
Multiple Machines

 7: Multimachine management

 7.1: Using WebSphere Application Server in a multimachine environment

 7.1.1: Scaling up WebSphere applications

 7.1.2: Availability management

 7.1.3: Multimachine topologies
 7.1.3.1: Selecting a topology
 7.1.3.2: Multi-tiered system sample topology
 7.1.3.3: Vertical scaling sample topology
 7.1.3.4: Horizontal scaling with clones sample topology
 7.1.3.5: Horizontal scaling with Network Dispatcher sample topologies (horizontal scalingand DMZ)
 7.1.3.6: HTTP server separation sample topologies
 7.1.3.6.1: Remote OSE sample topology
 7.1.3.6.2: Semi-remote HTTP sample topology
 7.1.3.6.3: Reverse proxy (IP forwarding) sample topology
 7.1.3.7: Demilitarized Zone (DMZ) sample topology
 7.1.3.8: Multiple WebSphere domains sample topology
 7.1.3.9: Multiple applications within a node sample topology
 7.1.3.10: Putting it all together - a combined topology

 7.1.4: Firewalls and demilitarized zone (DMZ) configurations

 7.1.5: Remote database access with Universal Database Access (UDB)

 7.1.6: Managing state
 7.1.6.1: HTTP sessions, servlets, and the session manager
 7.1.6.2: EJB sessions and transaction affinity
 7.1.6.3: Server affinity

 7.2: Managing workloads

 7.2.1: Workload management for enterprise beans and application servers

 7.2.3: Workload management for administrative servers

 7.2.4: Using server groups and clones
 7.2.4.1: Cloning for workload management, failover, and scaling
 7.2.4.2: Modifying server groups and clones
 7.2.4.3: Advice for cloning
 7.2.4.4: Containment relationships
 7.2.4.5: Server selection policies and transaction affinity
 7.2.4.6: Security for cloned resources

 7.2.4.7: Creating clones on machines with different WebSphere installation directories or operating
systems

 7.2.5: Using workload management - a sample procedure

 7.2.6: Tuning a workload management configuration

 7.2.7: Run-time exceptions and failover strategies for workload management

 7.2.8: Workload management for stand-alone Java clients

7: Multimachine management
WebSphere Application Server applications can be scaled up from the basicsingle-machine configuration to run
on systems comprised of multiple machines. Using amultimachine configuration enables applications to devote
more processing power to clientrequests, distribute and balance loads among the machines in the system, and
have betteraccessibility and throughput than single machine systems.

This section discusses the following topics:

Using WebSphere Application Server in a multimachine environment discusses scaling up WebSphere
systems, multimachine topologies, and related issues.

●

Managing workloads discusses workload management using server groups and clones.●

7.1: Using WebSphere Application Server in a
multimachine environment
The basic single machine WebSphere configuration can be extended by distributing theapplication over
multiple machines and by making more efficient use of the processingpower of each machine in the
configuration. Some of the reasons for creating WebSphereApplication Server applications that run on
multimachine systems include:

Scalability. Increasing processing power by adding more machines enables the system to handle a
higher client load than that provided by the basic, single-machine configuration. Ideally, it is possible to
handle any given load by adding more servers and machines. Each additional machine must process its
fair share of client requests. (That is, a share of the total system load that is proportional to its processing
power.)

●

Security. Multimachine configurations can use firewalls to protect sensitive resources from
unauthorized access.

●

Shared data access. Placing back-end resources such as databases on different machines can enable
these resources to be shared more easily.

●

Availability and failover support. In a single-machine configuration, any failure means that the entire
system is unavailable. However, in multimachine configurations, the system continues to operate if any
one machine or server in the system fails for any reason. Failover support distributes client requests to
the remaining servers, which ensures continued client access without significant interruptions. (In
practice, failover is not entirely transparent to clients.)

●

Fault isolation. Configurations that provide simple failover support are concerned only with individual
server failures that have no effect on the performance of other servers. However, in some situations a
malfunctioning server can create problems for other servers that are otherwise functioning normally. For
example, it can consume more than its share of system and database resources, preventing other servers
from gaining adequate access to these resources. A configuration that provides more robust failover
support includes a degree of fault isolation, reducing the potential for the failure of one server to affect
other servers. WebSphere Application Server can be configured to provide fault isolation between
different parts of a system.

●

Dynamic changes to configurations. Administrators can modify the system's configuration without
interrupting its operation. For instance, they can add or remove clones of servers to handle variations in
the client load, change server characteristics and propagate the changes to its clones, temporarily stop
servers for maintenance, and so forth. This enhances the manageability and flexibility of the system.

●

Mixed application server configurations. Some multimachine configurations allow multiple versions
of an application server to be deployed simultaneously. Applications can be deployed in stages and the
system's hardware and software can be easily upgraded. When combined with the ability to make
dynamic changes to the configuration, a mixed server configuration can be used to upgrade an
application without any interruption of service.

●

Note: The ability to run different versions of an application server in aconfiguration applies only if the
application servers are running under the same versionof the application code. You cannot run application
servers under different versions ofWebSphere Application Server in the same administrative domain.

This section describes how you can achieve these goals in multimachine configurations.It is an overview of the
various ways that you can use to scale up the basic,single-machine WebSphere system to meet the needs of your
organization, and is notintended to be an exhaustive discussion of WebSphere configurations.

7.1.1: Scaling up WebSphere applications
Multimachine applications can be configured in a variety of ways to scale up a systemto add more processing
power, improve security, maximize availability, and balanceworkloads. The WebSphere Application Server,
Advanced Edition provides several ways to implementconfigurations that address these issues. These scaling
techniques are generally combinedto maximize the benefits and minimize the problems associated with
multimachine systems.

Server groups and cloning. Cloning allows the creation of multiple copies of an application server. The
first step is to create a server group based upon the application server's current configuration. You can
then create clones of the server group. Clones can be created on the same physical machine or on
different machines. Using clones can improve the performance of a server, simplify its administration,
and enable the use of workload managment; however, there is a point of diminishing returns when
adding more clones slows down the system due to the extra network traffic required for managing the
clones.

●

Workload management (WLM). Incoming processing requests from clients are transparently
distributed among the clones of an application server. WLM enables both load balancing and failover,
improving the reliability and scalability of WebSphere applications. In addition, administrative servers
can participate in WLM for failover support.

●

IP sprayer. An IP sprayer transparently redirects incoming HTTP requests from Web clients to a set of
Web servers. Although the clients behave as if they are communicating directly with a given Web
server, the IP sprayer is actually intercepting all requests and distributing them among all the available
Web servers in the cluster. IP sprayers (such as IBM Network Dispatcher or Cisco Local Director) can
provide scalability, load balancing, and failover for Web servers.

●

7.1.2: Availability management
One of the benefits of scaling up to a multimachine configuration is that it improvesthe availability of the
system. Applications hosted on multiple machines generally haveless down time and are able to service client
requests more consistently.

The following commonly used scaling techniques can be combined to take advantage of the best features of
each topology and create a highly available system. (Note that thisis not an exhaustive list of ways to improve
availability.)

Eliminate single points of failure in the system by providing hardware and process redundancy:

Use horizontal scaling to distribute application servers over multiple physical machines. If a
hardware or process failure occurs, clones are still available to handle client requests. Web
servers and IP sprayers can also benefit from horizontal scaling.

❍

Use backup servers for databases, Web servers, IP sprayers, and other important resources. This
ensures that they remain available if hardware or process failure occurs.

❍

Deploy an application in multiple administrative domains. If an entire domain goes offline, the
others are still available to handle client requests.

❍

Run administrative servers with workload management enabled. The failover support that
workload management provides eliminates a single administration server as a point of failure.

❍

●

Provide process isolation so that failing servers do not negatively impact the remaining healthy servers
in the configuration. The following configurations provide some degree of process isolation:

Deploy the Web server onto a different machine from the application servers. This ensures that
problems with the application servers do not affect the Web server, and vice versa.

❍

Use horizontal scaling, which physically segregates application server processes onto different
machines.

❍

Deploy an application in multiple administrative domains. Problems are confined to one domain
while the other remains available.

❍

●

Use load-balancing techniques to make sure that individual servers are not overwhelmed with client
requests. These techniques include the following:

Use workload management. It is automatically implemented for cloned application servers, but
must be explicitly enabled for administrative servers.

❍

Use an IP sprayer to distribute requests to the Web servers in the configuration.❍

Direct requests from high-traffic URLs to more powerful servers.❍

●

Provide failover support. The application must continue to process client requests when servers are
stopped or restarted. Ways to provide failover support include the following:

Use horizontal scaling with workload management to take advantage of its failover support.❍

Use the HTTP transport to distribute client requests among application servers.❍

Enable the Session Manager to store session information in a persistent database. This preserves
session state in case of server failure.

❍

●

7.1.3: Multimachine topologies
WebSphere Application Server supports a wide variety of ways to deploy applications inmultimachine
environments. The most commonly used topologies fall into one of thefollowing broad categories:

Multi-tiered topologies. The components of an application (the Web server, application servers,
databases, and so forth) are physically separated onto different machines.

●

Vertical scaling topologies. Additional application server processes are created on a single physical
machine by using models and clones.

●

Horizontal scaling topologies. Additional application server processes are created on multiple physical
machines by using models and clones. HTTP redirector products such as Network Dispatcher can also
be used to implement horizontal scaling.

●

HTTP server separation topologies. The Web (HTTP) server is located on a different physical
machine than the application server. Requests can be redirected to application servers through a variety
of methods.

●

Demilitarized zone (DMZ) topologies. Firewalls can be used to create demilitarized zones -- machines
that are isolated from both the public Internet and other machines in the configuration. This improves
security for the application, especially for sensitive back-end resources such as databases.

●

Multidomain topologies. Applications are deployed onto multiple WebSphere Application Server
administrative domains.

●

Multiapplication topologies. More than one version of an application is deployed onto the same
physical machines and administrative domain.

●

Keep in mind that these topologies are not mutually exclusive. Basic topologyelements can be combined in
many different ways, as shown in the example topologiesfeatured in this section. These examples are not
intended to be an exhaustive listof topologies that you can create in WebSphere Application Server. Instead,
theyare intended to suggest various ways that you can set up applications in a multimachineenvironment.

7.1.3.1: Selecting a topology
A variety of factors typically are considered when you are deciding on the besttopology for deploying a
WebSphere application. The major factors for picking atopology include:

Security. Some security concerns can be addressed by physically separating the Web server from the
application server by using firewalls.

●

Performance. To maximize performance, the response time for transactions needs to be as short as
possible. Two topologies can be used to improve transaction performance:

Vertical scaling, in which additional application server processes are created on a single physical
machine. See article 7.1.3.3, Vertical scaling sample topology, for more information.

❍

Horizontal scaling, in which additional application server processes are created on multiple
physical machines to take advantage of the additional processing power available on each
machine. See article 7.1.3.4, Horizontal scaling with clones sample topology, and article 7.1.3.5,
Horizontal scaling with Network Dispatcher sample topology, for more information.

❍

●

Throughput. To process as many transactions as possible within a given time period, application server
clones can be created to increase the number of concurrent transactions that the application can perform.
These application server clones can be added through vertical or horizontal scaling.

●

Availability. To avoid a single point of failure and maximize the system's availability, the topology
must have some degree of process redundancy. High-availability topologies typically involve horizontal
scaling across multiple machines. (Vertical scaling can improve availability by creating multiple
processes, but the machine itself becomes a point of failure.) A Network Dispatcher server can direct
client HTTP requests to the available Web servers, bypassing any that are offline; it can also be backed
up by another server to eliminate it as a single point of failure. Workload management of application
servers and administrative servers also improves availability and failover support.

●

Maintainability. The system's topology affects the ease with which its hardware and software can be
updated. For instance, using multiple WebSphere domains or horizontal scaling can make a system
easier to maintain because individual machines can be taken offline for hardware and software upgrades
without interrupting the application. However, sometimes maintainability conflicts with other topology
considerations. For example, limiting the number of application server instances makes the application
easier to maintain but can have a negative effect on its throughput, availability, and performance.

●

Maintaining session state between client HTTP requests. This does not apply if your application runs
on a single application server instance or is completely stateless. However, session state is an important
consideration for stateful applications and applications that run on multiple machines or application
server instances. A session can be shared between multiple application server processes (clones) by
saving the session state to a database. In addition, the configuration of an HTTP redirector such as
Network Dispatcher affects how the session state is maintained.

●

Whichever topology you decide on, a best practice is to partition your testing andproduction acceptance
environments in exactly the same way as your production environment.This helps you recognize and address
problems with your application before it is actuallydeployed.

7.1.3.2: Multi-tiered system sample topology
Overview●

Typical use●

Overview

Multi-tiered topologies locate the Web server and application server processes onseparate physical machines.An
additional tier can contain databases, enterpriseinformation systems, and other types of persistent storage.

The following illustration shows an example of this type of topology.

In this example, the application server processes that run a servlet are closer innetwork terms to the HTTP server,
improving their response to client requests. Theapplication server processes that run enterprise beans (Machine C) are
closer in networkterms to the application data, which is represented in an application by entity beans andstored on the
database server (Machine D). An administrative server process is running onthe two application server nodes.

Application servers are cloned on Machine B and Machine C to help maximize the use ofeach machine's resources.
(Two clones of each are shown in the example, but depending onthe machine's hardware setup, more can potentially
be added.)

Typical use

The clones in a multi-tiered topology provide process redundancy and enable memory tobe used more efficiently than

in similar topologies that host only single instances ofapplication servers. The additional resources that are available
on the machines in thistopology can improve the application's throughput and performance.

If firewalls are introduced between the three application tiers, the same level ofsecurity can be provided for the entity
beans in the application server as for theapplication data.

Implementing a multi-tiered toplogy eliminates the local Java Virtual Machine (JVM)optimizations that occur when
both the servlet engine and EJB server run in the sameapplication server. It also introduces network latency. Both of
these factors tend to slowdown system performance. Although they provide more redundancy for application
serverprocesses, multi-tiered topologies also introduce more possible points of failure. Thelevel of redundancy can
make maintenance more complicated.

7.1.3.3: Vertical scaling sample topology
Overview●

Typical use●

Instructions●

Overview

Vertical scaling refers to setting up multiple application servers, typically by usingclones, on a machine.

In this simple example, vertical scaling is done by creating multiple clones of anapplication server on Machine A.
Although this example shows vertical scaling on asingle machine, you can implement vertical scaling on more than
one machine in aconfiguration. (The Advanced Edition application server run time must be installedon each
machine.) Combine vertical scaling with the other topologies described in thissection to boost performance and
throughput.

Typical use

Vertical scaling offers the following advantages:

More efficient use of the machine's processing power. An instance of an application server runs in a single
Java Virtual Machine (JVM) process. However, the inherent concurrency limitations of a JVM process
prevents it from fully utilizing the processing power of a machine. Creating additional JVM processes
provides multiple thread pools, each corresponding to the JVM associated with each application server
process. This avoids concurrency limitations and enables the machine's processing power to be fully used.

Vertical scaling provides a straightforward mechanism for creating multiple instances of an application
server, and hence multiple JVM processes. This enables the application server to make the best possible
use of the processing power of the host machine.

●

Load balancing. Vertical scaling topologies can make use of the WebSphere Application Server workload●

management facility.

Process failover. A vertical scaling topology also provides failover support among application server
clones. If one application server instance goes offline, the other instances on the machine continue to
process client requests.

●

Single machine vertical scaling topologies have the drawback of introducing the hostmachine as a single point of
failure in the system. However, this can be avoided byusing vertical scaling on multiple machines.

Instructions

To set up a vertical scaling topology, use the administrative client to configure a setof application server clones that
reside on the same machine. See Article7.2, Managing workloads, for more information on cloning an application
server. To setup vertical scaling, you need only perform the tasks pertaining to local clones.

It is recommended that you plan vertical scaling configurations ahead of time. However,since they do not require
any special installation steps, you can always implement themlater on an as-needed basis.

When you are deciding how many clones to create on a machine, you need to take severalfactors into account:

The version of the Java development software. Version 1.2 and above of the IBM Java 2 Software
Development Kit (SDK) handles parallel JVM processes better than earlier versions.

●

How the application is designed. Applications that make use of more components require more memory,
limiting the number of clones that can be run on a machine.

●

The hardware environment. Vertical scaling is best done on machines with plenty of memory and
processing power. However, eventually the overhead of running more clones cancels out the benefits of
adding them.

●

The best way to ensure good performance in a vertical scaling configuration is to tunea single instance of an
application server for throughput and performance, thenincrementally add clones. Test performance and
throughput as each clone is added.Always monitor memory use when you are configuring a vertical scaling
topology and do notexceed the available physical memory on a machine.

7.1.3.4: Horizontal scaling with clones sample topology
Overview●

Typical use●

Overview

The following figure shows an example of horizontal scaling using clones of anapplication server.

In horizontal scaling, clones of an application server are createdon multiple physical machines. This enables a single
WebSphereapplication to span several machines yet still present a single systemimage. In this example of a horizontal
scaling topology, the Webserver on Machine A distributes requests to the cloned applicationservers on Machines B and C.
The application server clones onMachines B and C are created from the sameserver group. Machine Dacts as the database
server for the application.

Products such as Network Dispatcher that distribute client HTTP requests can becombined with cloning to reap the benefits
of both types of horizontal scaling. See section 7.1.3.5, Horizontal scaling with Network Dispatcher sampletopology, for
more information on this system configuration.

Typical use

Horizontal scaling can provide both increased throughput andfailover support when compared to vertical scaling topologies.
Bothapplication server process failure and hardware failure can be handledwithout significant interruption to client service.
Horizontalscaling topologies can also be used to optimize the distribution ofclient requests through mechanisms such as
workload management or remote HTTP transport.

7.1.3.5: Horizontal scaling with Network Dispatcher sample
topologies

Overview●

A simple Network Dispatcher topology●

A more complex Network Dispatcher topology●

Using Network Dispatcher with firewalls●

Network Dispatcher and session affinity●

Discussion●

Instructions●

Overview

A load-balancing product such as Network Dispatcher can be used to distribute HTTPrequests among application server instances that are
running on multiple physicalmachines. Network Dispatcher is part of the IBM WebSphere Edge Server, which ispurchased separately from
WebSphere Application Server It performs intelligent loadbalancing by using server availability, capability, workload, and other
user-definablecriteria to determine which server the TCP/IP request is sent to.

A simple Network Dispatcher topology

The following figure illustrates a simple horizontal scaling configuration that usesNetwork Dispatcher to distribute requests among
application servers that are located ondifferent machines.

A Network Dispatcher machine is generally configured with a backup node to eliminate itas a single point of failure. In this example, the
backup Network Dispatcher node (MachineB) can be set up to take over if the primary Network Dispatcher node (Machine A) fails.

The application servers in this example can be cloned from the same model or configuredindependently.

A more complex Network Dispatcher topology

The next figure shows a more complex configuration where Network Dispatcher is used todistribute requests among several machines
containing clones of Web servers andapplication servers. For the sake of simplicity, the backup Network Dispatcher node andthe
administrative servers are not shown in this example.

This example shows two tiers of application servers. The first tier Web server machineshost servlet-based applications, while the second tier
application servers contain mostlyenterprise beans that access application data and execute business logic. This enables youto employ
numerous, less powerful machines on the first tier and fewer but more powerfulmachines on the second tier.

Using Network Dispatcher with firewalls

A load-balancing product such as Network Dispatcher can also be used with demilitarizedzone (DMZ) topologies. For example, it can
simplify the creation of a DMZ topology whereone firewall protects the Web server from the public Web site and a second firewallprotects
back-end systems from the Web server in the DMZ by using proxy services.

The Network Dispatcher machine is placed between the outside firewall and the clusterof Web servers that it serves. The outside firewall
provides filtering to allow only HTTPand HTTPS traffic. The firewall to the back-end systems (DBMS, CICS, SAP, etc.) handlenon-HTTP
protocols such as IIOP and JDBC. Because the administrative server needs toaccess the database for its configuration information, it is
recommended that you placethe administrative server on the same side of the firewall as the database, rather than inthe DMZ. See section
7.1.3.7 and section 7.1.4 for more information on DMZconfigurations.

Network Dispatcher and session affinity

In a topology that uses Network Dispatcher or a product of similiar functionality, Webservers must be associated with separate application
servers, rather than with clonedapplication servers, in order to preserve affinity among Web servers and applicationservers.

Cloned application servers use WebSphere workload management (WLM), which does notsupport session affinity. Requests originating at a
Web server can be routed to any of theclones of an application server, and sessions cannot be guaranteed to remain intact.

Discussion

Adding a mechanism for distributing HTTP requests (such as the Network Dispatchercomponent of WebSphere Edge Server) provides the
following advantages:

It improves the performance of servers by distributing the incoming TCP/IP requests (in this case, HTTP requests) among a group of
servers.

●

It increases the number of connected users.●

It eliminates the Web server as a single point of failure. It can also be used in combination with WebSphere workload management
to eliminate the application server as a single point of failure.

●

It improves throughput by enabling multiple servers and CPUs to handle the client workload.●

Instructions

To set up the machines containing Web servers and application servers, see theinstructions for the topology you plan to implement.

To place Network Dispatcher or another load-balancing product in front of the Webserver machines, see the documentation for the
load-balancing product. Instructions varyby product.

The load-balancing product communicates with the Web server, which in turn communicateswith application servers. The configuration
involves setting up communications between theload-balancing product and the Web server.

It does not matter to the load-balancing product whether the Web server is routingrequests along to an application server or processing them
itself. Therefore, it is notnecessary to perform any special configuration to make the load- balancing product andapplication servers aware of
one another. This is true with Network Dispatcher, based ontesting with IBM WebSphere Application Server. Results can vary with other
load-balancingproducts.

7.1.3.6: HTTP server separation sample topologies
These topologies physically separate the Web (HTTP) server from the applicationservers, placing the Web server on a
different machine in the configuration.Compared to a configuration where the Web server and the application servers
are locatedon the same physical server, separating the Web server can improve applicationperformance, provide better
fault isolation, and enhance security. These topologiesare often used with firewalls to create a secure demilitarized
zone (DMZ) surrounding theWeb server.

WebSphere Application Server provides alternatives for physically separating the HTTPserver from the application
server:

HTTP transport configurations●

Reverse proxy (IP forwarding) configurations●

These system topologies are described in more detail in the articles in this section.

The following table summarizes the advantages and disadvantages of each of theseconfigurations. The criteria are
explained after the table.

Topology SSL Database password required? WLM NAT Performance Administration
HTTP server separation Yes No Yes Yes High Manual

Reverse proxy Yes No No Yes High Manual

SSL. Supports Secure Sockets Layer (SSL) security.●

Database password required? Requires a database user ID and password to be stored on the machine for use
by the database processes.

●

WLM. Uses the WebSphere workload management service to balance client workloads.●

NAT. Supports Network Address Translation (NAT) firewalls. NAT firewalls receive packets for one IP
address, translate the headers of the packets, and send the packets to a second IP address.

●

Performance. Compares the relative performance of each of these configurations.●

Administration. Specifies whether the configuration must be administered manually or can be administered
through the Administrative Console. This gives you a basis to compare the relative difficulty of administering
each configuration.

●

7.1.3.6.1: HTTP transport sample topology
Overview●

Load-balancing support●

Failover support●

Typical use●

Overview

WebSphere Application Server can use the HTTP protocol to route requests from the Webserver to application servers on remote
machines.

In the diagram, Machine A hosts the Web server and receives HTTP requests from clients.The Web server forwards the requests to
the application server on Machine C by using theHTTP or HTTPS protocol. Machine B hosts the application and administrative
repositorydatabases.

Variations on this configuration include vertical scaling of the application servers.Additional application server machines (D, E, ...
N), can be added to the configuration toimplement horizontal scaling.

The HTTP transport supports NAT firewalls. For more information on firewallconfigurations in WebSphere Application Server,
see articles 7.1.3.7and 7.1.4.

Load-balancing support

The HTTP transport is fully integrated with WebSphere Application Server's workloadmanagement and cloning facility. It balances
loads between individual application serversand their clones, and among the clones of an application server.

Load balancing between application servers. The HTTP transport can be configured to forward requests from each URL
to a different application server and its clones, enabling manual load balancing. For instance, URLs that generate a large
number of requests can be forwarded to application servers on more- powerful machines.

●

Load balancing among application server clones. The HTTP transport automatically distributes requests among the
clones of an application server that is defined to respond to a single URL.The method for selecting which clone handles a
particular request combines a round-robin selection policy with server affinity.

If session persistence is not enabled (the default), requests are distributed among all available clones of an application
server using a strict round-robin policy. Each clone gets the next request in turn. The only exception is when a clone is
added or restarted; see Failover support (later in this article) for details.

If session persistence is enabled (that is, session clustering and server affinity are enabled), requests are distributed as
follows:

●

The HTTP transport distributes the first request of each session and all requests that are not associated with a session
as if session persistence is not enabled. That is, they are distributed using a round-robin policy except when clones
are added or restarted.

❍

The HTTP transport attempts to distribute all requests associated with a particular session to the same clone of an
application server. Different sessions are assigned to different clones of the application server.

Be aware that there is no guarantee that the same clone will be used for all requests within a session. Session affinity
cannot always be maintained in situations where the number of available clones changes during the lifetime of a
session. The Session Manager's session clustering facility ensures that session state is not lost if requests are
switched to another clone during a session.In any case, applications that require session information to be available
across multiple client invocations must store session information in a database.

❍

Failover support

The HTTP transport automatically handles failover and changes in the number ofavailable clones.

If a clone is stopped or unexpectedly fails, all subsequent requests are distributed among the remaining clones. The
unavailable clone is skipped.

●

If a clone is added or restarted, the system automatically begins to distribute requests to it. The next several requests are
dispatched to that clone before HTTP resumes its normal methods for distributing requests to the clones of an application
server based on whether session persistence is enabled. (See Load-balancing support, for details.)

●

Typical use

HTTP transport has the following advantages:

It supports load balancing and failover.●

It does not require database access through the firewall. The administrative server runs on the machine that hosts the
application server, which is typically behind the firewall.

●

It supports WebSphere security.●

It supports Secure Sockets Layer (SSL) encryption for communications between the Web server and the application server.●

It supports NAT firewalls.●

Performance is relatively fast.●

The HTTP transport has the disadvantage of requiring at least one firewall port, moreif multiple application server clones are
configured or WebSphere security is used on themachine hosting the Web server.

7.1.3.6.2: Semi-remote HTTP sample topology
Overview●

Typical use●

Overview

Semi-remote HTTP is a variation of the HTTP topology described in article 7.1.3.6.1, HTTP transport sample
topology. Thedifference between the two topologies is whether an instance of theapplication server runs on the
machine that hosts the Web server. Asemi-remote HTTP configuration has an instance of an application
serverrunning on the same machine as the Web server; a remote HTTPconfiguration does not.

Semi-remote HTTP can be used to direct client requests toadditional application server clones on other machines. In
thisexample, it redirects client requests to both the application serverinstance running on Machine A and the clones
running on Machine B.

Typical use

Using a semi-remote HTTP configuration is recommended only insituations where hardware limitations prevent you
from hosting the Webserver on a dedicated machine.

In many production environments, one set of servers is configuredto run Web servers and another set of servers is
configured to runapplication servers. If a customer either needs to add capacity in aproduction environment or
cannot fully replicate the productionconfiguration in the production test environment, semi-remote HTTPprovides a
means of load distribution between a machine hosting boththe Web and application server and machines hosting just
theapplication server.

A semi-remote HTTP configuration can also be used as a WebSphereproof-of-concept for demonstrating load
distribution in situationswhere there are a limited number of machines.

7.1.3.6.3: Reverse proxy (IP forwarding) sample topology
Overview●

Typical use●

Instructions●

Overview

Reverse proxy (or IP-forwarding) topologies use a reverse proxyserver to receive incoming HTTP requests and forward them to a Web
server. The Web serverin turn forwards the requests to the application servers that do the actual processing.The following figure shows a
simple reverse proxy topology.

In this example, a reverse proxy resides in a demilitarized zone (DMZ) between theouter and inner firewalls. It listens on an HTTP port
(typically port 80) for HTTPrequests. The reverse proxy then forwards those requests to an HTTP server that resides onthe same machine as
WebSphere Application Server. After the requests are fulfilled, theyare returned through the reverse proxy to the client, hiding the
originating Web server.

Typical use

Reverse proxy servers are typically used in DMZ configurations to allow additionalsecurity between the public Internet and the Web servers
(and application servers)servicing requests. A reverse proxy product used with WebSphere Application Server mustsupport Network
Address Translation (NAT) and WebSphere security.

Reverse proxy configurations support high-performance DMZ solutions that require as fewopen ports in the firewall as possible. The
reverse proxy capabilities of the Web serverinside the DMZ require as few as one open port in the second firewall (potentially two ifusing
SSL - port 443).

The advantages of using a reverse proxy server in a DMZ configuration include thefollowing:

The reverse proxy server does not need database access through the firewall.●

It supports WebSphere security and NAT firewalls.●

The basic reverse proxy configuration is well-known and tested in the industry, resulting in less customer confusion than other DMZ
configurations.

●

It is reliable and its performance is relatively fast.●

It eliminates protocol switching by using the HTTP protocol for all forwarded requests.●

It does not affect the configuration and maintenance of a WebSphere application.●

It uses only one firewall port (HTTP) for requests and responses.●

 This is also a disadvantage in some environments wheresecurity policies prohibit the same port or protocol being used for inbound and
outboundtraffic across a firewall.

The disadvantages of using a reverse proxy server in a DMZ configuration include thefollowing:

The presence of a reverse proxy server in a DMZ might not be suitable for some environments.●

It requires more hardware and software than similar topologies that do not include a reverse proxy server, which makes it more
complicated to configure and maintain.

●

The reverse proxy server does not participate in WebSphere workload management.●

Article 7.1.4, Firewall and demilitarized zone (DMZ)configurations, compares the reverse proxy topology to other topologies that support
aDMZ configuration.

Instructions

The implementation specifics are determined by the reverse proxy server; refer to thedocumentation for the product you are using. No
additional WebSphere administration isrequired for the reverse proxy server, although it can be needed for other elements of thereverse
proxy topology.

7.1.3.7: Demilitarized zone (DMZ) sample topology
A demilitarized zone (DMZ) configuration involves multiple firewalls that addlayers of security between the Internet and a
company's critical data and business logic.The following figure shows an example of a simple DMZ topology.

The main purpose of a DMZ configuration is to protect the business logic and data inthe environment from unauthorized
access. A typical DMZ configurationincludes:

An outer firewall between the public Internet and the Web server or servers processing the requests originating on
the company Web site.

●

An inner firewall between the Web server and the application servers to which it is forwarding requests. Company
data also resides behind the inner firewall.

●

The area between the two firewalls gives the DMZ configuration its name. Additionalfirewalls can further safeguard access
to databases holding administrative and applicationdata.

DMZ configurations can be implemented for a wide variety of multi-tiered systems. Article 7.1.4, Firewall and
demilitarized zone configurations,compares some DMZ configuration options and can help you to select which one is right
foryour organization.

Typical use

The advantage of using a DMZ topology is heightened security. Its drawbacks are morecomplex administration and
maintenance. In addition, an administration server often cannotbe run on the DMZ node. The firewall is intended to protect
the back-end database serverfrom unauthorized access, but it can prevent the administrative server from gaining accessto
the administrative repository.

7.1.3.8: Multiple WebSphere domains sample topology
Overview●

Typical use●

Overview

The following figure shows an example of how an application can be implemented overmultiple WebSphere Application Server administrative domains.

The example application runs simultaneously in two administrative domains, each hostedon a different physical machine (Machines A and B). Network Dispatcher is
used todistribute incoming HTTP requests among the two domains, presenting a single image of theapplication to clients. A backup Network Dispatcher node provides
failover support.

In this example, the application server clones in both domains are created from thesame model so that identical versions of the application run in each domain.
However, youcan run a different version of the application in each domain. Because the domains areisolated from one another, you can also run different versions of the
WebSphereApplication Server software in each domain.

In this example, both domains share a common application database. However, each domainis administered independently and maintains a separate administrative
repository.

Typical use

Topologies that incorporate more than one administrative domain have the followingadvantages:

Isolation of hardware failure. If one domain goes offline due to hardware problems, the others can still process client requests.●

Isolation of software failure. Running an application in two or more domains isolates any problems that occur within a domain, while the other domains continue
to handle client requests. This can be helpful in a variety of situations:

When rolling out a new application or a revision of an existing application. The new application or revision can be brought online in one domain and
tested in a live situation while the other domains continue to handle client requests.

❍

When deploying a new version of the WebSphere Application Server software. The new version can be brought into production and tested in a live
situation without interrupting service.

❍

When applying fixes or patches to the WebSphere Application Server software. Each domain can be taken offline and upgraded without interrupting the
application.

❍

If an unforeseen problem occurs with the new software, using multiple domains can prevent an outage to an entire site. A rollback to a previous software version
can also be accomplished more quickly. Hardware and software upgrades can be handled on a domain-by-domain basis during offpeak hours.

●

Improved performance. Running an application using multiple smaller domains can provide better performance than a single large domain because there is less
interprocess communication in a smaller domain.

●

Using multiple domains has several drawbacks:

Deployment is more complicated than for a single administrative domain. Using a distributed file system that provides a common file mount point can make this
task easier.

●

Multiple domains require more administration effort because each domain is administered independently. This problem can be reduced by using wscp and
XMLConfig scripts to standardize and automate common administrative tasks.

●

Using multiple administration repositories (databases) makes performing backups more complicated.●

7.1.3.9: Multiple applications within a node sample topology
Overview●

Typical use●

Overview

The following figure shows a topology in which clones of more than one applicationserver are hosted on a physical node.

The example topology is a variation of the basic horizontal scaling topology. Theclones of an application server are not hosted on a single
machine but are distributedthroughout all of the machines in the system. (In this example, a clone of each ishosted on both Machine B and
Machine C.) Machine A serves as the Web server for theapplication and distributes client requests to the application server clones on
eachnode. Machine D serves as the database server for both nodes.

Typical use

Hosting clones of multiple application servers within a node provides the followingbenefits:

Improved throughput. Cloning an application server enables it to handle more client requests simultaneously.●

Improved performance. Hosting clones on multiple machines enables each clone to make use of the machine's processing
resources.

●

Hardware failover. Hosting clones on multiple nodes isolates hardware failtures and provides failover support. Client requests can
be redirected to the application server clones on other nodes if one node goes offline.

●

Application server failover. Hosting clones on multiple nodes also isolates application software failures and provides failover
support if a clone stops running. Client requests can be redirected to clones of the application server on other nodes.

●

Process isolation. If one application server process fails, its clones on the other nodes are unaffected.●

Drawbacks of this topology include the following:

More complex deployment. Application executable files must be distributed across multiple machines in a cluster. Using a
distributed file system that provides a common file mount point for all nodes can make this task easier.

●

More complex maintenance. Clones of each application server must be maintained on multiple machines.●

7.1.3.10: Putting it all together - a combined topology
Overview●

Typical use●

Overview

An example of a topology that combines the best elements of the other topologiesdiscussed in this section is shown in the following figure.

This topology combines elements of several different basic topologies:

Two WebSphere Application Server administrative domains●

Two Network Dispatcher nodes (machine A in domain 1; machine J in domain 2)●

Two HTTP servers for each domain (machines B and C in domain 1; machines K and L in domain 2)●

Four application server nodes for each domain (machines D, E, F, and G in domain 1; machines M, N, O and P in domain 2)●

The use of clones for both vertical and horizontal scaling. In the example topology, each node hosts three clones; in practice, the number of clones is limited by the computing
resources of each node.

●

Two database servers for each domain (machines H and I in domain 1; machines Q and R in domain 2). These servers host mirrored copies of the application database and
administrative database.

●

Typical use

This topology is designed to maximize thoughput, availability, and performance. It incorporates the best practices of the other topologies discussed in this section:

Having more than one Network Dispatcher node, HTTP server, application sever, and database server in each domain eliminates single points of failure.●

Multiple administrative domains provide both hardware and software failure isolation, especially when upgrades of the application or the application server software are rolled out.
(Hardware and software upgrades can be handled on a domain-by-domain basis during off-peak hours.)

●

Horizontal scaling is done by using both cloning and Network Dispatcher to maximize availability and eliminate single points of process and hardware failure.●

Application performance is improved by using several techniques:

Hosting application servers on multiple physical machines to boost the available processing power.❍

Creating multiple smaller domains instead of one large domain. There is less interprocess communication in a smaller domain, which allows more resources to be devoted to
processing client requests.

❍

Using clones to vertically scale application servers on each node, which makes more efficient use of the resources of each machine.❍

●

Applications with this topology can make use of several workload management techniques. In this example, workload management can be done through one or more of the
following:

Using the Advanced Application Server workload management facility to distribute work among the application server clones.❍

Using Network Dispatcher to distribute client HTTP requests to each Web server.❍

For example, an application can manage workloads at the Web server level with Network Dispatcher and at the application server level with WebSphere workload managment.
Using multiple workload management techniques in an application provides finer control of load balancing.

Regardless of which workload management techniques are used in the application, administrative servers participate in workload management to provide failover support.

●

In this topology, only the loss of an entire domain can normally be noticed by users.If this occurs, the active HTTP sessions are lost for half of the clients. Thesystem can still process HTTP
requests although its perfomance is degraded.

The combined topology has several drawbacks:

Deployment is more complicated. The WebSphere Application Server software and application files must be deployed in each domain, which would not be the case for applications
that run in a single administrative domain. Using a distributed file system that provides a common file mount point can make this task easier.

●

Multiple domains require more administration effort, since each domain is administered independently. This problem can be reduced by using wscp and XMLConfig scripts to
standardize and automate common administrative tasks.

●

7.1.4: Firewalls and demilitarized zone (DMZ) configurations
Firewalls are often used in multimachine systems to protect back-end resources such asdatabases. They can also be used to protect application servers and even
Web servers fromunauthorized outside access.

A demilitarized zone (DMZ) configuration involves multiple firewalls that addlayers of security between the Internet and a company's critical data and
business logic.A wide variety of topologies are appropriate for a DMZ environment. WebSphere ApplicationServer provides great flexiblity in configuring
DMZ topologies, but the basic locations ofelements are as follows:

Comparison of DMZ configurations

Somehow, requests for applications being managed by WebSphere Application Server mustget from the Web server to the application servers, passing through
firewalls. WebSphereApplication Server offers many configuration choices for accomplishing this goal. Thefollowing table summarizes the benefits of each
DMZ configuration option supported by theproduct. The criteria for each topology are described after the table.

A checkmark () represents anadvantage.

Benefit () or statistic Remote HTTP Reverse proxy

Compatible with product security

Avoids data access from DMZ

Supports NAT

Avoids DMZ protocol switch

Allows encrypted link between Web
server and application server Depends on Web server

Avoids single point of failure

Minimum firewall holes 1 per application server, plus 1 if WebSphere security is
used on the Web server machine 1

Compatible with product security. IBM WebSphere Application Server security protects applications and their components by enforcing
authorization and authentication policies. Configuration options compatible with product security are desirable because they do not necessitate
alternative security solutions.

●

Avoids data access from DMZ. A DMZ configuration protects application logic and data by creating a demilitarized zone between the public Web site
and the servers and databases where this valuable information is stored. Desirable DMZ topologies do not have databases or servers that directly access
databases in the DMZ. Because a WebSphere administrative server needs access to a database for its configuration information, it is often not a viable
solution to run an administrative server in the DMZ.

●

Supports Network Address Translation (NAT). A firewall product that runs NAT receives packets for one IP address, and translates the headers of
the packet to send the packet to a second IP address. In environments with firewalls employing NAT, avoid configurations involving complex protocols
in which IP addresses are embedded in the body of the IP packet, such as Java Remote Method Invocation (RMI) or Internet Inter-Orb Protocol (IIOP).
These IP addresses are not translated, making the packet useless.

●

Avoids DMZ protocol switch. The Web server sends HTTP requests to application servers behind firewalls. It is simplest to open an HTTP port in the
firewall to let the requests through. Configurations that require switching to another protocol (such as IIOP), and opening firewall ports corresponding
to the protocol, are less desirable. They are often more complex to set up, and the protocol switching overhead can impact performance.

●

Allows encrypted link between Web server and application server. Configurations that support encryption of communication between the Web
server and application server reduce the risk that attackers will be able to obtain secure information by "sniffing" packets sent between the Web server
and application server. A performance penalty usually accompanies such encryption.

●

Avoids single point of failure. A point of failure exists when one process or machine depends on another process or machine. A single point of failure●

is especially undesirable because if the point fails, the whole system will become unavailable. When comparing DMZ solutions, a single point of failure
refers to a single point of failure between the Web server and application server. Various failover configurations can minimize downtime and possibly
even prevent a failure. However, these configurations usually require additional hardware and administrative resources.

Minimum required number of firewall holes. Configurations that minimize the number of firewall ports are desirable because each additional
firewall port leaves the firewall more vulnerable to attackers.

●

Relative performance. Some solutions are faster than others, in terms of the number of client requests they can process per unit of time.●

Relative administrative maintenance. Some solutions require little or no maintenance after you establish them, while others require periodic
administrative steps, such as stopping a server and starting it again after modifying resources that affect the configuration. To learn about the necessary
maintenance for a topology, review the instructions for setting up and maintaining that topology. Of course, if you can automate the necessary
administrative steps, this might not concern you. See article 6.6.0.2 for information about the available command-line clients and scripting possibilities.

●

http://localhost/0802_makepdf/ae_orig/nav_Multiguidenav/06060002.html

7.1.5: Remote database access with DB2 Universal
Database (UDB)
DB2 databases can be installed on the same machine as the WebSphere Application Serversoftware or on a
different machine. Installing the database on a different machinehas several advantages:

Placing the database and application server software on different machines improves their performance
because they do not need to compete for system resources.

●

You can independently tune the machines that host the database server and the application server to
achieve optimal performance.

●

Many organizations have invested in high-availability solutions for their database servers, reducing the
possibility of it being a single point of failure in a system.

●

All remote database clients use a communications product to support the protocol thatis used to access a remote
database server. The protocol stack must be installed andconfigured before a client can communicate with a
remote DB2 UDB server. ForWebSphere Application Server, the recommended protocol is TCP/IP.

See the WebSphereApplication Server installation documentation for your platform for instructions on how
toconfigure a remote DB2 database.

7.1.6: Managing state
Multimachine scaling techniques rely on using multiple copies of an application server;multiple consecutive
requests from various clients can be serviced by different servers.If each client request is completely
independent of every other client request, it doesnot matter whether consecutive requests are processed on the
same server. However, inpractice, client requests are not independent. A client often makes a request, waits
forthe result, then makes one or more subsequent requests that depend on the results receivedfrom the earlier
requests. This sequence of operations on behalf of a client falls intotwo categories:

Stateless: A server processes requests based solely on information provided with each request and does
not reply on information from earlier requests. In other words, the server does not need to maintain state
information between requests.

●

Stateful: A server processes requests based on both the information provided with each request and
information stored from earlier requests. In other words, the server needs to access and maintain state
information generated during the processing of an earlier request.

●

For stateless interactions, it does not matter whether different requests are processedby different servers.
However, for stateful interactions, the server that processes arequest needs access to the state information
necessary to service that request. Eitherthe same server can process all requests that are associated with the
same stateinformation, or the state information can be shared by all servers that require it. In thelatter case,
accessing the shared state information from the same server minimizes theprocessing overhead associated with
accessing the shared state information from multipleservers.

The load distribution facilities in WebSphere Application Server make use of severaldifferent techniques for
maintaining state information between client requests:

Session affinity, where the load distribution facility recognizes the the existence of a client session and
attempts to direct all requests within that session to the same server.

●

Transaction affinity, where the load distribution facility recognizes the existence of a transaction and
attempts to direct all requests within the scope of that transaction to the same server.

●

Server affinity, where the load distribution facility recognizes that although multiple servers might be
acceptable for a given client requests, a particular server is best suited for processing that request.

●

The WebSphere Session Manager, which is part of each application server, stores clientsession information and
takes session affinity and server affinity into account whendirecting client requests to the clones of an
application server. The workload managementservice takes server affinity and transaction affinity into account
when directing clientrequests among the clones of an application server.

0.11: What are sessions and Session Managers?●

4.4.1: Tracking sessions●

http://localhost/0802_makepdf/ae_orig/nav_Multiguidenav/0011.html
http://localhost/0802_makepdf/ae_orig/nav_Multiguidenav/040401.html

7.1.6.1: HTTP sessions, servlets, and the session
manager
When an HTTP client interacts with a servlet, the state information associated with aseries of client requests is
represented as an HTTP session and identified by a sessionID. The Session Manager is responsible for
managing HTTP sessions, providing storage forsession data, allocating session IDs, and tracking the session ID
associated with eachclient request through the use of cookies or URL rewriting techniques. The Session
Managercan store session-related information in memory in two ways:

In application server memory (the default). This information cannot be shared with other application
servers.

●

In a database shared by all application servers. This is also known as persistent sessions or session
clustering.

●

Persistent sessions are essential for using HTTP sessions with a load distributionfacility. When an application
server receives a request associated with a session ID thatit currently does not have in memory, it can obtain the
required session state byaccessing the session database. If persistent sessions are not enabled, an
applicationserver cannot access session information for HTTP requests that are sent to servers otherthan the one
where the session was originally created. The Session Managerimplements caching optimizations to minimize
the overhead of accessing the sessiondatabase, especially when consecutive requests are routed to the same
application server.

Storing session states in a persistent database also provides a degree of faulttolerance. If an application server
goes offline, the state of its current sessions isstill available in the session database. This enables other
application servers tocontinue processing subsequent client requests associated with that session.

Saving session state to a database does not completely guarantee that it is preservedin case of a server failure.
For example, if a server fails while it is modifying thestate of a session, some information is lost and subsequent
processing using that sessioncan be affected. However, this situation represents only a very small period of time
whenthere is a risk of losing session information.

The drawback to saving session state in a persistent database is that accessing thesession state database can use
valuable system resources. The Session Manager can improvesystem performance by caching the database data
at the server level. Multiple consecutiverequests that are directed to the same server can find the required state
data in thecache, reducing the number of times that the actual session state database must beaccessed (and thus
the overhead associated with database access).

7.1.6.2: EJB sessions and transaction affinity
When an EJB client interacts with one or more enterprise beans, the WebSphereApplication Server container
manages the state information associated with a series ofclient requests. Whether session state is managed at all
depends on the types ofenterprise beans that participate in fulfilling these requests. Each type of enterprisebean
is handled differently by the container.

Stateless session bean

By definition, a stateless session bean maintains no state information. Each clientrequest directed to a stateless
session bean is independent of the previous requests thatwere directed to the bean. The container maintains a
pool of instances of statelesssession beans, and provides an arbitrary instance of the appropriate stateless
sessionbean when a client request is received. Requests can be handled by any stateless sessionbean instance in
any clone of the application server, regardless of whether the beaninstance handled the previous client requests.

Stateful session beans

A stateful session bean is used to capture state information that must be shared acrossmultiple consecutive client
requests that are part of a logical sequence of operations.The client must obtain an EJB object reference to a
stateful session bean to ensure thatit is always accessing the same instance of the bean.

WebSphere Application Server supports the cloning of stateful session bean home objectsamong multiple
application servers. However, it does not support the cloning of a specificinstance of a stateful session bean.
Each instance of a particular stateful session beancan exist in just one application server and can be accessed
only by directing requests tothat particular application server. State information for a stateful session bean
cannotbe maintained across multiple application server clones.

Entity beans

An entity bean represents persistent data. Most external clients access entity beans byusing session beans, but it
is possible for an external client to access an entity beandirectly. The information contained in an entity bean is
not usually associated with asession or with the handling of one client request or series of client requests.
However,it is common for a client to make a succession of requests targeted at the same entitybean instance. It
is also possible for more than one client to independently access thesame entity bean instance within a short
time interval. The state of an entity bean musttherefore be kept consistent across multiple client requests.

For entity beans, the concept of a session is replaced by the concept of a transaction.An entity bean is
instantiated in a container for the duration of the client transactionin which it participates. All subsequent
accesses to that entity bean within thattransaction are performed against that instance of the bean in that
particular container.The container needs to maintain state information only within the context of thattransaction.
The workload management service uses the concept of transaction affinity todirect client requests, After a
server is selected, client requests are directed towardsit for the duration of the transaction.

Between transactions, the state of the entity bean can be cached. The EJB containersupports both option A and
option C caching.

With option A caching, WebSphere Application Server assumes that the entity bean is used within a
single container. Clients of that bean must direct their requests to the bean instance within that container.
The entity bean has exclusive access to the underlying database, which means that the bean cannot be
cloned or participate in workload management if option A caching is used.

●

With option C caching (the default), the entity bean is always reloaded from the database at the
beginning of each transaction. A client can attempt to access the bean and start a new transaction on any
container that has been configured to host that bean. This is similar to the session clustering facility

●

described for HTTP sessions, since the entity bean's state is maintained in a shared database that can be
accessed from any server when required.

7.1.6.3: Server affinity
A load distribution facility (such as the workload management service) is not alwaysfree to pick any available
server when it redirects client requests.

For stateful session beans or entity beans within the context of a transaction, there is only one valid
server. An entity bean is instantiated on a single server in a single container during the context of a
transaction. Subsequent client requests must be directed to that server. The workload management
service always directs client requests to a stateful session bean to the single server instance containing
the bean. In either case, directing the request to the wrong server either causes the request to fail or
forces the server to forward it to the correct server at a high performance cost.

●

For clustered HTTP sessions or entity beans between transactions, the underlying shared database
ensures that any available server can be used to process client requests.

●

For stateless session beans, any available server can be used because each bean instance is identical.●

Server affinity refers to the characteristics of each load distribution facility thattake these constraints into
account. The load distribution facility recognizes thatmultiple servers can be acceptable targets for a request.
However, it alsorecognizes that each request can be directed to a particular server where it is handledbetter or
faster.

Server affinity can be weak or strong.

In weak server affinity, the system attempts to enforce the desired affinity for the majority of requests,
but does not always guarantee that this affinity will be respected.

●

In strong server affinity, the system guarantees that affinity is always respected and generates an error
when it cannot direct a request to the appropriate server.

●

7.2 Managing workloads
Workload management optimizes the distribution of work-processing tasks in theWebSphere Application
Server environment. Incoming work requests are distributed to theapplication servers and other objects that can
most effectively process the requests.Workload management also provides failover when servers are not
available.

Workload management is most effective when used in systems that contain servers onmultiple machines. It also
can be used in systems that contain multiple servers on asingle, high-capacity machine. In either case, it enables
the system to make the mosteffective use of the available computing resources.

Implementing workload management

The Advanced application server implements workload management by using server groupsand clones.
Multiple copies, or clones, of an application server can be createdfrom a server group, which acts as a template
for creating clones of anapplication server.

Workload management is automatically enabled for clones of application servers.Administrative servers can
also participate in workload management.

Benefits of workload management

Workload management provides the following benefits to WebSphere applications:

It balances client workloads, allowing processing tasks to be distributed according to the capacities of
the different machines in the system.

●

It provides failover capability by redirecting client requests if one or more servers is unable to process
them. This improves the availability of applications and administrative services.

●

It enables systems to be scaled up to serve a higher client load than provided by the basic configuration.
With cloning and modeling, additional instances of servers, servlets, and other objects can easily be
added to the configuration.

●

It enables servers to be transparently maintained and upgraded while applications remain available for
users.

●

It centralizes the administration of servers and other objects.●

7.2.1 Workload management for enterprise beans and
application servers
Workload management for application servers and enterprise beans is enabledautomatically when clones are
created. No special configuration is needed.

WebSphere Application Server uses the concept of a server group, or cluster,to identify which application
servers participate in workload management. The clones ofone application server group constitute an
application server cluster. Processing requestsfrom clients are distributed among the application server instances
in the cluster.

Migrating workload-managed enterprise beans from version 3.5 to
version 4.0

In version 3.5 of WebSphere Application Server, workload management for enterprisebeans was enabled by
using stub code that allowed EJB clients to access enterprise beansthrough the workload management service.
The wlmjar utility was used togenerate this stub code and create workload management-enabled Java Archive
(JAR) files.This approach has been deprecated for version 4.0 of WebSphere Application Server.
Clonedenterprise beans now automatically participate in workload management.

You do not need to make any changes to enterprise beans that participated in workloadmanagement under
version 3.5 of WebSphere Application Server. The workload managementservice simply ignores the existing
stub code and workload management-enabled JAR files.However, you must remove the name of the workload
management-enabled JAR file from theCLASSPATH environment variable. Replace it with the name of the
original JAR file.

How enterprise beans participate in workload management

The workload management service provides load balancing for the following types ofenterprise beans:

All clones of the home object of an entity or session bean●

All clones of an instance of a specific entity bean or stateless session bean●

The reason why stateful session bean instances are treated differently than statelesssession bean instances has to
do with how their state is managed. As their name implies,stateless session beans do not maintain state
information. All instances of a statelesssession bean are considered to be identical, and each client request that it
handles istreated as being made independently of any other requests.

In contrast, stateful session beans are used to store state information that must beshared among multiple and
consecutive client requests that are part of a logical sequenceof operations. Each instance of a particular stateful
session bean is unique. It existsonly in one application server and can be accessed only by directing requests to
thatparticular application server.

Specific instances of stateful session beans cannot be shared between applicationservers. However, their homes
can be cloned in the context of cloning the applicationserver in which they are contained. Cloning the home
object of a stateful session beanenables an application to create new instances of that bean in an application
server.Multiple instances of a specific stateless session bean can exist in clones of anapplication server, but each
instance is unique and cannot be shared.

Entity beans exist in a container only within the context of a transaction, regardlessof whether the beans
themselves are transactional. The workload management service usesthe concept of transaction affinity to direct
client requests for entity beans. After anapplication server is selected, client requests for that entity bean are
forwarded to itfor the duration of the transaction. Workload management can be used only if option Ccaching is

enabled in the container.

7.2.3 Workload management for administrative
servers
Administrative servers can participate in workload management. Workload managementprovides failover
capability, improving the availability of administrative and namingservices. It also eliminates the possibility of
an administrative server being a singlepoint of failure in a system.

 Workloadmanagement must be enabled or disabled for all administrative servers in a domain.

When an administrative server participates in workload management, an exception isthrown if the
administrative server fails during an administrative task. Subsequentrequests are redirected to the other
administrative servers in the domain, minimizing thedisruption to administrative operations.

For example, a command issued through the WebSphere Administrative Console can fail ifan administrative
server goes offline while the command is being executed. If workloadmanagement is enabled, any subsequent
attempts to execute the command are redirected toanother administrative server. This allows the command to be
successfully reissued,possibly with a delay for the initial redirection. Subsequent requests are noticeably slower.
The original administrative server will picks up its share ofadministrative requests when it comes back online.

Enabling workload management

Workload management is enabled by default when you start the administrative servers ina domain.

Disabling workload management

To discontinue workload management, stop all administrative servers in the domain andrestart them with
workload management disabled.

Disable workload management by setting the following property in the admin.config file:

com.ibm.ejs.sm.adminServer.wlm=false

Note that adminServer must begin with a lowercase a.

7.2.4 Using server groups and clones
A server group is a template for creating copies of an application serverinstance. The copies are called clones.
The act of creating the clones is called cloning.

Cloning allows identical copies of application servers to be created. Server groups andclones can be created
only for application servers. A system administrator first creates aserver group that represents an application
server with the desired properties. From it,one or more clones can be created. The clones represent real
application server processes;when first created, they are identical to the model in every way.

Changes to a server group are propagated to its clones when the clones are restarted.You can efficiently
administer several copies of a server or other resource byadministering its server group.

Working with server groups and clones

The procedure for creating server groups and clones is as follows:

Create the original instance of the application server that you want to clone. Configure it exactly as you
would like it. For example, you can deploy enterprise beans into the application server's container and
configure the application server to meet specific performance goals.

1.

Create a server group from the application server by using the Administrative Console. Making the
original instance a clone is recommended but not required. The original instance can remain
freestanding.

2.

Create clones of the server group.3.

When changes are necessary, apply them to the server group, which in turn modifies the original
instance (which is now a clone) and the other clones.

4.

7.2.4.1 Cloning for workload management, failover,
and scaling
Cloning supports workload management, failover, and scaling.

Workload management

Server groups and clones provide necessary support for workload management. Whenyou modify a server
group, the change is propagated to its clones when they arerestarted. Besides making it easy to administer
several servers as one logical server,this keeps the clones identical so that requests can be routed to any one of
them with thesame results.

This ability to route a request to any server in a group of identical servers allowsthe servers to share work,
improving throughput of client remote method invocations.Requests can be evenly distributed to servers to
prevent workload imbalances in which oneor more servers have idle or low activity while others are
overburdened. This load-balancing activity is a benefit of workload management.

Failover

With several clones available to handle requests, it is more likely that failures willnot damage throughput and
reliability. With clones distributed to various nodes, an entiremachine can fail without producing devastating
consequences (unless, of course, the failedmachine is a single point of failure). Requests can be routed to other
nodes if one nodefails.

Scaling

Cloning is an effective way to perform vertical and horizontal scaling of applicationservers.

In vertical scaling, clones are defined on a single machine to allow the machine's processing power to be
more efficiently allocated. It is particularly useful if your environment contains large, underutilized
machines. A single application server is implemented by a single Java Virtual Machine (JVM) process
and cannot fully utilize the power of a large machine. (This is especially true on large multiprocessor
computers because of concurrency limitations within a single JVM process.) Vertical scaling allows
multiple application server clones (and therefore JVM processes) to be created, which makes use of the
machine's processing power more effectively. Vertical scaling is described in more detail in article
7.1.3.3.

●

In horizontal scaling, clones are defined on multiple machines in a system. This allows a single
WebSphere application to run on several machines while presenting a single system image, making the
most effective use of the resources of a distributed computing environment. Horizontal scaling is
especially effective in environments that contain many smaller, less powerful machines. Client requests
that overwhelm a single machine can be distributed over several machines in the system. Failover is
another benefit of horizontal scaling. If a machine becomes unavailable, its work can be routed to other
machines containing server clones. Horizontal scaling is described in more detail in article 7.1.3.4 and
article 7.1.3.5.

●

WebSphere applications can combine horizontal and vertical scaling to reap the benefitsof both scaling
techniques.

7.2.4.2 Modifying server groups and clones
To perform an administrative action on a clone (such as modifying the clone'sproperties), perform the action on
the associated server group. For example, to add anenterprise bean to an application server, you must add the
bean in the server group. Withone action, you can add an enterprise bean to all clones of the application server.

Changes related to workload management (such as selection policy changes, startingclones, and stopping
clones) are propagated to workload management clients. Other servergroup changes (such as adding or
removing enterprise beans from an application server) arepicked up by the clones when they are restarted.

If you modify a clone directly (instead of through its server group), the clone nolonger is identical to its server
group. For instance, you can have clones on differentmachines use different log files or server selection
policies.

7.2.4.3 Advice for cloning
Create clones based on your knowledge of the application and on the expected workload.Some considerations:

Clones do not need to reside on the same machine.●

Clients can have inconsistent views of configuration information in the server group. This can occur
when an application server instance is stopped, started, added, or deleted. The period of inconsistency is
short-lived, however. Clients eventually refresh their caches of server information. Application server
instances that are unchanged during the period of inconsistency remain available.

●

In most cases, if you make changes to a server group, its clones and its clients do not need to be
restarted. The changes are eventually propagated to them. However, in some cases you need to stop and
restart the server group's clones, for example, if you change the server group's selection policy.

●

You can make changes to a server group while it is running. However, incremental changes (such as
adding or removing one or two clones) have less impact on client performance than wholesale changes.

●

It is always best to make changes when few clients and application servers are running.●

You can add or remove server clones later in response to the load on the application. Alternattively, you
can clone the initial number of application server instances based on expected load.

●

If a machine becomes unavailable, you do not need to reconfigure the clones of other application servers
to compensate for any unavailable application servers on that machine. However, if the machine is going
to be unavailable for an extended period, you can reconfigure the other servers to optimize performance.

●

7.2.4.4 Containment relationships
Containment relationships are preserved when you clone applicationservers. For example, if you create a server
group from an applicationserver that hosts a Web application that is contained by a particularservlet engine, all
clones created from that server group also containthat servlet engine and Web application.

7.2.4.5 Server selection policies and transaction
affinity
When you are cloning an application server, you need to take the following things intoaccount:

Server selection policies●

Transaction affinity for application servers●

Server selection policies

The workload management server selection policy defines how clients choose amongapplication server clones
(instances). Select among these policies:

Random●

Round-robin●

Random prefer local●

Round-robin prefer local●

See article 6.6.22.0, for a detailed description of theserver selection policies.

Transaction affinity for application servers

Regardless of the selection policy used, the workload management service attempts tochoose an application
server clone based on transaction affinity. Within atransaction, the first time a server is picked, the prevailing
selection policy for theserver group is applied. After a server is selected, it remains bound for the duration ofthe
transaction.

For example, suppose the round-robin policy is specified for server group A with twoapplication server clones,
S1 and S2. A client has two concurrent threads, t1 and t2, withtransaction contexts T1 and T2, respectively.
Assume that thread t1 is first and needs toselect a server from server group A; clone S2 is randomly chosen.
When t2 tries to selecta server from server group A, S1 is chosen based on the round-robin policy in effect
forthe server group. Subsequent requests to server group A are serviced by S2 for t1 and S1for t2, based on
transaction affinity.

http://localhost/0802_makepdf/ae_orig/nav_Multiguidenav/06062200.html

7.2.4.6 Security for cloned resources
The workload management service has its own built-in security, which works with theWebSphere application
server security service to protect cloned resources. When youare creating clones of application servers, enable
security before you create a model ofthe application server. This enables security for all of the application
serverclones created from that model.

Protecting cloned enterprise beans

Enterprise beans that are cloned in the context of cloning an application server areprotected under the
application server's security. Enterprise bean instances and theirclones have separate identities, although
workload management treats them as beingidentical. Therefore, you must protect every cloned enterprise bean
by configuringresource security for the enterprise bean and including it in a secured enterpriseapplication.

Protecting cloned servlets

Servlets that are cloned in the context of cloning an application server are nottreated as separate resources by
WebSphere security. If the original servlet isprotected, its clones are too, with no additional steps required by
the administrator. Tosecure a servlet, add its Web resource configuration (URI) to a secured
enterpriseapplication.

7.2.4.7: Creating clones on machines with different
WebSphere installation directories or operating
systems
Different hardware and operating system platforms do not usually have the sameWebSphere Application server
product installation rootdirectories. The following steps are required to create clones on multiple
machineswhen WebSphere Application Server is installed in different directories on differentmachines or when
different directory structures exist across multiple platforms:

On one node, create a model of the application server to be cloned. The platform does not matter if all
machines share the same administrative repository database.

1.

Make the original application server instance a clone and recursively model all instances under the
application server. If you are creating a model of the default application server, make sure that it is not
already installed on the machines that it will be cloned to.

2.

For all other nodes in the configuration:

Create a clone on the machine. a.

If desired, copy the application files (the files containing servlet, enterprise bean, JavaServer
Pages, and HTML code) to the machine.

b.

Modify the following properties of the clone. The directory structures of these fields must be
changed to match the directory structure of the product_ installation_root directory and the Web
application file locations on the machine where the clone is running.

The Standard Output field of cloned application servers■

The Standard Error field of cloned application servers■

The JAR File field of cloned enterprise beans■

The Document Root field of cloned web applications■

The Classpath table of cloned web applications■

These changes do not make the clones freestanding.

c.

Start the cloned application server.d.

Repeat these steps for each machine in the configuration. Changes made to individual clones are not
propagated to the other clones in the system.

3.

 Modifying the model can overwrite these changes, requiring you to redo them.

http://localhost/0802_makepdf/ae_orig/nav_Multiguidenav/root.html
http://localhost/0802_makepdf/ae_orig/nav_Multiguidenav/root.html

7.2.5 Using workload management - a sample
procedure
The following procedure shows how to implement workload management by cloningapplication servers. In this
scenario, client requests are distributed among the clones ofan application server on a single machine. (A client
refers to any servlet, Javaapplication, or other program or component that connects the end user and the
applicationserver that is being accessed.) In more complex workload management scenarios, you candistribute
clones to remote machines.

Decide which application server you are going to clone.1.

Deploy the application onto the application server.2.

After configuring the application server and the application components exactly as you want them to be,
create a server group. The original server instance becomes a clone that is administered through the
server group.

3.

Create one or more clones of the server group.4.

Start all of the application servers by starting the server group.5.

Workload management automatically begins when you start the clones of the applicationserver.

 You need to define abootstrap host for stand-alone Java clients -- that is, clients that are located on
adifferent machine from the application server and have no administrative server for theclient. Add the
following line to the Java Virtual Machine (JVM) arguments for the client:

-Dcom.ibm.CORBA.BootstrapHost=machine_name

where machine_name is the name of the machine on which the administrativeserver is running.

7.2.6 Tuning a workload management configuration
The workload management service uses several parameters to control the behavior of theworkload management
run time. In the majority of cases, you do not need to explicitly setthe values of these parameters. However, if
you are experiencing problems with yourworkload management configuration, you can adjust these properties
to tune the behavior ofthe workload management run time.

 Set the values of these properties only inresponse to problems that you encounter in your environment. If
workload management isfunctioning correctly, changing these properties can produce undesirable results.

Workload management client properties

A workload management client can be a cloned resource or an application server thatacts as an EJB client to a
cloned resource. The following properties can be used tocontrol the behavior of the workload management
client run time. They are set ascommand-line arguments for the Java Virtual Machine (JVM) process in which
the workloadmanagement client is running. In many cases, such as where a servlet is a client to anenterprise
bean, this means that these parameters are specified as part of the command-line arguments for the application
server where the servlet is running.

com.ibm.CORBA.requestTimeout. This property specifies the timeout period for responding to
workload management requests. Set this value in the Command Line Arguments field by using the -D
option as follows:

-Dcom.ibm.CORBA.requestTimeout=timeout_interval

where timeout_interval is the timeout period in seconds. If your network is subject to extreme latency,
specify a large value to prevent timeouts. If you specify a value that is too small, an application server
that particpates in workload management can ttime out before it receives a response.

●

 Be very careful whenyou specify this property: it has no recommended value. Set it only if your application
isexperiencing problems with timeouts.

com.ibm.ejs.wlm.MaxCommFailures. This property specifies the number of attempts that a workload
management client makes to contact the administrative server that manages workloads for the client.
The workload management client run time does not identify an administrative server as unavailable until
a certain number of attempts to access it have failed. This allows workload management to continue if
the server suffers from transient errors that can briefly prevent it from communicating with a client.
However, it can also propagate nontransient administrative server failures to the client. Set this value in
the Command Line Arguments field in the administrative console by using the -D option as follows:

-Dcom.ibm.ejs.wlm.MaxCommFailures=max_failures

where max_failures specifies how many times the client attempts to contact the administrative server
after the first failure. The default value is zero, which means that the workload management run time
does not attempt to use the administrative server after the first failure until a timeout interval (specified
by the com.ibm.ejs.wlm.UnusableInterval parameter) expires. This reduces the possibility of further
server failures being propagated to the client.

●

com.ibm.ejs.wlm.UnusableInterval. This property specifies the time interval that the workload
management client run time waits after it marks an administrative server as unavailable before it
attempts to contact the server again. Set this value in the Command Line Arguments field in the
administrative console by using the -D option as follows:

-Dcom.ibm.ejs.wlm.UnusableInterval=interval

where interval is the time in seconds between attempts. The default value is 900 seconds. If this
parameter is set to a large value, the server is marked as unavailable for a long period of time. This

●

prevents the workload management refresh protocol from refreshing the workload management state of
the client until after this time period has ended.

Administrative server properties

The administrative server for the cloned resources that participate in a workloadmanagment group (such as an
application server cluster) acts as the workload managementserver.

com.ibm.ejs.wlm.RefreshInterval. This property specifies the interval at which the administrative
server updates the server group information to the cloned application servers that participate in workload
management. It is appended to the arguments for the
com.ibm.ejs.sm.util.process.Nanny.adminServerJvmArgs entry in the administrative server
configuration file. The value of this property is specified as follows:

com.ibm.ejs.wlm.RefreshInterval=interval

where interval is the number of seconds that elapse between the administrative server updates. The
default value is 300 seconds.

●

7.2.7 Run-time exceptions and failover strategies for
workload management

Workload management run-time exceptions

The workload management service can throw the following exceptions if it encountersproblems:

org.omg.CORBA.NO_IMPLEMENT. This exception is thrown if the workload management service
cannot contact any of the EJB application servers that participate in workload management.

●

org.omg.CORBA.INTERNAL. This exception is thrown when an internal software failure occurs. The
error is listed in the WebSphere client trace log. (Be aware that if WebSphere is not installed on the
client machine, no logging is performed.)

●

org.omg.CORBA.COMM_FAILURE. This exception is thrown by the ORB when a communications
failure occurs. Any current transactions are rolled back, and nontransactional requests are redone.

●

org.omg.CORBA.NO_RESPONSE. This exception is thrown by the ORB when a communications
failure occurs.

●

The WebSphere Application Server client can catch these exceptions and then implementits own strategies to
handle the situation; for example, it can display an error messageif no servers are available.

Workload management failover strategies

The workload management service uses the following failover strategies, some of whichare based on the return
values of these exceptions:

If the workload management service cannot contact an application server clone, it automatically
redirects the request to another clone, providing automatic failover.

●

If the application throws an exception, automatic failover does not occur. The workload management
service does not retry the request because it cannot know whether the request was completed.

●

If an org.omg.CORBA.NO_IMPLEMENT exception is thrown, the workload management service has
attempted repeatedly to contact the application servers without success. Workload management resumes
when application servers become available again.

●

If an org.omg.CORBA.INTERNAL exception is thrown, the workload management service is no
longer operating properly and no failover occurs.

●

If the org.omg.CORBA.COMM_FAILURE or org.omg.CORBA.NO_RESPONSE exceptions are
thrown, their return value determines whether automatic failover occurs:

If one of these exceptions is thrown with a COMPLETION_STATUS of COMPLETED_NO,
automatic failover occurs because the request was not completed.

❍

If one of these exceptions is thrown with a COMPLETION_STATUS of COMPLETED_YES,
failover does not occur because the request was successfully completed.

❍

If one of these exceptions is thrown with a COMPLETION_STATUS of MAYBE (which maps to a
java.rmi.RemoteException), automatic failover does not occur. The workload
management service cannot verify whether the request was completed. In this situation, the client
application must anticipate a failure and retry the request. The workload management service
then attempts to direct the request to a surviving application server clone.

❍

●

7.2.8 Workload management for stand-alone Java clients
Enabling workload management for a stand-alone Java client●

Enabling workload management and security for a stand-alone Java client●

Stand-alone Java applications (Java applications that do not run under WebSphereApplication Server), J2EE clients, administrative agents, and other types of
Javaapplications can participate in WebSphere workload management. This extends thebenefits of workload management (such as load balancing and
failover support) to Javaapplications that run on machines where WebSphere Application Server is not installed. TheJava client can optionally participate in
WebSphere security.

Enabling workload management for a stand-alone Java client

To enable stand-alone Java applications to participate in workload management, do thefollowing:

Create a stand-alone Java client module by using the Application Assembly Tool (AAT).1.

Install the client module by using the administrative console or a command-line interface such as wscp.2.

Install the Websphere client Java Archive (JAR) files and the Java 2 SDK by using the WebSphere client installation CD.3.

Start the stand-alone Java client application with the following system parameters:

com.ibm.ejs.wlm.BootstrapNode=admin_server_node❍

com.ibm.CORBA.BootstrapHost=admin_server_node❍

com.ibm.CORBA.BootstrapPort=900❍

where admin_server_node is the name of the machine where the WebSphere administrative server is located. You can specify either the short name,
the IP address, or the fully qualified name of the machine. For example:

java -Dcom.ibm.ejs.wlm.BootstrapNode=greenland
-Dcom.ibm.CORBA.BootstrapHost=greenland.rh1.ibm.com -Dcom.ibm.CORBA.BootstrapPort=900 WlmApp

4.

Enabling workload management and security for astand-alone Java client

Enabling workload management with security requires additional steps to be performed:

Create a standalone Java client module by using the Application Assembly Tool (AAT).1.

Install the client module by using the administrative console or a command-line interface such as wscp.2.

Install the Websphere client Java Archive (JAR) files and the Java 2 SDK by using the WebSphere client installation CD.3.

Copy the product_installation_root/properties/sas.client.props file to the WebSphere/properties directory. This file contains security configuration
properties.

4.

Copy the product_installation_root/lib/sslight.jar file to the WebSphere/jars directory.5.

Copy the product_installation_root/lib/ujc.jar file to the WebSphere/jars directory.6.

Start the stand-alone Java client application with the following system parameters:

com.ibm.CORBA.ConfigURL=file:/C:/Websphere/properties/sas.client.props❍

com.ibm.ejs.wlm.BootstrapNode=admin_server_node❍

com.ibm.CORBA.BootstrapHost=admin_server_node❍

com.ibm.CORBA.BootstrapPort=900❍

where admin_server_node is the name of the machine where the WebSphere administrative server is located. You can specify either the short name,
the IP address, or the fully qualified name of the machine. For example:

java -Dcom.ibm.CORBA.ConfigURL=file:/C:/Websphere/properties/sas.client.props
-Dcom.ibm.ejs.wlm.BootstrapNode=greenland -Dcom.ibm.CORBA.BootstrapHost=greenland.rh1.ibm.com
-Dcom.ibm.CORBA.BootstrapPort=900 WlmApp

7.

http://localhost/0802_makepdf/ae_orig/nav_Multiguidenav/root.html
http://localhost/0802_makepdf/ae_orig/nav_Multiguidenav/root.html
http://localhost/0802_makepdf/ae_orig/nav_Multiguidenav/root.html

	Numbx:
	L:
	C:
	R:

	P1:
	Numbers:
	Numbx:
	L:
	C:
	R: 1

	P2:
	Numbers:
	Numbx:
	L: 2
	C:
	R:

	P3:
	Numbers:
	Numbx:
	L:
	C:
	R: 3

	P4:
	Numbers:
	Numbx:
	L: 4
	C:
	R:

	P5:
	Numbers:
	Numbx:
	L:
	C:
	R: 5

	P6:
	Numbers:
	Numbx:
	L: 6
	C:
	R:

	P7:
	Numbers:
	Numbx:
	L:
	C:
	R: 7

	P8:
	Numbers:
	Numbx:
	L: 8
	C:
	R:

	P9:
	Numbers:
	Numbx:
	L:
	C:
	R: 9

	P10:
	Numbers:
	Numbx:
	L: 10
	C:
	R:

	P11:
	Numbers:
	Numbx:
	L:
	C:
	R: 11

	P12:
	Numbers:
	Numbx:
	L: 12
	C:
	R:

	P13:
	Numbers:
	Numbx:
	L:
	C:
	R: 13

	P14:
	Numbers:
	Numbx:
	L: 14
	C:
	R:

	P15:
	Numbers:
	Numbx:
	L:
	C:
	R: 15

	P16:
	Numbers:
	Numbx:
	L: 16
	C:
	R:

	P17:
	Numbers:
	Numbx:
	L:
	C:
	R: 17

	P18:
	Numbers:
	Numbx:
	L: 18
	C:
	R:

	P19:
	Numbers:
	Numbx:
	L:
	C:
	R: 19

	P20:
	Numbers:
	Numbx:
	L: 20
	C:
	R:

	P21:
	Numbers:
	Numbx:
	L:
	C:
	R: 21

	P22:
	Numbers:
	Numbx:
	L: 22
	C:
	R:

	P23:
	Numbers:
	Numbx:
	L:
	C:
	R: 23

	P24:
	Numbers:
	Numbx:
	L: 24
	C:
	R:

	P25:
	Numbers:
	Numbx:
	L:
	C:
	R: 25

	P26:
	Numbers:
	Numbx:
	L: 26
	C:
	R:

	P27:
	Numbers:
	Numbx:
	L:
	C:
	R: 27

	P28:
	Numbers:
	Numbx:
	L: 28
	C:
	R:

	P29:
	Numbers:
	Numbx:
	L:
	C:
	R: 29

	P30:
	Numbers:
	Numbx:
	L: 30
	C:
	R:

	P31:
	Numbers:
	Numbx:
	L:
	C:
	R: 31

	P32:
	Numbers:
	Numbx:
	L: 32
	C:
	R:

	P33:
	Numbers:
	Numbx:
	L:
	C:
	R: 33

	P34:
	Numbers:
	Numbx:
	L: 34
	C:
	R:

	P35:
	Numbers:
	Numbx:
	L:
	C:
	R: 35

	P36:
	Numbers:
	Numbx:
	L: 36
	C:
	R:

	P37:
	Numbers:
	Numbx:
	L:
	C:
	R: 37

	P38:
	Numbers:
	Numbx:
	L: 38
	C:
	R:

	P39:
	Numbers:
	Numbx:
	L:
	C:
	R: 39

	P40:
	Numbers:
	Numbx:
	L: 40
	C:
	R:

	P41:
	Numbers:
	Numbx:
	L:
	C:
	R: 41

	P42:
	Numbers:
	Numbx:
	L: 42
	C:
	R:

	P43:
	Numbers:
	Numbx:
	L:
	C:
	R: 43

	P44:
	Numbers:
	Numbx:
	L: 44
	C:
	R:

	P45:
	Numbers:
	Numbx:
	L:
	C:
	R: 45

	P46:
	Numbers:
	Numbx:
	L: 46
	C:
	R:

	P47:
	Numbers:
	Numbx:
	L:
	C:
	R: 47

	P48:
	Numbers:
	Numbx:
	L: 48
	C:
	R:

	P49:
	Numbers:
	Numbx:
	L:
	C:
	R: 49

	P50:
	Numbers:
	Numbx:
	L: 50
	C:
	R:

	P51:
	Numbers:
	Numbx:
	L:
	C:
	R: 51

	P52:
	Numbers:
	Numbx:
	L: 52
	C:
	R:

	P53:
	Numbers:
	Numbx:
	L:
	C:
	R: 53

