context of every client application request, including those from
HTTP browsers, distributes over the span of that request.

Thread association considerations
Internationalization context (locales and time zone) is thread scoped. Methods of the
Internationalization context API either associate context to or obtain context associated with
the thread on which they execute. In cases where new threads are spawned within an
application component (for instance, a user generated thread inside the service()
method of a servlet or a system generated event handling thread in an AWT client) the
Internationalization context associated with the parent thread does not automatically transfer
to the newly spawned thread. In such instances, the Internationalization Service propagates
the default locale and time zone on any remote method invocations executed on the new
thread. If the default context is inappropriate, the desired invocation context elements must
be explicity associated to the new thread using the setXxx() methods of the
InvocationInternationalization interface. Currently, Internationalization context management
policies allow invocation context to be set within Enterprise JavaBean client programs, but
not within servlets and Enterprise JavaBeans. For additional information, see “The
InvocationInternationalization interface” on page 16.

The JNDI environment
When the Internationalization Service is enabled, the UserInternationalization interface is
available to all application component environments using a JNDI lookup on the Initial
Context for URL java:comp/websphere/UserInternationalization. If the
UserInternationalization interface is unavailable due to an Internationalization Service
anomaly or restriction, the JNDI lookup invocation throws a
javax.naming.NamingException containing the
java.lang.IllegalStateException exception.

Internationalization context application programming interface
Application components programmatically manage Internationalization context through the
UserInternationalization, Internationalization, and InvocationInternationalization interfaces
within the com.ibm.websphere.i18n.context package. The following code snippet introduces
the Internationalization context application programming interface (API):
public interface “UserInternationalization” on page 16

{
public Internationalization getCallerInternationalization();
public InvocationInternationalization

getInvocationInternationalization();
}
public interface “Internationalization” on page 16

WebSphere Application Server Enterprise Services - Page 15

{
public java.util.Locale[] getLocales();
public java.util.Locale getLocale();
public java.util.TimeZonegetTimeZone();

}
public interface “InvocationInternationalization” on page 16

extends Internationalization {
public void setLocales(java.util.Locale [] locales);
public void setLocale(java.util.Locale jmLocale);
public void setTimeZone(java.util.TimeZonetimeZone);
public void setTimeZone(String timeZoneId);

}

The UserInternationalization interface provides factory methods for the
Internationalization Service interfaces affording access to the caller and invocation contexts.
The UserInternationalization interface declares the following methods:

Internationalization getCallerInternationalization()
Returns a reference implementing the Internationalization interface. If the service is
disabled, the method throws an IllegalStateException.

InvocationInternationalization getInvocationInternationalization()
Returns a reference implementing the InvocationInternationalization interface. If the
service is disabled, the method throws an IllegalStateException.

The Internationalization interface declares methods affording read-only access to caller
Internationalization context:

Locale[] getLocales()
Returns the caller locale list associated with the current thread, provided the locale
list is non-null; otherwise the method returns a locale list of length(1) containing
the process locale.

Locale getLocale()
Returns the tail of the caller locale list associated with the current thread, provided
the locale list is non-null; otherwise the method returns the process locale.

TimeZone getTimeZone()
Returns the caller time zone (that is, the SimpleTimeZone) associated with the
current thread, provided the time zone is non-null; otherwise the method returns the
process time zone.

The InvocationInternationalization interface declares methods affording read and write
access to invocation Internationalization context.

Note: According to the server-side Internationaliztion context management policy, all set
methods (setXxx()) throw an IllegalStateException when called within a server-side
application component, such as a servlet or Enterprise JavaBean implementation.

void setLocales(java.util.Locale[] locales)
Sets the invocation locale list element to the supplied locale list (locales), within
the Internationalization context associated with the current thread. The supplied
locale list can be null or have length(>= 0). When the supplied locale list is null
or has length(0), the service sets the invocation locale list to an array of
length(1) containing the default locale. Null entries can exist within the supplied
locale list, but the service substitutes the default locale for null on remote
invocations.

Locale[] getLocales()
Returns the invocation locale list element of the Internationalization context
associated with the current thread, provided the locale list is non-null; otherwise the
method returns a locale list of length(1) containing the default locale.

WebSphere Application Server Enterprise Services - Page 16

void setLocale(java.util.Locale locale)
Sets the invocation locale list element to an array of length(1) containing the
supplied locale (locale), within the Internationalization context associated with the
current thread. The supplied locale can be null, in which case the service instead
sets the invocation locale list to an array of length(1) containing the default
locale.

Locale getLocale()
Returns the tail of the invocation locale list element of the Internationalization
context associated with the current thread, provided the locale list is non-null;
otherwise the method returns the default locale.

void setTimeZone(java.util.TimeZone timeZone)
Sets the invocation time zone element to the supplied time zone (timeZone), within
the Internationalization context associated with the current thread. If the supplied
time zone is not an exact instance of java.util.SimpleTimeZone or is null, the service
instead sets the invocation time zone to the default time zone.

void setTimeZone(String timeZoneId)
Sets the invocation time zone element to a java.util.SimpleTimeZone having the
supplied ID (timeZoneId) within the Internationalization context associated with
the current thread. If the supplied time zone ID is null or unsupported (that is, it does
not appear in the list of IDs returned by the
java.util.TimeZone.getAvailableIds() method) the service sets the
invocation time zone to a time zone to the simple time zone having an ID of GMT
and otherwise invalid fields.

TimeZone getTimeZone()
Returns the invocation time zone element of the Internationalization context
associated with the current thread, provided the time zone is non-null; otherwise the
method returns the default time zone (java.util.SimpleTimeZone).

Handling exceptions

The Internationalization Service employs one exception:
java.lang.IllegalStateException

This exception is employed to indicate that an application component attempted an
operation not supported by the programming model or that an anomaly occurred that
caused the service to disable.

With respect to the programming model, IllegalStateException is thrown whenever a
server-side application component attempts to set invocation context. This is a violation of
the server-side Internationalization (SSI) context management policy. Under SSI, servlets
and Enterprise JavaBeans cannot modify their invocation Internationalization context.

The service also throws IllegalStateException to indicate the service is disabled. For
instance, the JNDI lookup on the UserInternationalization URL throws a
javax.naming.NamingException containing an instance of IllegalStateException if the
service did not properly initialize. In such cases refer to the trace log to determine the
reason for failure and if necessary, call IBM Technical Support.

Programming examples
This section illustrates usage of the Internationalization context API within various
Enterprise JavaBean application components.

WebSphere Application Server Enterprise Services - Page 17

To use the Internationalization Service, all application components must import types
supplied in the com.ibm.websphere.i18n.context package. A component gains access to the
service by performing a JNDI lookup on the initial context for URL
java:comp/websphere/UserInternationalization to resolve a reference to the
UserInternationalization interface. It can then use this reference to obtain references to
either the Internationalization or InvocationInternationalization interfaces, depending on
whether the component requires access to caller, or to invocation Internationalization
context, respectively. These steps are collectively referred to as 'resolving the
Internationalization context API' within the examples.

Differences in and suggestions for service utilization among the various application
components are discussed in comments preceding relevant statement blocks.

For details, see the following examples:

• “Enterprise JavaBeans Java client (contained)” on page 18

• “Enterprise JavaBeans servlet” on page 19

• “Enterprise JavaBeans session bean” on page 21

Enterprise JavaBeans Java client (contained)
The code sample following illustrates how to utilize the Internationalization context API
within a contained Enterprise JavaBeans Java client program.

//---
// Basic Example: J2EE EJB Client.
//---
package examples.basic;
import java.util.Properties;
import javax.naming.InitialContext;
import javax.naming.NamingException;
//--
// INTERNATIONALIZATION SERVICE: Imports.
//--
import com.ibm.websphere.i18n.context.UserInternationalization;
import com.ibm.websphere.i18n.context.Internationalization;
import com.ibm.websphere.i18n.context.InvocationInternationalization;
import java.util.Locale;
import java.util.SimpleTimeZone;
public class EjbClient {

public static void main(String args[]) {
InitialContext initCtx = null;

//--
// INTERNATIONALIZATION SERVICE: API references.
//--
UserInternationalization userI18n = null;
Internationalization callerI18n = null;
InvocationInternationalization invocationI18n = null;
// Obtain a reference to the JNDI initial context.
try {
initCtx= new InitialContext();

} catch (Exception e) {
// Error resolving the JNDI initial context.

}
...
//--
// INTERNATIONALIZATION SERVICE: Resolve API.
//
// Gain access to the Internationalization context API by resolving
// a reference to the UserInternationalization interface.
// UserInternationalization is a factory for other interfaces that
// provide access to different Internationalization context types.
//
// Next, obtain references to the Internationalization and/or
// InvocationInternationalization interfaces. Interface
// Internationalization provides read access to context elements.
// Call UserInternationalization method
// getCallerInternationalization() to obtain a reference for getting
// CALLER context within all EJB application components.
// Interface InvocationInternationalization provides read/write
// access to context elements. Call UserInternationalization method
// getInvocationInternationalization() to obtain a reference for
// getting/setting invocation context within EJB Clients, and for

WebSphere Application Server Enterprise Services - Page 18

// getting invocation context within Servlets and EJB
// implementations.
//--
final String UserI18nUrl =

"java:comp/websphere/UserInternationalization";
try {

userI18n = (UserInternationalization)initCtx.lookup(UserI18nUrl);
callerI18n = userI18n.getCallerInternationalization();
invocationI18n = userI18n.getInvocationInternationalization();

} catch (NamingException e) {
// Error resolving the UserInternationalization object.

} catch (IllegalStateException e) {
// Error creating an Internationalization interface reference.

}
...

//--
// INTERNATIONALIZATION SERVICE: Set invocation locale and time zone.
//
// Under the Client-side Internationalization (CSI) context management
// policy, contained EJB client programs may set invocation context
// elements. The following statements associate the
// supplied invocation locale and time zone with the current thread.
// Subsequent remote bean method calls will propagate these context
// elements.
//--
invocationI18n.setLocale(new Locale("fr", "FR", ""));
invocationI18n.setTimeZone("ECT");
...
//--
// INTERNATIONALIZATION SERVICE: Get locale and time zone.
//
// Under CSI, contained EJB client programs may get caller and
// invocation Internationaliztion context elements associated with
// the current thread. The next four statements return the invocation
// locale and time zone associated above, and the caller locale and
// time zone associated internally by the service. Getting a caller
// context element within a contained client results in the default
// element.
//--
Locale invocationLocale =

invocationI18n.getLocale();
SimpleTimeZone invocationTimeZone =

(SimpleTimeZone)invocationI18n.getTimeZone();
Locale callerLocale =

callerI18n.getLocale();
SimpleTimeZone callerTimeZone =

(SimpleTimeZone)callerI18n.getTimeZone();
...

} // main
...

} // EjbClient

Enterprise JavaBeans servlet
The example following suggests how to utilize the Internationalization context application
programming interface (API) within a servlet. Note the init() and doPost() methods.
...
//--
// INTERNATIONALIZATION SERVICE: Imports.
//--
import com.ibm.websphere.i18n.context.*;
public class J2eeServlet extends HttpServlet {

...
//--
// INTERNATIONALIZATION SERVICE: API references.
//--
UserInternationalization userI18n = null;
Internationalization callerI18n = null;
final String UserI18nUrl =

"java:comp/websphere/UserInternationalization";
...
/**
* Initialize this Servlet.
* <p>Resolve references to the JNDI initial context and the
* Internationalization context API.
*/

public void init() throws ServletException {
// Resolve the JNDI initial context.
try {

// JNDI requires the name of the naming context provider and
// the name of initial context factory. We store these names
// in a properities file.
Properties properties = new Properties();

WebSphere Application Server Enterprise Services - Page 19

properties.put("java.naming.provider.url", "iiop:///");
initialContext = new InitialContext(properties);

} catch (NamingException ne) {
throw new ServletException("Cannot resolve JNDI

initial conext:" + ne);
}
...
//--
// INTERNATIONALIZATION SERVICE: Resolve API.
//
// Under the Server-side Internationalization (SSI) context
// management policy, Servlets have read-only access to invocation
// context elements. Attempts to set these elements result in an
// IllegalStateException. And because Servlets “RunAsCaller”
// under SSI, the invocation and caller contexts are identical.
// So, this example resolves only a reference to the
// Internationalization interface to get caller locale and
// time zone.
//
// Suggestion: cache all Internationalization context API
// references once, during initialization, and use them
// throughout the Servet lifecycle.
//--
try {

userI18n =
(UserInternationalization)initialContext.lookup(UserI18nUrl);

callerI18n = userI18n.getCallerInternationalization ();
} catch (NamingException e) {

throw new ServletException("Cannot resolve
UserInternationalization" + e);

} catch (IllegalStateException e) {
throw new ServletException("Cannot resolve

CallerInternationalization" + e);
}
...
} // init
...
/**
* Process incoming HTTP GET requests.
* @param request Object that encapsulates the request to the servlet
* @param response Object that encapsulates the response from the
* Servlet.
*/

public void doGet(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, IOException {
doPost(request, response);

} // doGet
/**
* Process incoming HTTP POST requests
* @param request Object that encapsulates the request to the
* Servlet.
* @param response Object that encapsulates the response from
* the Servlet.
*/

public void doPost(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, IOException {
...

//--
// INTERNATIONALIZATION SERVICE: Get HTTP Browser Client Locales.
//
// The Internationalization service associates the locale list
// propagated in the HTTP request header with the current thread.
// It is accessible within HTTP Servlet service and subsequent
// methods via the Internationalization context API.
//
// If the incoming HTTP request does not contain a locale list,
// the Internationalization service associates the server’s default
// locale with the current thread. The service also associates the
// server’s default time zone.
//
// All context elements associate with the current thread will
// propagate over subsequent remote bean methods calls.
//--
iLocale = callerI18n.getLocale();
// <WORKAROUND> Browsers are inconsistent regarding how they
// propagate locale information in that they may send locales
// containing a language code, but lacking a country code -
// like ("fr", "") for "French as spoken in France." The
/// following code supplies a default country code in these cases.
if (iLocale.getCountry().equals(""))

iLocale = customerLocale.getCompleteLocale(iLocale);
// </WORKAROUND>

WebSphere Application Server Enterprise Services - Page 20

// Use iLocale in JDK locale-sensitive operations, etc.
...

} // doPost
...
} // CLASS J2eeServlet

Enterprise JavaBeans session bean
The code snippet following suggests how to perform a localized operation using the
Internationalization Service within an Enterprise JavaBeans session bean. Note the
comments within the ejbCreate() and getExchangeRate() methods.
...
//--
// INTERNATIONALIZATION SERVICE: API references.
//--
UserInternationalization userI18n = null;
InvocationInternationalization invocationI18n = null;
final String UserI18nUrl =

"java:comp/websphere/UserInternationalization";
...
/**
* EJB Activate method.
* @exception java.rmi.RemoteException <EJB Method Requirement>
*/

public void ejbActivate() throws java.rmi.RemoteException {}
/**
* EJB Create method
* <p>Resolve the Internationalization context API.
* @exception javax.ejb.CreateException whenever this bean cannot
* be instantiated.
* @exception java.rmi.RemoteException <EJB Method Requirement>
*/

public void ejbCreate()
throws javax.ejb.CreateException, java.rmi.RemoteException {
// Resolve the JNDI initial context.
try {

Properties properties = new Properties();
properties.put("java.naming.provider.url", "iiop:///");
initialContext = new InitialContext(properties);

} catch(NamingException ne) {
System.out.println("Cannot instantiate JNDI

initial context: " + ne);
}

//--
// INTERNATIONALIZATION SERVICE: Resolve API.
//
// Under the Server-side Internationalization (SSI) context
// management policy, EJBs have read-only access to invocation
// context elements. Attempts to set these elements result in an
// IllegalStateException. And because EJBs “RunAsCaller”
// under SSI, the invocation and caller contexts are identical.
// This example resolves only a reference to the
// InvocationInternationalization interface for getting caller
// context elements.
//
// Suggestion: cache all Internationalization context API
// references once, during instantiation, and use them
// throughout the EJB lifecycle.
//--

try {
userI18n =

(UserInternationalization)initialContext.lookup(UserI18nUrl);
invocationI18n = userI18n.getInvocationInternationalization();

} catch (NamingException ne) {
System.out.println ("Cannot resolve

UserInternationalization: " + nnfe);
} catch (IIlegalStateException ise) {

System.out.println ("Cannot resolve
InvocationInternationalization: " + ise);

}
}
/**
* ejbPassivate method.
* @exception java.rmi.RemoteException <EJB Method Requirement>
*/

public void ejbPassivate() throws java.rmi.RemoteException {}
/**
* ejbRemove method.
* @exception java.rmi.RemoteException <EJB Method Requirement>
*/

public void ejbRemove() throws java.rmi.RemoteException {}
/**

WebSphere Application Server Enterprise Services - Page 21

* getSessionContext method.
* @return javax.ejb.SessionContext
*/

public javax.ejb.SessionContext getSessionContext() {
return mySessionCtx;

}
/**
* setSessionContext method.
* @param ctx the supplied EJB session context.
* @exception java.rmi.RemoteException <EJB Method Requirement>.
*/

public void setSessionContext(javax.ejb.SessionContext ctx)
throws java.rmi.RemoteException {
mySessionCtx = ctx;

}
...
/**
* Business method.
* @return the exchange rate associated with the invocation locale
* under which this method is executing.
* @exception java.rmi.RemoteException <EJB Method Requirement>
*/

public getExchangeRate() throws java.rmi.RemoteException {
...

//--
// INTERNATIONALIZATION SERVICE: Get caller/invocation context.
//
// The Internationalization service associates the locale list
// propagated in the incoming remote bean method request with the
// current thread. It is accessible within the bean method
// implementation and within subsequent methods via the
// Internationalization context API.
//
// If the incoming HTTP request does not contain Internationalization
// context, the service associates the server’s default locale
// and time zone with the current thread.
//
// All context elements associated with the current thread will
// propagate over subsequent remote bean methods calls.
//--
Locale iLocale = invocationI18n.getLocale();
SimpleTimeZone iTimeZone =

(SimpleTimeZone)invocationI18n.getTimeZone();
...
// Perform a locale-sensitive computation.
float exchangeRate = exchangeRates.get(iLocale);
...

return exchangeRate;
} // getRate
...
} // CLASS J2eeSessionBean

Verifying service configuration
The Internationalization Service can successfully initialize during an application server's
startup process provided the following conditions exist. These conditions apply to both
contained Enterprise JavaBean Java client programs and application servers requiring use
of the Internationalization service.

• The i18nctx.jar file resides in the WAS_HOME/lib subdirectory (where WAS_HOME
represents the directory in which the WebSphere Application Server product was
installed). The i18nctx.jar archive file contains all classes and resources necessary
to utilize the Internationalization Service.

• The eex.jar file resides in the WAS_HOME/lib subdirectory (where WAS_HOME
represents the directory in which the WebSphere Application Server product was
installed) and contains a version of the eex.xml file supplying no entries regarding
Internationalization Service enablement. The eex.jar archive file contains the EE
Services initialization framework and a version of the eex.xml file containing no
Internationalization Service-related entries (see eexr.jar, in the following list item).

• The eexr.jar file resides in the WAS_HOME/lib/ext subdirectory (where
WAS_HOME represents the directory in which the WebSphere Application Server
product was installed) and contains a version of the eex.xml file supplying entries

WebSphere Application Server Enterprise Services - Page 22

necessary to enable the Internationalization Service.

The eexr.jar archive file contains the eex.xml file, which directs the Enterprise
Services initialization framework towards classes required to initialize the
Internationalization Service. The following code snippet includes XML definitions that are
necessary to enable the Internationalization Service on an application server:
<?xml version="1.0" ?>
<!DOCTYPE enterprise-extension (View Source for full doctype...)>
- <enterprise-extension>
- <Plugins>

<class>com.ibm.ws.i18n.context.ServiceInit</class>
</Plugins>
<BeforeActivationCollaboratorFactories>

<class>com.ibm.ws.i18n.context.ServiceInit</class>
</BeforeActivationCollaboratorFactories>

- <ContextPlugins>
<class>com.ibm.ws.i18n.context.ServiceInit</class>

</ContextPlugins>
<ServletInvocationListenerFactories>
<class>com.ibm.ws.i18n.context.ServiceInit</class>
</ServletInvocationListenerFactories>

• The EEservices.xml file resides in the WAS_HOME/Enterprise/bin subdirectory
(where WAS_HOME represents the directory in which the WebSphere Application Server
product was installed) and supplies the default entries to enable the Internationalization
Service within an application server's Custom service panel.

WebSphere Application Server Enterprise Services - Page 23

Notices
This information was developed for products and services offered in the U.S.A. IBM may not
offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently
available in your area. Any reference to an IBM product, program, or service is not intended
to state or imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe any IBM
intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in
this document. The furnishing of this document does not give you any license to these
patents. You can send license inquiries, in writing, to:
IBM Director of Licensing IBM Corporation North Castle DriveArmonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:
IBM World Trade Asia Corporation Licensing 2-31Roppongi 3-chome, Minato-ku Tokyo 106,
Japan

The following paragraph does not apply to the United Kingdom or any other country
where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS DOCUMENT
"AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR CONDITIONS OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain
transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are
periodically made to the information herein; these changes will be incorporated in new
editions of the document. IBM may make improvements and/or changes in the product(s)
and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only
and do not in any manner serve as an endorsement of those Web sites. The materials at
those Web sites are not part of the materials for this IBM product and use of those Web
sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling:
(i) the exchange of information between independently created programs and other
programs (including this one) and (ii) the mutual use of the information which has been
exchanged, should contact:
IBM Corporation Department LZKS 11400 Burnet Road Austin, TX 78758 U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in
some cases, payment of a fee.

The licensed program described in this document and all licensed material available for it

WebSphere Application Server Enterprise Services - Page 24

are provided by IBM under terms of the IBM International Program License Agreement or
any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment.
Therefore, the results obtained in other operating environments may vary significantly.
Some measurements may have been made on development-level systems and there is no
guarantee that these measurements will be the same on generally available systems.
Furthermore, some measurements may have been estimated through extrapolation. Actual
results may vary. Users of this document should verify the applicable data for their specific
environment.

Information concerning non-IBM products was obtained from the suppliers of those
products, their published announcements or other publicly available sources. IBM has not
tested those products and cannot confirm the accuracy of performance, compatibility or any
other claims related to non-IBM products. Questions on the capabilities of non-IBM products
should be addressed to the suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal
without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations.
To illustrate them as completely as possible, the examples may include the names of
individuals, companies, brands, and products. All of these names are fictitious and any
similarity to the names and addresses used by an actual business enterprise is entirely
coincidental.

If you are viewing this information softcopy, the photographs and color illustrations may not
appear.

Trademarks and service marks

The following terms are trademarks or registered trademarks of the IBM Corporation in the
United States, other countries, or both:

WebSphere Application Server Enterprise Services - Page 25

Advanced Peer-to-Peer Networking
AFS
AIX
APPN
AS/400
CICS
CICS OS/2
CICS/400
CICS/6000
CICS/ESA
CICS/MVS
CICS/VSE
CICSPlex
DB2
DB2 Universal Database
DCE Encina Lightweight Client
DFS
Encina
IBM
IBM System Application Architecture
IMS
IMS/ESA
Language Environment

*** MQSeries
MVS/ESA
NetView
Open Class
OS/2
OS/390
OS/400
Parallel Sysplex
PowerPC
RACF
RAMAO
RMF
RISC System/6000
RS/6000
S/390
SAA
SecureWay
TeamConnection
Transarc
TXSeries
VSE/ESA
VTAM
VisualAge
WebSphere

Domino, Lotus, and LotusScript are trademarks or registered trademarks of Lotus
Development Corporation in the United States, other countries, or both.

Tivoli is a registered trademark of Tivoli Systems, Inc. in the United States, other countries,
or both.

ActiveX, Microsoft, Visual Basic, Visual C++, Visual J++, Windows, Windows NT, and the
Windows 95 logo are trademarks or registered trademarks of Microsoft Corporation in the
United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of
Sun Microsystems, Inc. in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Some of this documentation is based on material from Object Management Group bearing
the following copyright notices:

Copyright 1995, 1996 AT&T/NCR
Copyright 1995, 1996 BNR Europe Ltd.
Copyright 1991, 1992, 1995, 1996 by Digital Equipment Corporation
Copyright 1996 Gradient Technologies, Inc.
Copyright 1995, 1996 Groupe Bull
Copyright 1995, 1996 Expersoft Corporation
Copyright 1996 FUJITSU LIMITED
Copyright 1996 Genesis Development Corporation
Copyright 1989, 1990, 1991, 1992, 1995, 1996 by Hewlett-Packard Company
Copyright 1991, 1992, 1995, 1996 by HyperDesk Corporation
Copyright 1995, 1996 IBM Corporation
Copyright 1995, 1996 ICL, plc
Copyright 1995, 1996 Ing. C. Olivetti &C.Sp
Copyright 1997 International Computers Limited
Copyright 1995, 1996 IONA Technologies, Ltd.
Copyright 1995, 1996 Itasca Systems, Inc.
Copyright 1991, 1992, 1995, 1996 by NCR Corporation
Copyright 1997 Netscape Communications Corporation

WebSphere Application Server Enterprise Services - Page 26

Copyright 1997 Northern Telecom Limited
Copyright 1995, 1996 Novell USG
Copyright 1995, 1996 02 Technolgies
Copyright 1991, 1992, 1995, 1996 by Object Design, Inc.
Copyright 1991, 1992, 1995, 1996 Object Management Group, Inc.
Copyright 1995, 1996 Objectivity, Inc.
Copyright 1995, 1996 Oracle Corporation
Copyright 1995, 1996 Persistence Software
Copyright 1995, 1996 Servio, Corp.
Copyright 1996 Siemens Nixdorf Informationssysteme AG
Copyright 1991, 1992, 1995, 1996 by Sun Microsystems, Inc.
Copyright 1995, 1996 SunSoft, Inc.
Copyright 1996 Sybase, Inc.
Copyright 1996 Taligent, Inc.
Copyright 1995, 1996 Tandem Computers, Inc.
Copyright 1995, 1996 Teknekron Software Systems, Inc.
Copyright 1995, 1996 Tivoli Systems, Inc.
Copyright 1995, 1996 Transarc Corporation
Copyright 1995, 1996 Versant Object Technology Corporation
Copyright 1997 Visigenic Software, Inc.
Copyright 1996 Visual Edge Software, Ltd.

Each of the copyright holders listed above has agreed that no person shall be deemed to
have infringed the copyright in the included material of any such copyright holder by reason
of having used the specification set forth herein or having conformed any computer software
to the specification.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE,
THE OBJECT MANAGEMENT GROUP, AND THE COMPANIES LISTED ABOVE MAKE
NO WARRANTY OF ANY KIND WITH REGARDS TO THIS MATERIAL INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE. The Object Management Group and the companies listed
above shall not be liable for errors contained herein or for incidental or consequential
damages in connection with the furnishing, performance, or use of this material.

This software contains RSA encryption code.

Other company, product, and service names may be trademarks or service marks of others.

WebSphere Application Server Enterprise Services - Page 27

	Contents
	The Internationalization Service
	Computers with differing endian architectures or code sets
	Computers located in different locales
	Computers located in different time zones
	The Internationalization Service solution

	Using the Internationalization Service
	Enabling or disabling the Internationalization Service
	Enabling Internationalization context within application servers
	Enabling Internationalization context within Enterprise JavaBean Java
application clients
	Disabling Internationalization context within application servers
	Disabling Internationalization context within Enterprise JavaBean Java
application clients

	Managing Internationalization context
	Configuring the programming environment
	Gaining access to the Internationalization context API
	Accessing caller locales and time zone
	Accessing invocation locales and time zone

	Tracing Internationalization Service function

	Examples and reference
	The programming model
	Internationalization context
	Internationalization context management
	Thread association considerations
	The JNDI environment
	Internationalization context application programming interface
	Handling exceptions

	Programming examples
	Enterprise JavaBeans Java client (contained)
	Enterprise JavaBeans servlet
	Enterprise JavaBeans session bean

	Verifying service configuration

