Enterprise beans -- table of contents

Development

4.3: Developing enterprise beans
4.3.4: Developing enterprise beans for use with the Connector Architecture

Writing Enterprise Beans
About this book
An introduction to enterprise beans
An architectural overview of the EJB programming environment
WebSphere Programming Model Extensions
More-advanced programming concepts for enterprise beans
Enabling transactions and security in enterprise beans
Developing enterprise beans
Developing EJB clients
Developing servlets that use enterprise beans
Toolsfor developing and deploying enterprise beans in the EJB server (AE) environment
Appendix A. Changes for version 1.1 of the EJB specification
Appendix B. Example code provided with WebSphere Application Server
Appendix D. Extensions to the EJB Specification

Administration

6.6.4: Administering EJB containers (overview)
6.6.4.0: EJB container properties
6.6.4.1: Administering enterprise bean containers with the Java administrative console
6.6.4.1.1: Configuring new EJB containers with the Java administrative console

6.6.5: Administering EJB modules (overview)

6.6.5.0: EJB module properties
6.6.5.0.1: Assembly properties for entity beans
6.6.5.0.2: Assembly properties for CMP fields
6.6.5.0.3: Assembly properties for method extensions
6.6.5.0.4: Assembly properties for session beans
6.6.5.0.5: Assembly properties for security roles
6.6.5.0.6: Assembly properties for method permissions
6.6.5.0.7: Assembly properties for container transactions

6.6.5.0aa: Assembly properties for EJB modules

6.6.5.1: Administering EJB modules with the Java administrative console
6.6.5.1.1: Installing EJB modules with the Java administrative console

6.6.5.1.2: Viewing deployment descriptors of EJB modules with the Java administrative console
1

6.6.5.1.3: Showing the status of EJB modules with the Java administrative console
6.6.5.1.4: Exporting table DDLs of EJB modules with the Java administrative console
6.6.5.1.5: Moving EJB modules to other application servers with the Java administrative console

6.6.5.5: Administering EJB modules with Application Assembly Tool
6.6.5.5.1: Creating an EJB module

4.3. Developing enterprise beans

Enterprise applications are applications that typically use enterprise beans. To develop enterprise applications,
you must:

1. Develop any session or entity beans your application will use
2. Create the deployment descriptor and the EJB JAR file.
3. Deploy the enterprise beans.

Enterprise applications support both transactions and security.
Wkiting Enterprise Beansis a programming guide for devel oping, packaging, anddepl oying enterprise beans in

IBM WebSphere Application Server. It discussesboth the Advanced Edition and Enterprise Edition of the
product.

Format
PDF

HTML

:

http://localhost/0802_makepdf/ae_orig/nav_ejbnav/pdf/atswpg00.pdf

4.3.4: Developing enterprise beans for use with the
Connector Architecture (J2C)

It is assumed that you know how to create enterprise beans. This topic contains additional hints and tips which
will help prepare your beans for successful deployment.

For information on the concepts behind EJB programming in WebSphere, see the following sources:

« Writing Enterprise Beans in WebSphere, especially the topics An architectural overview of the EJB
programming environment and An introduction to enterprise beans.

« TheVisualAge for Java help topics under Concepts > EJB Development Environment.

Developing enterprise beans

The Connector Architecture (technology preview) runtime is tuned to support the EAB Session Beans that are
produced by VisualAge for Javaversion 3.5.3 and later. Y ou use the Enterprise Access Builder (EAB) feature
of VisualAge for Javato create Session Beans that interact with non-relational backend systems such as CICS
andIMS. VisualAge for Java also automatically generates significant parts of the enterprise bean code,
andcontains integrated tools for packaging and testing enterprise beans. For more information on using
VisualAge for Javato develop enterprise beans, refer to the appropriate topics under the VisualAge for Java
help topic Tasks > Developing EJB components.

Although use of VisualAge for Javais stronglyrecommended, it is not compulsory. For more information on
developing enterprise beans without using VisualAge for Java, see Tools for developing and deploying

enterprise beans in the EJB server (AE) environment, especially the subtopic Developing and deploying
enterprise beans with EJB server (AE) tools.

Exporting enterprise beans from VisualAge for Java

To export your enterprise bean package from VisualAge for Java as a JAR file, complete the following steps:
1. Inthe Workbench, click the EJB tab. The EJB page appears.
2. Inthe Enterprise Beans pane, select your EJB Group or an individual bean.

3. From the pop-up menu for your EJB Group or bean, select Export > EJB JAR.... The Export to an EJB
JAR File wizard opens.

4. Type the name and full path for your exported .jar filein the JAR file field.

5. Inthe section What do you want to includein the JAR file?, complete the following steps:
a. Confirm that the checkboxes are enabled for beans and .class.
b. Confirm that the checkbox is cleared for .java and .resour ce.

[il Thereasonsfor not exporting .javaand .resource files are that the.resource files are usually
not necessary, and if you export the .java files then the WebSphere deployment step will attempt
to re-compile these files and you will need additional .jar files on your classpath for the EAB
runtime and resource adapter classes.

c. For .class, complete the following steps.

[il To make your exported .jar file much smaller and quicker to process, you should only export
those classes that are required to support your bean. Thisincludes your bean, home, and remote

interface, plus any utility or helper classes that might be contained in another project. The easiest
way to get al of these utility and helper classesisto use Select referenced types and resour ces
to pre-select all of the referenced classes that your EJB uses, then to deselect the projects that are

not required in the WebSphere environment.
i. Click Select referenced types and resour ces.
ii. Click the .class Details button.
iii. Clear the checkboxes for the following Pr oj ect s:
= Connector CICS Beta
= |IBM Common Connector Framework
= |IBM Common Connector Framework 2
= Connector Architecture (J2C)
= |BM Enterprise Access Builder Library
= |IBM Java Record Library
= Java Authentication and Authorization
iv. Click OK.
6. Click Finish.

Y our exported EJB jar fileis now ready for deployment in WWebSphere.
o 0.42: Introducing the Connector Architecture (J2C)
e 6.6.42: Administering J2C related administrative objects (overview)
« 6.6.42.6: Installing the Connector Architecture (J2C)

http://localhost/0802_makepdf/ae_orig/nav_ejbnav/060642.html
http://localhost/0802_makepdf/ae_orig/nav_ejbnav/0042.html
http://localhost/0802_makepdf/ae_orig/nav_ejbnav/060642.html
http://localhost/0802_makepdf/ae_orig/nav_ejbnav/06064206.html

About this book

This document focuses on the development of enterprise beans written to the Sun Microsystems Enterprise
JavaBeans(TM) specification in the WebSphere(TM) Application Server programming environment. It also
discusses development of EJB clients that can access enterprise beans.

Who should read this book

This document is written for devel opers and system architects who want an introduction to programming
enterprise beans and EJB clientsin WebSphere Application Server. It is assumed that programmers are familiar
with the concepts of object-oriented programming, distributed programming, and Web-based programming.
Knowledge of the Sun Microsystems Java(TM) programming language is also assumed.

Document organization

This document is organized as follows:

An architectural overview of the EJB programming environment provides a high-level introduction to
the EJB server environment in WebSphere Application Server.

An introduction to enterprise beans explains the main concepts associated with enterprise beans.

Tools for developing and deploying enterprise beans explains how to set up and use the tools used in
developing and deploying enterprise beans.

Developing enterprise beans explains how to develop entity beans with container-managed persistence
(CMP) and session beans. It also provides information on how to package enterprise beans for later
deployment.

Enabling transactions and security in enterprise beans explains how to enable transactions in enterprise
beans by using the appropriate deployment descriptor attributes.

Developing EJB clients explains the basic code required by an EJB client to use an enterprise bean. This
chapter covers generic issues relevant to enterprise beans, Java applications, and Java servlets that use
enterprise beans.

Developing servlets that use enterprise beans discusses the basic code required in a servlet that accesses
an enterprise bean.

More-advanced programming concepts for enterprise beans explains how to develop a simple entity
bean with bean-managed persistence and discusses the basic code required of an enterprise bean that
manages its own transactions.

Appendix A, Changes for version 1.1 of the EJB specification describes features that are new or have
changed in version 1.1 of the EJB specification and discusses migration issues for enterprise beans
written to version 1.0 of the EJB specification.

Appendix B, Example code provided with WebSphere Application Server describes the major example
used throughout this book and the additional examples that are delivered with the various editions of
WebSphere Application Server.

Appendix C, Extensions to the EJB Specification describes the extensions to the EJB Specification that

are specific to WebSphere Application Server. Use of these extensionsis supported in VisualAge for
Javaonly.

Related information

For further information on the topics discussed in this manual, see the following documents:
« Getting Started with WebSphere Application Server
« Building Business Solutions with WebSphere

How to send your comments

Y our feedback isimportant in helping to provide the most accurate and highest quality information. If you have
any comments about this book, send your comments by e-mail to wasdoc@us.ibm.com. Be sure to include the
name of the book, the document number of the book, the edition and version of WebSphere Application Server,
and, if applicable, the specific location of the information you are commenting on (for example, a page number
or table number).

An introduction to enterprise beans

This chapter looks at the characteristics and purpose of enterprise beans. It describes the two basic types of
enterprise beans and their life cycles, and it provides an example of how enterprise beans can be combined to
create distributed, three-tiered applications.

Bean basics

An enterprise bean is a Java component that can be combined with other enterprise beans and other Java
components to create a distributed, three-tiered application. There are two types of enterprise beans:

« An entity bean encapsul ates permanent data, which is stored in a data source such as a database or afile
system, and associated methods to manipulate that data. In most cases, an entity bean must be accessed
in some transactional manner. Instances of an entity bean are unique and they can be accessed by
multiple users.

For example, the information about a bank account can be encapsulated in an entity bean. An account
entity bean might contain an account ID, an account type (checking or savings), and a balance variable
and methods to manipul ate these variables.

« A session bean encapsul ates ephemeral (nonpermanent) data associated with a particular EJB client.
Unlike the data in an entity bean, the datain a session bean is not stored in a permanent data source, and
no harmis caused if thisdatais lost. However, a session bean can update data in an underlying database,
usually by accessing an entity bean. A session bean can also participate in a transaction.

When created, instances of a session bean are identical, though some session beans can store
semipermanent data that makes them unique at certain points in their life cycle. A session bean is always
associated with asingle client; attempts to make concurrent calls result in an exception being thrown.

For example, the task associated with transferring funds between two bank accounts can be encapsul ated
in asession bean. Such atransfer session bean can find two instances of an account entity bean (by using
the account 1Ds), and then subtract a specified amount from one account and add the same amount to the
other account.

Entity beans
This section discusses the basics of entity beans.

Basic components of an entity bean

Every entity bean must have the following components, which are illustrated in Figure 3:

« Bean class--This class encapsul ates the data for the entity bean and contains the devel oper-implemented
business methods that access the data. It aso contains the methods used by the container to manage the
life cycle of an entity bean instance. EJB clients (whether they are other enterprise beans or user
components such as servlets) never access objects of this class directly; instead, they use the
contai ner-generated classes associated with the home and remote interfaces to manipulate the entity
bean instance.

« Homeinterface--Thisinterface defines the methods used by the client to create, find, and remove
instances of the entity bean. This interface isimplemented by the container during deployment in a class
known generically as the EJB home class; instances are referred to as EJB home objects.

« Remote interface--Once the client has used the home interface to gain access to an entity bean, it uses
this interface to invoke indirectly the business methods implemented in the bean class. Thisinterfaceis

implemented by the container during deployment in a class known generically as the EJB object class;
instances are referred to as EJB objects.

« Primary key -- One or more variables that uniquely identify a specific entity bean instance. A primary
key that consists of asingle variable of a primitive Java data type can be specified at deployment. A
primary key classis used to encapsulate primary keys that consist of multiple variables or more complex
Java datatypes. The primary key class also contains methods to create primary key objects and
mani pul ate those objects.

Figure 3. The components of an entity bean

mote

Data persistence

Entity beans encapsulate and manipulate persistent (or permanent) business data. For example, at a bank, entity
beans can be used to model customer profiles, checking and savings accounts, car loans, mortgages, and
customer transaction histories.

To ensure that thisimportant data is not lost, the entity bean stores its data in a data source such as a database.
When the data in an enterprise bean instance is changed, the data in the data source is synchronized with the
bean data. Of course, this synchronization takes place within the context of the appropriate type of transaction,
so that if arouter goes down or a server fails, permanent changes are not lost. When you design an entity bean,
you must decide whether you want the enterprise bean to handle this data synchronization or whether you want
the container to handle it. An enterprise bean that handles its own data synchronization is said to implement
bean-managed persistence (BMP), while an enterprise bean whose data synchronization is handled by the
container is said to implement contai ner-managed persistence (CMP).

Unless you have a good reason for implementing BMP, it is recommended that you design your entity beans to
9

use CMP. The code for an enterprise bean with CMP is easier to write and does not depend on any particular
data storage product, making it more portable between EJB servers. However, you must use entity beans with
BMP if you want to use a data source that is not supported by the EJB server.

Session beans

This section discusses the basics of session beans.

Basic components of a session bean

Every session bean must have the following components, which are illustrated in Figure 4:

« Bean class--This class encapsul ates the data associated with the session bean and contains the

devel oper-implemented business methods that access this data. It also contains the methods used by the
container to manage the life cycle of an session bean instance. EJB clients (whether they are other
enterprise beans or user applications) never access objects of this class directly; instead, they use the
container-generated classes associated with the home and remote interfaces to manipulate the session
bean.

Home interface--This interface defines the methods used by the client to create and remove instances of
the session bean. Thisinterface isimplemented by the container during deployment in a class known
generically as the EJB home class; instances are referred to as EJB home object.

Remote interface--After the client has used the home interface to gain access to an session bean, it uses
this interface to invoke indirectly the business methods implemented in the bean class. Thisinterfaceis
implemented by the container during deployment in a class known generically as the EJB object class;
instances are referred to as EJB objects.

Unlike an entity bean, a session bean does not have a primary key class. A session bean does not require a
primary key class because you do not need to search for specific instances of session beans.

Figure 4. The components of a session bean

10

Stateless versus stateful session beans

Session beans encapsul ate data and methods associated with a user session, task, or ephemeral object. By
definition, the data in a session bean instance is ephemerd; if it islost, no real harm is done. For example, at a
bank, session beans can represent a funds transfer, the creation of a customer profile or new account, and a
withdrawal or deposit. If information about a fund transfer is already typed (but not yet committed), and a
server fails, the balances of the bank accounts remains the same. Only the transfer datais lost, which can always
be retyped.

The manner in which a session bean is designed determines whether its data is shorter lived or longer lived:

« If asession bean needs to maintain specific data across methods, it is referred to as a stateful session
bean. When a session bean maintains data across methods, it is said to have a conversational state. A
Web-based shopping cart is aclassic use of a stateful session bean. As the shopping cart user adds items
to and subtracts items from the shopping cart, the underlying session bean instance must maintain a
record of the contents of the cart. After a particular EJB client begins using an instance of a stateful
session bean, the client must continue to use that instance as long as the specific state of that instanceis
required. If the session bean instance is lost before the contents of the shopping cart are committed to an
order, the shopper must load a new shopping cart.

« If asession bean does not need to maintain specific data across methods, it is referred to as a stateless
session bean. The example Transfer session bean developed in Devel oping session beans provides an

example of a stateless session bean. For stateless session beans, a client can use any instance to invoke
any of the session bean's methods because al instances are the same.

Creating an EJB module
11

The last step in the development of an enterprise bean is the creation of an EJB module. An EJB module
consists of the following:

« One or more deployable enterprise beans.

« A deployment descriptor, stored in an Extensible Markup Language (XML) file. Thisfile contains
information about the structure and external dependencies of the beans in the module, and application
assembly information describing how the beans are to be used in an application.

The EJB module can be created by using the tools within an integrated development environment (IDE) like
IBM's VisualAge for Java Enterprise Edition or by using the tools contained in WebSphere. For more
information, see Tools for developing and deploying enterprise beans.

The EJB module

The EJB module is used to assemble enterprise beans into a single deployable unit; this file uses the standard
Java archive file format. The EJB module can contain individual enterprise beans or multiple enterprise beans.
For more information, see Creating an EJB module and deployment descriptor.

The deployment descriptor

The EJB module contains one or more deployable enterprise beans and one deployment descriptor. The
deployment descriptor contains attribute and environment settings for each bean in the module, and it defines
how the container invokes functionality for all beansin the module. The deployment descriptor attributes can be
set for the entire enterprise bean or for the individual methods in the bean. The container uses the definition of
the bean-level attribute unless a method-level attribute is defined, in which case the latter isused. The
deployment descriptor contains the following information about entity and session beans. These attributes can
be set on the bean only; they cannot be set on a specific method of the bean.

« The bean's name, class, home interfaces, remote interfaces, and bean type (entity or session).

« Primary key class attribute--Identifies the primary key class for the bean. For more information, see
Writing the primary key class (entity with CMP) or Writing or selecting the primary key class (entity
with BMP).

« Persistence management. Specifies whether persistence management is performed by the enterprise
bean or by the container.

« Container-managed fields attribute--Lists those persistent variables in the bean class that the container
must synchronize with fields in a corresponding data source to ensure that this datais persistent and
consistent. For more information, see Defining variables.

« Reentrant attribute--Specifies whether an enterprise bean can invoke methods on itself or call another
bean that invokes a method on the calling bean. Only entity beans can be reentrant. For more
information, see Using threads and reentrancy in enterprise beans.

« State management attribute--Defines the conversational state of the session bean. This attribute must be
set to either STATEFUL or STATELESS. For more information on the meaning of these conversational
states, see Stateless versus stateful session beans.

« Timeout attribute--Defines the idle timeout value in seconds associated with this session bean. (This
attribute is an extension to the standard deployment descriptor.)

« Referencesto external resources, such as resource connection factories, to the homes of other enterprise
beans, and to security roles.
The deployment descriptor contains the following application assembly information:
« A display name and icons for identifying the module.

« Thelocation of class files needed for a client program to access the beans in the module.
12

« Security roles—- Define alogical grouping of principals. Access to operations (such as EJB methods) is
controlled by granting accessto arole.

« Method permissions--Define a mapping between one or more security roles and one or more methods
that amember of the role can invoke. Thisvalueis set per method.

« Transaction attributes--Define the transactional manner in which the container invokes a method for
enterprise beans that require container-managed transaction demarcation. This value is set per method.
The values for this attribute are described in Enabling transactions and security in enterprise beans.

« Transaction isolation level attribute--Defines the degree to which transactions are isolated from each
other by the container. Thisvalueis set per method. The values for this attribute are described in
Enabling transactions and security in enterprise beans. (This attribute is an extension to the standard

deployment descriptor.)
« RunAsMode and RunAsl dentity attributes--The RunAsMode attribute defines the identity used to invoke

the method. If a specific identity is required, the RunAsldentity attribute is used to specify that identity.
Thisvalueis set per bean. The values for the RunAsMode attribute are described in Enabling

transactions and security in enterprise beans. (This attribute is an extension to the standard deployment
descriptor.)

The following binding attribute is stored in the repository (it is not part of the deployment descriptor):

« JNDI home name attribute--Defines the Java Naming and Directory Interface (JNDI) home name that is
used to locate instances of an EJB home object. Thisvalueis set per bean. The values for this repository
attribute are described in Creating and getting a reference to a bean's EJB object.

Deploying an EJB module

When you deploy an EJB module, the deployment tool creates or incorporates the following elements:

« The container-implemented EJBObject and EJBHome classes (hereafter referred to as the EJB object
and EJB home classes) from the enterprise bean's home and remote interfaces (and the persistor and
finder classes for entity beans with CMP).

« The stub and skeleton files required for remote method invocation (RMI).

Figure 5 shows a simplified version of a deployed entity bean.

Figure 5. Themajor components of a deployed entity bean

13

Y ou can deploy an EJB module with avariety of different tools. For more information, see Tools for developing
and deploying enterprise beans.

Developing EJB applications

To create EJB applications, create the enterprise beans and EJB clients that encapsulate your business data and
functionality and then combine them appropriately. Figure 6 provides a conceptua illustration of how EJB
applications are created by combining one or more session beans, one or more entity beans, or both. Although
individual entity beans and session beans can be used directly in an EJB client, session beans are designed to be
associated with clients and entity beans are designed to store persistent data, so most EJB applications contain
session beans that, in turn, access entity beans.

Figure 6. Conceptual view of EJB applications

14

Container

f Entity bean

5 Session bean

V4

This section provides an example of the ways in which enterprise beans can be combined to create EJB
applications.

An example: enterprise beans for a bank

If you develop EJB applications for the banking industry, you can develop the following entity beansto
encapsulate your business data and associated methods:

« Account bean--An entity bean that contains information about customer checking and savings accounts.
« CarLoan bean--An entity bean that contains information about an automobile loan.

« Customer bean--An entity bean that contains information about a customer, including information on
accounts held and loans taken out by the customer.

« CustomerHistory bean--An entity bean that contains arecord of customer transactions for specified
accounts.

« Mortgage bean--An entity bean that contains information about a home or commercial mortgage.

An EJB client can directly access entity beans or session beans; however, the EJB Specification suggests that
EJB clients use session beansto in turn access entity beans, especially in more complex applications. Therefore,
as an EJB developer for the banking industry, you can create the following session beans to represent client
tasks:

« LoanApprover bean--A session bean that allows aloan to be approved by using instances of the
CarL oan bean, the Mortgage bean, or both.

« CarLoanCreator bean--A session bean that creates a new instance of a CarL oan bean.
« MortgageCreator bean--A session bean that creates a new instance of a Mortgage bean.
» Deposit bean--A session bean that credits a specified amount to an existing instance of an Account bean.

» StatementGenerator bean--A session bean that generates a statement summarizing the activities
associated with a customer's accounts by using the appropriate instances of the Customer and
CustomerHistory entity beans.

« Payment bean--A session bean that credits a payment to a customer's loan by using instances of the
CarL oan bean, the Mortgage bean, or both.

« NewAccount bean--A session bean that creates a new instance of an Account bean.
15

o NewCustomer bean--A session bean that creates a new instance of a Customer bean.

« LoanReviewer bean--A session bean that accesses information about a customer's outstanding loans
(instances of the CarL oan bean, the Mortgage bean, or both).

« Transfer bean--A session bean that transfers a specified amount between two existing instances of an
Account bean.

« Withdraw bean--A session bean that debits a specified amount from an existing instance of an Account
bean.

This exampleis simplified by necessity. Nevertheless, by using this set of enterprise beans, you can create a
variety of EJB applications for different types of users by combining the appropriate beans within that
application. One or more EJB clients can then be built to access the application.

Using the banking beans to develop EJB banking applications

When using beans built to the Sun Microsystems JavaBeans(T™) Specification (as opposed to the EJB
Specification), you combine predefined components such as buttons and text fields to create GUI applications.
When using enterprise beans, you combine predefined components such as the banking beans to create
three-tiered applications.

For example, you can use the banking enterprise beans to create the following EJB applications:

« Home Banking application--An Internet application that allows a customer to transfer funds between
accounts (with the Transfer bean), to make payments on aloan by using funds in an existing account
(with the Payment bean), to apply for a car loan or home mortgage (with the CarL oanCreator bean or the
MortgageCreator bean).

« Téeller application--An intranet application that allows ateller to create new customer accounts (with the
NewCustomer bean and the NewA ccount bean), transfer funds between accounts (with the Transfer
bean), and record customer deposits and withdrawals (with the Withdraw bean and the Deposit bean).

« Loan Officer application--An intranet application that allows aloan officer to create and approve car
loans and home mortgages (with the CarL oanCreator, MortgageCreator, LoanReviewer, and
LoanApprover beans).

« Statement Generator application--A batch application that prints monthly customer statements related to
account activity (with the StatementGenerator bean).

These examples represent only a subset of the possible EJB applications that can be created with the banking
beans.

Life cycles of enterprise bean instances

After an enterprise bean is deployed into a container, clients can create and use instances of that bean as
required. Within the container, instances of an enterprise bean go through a defined life cycle. The eventsin an
enterprise bean's life cycle are derived from actions initiated by either the EJB client or the container in the EJB
server. You must understand this life cycle because for some enterprise beans, you must write some of the code
to handle the different events in the enterprise bean's life cycle.

The methods mentioned in this section are discussed in greater detail in Developing enterprise beans.

Session bean life cycle

This section describes the life cycle of a session bean instance. Differences between stateful and statel ess
session beans are noted.

16

Creation state

A session bean's life cycle begins when a client invokes a create method defined in the bean's home interface. In
response to this method invocation, the container does the following:

1. Creates anew memory object for the session bean instance.

2. Invokes the session bean's setSessionContext method. (This method passes the session bean instance a
reference to a session context interface that can be used by the instance to obtain container services and
get information about the caller of a client-invoked method.)

3. Invokes the session bean's g bCreate method corresponding to the create method called by the EJB
client.

Ready state

After a session bean instance is created, it movesto the ready state of itslife cycle. In this state, EJB clients can
invoke the bean's business methods defined in the remote interface. The actions of the container at this state are
determined by whether a method is invoked transactionally or nontransactionally:

« Transactional method invocations--When a client invokes a transactional business method, the session
bean instance is associated with a transaction. After a bean instance is associated with atransaction, it
remains associated until that transaction completes. (Furthermore, an error resultsif an EJB client
attempts to invoke another method on the same bean instance if invoking that method causes the
container to associate the bean instance with another transaction or with no transaction.)

The container then invokes the following methods:
1. The afterBegin method, if that method isimplemented by the bean class.

2. The business method in the bean class that corresponds to the business method defined in the
bean's remote interface and called by the EJB client.

3. The bean instance's beforeCompletion method, if that method isimplemented by the bean class
and if acommit is requested prior to the container's attempt to commit the transaction.

The transaction service then attempts to commit the transaction, resulting either in a commit or aroll
back. When the transaction completes, the container invokes the bean's afterCompletion method, passing
the compl etion status of the transaction (either commit or rollback).

If arollback occurs, a stateful session bean can roll back its conversational state to the values contained
in the bean instance prior to beginning the transaction. Statel ess session beans do not maintain a
conversational state, so they do not need to be concerned about rollbacks.

« Nontransactional method invocations--When a client invokes a nontransactional business method, the
container simply invokes the corresponding method in the bean class.

Pooled state

The container has a sophisticated algorithm for managing which enterprise bean instances are retained in
memory. When a container determines that a stateful session bean instance is no longer required in memory, it
invokes the bean instance's g/ bPassivate method and moves the bean instance into areserve pool. A stateful
session bean instance cannot be passivated when it is associated with a transaction.

If aclient invokes a method on a passivated instance of a stateful session bean, the container activates the
instance by restoring the instance's state and then invoking the bean instance's g/ bA ctivate method. When this
method returns, the bean instance is again in the ready state.

Because every statel ess session bean instance of a particular type is the same as every other instance of that
17

type, stateless session bean instances are not passivated or activated. These instances exist in aready state at all
times until their removal.

Removal state

A session bean's life cycle ends when an EJB client or the container invokes a remove method defined in the
bean's home interface and remote interface. In response to this method invocation, the container calls the bean
instance's g bRemove method.

If you attempt to remove a bean instance while it is associated with a transaction, the
javax.ejb.RemoveException is thrown. After a bean instance is removed, any attempt to invoke a method on
that instance causes the java.rmi.NoSuchObjectException to be thrown.

A container can implicitly call aremove method on an instance after the lifetime of the EJB object has expired.
The lifetime of a session EJB object is set in the deployment descriptor with the timeout attribute.

For more information on the remove methods, see Removing a bean's EJB object.

Entity bean life cycle

This section describes the life cycle of entity bean instances. Differences between entity beans with CMP and
BMP are noted.

Creation State

An entity bean instance's life cycle begins when the container creates that instance. After creating a new entity
bean instance, the container invokes the instance's setEntityContext method. This method passes the bean
instance areference to an entity context interface that can be used by the instance to obtain container services
and get information about the caller of a client-invoked method.

Pooled State

After an entity bean instance s created, it is placed in apool of available instances of the specified entity bean
class. While the instanceisin this poal, it is not associated with a specific EJB object. Every instance of the
same enterprise bean class in this pool isidentical. While an instance isin this pooled state, the container can
useit to invoke any of the bean's finder methods.

Ready State

When a client needs to work with a specific entity bean instance, the container picks an instance from the pool
and associates it with the EJB object initialized by the client. An entity bean instance is moved from the pooled
to the ready state if there are no available instances in the ready state.

There are two events that cause an entity bean instance to be moved from the pooled state to the ready state:

« When aclient invokes the create method in the bean's home interface to create a new and unique entity
of the entity bean class (and a new record in the data source). As aresult of this method invocation, the
container calls the bean instance's gjbCreate and gjbPostCreate methods, and the new EJB object is
associated with the bean instance.

« When aclient invokes afinder method to manipulate an existing instance of the entity bean class
(associated with an existing record in the data source). In this case, the container calls the bean instance's
gjbActivate method to associate the bean instance with the existing EJB object.

When an entity bean instance is in the ready state, the container can invoke the instance's gjbL oad and gjbStore
18

methods to synchronize the data in the instance with the corresponding data in the data source. In addition, the
client can invoke the bean instance's business methods when the instance isin this state. All interactions
required to handle an entity bean instance's business methods in the appropriate transactional (or
nontransactional) manner are handled by the container.

When a container determines that an entity bean instance in the ready state is no longer required, it moves the
instance to the pooled state. This transition to the pooled state results from either of the following events:
« When the container invokes the g/bPassivate method.

« When the EJB client invokes aremove method on the EJB object or on the EJB home object. When one
of these methods is called, the underlying entity is removed permanently from the data source.

Removal State

An entity bean instance's life cycle ends when the container invokes the unsetEntityContext method on an entity
bean instance in the pooled state. Do not confuse the removal of an entity bean instance with the removal of the
underlying entity whose data is stored in the data source. The former simply removes an uninitialized object; the
latter removes data from the data source.

For more information on the remove methods, see Removing a bean's EJB object.

19

An architectural overview of the EJB programming
environment

The World Wide Web (the Web) has transformed the way in which businesses work with their customers. At
first, it was good enough just to have a Web home page. Then, businesses began to deploy active Web sites that
allowed customers to order products and services. Today, businesses not only need to use the Web in all of
these ways, they need to integrate their Web-based systems with their other business systems. The IBM(R)
WebSphere Application Server, and specifically the support for enterprise beans, provides the model and the
tools to accomplish this integration.

Components of the EJB environment

IBM's implementation of the Sun Microsystems Enterprise JavaBeans (EJB) Specification enables users of the
WebSphere Application Server to integrate their Web-based systems with their other business systems. A major
part of thisimplementation is the WebSphere EJB server and its associated components, which areillustrated in
Figure 1.

Figure 1. The components of the EJB environment

Admnistration
Irterface

| |

]
[
—erviet
HTT P-hased ar JSP
cliert EMIHOF
Q HTTF YiyED
SErver _
) Java - pr%tdhuegts
application
Fire =
MU IOF
il !|_&;.f-" EJB server B

Data source

The WebSphere EJB server environment contains the following components, which are discussed in more detall
in the specified sections:

« EJB server--A WebSphere EJB server contains and runs one or more enterprise beans, which
encapsulate the business logic and data used and shared by EJB clients. The enterprise beansinstalled in
an EJB server do not communicate directly with the server; instead, an EJB container provides an
interface between the enterprise beans and the EJB server, providing many low-level services such as
threading, support for transactions, and management of data storage and retrieval. For more information,

20

see The EJB server.

» Data source--There are two types of enterprise beans. session beans, which encapsulate short-lived,
client-specific tasks and objects, and entity beans, which encapsulate permanent or persistent data. The
EJB server stores and retrieves this persistent data in a data source, which can be a database, another
application, or even afile. For more information, see The data source.

« EJB clients-There are two general types of EJB clients:

o HTTP-based clients that interact with the EJB server by using either Java servlets or JavaServer
Pages(TM) (JSP) by way of the Hypertext Transfer Protocol (HTTP).

o Java applications that interact directly with the EJB server by using Java remote method
invocation over the Internet Inter-ORB Protocol (RMI1/110P).

For more information, see The EJB clients.

« The administration interface--The administrative interface allows you to manage the EJB server
environment. For more information, see The administration interface.

The EJB server

The EJB server isthe application server tier of WebSphere Application Server's three-tier architecture. The EJB
server has three components. the EJB server runtime, the EJB containers, and the enterprise beans. EJB
containers insul ate the enterprise beans from the underlying EJB server and provide a standard application
programming interface (API) between the beans and the container. The EJB Specification defines this API.
Together, the EJB server and container components provide or give access to the following services for the
enterprise beans that are deployed into it:

« A tool that deploys enterprise beans. When a bean is deployed, the deployment tool creates several
classes that implement the interfaces that make up the predeployed bean. In addition, the deployment
tool generates Java ORB, stub, and skeleton classes that enable remote method invocation. For entity
beans, the tool also generates persistor and finder classes to handle interaction between the bean and the
data source that stores the bean's persistent data. Before an enterprise bean can be deployed, the
developer must create an EJB module and associated deployment descriptor. The deployment descriptor
provides information about each enterprise bean in the module and instructions for the container on how
to handle the beans. For more information on deployment, see Deploying an EJB module.

« A security service that handles authentication and authorization for principals that need to access
resources in an EJB server environment. For more information, see The security service.

« A workload management service that ensures that resources are used efficiently. For more information,
see The workload management service.

« A persistence service that handles interaction between an entity bean and its data source to ensure that
persistent datais properly managed. For more information, see The persistence service.

« A naming service that exports a bean's name, as defined in the deployment descriptor, into the name
space. The EJB server uses the Java Naming and Directory Interface(TM) (JNDI) to implement a naming
service. For more information, see The naming service.

« A transaction service that implements the transactional attributesin a bean's deployment descriptor. For
more information, see The transaction service.

The security service

When enterprise computing was handled solely by afew powerful mainframes located at a centralized site,
ensuring that only authorized users obtained access to computing services and information was afairly

21

straightforward task. In distributed computing systems where users, application servers, and resource managers
can be spread out across the world, securing computing resources has become a much more complicated task.
Nevertheless, the underlying issues are basically the same.

Authentication and authorization

A good security service provides two main functions: authentication and authorization.

Authentication takes place when a principal (auser or acomputer process) initialy attempts to gain accessto a
computing resource. At that point, the security service challenges the principal to prove that the principal iswho
it claimsto be. Human userstypically prove who they are by entering a user 1D and password; a process
normally presents an encrypted key. If the password or key isvalid, the security service gives the user atoken or
ticket that identifies the principal and indicates that the principa has been authenticated. After aprincipa is
authenticated, it can then attempt to use any of the resources within the boundaries of the computing system
protected by the security service; however, aprincipa can use a particular computing resource only if it has
been authorized to do so. Authorization takes place when an authenticated principal requests the use of a
resource and the security service determinesif the user has been granted permission to use that resource.
Typically, authorization is handled by associating access control lists (ACLS) with resources that define which
principal (or groups of principals) are authorized to use the resource. If the principal is authorized, it gains
access to the resource.

In adistributed computing environment, principals and resources must be mutually suspicious of each other's
identity until both have proven that they are who they say they are. Thisis necessary because principals can
attempt to falsify an identity to get access to aresource, and a resource can be atrojan horse, attempting to get
valuable information from the principal. To solve this problem, the security service contains a security server
that acts as atrusted third party, authenticating principals and resources so that these entities can prove their
identities to each other. This security protocol is known as mutual authentication.

Using the security server

The security service does not use the access control and run-as identity security attributes defined in the
deployment descriptor. However, it does use the run-as mode attribute as the basis for mapping a user identity
to auser security context. For more information on this attribute, see The deployment descriptor.

The main component of the security serviceis an EJB server that contains security enterprise beans. When
system administrators administer the security service, they manipulate the security beans in the security EJB
Server.

Once an EJB client is authenticated, it can attempt to invoke methods on the enterprise beans that it
manipulates. A method is successfully invoked if the principal associated with the method invocation has the
required permissions to invoke the method. These permissions can be set at the application level (an
administrator-defined set of Web and object resources) and at the method group level (an administrator-defined
set of Javainterface/method pairs). An application can contain multiple method groups.

In general, the principal under which amethod isinvoked is associated with that invocation across multiple
Web servers and EJB servers (this association is known as delegation). Delegating the method invocationsin
this way ensures that the user of an EJB client needs to authenticate only once. HTTP cookies are used to
propagate a user's authentication information across multiple Web servers. These cookies have a lifetime equal
to the life of the browser session, and alogout method is provided to destroy these cookies when the user is
finished.

For information on administering security, see the WebSphere InfoCenter and the online help available with the
WebSphere Administrative Console.

The workload management service
22

The workload management service improves the scalability of the EJB server environment by grouping multiple
EJB serversinto server groups. Clients then access these server groups asif they are asingle EJB server, and
the workload management service ensures that the workload is evenly distributed across the EJB serversin the
server groups. An EJB server can belong to only one server group. The creation of server groupsis an
administrative task that is handled from within the WebSphere Administrative Console. For more information
on workload management, consult the WebSphere InfoCenter and the online help for the appropriate
administrative interface.

The persistence service

There are two types of enterprise beans. session beans and entity beans. Session beans encapsul ate temporary
data associated with a particular client. Entity beans encapsulate permanent data that is stored in a data source.
For more information, see An introduction to enterprise beans.

The persistence service ensures that the data associated with entity beansis properly synchronized with their
corresponding data in the data source. To accomplish thistask, the persistence service works with the
transaction service to insert, update, extract, and remove data from the data source at the appropriate times.

There are two types of entity beans: those with container-managed persistence (CMP) and those with
bean-managed persistence (BMP). In entity beans with CM P, the persistence service handles nearly all of the
tasks required to manage persistent data. In entity beans with BMP, the bean itself handles most of the tasks
required to manage persistent data.

The persistence service uses the following components to accomplish its task:

« The Java Database Connectivity (JDBC(TM)) API, which gives entity beans a common interface to
relational databases.

« Javatransaction support, which is discussed in Using transactions in the EJB server environment. The
EJB server ensures that persistent data is always handled within the appropriate transactional context.

The naming service

In an object-oriented distributed computing environment, clients must have a mechanism to locate and identify
objects so that the clients, objects, and resources appear to be on the same machine. A naming service provides
this mechanism. In the EJB server environment, JNDI is used to mask the actual naming service and provide a
common interface to the naming service.

JNDI provides naming and directory functionality to Java applications, but the APl is independent of any
specific implementation of a naming and directory service. This implementation independence ensures that
different naming and directory services can be used by accessing them by way of the INDI API. Therefore, Java
applications can use many existing naming and directory services such as the Lightweight Directory Access
Protocol (LDAP), the Domain Name Service (DNS), or the DCE Cell Directory Service (CDS).

JNDI was designed for Java applications by using Java's object model. Using JNDI, Java applications can store
and retrieve named objects of any Java object type. INDI also provides methods for executing standard
directory operations, such as associating attributes with objects and searching for objects by using their
attributes.

In the EJB server environment, the deployment descriptor is used to specify the INDI name for an enterprise
bean. When an EJB server is started, it registers these names with JNDI.

The transaction service

A transaction is a set of operations that transforms data from one consistent state to another. This set of

23

operationsis an indivisible unit of work, and in some contexts, atransaction is referred to asalogical unit of
work (LUW). A transaction isatool for distributed systems programming that simplifies failure scenarios.
Transactions provide the ACID properties:

« Atomicity: A transaction's changes are atomic: either all operations that are part of the transaction
happen or none happen.

« Consistency: A transaction moves data between consistent states.

« Isolation: Even though transactions can run (or be executed) concurrently, no transaction sees another's
work in progress. The transactions appear to run serially.

« Durability: After atransaction completes successfully, its changes survive subsequent failures.

As an example, consider a transaction that transfers money from one account to another. Such atransfer
involves money being deducted from one account and deposited in the other. Withdrawing the money from one
account and depositing it in the other account are two parts of an atomic transaction: if both cannot be
completed, neither must happen. If multiple requests are processed against an account at the same time, they
must be isolated so that only a single transaction can affect the account at one time. If the bank's central
computer failsjust after the transfer, the correct balance must still be shown when the system becomes available
again: the change must be durable. Note that consistency is afunction of the application; if money isto be
transferred from one account to another, the application must subtract the same amount of money from one
account that it adds to the other account. Transactions can be completed in one of two ways: they can commit or
roll back. A successful transaction is said to commit. An unsuccessful transaction is said to roll back. Any data
modifications made by arolled back transaction must be completely undone. In the money-transfer example, if
money is withdrawn from one account but a failure prevents the money from being deposited in the other
account, any changes made to the first account must be completely undone. The next time any source queries
the account balance, the correct balance must be shown.

Distributed transactions and the two-phase commit process

A distributed transaction is one that runs in multiple processes, often on several machines. Each process
participates in the transaction. Thisisillustrated in Figure 2, where each oval indicates work being done on a

different machine, and each arrow indicates a remote method invocation (RMI).

Figure 2. Example of a distributed transaction

Wiarking an
the receyed

transaction

otarts a

R equestswark
transadion o

for tke transaction

Requestsfurther

working on witk for the transa dion
the rece ed

trarsa ctW

Distributed transactions, like local transactions, must adhere to the ACID properties. However, maintaining
these propertiesis greatly complicated for distributed transactions because a failure can occur in any process,
and in the event of such afailure, each process must undo any work already done on behalf of the transaction.

Working on \'.
the received
trarsaction

A distributed transaction processing system maintains the ACID propertiesin distributed transactions by using
two features:

24

« Recoverable processes: Recoverable processes are those that can restore earlier statesif afailure occurs.

« A commit protocol: A commit protocol enables multiple processes to coordinate the committing or
rolling back (aborting) of atransaction. The most common commit protocol, and the one used by the
EJB server, is the two-phase commit protocol.

Transaction state information must be stored by all recoverable processes. However, only processes that manage
application data (such as resource managers) must store descriptions of changes to data. Not all processes
involved in a distributed transaction need to be recoverable. In general, clients are not recoverable because they
do not interact directly with a resource manager. Processes that are not recoverable are referred to as ephemeral
processes. The two-phase commit protocol, as the name implies, involves two phases: a prepare phase and a
resolution phase. In each transaction, one process acts as the coordinator. The coordinator oversees the
activities of the other participants in the transaction to ensure a consistent outcome. In the prepare phase, the
coordinator sends a message to each process in the transaction, asking each process to prepare to commit. When
a process prepares, it guarantees that it can commit the transaction and makes a permanent record of its work.
After guaranteeing that it can commit, it can no longer unilaterally decide to roll back the transaction. If a
process cannot prepare (that is, if it cannot guarantee that it can commit the transaction), it must roll back the
transaction. In the resolution phase, the coordinator tallies the responses. If all participants are prepared to
commit, the transaction commits; otherwise, the transaction is rolled back. In either case, the coordinator
informs all participants of the result. In the case of a commit, the participants acknowledge that they have
committed.

Using transactions in the EJB server environment

The enterprise bean transaction model corresponds in most respects to the OMG OTS version 1.1. An enterprise
bean instance that is transaction enabled corresponds to an object of the OTS Transactional Object interface.
However, the enterprise bean transaction model does not support transaction nesting.

In the EJB server environment, transactions are handled by three main components of the transaction service:

« A transaction manager interface that enables the EJB server to control transaction boundaries within its
enterprise beans based on the transactional attributes specified for the beans.

« Aninterface (UserTransaction) that allows an enterprise bean or an EJB client to manage transactions.
The container makes this interface available to enterprise beans and EJB clients by way of the name
service.

« Coordination by way of the X/Open XA interface that enables a transactional resource manager (such as
adatabase) to participate in atransaction controlled by an external transaction manager.

For most purposes, the enterprise bean devel opers can delegate the tasks involved in managing a transaction to
the container. The developer performs this delegation by setting the deployment descriptor attributes for
transactions. These attributes and their values are described in Setting transactional attributes in the deployment

descriptor.

In other cases, the enterprise bean devel oper will want or need to manage the transactions at the bean level or
involve the EJB client in the management of transactions. For more information on this approach, see Using

bean-managed transactions.

The data source

Entity beans contain persistent data that must be permanently stored in a recoverable data source. Although the
EJB Specification often refers to databases as the place to store persistent data associated with an entity bean, it
leaves open the possibility of using other data sources, including operating system files and other applications.
If you want to let the container handle the interaction between an entity bean and a data source, you must use
the data sources supported by that container.

25

If you write the additional code required to handle the interaction between a BMP entity bean and the data
source, you can use any data source that meets your needs and is compatible with the persistence service. For
more information, see Developing entity beans with BMP.

The EJB clients

An EJB client can take one of the following forms: it can be a Java application, a Java servlet, a Java
applet-servliet combination, or a JSP file. The EJB client code required to access and manipul ate enterprise
beansisvery similar across the different Java EJB clients. EJB client developers must consider the following
iSsues:

« Naming and communications--A Java EJB client must use either HTTP or RMI to communicate with
enterprise beans. Fortunately, there is very little difference in the coding required to enable
communications between the EJB client and the enterprise bean, because INDI masks the interaction
between the EJB client and the name service.

o Java applications communicate with enterprise beans by using RMI1/I10P.

o Javaservlets and JSP files communicate with enterprise beans by using HTTP. To use servlets
with an EJB server, a Web server must be installed and configured on a machine in the EJB
server environment. For more information, see The Web server.

« Threading--Java clients can be either single-threaded or multithreaded depending on the tasks that the
client needs to perform. Each client thread that uses a service provided by a session bean must create or
find a separate instance of that bean and maintain a reference to that bean until the thread completes;
multiple client threads can access the same entity bean.

o Security - EJB clients that access an EJB server over HTTP (for example, servlets and JSP files)
encounter the following two layers of security:

1. Universal Resource Locator (URL) security enforced by the WebSphere Application Server
Security Plug-in attached to the Web server in collaboration with the security service.

2. Enterprise bean security enforced at the server working with the security service.

When the user of an HTTP-based EJB client attempts to access an enterprise bean, the Web server
(using the WebSphere Server plug-in) authenticates the user. This authentication can take the form of a
request for auser 1D and password or it can happen transparently in the form of a certificate exchange
followed by the establishment of a Secure Sockets Layer (SSL) session.

The authentication policy is governed by an additional option: secure channel constraint. If the secure
channel constraint is required, an SSL session must be established as the final phase of authentication;
otherwise, SSL is optional.

« Transactions--Both types of Java clients can use the transaction service by way of the JTA interfaces to
manage transactions. The code required for transaction management is identical in the two types of
clients. For general information on transactions and the Java transaction service, see The transaction
service. For information on managing transactions in a Java EJB client, see Managing transactionsin an
EJB client.

The Web server

To access the functionality in the EJB server, Java servlets and JSP files must have access to a Web server. The
Web server enables communication between aWeb client and the EJB server. The EJB server, Web server, and
Java servlet can each reside on different machines.

26

For information on the Web servers supported by the EJB servers, see the Advanced Application Server Getting
Sarted document.

The administration interface

The EJB server uses the WebSphere Administrative Console. For more information on this interface, consult
the WebSphere InfoCenter and the online help available with the WebSphere Administrative Console. Y ou can
also administer the EJB server using the wscp command-line tool. For more information, see the Advanced
Edition Information Center.

27

WebSphere Programming Model Extensions

This section discusses facilities that are provided as part of the Programming Model Extensionsin WebSphere Application
Server:

« The exception-chaining package, which can be used by distributed applications to capture a sequence of exceptions.
For more information, see The distributed-exception package.

« The command package, which can be used by distributed applications to reduce the number of remote invocations
they must make. For more information, see The command package.

« Thelocalizable-text package, which can be used by distributed applications spanning locales to deliver output in a
user-specified language. For more information, see The localizable-text package.

The exception-chaining and command packages are available as part of WebSphere Application Server Advanced Edition
and Enterprise Edition; the localizable-text package is available as part of WebSphere Application Server Advanced
Edition. All three packages are general-purpose utilities, designed to provide common functions in areusable way.
Although these facilities are described in the context of enterprise beans, they are available to any WebSphere Application
Server Java application. They are not restricted to use with enterprise beans.

The distributed-exception package

Distributed applications require a strategy for exception handling. As applications become more complex and are used by
more participants, handling exceptions becomes problematic. To capture the information contained in every exception,
methods have to rethrow every exception they catch. If every method adopts this approach, the number of exceptions can
become unmanageable, and the code itself becomes less maintainable. Furthermore, if a new method introduces a new
exception, al existing methods that call the new method have to be modified to handle the new exception. Trying to
explicitly manage every possible exception in a complex application quickly becomes intractable.

In order to keep the number of exceptions manageable, some programmers adopt a strategy in which methods catch all
exceptions in a single clause and throw one exception in response. This reduces the number of exceptions each method must
recognize, but it also means that the information about the originating exception islost. Thisloss of information can be
desirable, for example, when you wish to hide implementation details from end users. However, this strategy can make
applications much more difficult to debug.

The distributed-exception package provides afacility that allows you to build chains of exceptions. An exception chain
encapsulates the stack of previous exceptions. With an exception chain, you can throw one exception in response to another
without discarding the previous exceptions, so you can manage the number of exceptions without losing the information
they carry. Exceptions that support chaining are called distributed exceptions.

Distributed exceptions are packaged in the rasjar file, which must be included in the application's CLASSPATH variable.
Overview

Support for chaining distributed exceptions is provided by the com.ibm.websphere.exception Java package. The following
classes and interfaces make up this package:

« DistributedException--This class provides access to the methods on the DistributedExceptionlnfo object. It acts as
the root class for exceptionsin adistributed application. For more information, see The DistributedException class.

« DidtributedExceptionEnabled--This interface allows exceptions that cannot inherit from the DistributedException
class to be used in exception chains, so that exceptions based on predefined exceptions can be captured. For more
information, see The DistributedExceptionEnabled interface.

« DistributedExceptionlnfo--This class encapsul ates the work necessary for distributed exceptions. An exception class
that extends the DistributedException class automatically gets access to this class. A class that implements the
DistributedExceptionEnabled interface must explicitly declare a DistributedExceptionlnfo attribute. For more
information, see The DistributedExceptioninfo class.

« Exceptionl nstantiationException--This class defines the exception that is thrown if an exception chain cannot be
created. This exception isinstantiated internally, but you can catch and re-throw it.

28

This section provides a general description of the interfaces and classes in the exception-chaining package.
The DistributedException class

The DistributedException class provides the root exception for exception hierarchies defined by applications. With this
class, you build chains of exceptions by saving a caught exception and bundling it into the new exception to be thrown. This
way, the information about the old exception is forwarded along with the new exception. The class declares six

constructors; Figure 55 shows the signatures for these constructors. When your exception is a subclass of the

DistributedException class, you must provide corresponding constructorsin your exception class.

Figure 55. Code example: Constructorsfor the DistributedException class

publ ic class DistributedException extends Exception
i mpl ements DistributedExcepti onEnabl ed

{
/1l Constructors
public DistributedException() {...}
public DistributedException(String nessage) {...}
public DistributedException(Throwabl e exception) {...}
public DistributedException(String nessage, Throwabl e exception) {...}
public DistributedException(String resourceBundl eNane,
String resourcekKey,
oj ect[] formatArgunents,
String default Text)
.
public DistributedException(String resourceBundl eNamne,
String resourcekKey,
oj ect[] formatArgunents,
String default Text,
Thr owabl e excepti on)
{...}
/1 O her methods
}

The class also provides methods for extracting exceptions from the chain and querying the chain. These methods include:
« getMessage--This method returns the message string associated with the current exception.

« getPreviousException--This method returns the preceding exception in a chain as a Throwable abject. If there are no
previous exceptions, it returns null.

« getOriginal Exception--This method returns the original exception in a chain as a Throwable object. If thereis no
prior exception, it returns null.

« getException--This method returns the most recent instance of the named exception from the chain as a Throwable
object. If there are no instances present, it returns null.

« getExceptioninfo--This method returns the DistributedExceptioninfo object for the exception.

« printStack Trace--These methods print the stack trace for the current exception, which includes the stack traces of all
previous exceptionsin the chain.

Localization support

Support for localized messages is provided by two of the constructors for distributed exceptions. These constructors take
arguments representing a resource bundle, a resource key, a default message, and the set of replacement strings for variables
in the message. A resource bundle is a collection of resources or resource names representing information associated with a
specific locale. Resource bundles are provided as either a subclass of the ResourceBundle class or in a propertiesfile. The
resource key indicates which resource in the bundle to retrieve. The default message is returned if either the name of the
resource bundle or the key isnull or invalid.

The DistributedExceptionEnabled interface
29

Use the DistributedExceptionEnabled interface to create distributed exceptions when your exception cannot extend the
DistributedException class. Because Java does not permit multiple inheritance, you cannot extend multiple exception
classes. If you are extending an existing exception class, for example, javax.ejb.CreateException, you cannot also extend
the DistributedException class. To alow your new exception class to chain other exceptions, you must implement the
DistributedExceptionEnabled interface instead. The DistributedExceptionEnabled interface declares eight methods you
must implement in your exception class:

« getMessage--This method returns the message string associated with the current exception.

« getPreviousException--This method returns the preceding exception in a chain as a Throwabl e abject. If there are no
previous exceptions, it returns null.

« getOriginal Exception--This method returns the original exception in achain as a Throwable object. If thereisno
prior exception, it returns null.

« getException--This method returns the most recent instance of the named exception from the chain as a Throwable
object. If there are no instances present, it returns null.

« getExceptioninfo--This method returns the DistributedExceptionlnfo object for the exception.

« printStackTrace--These methods print the stack trace for the current exception, which includes the stack traces of all
previous exceptionsin the chain.

« printSuperStackTrace--This method is used by a DistributedExceptioninfo object to retrieve and save the current
stack trace.

When implementing the DistributedExceptionEnabled interface, you must declare a DistributedExceptionlnfo attribute.
This attribute provides implementations for most of these methods, so implementing them in your exception class consists
of calling the corresponding methods on the DistributedExceptionlnfo object. For more information, see Implementing the
methods from the DistributedExceptionEnabled interface.

The DistributedExceptioninfo class

The DistributedExceptionlnfo class provides the functionality required for distributed exceptions. It must be used by any
exception that implements the DistributedExceptionEnabled interface (which includes the DistributedException class). A
DistributedExceptionlnfo object contains the exception itself, and it provides constructors for creating exception chains and
methods for retrieving the information within those chains. It aso provides the underlying methods for managing chained
exceptions.

Extending the DistributedException class

The DistributedException class provides the root exception for exception hierarchies defined by applications. The class also
provides methods for extracting exceptions from the chain and querying the chain. Y ou must provide constructors
corresponding to the constructors in the DistributedException class (see Figure 55). The constructors can simply pass

arguments to the constructor in the DistributedException class by using super methods, asillustrated in Figure 56.

Figure 56. Code example: Constructorsin an exception classthat extendsthe DistributedException class

i ﬁbort com i bm webspher e. exception. *;
public class MDistributedException extends DistributedException
{
/] Constructors
public MyDi stributedException() {
super () ;

public MyDi stributedException(String nessage) {
super (message) ;

public MyDi stributedExcepti on(Throwabl e exception) {
super (exception);

public MyDi stributedException(String nessage, Throwabl e exception) {
super (nmessage, exception);
30

}

public MyDi stributedException(String resourceBundl eNane,
String resourceKey, Cbject[] formatArgunents,
String default Text)

super (resour ceBundl eNane, resourceKey, formatArgunents, defaultText);

public MyDi stributedException(String resourceBundl eNane,
String resourceKey, oject[] formatArgunents,
String default Text, Throwabl e exception)

super (resour ceBundl eNane, resourceKey, formatArgunents, defaultText,
exception);

}
Implementing the DistributedExceptionEnabled interface

Use the DistributedExceptionEnabled interface to create distributed exceptions when your exception cannot extend the
DistributedException class. To alow your new exception class to be chained, you must implement the
DistributedExceptionEnabled interface instead. Figure 57 shows the structure of an exception class that extends the existing
javax.gjb.CreateException class and implements the DistributedExceptionEnabled interface. The class also declares the
required DistributedExceptionlnfo object.

Figure 57. Code example: The structure of an exception classthat implementsthe DistributedExceptionEnabled
interface

i mport javax.ejb.*;

i mport com i bm websphere. exception. *;

public class Account Creat eException extends CreateException
i mpl ements Di stri but edExcepti onEnabl ed

Di stri but edExceptionl nfo exceptionlnfo = null;
// Constructors

// Met hods from the DistributedExcepti onEnabl ed interface
}
Implementing the constructors for the exception class

The exception-chaining package supports six different ways of creating instances of exception classes (see Figure 55).
When you write an exception class by implementing the DistributedExceptionEnabled interface, you must implement these
constructors. In each one, you must use the DistributedExceptionlnfo object to capture the information for chaining the
exception. Figure 58 shows standard implementations for the six constructors.

Figure 58. Code example: Constructorsfor an exception class that implementsthe DistributedExceptionEnabled
interface

publ i c class Account Creat eException extends CreateException
i npl enents Di stri but edExcepti onEnabl ed
{
Di stribut edeExceptionlnfo exceptionlnfo = null;
/] Constructors
Account Creat eException() {
super ();
exceptionlnfo = new Di stributedExceptionl nfo(this);
}
Account Creat eException(String nmsg) {
31

}

super (nsg);
exceptionlnfo = new Distribut edExceptionlnfo(this);

}
Account Cr eat eExcepti on(Throwabl e e) {

super ();

exceptionlnfo = new DistributedExceptionlnfo(this, e);
}

Account Creat eException(String nmsg, Throwable e) {
super (nsQ);
exceptionlnfo = new DistributedExceptionlnfo(this, e);
}
Account Creat eException(String resourceBundl eNanme, String resourcekKey,
oj ect[] formatArgunents, String default Text)

super ();
exceptionlnfo = new Di stribut edExcepti onl nfo(resourceBundl eNane,
resour ceKey, formatArgunents, defaultText, this);

Account Cr eat eExcepti on(String resourceBundl eNane, String resourcekKey,
oj ect[] format Argunents, String defaultText,
Thr owabl e excepti on)

super ();
exceptionlnfo = new Di stribut edExcepti onl nfo(resourceBundl eNane,
resour ceKey, formatArgunments, defaultText, this, exception);

}
/1 Methods fromthe DistributedExcepti onEnabl ed interface

Implementing the methods from the DistributedExceptionEnabled interface

The DistributedExceptionlnfo object provides implementations for most of the methods in the DistributedExceptionEnabled
interface, so you can implement the required methods in your exception class by calling the corresponding methods on the
DistributedExceptioninfo object. Figure 59 illustrates this technique. The only two methods that do not involve calling a
corresponding method on the DistributedExceptioninfo object are the getExceptioninfo method, which returns the object,
and the printSuperStackTrace method, which calls the super.printStack Trace method.

Figure 59. Code example: Implementations of the methodsin the DistributedExceptionEnabled interface

public class Account Creat eExcepti on extends CreateException
i npl enents Di stribut edExcepti onEnabl ed

{

Di stribut edExceptionlnfo exceptionlnfo = null;
/1 Constructors

/1 Methods fromthe DistributedExcepti onEnabl ed interface
String get Message() {
if (exceptionlnfo !'= null)
return exceptionl nfo. get Message();
el se return null;

Thr owabl e get Previ ousException() {
if (exceptioninfo !'= null)
return exceptionl nfo. getPrevi ousException();
else return null;
}
Thr owabl e get Ori gi nal Exception() {
if (exceptionlinfo !'= null)
return exceptionlnfo.getOiginal Exception();
32

else return null;

Thr owabl e get Exception(String excepti onCl assNane) {
if (exceptionlinfo !'= null)
return exceptionl nfo.get Exception(excepti onCl assNane) ;
el se return null;

}
Di stri but edExceptionl nfo get Exceptionlnfo() {
if (exceptionlnfo !'= null)
return exceptionl nfo;
el se return null;
}
voi d printStackTrace() ({
if (exceptionlinfo !'= null)
return exceptionlnfo.printStackTrace();
el se return null;
}
void printStackTrace(PrintWiter pw) {
if (exceptionlnfo !'= null)
return exceptionlnfo.printStackTrace(pw);
el se return null;
}
voi d printSuperStackTrace(PrintWiter pw)
if (exceptionlinfo !'= null)
return super.printStackTrace(pw);
else return null;
}

}
Using distributed exceptions

Defining a distributed exception gives you the ability to chain exceptions together. The DistributedExceptioninfo class
provides methods for adding information to an exception chain and for extracting information from the chain. This section
illustrates the use of distributed exceptions.

Catching distributed exceptions

Y ou can catch exceptions that extend the DistributedException class or implement the DistributedExceptionEnabled
interface separately. You can aso test a caught exception to seeif it hasimplemented the DistributedExceptionEnabled
interface. If it has, you can treat it as any other distributed exception. Figure 60 shows the use of the instanceof method to

test for exception chaining.
Figure 60. Code example: Testing for an exception that implementsthe DistributedExceptionEnabled interface
try {
sonmeMet hod() ;
}
catch (Exception e) {

i f (e instanceof DistributedExceptionEnabl ed) {

}

Adding an exception to a chain

To add an exception to achain, you must call one of the constructors for your distributed-exception class. This captures the
previous exception information and packages it with the new exception. Figure 61 shows the use of the

MyDistributedException(Throwable) constructor.
33

Figure 61. Code example: Adding an exception to a chain

voi d soneMet hod() throws MyDistributedException {

try {
sonmeQt her Met hod() ;

}

catch (DistributedExcepti onEnabl ed e) {
t hrow new MyDi stri but edException(e);

}

b
Retrieving information from a chain

Chained exceptions allow you to retrieve information about prior exceptionsin the chain. For example, the
getPreviousException, getOriginal Exception, and getException(String) methods allow you to retrieve specific exceptions
from the chain. Y ou can retrieve the message associated with the current exception by calling the getM essage method. Y ou
can also get information about the entire chain by calling one of the printStackTrace methods. Figure 62 illustrates calling

the getPreviousException and getOriginal Exception methods.

Figure 62. Code example: Extracting exceptions from a chain

try {
someMet hod() ;

}
catch (DistributedExcepti onEnabl ed e) {

try {
Throwabl e prev = e. get Previ ousException();

catch (Exceptionlnstantiati onException eie) {
Di stri but edexceptionlnfo prevExlnfo = e. getPrevi ousExcepti onl nfo();
if (prevExinfo !'= null) {
String prevExNane = prevExl nfo. get C assNane();
String prevExMsg = prevExl nfo. get Cl assMessage();

}
}

try {
Throwabl e orig = e.get Ori gi nal Exception();

catch (Exceptionlnstantiati onException eie) {
Di stributedExceptionlnfo origExInfo = null;
Di stri but edexceptionlnfo prevExlnfo = e. getPrevi ousExceptionl nfo();
while (prevExinfo !'= null) {
ori gkxl nfo = prevExl nfo;
prevExl nfo = prevExl nfo. get Previ ousExcepti onl nfo();

}

if (origExinfo !'= null) {
String ori gexName = ori gExl nfo. getd assNane();
String ori gexMsg = ori gExl nfo. get d assMessage();

The command package

34

Distributed applications are defined by the ability to utilize remote resources asif they were local, but this remote work
affects the performance of distributed applications. Distributed applications can improve performance by using remote calls
sparingly. For example, if a server does several tasks for a client, the application can run more quickly if the client bundles
requests together, reducing the number of individual remote calls. The command package provides a mechanism for
collecting sets of requests to be submitted as a unit.

In addition to giving you away to reduce the number of remote invocations a client makes, the command package provides
ageneric way of making requests. A client instantiates the command, setsitsinput data, and tellsit to run. The command
infrastructure determines the target server and passes a copy of the command to it. The server runs the command, sets any
output data, and copiesit back to the client. The package provides a common way to issue a command, locally or remotely,
and independently of the server'simplementation. Any server (an enterprise bean, a Java Database Connectivity (JDBC)
server, aservlet, and so on) can be atarget of acommand if the server supports Java access to its resources and provides a
way to copy the command between the client's Java Virtual Machine (JVM) and its own JVM.

Overview

The command facility isimplemented in the com.ibm.websphere.command Java package. The classes and interfacesin the
command package fall into four general categories:

« Interfacesfor creating commands. For more information, see Facilities for creating commands.

« Classes and interfaces for implementing commands. For more information, see Facilities for implementing
commands.

« Classes and interfaces for determining where the command is run. For more information, see Facilities for setting
and determining targets.

« Classes defining package-specific exceptions. For more information, see Exceptionsin the command package.

This section provides a general description of the interfaces and classes in the command package.

Facilities for creating commands

The Command interface specifies the most basic aspects of acommand. This interface is extended by both the
TargetableCommand interface and the CompensableCommand interface, which offer additional features. To create
commands for applications, you must:

« Define an interface that extends one or more of interfaces in the command package.
« Provide an implementation class for your interface.

In practice, most commands implement the TargetableCommand interface, which allows the command to be executed
remotely. Figure 63 shows the structure of a command interface for a targetable command.

Figure 63. Code example: The structure of an interface for atargetable command

i ﬁbort com i bm webspher e. command. *;

public interface MySi npl eCommand ext ends Target abl eCommand {
/1 Declare application nmethods here

}

The CompensableCommand interface allows the association of one command with another that can undo the work of the
first. Compensable commands also typically implement the TargetableCommand interface. Figure 64 shows the structure of

acommand interface for atargetable, compensable command.

Figure 64. Code example: The structure of an interface for atargetable, compensable command

i ﬁbort com i bm webspher e. command. *;

public interface MyComand ext ends Target abl eCormand, Conpensabl eCommand {
/1 Declare application nmethods here

}

35

Facilities for implementing commands

Commands are implemented by extending the class TargetableCommandimpl, which implements the TargetableCommand
interface. The TargetableCommandimpl classis an abstract class that provides some implementations for some of the
methods in the TargetableCommand interface (for example, setting return values) and declares additional methods that the
application itself must implement (for example, how to execute the command).

Y ou implement your command interface by writing a class that extends the TargetableCommandimpl class and implements
your command interface. This class contains the code for the methods in your interface, the methods inherited from
extended interfaces (the TargetableCommand and CompensableCommand interfaces), and the required (abstract) methods
in the TargetableCommandImpl class. Y ou can aso override the default implementations of other methods provided in the
TargetableCommandimpl class. Figure 65 shows the structure of an implementation class for the interface in Figure 64.

Figure 65. Code example: The structure of an implementation classfor a command interface

i mport java.lang.reflect.*;
i nport com i bm websphere. conmand. *;
public class MyComrandl npl extends Tar get abl eCormandl npl
i npl enents MyConmand {
/1l Set instance variables here

// | mpl enent met hods in the MyComrand interface
// | mpl enent et hods in the Conpensabl eConmand interface

// | mpl enent abstract methods in the Targetabl eCommandl npl cl ass

}
Facilities for setting and determining targets

The object that isthe target of a TargetableCommand must implement the CommandTarget interface. This object can be an
actual server-side object, like an entity bean, or it can be a client-side adapter for a server. The implementor of the
CommandTarget interface is responsible for ensuring the proper execution of acommand in the desired target server
environment. This typically requires the following steps:

1. Copying the command to the target server by using a server-specific protocol.
2. Running the command in the server.
3. Copying the executed command from the target server to the client by using a server-specific protocol.

Common ways to implement the CommandTarget interface include:
» A local target, which runsin the client's VM.

« A client-side adapter for aserver. For an example that implements the target as a client-side adapter, see Writing a
command target (client-side adapter).

« An enterprise bean (either a session bean or an entity bean). Figure 66 shows the structure of the remote interface
and enterprise bean class for an entity bean that implements the CommandTarget interface. An enterprise bean is
provided with WebSphere that can be deployed and used as a CommandTarget. See Using the WebSphere
EJBCommandTarget bean as a command target.

Figure 66. Code example: The structure of a command-tar get entity bean

i mport java.rni.Renot eExcepti on;

i mport java.util.Properties;

i mport javax.ejb.*;

i mport com i bm webspher e. command. *;

/'l Renote interface for the MyBean enterprise bean (also a command target)
public interface MyBean extends EJBOhject, CommandTarget {

36 /! Declare nethods for the renpte interface

}

/1l Entity bean class for the MyBean enterprise bean (al so a conmand target)
public class MyBeand ass inplenents EntityBean, ComrandTarget ({
/1 Set instance variables here

)/-Irrpl enent nethods in the renote interface
))-Irrpl enent nethods in the EntityBean interface

// | mpl enment the nethod in the CoormandTarget interface

}

Since targetable commands can be run remotely in another VM, the command package provides mechanisms for
determining where to run the command. A target policy associates a command with atarget and is specified through the
TargetPolicy interface. Y ou can design customized target policies by implementing this interface, or you can use the
provided TargetPolicyDefault class. For more information, see Targets and target policies.

Exceptions in the command package

The command package defines a set of exception classes. The CommandException class extends the DistributedException
class and acts as the base class for the additional command-related exceptions. UnauthorizedA ccessException,

Unsetl nputPropertiesException, and UnavailableCompensableCommandException. Applications can extend the
CommandException class to define additional exceptions, aswell.

Although the CommandException class extends the DistributedException class, you do not have to import the
distributed-exception package, com.ibm.websphere.exception, unless you need to use the features of the
DistributedException classin your application. For more information on distributed exceptions, see The

distributed-exception package.
Writing command interfaces

To write acommand interface, you extend one or more of the three interfaces included in the command package. The base
interface for all commands is the Command interface. This interface provides only the client-side interface for generic
commands and declares three basic methods:

« isReadyToCallExecute--This method is called on the client side before the command is passed to the server for
execution.

« execute--This method passes the command to the target and returns any data.
« reset--This method reverts any output properties to the values they had before the execute method was called so that
the object can be reused.

The implementation class for your interface must contain implementations for the isReady ToCall Execute and reset
methods. The execute method isimplemented for you elsewhere; for more information, see Implementing command

interfaces. Most commands do not extend the Command interface directly but use one of the provided extensions: the
TargetableCommand interface and the CompensableCommand interface.

The TargetableCommand interface

The TargetableCommand interface extends the Command interface and provides for remote execution of commands. Most
commands will be targetable commands. The TargetableCommand interface declares several additional methods:

« setCommandTarget--This method allows you to specify the target object to a command.

« setCommandTargetName--This method allows you to specify the target by name to a command.

« getCommandTarget--This method returns the target object of the command.

« getCommandTargetName--This method returns the name of the target object of the command.

« hasOutputProperties--This method indicates whether or not the command has output that must be copied back to the
37

client. (The implementation class a so provides a method, setHasOutputProperties, for setting the output of this
method. By default, hasOutputProperties returns true.)

« setOutputProperties--This method saves output values from the command for return to the client.

« performExecute-- This method encapsul ates the application-specific work. It is called for you by the execute method
declared in the Command interface.

With the exception of the performExecute method, which you must implement, all of these methods are implemented in the
TargetableCommandimpl class. This class aso implements the execute method declared in the Command interface.

The CompensableCommand interface

The CompensableCommand interface also extends the Command interface. A compensable command is one that has
another command (a compensator) associated with it, so that the work of the first can be undone by the compensator. For
example, acommand that attempts to make an airline reservation followed by a hotel reservation can offer a compensating
command that allows the user to cancel the airline reservation if the hotel reservation cannot be made.

The CompensableCommand interface declares one method:

« getCompensatingCommand--This methods returns the command that can be used to undo the effects of the origina
command.

To create a compensable command, you write an interface that extends the CompensableCommand interface. Such
interfaces typically extend the TargetableCommand interface as well. Y ou must implement the getCompensatingCommand
method in the implementation class for your interface. Y ou must also implement the compensating command.

The example application

The exampl e used throughout the remainder of this discussion uses an entity bean with container-managed persistence
(CMP) called CheckingAccountBean, which allows a client to deposit money, withdraw money, set abalance, get a
balance, and retrieve the name on the account. This entity bean a so accepts commands from the client. The code examples
illustrate the command-related programming. For a servlet-based example, see Writing acommand target (client-side

adapter).

Figure 67 shows the interface for the ModifyCheckingAccountCmd command. This command is both targetable and
compensable, so the interface extends both TargetableCommand and CompensableCommand interfaces.

Figure 67. Code example: The ModifyCheckingAccountCmd interface

i mport com i bm websphere. excepti on. *;
i nport com i bm webspher e. conmand. *;
public interface MdifyChecki ngAccount Cnd
ext ends Tar get abl eConmand, Conpensabl eComrand {
fl oat get Amount () ;
fl oat getBal ance();
fl oat getd dBal ance(); /1 Used for conpensating
float setBal ance(fl oat anount);
fl oat setBal ance(int anount);
Checki ngAccount get Checki ngAccount () ;
voi d set Checki ngAccount (Checki ngAccount newChecki ngAccount);
Target Pol i cy get ChdTarget Policy();

}
Implementing command interfaces

The command package provides a class, TargetableCommandimpl, that implements all of the methodsin the
TargetableCommand interface except the performExecute method. It also implements the execute method from the
Command interface. To implement an application's command interface, you must write a class that extends the
TargetableCommandimpl class and implements your command interface. Figure 68 shows the structure of the

38

M odifyCheckingAccountCmdimpl class.

Figure 68. Code example: The structure of the M odifyCheckingAccountCmdlmpl class

pubI i c class ModifyChecki ngAccount Cndl npl ext ends Tar get abl eCommandl npl
i mpl emrent s Modi f yChecki ngAccount Cnd

[/ Vari abl es

))'Methods
}

The class must declare any variables and implement these methods:
« Any methods you defined in your command interface.
» TheisReadyToCallExecute and reset methods from the Command interface.
« The performExecute method from the TargetableCommand interface.

» The getCompensatingCommand method from the CompensableCommand interface, if your command is
compensable. Y ou must aso implement the compensating command.

Y ou can aso override the nonfinal implementations provided in the TargetableCommandimpl class. The most likely
candidate for reimplementation is the setOutputProperties method, since the default implementation does not save final,
transient, or static fields.

Defining instance and class variables

The ModifyCheckingAccountCmdImpl class declares the variables used by the methodsin the class, including the remote
interface of the CheckingAccount entity bean; the variables used to capture operations on the checking account (balances
and amounts); and a compensating command. Figure 69 shows the variables used by the ModifyCheckingAccountCmd

command.

Figure 69. Code example: Thevariablesin the M odifyCheckingAccountCmdlmpl class

publ i c class ModifyChecki ngAccount Cndl npl ext ends Tar get abl eCommandl npl
i mpl ements Modi f yChecki ngAccount Cnd

{

/'l Variables

public float bal ance;

public float anount;

public float ol dBal ance;

publ i ¢ Checki ngAccount checki ngAccount;

publ i c Modi f yChecki ngAccount Conpensat or Cnd

nmodi f yChecki ngAccount Conpensat or Cnd;

}

Implementing command-specific methods

The ModifyCheckingAccountCmd interface defines several command-specific methods in addition to extending other
interfaces in the command package. These command-specific methods are implemented in the
M odifyCheckingAccountCmdIimpl class.

Y ou must provide away to instantiate the command. The command package does not specify the mechanism, so you can
choose the technique most appropriate for your application. The fastest and most efficient technique is to use constructors.
The most flexible technique isto use afactory. Also, since commands are implemented internally as JavaBeans
components, you can use the standard Beans.instantiate method. The M odifyCheckingAccountCmd command uses
constructors.

Figure 70 shows the two constructors for the command. The difference between them isthat the first uses the defaultgtarget
3

policy for determining the target of the command and the second allows you to specify a custom policy. (For more
information on targets and target policies, see Targets and target policies.)

Both constructors take a CommandTarget object as an argument and cast it to the CheckingAccount type. The
CheckingAccount interface extends both the CommandTarget interface and the EJBObject (see Figure 80). The resulting

checkingAccount object routes the command to the desired server by using the bean's remote interface. (For more
information on CommandTarget objects, see Writing acommand target (server).)

Figure 70. Code example: Constructorsin the ModifyCheckingAccountCmdImpl class

pubI i ¢ class ModifyChecki ngAccount Cndl npl ext ends Tar get abl eCommandl npl
i mpl ement s Modi f yChecki ngAccount Cnd

{
[l Variabl es
))'CDnstructors
/1 First constructor: relies on the default target policy
publ i c Modi f yChecki ngAccount Cndl npl (CommandTar get t ar get,
fl oat newAnount)
{
anount = newAnount;
checki ngAccount = (Checki ngAccount)target;
set CommandTar get (t arget) ;
/1 Second constructor: allows you to specify a customtarget policy
publ i ¢ Modi f yChecki ngAccount Cndl npl (CommandTar get t ar get,
fl oat newAnount,
Target Policy targetPolicy)
{
set Target Pol i cy(targetPolicy);
anount = newAnpunt ;
checki ngAccount = (Checki ngAccount)target;
set CommandTar get (t ar get) ;
}
}

Figure 71 shows the implementation of the command-specific methods:
« setBalance--This method sets the balance of the account.
» getAmount--This method returns the amount of a deposit or withdrawal .
« getOldBalance, getBal ance--These methods capture the balance before and after an operation.
» getCmdTargetPolicy--This method retrieves the current target policy.
« setCheckingAccount, getCheckingA ccount--These methods set and retrieve the current checking account.

Figure 71. Code example: Command-specific methods in the M odifyCheckingAccountCmdI mpl class

pubI i c class ModifyChecki ngAccount Cndl npl ext ends Tar get abl eCommandl npl
i mpl enent s Modi f yChecki ngAccount Crd

/1 Variabl es

H'Constructors

// Met hods in ModifyChecki ngAccountCnd interface
public float getAnmount() {

return anount,;

public float getBal ance() {
40

return bal ance;

}
public float getd dBal ance() {
return ol dBal ance;

public float setBal ance(fl oat anount) ({
bal ance = bal ance + anpunt;
return bal ance;

public float setBal ance(int anount) ({
bal ance += anount ;
return bal ance;

}
public TargetPolicy getCndTarget Policy() {
return get Target Policy();

public void set Checki ngAccount (Checki ngAccount newChecki ngAccount) {
i f (checkingAccount == null) {
checki ngAccount = newChecki ngAccount ;
}

el se
Systemout. println("lncorrect Checking Account (" +
newChecki ngAccount + ") specified");

publ i c Checki ngAccount get Checki ngAccount () {
return checki ngAccount;

}
_——

The ModifyCheckingAccountCmd command operates on a checking account. Because commands are implemented as
JavaBeans components, you manage input and output properties of commands using the standard JavaBeans techniques. For
example, initialize input properties with set methods (like setCheckingAccount) and retrieve output properties with get
methods (like getCheckingAccount). The get methods do not work until after the command's execute method has been
caled.

Implementing methods from the Command interface

The Command interface declares two methods, isReadyToCall Execute and reset, that must be implemented by the
application programmer. Figure 72 shows the implementations for the ModifyCheckingAccountCmd command. The
implementation of the isReadyToCallExecute method ensures that the checkingAccount variableis set. The reset method
sets all of the variables back to starting values.

Figure 72. Code example: Methods from the Command interface in the M odifyCheckingAccountCmdI mpl class

publ i c class ModifyChecki ngAccount Cndl npl ext ends Tar get abl eCommandl npl
i mpl ements Modi f yChecki ngAccount Cnd

{

/1 Methods fromthe Command interface
public bool ean i sReadyToCal | Execut e() {
i f (checkingAccount != null)
return true;
el se
return fal se;

public void reset() {
amount = O;
bal ance = O;
ol dBal ance = 0;

41

checki ngAccount = null;
target Policy = new TargetPolicyDefault();

}
Implementing methods from the TargetableCommand interface

The TargetableCommand interface declares one method, performExecute, that must be implemented by the application
programmer. Figure 73 shows the implementation for the M odifyCheckingA ccountCmd command. The implementation of

the performExecute method does the following:
« Savesthe current balance (so the command can be undone by a compensator command)
« Cadculates the new balance
« Setsthe current balance to the new balance
« Ensures that the hasOutputProperties method returns true so that the values are returned to the client

In addition, the ModifyCheckingAccountCmdIimpl class overrides the default implementation of the setOutputProperties
method.

Figure 73. Code example: Methods from the TargetableCommand interfacein the
M odifyCheckingAccountCmdl mpl class

pubI i c class ModifyChecki ngAccount Cndl npl ext ends Tar get abl eCommandl npl
i mpl emrent s Modi f yChecki ngAccount Cnd

{
)}.thhod fromthe Targetabl eCommand interface
public void perfornExecute() throws Exception {
Checki ngAccount checki ngAccount = get Checki ngAccount ();
ol dBal ance = checki ngAccount. get Bal ance();
bal ance = ol dBal ance+anount ;
checki ngAccount . set Bal ance(bal ance) ;
set HasQut put Properties(true);
public void set Qutput Properties(Targetabl eConmand fronConmmand) {
try {
if (fromConmand !'= null) {
Modi f yChecki ngAccount Cnd nodi f yChecki ngAccount Cd =
(Modi f yChecki ngAccount Crd) f r omCommand,;
thi s. ol dBal ance = nodi f yChecki ngAccount Cnd. get A dBal ance();
t hi s. bal ance = nodi f yChecki ngAccount Crd. get Bal ance() ;
t hi s. checki ngAccount =
nodi f yChecki ngAccount Cnd. get Checki ngAccount () ;
thi s. amount = nodi f yChecki ngAccount Cnd. get Anmount () ;
}
catch (Exception ex) {
Systemout.printin("Error in setCQutputProperties.");
}
}
}

Implementing the CompensableCommand interface

The CompensableCommand interface declares one method, getCompensatingCommand, that must be implemented by the
application programmer. Figure 74 shows the implementation for the M odifyCheckingAccountCmd command. The

implementation simply returns an instance of the M odifyCheckingA ccountCompensatorCmd command associated with the
42

current command.

Figure 74. Code example: Method from the CompensableCommand interfacein the
M odifyCheckingAccountCmdImpl class

publ i c class ModifyChecki ngAccount Cndl npl ext ends Tar get abl eCommandl npl
i mpl ement s Modi f yChecki ngAccount Cnd

{
// Met hod from Conpensabl eCommrand i nterface
publ i c Command get Conpensati ngCommand() throws ConmmandException {
nmodi f yChecki ngAccount Conpensat or Cnd =
new Modi f yChecki ngAccount Conpensat or Cnd(t hi s) ;
return (Command) nodi f yChecki hgAccount Conpensat or Cnd;
}
}

Writing the compensating command

An application that uses a compensable command requires two separate commands:. the primary command (declared as a
CompensableCommand) and the compensating command. 1n the example application, the primary command is declared in
the ModifyCheckingAccountCmd interface and implemented in the M odifyCheckingAccountCmdimpl class. Because this
command is also a compensable command, there is a second command associated with it that is designed to undo its work.
When you create a compensable command, you also have to write the compensating command.

Writing a compensating command can require exactly the same steps as writing the original command: writing the interface
and providing an implementation class. In some cases, it may be simpler. For example, the command to compensate for the
ModifyCheckingAccountCmd does not require any methods beyond those defined for the original command, so it does not
need an interface. The compensating command, called ModifyCheckingA ccountCompensatorCmd, simply needs to be
implemented in a class that extends the TargetableCommandimpl class. This class must:

« Provide away to instantiate the command; the example uses a constructor

» Implement the three required methods:
o isReadyToCallExecute and reset--both from the Command interface
o performExecute--from the TargetableCommand interface

Figure 75 shows the structure of the implementation class, its variables (references to the original command and to the

relevant checking account), and the constructor. The constructor simply instantiates the references to the primary command
and account.

Figure 75. Code example: Variables and constructor in the M odifyCheckingAccountCompensator Cmd class

publ i c class ModifyChecki ngAccount Conpensat or Cnd ext ends Tar get abl eCommand| npl

{
publ i c Modi f yChecki ngAccount Cndl npl nodi f yChecki ngAccount Crdl npl ;
publ i c Checki ngAccount checki ngAccount;

publ i c Modi f yChecki ngAccount Conpensat or Cnd(
Modi f yChecki ngAccount Cndl npl ori gi nal Cnd)

{
I/ CGet an instance of the original commuand
nodi f yChecki ngAccount Cndl npl = ori gi nal Cnd;
I/ Cet the rel evant account
checki ngAccount = ori gi nal Crd. get Checki ngAccount () ;
}

/1 Methods fromthe Command and Tar getabl e Command interfaces

43

Figure 76 shows the implementation of the inherited methods. The implementation of the isReadyToCallExecute method
ensures that the checkingAccount variable has been instantiated.

The performExecute method verifies that the actual checking-account balance is consistent with what the original command
returns. If so, it replaces the current balance with the previously stored balance by using the ModifyCheckingA ccountCmd
command. Finally, it saves the most-recent balances in case the compensating command needs to be undone. The reset
method has no work to do.

Figure 76. Code example: Methodsin M odifyCheckingAccountCompensator Cmd class

pubI i ¢ class ModifyChecki ngAccount Conrpensat or Cnd ext ends Tar get abl eCommand| npl
/'l Variables and constructor

/1 Methods fromthe Conmand and Tar get abl eConmand i nterfaces
publi ¢ bool ean i sReadyToCal | Execute() {
i f (checkingAccount != null)
return true;
el se
return fal se;

public void perfornkExecute() throws CommandExcepti on

{

try {
Modi f yChecki ngAccount Cndl npl ori gi nal Cnd =

nodi f yChecki ngAccount Cndl npl ;
/'l Retrieve the checking account nodified by the original conmand
Checki ngAccount checki ngAccount = ori gi nal Cnd. get Checki ngAccount () ;
i f (nodifyChecki ngAccount Cndl npl . bal ance ==
checki ngAccount . get Bal ance()) {

/'l Reset the values on the original command

checki ngAccount . set Bal ance(ori gi nal Cnd. ol dBal ance) ;

float tenp = nodifyChecki ngAccount Cdl npl . bal ance;

ori gi nal Cnd. bal ance = ori gi nal Cnd. ol dBal ance;

ori gi nal Cd. ol dBal ance = tenp;

el se {
/1 Bal ances are inconsistent, so we cannot conpensate
t hrow new CommandExcepti on(
"Qbj ect nodified since this conmand ran.");

}

}
catch (Exception e) {

System out. println(e. get Message());
}

public void reset() {}
}

Using a command

To use acommand, the client creates an instance of the command and calls the command's execute method. Depending on
the command, calling other methods can be necessary. The specifics will vary with the application.

In the example application, the server is the CheckingAccountBean, an entity enterprise bean. In order to use this enterprise
bean, the client gets a reference to the bean's home interface. The client then uses the reference to the home interface and
one of the bean's finder methods to obtain areference to the bean's remote interface. If there is no appropriate bean, the
client can create one using a create method on the home interface. All of thiswork is standard enterprise bean programming
covered elsewhere in this document.

44

Figure 77 illustrates the use of the ModifyCheckingAccountCmd command. This work takes place after an appropriate

CheckingAccount bean has been found or created. The code instantiates a command, setting the input values by using one
of the constructors defined for the command. The null argument indicates that the command should look up the server using
the default target policy, and 1000 is the amount the command attempts to add to the balance of the checking account. (For
more information on how the command package uses defaults to determine the target of a command, see The default target

policy.) After the command is instantiated, the code calls the setCheckingAccount method to identify the account to be
modified. Finally, the execute method on the command is called.

Figure 77. Code example: Using the M odifyCheckingAccountCmd command

{
dﬁécki ngAccount checki ngAccount
try {
Modi f yChecki ngAccount Cnd cnd =
new Modi f yChecki ngAccount Crdl npl (nul |, 1000);
cnd. set Checki ngAccount (checki ngAccount) ;
cnd. execute();
}
catch (Exception e) {
Systemout. println(e.get Message());
}
}

Using a compensating command

To use a compensating command, you must retrieve the compensator associated with the primary command and call its
execute method. Figure 78 shows the code used to run the original command and to give the user the option of undoing the

work by running the compensating command.

Figure 78. Code example: Using the M odifyCheckingAccountCompensator command

{

d\écki ngAccount checki ngAccount
try {
Modi f yChecki ngAccount Cnd cnd =
new Modi f yChecki ngAccount Cndl npl (nul I, 1000);

cnd. set Checki ngAccount (checki ngAccount) ;
cnd. execute();

.SS/:stem out.println("Wuld you like to undo this work? Enter Y or N');

try {
/!l Retrieve and validate user's response

}

i f (answer . equal sl gnoreCase(Y)) {
Command conpensati ngCommand = cnd. get Conpensat i ngComand() ;
conmpensat i ngComrmand. execut e() ;

}

catch (Exception e) {
Systemout. println(e. get Message());

}

45

Using the WebSphere EJBCommandTarget bean as a command target

WebSphere ships a CommandTarget enterprise bean to allow administrators to execute a command in a designated server
without providing their own implementation of CommandTarget. The EJBCommandTarget class, along with the
EJBCommandTarget bean (CommandServerSessionBean), are located in the EJBCommandTarget.jar filein thelib
directory under the WebSphere installation directory. Thisis adeployed jar file. You can use this JAR filein a new
application or add it into an existing application.

The EJBCommandTarget class serves as awrapper for a CommandTarget bean. CommandServerSessionBean is the
WebSphere implementation of this CommandTarget bean. A command developer can set this EJBCommandTarget object
into the Command. Figure 79 shows an example.

Figure 79. Code example: Using an EJBCommandTar get bean
EJBCommandTar get target = new EJBComrandTar get () ;

MyComrand cnd = new MyComrandl npl (Argunents...);
cnd. set CommandTar get (t arget) ;
cnd. execute();

In this example, the client creates a MyCommand object. It is then executed in the application server. When the execute
method is performed, the target (EJBCommandTarget) |ooks up the CommandServerSessionHome from the Initial Context
and executes the executeCommand method on the CommandServerSessionBean. The EJBCommandTarget object ensures
that there is only one CommandServerSessionBean per object to avoid extra naming lookup.

An EJBCommandTarget object can be created using four different constructors:

o EIJBCommandTarget("MyNamingServerName", "PortNumber”, "JNDIName")

o EJBCommandTarget(Initial Context," INDIName")

« EJBCommandTarget("JNDIName")

o EJBCommandTarget()
The first constructor allows the application to specify the naming server name and the port. The INDI name of the
CommandServerSessionBean can a so be specified. The EIBCommandTarget constructs a provider URL of
"iiop://MyNamingServerName: PortNumber" and |ooks up the CommandServer SessionBean with the given JINDI name. If

null values are passed in for any of the parameters the WebSphere defaults for server and port and a default INDI name of
CommandServerSession are used.

The second constructor allows the application to specify its own initial context. The EJBCommandTarget object then uses
thisinitial context to look up the CommandServerSession bean with the specified INDI name.

The third constructor allows the application to set up the naming server (the provider URL) in property files.

The default constructor uses the default values for the provider URL and default INDI name for the
CommandServerSession bean (CommandServerSession).

Y ou do not need to use the EJBCommandTarget class. Y ou can instead create your own custom target policy that usesthe
EJBCommandTarget bean (CommandServer SessionBean). The EJBCommandTarget object is a convenience class and
attempts to address most usage scenarios

Writing a command target (server)

In order to accept commands, a server must implement the CommandTarget interface and its single method,
executeCommand.

The exampl e application implements the CommandTarget interface in an enterprise bean. (For a servlet-based example, see
Writing a command target (client-side adapter).) The target enterprise bean can be a session bean or an entity bean. You can
write atarget enterprise bean that forwards commands to a specific server, such as another entity bean. In this case, all
commands directed at a specific target go through the target enterprise bean. Y ou can also write atarget enterprise bean that
does the work of the command locally.

46

Make an enterprise bean the target of a command by:

» Extending the CommandTarget interface when you define the bean's remote interface, which must also extend the
EJBObject interface

« Implementing the CommandTarget interface when you implement the bean class, which must also implement either
the SessionBean or EntityBean interface

The target of the example application is an enterprise bean called CheckingAccountBean. This bean's remote interface,
CheckingAccount, extends the CommandTarget interface in addition to the EJBODbject interface. The methods declared in
the remote interface are independent of those used by the command. The executeCommand is declared in neither the bean's
home nor remote interfaces. Figure 80 shows the CheckingAccount interface.

Figure 80. Code example: Theremoteinterface for the CheckingAccount entity bean, also a command tar get

i mport com i bm webspher e. command. *;
i nport javax.ejb. EJBObj ect;
i mport java.rni.Renot eException;
public interface Checki ngAccount extends CommandTar get, EJBObject {
float deposit (float anpunt) throws RenoteException;
float deposit (int armount) throws RenoteException;
String get Account Nane() throws RenoteException;
fl oat getBal ance() throws RenpteException;
fl oat setBal ance(float amount) throws RenoteException;
float withdrawal (float amount) throws RenoteException, Exception;
float withdrawal (int anmount) throws RenoteException, Exception;

}

The enterprise bean class, CheckingAccountBean, implements the EntityBean interface as well asthe CommandTarget
interface. The class contains the business logic for the methods in the remote interface, the necessary life-cycle methods
(gjbActivate, gjbStore, and so on), and the executeCommand declared by the CommandTarget interface. The
executeCommand method is the only command-specific code in the enterprise bean class. It attempts to run the
performExecute method on the command and throws a CommandException if an error occurs. If the performExecute
method runs successfully, the executeCommand method uses the hasOutputProperties method to determine if there are
output properties that must be returned. If the command has output properties, the method returns the command object to
the client. Figure 81 shows the relevant parts of the CheckingAccountBean class.

Figure 81. Code example: The bean classfor the CheckingAccount entity bean, also a command tar get

publ i c class Checki ngAccount Bean i npl ements EntityBean, CommandTarget {
/| Bean vari abl es

// Busi ness nmethods fromrenote interface
)}.Life—cycle net hods for CWP entity beans
// Met hod from the ConmandTarget interface

public Tar get abl eCommand execut eCommand(Tar get abl eComand commrand)
t hrows Renot eException, CommandExcepti on

try {
conmand. per f or nExecut e() ;

catch (Exception ex) {
if (ex instanceof RenoteException) {
RenoveExcepti on renot eExcepti on = (Renot eExcepti on)ex;
if (renoteException.detail !'= null) {
t hr ow new CommandExcepti on(renot eException. detail);
}

t hrow new CommandExcepti on(ex);

47

i f (conmand. hasQut put Properties()) {
return conmand;

return null;

}
Targets and target policies

A targetable command extends the TargetableCommand interface, which allows the client to direct acommand to a
particular server. The TargetableCommand interface (and the TargetableCommandimpl class) provide two ways for a client
to specify atarget: the sstCommandTarget and setCommandTargetName methods. (These methods were introduced in The

TargetableCommand interface.) The setCommandTarget methods allows the client to set the target object directly on the

command. The setCommandTargetName method allows the client to refer to the server by name; this approach is useful
when the client is not directly aware of server objects. A targetable command also has corresponding getCommandTarget
and getCommandTargetName methods.

The command package needs to be able to identify the target of a command. Because there is more than one way to specify
the target and because different applications can have different requirements, the command package does not specify a
selection algorithm. Instead, it provides a TargetPolicy interface with one method, getCommandTarget, and a default
implementation. This allows applications to devise custom algorithms for determining the target of a command when

appropriate.
The default target policy

The command package provides a default implementation of the TargetPolicy interface in the TargetPolicyDefault class. If
you use this default implementation, the command determines the target by looking through an ordered sequence of four
options:

1. The CommandTarget value

2. The CommandTargetName value

3. A registered mapping of atarget for a specific command

4. A defined default target
If it finds no target, it returns null. The TargetPolicyDefault class provides methods for managing the assignment of
commands with targets (registerCommand, unregisterCommand, and listMappings), and a method for setting a default name

for the target (setDefaultTargetName). The default target name is com.ibm.websphere.command.Local Target, where
LocalTarget is a class that runs the command's performExecute method locally. Figure 82 shows the relevant variables and

the methods in the TargetPolicyDefault class.

Figure 82. Code example: The TargetPolicyDefault class

publ ic class TargetPolicyDefault inplenents TargetPolicy, Serializable

{

.p.r.ot ected String defaultTarget Nane = "com i bm websphere. conmand. Local Target";
publ i ¢ CommandTar get get CommandTar get (Tar get abl eConmmand command) {

publ | c Dictionary |istMppings() {
publ | c voi d regi sterCommand(String commandName, String targetName) {
publ | c voi d unregi ster Command(Stri ng commandNane) {

publ | c voi d seDef aul t Tar get Name(Stri ng defaul t Target Nane) {

}
}

SeétltSing the command target

The ModifyCheckingAccountlmpl class provides two command constructors (see Figure 70). One of them takes a

command target as an argument and implicitly uses the default target policy to locate the target. The constructor used in
Figure 77 passes anull target, so that the default target policy traversesits choices and eventually finds the default target

name, Local Target.

The example in Figure 83 uses the same constructor to set the target explicitly. This example differs from Figure 77 as
follows:

« Thecommand target is set to the checking account rather than null. The default target policy startsto traverse its
choices and finds the target in the first place it looks.

« It does not haveto call the setCheckingAccount method to indicate the account on which the command should
operate; the constructor uses the target variable as both the target and the account.

Figure 83. Code example: Identifying a target with CommandT ar get
{

Checki ngAccount checki ngAccount

try {
Modi f yChecki ngAccount Cnd cnd =
new Modi f yChecki ngAccount Cndl npl (checki ngAccount, 1000);
cnd. execute();

}
catch (Exception e) {
Systemout. println(e.get Message());

}
}
Setting the command target name

If aclient needsto set the target of the command by name, it can use the command's setCommandTargetName method.
Figure 84 illustrates this technique. This example compares with Figure 77 as follows:

« Both explicitly set the command target in the constructor to null.

« Both use the setCheckingAccount method to indicate the account on which the command should operate.

« Thisexample setsthe target name explicitly by using the setCommandTargetName method. When the default target
policy traverses its choices, it finds a null for the first choice and a name for the second.

Figure 84. Code example: dentifying a tar get with CommandTar getName

{
d’]éCki ngAccount checki ngAccount
try {
Modi f yChecki ngAccount Cnd cnd =
new Modi f yChecki ngAccount Cndl npl (nul I, 1000);
cnd. set Checki ngAccount (checki ngAccount) ;
cnd. set CormandTar get Nanme("com i bm sfc. cnd. t est. Checki ngAccount Bean") ;
cnd. execute();
}
catch (Exception e) {
Systemout. println(e. get Message());
}
}

Mapping the command to a target name
49

The default target policy also permits commands to be registered with targets. Mapping a command to atarget is an
administrative task that most appropriately done through a configuration tool. The WebSphere Application Server
administrative console does not yet support the configuration of mappings between commands and targets. Applications
that require support for the registration of commands with targets must supply the tools to manage the mappings. These
tools can be visua interfaces or command-line tools.

Figure 85 shows the registration of acommand with atarget. The names of the command class and the target are explicit in

the code, but in practice, these values would come from fieldsin a user interface or arguments to a command-line tool. If a
program creates a command as shown in Figure 77, with anull for the target, when the default target policy traversesits

choices, it finds anull for the first and second choices and a mapping for the third.

Figure 85. Code example: Mapping a command to a target in an exter nal application

{
t.a.r.get Pol i cy. regi st er Command(
"com i bm sfc.cnd. test. Mdi fyChecki ngAccount | nmpl ",
"comibm sfc.cnd. test. Checki hgAccount Bean");
}

Customizing target policies

Y ou can define custom target policies by implementing the TargetPolicy interface and providing a getCommandTarget
method appropriate for your application. The TargetableCommandimpl class provides setTargetPolicy and getTargetPolicy
methods for managing custom target policies.

So far, the target of all the commands has been a checking-account entity bean. Suppose that someone introduces a session
enterprise bean (MySessionBean) that can also act as a command target. Figure 86 shows a simple custom policy that sets

the target of every command to MySessionBean.

Figure 86. Code example: Creating a custom tar get policy

i mport java.io.*;
i nport java.util.*;
i mport java. beans. *;
i nport com i bm webspher e. conmmand. *;
public class Custonilarget Policy inplenents TargetPolicy, Serializable {
publ i ¢ Custonirarget Policy {
super () ;

publ i c CommandTar get get CommandTar get (Tar get abl eComand command) {
CommandTarget = nul | ;

try {
target = (ComrandTarget)Beans.instantiate(null,
"comibm sfc.cnd. test. MySessi onBean") ;

}

catch (Exception e) {
e.printStackTrace();

}

}

Since commands are implemented as JavaBeans components, using custom target policies requires importing the java.beans
package and writing some elementary JavaBeans code. Also, your custom target-policy class must also implement the
javaio.Serializable interface.

Using a custom target policy

50

The ModifyCheckingAccountlmpl class provides two command constructors (see Figure 70). One of them implicitly uses
the default target policy; the other takes atarget policy object as an argument, which allows you to use a custom target
policy. The examplein Figure 87 uses the second constructor, passing a null target and a custom target policy, so that the

custom policy is used to determine the target. After the command is executed, the code uses the reset method to return the
target policy to the default.

Figure 87. Code example: Using a custom tar get policy

{

Checki ngAccount checki ngAccount

try {
Cust onirar get Pol i cy cust onPol i cy = new Cust onlar get Pol i cy();
Modi f yChecki ngAccount Cnd cnd =
new Modi f yChecki ngAccount Crdl npl (nul I, 1000, customnPolicy);
cd. set Checki ngAccount (checki ngAccount) ;
cnd. execute();
cnd. reset();

}
catch (Exception e) {

System out . println(e. get Message());
}

}
Writing a command target (client-side adapter)

Commands can be used with any Java application, but the means of sending the command from the client to the server
varies. The application described in The example application used enterprise beans. The example in this section shows how
you can send a command to a servlet over the HTTP protocol.

In this example, the client implements the CommandTarget interface locally. Figure 88 shows the structure of the client-side
class; it implements the CommandTarget interface by implementing the executeCommand method.

Figure 88. Code example: Thestructure of a client-side adapter for atarget

i mport java.io.*;

i nport java.rm.?*;

i mport com i bm webspher e. command. *;

public class Servl et ConmandTar get i npl enents CommandTarget, Serializable

{

protected String host Name = "l ocal host";
public static void main(String args[]) throws Exception
{

public Target abl eCommand execut eCommand(Tar get abl eCommand command)
t hrows ConmandExcepti on
{

public static final byte[] serialize(Serializable serializable)
t hrows | OException {

.}
public String getHost Nanme() {

publ | c voi d set Host Nane(String host Nanme) {

...}
private static void showHel p() {

}
51

}

The main method in the client-side adapter constructs and intializes the CommandTarget object, as shown in Figure 89.

Figure 89. Code example: I nstantiating the client-side adapter

publ
{

}
Impl

ic static void main(String args[]) throws Exception

String host Nane | net Addr ess. get Local Host (). get Host Nane() ;
String fil eName "MySer vl et ConmandTar get . ser”;
/1 Parse the command I|ine

// ' Create and initialize the client-side CommandTarget adapter
Servl et CommandTar get servl et ConmandTar get = new Ser vl et ConrandTar get () ;
servl et CommandTar get . set Host Nanme(host Nane) ;

/1 Flush and cl ose output streans

ementing a client-side adapter

The CommandTarget interface declares one method, executeCommand, which the client implements. The
executeCommand method takes a TargetableCommand object asinput; it also returns a TargetableCommand. Figure 90

shows the implementation of the method used in the client-side adapter. This implementation does the following:

Figur
publ

{

52

Serializes the command it receives

Creates an HTTP connection to the servlet

Creates input and output streams, to handle the command as it is sent to the server and returned
Places the command on the output stream

Sends the command to the server

Retrieves the returned command from the input stream

Returns the returned command to the caller of the executeCommand method

€ 90. Code example: A client-side implementation of the executeCommand method

i ¢ Target abl eCommand execut eComand(Tar get abl eCommand comand)
t hrows ConmandExcepti on

try {
// Serialize the command

byte[] array = serialize(command);
/|l Create a connection to the servlet
URL url = new URL
("http://" + hostName +
"/servlet/comibmwebsphere. conmand. servl et. ConmandServl et");
Ht t pURLConnecti on httpURLConnection =
(Htt pURLConnection) url.openConnection();
/1 Set the properties of the connection

/1 Put the serialized command on the output stream
Cut put St ream out put St ream = htt pURLConnect i on. get Qut put Strean() ;
output Streamwite(array);
/1l Create a return stream
| nput Stream i nput Stream = htt pURLConnecti on. get | nput Stream() ;
/1 Send the conmand to the servlet
ht t pURLConnecti on. connect () ;
oj ect | nput St ream obj ect | nput St ream =
new Obj ect | nput Strean(i nput Stream ;
/'l Retrieve the command returned fromthe servlet

hj ect object = objectlnputStreamreadOhject();
if (object instanceof ConmandException) {
t hr ow ((CommandExcepti on) object);

/'l Pass the returned conmand back to the calling method
return (Targetabl eConmand) object;

/1 Handl e exceptions

}
Running the command in the servlet

The servlet that runs the command is shown in Figure 91. The service method retrieves the command from the input stream

and runs the performExecute method on the command. The resulting object, with any output properties that must be
returned to the client, is placed on the output stream and sent back to the client.

Figure 91. Code example: Running the command in the servlet

i mport java.io.*;

i mport javax.servlet.*;

i mport javax.servlet.http.*;

i mport com i bm websphere. conmand. *;

public class ConmandServl et extends HtpServlet {

pubI ic void service(HttpServl et Request request,
Ht t pSer vl et Response response)
throws Servl et Exception, | CException
{
try {

/1 Create input and output streans
I nput St ream i nput St ream = request. getl nput Strean();
Qut put St r eam out put Stream = response. get Qut put Streamn() ;
/'l Retrieve the command fromthe input stream
bj ect | nput St ream obj ect | nput St ream =
new Qbj ect | nput St rean(i nput Stream ;
Tar get abl eConmmand command = (Tar get abl eConmrand)
obj ect | nput Stream readoj ect () ;
/]l Create the conmmand for the return stream
bj ect returnOoj ect = command;

[/ Try to run the conmand's perfornExecute met hod

try {
command. per f or mExecut e() ;

/1 Handl e exceptions fromthe perfornkExecute method

/1l Return the command with any out put properties
hj ect Qut put St ream obj ect Qut put St ream =
new Cbj ect Qut put St ream(out put Strean) ;
obj ect Qut put Stream wri t ebj ect (returnQbj ect);
/1 Flush and cl ose out put streans

}

catch (Exception ex) {
ex. printStackTrace();

}

53

}

In this example, the target invokes the performExecute method on the command, but thisis not always necessary. In some
applications, it can be preferable to implement the work of the command locally. For example, the command can be used
only to send input data, so that the target retrieves the data from the command and runs alocal database procedure based on
the input. Y ou must decide the appropriate way to use commands in your application.

The localizable-text package

Overview

Users of distributed applications can come from widely varying areas; they can speak different languages, represent dates
and timesin regionally specific ways, and use different currencies. An application intended to be used by such an audience
must either force them al to use the same interface (for example, an English-based interface), or it can be written in such a
way that it can be configured to the linguistic conventions of the users, so English-speaking users can use the English
interface but French-speaking users can interact with the application through a French interface.

An application that can present information to users in formats that abide by the users' linguistic conventionsis said to be
localizable: the application can be configured to interact with users from different localities in linguistically appropriate
ways. In alocalized application, a user in one region sees error messages, output, and interface elements (like menu options)
in the requested language. Additionally, other elements that are not strictly linguistic, like date and time formats and
currencies, are presented in the appropriate style for users in the specified region. A user in another region sees output in the
conventional language or format for that region.

Historically, the creation of localizable applications has been restricted to large corporations writing complex systems. The
strategies for writing localizable code, collectively called internationalization techniques, have traditionally been expensive
and difficult to implement, so they have been applied only to major development efforts. However, given therisein
distributed computing and in use of the World Wide Web, application developers have been pressured to make a much
wider variety of applications localizable. This requires making internationalization--the techniques for writing localizable
programs--much more accessible to application developers. The WebSphere localizable-text package is a set of Java classes
and interfaces that can be used by WebSphere application devel opers to localize distributed WebSphere applications easily.
Language catalogs for distributed WebSphere applications can be stored centrally, so the catalogs can be maintained and
administered efficiently.

Writing localizable programs

In anonlocalizable application, parts of the application that a user sees are unalterably coded into the application. For
example, aroutine that prints an error message simply prints a string, probably in English, to afile or the console. A
localizable program adds a layer of abstraction into the design. Instead of going simply from error condition to output
string, alocalizable program represents error messages with some language-neutral information; in the simplest case, each
error condition corresponds to akey. In order to print a usable error string for the user, the application looks up the key in
the configured message catalog. A message catalog is alist of keyswith corresponding strings. Different message catalogs
provide the strings in different languages. The application looks up the key in the appropriate catal og, retrieves the
corresponding error message in the desired language, and prints this string for the user.

The technique of localization can be used for far more than tranglating error messages. For example, by using keysto
represent each element--button, label, menu item, and so forth--in agraphical user interface and by providing a message
catalog containing translations of the button names, labels, and menu items, the graphical interface can be automatically
tranglated into multiple languages. In addition, extending support to additional languages requires providing message
catalogs for those languages; the application itself requires no modification.

Localization of an application is driven by two variables, the time zone and the locale. The time zone variable indicates how
to compute the local time as an offset from a standard time like Greenwich Mean Time. The locale is a collection of
information that indicates a geographic, political, or cultural region. It provides information on language, currency, and the
conventions for presenting information like dates, and in alocalizable program, the locale al so indicates the message
catalog from which an application retrieves messages. A time zone can cover many locales, and a single locale can span
time zones. With both time zone and locale, the date, time, currency, and language for usersin a specific region can be
determined.

54

Identifying localizable text

To write alocalizable application, an application developer must determine which aspects of the application need to be
tranglatable. These are typically the parts of an application a user must read and understand. Application devel opers must
consider the parts of an application with which all users directly interact, like the application's interface, and the parts
serving more specialized purposes, like messagesin log files. Good candidates for localization include:

» Elementsin graphical user interfaces
o Title barsfor windows
o Menu names, and the items on the menus (for example, "select File > Open™)
o Labels on buttons (for example, "click the OK button')
o Instructions directing usersto fill in fields (for example, "enter the account number")
o Any other elements that users must read
o Promptsin command-line interfaces
« Output from the program
o Responses to user input
o Error messages
o Text returned when exceptions are thrown
o Other status messages (warnings, audit messages, and others)
After identifying each element of the application to be localized, application devel opers must assign a unique key to each
element and provide a message catal og for each language to be supported. Each message catalog consists of keys and the
corresponding language-specific strings. The key, therefore, is the link between the program and the message catal og; the
program internally refers to localizable elements by key and uses the message catal og to generate the output seen by the
user. Trandated strings are generated by calling the format method on a L ocalizableTextFormatter object, which represents

akey and aresource bundle (a set of message catalogs). The locale setting of the program determines the message catal og
in which to search for the key.

Creating message catalogs

After identifying each element to be localized, message catalogs must be created for each language to be supported. These
catalogs, which are implemented as Java resource bundles, can be created in two ways, either as subclasses of the
ResourceBundle class or as Java properties files. Resource bundles have a variety of usesin Java; for message catal ogs, the
properties-file approach is more common. If properties files are used, support for languages to be added or removed without
modifying the application code, and catalogs can be prepared by people without programming expertise.

A message catalog implemented in a properties file consists of aline for each key, where akey identifies alocalizable
element. Each linein the file has the following structure:

key = String corresponding to the key

For example, agrapical user interface for a banking system can have a pull-down menu to be used for selecting a type of

account, like savings or checking. The label for the pull-down menu and the account types on the menu are good choices for
localization. There are three elements that require keys: the label for the account menu and the two items on the menu. If the
keys are accountString, savingsString, and checkingString, the English properties file associates each with an English string.

Figure 92. Three elementsin an English message catalog

account String Account s
savingsString Savi ngs
checkingString = Checking

In the German properties files, each key is given a corresponding German val ue.

Figure 93. Three elementsin a Ger man message catalog

account Stri ng Kont en
savi ngsString Spar kont o

55

checkingString = G rokonto

Properties files can be added for any other needed languages, as well.
Naming the properties files

To enable resolution to a specific properties file, Java specifies naming conventions for the properties filesin aresource
bundle: r esour ceBundl eName_| ocal el D. properties

Each filetakes afixed extension, . pr operti es. The set of files making up the resource bundle is given a collective
name; for a simple banking application, an obvious name, like BankingResources, suffices for the resource bundle. Each
fileis given the name of the resource bundle with alocale identifier; the specific value of the locale ID varies with the
locale. These are used internally by the Java.util.ResourceBundle class to match files in a resource bundle to combinations
of locale and time-zone settings. The details of the algorithm vary with the release of the JDK; see your Java documentation
for information specific to your installation.

In the banking application, typical filesin the BankingResources resource bundle include BankingResources en.properties
for the English message catalog and BankingResources_de.properties for the German catalog. Additionally, a default
catalog, BankingResources.properties, is provided for use when the requested catalog cannot be found. The default catalog
is often the English-language catal og.

Resource bundles containing message catalogs for use with localizable text need to be installed only on the systems where
the formatting of strings is actually performed. The resource bundles are typically placed in an application's JAR file. See
WebSphere support for more information.

Localization support in WebSphere and Java

The Java package com.ibm.websphere.i18n.localizabletext contains the classes and interfaces constituting the
localizable-text package. This package makes extensive use of the internationalization and localization features of the Java
language; programmers using the WebSphere localizable-text package must understand the underlying Java support, which
are not documented in any detail here.

Java support

The WebSphere localizable-text package relies primarily on the following Java components:
o javautil.Locale
o java.util.TimeZone
« java.util.ResourceBundle
« javatext.MessageFormat

Thislist is not exhaustive. WebSphere and these Java classes can also use related Java classes, but the related classes--for
example, java.util.Calendar--are typically special-purposes classes. This section briefly describes only the primary classes.

Locale

A Locale object in Java encapsul ates a language and a geographic region, for example, the java.util.Locale.US object
contains locale information for the United States. An application that specifies alocale can then take advantage of the
locale-sensitive formatters built into the Java language. These formatters, in the java.text package, handle the presentation
of numbers, currency values, dates, and times.

TimeZone

A TimeZone object in Java encapsul ates a representation of the time and provides methods for tasks like reporting the time
and accommodating seasonal time shifts. Applications use the time zone to determine the local date and time.

ResourceBundle

56

A resource bundle is anamed collection of resources--information used by the application, for example, strings, fonts, and
images--used by a specific locale. The ResourceBundle class allows an application to retrieve the named resource bundle
appropriate to the locale. Resource bundles are used to hold the messages catalogs, as described in Writing localizable
programs. Resource bundles can be implemented in two ways, either as subclasses of the ResourceBundle class or as Java
propertiesfiles.

MessageFormat

The MessageFormat class can be used to construct strings based on parameters. As a simple example, suppose alocalized
application represents a particular error condition with a numeric key. When the application reports the error condition, it
uses a message formatter to convert the numeric key into a meaningful string. The message formatter constructs the output
string by looking up the code (the parameter) in an appropriate resource bundle and retrieving the corresponding string from
the message catalog. Additional parameters--for example, another key representing the program module--can al so be used
in assembling the output message.

WebSphere support

The WebSphere localizable-text package wraps the Java support and extends it for efficient and simple use in a distributed
environment. The primary class used by application programmers is the LocalizableTextFormatter class. Objects of this
class are created, typically in server programs, but clients can also create them. LocalizableTextFormatter objects are
created for specific resource-bundle names and keys. Client programs that receive LocalizableTextFormatter objects call the
object's format method. This method uses the locale of the client application to retrieve the appropriate resource bundle and
assembl e the local e-specific message based on the key.

For example, suppose that a WebSphere client-server application supports both French and English locales; the server is
using an English locale and the client, a French locale. The server creates two resource bundles, one for English and one for
French. When the client makes arequest that triggers a message, the server creates a L ocalizableTextFormatter object
containing the name of the resource bundle and the key for the message, and passes the object back to the client.

When the client receives the LocalizableTextFormatter object, it calls the abject's format method, which returns the
message corresponding to the key from the French resource bundle. The format method retrieves the client's locale and,
using the locale and name of the resource bundle, determines the resource bundle corresponding to the locale. (If the client
has set an English locale, calling the format method resultsin the retrieval of an English message.) The formatting of the
message is transparent to the client. In this simple client-server example, the resource bundles reside centrally with the
server. The client machine does not have to install them. Part of what the WebSphere |ocalizable-text package providesis
the infrastructure to support centralized catalogs. WebSphere uses an enterprise bean, a statel ess session bean provided with
the localizable-text package, to access the message catalogs. When the client calls the format method on the
LocalizableTextFormatter object, the following events occur internally:

1. The client application sets the time zone and locale values in the LocalizableTextFormatter object, either by passing
them explicitly or through defaults.

2. A call, LocalizableTextFormatterEJBFinder, is made to retrieve a reference to the formatting enterprise bean.

3. Information from the L ocalizableTextFormatter object, including the client's time zone and locale, is sent to the
formatting bean.

4. The formatting bean uses the name of the resource bundle, the message key, the time zone, and the locale to
assembl e the language-specific message.

5. The enterprise bean returns the formatted message to the client.

6. The formatted message isinserted into the LocalizableTextFormatter object and returned by the format method.

A call to a LocalizableTextFormatter.format method requires at most one remote invocation, to contact the formatting
enterprise bean. However, the LocalizableTextFormatter object can optionally cache formatted messages, eliminating the
formatting call for subsequent uses. It also allows the application to set a fallback string; this means the application can till
return areadable string even if it cannot access a message catal og to retrieve the language-specific string. Additionally, the
resource bundles can be stored locally. The localizable-text package provides a static variable that indicates whether the
bundles are stored locally (L ocalizableConfiguration.LOCAL) or remotely (LocalizableConfiguration.REMOTE), but the
setting of this variable applies to all applications running within a Java Virtua Machine (JVM).

The LocalizableTextFormatter class

57

The LocalizableTextFormatter class, found in the package com.ibm.websphere.i18n.localizabletext, is the primary
programming interface for using the localizable-text package. Objects of this class contain the information needed to create
language-specific strings from keys and resource bundles.

Location of message catalogs and the ApplicationName value

Applications written with the WebSphere |ocalizabl e-text package can store message catalogs locally or remotely. Ina
distributed environment, the use of remote, centrally stored catalogsis appropriate. All applications can use the same
catalogs, and administration and maintenance of the catalogs are simplified; each component does not need to store and
maintain copies of the message catalogs. Local formatting is useful in test situations and appropriate under some
circumstances. In order to support both local and remote formatting, a L ocalizableTextFormatter object must indicate the
name of the formatting application. For example, when an application formats a message by using remote, centrally stored
catalogs, the message is actually formatted by a simple enterprise bean (see WebSphere support for more information).
Although the localizable-text package contains the code to automate looking up the enterprise bean and issuing acall to it,
the application needs to know the name of the formatting enterprise bean. Several methods in the LocalizableTextFormatter
class use avalue described as application name; this refers to the name of the formatting application, which is not
necessarily the name of the application in which the value is set.

Caching messages

The LocalizableTextFomatter object can optionally cache formatted messages so that they do not have to be reformatted
when needed again. By default, caching is not used, but the L ocalizabl eTextFormatter.setCacheSetting method can be used
to enable caching. When caching is enabled and the LocalizableTextFormatter.format method is called, the method
determines whether the message has already been formatted. If so, the cached message is returned. If the message is not
found in the cache, the message is formatted and returned to the caller, and a copy of the message is cached for future use.

If caching is disabled after messages have been cached, those messages remain in the cache until the cacheis cleared by a
call to the LocalizableTextFormatter.clearCache method. The cache can be cleared at any time. The cache within a
LocalizableTextFormatter object is automatically cleared when any of the following methods are called on the object:

« setResourceBundleName(String resourceBundleName)
« setPatternKey(String patternKey)

o setArguments(Object[] args)

« SetApplicationName(String appName)

Fallback information

Under some circumstances, it can be impossible to format a message. The localizable-text package implements a fallback
strategy, making it possible to get some information even if a message cannot be correctly formatted into the desired
language. The LocalizableTextFomatter object can optionally store afallback value for a message string, the time zone, and
the locale. These can be ignored unless the LocalizableTextFormatter object throws an exception.

Application-specific variables

The localizable-text package provides native support for localization based on time zone and locale, but application
developers can construct messages on the basis of other values as well. The localizable-text package provides an illustrative
class, LocalizableTextDateTimeArgument, which reports the date and time. The date and time information is localized by
using the locale and time-zone val ues, but the class also uses additional variables to determine how the output is presented.
The date and time information can be requested in avariety of styles, from the fully detailed to the terse. In this example,
the construction of message strings is driven by three variables: the locale, the time zone, and the style. Applications can use
any number of variablesin addition to locale and time zone for constructing messages. See Using optiona arguments for

more information.
Writing a localizable application

To develop a WebSphere application that uses localizable text, application developers must do the following:
« Determine the parts of the application to be localized.

o ldentify the application elements to be localized and assign each a key.
58

o Create message catalogs for each language by associating a string with each key.

These tasks were described previously. See Identifying localizable text and Creating message catalogs for more
information.

« Assemble language-specific strings from keys, resource bundles, and other arguments.
o Create alLocalizableTextFormatter object.

o Set the values within the object for the key, the name of the resource bundle, the name of the remote
formatting application, and any optiona arguments.

o Cal the format method on the LocalizableTextObject, which returns the assembled string.

This section describes these tasks.
Creating a LocalizableTextFormatter object

Server programs typically create LocalizableTextFormatter objects, which are sent to clients as the result of some operation;
clients format the objects at the appropriate time. Less typically, clients can create L ocalizableTextFormatter objects
locally. To create a LocalizableTextFormatter object, applications use one of the constructorsin the
LocalizableTextFormatter class:

« LocalizableTextFormatter()

« LocalizableTextFormatter(String resourceBundleName, String patternKey, String appName)

« LocalizableTextFormatter(String resourceBundleName, String patternK ey, String appName, Object[] args)
The LocalizableTextFormatter object must have values set for the name of the resource bundle, the key, the name of the
formatting application, and for any optional values so the object can be formatted. The L ocalizableTextFormatter object can
be created and the values set in one step by using the constructor that takes the necessary arguments, or the object can be

created and the values set in separate steps. Vaues are set by using methods on the LocalizableTextFormatter object; for
setting the values manually, rather than by using a constructor, use these methods:

« setResourceBundleName(String resourceBundleName)
« setPatternKey(String patternKey)
« SetApplicationName(String appName)
o setArguments(Object[] args)
Note:

When valuesin the array of optional arguments are set within a L ocalizableTextFormatter object, they are copied
into the object, not referenced. If an array variable holding avalueis changed after the value has been copied into
the LocalizableTextFormatter object, the value in the LocalizableTextFormatter object will not reflect the change
unlessit is also reset.

A LocalizableTextFormatter object also has methods that can be used to set values that cannot be set when the object is
created, for example:

» Totoggle the cache setting for the L ocalizableTextFormatter object, use the setCacheSetting(bool ean setting)
method (See Caching messages for more information.)

« To clear the cache, use the clearL ocalizableTextFormatter method
o To set falback values, use these methods:

o setFalBackString

o setFallBackLocae

o setFalBackTimeZone

(See Fallback information for more information.)
Each of these set methods also has a corresponding get method for retrieving the value. The clearL ocalizableTextFormatter

method unsets all values, returning the LocalizableTextFormatter object to a blank state. After clearing the object, reuse the
object by setting new values and calling the format method again.

59

Figure 94 creates a L ocalizableT extFormatter object by using the default constructor and uses methods on the new object to
set values for the key, name of the resource bundle, name of the formatting application, and fallback string on the object.

Figure 94. Code example: Creating a L ocalizableT extFor matter object and setting values on it

i mport com i bm websphere.i18n.1 ocali zabl et ext. Local i zabl eExcepti on;

i mport com i bm websphere.i18n.|ocalizabl etext.Localizabl eText Formatter;
i mport java.util.Local e;

public void drawAccount Nunber GUI (String account Type) {

Local i zabl eText Formatter [tf = new Localizabl eText Formatter();
[tf.setPatternKey("account Nunmber");

| tf.set Resour ceBundl eNane(" Banki ngSanpl e. Banki ngResour ces");

I tf.setApplicati onNane(" Banki ngSanpl e") ;
Itf.setFallBackString("Enter account nunber: ");

}
Setting localization values

The application requesting a localized message can specify the locale and time zone for which the message is to be
formatted, or the application can use the default values set for the VM. For example, a graphical user interface can allow
users to select the language in which to display the menus. A default value must be set, either in the environment or
programmeatically, so the menus can be generated when the application first starts, but users can then change the menu
language to suit their needs. Figure 95 illustrates how to change the locale used by the application based on the selection of

amenu item.

Figure 95. Code example: Setting the locale programmatically

i mport java.awt.event. ActionLi st ener;
i mport java.awt .event.Acti onEvent;

i mport java.util.Local e;
public void actionPerforned(Acti onEvent event) {
String action = event. get Acti onCommand();

' |f (action.equal s("en_us")) {
applicationLocal e = new Local e("en", "US");

else if (action.equal s("de_de")) {
applicationLocal e = new Local e("de", "DE");

else if (action.equals("fr_fr"))
applicationLocal e = new Locale("fr", "FR');

}

When an application calls aformat method, it can specify no arguments, which causes the message to be formatted using
the JVM's default values for locale and time zone, or a combination of locale and time zone can be specified to override the
JVM's defaults. (See Generating the localized text for more information on the arguments to the format methods.)

Generating the localized text

After the LocalizableTextFormatter object has been created and the appropriate values set, the object can be formatted to
generate the string appropriate to the locale and time zone. The format methods in the L ocalizableT extFormatter class
perform the work necessary to generate a string from a set of message keys and resource bundles, based on locale and time
zone. The LocalizableTextFormatter class provides four format methods. Each format method returns the formatted

60

message string. The methods take a combination of java.util.Locale and java.util. TimeZone objects and throw
L ocalizableException objects:

« String format();

« String format(locale);

« String format(timeZone);

« String format(locale, timeZone);

The format method with no arguments uses the locale and time-zone values set as defaults for the VM. The other format
methods can be used to override either or both of these values.

Figure 96 shows the creation of alocalized string for the LocalizableTextFormatter object created in Figure 94; formatting
isbased on the locale set in Figure 95. If the formatting fails, the application retrieves and uses the fallback string instead of
the localized string.

Figure 96. Code example: Formatting a L ocalizableT extFor matter object

i mport com i bm websphere.i 18n. 1 ocali zabl et ext. Local i zabl eExcepti on;

i nport com i bm websphere.i 18n.1 ocalizabl et ext. Local i zabl eText Formatter;
i mport java.util.Local e;

public void drawAccount Nunmber GUI (Stri ng account Type) {

Local i zabl eText Formatter |Itf = new Localizabl eText Formatter();
Itf.setPatternKey("account Nunber");

| tf.set Resour ceBundl eNare(" Banki ngSanpl e. Banki ngResources") ;
Itf.setApplicati onNane(" Banki ngSanpl e");

Itf.setFall BackString("Enter account nunber: ");

try {
nmsg = new Label (Itf.format(this.applicationLocale) , Label.CENTER);

catch (Local i zabl eException le) {
msg = new Label (1tf.getFallBackString(), Label.CENTER);
}

}
Using optional arguments

The localizable-text package allows users to specify an array of optional argumentsin a LocalizableTextFormatter object.
These optional arguments can greatly enhance the kinds of localization done in WebSphere applications. This section
describes two ways in which applications can use the optional arguments:

» Toassemble and format complex strings with variable substrings
« To customize the formatting of strings, taking variables other than locale and time zone into account

Assembling complex strings

All of the keys discussed so far have represented flat strings; during localization, a string in the appropriate language is
substituted for the key. The localizable-text package also supports substitution into the strings, which can include variables
as placeholders. For example, an application that needs to report that an operation on a specified account was successful
must provide a string like "The operation on account number was successful; the variable number isto be replaced by the
actual account number. Without support for creating strings with variable pieces, each possible string would need its own
key, or the strings would have to be built phrase by phrase.

Both of these approaches quickly become intractable if a variable can take many values or if astring has severa variable
components. Instead, the localizable text package supports substitution of variablesin strings with optional arguments. A
string in a message catalog uses integers in braces--for example, { 0} or { 1} --to represent variable components. Figure 97
shows an example from an English message catalog for a string with a single variable substitution. (The samekey in
message catalogs for other languages has a trand ation of this string with the variable in the appropriate location for the
language.)

61

Figure 97. A message-catalog entry with a variable substring
successful Transacti on = The operation on account {0} was successful.

The values that are substituted into the string come from an array of optional arguments. One of the constructors for
LocalizableTextFormatter objects takes an array of objects as an argument, and such an array of objects can be set within
any LocalizableTextFormatter object. The array is used to hold values for variable parts of a string. When aformat method
is called on the object, the array is passed to the format method, which takes an element of the array and substitutesit into a
placeholder with the matching index in the string. The value at index O in the array replacesthe {0} variablein the string,
thevalue at index 1 replaces {1}, and so forth.

Figure 98 shows the creation of a single-element argument array and the creation and use of a LocalizableTextFormatter.
The element in the argument array is the account number entered by the user. The LocalizableTextFormatter is created by
using a constructor that takes the array of optional arguments; this can also be set directly by using the setArguments
method on the L ocalizableTextFormatter object. Later in the code, the application calls the format method. The format
method automatically substitutes values from the array of argumentsinto the string returned from the appropriate message
catalog.

Figure 98. Code example: Formatting a message with a variable substring
public void updateAccount (String transactionType) {

OOJ ect[] arg = { new String(this.accountNunber)};

Local i zabl eText Formatter successLTF =
new Local i zabl eText For nat t er (" Banki ngResour ces",
"successful Transacti on",
" Banki ngSanpl e",
arg);

successLTF. f or mat (this.applicationLocal e);
}
Nesting LocalizableTextFormatter objects

The ahility to substitute variables into the strings in message catalogs adds alevel of flexibility to the localizable-text
package, but the additional flexibility islimited, at least in an international environment, unless the substituted arguments
themselves can be localized. For example, if an application needs to report that an operation on a specific account was
successful, astring like "The operation on account number was successful"--where the only variable is an account
number--can be translated and used in message catal ogs for multiple languages. A string in which avariable is also a string,
for example, "The type operation on account number was successful"--where the new type variabl e takes values like
"deposit" and "withdrawal"--cannot be as easily translated. The values assumed by the type variable also need to be
localized.

Figure 99 shows a message string in an English catalog with two variables, one of which will be localized, and the keys for

two possible values. (The second variable in the string, the account number, is simply a number that must be substituted
into the string; it does not need to be localized.)

Figure 99. A message-catalog entry with two variable substrings

sucessful Transaction = The {0} operation on account {1} was successful.
deposit QpString = deposit
W t hdrawQpString = wit hdr awal

To support localization of substrings, the localizable-text package allows the nesting of LocalizableTextFormatter objects.
Thisis done simply by inserting a L ocalizableT extFormatter object into the array of arguments for another
LocalizableTextFormatter. When the format method does the variable substitution, it formats any L ocalizableTextFormatter
objects as it substitutes array elements for variables. This alows substrings to be formatted independently of the string in
which they are embedded.

Figure 100 modifies the example in Figure 98 to format a message with alocalizable substring. First, a
Lo%a%i zableTextFormatter object for the localizable substring (referring to a deposit operation) is created. This object is

inserted, along with the account-number information, into the array of arguments. The array of argumentsisthen usedin
constructing the LocalizableTextFormatter object for the complete string; when the format method is called, the embedded
LocalizableTextFormatter object is formatted to replace the first variable, and the account number is substituted for the
second variable.

Figure 100. Code example: Formatting a message with alocalizable variable substring
public void updateAccount (String transacti onType) {

/'l Successful Deposit.
Local i zabl eText Fornatter opLTF =
new Local i zabl eText For matt er (" Banki ngResour ces,
"deposit OpString", "BankingSanple");
bj ect[] args = {opLTF, new String(this.accountNunber)};
Local i zabl eText Formatter successLTF =
new Local i zabl eText For matt er (" Banki ngResour ces”,
"successful Transaction",
" Banki ngSanpl e",
args);

.siJE:cessLTF. format (this.applicationLocal e);

}
Customizing the behavior of a format method

The array of optional arguments can contain simple values, like an account number to be substituted into aformatted string,
and other LocalizableTextFormatter objects, representing localizable substrings to be substituted into alarger formatted
string. These techniques are described in Assembling complex strings. In addition, the optional-argument array can contain

objects of user-defined classes.

User-defined classes used as optional arguments provide application-specific format methods, which programmers can use
to perform localization on the basis of any number of values, not just locale and time zone. These user-defined classes need
to be available only on the systems where they are constructed and inserted into LocalizableTextFormatter objects and
where the actual formatting is done; client applications do not need to install these classes.

The localizable-text package provides an example of such a user-defined classin the LocalizableTextDateTimeArgument
class. This class alows date and time information to be selectively formatted according to the style values defined in the
java.text.DateFormat class and according to the constants defined by the L ocalizableTextDateTimeArgument class.

The DateFormat styles determine how information is reported about a date. For example, when the DateFormat.FULL style
is chosen, the twenty-second day of February in 2000 is represented in English as Tuesday, February 22, 2000. When the
DateFormat. SHORT style is used, the same date is represented as 2/22/00. The valid values are:

« DateFormat.FULL

« DateFormat.LONG

« DateFormat. MEDIUM

« DateFormat.SHORT

« DateFormat.DEFAULT
The LocalizableTextDateTimeArgument class defines constants that can be used to request only date or time information,
or both, either in date-time order or in time-date order. The defined values are:

» LocalizableTextDateTimeArgument. TIME

o LocalizableTextDateTimeArgument.DATE

o LocdizableTextDateTimeArgument. TIMEANDDATE

» LocalizableTextDateTimeArgument. DATEANDTIME

An object of a user-defined class like the LocalizableTextDateTimeArgument class can be set in the optional-argument
array of aLocalizableTextFormatter object, and when the L ocalizableT extFormatter object attempts to format the

63

user-defined object, it calls the format method on that object. That format method, written by the application devel oper, can
do whatever is appropriate with the application-specific values. In the case of the LocalizableTextDateTimeArgument class,
the format method determinesiif date, time, or both are required, formats them according to the DateFormat value, and
assembles them in the order requested in the LocalizableTextDateTimeArgument style. The date and time information are
aso affected by the locale and time-zone values, but the refinements in the formatting are accomplished by the DateFormat
class and the user-defined values.

The string assembled from a user-defined class like the LocalizableTextDateTimeArgument class can then be substituted
into alarger string, just as the return values of nested L ocalizableTextFormatter objects can be. When writing such
user-defined classes, it is helpful to think of them as specialized versions of the generic LocalizableTextFormatter class, and
the way in which the LocalizableTextFormatter class is written provides a model for writing user-defined classes.

Structure of the LocalizableTextFormatter class

The LocalizableTextFormatter classis a general-purpose class for localizable text. It extends the java.lang.Object class and
implements the java.io.Serializable interface and four |ocalizable-text interfaces:

o LocalizableTextLTZ
o LocalizableTextL

o LocalizableTextTZ
o LocalizableText

Each of the localizable-text interfaces implemented by the L ocalizableTextFormatter classimplements the Localizable
interface (which simply extends the Serializable interface) and defines a single format method:

o The LocalizableTextL TZ interface defines format(locale, timezone).
« TheLocalizableTextL definesformat(locale).

o The LocalizableTextTZ defines format(timezone).

» TheLocalizableText defines format().

Because the LocalizableTextFormatter classimplements all four of these interfaces, it must provide an implementation for
each of these format methods.

Writing a user-defined class

A user-defined class must implement at least one of the localizable-text interfaces and its corresponding format method, as
well asthe Serializable interface. If the class implements more than one of the localizable-text interfaces and format
methods, the order of evaluation of the interfacesis:

1. LocalizableTextLTZ
2. LocalizableTextL
3. LocdizableTextTZ
4. LocalizableText

For example, the LocalizableTextDateTimeArgument class implements only the LocalizableTextL TZ interface, as shown in
Figure 101.

Figure 101. Code example: The structure of the L ocalizableT extDateTimeArgument class

package com i bm websphere.i 18n. | ocal i zabl et ext;

i mport java.util.Local e;

i nport java.util.Date;

i mport java.text. Dat eFornmat;

i nport java.util.Ti meZone;

i mport java.io.Serializable;

public class Localizabl eText Dat eTi neArgunent i npl ements Local i zabl eText LTZ,
Serializable

{

}
64

A user-defined class must contain a constructor and an implementation of the format methods as defined in the
localizable-text interfaces that the class implements. It can also contain other methods as needed. The
LocalizableTextDateTimeArgument class contains a constructor, a single format method, an equality method, a hash-code
generator, and a string-conversion method.

Figure 102. Code example: The methodsin the L ocalizableT extDateTimeArgument class

pubI ic class Localizabl eText Dat eTi meArgunment i npl enents Local i zabl eText LTZ,
Serializable

{
public final static int DATE = 1;
public final static int TIME = 2;
public final static int DATEANDTI ME = 3;
public final static int TlI MEANDDATE = 4;
private Date date = null;
private dateTi meStyl e = Local i zabl eText Dat eTi meAr gunent . DATE;
private int dateFormatStyle = DateFornmat. FULL;
publ i c Local i zabl eText Dat eTi neArgunent (Date date, int dateTi neStyl e,
i nt dat eFornat Styl e)
{ ...}
publ i ¢ bool ean equal s(Qbj ect param
pubi | ¢ format (Local e | ocal e, TineZone tineZone)
throws |11 egal Argunment Excepti on
{ ...}
public int hashCode()
{ ...}
public String toString()
{ ...}
}

Each format method in the user-defined class can do whatever is appropriate for the application. In the
LocalizableTextDateTimeArgument class, the format method (see Figure 103 for the implementation) examines the setting
of the date-time style set within the object, for example, DATEANDTIME. It then assembles the requested information in
the requested order, according to the date-format value.

Figure 103. Code example: Theformat method in the L ocalizableT extDateTimeArgument class

public format (Locale |ocale, TineZone tineZone)
throws |11 egal Argunent Excepti on
{

String returnString = null;

swi tch(dateTi meStyle) {
case Local i zabl eText Dat eTi meAr gunent . DATE :
{
returnString = Dat eFornat. get Dat el nst ance(dat eFor mat St yl e,
| ocal e).fornat (date);
br eak;

}
case Local i zabl eText Dat eTi meAr gunent . Tl ME :

df = Dat eFormat. get Ti mel nstance(dat eFornat Style, |ocale);
df . set Ti neZone(ti neZone) ;

returnString = df.format(date);

br eak;

}
case Local i zabl eText Dat eTi meAr gurrent . DATEANDTI MVE :
65

dat eStri ng = Dat eFor mat . get Dat el nst ance(dat eFor mat Styl e,
| ocal e).fornat (date);
df = DateFormat. getTi nel nstance(dateFornat Style, |ocale);
df . set Ti neZone(ti neZone);
timeString = df.format (date);
returnString = dateString + " " + tineString;
br eak;

}
case Local i zabl eText Dat eTi neAr gunent . TI MEANDDATE :

{
dat eStri ng = Dat eFor mat . get Dat el nst ance(dat eFor mat Styl e,
| ocal e).format (date);
df = DateFormat. getTi nel nstance(dateFornat Style, |ocale);
df . set Ti neZone(ti neZone);
returnString = tinmeString + " " + dateString;
br eak;
def aul t
t hrow new ||| egal Argunment Exception();
}

}

return returnStri ng;

}

An application can create a LocalizableTextDateTimeArgument object (or an object of any other user-defined class) and
place it in the optional -argument array of a L ocalizableTextFormatter object. When the LocalizableTextFormatter object
reaches the user-defined object, it will attempt to format it by calling the object's format method. The returned string is then
substituted for a variable as the L ocalizableT extFormatter processes each element in the array of optional arguments.

Deploying the formatter enterprise bean

The L ocalizableT extEJBDeploy toal is used by the application deployer to create a deployed LocalizableText JAR file for
the LocalizableText service. Y ou must deploy the enterprise bean for each server per application where the serviceisto be
run. There may be servers for which the LocalizableText service does not need to be installed. The same deployed JAR file
can beincluded in several application Enterprise Archive (EAR) files, but additional steps are required when the EAR fileis
deployed. The application deployer must also make sure that the application resource bundles are added to the application
EAR file asfiles. The server's CLASSPATH variable must be adjusted to include the deployed location of the EAR file.
Thisis so that the resource bundles can be located on the host and server.

Setting up the tool

Before the L ocalizableT extEJBDeploy tool can be used, the following conditions must be met:
« A JARfilecaled Itext.jar must exist in the lib directory under the WebSphere installation directory.
« A working directory hasto exist for the tool to use. The location is passed to the tool.

Using the LocalizableTextEJBDeploy Tool

After the prerequisites for the tool have been met, the tool can be used to deploy formatting session beans. The tool requires
values for five arguments:

Local i zabl eText EJBDepl oy -a <appNane>
-h <host Nane>
-i <installationD r>
-s <server Nane>
-w <wor ki ngDi r >

The required arguments, which can be specified in any order, follow:
66

appName: The name of the formatting session bean. This nameis used in LocalizableTextFormatter objectsto
specify where the actual formatting takes place. If a LocalizableTextFormatter object specifies a name that cannot be
resolved, an exception is thrown by the format method.

hostName: The name of the machine on which the formatting session bean is deployed. This value specified hereis
case sensitive on al platforms.

installationDir: The location at which WebSphere Application Server isinstalled on the machine.

serverName: The name of the WebSphere Application Server. If this argument is not specified, the value Def aul t
Ser ver isused.

workingDir: The name of the working directory for the tool to use.

After thetool isrun, adeployed JAR fileislocated in the working directory specified to the tool. This JAR file can be
included in the application EAR or WAR file.

Special considerations when deploying a LocalizableText enterprise bean

When the application is being deployed onto a host and server, during the deployment process you will be asked if you want
to regenerate the deployment code for the LocalizableText enterprise bean. Do not redeploy the bean. If the bean is
redeployed, the INDI name will be wrong.

If more than one LocalizableText enterprise bean is deployed with an application, there are two ways to handle the
situation.

Run the L ocalizableT extEIBDeploy tool for each host/server combination. The tool generates a unique INDI name
for each enterprise bean. Otherwise, even though the bean has been deployed on multiple hosts and servers, the
JNDI nameis not changed, and there is only one entry in the naming service.

During the deployment of the application, change the INDI name for the localizable-text bean should begin with
con i bml websphere/i 18n/1 ocal i zabl et ext / hones/ . This should be followed by the application and
host names, the server name, and by the string Local i zabl eText EJBHorme, all separated by two underscores,
asfollows:

<AppNane>/ <Host Name>__<Server Name> __ Local i zabl eText EJBHore

67

More-advanced programming concepts for enterprise beans

This chapter discusses some of the more advanced programming concepts associated with devel oping and using enterprise
beans. It includes information on devel oping entity beans with bean-managed persistence (BMP), writing the code required by
a BMP bean to interact with a database, and devel oping session beans that directly participate in transactions.

Developing entity beans with BMP

In an entity bean with container-managed persistence (CMP), the container handles the interactions between the enterprise
bean and the data source. In an entity bean with bean-managed persistence (BMP), the enterprise bean must contain al of the
code required for the interactions between the enterprise bean and the data source. For this reason, developing an entity bean
with CMP issimpler than developing an entity bean with BMP. However, you must use BMP if any of the following istrue
about an entity bean:

« The bean's persistent data is stored in more than one data source.
» Thebean's persistent datais stored in a data source that is not supported by the EJB server that you are using.

This section examines the devel opment of entity beans with BMP. For information on the tasks required to develop an entity
bean with CMP, see Developing entity beans with CMP.

Every entity bean must contain the following basic parts:
» The enterprise bean class. For more information, see Writing the enterprise bean class (entity with BMP).

» Theenterprise bean's home interface. For more information, see Writing the home interface (entity with BMP).
» The enterprise bean's remote interface. For more information, see Writing the remote interface (entity with BMP).

In an entity bean with BMP, you can create your own primary key class or use an existing class for the primary key. For more
information, see Writing or selecting the primary key class (entity with BMP).

Writing the enterprise bean class (entity with BMP)

In an entity bean with BMP, the bean class defines and implements the business methods of the enterprise bean, defines and
implements the methods used to create instances of the enterprise bean, and implements the methods invoked by the container
to move the bean through different stagesin the bean's life cycle.

By convention, the enterprise bean class is named NameBean, where Name is the name you assign to the enterprise bean. The
enterprise bean class for the example AccountBM enterprise bean is named AccountBM Bean. Every entity bean class with
BMP must meet the following requirements:

« It must be public, it must not be abstract, and it must implement the javax.gjb.EntityBean interface. For more
information, see Implementing the EntityBean interface.

« It must define instance variables that correspond to persistent data associated with the enterprise bean. For more
information, see Defining instance variables.

« It must implement the business methods used to access and manipulate the data associated with the enterprise bean. For
more information, see Implementing the business methods.

« It must contain code for getting connections to, interacting with, and releasing connections to the data source (or
sources) used to store the persistent data. For more information, see Using a database with a BMP entity bean.

« It must define and implement an gjbCreate method for each way in which the enterprise bean can be instantiated. It can,
but is not required to, define and implement a corresponding ejbPostCreate method for each ejbCreate method. For
more information, see Implementing the gjbCreate and ejbPostCreate methods.

« It must implement the g/ bFindByPrimaryK ey method that takes a primary key and determinesif it isvalid and unique.
It can also define and implement additional finder methods as required. For more information, see |mplementing the

g bFindByPrimaryKey and other g/bFind methods.
Note:

The enterprise bean class can implement the enterprise bean's remote interface, but thisis not recommended. If the
enterprise bean class implements the remote interface, it is possible to inadvertently pass the this variable as a method

68

argument.

Figure 42 shows the import statements and class declaration for the example AccountBM enterprise bean.

Figure 42. Code example: The AccountBM Bean class

i mport java.rm . Renot eException;

i mport java.util.?*;

i mport javax.ejb.*;

i mport java.lang.*;

i mport java.sql.*;

i mport comibmejs.doc.account. | nsufficientFundsExcepti on;
public class Account BMBean i npl ements EntityBean {

}
Defining instance variables

An entity bean class can contain both persistent and nonpersistent instance variables; however, static variables are not
supported in enterprise beans unless they are aso fina (that is, they are constants). Persistent variables are stored in a database.
Unlike the persistent variablesin a CMP entity bean class, the persistent variables in a BMP entity bean class can be private.

Nonpersistent variables are not stored in a database and are temporary. Nonpersistent variables must be used with caution and
must not be used to maintain the state of an EJB client between method invocations. This restriction is necessary because
nonpersistent variables cannot be relied on to remain the same between method invocations outside of a transaction because
other EJB clients can change these variables or they can be lost when the entity bean is passivated.

The AccountBMBean class contains three instance variables that represent persistent data associated with the AccountBM
enterprise bean:;

« accountld, which identifies the account |D associated with an account

« type, which identifies the account type as either savings (1) or checking (2)

« balance, which identifies the current balance of the account

The AccountBMBean class contains several nonpersistent instance variables including the following:

« entityContext, which identifies the entity context of each instance of an AccountBM enterprise bean. The entity context
can be used to get areference to the EJB object currently associated with the bean instance and to get the primary key
object associated with that EJB object.

« jdbcUrl, which encapsulates the database universal resource locator (URL) used to connect to the data source. This
variable must have the following format: dbAPI:databaseType:databaseName. For example, to specify a database
named samplein an IBM DB2 database with the Java Database Connectivity (JDBC) API, the argument is
j dbc: db2: sanpl e.

« driverName, which encapsulates the database driver class required to connect to the database.

» DBLogin, which identifies the database user 1D required to connect to the database.

» DBPassword, which identifies password for the specified user ID (DBLogin) required to connect to the database.

« tableName, which identifies the database table name in which the bean's persistent data is stored.

« jdbcConn, which encapsulates a Java Database Connectivity (JDBC) connection to a data source within a
java.sgl.Connection object.

Figure 43. Code example: Theinstance variables of the AccountBM Bean class

public class Account BMBean i npl enments EntityBean {
private EntityContext entityContext = null;

b'rivate static final String DBRULProp = "DBURL";

private static final String DriverNanmeProp = "Driver Nane";
private static final String DBLogi nProp = "DBLogin";
private static final String DBPasswordProp = "DBPassword";

private static final String Tabl eNaneProp = "Tabl eNane";
69

private String jdbcUrl, driverName, DBLogin, DBPassword, tableNane;
private long accountld = 0O;

private int type = 1;

private fl oat bal ance = 0. 0f;

private Connection jdbcConn = null;

}

To make the AccountBM bean more portable between databases and database drivers, the database-specific variables (jdbcUrl,
driverName, DBLogin, DBPassword, and tableName) are set by retrieving corresponding environment variables contained in
the enterprise bean. The values of these variables are retrieved by the getEnvProps method, which isimplemented in the
AccountBMBean class and invoked when the setEntityContext method is called. For more information, see Managing database

connections in the EJB server environment.

Although Figure 43 shows database access compatible with version 1.0 of the JIDBC specification, you can also perform
database accesses that are compatible with version 2.0 of the JDBC specification. An administrator binds a
javax.sqgl.DataSource reference (which encapsul ates the information that was formerly stored in the jdbcURL and driverName
variables) into the INDI namespace. The entity bean with BMP does the following to get ajava.sgl.Connection:

Dat aSource ds = (dataSource)initial Context.|ookup("java: conp/env/jdbc/ MyDataSource");
Connection con = ds. get Connection();

where MyDataSour ce is the name the administrator assigned to the datasource.
Implementing the business methods

The business methods of an entity bean class define the ways in which the data encapsulated in the class can be manipulated.
The business methods implemented in the enterprise bean class cannot be directly invoked by an EJB client. Instead, the EJB
client invokes the corresponding methods defined in the enterprise bean's remote interface by using an EJB object associated
with an instance of the enterprise bean, and the container invokes the corresponding methods in the instance of the enterprise
bean.

Therefore, for every business method implemented in the enterprise bean class, a corresponding method must be defined in the
enterprise bean's remote interface. The enterprise bean's remote interface is implemented by the container in the EJB object
class when the enterprise bean is deployed.

There is no difference between the business methods defined in the AccountBM Bean bean class and those defined in the CMP
bean class AccountBean shown in Figure 10.

Implementing the ejbCreate and ejbPostCreate methods

Y ou must define and implement an bCreate method for each way in which you want a new instance of an enterprise bean to
be created. For each ejbCreate method, you can a so define a corresponding ejbPostCreate method. Each ejbCreate method
must correspond to a create method in the EJB home interface.

Like the business methods of the bean class, the ejbCreate and ejbPostCreate methods cannot be invoked directly by the client.
Instead, the client invokes the create method of the enterprise bean's home interface by using the EJB home object, and the
container invokes the gfbCreate method followed by the g/bPostCreate method.

Unlike the method in an entity bean with CMP, the gjbCreate method in an entity bean with BMP must contain all of the code
required to insert the bean's persistent data into the data source. This requirement means that the ejbCreate method must get a
connection to the data source (if oneis not already available to the bean instance) and insert the values of the bean's variables
into the appropriate fields in the data source.
Each g/bCreate method in an entity bean with BMP must meet the following requirements:

« It must be public and return the bean's primary key class.

« Itsarguments and return type must be valid for Java remote method invocation (RMI).

« It must contain the code required to insert the values of the persistent variables into the data source. For more
information, see Using a database with a BMP entity bean.

Eac?oej bPostCreate method must be public, return void, and have the same arguments as the matching ejbCreate method. If

necessary, both the g/bCreate method and the gjbPostCreate method can throw the java.rmi.RemoteException exception, the
javax.ejb.CreateException exception, the javax.ejb.DuplicateK ey Exception exception, and any user-defined exceptions.

Figure 44 shows the two e/ bCreate methods required by the example AccountBM Bean bean class. No g/bPostCreate methods
arerequired.

Asin the AccountBean class, the first ejbCreate method calls the second gjbCreate method; the latter handles all of the
interaction with the data source. The second method initializes the bean's instance variables and then ensures that it has avalid
connection to the data source by invoking the checkConnection method. The method then creates, prepares, and executes an
SQL INSERT call on the data source. If the INSERT call is executed correctly, and only one row isinserted into the data
source, the method returns an object of the bean's primary key class.

Figure 44. Code example: The g/ bCreate methods of the AccountBM Bean class

publ i c Account BMKey ej bCreat e(Account BMKey key) throws Creat eException,
Renot eException {
return ej bCreate(key, 1, 0.0f);

}

publ i ¢ Account BMKey ej bCreat e(Account BMKey key, int type, float bal ance)
throws CreateException, RenpteException
{

accountld = key.accountl d;
this.type type;

thi s. bal ance = bal ance;
checkConnection();

/1 I NSERT i nto database

try {

String sql String = "INSERT INTO " + tableNanme +
" (bal ance, type, accountid) VALUES (?,?,?)";
Prepar edSt at enent sql Statenment = j dbcConn. prepareSt at enent (sql String);
sql St at enent . set Fl oat (1, bal ance);
sqgl Statenent.setlnt(2, type);
sqgl St at enent . set Long(3, accountld);
/] Execute query
i nt updateResults = sqgl Statenent. executeUpdate();

catch (Exception e) { // Error occurred during insert

}

return key;

}
Implementing the ejbFindByPrimaryKey and other ejbFind methods

At aminimum, each entity bean with BMP must define and implement the jbFindByPrimaryK ey method that takes a primary
key and determinesif it is valid and unique for an instance of an enterprise bean; if the primary key isvalid and unique, it
returns the primary key. An entity bean can a so define and implement other finder methods to find enterprise bean instances.
All finder methods can throw the javax.gjb.FinderException exception to indicate an application-level error. Finder methods
designed to find a single bean can also throw the javax.egjb.ObjectNotFoundException exception, a subclass of the
FinderException class. Finder methods designed to return multiple beans should not use the ObjectNotFoundException to
indicate that no suitable beans were found; instead, such methods should return empty return values. Throwing the
java.rmi.RemoteException exception is deprecated; see Standard application exceptions for entity beans for more information.

Like the business methods of the bean class, the gjbFind methods cannot be invoked directly by the client. Instead, the client
invokes a finder method on the enterprise bean's home interface by using the EJB home object, and the container invokes the
corresponding € bFind method. The container invokes an gjbFind method by using a generic instance of that entity bean in the
pooled state.

Because the container uses an instance of an entity bean in the pooled state to invoke an ejbFind method, the method must do
the following:

71

1. Get a connection to the data source (or sources).
2. Query the data source for records that match specifications of the finder method.
3. Drop the connection to the data source (or sources).

For more information on these data source tasks, see Using a database with a BMP entity bean. Figure 45 showsthe
€jbFindByPrimaryKey method of the example AccountBMBean class. The gbFindByPrimaryKey method gets a connection to
its data source by calling the makeConnection method shown in Figure 45. It then creates and invokes an SQL SELECT
statement on the data source by using the specified primary key.

If one and only one record is found, the method returns the primary key passed to it in the argument. If no records are found or
multiple records are found, the method throws the FinderException. Before determining whether to return the primary key or
throw the FinderException, the method drops its connection to the data source by calling the dropConnection method described
in Using a database with a BMP entity bean.

Figure 45. Code example: The g bFindByPrimaryKey method of the AccountBM Bean class

publ i c Account BMKey ej bFi ndByPri mar yKey (Account BMKey key)
throws Fi nder Exception {

bool ean wasFound = fal se;

bool ean foundMul tiples = fal se;

makeConnecti on();

try {
/1 SELECT from dat abase
String sql String = "SELECT bal ance, type, accountid FROM" + tabl eNane

+ " WHERE accountid = ?";

Prepar edSt at enent sqgl Statenment = j dbcConn. prepareSt at enent (sql String);
| ong keyVal ue = key. accountld;
sql St at enent . set Long(1, keyVal ue);

/'l Execute query
Resul t Set sql Results = sql Statenent. executeQuery();

/1 Advance cursor (there should be only one item
/'l wasFound will be true if there is one
wasFound = sql Resul ts. next ();

/1 foundMultiples will be true if nore than one is found.
foundMul ti pl es = sqgl Results. next();

}
catch (Exception e) { // DB error

}
dropConnection();
f (wasFound && !foundMilti ples)

[

{
return key;

}

{ . .

/'l Report finding no key or multiple keys

'.[I-q'row(new Fi nder Excepti on(foundStatus));

}

Figure 46 shows the g/ bFindL argeAccounts method of the example AccountBMBean class. The g bFindLargeAccounts
method also gets a connection to its data source by calling the makeConnection method and drops the connection by using the
dropConnection method. The SQL SELECT statement is also very similar to that used by the ejbFindByPrimaryK ey method.
(For more information on these data source tasks and methods, see Using a database with a BMP entity bean.)

While the gjbFindByPrimaryKey method needs to return only one primary key, the gjbFindLargeAccounts method can be
expected to return zero or more primary keysin an Enumeration object. To return an enumeration of primary keys, the
72

g/ bFindL argeA ccounts method does the following:
1. It usesawhileloop to examine the result set (sglResults) returned by the executeQuery method.

2. Itinserts each primary key in the result set into a hash table named resultTable by wrapping the returned account ID in
aLong object and then in an AccountBMKey object. (The Long object, memberld, is used as the hash tabl€e's index.)

3. It invokes the elements method on the hash table to obtain the enumeration of primary keys, which it then returns.

Figure 46. Code example: The gjbFindL argeAccounts method of the AccountBM Bean class

public Enureration ej bFi ndLargeAccounts(fl oat anpbunt) throws FinderException {
makeConnecti on();
Enuneration result;

try

/1 SELECT from dat abase
String sqgl String = "SELECT accountid FROM " + tabl eNane
+ " VWHERE bal ance >= ?";
Prepar edSt at ement sqgl St at enent = | dbcConn. prepareSt at enent (sqgl Stri ng);
sql St at enent . set Fl oat (1, anount);
/1 Execute query
Resul t Set sql Results = sql Statenent. executeQuery();
/1 Set up Hashtable to contain list of primary keys
Hasht abl e resul t Tabl e = new Hasht abl e();
/1 Loop through result set until there are no nore entries
/1 Insert each primary key into the resultTable
whil e(sql Results.next() == true) {
I ong acctld = sql Results. getlLong(1);
Long nenberld = new Long(acctld);
Account BMKey key = new Account BMKey(acctl d);
resul t Tabl e. put (nmenber | d, key);
}
/1 Return the resultTable as an Enuneration
result = resultTable.elements();
return result;

} catch (Exception e) {

y finally {

}
}

dropConnection();

Implementing the EntityBean interface

Each entity bean class must implement the methods inherited from the javax.ejb.EntityBean interface. The container invokes
these methods to move the bean through different stages in the bean'slife cycle. Unlike an entity bean with CMP, in an entity
bean with BMP, these methods must contain al of the code for the required interaction with the data source (or sources) used
by the bean to store its persistent data.

» gbActivate--This method isinvoked by the container when the container selects an entity bean instance from the
instance pool and assigns that instance to a specific existing EJB object. This method must contain the code required to
activate the enterprise bean instance by getting a connection to the data source and using the bean's
javax.gjb.EntityContext class to obtain the primary key in the corresponding EJB object.

In the example AccountBM Bean class, the g/bActivate method obtains the bean instance's account ID, sets the value of
the accountld variable, and invokes the checkConnection method to ensure that it has a valid connection to the data

source.

» ¢gjbLoad--This method isinvoked by the container to synchronize an entity bean's persistent variables with the
corresponding data in the data source. (That is, the values of the fields in the data source are loaded into the persistent
variables in the corresponding enterprise bean instance.) This method must contain the code required to load the values
from the data source and assign those values to the bean's instance variabl es.

In the example AccountBM Bean class, the gjbL oad method obtains the bean instance's account ID, sets the value of the
accountld variable, invokes the checkConnection method to ensure that it has avalid connection to the data source,
constructs and executes an SQL SELECT statement, and sets the values of the type and balance variables to match the

73

values retrieved from the data source.

» gbPassivate--This method isinvoked by the container to disassociate an entity bean instance from its EJB object and
place the enterprise bean instance in the instance pool. This method must contain the code required to "passivate" or
deactivate an enterprise bean instance. Usually, this passivation simply means dropping the connection to the data
source.

In the example AccountBM Bean class, the g/bPassivate method invokes the dropConnection method to drop the
connection to the data source.

» gbRemove--This method is invoked by the container when a client invokes the remove method inherited by the
enterprise bean's home interface (from the javax.eb.EJBHome interface) or remote interface (from the
javax.ejb.EJBObject interface). This method must contain the code required to remove an enterprise bean's persistent
data from the data source. This method can throw the javax.ejb.RemoveException exception if removal of an enterprise
bean instance is not permitted. Usually, removal involves deleting the bean instance's data from the data source and
then dropping the bean instance's connection to the data source.

In the example AccountBM Bean class, the gjbRemove method invokes the checkConnection method to ensure that it
has a valid connection to the data source, constructs and executes an SQL DELETE statement, and invokes the
dropConnection method to drop the connection to the data source.

« setEntityContext--This method isinvoked by the container to pass a reference to the javax.egjb.EntityContext interface
to an enterprise bean instance. This method must contain any code required to store areference to a context.

In the example AccountBM Bean class, the setEntityContext method sets the value of the entityContext variable to the
value passed to it by the container.

« gbStore--This method isinvoked by the container when the container needs to synchronize the data in the data source
with the values of the persistent variables in an enterprise bean instance. (That is, the values of the variablesin the
enterprise bean instance are copied to the data source, overwriting the previous values.) This method must contain the
code required to overwrite the data in the data source with the corresponding values in the enterprise bean instance.

In the example AccountBM Bean class, the gjbStore method invokes the checkConnection method to ensure that it has a
valid connection to the data source and constructs and executes an SQL UPDATE statement.

« unsetEntityContext--This method is invoked by the container, before an enterprise bean instance is removed, to free up
any resources associated with the enterprise bean instance. Thisisthe last method called prior to removing an
enterprise bean instance.

In the example AccountBM Bean class, the unsetEntityContext method sets the value of the entityContext variable to
null.

Writing the home interface (entity with BMP)

An entity bean's home interface defines the methods used by EJB clientsto create new instances of the bean, find and remove
existing instances, and obtain metadata about an instance. The home interface is defined by the enterprise bean devel oper and
implemented in the EJB home class created by the container during enterprise bean deployment. The container makes the
home interface accessible to clients through the Java Naming and Directory Interface (JNDI).

By convention, the home interface is named NameHome, where Name is the name you assign to the enterprise bean. For
example, the AccountBM enterprise bean's home interface is named AccountBMHome. Every home interface for an entity
bean with BMP must meet the following requirements:

« It must extend the javax.ejb.EJBHome interface. The home interface inherits several methods from the
javax.eb.EJBHome interface. See The javax.ejb.EJBHome interface for information on these methods.

» Each method in the interface must be either a create method, which corresponds to an ejbCreate method (and possibly
an gjbPostCreate method) in the enterprise bean class, or afinder method, which corresponds to an ejbFind method in
the enterprise bean class. For more information, see Defining create methods and Defining finder methods.

» The parameters and return value of each method defined in the home interface must be valid for Java RMI. For more
information, see The java.io.Serializable and java.rmi.Remote interfaces. In addition, each method's throws clause must

include the java.rmi.RemoteException exception class.

Figure 47 shows the relevant parts of the definition of the home interface (AccountBMHome) for the example AccountBM
bean. This interface defines two abstract create methods: the first creates an AccountBM object by using an associated
AccountBMK ey object, the second creates an AccountBM object by using an associated AccountBMKey object and

74

specifying an account type and an initial balance. The interface defines the required findByPrimaryK ey method and the
findLargeA ccounts method.

Figure 47. Code example: The AccountBMHome home interface

import java.rm.*;
i mport javax.ejb.*;
i mport java.util.?*;
public interface AccountBVHone extends EJBHone ({

Account BM cr eat e(Account BMKey key) throws CreateException,
Renot eExcepti on;

Account BM cr eat e(Account BMKey key, int type, float anount)
throws Creat eException, RenoteException;

A'c.count BM fi ndByPri mar yKey(Account BMKey key)
throws Fi nder Excepti on, RenpteException;

Enuner ati on findLargeAccounts(fl oat anount)
throws Fi nder Exception, RenpteException;

}
Defining create methods

A create method is used by aclient to create an enterprise bean instance and insert the data associated with that instance into
the data source. Each create method must be named create and it must have the same number and types of argumentsasa
corresponding €bCreate method in the enterprise bean class. (The gjbCreate method can itself have a corresponding
€jbPostCreate method.) The return types of the create method and its corresponding ejbCreate method are always different.

Each create method must meet the following requirements:

o |t must be named create.

« It must return the type of the enterprise bean's remote interface. For example, the return type for the create methodsin
the AccountBMHome interface is AccountBM (as shown in Figure 13).

« It must have athrows clause that includes the java.rmi.RemoteException exception, the javax.ejb.CreateException
exception, and all of the exceptions defined in the throws clause of the corresponding e/ bCreate and € bPostCreate
methods.

Defining finder methods

A finder method is used to find one or more existing entity EJB objects. Each finder method must be named findName, where
Name further describes the finder method's purpose.

At aminimum, each home interface must define the findByPrimaryK ey method that enables a client to locate an EJB object by
using the primary key only. The findByPrimaryKey method has one argument, an object of the bean's primary key class, and
returns the type of the bean's remote interface.

Every other finder method must meet the following requirements:

« It must return the type of the enterprise bean's remote interface, the java.util.Enumeration interface, or the
java.util.Collection interface (when afinder method can return more than one EJB object or an EJB collection).

« It must have athrows clause that includes the java.rmi.RemoteException and javax.ejb.FinderException exception
classes.

Although every entity bean must contain only the default finder method, you can write additional ones if needed. For example,
the AccountBM bean's home interface defines the findL argeA ccounts method to find objects that encapsul ate accounts with
bal ances of more than a specified dollar amount, as shown in Figure 47. Because this finder method can be expected to return a

reference to more than one EJB object, its return type is java.util.Enumeration.

Unlike the implementation in an entity bean with CMP, in an entity bean with BMP, the bean developer must fully implement
the g/bFindByPrimaryKey method that corresponds to the findByPrimaryKey method. In addition, the bean devel oper7tgust

write each additional ejbFind method corresponding to the finder methods defined in the home interface. The implementation
of the gjbFind methods in the AccountBM Bean class is discussed in Implementing the ejbFindByPrimaryK ey and other

€jbFind methods.

Writing the remote interface (entity with BMP)

An entity bean's remote interface provides access to the business methods available in the bean class. It also provides methods
to remove an EJB object associated with a bean instance and to obtain the bean instance's home interface, object handle, and
primary key. The remote interface is defined by the EJB devel oper and implemented in the EJB object class created by the
container during enterprise bean deployment.

By convention, the remote interface is named Name, where Name is the name you assign to the enterprise bean. For example,
the AccountBM enterprise bean's remote interface is named AccountBM. Every remote interface must meet the following
reguirements:

« It must extend the javax.ejb.EJBObject interface. The remote interface inherits several methods from the
javax.ejb.EJBObject interface. See Methods inherited from javax.ejb.EJBObject for information on these methods.

« It must define a corresponding business method for every business method implemented in the enterprise bean class.

« The parameters and return value of each method defined in the interface must be valid for Java RMI. For more
information, see The java.io.Serializable and java.rmi.Remote interfaces.

» Each method's throws clause must include the java.rmi.RemoteException exception class.

Figure 48 shows the relevant parts of the definition of the remote interface (AccountBM) for the example AccountBM

enterprise bean. Thisinterface defines four methods for displaying and manipulating the account balance that exactly match
the business methods implemented in the AccountBM Bean class. All of the business methods throw the
java.rmi.RemoteException exception class. In addition, the subtract method must throw the user-defined exception
com.ibm.egjs.doc.account.| nsufficientFundsException because the corresponding method in the bean class throws this
exception. Furthermore, any client that calls this method must either handle the exception or passit on by throwing it.

Figure 48. Code example: The AccountBM remoteinterface

i mport java.rm.*;

i mport javax.ejb.*;

i mport comibmejs.doc.account. | nsufficientFundsExcepti on;
public interface Account BM ext ends EJBObj ect {

float add(float ampunt) throws RenoteException;
fl oat getBal ance() throws RenoteException;
voi d setBal ance(fl oat anount) throws RenoteException;

fI 6at subtract (fl oat armount) throws InsufficientFundsExcepti on,
Renot eExcepti on;

}
Writing or selecting the primary key class (entity with BMP)

Every entity EJB object has a unique identity within a container that is defined by a combination of the object's home interface
name and its primary key, the latter of which is assigned to the abject at creation. If two EJB objects have the same identity,
they are considered identical.

The primary key classis used to encapsulate an EJB object's primary key. In an entity bean (with BMP or CMP), you can write
adistinct primary key class or you can use an existing class as the primary key class, aslong asthat classis serializable. For
more information, see The java.io.Serializable and javarmi.Remote interfaces.

The example AccountBM bean uses a primary key classthat isidentical to the AccountKey class contained in the Account
bean shown in Figure 16, with the exception that the key class is named AccountBMKey.
Note:

76

The primary key class of an entity bean with BMP must implement the hashCode and equals method. In addition, the
variables that make up the primary key must be public.

The javalang.Long classis also a good candidate for a primary key class for the AccountBM bean.

Using a database with a BMP entity bean

In an entity bean with BMP, each ejbFind method and all of the life cycle methods (egjbActivate, gbCreate, gjblLoad,
gjbPassivate, and gjbStore) must interact with the data source (or sources) used by the bean to maintain its persistent data. To
interact with a supported database, the BMP entity bean must contain the code to manage database connections and to
manipulate the data in the database. The EJB server uses a set of specialized beans to encapsulate information about databases
and an IBM-specific interface to JDBC to alow entity bean interaction with a connection manager. For more information, see
Managing database connectionsin the EJB server environment

In general, there are three approaches to getting and rel easing connections to databases:

» The bean can get a database connection in the setEntityContext method and release it in the unsetEntityContext
method. This approach is the easiest for the enterprise bean devel oper to implement. However, without a connection
manager, this approach is not viable because under it bean instances hold onto database connections even when they
are not in use (that is, when the bean instance is passivated). Even with a connection manager, this approach does not
scale well.

» The bean can get a database connection in the gjbActivate and gjbCreate methods, get and release a database
connection in each g bFind method, and release the database connection in the gjbPassivate and g bRemove methods.
This approach is somewhat more difficult to implement, but it ensures that only those bean instances that are activated
have connections to the database.

» The bean can get and release a database connection in each method that requires a connection: ejbActivate, gbCreate,
gjbFind, ejbLoad, and ejbStore. This approach is more difficult to implement than the first approach, but is no more
difficult than the second approach. This approach is the most efficient in terms of connection use and also the most
scalable.

The example AccountBM bean, uses the second approach described in the preceding text. The AccountBMBean class contains
two methods for making a connection to the DB2 database, checkConnection and makeConnection, and one method to drop
connections: dropConnection.The code required to make the AccountBM bean work with the connection manager is shown in
Managing database connections in the EJB server environment

The code required to manipul ate data in a database is described in Manipulating data in a database.

Managing database connections in the EJB server environment

In the EJB server environment, the administrator creates a specialized set of entity beans that encapsulate information about
the database and the database driver. These specialized entity beans are created by using the WebSphere Administrative
Console.

An entity bean that requires access to a database must use JNDI to create a reference to an EJB object associated with the right
database bean instance. The entity bean can then use the IBM-specific interface (named
com.ibm.db2.jdbc.app.stdext.javax.sgl.DataSource) to get and rel ease connections to the database.

The DataSource interface enables the entity bean to transparently interact with the connection manager of the EJB server. The
connection manager creates a pool of database connections, which are allocated and deall ocated to individual entity beans as
needed.

Getting an EJB object reference to a data source bean instance

Before a BMP entity bean can get a connection to a database, the entity bean must perform a JNDI lookup on the data source
entity bean associated with the database used to store the BMP entity bean's persistent data. Figure 49 shows the code required
to create an Initial Context object and then get an EJB object reference to a database bean instance. The JINDI name of the
database bean is defined by the administrator; it is recommended that the JNDI naming convention be followed when defining
this name. The value of the required database-specific variables are obtained by the getEnvProps method, which accesses the
corresponding environment variables from the deployed enterprise bean.

Because the connection manager creates and drops the actual database connections and simply allocates and deal Iocat(?s7 these

connections as required, there is no need for the BMP entity bean to load and register the database driver. Therefore, thereis
no need to define the driverName and jdbcUr| variables discussed in Defining instance variables.

Figure 49. Code example: Getting an EJB object referenceto a data sour ce bean instance in the setEntityContext
method (rewritten to use DataSour ce)

#. | nport comibm db2.j dbc. app. stdext.javax. sql . Dat aSour ce;
inport javax.nam ng.*;

ihitial Cont ext initContext = null;
Dat aSource ds = nul | ;

public void setEntityContext(EntityContext ctx)
t hrows EJBException {
entityContext = ctx;
try {
get EnvProps();
ds = initContext.|ookup("jdbc/sanple");
} catch (Nam ngException e) {

}

Allocating and deallocating a connection to a database

After creating an EJB object reference for the appropriate database bean instance, that object reference is used to get and
release connections to the corresponding database. Unlike when using the DriverManager interface, when using the
DataSource interface, the BMP entity bean does not really create and close data connections; instead, the connection manager
allocates and deall ocates connections as required by the entity bean. Nevertheless, aBMP entity bean must still contain code to
send allocation and deall ocation requests to the connection manager.

In the AccountBM Bean class, the checkConnection method is called within other bean class methods that require a database
connection, but for which it can be assumed that a connection already exists. This method checks to make sure that the
connection is still available by checking if the jdbcConn variableis set to null. If the variable is null, the makeConnection
method isinvoked to get the connection (that is a connection allocation request is sent to the connection manager).

The makeConnection method is invoked when a database connection is reguired. It invokes the getConnection method on the
data source object. The getConnection method is overloaded: it can take either auser 1D and password or no arguments, in
which case the user ID and password are implicitly set to null (thisversion is used in Figure 50).

Figure 50. Code example: The checkConnection and makeConnection methods of the AccountBM Bean class (rewritten
to use DataSour ce)

private void checkConnection() throws EJBeException {
if (jdbcConn == null) {
makeConnecti on() ;
}

return;

}

|.o'ri'vate voi d makeConnection() throws EJBeException {
try {
/1 Open dat abase connection

j dbcConn = ds. get Connection();
} catch(Exception e) { // Could not get database connection

}
}

Entity beans with BMP must also rel ease database connections when a particular bean instance no longer requiresit (that is,

they must send a deallocation request to the connection manager). The AccountBM Bean class contains a dropConnection
78

method to handle this task. To release the database connection, the dropConnection method does the following (as shown in
Figure 51):

1. Invokesthe close method on the connection object to tell the connection manager that the connection is no longer
needed.

2. Setsthe connection object reference to null.

Putting the close method inside a try/catch/finally block ensures that the connection object reference is always set to null even
if the close method fails for some reason. Nothing is done in the catch block because the connection manager must clean up
idle connections; thisis not the job of the enterprise bean code.

Figure 51. Code example: The dropConnection method of the AccountBM Bean class (rewritten to use DataSour ce)

private void dropConnection() {
try {
/1 C ose the connection
j dbcConn. cl ose();
catch (SQ.Exception ex) {
/1 Do not hing

} finally {
j dbcConn = nul | ;

}
Manipulating data in a database

After an instance of a BMP entity bean obtains a connection to its database, it can read and write data. The AccountBMBean
class communicates with the DB2 database by constructing and executing Java Structured Query Language (JSQL) calls by
using the java.sgl.PreparedStatement interface.

Asshown in Figure 52, the SQL call is created as a String (sqlSring). The String variable is passed to the

java.sgl.Connection.prepareStatement method; and the values of each variablein the SQL call are set by using the various
setter methods of the PreparedStatement class. (The variables are substituted for the question marks in the sglString variable.)
Invoking the PreparedStatement.executeUpdate method executes the SQL call.

Figure 52. Code example: Constructing and executing an SQL update call in an g/ bCreate method

private void ej bCreat e(Account BWKey key, int type, float initial Balance)
throws CreateException, EJBException {
/1 Initialize persistent variables and check for good DB connection

// | NSERT i nt o dat abase

try {
String sqglString = "INSERT I NTO " + tabl eNane +
" (bal ance, type, accountid) VALUES (?,?,?)";
Pr epar edSt at enent sql Statemrent = j dbcConn. prepareSt at enent (sql String);

sql St at enent . set Fl oat (1, bal ance);

sqgl Statenent.setlnt(2, type);

sql St at enent . set Long(3, accountld);

/1 Execute query

i nt updateResults = sqgl Statenent. execut eUpdate();

catch (Exception e) { // Error occurred during insert

}

}

The executeUpdate method is called to insert or update data in a database; the executeQuery method is called to get datafrom
adatabase. When datais retrieved from a database, the executeQuery method returns a java.sgl.ResultSet object, which must
be examined and manipulated using the methods of that class.

Note:
79

To improve scalability and performance, you do not need to call PreparedStatement for each database update. Instead,
you can cache the results of the first PreparedStatement call.

Figure 53 provides an example of how the datain a ResultSet is manipulated in the gjbLoad method of the AccountBMBean
class.

Figure 53. Code example: Manipulating a ResultSet object in the gfbL oad method

public void ejbLoad () throws EJBeException {
/1l Get data from dat abase

try {
/] SELECT from dat abase

/1 Execute query
Resul t Set sql Results = sql St atenent. execut eQuery();
/1 Advance cursor (there should be only one item
sqgl Resul ts. next ();
/{1 Pull out results
bal ance = sql Results.getFloat(1);
type = sgl Results.getlnt(2);
} catch (Exception e) {
/1 Sonet hi ng happened whil e | oadi ng dat a.

Using bean-managed transactions

In most situations, an enterprise bean can depend on the container to manage transactions within the bean. In these situations,
all you need to do is set the appropriate transactional propertiesin the deployment descriptor as described in Enabling
transactions and security in enterprise beans.

Under certain circumstances, however, it can be necessary to have an enterprise bean participate directly in transactions. By
setting the transaction attribute in an enterprise bean's deployment descriptor to BeanManaged, you indicate to the container
that the bean is an active participant in transactions.

Note:

The value BeanManaged is not avalid value for the transaction deployment descriptor attribute in entity beans. In
other words, entity beans cannot manage transactions.

When writing the code required by an enterprise bean to manage its own transactions, remember the following basic rules:

« Aninstance of a stateless session bean cannot reuse the same transaction context across multiple methods called by an
EJB client. Therefore, it is recommended that the transaction context be alocal variable to each method that requires a
transaction context.

« Aninstance of a stateful session bean can reuse the same transaction context across multiple methods called by an EJB
client. Therefore, make the transaction context an instance variable or alocal method variable at your discretion. (When
atransaction spans multiple methods, you can use the javax.gjb.SessionSynchronization interface to synchronize the
conversational state with the transaction.)

Figure 54 shows the standard code required to obtain an object encapsul ating the transaction context. There are three basics
steps involved:

1. The enterprise bean class must set the value of the javax.ejb.SessionContext object reference in the setSessionContext
method.

2. A javax.transaction.UserTransaction object is created by calling the getUser Transaction method on the SessionContext
object reference.

3. The UserTransaction object is used to participate in the transaction by calling transaction methods such as begin and
commit as needed. If a enterprise bean begins a transaction, it must also complete that transaction either by invoking
the commit method or the rollback method.

Note:

In both EJB servers, the getUser Transaction method of the javax.ejb.EJBContext interface (which isinherited
80

by the SessionContext interface) returns an object of type javax.transaction.User Transaction rather than type
javax.jts.UserTransaction. While thisis a deviation from the 1.0 version of the EJB Specification, the 1.1
version of the EJB Specification requires that the getUser Transaction method return an object of type
javax.transaction.UserTransaction and drops the requirement to return objects of type javax.jts.UserTransaction.

Figure 54. Code example: Getting an object that encapsulates a transaction context

i mport javax.transaction.*;

public class M/Statel essSessi onBean i npl enments Sessi onBean {
private SessionContext mnmySessionCtx = null;

publ ic void setSessi onCont ext (. Sessi onContext ctx) throws EJBException {
nmySessi onCt x = ctx;
}

pubI ic float doSonething(long argl) throws Finder Exception, EJBException {
User Transacti on user Tran = nySessi onCt x. get User Tr ansacti on();

/1 User userTran object to call transaction nethods
user Tran. begi n();
/1 Do transactional work

user Tran. conmit ();

}

The following methods are available with the UserTransaction interface:
« begin--Begins atransaction. This method takes no arguments and returns void.

« commit--Attempts to commit a transaction; assuming that nothing causes the transaction to be rolled back, successful
completion of this method commits the transaction. This method takes no arguments and returns void.

 getStatus--Returns the status of the referenced transaction. This method takes no arguments and returnsint; if no
transaction is associated with the reference, STATUS NO_TRANSACTION isreturned. The following are the valid
return values for this method:

o STATUS_ACTIVE--Indicates that transaction processing is still in progress.

o STATUS COMMITTED--Indicates that atransaction has been committed and the effects of the transaction
have been made permanent.

o STATUS COMMITTING--Indicates that atransaction is in the process of committing (that is, the transaction
has started committing but has not completed the process).

o STATUS MARKED_ ROLLBACK--Indicatesthat atransaction is marked to be rolled back.
o STATUS NO_TRANSACTION--Indicates that a transaction does hot exist in the current transaction context.
o STATUS PREPARED--Indicates that a transaction has been prepared but not compl eted.

o STATUS PREPARING--Indicates that atransaction isin the process of preparing (that is, the transaction has
started preparing but has not completed the process).

o STATUS _ROLLEDBACK--Indicates that atransaction has been rolled back.

o STATUS ROLLING_BACK--Indicatesthat atransaction isin the process of rolling back (that is, the
transaction has started rolling back but has not completed the process).

o STATUS_UNKNOWN--Indicates that the status of a transaction is unknown.
« rollback--Rolls back the referenced transaction. This method takes no arguments and returns void.

« setRollbackOnly--Specifies that the only possible outcome of the transaction is rollback. This method takes no
arguments and returns void.

« setTransactionTimeout--Sets the timeout (in seconds) associated with the transaction. If some transaction participant
has not specifically set this value, a default timeout is used. This method takes a number of seconds (as typeint) and
returns void.

81

Enabling transactions and security in enterprise
beans

This chapter examines how to enable transactions and security in enterprise beans by setting the appropriate
deployment descriptor attributes:

« For transactions, a session bean can either use contai ner-managed transactions or implement
bean-managed transactions; entity beans must use container-managed transactions. To enable
contai ner-managed transactions, you must set the transaction attribute to any value except BeanManged
and set the transaction isolation level attribute. To enable bean-managed transactions, you must set the
transaction attribute to BeanManaged and set the transaction isolation level attribute. For more
information, see Setting transactional attributes in the deployment descriptor.

If you want a session bean to manage its own transactions, you must write the code that explicitly
demarcates the boundaries of a transaction as described in Using bean-managed transactions.

If you want an EJB client to manage its own transactions, you must explicitly code that client to do so as
described in Managing transactionsin an EJB client.

« For security, the run-as mode attribute is used by the EJB server environments. For information on the
valid values of this attribute, see Setting the security attribute in the deployment descriptor.

These attributes, like the other deployment descriptor attributes, are set by using one of the tools available. For
more information, see Tools for developing and deploying enterprise beans.

Setting transactional attributes in the deployment descriptor

The EJB Specification describes the creation of applications that enforce transactional consistency on the data
manipulated by the enterprise beans. However, unlike other specifications that support distributed transactions,
the EJB specification does not require enterprise bean and EJB client developers to write any special code to use
transactions. Instead, the container manages transactions based on two deployment descriptor attributes
associated with the EJB module, and the enterprise bean and EJB application developers are freed to deal with
the business logic of their applications.

Enterprise bean developers can specifically design enterprise beans and EJB applications that explicitly manage
transactions. For more information, see Using bean-managed transactions.

Under most conditions, transaction management can be handled within the enterprise beans, freeing the EJB
client developer of thistask. However, EJB clients can participate in transactions if required or desired. For
more information, see Managing transactionsin an EJB client.

Two attributes determine the way in which an enterprise bean is managed from a transactional perspective:

« Thetransaction attribute defines the transactional manner in which the container invokes a method. This
attribute is part of the standard deployment descriptor. Setting the transaction attribute defines the valid

values of this attribute and explains their meanings.

« Thetransaction isolation level attribute defines the manner in which transactions are isolated from each
other by the container. This attribute is an extension to the standard deployment descriptor. Setting the

transaction isolation level attribute defines the valid values of this attribute and explains their meanings.

Setting the transaction attribute

82

The transaction attribute defines the transactional manner in which the container invokes enterprise bean
methods. This attribute is set for individual methods in abean. The following are valid values for this attribute
in decreasing order of transactional strictness:

BeanM anaged

Notifies the container that the bean class directly handles transaction demarcation. This attribute value
can be specified only for session beans and it cannot be specified for individual bean methods. For more
information on designing session beans to implement this attribute value, see Using bean-managed

transactions.

Mandatory

Directs the container to always invoke the bean method within the transaction context associated with
the client. If the client attempts to invoke the bean method without a transaction context, the container
throws the javax.jts. TransactionRequiredException exception to the client. The transaction context is

passed to any EJB object or resource accessed by an enterprise bean method.

EJB clients that access these entity beans must do so within an existing transaction. For other enterprise
beans, the enterprise bean or bean method must implement the BeanManaged value or use the Required
or RequiresNew value. For non-enterprise bean EJB clients, the client must invoke a transaction by
using the javax.transaction.User Transaction interface, as described in Managing transactionsin an EJB

client.
Required

Directs the container to invoke the bean method within atransaction context. If a client invokes a bean
method from within a transaction context, the container invokes the bean method within the client
transaction context. If aclient invokes a bean method outside of a transaction context, the container
creates a new transaction context and invokes the bean method from within that context. The transaction
context is passed to any enterprise bean objects or resources that are used by this bean method.

RequiresNew

Directs the container to always invoke the bean method within a new transaction context, regardless of
whether the client invokes the method within or outside of a transaction context. The transaction context
is passed to any enterprise bean objects or resources that are used by this bean method.

Supports

Directs the container to invoke the bean method within a transaction context if the client invokes the
bean method within atransaction. If the client invokes the bean method without a transaction context,
the container invokes the bean method without a transaction context. The transaction context is passed to
any enterprise bean objects or resources that are used by this bean method.

NotSupported

Directs the container to invoke bean methods without a transaction context. If a client invokes a bean
method from within a transaction context, the container suspends the association between the transaction
and the current thread before invoking the method on the enterprise bean instance. The container then
resumes the suspended association when the method invocation returns. The suspended transaction
context is not passed to any enterprise bean objects or resources that are used by this bean method.

Never
Directs the container to invoke bean methods without a transaction context.

o If the client invokes a bean method from within a transaction context, the container throws the
java.rmi.RemoteException exception.

o If the client invokes a bean method from outside a transaction context, the container behavesin
the same way as if the NotSupported transaction attribute was set. The client must call the
method without a transaction context.

83

Table 1. Effect of the enter prise bean'stransaction attribute on the transaction context

|Transaction attribute Client transaction context |Bean transaction context
Mandatory INo transaction INot allowed
|Client transaction |Client transaction
RequiresNew INo transaction INew transaction
|Client transaction INew transaction
Required INo transaction INew transaction
|Client transaction |Client transaction
Supports INo transaction INo transaction
|Client transaction |Client transaction
NotSupported INo transaction INo transaction
|Client transaction INo transaction
Never INo transaction INo transaction
INo transaction INo transaction

When setting the deployment descriptor for an entity bean, you can mark getter methods as "Read-Only"
methods to improve performance. If atransaction unit of work includes no methods other than "Read-Only"
designated methods, then the entity bean state synchronization does not invoke store.

Setting the transaction isolation level attribute

The transaction isolation level determines how strongly one transaction isisolated from another. This attribute
is set for individual methods in a bean. However, within a transactional context, the isolation level associated
with the first method invocation becomes the required isolation level for all other methods invoked within that
transaction. If amethod isinvoked with adifferent isolation level from that of the first method, the
java.rmi.RemoteException exception is thrown.

The following are valid values for this attribute, in decreasing order of isolation:
Serializable

Thislevel prohibits al of the following types of reads:

o Dirty reads, where a transaction reads a database row containing uncommitted changes from a
second transaction.

o Nonrepeatable reads, where one transaction reads arow, a second transaction changes the same
row, and the first transaction rereads the row and gets a different value.

o Phantom reads, where one transaction reads all rows that satisfy an SQL WHERE condition, a
second transaction inserts a row that also satisfies the WHERE condition, and the first
transaction applies the same WHERE condition and gets the row inserted by the second
transaction.

RepeatableRead

Thislevel prohibits dirty reads and nonrepeatable reads, but it allows phantom reads.
ReadCommitted

Thislevel prohibits dirty reads, but allows nonrepeatable reads and phantom reads.
ReadUncommitted

Thislevel alows dirty reads, nonrepeatable reads, and phantom reads.

These isolation levels correspond to the isolation levels defined in the Java Database Connectivity (JDBC)
84

java.sgl.Connection interface.

The container uses the transaction isolation level attribute as follows:

« Session beans and entity beans with bean-managed persistence (BMP)--For each database connection
used by the bean, the container sets the transaction isolation level at the start of each transaction.

« Entity beans with container-managed persistence (CMP)--The container generates database access code
that implements the specified isolation level.

None of these values permits two transactions to update the same data concurrently; one transaction must end
before another can update the same data. These values determine only how locks are managed for reading data.
However, risks to consistency can arise from read operations when a transaction does further work based on the
values read. For example, if one transaction is updating a piece of data and a second transaction is permitted to
read that data after it has been changed but before the updating transaction ends, the reading transaction can
make a decision based on a change that is eventually rolled back. The second transaction risks making a
decision on transient data.

Deciding which isolation level to use depends on several factors:
« The acceptable level of risk to data consistency
« The acceptable levels of concurrency and performance
« Theisolation levels supported by the underlying database

The first two factors, risk to consistency and level of concurrency, are related. Decreasing the risk to
consistency requires you to decrease concurrency because reducing the risk to consistency requires holding
locks longer. The longer alock is held on a piece of data, the longer concurrently running transactions must
wait to access that data. The Serializable value protects data by eliminating concurrent accessto it. Conversely,
the ReadUncommitted value allows the highest degree of concurrency but entails the greatest risk to
consistency. Y ou need to balance these two factors appropriately for your application.

By default, most devel opers deploy enterprise beans with the transaction isolation level set to Serializable. This
isthe default value in IBM VisualAge for Java Enterprise Edition and other deployment tools. It is also the most
restrictive and protected transaction isolation level incurring the most overhead. Some workloads do not require
the isolation level and protection afforded by Serializable. A given application might never update the
underlying data or be run with other applications that also make concurrent updates. In that case, the application
would not have to be concerned with dirty, non-repeatable, or phantom reads. The ReadUncommitted isolation
level would probably be sufficient.

Because the transaction isolation level is set in the EJB module€'s deployment descriptor, the same enterprise
bean could be reused in different applications with different transaction isolation levels. The isolation level
requirements should be reviewed and adjusted appropriately to increase performance.

The third factor, isolation levels supported in the database, means that although the EJB specification allows
you to request one of the four levels of transaction isolation, it is possible that the database being used in the
application does not support all of the levels. Also, vendors of database products implement isolation levels
differently, so the precise behavior of an application can vary from database to database. Y ou need to consider
the database and the isolation levelsit supports when deciding on the value for the transaction isolation attribute
in deployment descriptors. Consult your database documentation for more information on supported isolation
levels.

Setting the security attribute in the deployment descriptor

When an EJB client invokes a method on an enterprise bean, the user context of the client principal is
encapsulated in a CORBA Current object, which contains credentia properties for the principal. The Current
object is passed among the participants in the method invocation as required to complete the method.

85

The security service uses the credential information to determine the permissions that a principal has on various
resources. At appropriate points, the security service determines if the principal is authorized to use a particular
resource based on the principal's permissions.

If the method invocation is authorized, the security service does the following with the principal’s credential
properties based on the value of the run-as mode attribute of the enterprise bean. If a specific identity is
required, the RunAsl dentity attribute is used to specify that identity.

| dentity of Caller
The security service makes no changes to the principal's credential properties.
| dentity of EJB Server

The security service atersthe principal’s credential properties to match the credential properties
associated with the EJB server.

| dentity Assigned to Specified Role

A security principal that has been assigned to the specified roleis used for the execution of the bean's
methods. This association is part of the application binding where the role is associated with a user ID
and password of a user who is granted that role.

86

Developing enterprise beans

This chapter explains the basic tasks required to develop and package the most common types of enterprise beans. Specifically, this
chapter focuses on creating statel ess session beans and entity beans that use contai ner-managed persistence (CMP); in the discussion of
statel ess session beans, important information about stateful beansis also provided. For information on developing entity beans that use
bean-managed persistence (BMP), see Developing entity beans with BMP.

The information in this chapter is not exhaustive; however, it includes the information you need to develop basic enterprise beans. For
information on developing more complicated enterprise beans, consult acommercially available book on enterprise bean development.
The example enterprise beans discussed in this chapter and the example Java applications and servlets that use them are described in
Information about the examples described in the documentation.

This chapter describes the requirements for building each of the major components of an enterprise bean. If you do not intend to use one
of the commercially available integrated development environments (IDE), such as IBM's VisualAge for Java, you must build each of
these components manually (by using tools in the Java Development Kit and WebSphere). Manually devel oping enterprise beans is much
more difficult and error-prone than developing them in an IDE. Therefore, it is strongly recommended that you choose an IDE with
which you are comfortable.

Developing entity beans with CMP

In an entity bean with CMP, the container handl es the interactions between the entity bean and the data source. In an entity bean with
BMP, the entity bean must contain al of the code required for the interactions between the entity bean and the data source. For this
reason, developing an entity bean with CMP is simpler than developing an entity bean with BMP.

This section examines the development of entity beans with CMP. While much of the information in this section also appliesto entity
beans with BMP, there are some major differences between the two types. For information on the tasks required to develop an entity bean
with BMP, see Developing entity beans with BMP.

Every entity bean must contain the following basic parts:
« The enterprise bean class. For more information, see Writing the enterprise bean class (entity with CMP).

« Theenterprise bean's home interface. For more information, see Writing the home interface (entity with CMP).
« The enterprise bean's remote interface. For more information, see Writing the remote interface (entity with CMP).
« Theenterprise bean's primary key class. For more information, see Writing the primary key class (entity with CMP).

Writing the enterprise bean class (entity with CMP)

In a CMP entity bean, the bean class defines and implements the business methods of the enterprise bean, defines and implements the
methods used to create instances of the enterprise bean, and implements the methods used by the container to inform the instances of the
enterprise bean of significant eventsin the instance's life cycle. Enterprise bean clients never access the bean class directly; instead, the
classes that implement the home and remote interfaces are used to indirectly invoke the methods defined in the bean class.

By convention, the enterprise bean class is named NameBean, where Name is the name you assign to the enterprise bean. The enterprise
bean class for the example Account enterprise bean is named AccountBean. Every entity bean class with CMP must meet the following
requirements:
« It must be public, it must not be abstract, and it must implement the javax.ejb.EntityBean interface. For more information, see
Implementing the EntityBean interface.

« |t must define instance variables that correspond to persistent data associated with the enterprise bean. For more information, see
Defining variables.

« It must implement the business methods used to access and manipulate the data associated with the enterprise bean. For more
information, see Implementing the business methods.

« |t must define and implement an gjbCreate method for each way in which the enterprise bean can be instantiated. A corresponding
ejbPostCreate method must be defined for each ejbCreate method. For more information, see Implementing the g/bCreate and

€jbPostCreate methods.
Note:

The enterprise bean class can implement the enterprise bean's remote interface, but thisis not recommended. If the enterprise bean
class implements the remote interface, it is possible to inadvertently pass the this variable as a method argument.

An enterprise bean class cannot implement two different interfaces if the methods in the interfaces have the same name, even if
the methods have different signatures, due to the Java-1DL mapping specification. Errors can occur when the enterprise bean is

87

deployed.

Figure 8 shows the main parts of the enterprise bean class for the example Account enterprise bean. (Emphasized codeisin bold type.)
The sections that follow discuss these partsin greater detail.

Figure 8. Code example: The AccountBean class

i mport java.util.Properties;

i mport javax.ejb.*;

i mport java.lang.*;

public class AccountBean inplenments EntityBean {
/1 Set instance variables here

// . | npl enent et hods here

}
Defining variables

An entity bean class can contain both persistent and nonpersistent instance variables; however, static variables are not supported in
enterprise beans unless they are also final (that is, they are constants). Static variables are not supported because there is no way to
guarantee that they remain consistent across enterprise bean instances.

Container-managed fields (which are persistent variables) are stored in a database. Container-managed fields must be public.

Nonpersistent variables are not stored in a database and are temporary. Nonpersistent variables must be used with caution and must not
be used to maintain the state of an EJB client between method invocations. Thisrestriction is necessary because nonpersistent variables
cannot be relied on to remain the same between method invocations outside of a transaction because other EJB clients can change these
variables, or they can be lost when the entity bean is passivated.

The AccountBean class contains three container-managed fields (shown in Figure 9):

« accountld, which identifies the account ID associated with an account
« type, which identifies the account type as either savings (1) or checking (2)
« balance, which identifies the current balance of the account

Figure 9. Code example: The variables of the AccountBean class

public class AccountBean inplenments EntityBean {
private EntityContext entityContext = null;
private ListResourceBundle bundle =
Resour ceBundl e. get Bundl e(
"“comibm ejs. doc. account . Account Resour ceBundl e") ;
public long accountld = 0O;
public int type = 1;
public float bal ance = 0. 0f;

}

The deployment descriptor is used to identify container-managed fields in entity beans with CMP. In an entity bean with CMP, each
container-managed field must beinitialized by each jbCreate method (see Implementing the ejbCreate and ejbPostCreate methods).

A subset of the container-managed fields is used to define the primary key class associated with each instance of an enterprise bean. Asis
shown in Writing the primary key class (entity with CMP), the accountld variable defines the primary key for the Account enterprise

bean. The AccountBean class contains two nonpersistent variables:
« entityContext, which identifies the entity context of each instance of an Account enterprise bean. The entity context can be used to

get areference to the EJB object currently associated with the bean instance and to get the primary key object associated with that
EJB object.

« bundle, which encapsulates a resource bundle class (com.ibm.gjs.doc.account.AccountResourceBundle) that contains
locale-specific objects used by the Account bean.

Implementing the business methods

The business methods of an entity bean class define the ways in which the data encapsul ated in the class can be manipulated. The
business methods implemented in the enterprise bean class cannot be directly invoked by an EJB client. Instead, the EJB client invokes
88

the corresponding methods defined in the enterprise bean's remote interface, by using an EJB object associated with an instance of the
enterprise bean, and the container invokes the corresponding methods in the instance of the enterprise bean.

Therefore, for every business method implemented in the enterprise bean class, a corresponding method must be defined in the enterprise
bean's remote interface. The enterprise bean's remote interface isimplemented by the container in the EJB object class when the
enterprise bean is deployed.

Figure 10 shows the business methods for the AccountBean class. These methods are used to add a specified amount to an account
balance and return the new balance (add), to return the current balance of an account (getBalance), to set the balance of an account
(setBalance), and to subtract a specified amount from an account balance and return the new balance (subtract). The subtract method
throws the user-defined exception com.ibm.gjs.doc.account.InsufficientFundsException if a client attempts to subtract more money from
an account than is contained in the account balance. The subtract method in the Account bean's remote interface must also throw this
exception as shown in Figure 15. User-defined exception classes for enterprise beans are created as are any other user-defined exception
class. The message content for the I nsufficientFundsException exception is obtained from the AccountResourceBundle class file by
invoking the getM essage method on the bundle object.

Note:

If an enterprise bean container catches a system exception from the business method of an enterprise bean, and the method is
running within a container-managed transaction, the container rolls back the transaction before passing the exception on to the
client. However, if the business method is throwing an application exception, then the transaction is not rolled back (it is
committed), unless the application has called setRollbackOnly function. In this case, the transaction is rolled back before the
exception isre-thrown.

Figure 10. Code example: The business methods of the AccountBean class

public class AccountBean inplenments EntityBean {

publ ic long accountld = O;
public int type = 1;
public float bal ance = 0. Of;

public float add(float anpunt) {
bal ance += anpunt;
return bal ance;

}

publ ic float getBal ance() {
return bal ance;
}

public void setBal ance(fl oat amount) {
bal ance = anount;
}

public float subtract(float ampunt) throws |nsufficientFundsException {
i f(bal ance < anpunt) {
t hrow new | nsuffici ent FundsExcepti on(
bundl e. get Message("i nsuf fi ci ent Funds"));

}

bal ance -= anpunt;
return bal ance;

}
Standard application exceptions for entity beans

Version 1.1 of the EJB specification defines severa standard application exceptions for use by enterprise beans. All of these exceptions
are subclasses of the javax.ejb.EJBException class. For entity beans with both container- and bean-managed persistence, the EJB
specification defines the following application exceptions:

« javax.ejb.CreateException

« javax.gb.DuplicateKeyException
« javax.ejb.RemoveException

« javax.gb.FinderException

« javax.ejb.ObjectNotFoundException 89

Application programmers can use the generic EJBEXxception class or one of the provided subclassed exceptions, or programmers can
define their own exceptions by subclassing any of this family of exceptions. All of these exceptions inherit from the
javax.gjb.RuntimeException class and do not have to be explicitly declared in throws clauses.

Each exception is discussed in more detail within the relevant section; for more information on:

« CreateException and DuplicateK eyException (a subclass of the CreateException class), see Implementing the ejbCreate and
€jbPostCreate methods.

« javax.ejb.RemoveException, see Implementing the EntityBean interface.
« FinderException and ObjectNotFoundException (a subclass of the FinderException class), see Defining finder methods.
Note:

Version 1.0 of the EJB specification used the java.rmi.RemoteException class to capture application-specific exceptions; the
EJBEXxception class and its subclasses are new in the 1.1 version of the specification. Therefore, using the RemoteException class
is now deprecated in favor of the more precise exception classes. Older applications that use the RemoteException class can till
run, but enterprise beans compliant with version 1.1 of the specification must use the new exception classes.

Implementing the ejbCreate and ejbPostCreate methods

Y ou must define and implement an ejbCreate method for each way in which you want a new instance of an enterprise bean to be created.
For each gjbCreate method, you must also define a corresponding ejbPostCreate method. Each ejbCreate and jbPostCreate method must
correspond to a create method in the home interface.

Like the business methods of the bean class, the jbCreate and ejbPostCreate methods cannot be invoked directly by the client. Instead,
the client invokes the create method of the enterprise bean's home interface by using the EJB home object, and the container invokes the
€jbCreate method followed by the ejbPostCreate method. If the gjbCreate and ejbPostCreate methods are executed successfully, an EJB
object is created and the persistent data associated with that object isinserted into the data source.

For an entity bean with CMP, the container handles the required interaction between the entity bean instance and the data source between
calls to the g/bCreate and gjbPostCreate methods. For an entity bean with BMP, the gjbCreate method must contain the code to directly
handle this interaction. For more information on entity beans with BMP, see Devel oping entity beans with BMP.

Each ejbCreate method in an entity bean with CMP must meet the following requirements:
« It must be public and return the same type as the primary key. The actual return value must be null.

« Itsarguments must be valid for Java remote method invocation (RMI). For more information, see The java.io.Serializable and
java.rmi.Remote interfaces.

« It must initialize the container-managed fields of the enterprise bean instance. The container extracts the values of these variables
and writes them to the data source after the gjbCreate method returns.

Each gjbPostCreate method must be public, return void, and have the same arguments as the matching ejbCreate method. If necessary,
both the ejbCreate method and the gjbPostCreate method can throw the javax.ejb.EJBException exception or one of the creation-related
subclasses, the CreateException or the DuplicateK eyException exceptions. The DuplicateK eyException classis a subclass of the
CreateException class. Throwing the java.rmi.RemoteException exception is deprecated; see Standard application exceptions for entity

beans for more information.

Figure 11 shows two sets of ejbCreate and ejbPostCreate methods required for the example AccountBean class. Thefirst set of gjbCreate

and gjbPostCreate methods are wrappers that call the second set of methods and set the type variable to 1 (corresponding to a savings
account) and the balance variable to O (zero dollars).

Figure 11. Code example: The g/ bCreate and g bPostCreate methods of the AccountBean class

public class AccountBean inplenments EntityBean {

publ ic long accountld = O;
public int type = 1;
public float bal ance = 0. 0f;

publ ic Integer ejbCreate(AccountKey key) {
ej bCreat e(key, 1, 0.0f);
}

publ ic Integer ejbCreate(AccountKey key, int type, float initialBalance)
t hrows EJBException {
accountld = key.accountld;
90

type = type;
bal ance = initi al Bal ance;

}

publ i c void ej bPost Creat e(Account Key key)
t hrows EJBException {

ej bPost Creat e(key, 1, 0);
}

publ ic void ejbPostCreate(Account Key key, int type, float initialBalance) { }
}
Implementing the EntityBean interface

Each entity bean class must implement the methods inherited from the javax.gjb.EntityBean interface. The container invokes these
methods to inform the bean instance of significant eventsin the instance's life cycle. (For more information, see Entity bean life cycle.)
All of these methods must be public and return void; they can throw the javax.ejb.EJBEXception exception or, in the case of the
ejbRemove method, the javax.ejb.RemoveException exception. Throwing the java.rmi.RemoteException exception is deprecated; see
Standard application exceptions for entity beans for more information.

« gbActivate--This method isinvoked by the container when the container selects an entity bean instance from the instance pool
and assigns that instance to a specific existing EJB object. This method must contain any code that you want to execute when the
enterprise bean instance is activated.

« gjbLoad--This method isinvoked by the container to synchronize an entity bean's container-managed fields with the
corresponding data in the data source. (That is, the values of the fields in the data source are loaded into the contai ner-managed
fieldsin the corresponding enterprise bean instance.) This method must contain any code that you want to execute when the
enterprise bean instance is synchronized with associated data in the data source.

« gbPassivate--This method is invoked by the container when the container disassociates an entity bean instance from its EJB
object and places the enterprise bean instance in the instance pool. This method must contain any code that you want to execute
when the enterprise bean instance is "passivated” or deactivated.

« gbRemove--This method isinvoked by the container when a client invokes the remove method inherited by the enterprise bean's
home interface from the javax.ejb.EJBHome interface. This method must contain any code that you want to execute before an
enterprise bean instance is removed from the container (and the associated data is removed from the data source). This method
can throw the javax.ejb.RemoveException exception if removal of an enterprise bean instance is not permitted.

« setEntityContext--This method is invoked by the container to pass a reference to the javax.ejb.EntityContext interface to an
enterprise bean instance. If an enterprise bean instance needs to use this context at any time during its life cycle, the enterprise
bean class must contain an instance variable to store this value. This method must contain any code required to store areference
to a context.

« gjbStore--This method isinvoked by the container when the container needs to synchronize the datain the data source with the
values of the container-managed fields in an enterprise bean instance. (That is, the values of the variables in the enterprise bean
instance are copied to the data source, overwriting the previous values.) This method must contain any code that you want to
execute when the data in the data source is overwritten with the corresponding values in the enterprise bean instance.

« unsetEntityContext--This method isinvoked by the container, before an enterprise bean instance is removed, to free up any
resources associated with the enterprise bean instance. Thisisthe last method called prior to removing an enterprise bean
instance.

In entity beans with CMP, the container handles the required data source interaction for these methods. In entity beans with BMP, these
methods must directly handle the required data source interaction. For more information on entity beans with BMP, see More-advanced

programming concepts for enterprise beans.

These methods have several possible uses, including the following:
« They can contain audit or debugging code.

« They can contain code for allocating and deallocating additional resources used by the bean instance (for example, an SNA
connection to a mainframe).
Asshown in Figure 12, except for the setEntityContext and unsetEntityContext methods, all of these methods are empty in the

AccountBean class because no additional action is required by the bean for the particular life cycle states associated with the these
methods. The setEntityContext and unsetEntityContext methods are used in a conventional way to set the value of the entityContext
variable.

Figure 12. Code example: Implementing the EntityBean interface in the AccountBean class

publ i c class AccountBean inplenents EntityBean {
91

private EntityContext entityContext = null;

publ ic void ejbActivate() throws EJBException { }
publ ic void ejbLoad () throws EJBException { }
publ ic void ejbPassivate() throws EJBException { }
publ ic void ej bRenove() throws EJBException { }
publ ic void ejbStore () throws EJBException { }

publ ic void setEntityContext(EntityContext ctx) throws EJBException {
entityContext = ctx;
}

publ ic void unsetEntityContext() throws EJBException {
entityContext = null;
}

}
Writing the home interface (entity with CMP)

An entity bean's home interface defines the methods used by clients to create new instances of the bean, find and remove existing
instances, and obtain metadata about an instance. The home interface is defined by the enterprise bean developer and implemented in the
EJB home class created by the container during enterprise bean deployment.

The container makes the home interface accessible to enterprise bean clients through the Java Naming and Directory Interface (JNDI).
JNDI isindependent of any specific naming and directory service and alows Java-based applications to access any naming and directory
service in a standard way.

By convention, the home interface is named NameHome, where Name is the name you assign to the enterprise bean. For example, the
Account enterprise bean's home interface is named AccountHome. Every home interface must meet the following requirements:

« It must extend the javax.ejb.EJBHome interface. The home interface inherits several methods from the javax.ejb.EJBHome
interface. See The javax.gjb.EJBHome interface for information on these methods.

« Each method in the interface must be either a create method that corresponds to a set of ejbCreate and ejbPostCreate methods in
the EJB object class, or afinder method. For more information, see Defining create methods and Defining finder methods.

« The parameters and return value of each method defined in the home interface must be valid for Java RMI. For more information,
see Thejavaio.Serializable and java.rmi.Remote interfaces. In addition, each method's throws clause must include the

java.rmi.RemoteException exception class.

Figure 13 shows the relevant parts of the definition of the home interface (AccountHome) for the example Account bean. Thisinterface
defines two abstract create methods: the first creates an Account object by using an associated AccountKey object, the second creates an
Account object by using an associated AccountKey object and specifying an account type and an initial balance. The interface defines the
required findByPrimaryK ey method and a findL argeAccounts method, which returns a collection of accounts containing balances greater
than a specified amount.

Figure 13. Code example: The AccountHome homeinterface
i”n”iaort java.rm.*;
import java.util.*;

i mport javax.ejb.*;
public interface AccountHone extends EJBHonme {

Account create (AccountKey id) throws CreateException, RenoteException;

Account create(AccountKey id, int type, float initialBalance)
t hrows CreateException, RenoteException;

Ai:i:ount findByPri maryKey (AccountKey id)
Renot eExcepti on, Fi nder Excepti on;

Elnﬁmarati on findLargeAccounts(float anount)
t hrows Renot eExcepti on, Fi nder Excepti on;

92

Defining create methods

A create method is used by a client to create an enterprise bean instance and insert the data associated with that instance into the data
source. Each create method must be named create and it must have the same number and types of arguments as a corresponding
€jbCreate method in the enterprise bean class. (The gjbCreate method must itself have a corresponding €/bPostCreate method.)
Each create method must meet the following requirements:

« |t must be named cregte.

« It must return the type of the enterprise bean's remote interface. For example, the return type for the create methods in the
AccountHome interface is Account (as shown in Figure 13).

« It must have athrows clause that includes the java.rmi.RemoteException exception, the javax.ejb.CreateException exception, and
all of the application exceptions defined in the throws clause of the corresponding ejbCreate and ejbPostCreate methods.

Defining finder methods

A finder method is used to find one or more existing entity EJB objects. Each finder method must be named findName, where Name
further describes the finder method's purpose.

At minimum, each home interface must define the findByPrimaryKey method that enables a client to locate an EJB object by using the
primary key only. The findByPrimaryK ey method has one argument, an object of the bean's primary key class, and returns the type of the
bean's remote interface.

Every other finder method must meet the following requirements:

« It must return the type of the enterprise bean's remote interface, the java.util.Enumeration interface, or the java.util.Collection
interface (when afinder method can return more than one EJB object or an EJB collection).

« |t must have athrows clause that includes the java.rmi.RemoteException and javax.ejb.FinderException exception classes.
While every entity bean must contain the default finder method, you can write additional finder methods if needed. For example, the

Account bean's home interface defines the findL argeA ccounts method to find objects that encapsulate accounts with balances of more
than a specified amount, as shown in Figure 14. Because this finder method can be expected to return a reference to more than one EJB

object, its return type is Enumeration.

Figure 14. Code example: ThefindL argeAccounts method
Enumer ati on findLargeAccounts(fl oat anount)
t hrows Renot eExcepti on, Fi nder Excepti on;

Every EJB server can implement the findByPrimaryKey method. During enterprise bean deployment, the container generates the code
required to search the database for the appropriate enterprise bean instance.

However, for each additional finder method that you define in the home interface, the enterprise bean deployer must associate finder
logic with that finder method. Thislogic is used by the EJB server during deployment to generate the code required to implement the
finder method.

The EJB Specification does not define the format of the finder logic, so the format can vary according to the EJB server you are using.
For more information on creating finder logic, see Creating finder logic in the EJB server.

Writing the remote interface (entity with CMP)

An entity bean's remote interface provides access to the business methods available in the bean class. It also provides methods to remove
an EJB object associated with a bean instance and to obtain the bean instance's home interface, object handle, and primary key. The
remote interface is defined by the enterprise bean developer and implemented in the EJB object class created by the container during
enterprise bean deployment.

By convention, the remote interface is named Name, where Name is the name you assign to the enterprise bean. For example, the
Account enterprise bean's remote interface is named Account. Every remote interface must meet the following requirements:

« |t must extend the javax.ejb.EJBObject interface. The enterprise bean's remote interface inherits several methods from the
javax.ejb.EJBObject interface. See Methods inherited from javax.ejb.EJBObject for information on these methods.

« You must define a corresponding business method for every business method implemented in the enterprise bean class.

« The parameters and return value of each method defined in the interface must be valid for Java RMI. For more information, see
The java.io.Serializable and java.rmi.Remote interfaces.

« Each method's throws clause must include the java.rmi.RemoteException exception class.

93

Figure 15 shows the relevant parts of the definition of the remote interface (Account) for the example Account enterprise bean. This
interface defines four methods for displaying and manipulating the account balance that exactly match the business methods implemented
in the AccountBean class. All of the business methods in the remote interface throw the java.rmi.RemoteException exception class. In
addition, the subtract method must throw the user-defined exception com.ibm.egjs.doc.account.| nsufficientFundsException because the
corresponding method in the bean class throws this exception. Furthermore, any client that calls this method must either handle the
exception or passit on by throwing it.

Figure 15. Code example: The Account remoteinterface
iﬁ'bort java.rm.*;

i mport javax.ejb.*;
public interface Account extends EJBObject

{

fI 6at add(fl oat amount) throws RenoteException;

fI 6at get Bal ance() throws RenoteException;

v0| d setBal ance(fl oat anpbunt) throws RenoteException;

fI 6at subtract (fl oat anpbunt) throws InsufficientFundsExcepti on,
} Renot eExcepti on;

Writing the primary key class (entity with CMP)

Within a container, every entity EJB object has a unique identity that is defined by using a combination of the object's homeinterface
name and its primary key, the latter of which is assigned to the object at creation. If two EJB objects have the same identity, they are
considered identical.

Primary keys are specified in two ways:

« Simple primary keys, which map to asingle field in the entity bean class and are comprised of primitive Java data types (such as
integer or long), are specified in the deployment descriptor.

« Composite primary keys, which map to multiple fieldsin the entity bean class (or to data structures built from the primitive Java
data types), must be encapsulated in aprimary key class. More complicated enterprise beans are likely to have composite primary
keys, with multiple instance variabl es representing the primary key.

The primary key class is used to manage an EJB object's primary key. By convention, the primary key class is named NameKey, where
Name is the name of the enterprise bean. For example, the Account enterprise bean's primary key classis named AccountKey. The
primary key class must meet the following requirements:

o It must be public and it must be serializable. For more information, see The java.io.Serializable and java.rmi.Remote interfaces.

« Itsinstance variables must be public, and the variable names must match a subset of the container-managed field names defined in
the enterprise bean class.

« It must have a public default constructor, at a minimum.
Note:

The primary key class of a CMP entity bean must override the equals method and the hashCode method inherited from the
javalang.Object class.

Figure 16 shows a composite primary key class for an example enterprise bean, Item. In effect, this class acts as awrapper around the
string variables productld and vendorId. The hashCode method for the ItemKey class invokes the corresponding hashCode method in the
javalang.String class after creating atemporary string object by using the value of the productld variable. In addition to the default
constructor, the ItemKey class also defines a constructor that sets the value of the primary key variables to the specified strings.

Figure 16. Code example: TheltemKey primary key class

i”rr’bort java.io.*;
/1 Conposite primary key cl ass
public class ItenKey inplenents java.io.Serializable {

public String productld;
public String vendorld;
/1 Constructors
public ItenKey() { };
94publ ic ItenmKey(String productld, String vendorld) {

this. productld = productld;
this.vendorld = vendorld,;

}

public String getProductld() {
return productld;

}
public String getVendorld() {
return vendorld;
}

/1 EJB server-specific nethod
public bool ean equal s((bj ect other) {
if (other instanceof ItenKey) {
return (productld. equal s(((ItenKey)
ot her) . product | d)
&& vendor | d. equal s(((ItenKey)
ot her).vendorld));
}

el se
return fal se;

}

// . EJB server-specific nmethod
public int hashCode() {
return (new productl!d. hashCode());
}

}

A primary key class can also be used to encapsulate a primary key that is not known ahead of time -- for instance, if the entity bean is
intended to work with several persistent data stores, each of which requires a different primary key structure. The entity bean's primary

key typeis derived from the primary key type used by the underlying database that stores the entity objects; it does not necessarily have
to be known to the enterprise bean developer.

To specify an unknown primary key, do the following:
« Declare the argument of the findByPrimaryKey class as java.lang.Object.
« Declare thereturn value of the gjbCreate method as java.lang.Object
« Inthe deployment descriptor, specify the primary key class as being of the type javalang.Object.
When the primary key selection is deferred to deployment, client applications cannot use methods that rely on knowledge of the primary

key type. In addition, applications cannot always depend on methods that return the type of the primary key (such asthe
EntityContext.getPrimaryK ey method) because the return type is determined at deployment.

Interacting with databases

This section contains general information and tips on enterprise beans and database access.

« Although it is not necessary, it is good practice to specify the user ID and password for a data source either in the enterprise bean
to be using the data source, or in the container of the bean.

« The container supports Option A and Option C caching. When Option A caching isin use, the application server hosting the
enterprise bean container must be the only updater of the data in the persistent store. As such, Option A caching isincompatible
with the following:

o Workload managed servers (such as a cluster of clones)
o Databases with data being shared among multiple applications

The default caching option is C (multiple entity bean instances, possibly in different servers, can update bean statein the
database). The default caching option can be changed from Option C to Option A by selecting "exclusive persistent store" in the
administrative console when creating the entity bean.

Shared database access corresponds to Option C caching. Option A and Option C caching are also known as commit option A and
commit option C, respectively.

Developing session beans

In their basic makeup, session beans are similar to entity beans. However, their purposes are very different. o5

From a component perspective, one of the biggest differences between the two types of enterprise beans is that session beans do not have
aprimary key class and the session bean's home interface does not define finder methods. Session enterprise beans do not require primary
keys and finder methods because on EJB objects are created, associated with a specific client, and then removed as needed, whereas
entity EJB objects represent permanent data in a data source and can be uniquely identified with a primary key. Because the data for
session beansis never permanently stored, the session bean class does not have methods for storing data to and loading data from a data
source.

Every session bean must contain the following basic parts:
« The enterprise bean class. For more information, see Writing the enterprise bean class (session).
« The enterprise bean's home interface. For more information, see Writing the home interface (session).

« The enterprise bean's remote interface. For more information, see Writing the remote interface (session).

Writing the enterprise bean class (session)

A session bean class defines and implements the business methods of the enterprise bean, implements the methods used by the container
during the creation of enterprise bean instances, and implements the methods used by the container to inform the enterprise bean instance
of significant eventsin the instance's life cycle. By convention, the enterprise bean class is named NameBean, where Name is the name
you assign to the enterprise bean. The enterprise bean class for the example Transfer enterprise bean is named TransferBean. Every
session bean class must meet the following requirements:

« It must define and implement the business methods that execute the tasks associated with the enterprise bean. For more
information, see Implementing the business methods.

« It must define and implement an gjbCreate method for each way in which you want it to be able to instantiate the enterprise bean
class. For more information, see Implementing the ejbCreate methods.

o It must be public, it must not be abstract, and it must implement the javax.ejb.SessionBean interface. For more information, see
Implementing the SessionBean interface.

Note:

Version 1.0 of the EJB specification allowed the methods in the session bean class to throw the java.rmi.RemoteException
exception to indicate a non-application exception. This practice is deprecated in version 1.1 of the specification. A session bean
compliant with version 1.1 of the specification should throw the javax.ejb.EJBException exception (a subclass of the
java.lang.RuntimeException class) or another RuntimeException exception instead. Because the javax.ejb.EJBEXxception classis a
subclass of the javalang.RuntimeException, EJBException exceptions do not need to be explicitly listed in the throws clause of
methods.

A session bean can be either stateful or stateless. In a stateless session bean, none of the methods depend on the values of variables set by
any other method, except for the gjbCreate method, which setstheinitial (identical) state of each bean instance. In a stateful enterprise
bean, one or more methods depend on the values of variables set by some other method. Asin entity beans, static variables are not
supported in session beans unless they are also final. Stateful session beans possibly need to synchronize their conversational state with
the transactional context in which they operate. For example, a stateful session bean possibly needs to reset the value of some of its
variablesif atransactionisrolled back or it possibly needs to change these variables if a transaction successfully completes.

If a bean needs to synchronize its conversational state with the transactional context, the bean class must implement the
javax.gjb.SessionSynchronization interface. This interface contains methods to notify the session bean when a transaction begins, when it
is about to complete, and when it has completed. The enterprise bean developer can use these methods to synchronize the state of the
session enterprise bean instance with ongoing transactions.

The enterprise bean class can implement the enterprise bean's remote interface, but thisis not recommended. If the enterprise bean class
implements the remote interface, it is possible to inadvertently pass the this variable as a method argument.

Figure 17 shows the main parts of the enterprise bean class for the example Transfer bean. The sections that follow discuss these partsin
greater detail.

The Transfer bean is stateless. If the Transfer bean's transferFunds method were dependent on the value of the balance variable returned
by the getBalance method, the TransferBean would be stateful.

Figure 17. Code example: The Transfer Bean class

i mport java.rm . Renot eExcepti on;
i mport java.util.Properties;
i mport java.util.ResurceBundle;
i mport java.util.ListResourceBundl e;
i mport javax.ejb.*;
i mport java.lang.*;
i nport javax. naning. *;
96

i mport comibm ejs.doc. account. *;
public class TransferBean inplenments Sessi onBean {

private SessionContext nySessionCx = null;
private Initial Context initial Context = null;
private Account Home account Honme = null;
private Account fromAccount = null;

private Account toAccount = null;

publ ic void ejbActivate() throws EJBException { }
publ ic void ejbCreate() throws EJBException {

} -

publ ic void ejbPassivate() throws EJBException { }

publ ic void ej bRenove() throws EJBException { }

publ ic float getBal ance(long acctld) throws Fi nderException,
EJBException {

}

publ i c void set SessionContext(javax. ej b. Sessi onCont ext ctx)
t hrows EJBException {

}

publ ic void transferFunds(long fromAcctld, [ong toAcctld, float anount)
t hrows EJBException {

}
Implementing the business methods

The business methods of a session bean class define the ways in which an EJB client can manipulate the enterprise bean. The business
methods implemented in the enterprise bean class cannot be directly invoked by an EJB client. Instead, the EJB client invokes the
corresponding methods defined in the enterprise bean's remote interface, by using an EJB object associated with an instance of the
enterprise bean, and the container invokes the corresponding methods in the enterprise bean instance.

Therefore, for every business method defined in the enterprise bean's remote interface, a corresponding method must be implemented in
the enterprise bean class. The enterprise bean's remote interface is implemented by the container in the EJBObject class when the
enterprise bean is deployed.

Figure 18 shows the business methods for the TransferBean class. The getBalance method is used to get the balance for an account. It
first locates the appropriate Account EJB object and then calls that object's getBalance method.

The transferFunds method is used to transfer a specified amount between two accounts (encapsulated in two Account entity EJB objects).
After locating the appropriate Account EJB objects by using the findByPrimaryK ey method, the transferFunds method calls the add
method on one account and the subtract method on the other. Like al finder methods, findByPrimaryKey can throw both the
FinderException and RemoteException exceptions. The try/catch blocks are set up around invocations of the findByPrimaryKey method
to handle the entry of invalid account IDs by users. If the session bean user enters an invalid account I1D, the findByPrimaryKey method
cannot locate an EJB object, and the finder method throws the FinderException exception. This exception is caught and converted into a
new FinderException exception containing information on the invalid account ID.

To call the findByPrimaryKey method, both business methods need to be able to access the EJB home object that implements the
AccountHome interface discussed in Writing the home interface (entity with CMP). Obtaining the EJB home object is discussed in

Implementing the gjbCreate methods.

Figure 18. Code example: The business methods of the Transfer Bean class
public class TransferBean inpl enents Sessi onBean {

private Account fromAccount = null;

private Account toAccount = null; 97

publ ic float getBal ance(long acctld) throws FinderException, EJBException {
Account Key key = new Account Key(acctld);
try {
fromAccount = account Hone. fi ndByPri maryKey(key);
} catch(Finder Exception ex) {

t hr ow new Fi nder Excepti on("Account " + acctld
+ " does not exist.");
} cat ch(Renot eException ex) {
t hrow new Fi nder Exception("Account " + acctld

+ " could not be found.");

return fromAccount. get Bal ance();

public void transferFunds(long fromAcctld, |long toAcctld, float anount)
t hrows EJBException, |nsufficientFundsException, FinderException {
Account Key fronmKey = new Account Key(fromAcct | d);
Account Key toKey = new Account Key(toAcct!d);
try {
fromAccount = account Hone. fi ndByPri naryKey(fronKey);
} cat ch(Fi nder Exception ex) {
t hr ow new Fi nder Excepti on("Account " + fromAcctld
+ " does not exist.");
} catch(Renot eException ex) {
t hrow new Fi nder Exception("Account " + acctld
+ " could not be found.");

}

try {
t oAccount = account Horre. fi ndByPri mar yKey(t oKey) ;

} catch(Finder Exception ex) {
t hrow new Fi nder Exception("Account " + toAcctld
+ " does not exist.");
} cat ch(Renot eException ex) {
t hr ow new Fi nder Excepti on("Account " + acctld
+ " could not be found.");

}

try {
t oAccount . add(anmount) ;

fromAccount . subtract (anount);
} catch(lnsufficientFundsException ex) ({
nySessi onCt x. set Rol | backOnl y() ;
t hrow new | nsuffici ent FundsException("Insufficient funds in
+ fromAcct 1 d);

}
Implementing the ejbCreate methods

Y ou must define and implement an ejbCreate method for each way in which you want an enterprise bean to be instantiated.

Each gjbCreate method must correspond to a create method in the enterprise bean's home interface. (Note that there is no gjbPostCreate
method in a session bean as thereisin an entity bean.) Unlike the business methods of the enterprise bean class, the ejbCreate methods
cannot be invoked directly by the client. Instead, the client invokes the create method in the bean instance's home interface, and the
container invokes the gjbCreate method. If an gjbCreate method is executed successfully, an EJB object is created.
An gjbCreate method for a session bean must meet the following requirements:

« The method must be declared as public and cannot be declared as final or static.

« |t must return void.

« A stateless session bean must have only one gjbCreate method, which must return void and contain no arguments. A stateful

session bean can have multiple g/bCreate methods.

The throws clause can define arbitrary application exceptions. The javax.ejb.EJBEXxception or another runtime exception can be used to
indicate non-application exceptions.

98

An gbCreate method for an entity bean must meet the following regquirements:
« The method must be declared as public and cannot be declared as final or static.
« It must return the entity bean's primary key type.
« It must contain code to set the values of any variables needed by the EJB object.

The throws clause can define arbitrary application exceptions. The javax.ejb.EJBEXxception or another runtime exception can be used to
indicate non-application exceptions. Figure 19 shows the ejbCreate method required by the example TransferBean class. The Transfer

bean's g/ bCreate method obtains a reference to the Account bean's home object. Thisreference is required by the Transfer bean's business
methods. Getting a reference to an enterprise bean's home interface is a two-step process:

1. Construct an Initial Context object by setting the required property values. For the example Transfer bean, these property values
are defined in the environment variables of the Transfer bean's deployment descriptor.

2. Usethe Initial Context object to create and get a reference to the home aobject. For the example Transfer bean, the INDI name of
the Account bean is stored in an environment variable in the Transfer bean's deployment descriptor.

Creating the InitialContext object

When a container invokes the Transfer bean's €jbCreate method, the enterprise bean's initial Context object is constructed by creating a
Properties variable (env) that requires the following values:

« Thelocation of the name service (javax.naming.Context. PROVIDER_URL).
« Thename of theinitial context factory (javax.naming.Context.INITIAL_CONTEXT_FACTORY).

The values of these properties are discussed in more detail in Creating and getting a reference to a bean's EJB object.

Figure 19. Code example: Creating the I nitialContext object in the g bCreate method of the Transfer Bean class

public class TransferBean inplenments Sessi onBean {
private static final String I N TI AL_NAM NG FACTORY_SYSPROP =
j avax. nam ng. Cont ext . | NI TI AL_CONTEXT_FACTORY;
private static final String PROVI DER_ URL_SYSPROP =
j avax. nam ng. Cont ext . PROVI DER_URL;

private String nameService = null;

b.ri.vate String provider URL nul | ;

private Initial Context initial Context = null;

publ ic void ejbCreate() throws EJBException {
/1 Get the initial context

try {
Properties env = System getProperties();

env. put (PROVI DER_URL_SYSPROP, get ProviderUrl ());
env. put (| NI TI AL_CONTEXT_ FACTORY_SYSPROP, get Nanmi ngFactory());
initial Context = new Initial Context(env);

} catch(Exception ex) {

}

/1 Look up the home interface using the JND nane

}

Although the example Transfer bean stores some locale specific variablesin aresource bundle class, like the example Account bean, it
also relies on the values of environment variables stored in its deployment descriptor. Each of these Initial Context Properties valuesis
obtained from an environment variable contained in the Transfer bean's deployment descriptor. A private get method that corresponds to
the property variableis used to get each of the values (getNamingFactory and getProviderURL); these methods must be written by the
enterprise bean developer. The following environment variables must be set to the appropriate values in the deployment descriptor of the
Transfer bean.

« javax.naming.Context.INITIAL_CONTEXT_FACTORY
« javax.naming.Context.PROVIDER_URL

Figure 20 illustrates the relevant parts of the getProviderURL method that is used to get the PROVIDER_URL property value. The
javax.gjb.SessionContext variable (mySessionCtx) is used to get the Transfer bean's environment in the deployment descriptor l%

invoking the getEnvironment method. The object returned by the getEnvironment method can then be used to get the value of a specific
environment variable by invoking the getProperty method.

Figure 20. Code example: The getProvider URL method

public class TransferBean inpl enents Sessi onBean {
private SessionContext nySessionCtx = null;

private String getProviderURL() throws RenoteException {
/1 get the provider URL property either from
//the EJB properties or, if it isn't there
/[luse "iiop:///", which causes a default to the |ocal host

String pr = nySessionCt x. get Envi ronment (). get Property(
PROVI DER_URL_SYSPROCP) ;
if (pr == null)
pr = "iiop://1";
return pr;

}
Getting the reference to the home object

An enterprise bean is accessed by looking up the class implementing its home interface by name through JNDI. Methods on the home
interface provide access to an instance of the class implementing the remote interface.

After constructing the Initial Context object, the gjbCreate method performs a INDI lookup using the INDI name of the Account
enterprise bean. Like the PROVIDER_URL and INITIAL_CONTEXT_FACTORY properties, thisnameis also retrieved from an
environment variable contained in the Transfer bean's deployment descriptor (by invoking a private method named getHomeName). The
lookup method returns an object of type java.lang.Object.

The returned object is narrowed by using the static method javax.rmi.PortableRemoteObject.narrow to obtain areference to the EJB
home object for the specified enterprise bean. The parameters of the narrow method are the object to be narrowed and the class of the
object to be created as aresult of the narrowing. For amore thorough discussion of the code required to locate an enterprise bean in INDI
and then narrow it to get an EJB home object, see Creating and getting a reference to a bean's EJB object.

Figure 21. Code example: Creating the AccountHome object in the gbCreate method of the Transfer Bean class

public class TransferBean inpl enents Sessi onBean {
private String accountName = null;
private Initial Context initial Context = null;

publ ic void ejbCreate() throws EJBException {
/1 CGet the initial context

/1 Look up the home interface using the JND nane
try {
java.l ang. Obj ect ej bHome = initial Context.| ookup(account Nane);
account Hone = (Account Hone)j avax. rm . Port abl eRenpt eObj ect . narr ow
ej bHone, Account Horre. cl ass) ;
} catch (Nam ngException e) { // Error getting the hone interface

}

}
Looking up an enterprise bean's environment naming context

The enterprise bean's environment is implemented by the container. It enables the bean's business logic to be customized without the
need to access or change the bean's source code. The container provides an implementation of the INDI naming context that stores the
enterféiose bean environment. Business methods access the environment by using the INDI interfaces. The deployment descriptor

provides the environment entries that the enterprise bean expects at runtime.

Each enterprise bean defines its own environment entries, which are shared between all of its instances (that is, all instances with the
same home). Environment entries are not shared between enterprise beans.

An enterprise bean's environment entries are stored directly in the environment naming context (or one of its subcontexts). To retrieve its
environment naming context, an enterprise bean instance creates an | nitial Context object by using the constructor with no arguments. It
then looks up the environment naming via the I nitial Context object under the name java:comp/env.

The enterprise bean in Figure 22 changes an account number by looking up an environment entry to find the new account number.

Figure 22. Code example: Looking up an enterprise bean's environment naming context
public class Account Service inplements Sessi onBean {

public void changeAccount Nunmber (i nt account Nunber, ...)
t hrows | nval i dAccount Nunmber Excepti on{

/1 Obtain the bean's environment nam ng context
Context initial Context = new Initial Context();
Cont ext myEnvironnent = (Context)initial Context.|ookup("java: conp/env);

/1 Obtain new account nunber from environment
I nt eger newNunber = (Integer)nyEnvironnment.| ookup("newAccount Nunber");

}
}

Implementing the SessionBean interface

Every session bean class must implement the methods inherited from the javax.ejb.SessionBean interface. The container invokes these
methods to inform the enterprise bean instance of significant eventsin the instance's life cycle. All of these methods must be public, must
return void, and can throw the javax.ejb.EJBException. (Throwing the java.rmi.RemoteException exception is deprecated; see *** for
more information.)

« gbActivate--This method isinvoked by the container when the container selects an enterprise bean instance from the instance

pool and assignsit a specific existing EJB object. This method must contain any code that you want to execute when the
enterprise bean instance is activated.

« gbPassivate--This method isinvoked by the container when the container disassociates an enterprise bean instance from its EJB
object and places the enterprise bean instance in the instance pool. This method must contain any code that you want to execute
when the enterprise bean instance is passivated (deactivated).

« gjbRemove--This method is invoked by the container when a client invokes the remove method inherited by the enterprise bean's
home interface (from the javax.ejb.EJBHome interface). This method must contain any code that you want to execute when an
enterprise bean instance is removed from the container.

« SetSessionContext--This method is invoked by the container to pass a reference to the javax.gjb.SessionContext interface to a
session bean instance. If an enterprise bean instance needs to use this context at any time during its life cycle, the enterprise bean
class must contain an instance variable to store this value. This method must contain any code required to store a reference to the
context.

A session context can be used to get a handle to a particular instance of a stateful session bean. It can also be used to get a
reference to a transaction context object, as described in Using bean-managed transactions.

As shown in Figure 23, except for the setSessionContext method, all of these methods in the TransferBean class are empty because no

additional action isrequired by the bean for the particular life cycle states associated with the these methods. The setSessionContext
method is used in a conventional way to set the value of the mySessionCtx variable.

Figure 23. Code example: Implementing the SessionBean interfacein the Transfer Bean class

public class TransferBean inpl enents Sessi onBean {
private SessionContext nySessionCtx = null;

publ ic void ejbActivate() throws EJBException { }
publ ic void ejbPassivate() throws EJBException { }
publ ic void ej bRenove() throws EJBException { }

publ ic void set Sessi onCont ext (Sessi onCont ext ctx) throwEJBException {
101

nySessi ont x = ctx;

}
Writing the home interface (session)

A session bean's home interface defines the methods used by clients to create and remove instances of the enterprise bean and obtain
metadata about an instance. The home interface is defined by the enterprise bean developer and implemented in the EJB home class
created by the container during enterprise bean deployment. The container makes the home interface accessible to clients through JNDI.

By convention, the home interface is named NameHome, where Name is the name you assign to the enterprise bean. For example, the
Transfer enterprise bean's home interface is named TransferHome. Every session bean's home interface must meet the following
requirements:

« It must extend the javax.ejb.EJBHome interface. The home interface inherits several methods from the javax.ejb.EJBHome
interface. See The javax.ejb.EJBHome interface for information on these methods.

« Each method in the interface must be a create method that corresponds to a €jbCreate method in the enterprise bean class. For
more information, see Implementing the ejbCreate methods. Unlike entity beans, the home interface of a session bean contains no

finder methods.

« The parameters and return value of each method defined in the interface must be valid for Java RMI. For more information, see
The javaio.Serializable and java.rmi.Remote interfaces. In addition, each method's throws clause must include the
java.rmi.RemoteException exception class.

Figure 24 shows the relevant parts of the definition of the home interface (TransferHome) for the example Transfer bean.

Figure 24. Code example: The TransferHome home interface

i mport javax.ejb.*;
i mport java.rm.*;
public interface TransferHone extends EJBHone {
Transfer create() throws CreateException, RenoteException;
}

A create method is used by aclient to create an enterprise bean instance. A stateful session bean can contain multiple create methods;
however, a stateless session bean can contain only one create method with no arguments. This restriction on statel ess session beans
ensures that every instance of a statel ess session bean is the same as every other instance of the same type. (For example, every Transfer
bean instance is the same as every other Transfer bean instance.)

Each create method must be named create and have the same number and types of arguments as a corresponding € bCreate method in the
EJB object class. The return types of the create method and its corresponding €jbCreate method are always different. Each create method
must meet the following requirements:

« It must return the type of the enterprise bean's remote interface. For example, the return type for the create method in the
TransferHome interface is Transfer.

« It must have athrows clause that includes the java.rmi.RemoteException exception, the javax.ejb.CreateException exception
class, and all of the exceptions defined in the throws clause of the corresponding ejbCreate method.

Writing the remote interface (session)

A session bean's remote interface provides access to the business methods available in the enterprise bean class. It also provides methods
to remove an enterprise bean instance and to obtain the enterprise bean's home interface and handle. The remote interface is defined by
the enterprise bean devel oper and implemented in the EJB object class created by the container during enterprise bean deployment.

By convention, the remote interface is named Name, where Name is the name you assign to the enterprise bean. For example, the
Transfer enterprise bean's remote interface is named Transfer. Every remote interface must meet the following requirements:

« It must extend the javax.ejb.EJBObject interface. The remote interface inherits several methods from the EJBObject interface. See
Methods inherited from javax.ejb.EJBObject for information on these methods.

« You must define a corresponding business method for every business method implemented in the enterprise bean class.

« The parameters and return value of each method defined in the interface must be valid for Java RMI. For more information, see
The java.io.Serializable and java.rmi.Remote interfaces.

« Each method's throws clause must include the java.rmi.RemoteException exception class.

Figure 25 shows the relevant parts of the definition of the remote interface (Transfer) for the example Transfer bean. This interface
defi nl%s 2the methods for transferring funds between two Account bean instances and for getting the balance of an Account bean instance.

Figure 25. Code example: The Transfer remote interface

i mport javax.ejb.*;

i mport java.rm.*;

i mport comibmejs.doc.account. *;

public interface Transfer extends EJBObject ({

fI 6at get Bal ance(l ong acctld) throws FinderException, RenoteException;

v0| d transferFunds(long fromAcctld, |ong toAcctld, float anount)
throws | nsufficientFundsException, RenoteException;

Implementing interfaces common to multiple types of enterprise beans
Enterprise beans must implement the interfaces described here in the appropriate enterprise bean component.
Methods inherited from javax.ejb.EJBObject

The remote interface inherits the following methods from the javax.ejb.EJBObject interface, which are implemented by the container
during deployment:

« getEJBHome--Returns the enterprise bean's home interface.
« getHandle--Returns the handle for the EJB object.

« getPrimaryKey--Returns the EJB object's primary key. (For session beans, this cannot be used because session beans do not have
aprimary key.)

« isldentical--Compares this EJB object with the EJB object argument to determine if they are the same.

« remove--Removes this EJB object.

These methods have the following syntax:

public abstract EJBHone get EJBHome();

public abstract Handl e get Handl e();

public abstract Object getPrimaryKey();

public abstract bool ean isldentical (EJBObj ect obj);
public abstract void renove();

These methods are implemented by the container in the EJB object class.

The javax.ejb.EJBHome interface

The home interface inherits two remove methods and the getEJBM etaData method from the javax.ejb.EJBHome interface. Just like the
methods defined directly in the home interface, these inherited methods are also implemented in the EJB home class created by the
container during deployment.

The remove methods are used to remove an existing EJB object (and its associated datain the database) either by specifying the EJB
object's handle or its primary key. (The remove method that takes a primaryKey variable can be used only in entity beans.) The
getEJBMetaData method is used to obtain metadata about the enterprise bean and is mainly intended for use by development tools.

These methods have the following syntax:

publ i c abstract EJBMet aData get EJBMet aDat a() ;
public abstract void renove(Handl e handl e);
public abstract void renove(Object primaryKey);

The javax.ejb.EJBHome interface also contains a method to get a handle to the home interface. It has the following syntax:
public abstract HoneHandl e get HomeHandl e() ;

The java.io.Serializable and java.rmi.Remote interfaces

103

To bevalid for use in aremote method invocation (RMI), a method's arguments and return value must be one of the following types:
« A primitive type; for example, anint or along.
« Anobject of aclassthat directly or indirectly implements java.io.Serializable; for example, javalang.Long.
« Anobject of aclassthat directly or indirectly implements java.rmi.Remote.
« Anarray of valid types or objects.
If you attempt to use a parameter that is not valid, the java.rmi.RemoteException exception is thrown. Note that the following atypical
types are not valid:
« Anobject of aclassthat directly or indirectly implements both Serializable and Remote.

« Anobject of aclassthat directly or indirectly implements Remote, but contains a method that does not throw the
RemoteException or an exception that inherits from RemoteException.

Using threads and reentrancy in enterprise beans

An enterprise bean must not contain code to start new threads (nor can methods be defined with the keyword synchronized). Session
beans can never be reentrant; that is, they cannot call another bean that invokes a method on the calling bean. Entity beans can be
reentrant, but building reentrant entity beans is not recommended and is not documented here.

The EJB server enforces single-threaded access to all enterprise beans. I1legal callbacks result in ajava.rmi.RemoteException exception
being thrown to the EJB client.

Creating an EJB module for enterprise beans

There are two tasks involved in preparing an enterprise bean for deployment:
« Making the components of the bean part of the same Java package. For more information, see Making bean components part of a
Java package.

« Creating an EJB module and associated deployment descriptor. For more information, see Creating an EJB module and
deployment descriptor.

If you develop enterprise beansin an IDE, these tasks are handled from within the tool that you use. If you do not develop enterprise
beansin an IDE, you must handle each of these tasks by using tools contained in the Java Software Development Kit (SDK) and
WebSphere Application Server. For more information on the tools used to create an EJB module in the EJB server programming
environment, see Tools for devel oping and deploying enterprise beans.

Making bean components part of a Java package

Y ou determine the best way to allocate your enterprise beans to Java packages. A Java package can contain one or more enterprise beans.
The example Account and Transfer beans are stored in separate packages. All of the Java source files that make up the Account bean
contain the following package statement:

package comibm ejs. doc. account;

All of the Java source files that make up the Transfer bean contain the following package statement:
package comibm ejs. doc.transfer;

Creating an EJB module and deployment descriptor

An EJB module contains one or more deployable enterprise beans. It also contains a deployment descriptor that provides information
about each enterprise bean and instructions for the container on how to handle all enterprise beans in the module. The deployment
descriptor is stored in an XML file.

During creation of the EJB module, you specify the files for each enterprise bean to be included in the module. These files include:
« Theclassfiles associated with each component of the enterprise bean.
« Any additional classes and files associated with the enterprise bean; for example: user-defined exception classes, properties files,
and resource bundle classes.

Y ou also specify other information about the bean, such as references to other enterprise beans, resource connection factories, and
security roles. After defining the enterprise beans to be included in the module, you specify application assembly instructions that apply
to the module as awhole. Both bean and module information are used to create a deployment descriptor. See The deployment descriptor

for allfﬁ of deployment descriptor settings and attributes.

Developing EJB clients

An enterprise bean can be accessed by all of the following types of EJB clientsin both EJB server environments:

» Javaservlets. For more information about writing Java servlets that use enterprise beans, see Developing servlets that
use enterprise beans.

» Java Server Pages (JSP). For more information about writing JSP, consult a commercially available book.

» Javaapplications that use remote method invocation (RMI). For more information on writing Java applications, consult
acommercialy available book.

« Other enterprise beans. For example, the Transfer session bean acts as a client to the Account bean, as described in
Developing enterprise beans.

It is recommended that you avoid accessing EJB entity beans from client or servlet code. Instead, wrap and access EJB entity
beans from EJB session beans. Thisimproves performance in two ways:

« It reduces the number of remote method calls. When the client application accesses the entity bean directly, each getter
method is aremote call. A wrapping session bean can access the entity bean locally, and collect the datain a structure,
which it returns by value.

« It provides an outer transaction context for the EJB entity bean. An entity bean synchronizesits state with its
underlying data store at the completion of each transaction. When the client application accesses the entity bean
directly, each getter method becomes a complete transaction. A store and aload action follow each method. When the
session bean wraps the entity bean to provide an outer transaction context, the entity bean synchronizes its state when
the outer session bean reaches a transaction boundary.

Except for the basic programming tasks described in this chapter, creating a Java servlet, JSP, or Java application that isa
client to an enterprise bean is not very different from designing standard versions of these types of Java programs. This chapter
assumes that you understand the basics of writing a Java servlet, a Java application, or a JSPfile.

Except where noted, all of the code described in this chapter is taken from the example Java application named
TransferApplication. This Java application and the other EJB clients available with the documentation example code are
explained in Information about the examples described in the documentation.

To access and manipulate an enterprise bean in any of the Java-based EJB client types listed previously, the EJB client must do
the following:

« Import the Java packages required for naming, remote method invocation (RM1), and enterprise bean interaction.

» Get areferenceto an instance of the bean's EJB object by using the Java Naming and Directory Interface (JNDI). For
more information, see Creating and getting a reference to a bean's EJB object.

» Handleinvalid EJB objects when using session beans. For more information, see Handling an invalid EJB object for a
session bean.

» Remove session EJB objects when they are no longer required or remove entity EJB objects when the associated data
in the data source must be removed. For more information, see Removing abean's EJB object.

In addition, an EJB client can participate in the transactions associated with enterprise beans used by the client. For more
information, see Managing transactionsin an EJB client.

Importing required Java packages

Although the Java packages required for any particular EJB client vary, the following packages are required by al EJB clients:
« javarmi -- This package contains most of the classes required for remote method invocation (RM1).
« javax.rmi -- This package contains the PortableRemoteObject class required to get a reference to an EJB object.

« javauutil -- This package contains various Java utility classes, such as Properties, Hashtable, and Enumeration used in a
variety of ways throughout all enterprise beans and EJB clients.

« javax.gb -- This package contains the classes and interfaces defined in the EJB specification.

« javax.naming -- The package contains the classes and interfaces defined in the Java Naming and Directory Interface
(INDI) specification and is used by clients to get referencesto EJB objects.

105

« The package or packages containing the enterprise beans with which the client interacts.

The Java client object request broker (ORB), which is automatically initialized in EJB clients, does not support dynamic
download of implementation bytecode from the server to the client. Asaresult, all classes required by the EJB client at
runtime must be available from the files and directories identified in the client's CLASSPATH environment variable. For
information on the JAR files required by EJB clients, see Setting the CLASSPATH environment variable in the EJB server
environment. Y ou can install needed files on your client machine by doing a WebSphere Application Server installation on the
machine. Select the Developer's Client Files option. Y ou also need to make sure that the ioser and ioserx executable files are
accessible on your client machine; these files are normally part of the Javainstall. If you are using a Windows System, make
sure that EJB clients can locate theioser.dll library file at run time. Figure 26 shows the import statements for the example
Java application com.ibm.gjs.doc.client. TransferApplication. In addition to the required Java packages mentioned previously,
the example application imports the com.ibm.gjs.doc.transfer package because the application communicates with a Transfer
bean. The example application also imports the | nsufficientFundsException class contained in the same package as the
Account bean.

Figure 26. Code example: Theimport statementsfor the Java application Transfer Application

i mport java.awt.*;
i mport java.awt.event.?*;

i mport java.util.?*;
import java.rm.*

i mport javax.nam ng. *;
i nport javax.ejb.*;
i mport javax.rm.Portabl eRenpt eQbj ect ;

i mport comibmejs.doc.account. | nsufficientFundsExcepti on;
i nport comibmejs.doc.transfer.*;

public class TransferApplication extends Frane inplenents
ActionLi stener, W ndowLi stener {

Creating and getting a reference to a bean's EJB object

To invoke a bean's business methods, a client must create or find an EJB object for that bean. After the client has created or
found this object, it can invoke methods on it in the standard way.

To create or find an instance of a bean's EJB object, the client must do the following:

1. Locate and create an EJB home object for that bean. For more information, see Locating and creating an EJB home
object.

2. Usethe EJB home object to create or (for entity beans only) find an instance of the bean's EJB object. For more
information, see Creating an EJB object.

The TransferApplication client contains one reference to a Transfer EJB object, which the application uses to invoke all of the
methods on the Transfer bean. When using session beans in Java applications, it is a good idea to make the reference to the
EJB object a class-leve variable rather than avariable that islocal to a method. This allows your EJB client to repeatedly
invoke methods on the same EJB object rather than having to create a new object each time the client invokes a session bean
method. As discussed in Threading issues, this approach is not recommended for servlets, which must be designed to handle

multiple threads.
Locating and creating an EJB home object

JNDI is used to find the name of an EJB home object. The properties that an EJB client usestoinitialize INDI and find an EJB
home object vary across EJB server implementations. To make an enterprise bean more portable between EJB server
implementations, it is recommended that you externalize these properties in environment variables, properties files, or resource
bundles rather than hard code them into your enterprise bean or EJB client code.

106

The example Transfer bean uses environment variables as discussed in Implementing the ejbCreate methods. The

TransferApplication uses a resource bundle contained in the com.ibm.gjs.doc.client.ClientResourceBundle.classfile. To
initialize a INDI name service, an EJB client must set the appropriate values for the following JNDI properties:

javax.naming.Context. PROVIDER_URL

This property specifies the host name and port of the name server used by the EJB client. The property value must have
the following format: iiop://hostname:port, where hostname is the | P address or hostname of the machine on which the
name server runs and port is the port number on which the name server listens.

For example, the property valuei i op: / / bankser ver. mybank. com 9019 directs an EJB client to look for a
name server on the host named bankserver.mybank.com listening on port 9019. The property value
iiop://bankserver. mybank. comdirectsan EJB client to look for a name server on the host named
bankserver.mybank.com at port number 900. The property valuei i op: /// directsan EJB client to look for aname
server on the local host listening on port 900. If not specified, this property defaults to the local host and port number
900, which isthe same as specifyingi i op: / / /. The port number used by the name service can be changed by using
the administrative interface.

javax.naming.Context.INITIAL_CONTEXT_FACTORY

This property identifies the actual name service that the EJB client must use. This property must be set to
comibmejs.ns.jndi.CN nitial ContextFactory.

Locating an EJB home object is atwo-step process:
1. Create ajavax.naming.Initial Context object. For more information, see Creating an Initial Context object.

2. Usethe Initial Context object to create the EJB home object. For more information, see Creating EJB home object.

Creating an InitialContext object

Figure 27 shows the code required to create the I nitial Context object. To create this object, construct a java.util.Properties
object, add values to the Properties object, and then pass the object as the argument to the Initial Context constructor. In the
TransferApplication, the value of each property is obtained from the resource bundle class named
com.ibm.gjs.doc.client.ClientResourceBundle, which stores all of the locale-specific variables required by the
TransferApplication. (This class also stores the variables used by the other EJB clients contained in the documentation
example, described in Information about the examples described in the documentation). The resource bundle classis
instantiated by calling the ResourceBundle.getBundle method. The values of variables within the resource bundle class are
extracted by calling the getString method on the bundle object.

The createTransfer method of the TransferApplication can be called multiple times as explained in Handling an invalid EJB
object for a session bean. However, after the Initial Context object is created once, it remains good for the life of the client

session. Therefore, the code required to create the Initial Context object is placed within an if statement that determinesif the
reference to the Initial Context object is null. If the reference is null, the Initial Context object is created; otherwise, the
reference can be reused on subsequent creations of the EJB object.

Figure 27. Code example: Creating the I nitialContext object

public class TransferApplication extends Frame inplenents ActionListener,
W ndowLi st ener {

private Initial Context ivjlnitContext = null;

private Transfer ivjTransfer = null;

private ResourceBundl e bundl e = ResourceBundl e. get Bundl e(
"comibmejs.doc.client.dientResourceBundle");

private String nameService

= null;
private String accountNane = null;
= null;

private String providerUrl

vate Transfer createTransfer() {
Transf er Hone transferHone = null;
Transfer transfer = null;

/[l Get the initial context

if (ivilnitContext == null) {

pr

107

try {
Properties properties = new Properties();

/1 Cet location of name service

properties. put (javax. nam ng. Cont ext . PROVI DER_URL,
bundl e. get String("providerUl™"));

/1 Get nane of initial context factory

properties. put (javax. nam ng. Cont ext. | Nl TI AL_CONTEXT_FACTORY,
bundl e. get Stri ng("naneService"));

i';/jllnitOontext = new I nitial Context(properties);
} catch (Exception e) { // Error getting the initial context
}
}

// Look up the home interface using the JNDI nane
H'Create a new Transfer object to return

return transfer;

}
Creating EJB home object

After the Initial Context object (ivjlnitContext) is created, the application uses it to create the EJB home object, as shown in
Figure 28. This creation is accomplished by invoking the lookup method, which takes the INDI name of the enterprise bean in

String form and returns a java.lang.Object abject. The INDI name specified in the deployment descriptor is used.

The example TransferApplication gets the INDI name of the Transfer bean from the ClientResourceBundle class. After an
object isreturned by the lookup method, the static method javax.rmi.PortableRemoteObject.narrow is used to obtain an EJB
home object for the specified enterprise bean. The narrow method takes two parameters: the object to be narrowed and the
class of the EJB home object to be returned by the narrow method. The object returned by the
javax.rmi.PortableRemoteObject.narrow method is cast to the class associated with the home interface.

Figure 28. Code example: Creating the EJBHome obj ect

private Transfer createTransfer() {
TransferHone transferHone = nul | ;
Transfer transfer = null;
[/ Get the initial context

/1 Look up the home interface using the JNDI nane
try {
java.l ang. bj ect homeQbj ect = ivjlnitContext.|ookup(
bundl e. get Stri ng("transferNane"));
transferHonme = (Transfer Home)javax. rm . Port abl eRenot eCbj ect . nar r ow
honme(bj ect, TransferHone. cl ass);
} catch (Exception e) { // Error getting the hone interface

}

/[l Create a new Transfer object to return

return transfer;

}
Creating an EJB object

After the EJB home object is created, it is used to create the EJB object. Figure 29 shows the code required to create the EJB

object by using the EJB home object. A create method isinvoked to create an EJB object or (for entity beans only) afinder
method isinvoked to find an existing EJB object. Because the Transfer bean is a statel ess session bean, the only choice isthe

default create method.
108

Figure 29. Code example: Creating the EJB object

private Transfer createTransfer() {
TransferHome transferHome = null;
Transfer transfer = null;
/[l Get the initial context

// Look up the hone interface using the JNDI nane
}).Create a new Transfer object to return

try {
transfer = transferHone.create();

} catch (Exception e) { // Error creating Transfer object

}

return transfer;

Handling an invalid EJB object for a session bean

Because session beans are ephemeral, the client cannot depend on a session bean's EJB object to remain valid. A referenceto
an EJB object for a session bean can becomeinvalid if the EJB server fails or is restarted or if the session bean times out due to
inactivity. (The reference to an entity bean's EJB object is always valid until that object is removed.) Therefore, the client of a
session bean must contain code to handle a situation in which the EJB object becomesinvalid.

An EJB client can determine if an EJB object isvalid by placing all method invocations that use the reference inside of a
try/catch block that specifically catches the java.rmi.NoSuchObjectException, in addition to any other exceptions that the
method needs to handle. The EJB client can then invoke the code to handle this exception.

Y ou determine how to handle an invalid EJB object. The example TransferApplication creates anew Transfer EJB object if the
oneit is currently using becomesinvalid. The code to create a new EJB object when the old one becomesinvalid is the same
code used to create the original EJB object and is described in Creating and getting a reference to a bean's EJB object. For the

example TransferApplication client, this code is contained in the createTransfer method.

Figure 30 shows the code used to create the new EJB object in the getBalance method of the example TransferApplication.
The getBalance method contains the local boolean variable sessionGood, which is used to specify the validity of the EJB
object referenced by the variableivj Transfer. The sessionGood variable is aso used to determine when to break out of the
do-while loop. The sessionGood variableisinitialized to false because the ivj Transfer can reference an invalid EJB object
when the getBalance method is called. If the ivjTransfer referenceis valid, the TransferApplication invokes the Transfer bean's
getBalance method and returns the balance. If the ivj Transfer referenceisinvalid, the NoSuchObjectException is caught, the
TransferApplication's createTransfer method is called to create a new Transfer EJB object reference, and the sessionGood
variableis set to false so that the do-while loop is repeated with the new valid EJB object. To prevent an infinite loop, the
sessionGood variable is set to true when any other exception is thrown.

Figure 30. Code example: Refreshing the EJB object reference for a session bean

private fl oat getBal ance(l ong acctld) throws Nunber For nat Excepti on, RenoteException,
Fi nder Excepti on {
/1 Assune that the reference to the Transfer session bean is no good

bool ean sessi onGood = fal se;
fl oat bal ance = 0. 0f;
do {
try {
/1 Attenpt to get a balance for the specified account
bal ance = ivj Transfer. get Bal ance(acctld);
sessi onGood = true;

} cati:'h'(NoSucthj ect Exception ex) {
createTransfer();

109

sessi onGood = fal se;
} catch(Renot eException ex) {
/1 Server or connection problem

} cat&:h'(NunberFormit Exception ex) {
/!l Invalid account nunber

} cat.c.h.(Fi nder Exception ex) {
/!l Invalid account nunber

}
} whil e(!sessionGood);
return bal ance;

Removing a bean's EJB object

When an EJB client no longer needs a stateful session EJB object, the EJB client should remove that object. Instances of
stateful session beans have affinity to specific clients. They will remain in the container until they are explicitly removed by
the client, or removed by the container when they time out. Meanwhile, the container might need to passivate inactive stateful
session beans to disk. This requires overhead for the container and impacts performance of the application. If the passivated
session bean is subsequently required by the application, the container activatesit by restoring it from disk. By explicitly
removing stateful session beans when finished with them, applications can decrease the need for passivation and minimize
container overhead.

Y ou remove entity EJB objects only when you want to remove the information in the data source with which the entity EJB
object is associated.

To remove an EJB object, invoke the remove method on the object. As discussed in Creating and getting areference to a
bean's EJB object, the TransferApplication contains only one reference to a Transfer EJB object that is created when the
application isinitialized.

Figure 31 shows how the example Transfer EJB object isremoved in the TransferApplication in the killApp method. To
paralel the creation of the Transfer EJB object when the TransferApplication isinitialized, the application removes the final
EJB object associated with ivj Transfer reference right before closing the application's GUI window. The kill App method
closes the window by invoking the dispose method on itself.

Figure 31. Code example: Removing a session EJB object

private void killApp() {
try {
i vj Transfer. remove();
this. di spose();
System exit (0); } catch (Throwabl e ivjExc) {

Managing transactions in an EJB client

In generdl, it is practical to design your enterprise beans so that al transaction management is handled at the enterprise bean
level. In astrict three-tier, distributed application, thisis not always possible or even desirable. However, because the middle
tier of an EJB application can include two subcomponents--session beans and entity beans--it is much easier to design the
transactional management completely within the application server tier. Of course, the resource manager tier must also be
designed to support transactions.

Note:

EJB clients that access entity beans with CMP that use Host On-Demand (HOD) or the External Call Interface (ECI)

110for CICS or IMS applications must begin a transaction before invoking a method on these entity beans. This restriction

is required because these types of entity beans must use the Mandatory transaction attribute.

Nevertheless, it is still possible to program an EJB client (that is not an enterprise bean) to participate in transactions for those
specialized situations that require it. To participate in atransaction, the EJB client must do the following:

1. Obtain areference to the javax.transaction.UserTransaction interface by using JNDI as defined in the Java Transaction
Application Programming Interface (JTA).

2. Usethe object reference to invoke any of the following methods:
o begin--Begins atransaction. This method takes no arguments and returns void.

o commit--Attempts to commit a transaction; assuming that nothing causes the transaction to be rolled back,
successful completion of this method commits the transaction. This method takes no arguments and returns
void.

0 getStatus--Returns the status of the referenced transaction. This method takes no arguments and returnsint; if
no transaction is associated with the reference, STATUS NO_TRANSACTION isreturned. The following are
the valid return values for this method:

s STATUS ACTIVE--Indicates that transaction processing is till in progress.

= STATUS COMMITTED--Indicates that a transaction has been committed and the effects of the
transaction have been made permanent.

s STATUS COMMITTING--Indicates that atransaction isin the process of committing (that is, the
transaction has started committing but has not completed the process).

» STATUS MARKED_ ROLLBACK--Indicates that atransaction is marked to be rolled back.

» STATUS NO TRANSACTION--Indicates that a transaction does not exist in the current transaction
context.

= STATUS PREPARED--Indicates that atransaction has been prepared but not completed.

= STATUS PREPARING--Indicates that atransaction isin the process of preparing (that is, the
transaction has started preparing but has not completed the process).

» STATUS ROLLEDBACK--Indicates that a transaction has been rolled back.

= STATUS ROLLING_BACK--Indicates that atransaction isin the process of rolling back (that is, the
transaction has started rolling back but has not completed the process).

= STATUS UNKNOWN--Indicates that the status of a transaction is unknown.
o rollback--Rolls back the referenced transaction. This method takes no arguments and returns void.

0 setRollbackOnly--Specifies that the only possible outcome of the transaction is for it to be rolled back. This
method takes no arguments and returns void.

o setTransactionTimeout--Sets the timeout (in seconds) associated with the transaction. If some transaction
participant has not specifically set this value, a default timeout is used. This method takes a number of seconds
(astypeint) and returns void.

Figure 32 provides an example of an EJB client creating areference to a UserTransaction object and then using that object to
set the transaction timeout, begin a transaction, and attempt to commit the transaction. (The source code for this example is not
available with the example code provided with this document.) Notice that the client does a simple type cast of the lookup
result, rather than invoking a narrow method as required with other INDI lookups. In both EJB server environments, the INDI
name of the UserTransaction interfaceisj ava: conp/ User Tr ansact i on.

Figure 32. Code example: Managing transactionsin an EJB client

i mport javax.transaction.*;

/1 Use JNDI to |locate the UserTransacti on obj ect
Context initial Context = new Initial Context();
User Transacti on tranContext = (
User Transaction)initial Context. | ookup("java: conp/ User Transacti on");
/] Set the transaction tinmeout to 30 seconds
t ranCont ext . set Transacti onTi neout (30) ;

/1 Begin a transaction
t ranCont ext . begi n();
/'l Performtransacti on work invoking nmethods on enterprise bean references
111

)).Call for the transaction to conmmt
tranCont ext.commt();

112

Developing servlets that use enterprise beans

A servlet is a Java application that enables users to access Web server functionality. To use serviets, aWeb server is
required. The WebSphere Application Server plugsinto a number of commonly used Web servers. The IBM HTTP Server
with the Advanced Application Server. For more information, consult the Advanced Edition InfoCenter.

Java servlets can be combined with enterprise beans to create powerful EJB applications. This chapter describes how to use
enterprise beans within a servlet. The example CreateAccount servlet, which uses the example Account bean, is used to
illustrate the concepts discussed in this chapter. The example servlet and enterprise bean discussed in this chapter are
explained in Information about the examples described in the documentation.

An overview of standard servilet methods

Usually, aservlet isinvoked from an HTML form on the user's browser. The first time the servlet isinvoked, the servlet's
init method is run to perform any initializations required at startup. For the first and all subsequent invocations of the
servlet, the doGet method (or, aternatively, the doPost method) is run. Within the doGet method (or the doPost method),
the servlet gets the information provided by the user on the HTML form and uses that information to perform work on the
server and access server resources.

The servlet then prepares a response and sends the response back to the user. After aservlet isloaded, it can handle multiple
simultaneous user requests. Multiple request threads can invoke the doGet (or doPost) method at the same time, so the
servlet needs to be made thread safe.

When a servlet shuts down, the destroy method of the servlet isrun in order to perform any needed shutdown processing.

Writing an HTML page that embeds a servlet

Figure 33 showsthe HTML file (named create.html) used to invoke the CreateAccount servliet. The HTML form is used to

specify the account number for the new account, its type (checking or savings), and itsinitial balance. The request is passed
to the doGet method of the servlet, where the servlet isidentified with its full Java package name, as shown in the example.

Figure 33. Code example: Content of the create.html file used to access the CreateAccount servlet

<htm >

<head>

<title>Create a new Account</title>

</ head>

<body>

<hl align="center">Create a new Account</hl>

<f or m net hod="get "
action="/servlet/comibmejs.doc.client.CreateAccount">
<tabl e border align="center">

<l-- specify a new account nunber -->

<tr bgcol or="#cccccc">

<td align="right">Account Nunber:</td>

<td col span="2"><i nput type="text" nane="account" size="20"
max| engt h="10" >

</[tr>

<!-- specify savings or checking account -->
<l-- specify account starting bal ance -->
<l-- subnmit information to servliet -->

<i nput type="submt" nane ="submt" val ue="Create">
<!-- nmessage area -->

113

</ fornmp
</ body>
</htm >

The HTML response from the servlet is designed to produce a display identical to create.ntml, enabling the user to continue
creating new accounts. Figure 34 shows what create.ntml looks like on a browser.

Figure 34. Theinitial form and output of the CreateAccount servlet

4 Create a new Account - Microsoft Internet Explorer

J File Edit ‘“iew Go Favoites Help |

‘<::,c>,e ﬁ‘@

Bachk Eanisard Stop Hefresh Home Search

Create a new Account

Account Mumber: ||

Type:
starting Balance: ||

Create |

Enter information, press "Create”

& savings | T checking

[
4

| | | | | by Compuiter

Developing the servlet

This section discusses the basic code required by a servlet that interacts with an enterprise bean. Figure 35 shows the basic

outline of the code that makes up the CreateAccount serviet. As shown in the example, the CreateAccount serviet extends
the javax.servlet.http.HttpServlet class and implements an init method and a doGet method.

Figure 35. Code example: The CreateAccount class

package comibm ejs.doc.client;
/'l General enterprise bean code.
i nport java.rm . Renot eException;
i mport javax.ejb.DuplicateKeyException;
/1l Enterprise bean code specific to this servlet.
i mport comibmejs.doc. account. Account Hone;
i mport comibmejs.doc.account. Account Key;
i mport comibmejs.doc.account. Account;
/1 Servlet rel ated.
i mport javax.servlet.*;
i mport javax.servlet.http.*;
/1 JIJNDI (nam ng).
i mport javax.naming.*; [/ for Context, Initial Context, Nam ngException
/1 M scel |l aneous:
i mport java.util.*;
114

i mport java.io.*;

publ ic class CreateAccount extends HttpServlet {
/1 Vari abl es

publ ic void init(ServletConfig config) throws Servl et Exception {

public void doGet(H tpServl et Request req, HtpServl et Response res)
throws Servl et Exception, | COException {

/'l --- Read and validate user input, initialize. ---

// If input paraneters are good, try to create account. ---
Il --- Prepare nessage to acconpany response. ---

I --- Prepare and send HTM. response. ---

}
The servlet's instance variables

Figure 36 shows the instance variables used in the CreateAccount servlet. The nameService, accountName, and provider Url

variables are used to specify the property values required during JNDI |ookup. These values are obtained from the
ClientResourceBundle class as described in Creating and getting a reference to a bean's EJB object.

The CreateAccount class also initializes the string constants that are used to create the HTML response sent back to the
user. (Only three of these variables are shown, but there are many of them). The init method in the CreateAccount servlet
provides away to read strings from aresource bundle to override these US English defaultsin order to provide a response
in adifferent national language. The instance variable accountHome is used by all client requests to create a new Account
bean instance. The accountHome variableisinitialized in the init method as shown in Figure 36.

Figure 36. Code example: Theinstance variables of the CreateAccount class

publ ic class CreateAccount extends H tpServlet {
/1 Variables for finding the hone

private String naneService = null;
private String accountNane = null;
private String providerURL = null;

private ResourceBundl e bundl e = ResourceBundl e. get Bundl e(
"comibmejs.doc.client.dientResourceBundl e");
/1l Strings for HTM. output - US English defaults shown.

static String title = "Create a new Account"”;
static String nunmber = "Account Nunber:";
static String type = "Type:";

/1l Variable for accessing the enterprise bean.
private AccountHone account Honme = null;

}
The servlet's init method

Theinit method of the CreateAccount servlet is shown in Figure 37. Theinit method is run once, the first time arequest is
processed by the servlet, after the servlet is started. Typically, the init method is used to do any one-time initializations for a
servlet. For example, the default US English strings used in preparing the HTML response can be replaced with another
national language. The init method is also the best place to initialize the value of references to the home interface of any
enterprise beans used by the servlet. In the CreateA ccount's init method, the accountHome variable isinitialized to

115

reference the EJB home object of the Account bean.

Asin other types of EJB clients, the properties required to do a JINDI lookup are specific to the EJB implementation.
Therefore, these properties are externalized in a properties file or a resource bundle class. For more information on these
properties, see Creating and getting a reference to a bean's EJB object.

Note that in the CreateAccount servlet, a HashTable abject is used to store the properties required to do a INDI [ookup
whereas a Properties object is used in the TransferApplication. Both of these classes are valid for storing these properties.

Figure 37. Code example: Theinit method of the CreateAccount servlet

/1 Variables for finding the EJB hone object

private String nanmeService = null;

private String account Nane nul | ;

private String provider URL nul | ;

private ResourceBundl e bundl e = ResourceBundl e. get Bundl e(
"comibmejs.doc.client. Transfer Resour ceBundl e");

pubI ic void init(ServletConfig config) throws Servl et Exception {
super.init(config);
try {
[/l Get NLS strings froman external resource bundle
.c.réat eTitle = bundle.getString("createTitle");

nurmber = bundl e. get Stri ng(" nunber");
type = bundle.getString("type");

/1 Get values for the naming factory and hone nane.
naneSer vi ce bundl e. get Stri ng(" nanmeServi ce");
account Nare bundl e. get Stri ng("account Nane") ;
provi der URL bundl e. get Stri ng(" provi der URL") ;

}
catch (Exception e) {

/'l Get hone object for access to Account enterprise bean.
Hasht abl e env = new Hashtabl e();
env. put (Cont ext. | NI TI AL_CONTEXT_FACTORY, naneService);
try {

/]l Create the initial context.

Context ctx = new Initial Context(env);

/'l Get the hone object.

bj ect homehj ect = ctx.| ookup(account Nane) ;

/'l Get the AccountHone object.

account Homre = (Account Hone) javax.rm . Portabl eRenpt eObj ect. narr ow

honme(bj ect, Account Hone. cl ass);

/] Determ ne cause of failure.
catch (Nam ngException e) {

1i:atch (Exception e) {
}

Note:

Although the init method is a good place to obtain references to EJB home objects, it is not agood place to create

enterprise beans or access other beans that might be protected with WebSphere security. Depending upon the

authorization policy on the protected objects, creating or accessing these objects from within the init method could

fail for authentication or authorization reasons because they were not accessed with the proper security credentials.
116

Creating or accessing protected objects should be done after the init method, in one of the servlet's doXXX methods.
The servlet's doGet method

The doGet method isinvoked for every servlet request. In the CreateAccount servlet, the method does the following tasksto
manage user input. These tasks are fairly standard for this method:

« Read the user input from the HTML form and decide if the input is valid--for example, whether the user entered a
valid number for an initial balance.

» Perform the initializations required for each request.

Figure 38 shows the parts of the doGet method that handle user input. Note that the req variable is used to read the user

input from the HTML form. Thereq variable is ajavax.servlet.http.HttpServletRequest object passed as one of the
arguments to the doGet method.

Figure 38. Code example: The doGet method of the CreateAccount servlet

public void doGet (HttpServletRequest req, HttpServl et Response res)
throws Servl et Exception, | Oexception {
/'l --- Read and validate user input, initialize. ---
/1l Error flags.
bool ean account Fl ag true;
bool ean bal anceFl ag true;
bool ean i nput Flag = fal se;
bool ean createFlag = true;
bool ean duplicateFlag = fal se;
/1 Datatypes used to create new account bean.
Account Key key;
int typeAcct = 0;
String typeString = "0";
float initial Bal ance = 0O;
/'l Read input paraneters from HTM. form
String[] accountArray = req.getParaneterVal ues("account");
String[] typeArray = req. getParaneterVal ues("type");
String[] bal anceArray = req. get Paranet er Val ues("bal ance");
/1 Convert input paranmeters to needed datatypes for new account.
/1 (account)
| ong account Long = O;

key = new Account Key(account Long) ;

/1 (type)
if (typeArray[0].equals("1")) {
t ypeAcct 1; /1 Savings account.

typeString = "savings";

}

else if (typeArray[0].equals("2")) {
t ypeAcct = 2; /1 Checki ng account
typeString = "checking";

/'l (bal ance)
try {

initial Bal ance = (Fl oat. val ue (bal anceArray[0])). fl oat Val ue();
} catch (Exception e) {

bal anceFl ag = fal se;
}
// --- If input paraneters are good, try to create account bean. ---
I --- Prepare nessage to acconpany response. ---
// Prepare and send HTM. response. ---

117

}
Creating an enterprise bean

If the user input is valid, the doGet method attempts to create a new account based on the user input as shown in Figure 39.
Besides theinitialization of the home object reference in the init method, thisisthe only other piece of code that is specific
to the use of enterprise beansin a servlet.

Figure 39. Code example: Creating an enter prise bean in the doGet method

public void doGet(H tpServl et Request req, HtpServl et Response res)
throws Servl et Exception, | OException {
/!l --- Read and validate user input, initialize ---.

/!l --- 1f input paraneters are good, try to create account bean. ---
i f (accountFl ag && bal anceFl ag) {
i nput Fl ag = true;
try {
I/ Create the bean.
Account account = account Hone. creat e(key, typeAcct, initial Bal ance);

/] Determ ne cause of failure.
catch (Renot eException e) {

}
catch (Duplicat eKeyException e) {

catch (Exception e) {

}
}
/'l --- Prepare nessage to accompany response. ---
// Prepare and send HTM. response. ---

}
Determining the content of the user response

Next, the doGet method prepares a response message to be sent to the user. There are three possible responses:
» Theuser input was not valid.
« Theuser input was valid, but the account was not created for some reason.
« The account was created successfully. If the previous two errors do not occur, this response is prepared.

Figure 40 shows the code used by the servlet to determine which response to send to the user. If no errors are encountered,
then the response indicates success.

Figure 40. Code example: Determining a user responsein the doGet method

public void doGet(H tpServl et Request req, HtpServl et Response res)
throws Servl et Exception, | OException {

/!l --- Read and validate user input, initialize. ---
/1l --- If input paraneters are good, try to create account bean. ---
Il --- Prepare nmessage to acconpany response. ---

String nessageLine = ;
118

if (inputFlag) {
/'l 1f you are here, the client input is good.
if (createFlag) {
/'l New account enterprise bean was creat ed.

nmessagelLi ne = createdaccount + " " + accountArray[0O] + ", " +
createdtype + " " + typeString + ", " +
creat edbal ance + " " + bal anceArray[0];

}
else if (duplicateFl ag) {
/'l Account with sanme key already exists.

nmessagelLine = failureexists + " " + account Array[0];
el se {
/'l O her reason for failure.
nmessagelLine = failureinternal + " " + account Array[0];
}
el se {

/1 1f you are here, sonething was wong with the client input.
String separator = "";
if (!accountFlag) {

messageline = failureaccount + " " + accountArray[O0];

separator =", ";

}
if (!bal anceFl ag) {
messageli ne = nmessagelLi ne + separator +
failurebal ance + " " + bal anceArray[0];

/!l --- Prepare and send HTM. response. ---

}
Sending the user response

With the type of response determined, the doGet method then prepares the full HTML response and sends it to the user's
browser, incorporating the appropriate message. Relevant parts of the full HTML response are shown in Figure 41. Theres
variable is used to pass the response back to the user. This variable is an HttpServletResponse object passed as an argument
to the doGet method. The response code shown here mixes both display (HTML) and content in one servlet. Y ou can
separate the display and the content by using JavaServer Pages (JSP). A JSP allows the display and content to be devel oped
and maintained separately.

Figure 41. Code example: Responding to the user in the doGet method

public void doGet(H tpServl et Request req, HtpServl et Response res)
throws Servl et Exception, | OException {

/1l --- Read and validate user input, initialize. ---

// If input paraneters are good, try to create account bean. ---
1l --- Prepare nessage to acconpany response. ---

/)“--- Prepare and send HTM. response. ---

[/ HTML returned |looks like initial HTM. that invoked this servlet.
/1l Message |ine says whether servlet was successful or not.

res. set Content Type("text/htm");

res. set Header (" Pragma", "no-cache");

res. set Header (" Cache-control ", "no-cache");

PrintWiter out = res.getWiter();

out.println("<htm >");

out.println("<title>" + createTitle + "</title>");
119

6ﬁi.print|n(" </htm >");

Threading issues

Except for the instance variable required to get a reference to the Account bean's home interface and to support multiple
languages (which remain unchanged for al user requests), all other variables used in the CreateAccount servlet are local to
the doGet method. Each request thread has its own set of local variables, so the servlet can handle simultaneous user
requests.

Asaresult, the CreateAccount servlet isthread safe. By taking a similar approach to servlet design, you can aso make your
servlets thread safe.

120

Tools for developing and deploying enterprise beans

There are two basic approaches to devel oping and deploying enterprise beans:

« You can use one of the available integrated devel opment environments (IDEs) such as IBM
VisualAge(TM) for Java Enterprise Edition. | DE tools automatically generate significant parts of the
enterprise bean code and contain integrated tools for packaging and testing enterprise beans. VisualAge
for Javais the recommended development tool. For more information on using VisualAge for Java, see
Using VisualAge for Java.

« You can use thetools available in the Java Software Development Kit (SDK) and the Advanced
Application Server. For more information, see Developing and deploying enterprise beans.

Using VisualAge for Java

Before you can develop enterprise beansin VisualAge for Java, you must set up the EJB development
environment. Y ou need to perform this setup task only once. This setup procedure directs Visua Age for Javato
import al of the classes and interfaces required to develop enterprise beans.
After generating an enterprise bean, you complete its development by following these general steps:

1. Implement the enterprise bean class.

2. Create the required abstract methods in the bean's home and remote interfaces by promoting the
corresponding methods in the bean class to the appropriate interface.

3. For entity beans, do the following:
a. Create any additional finder methods in the home interface by using the appropriate menu items.
b. Create afinder helper interface, if required.
4. Create the EJB module and corresponding deployment descriptor.
5. Generate the deployment code for the bean.
VisualAge for Java contains a complete WebSphere Application Server run time environment and a mechanism

to generate atest client to test your enterprise beans. For much more detailed information on developing
enterprise beansin VisualAge for Java, refer to the VisualAge for Java documentation.

Developing and deploying enterprise beans

If you have decided to develop enterprise beans without an IDE, you need at minimum the following tools:

« An ASCII text editor. (Y ou can use also use a Java development tool that does not support enterprise
bean development.)

« The SDK Javacompiler (javac) and Java Archiving tool (jar).
» The WebSphere Application Assembly Tool and the WebSphere Administrative Console.

This section describes steps you can follow to develop enterprise beans by using these tools. The following
tasks are involved in the devel opment of enterprise beans:

1. Ensure that you have installed and configured the prerequisite software to devel op, deploy, and run
enterprise beans in the EJB server environment. For more information, see Installing and configuring the
software for the EJB server.

2. Set the CLASSPATH environment variable required by different components of the EJB server
environment. For more information, see Setting the CLASSPATH environment variable in the EJB

121

server environment.

3. Write and compile the components of the enterprise bean. For more information, see Creating the
components of an enterprise bean.

4. (Entity beans with CMP only) Create afinder helper interface for each entity bean with CMP that
contains specialized finder methods (other than the findByPrimaryKey method). For more information,
see Creating finder logic in the EJB server.

5. Create an EJB module and corresponding deployment descriptor by using the Application Assembly
Tool. For more information, see Creating an EJB module.

6. (Entity beans only) Create a database schema to enable storage of the entity bean's persistent datain a
database. For more information, see Creating a database for use by entity beans.

7. Generate deployment code for the EJB module by using the Application Assembly Tool. For more
information, see the WebSphere InfoCenter and the online help available with the Application Assembly
Tool.

8. Install the EJB module into an EJB server and start the server by using the WebSphere Administrative
Console.

Installing and configuring the software for the EJB server

Y ou must ensure that you have installed and configured the following prerequisite software products before you
can begin devel oping enterprise beans and EJB clients with the EJB server:

« WebSphere Application Server Advanced Edition

« One or more of the following databases for use by entity beans with container-managed persistence
(CMP):

o DB2
o Oracle

o Sybase

o Informix

o Microsoft SQL Server

o InstantDB

« The Java Software Development Kit (SDK)

For information on the appropriate version numbers of these products and instructions for setting up the
environment, see the WebSphere InfoCenter.

Setting the CLASSPATH environment variable in the EJB server environment

In addition to the classes.zip file contained in the SDK, the following WebSphere JAR files must be appended
to the CLASSPATH environment variable for devel oping enterprise beans:

o gsjar
e Ucjar
« otherDeployedBean.jar (if the enterprise bean uses another enterprise bean). Thisis the deployed JAR
file containing the enterprise bean being used by this enterprise bean.
For developing and running an EJB client, the following WebSphere JAR files must be appended to the
CLASSPATH environment variable:
e gsjar
122

e Ucjar
« Serviet.jar (required by EJB clients that are servlets)

« otherDeployedBean.jar. Thisisthe deployed JAR file containing the enterprise bean being used by this
EJB client.

Creating the components of an enterprise bean

If you use an ASCI|I text editor or a Java development tool that does not support enterprise bean development,
you must create each of the components that compose the enterprise bean you are creating. Y ou must ensure
that these components match the requirements described in Developing enterprise beans.

To manually develop a session bean, you must write the bean class, the bean's home interface, and the bean's
remote interface. To manually develop an entity bean, you must write the bean class, the bean's primary key
class, the bean's home interface, the bean's remote interface, and if necessary, the bean's finderHel per interface.
After you have properly coded these components, use the Java compiler to create the corresponding Java class
files. For example, because the components of the example Account bean are stored in a specific directory, the
bean components can be compiled by issuing the following command:

C. \ MYBEANS\ COM | BM EJS\ DOC\ ACCOUNT> j avac *.java

This command assumes that the CLASSPATH environment variable contains all of the packages used by the
Account bean.

Creating finder logic in the EJB server

For the EJB server environment, the following finder logic is required for each finder method (other than the
findByPrimaryKey method) contained in the home interface of an entity bean with CMP:

« Thelogic must be defined in a public interface named NameBeanFinderHel per, where Name is the name
of the enterprise bean (for example, AccountBeanFinderHelper).

« Thelogic must be contained in a String constant named findMethodNameWhereClause, where
findMethodName is the name of the finder method. The String constant can contain zero or more
guestion marks (?) that are replaced from left to right with the value of the finder method's arguments
when that method is invoked.

Note:
Encapsulating the logic in a String constant named findMethodNameQueryString has been deprecated.

If you define the findL argeA ccounts method shown in Figure 14, you must also create the
AccountBeanFinderHel per interface shown in Figure 7.

Figure 7. Code example: AccountBeanFinderHelper interface for the EJB server

publ ic interface Account BeanFi nder Hel per{

String findLargeAccount sWiereC ause = "bal ance > ?";
}
Creating an EJB module

The WebSphere Application Server Application Assembly Tool can be used to create an EJB module. An EJB
module can contain one or more enterprise beans. The tool automatically creates the required deployment
descriptor for the module based on information specified by the user.

123

Using the Application Assembly Tool

To create an EJB module and corresponding deployment descriptor, use the Create EJB Module wizard in the
Application Assembly Tool. Thiswizard prompts you to specify the following information for each enterprise
bean to be included in the module:

« The enterprise bean class, home interface class, and remote interface class.

« The bean type (entity or session), and associated attributes (such as persistence management type and
primary key class for entity beans).

« Referencesto another enterprise bean's home interface and to resource connection factories.
» Referencesto security roles for the enterprise bean.

. CMPfields, if applicable.

« Transaction isolation level attributes for enterprise bean methods.

The wizard also prompts you to specify the following application assembly information for the module itself:

« Genera properties of the EJB module, such as the location of class files needed for a client program to
access the enterprise beans in the module and the icons to be associated with the module.

« The deployable enterprise beans that the module will contain.
« Security roles used to access resources in the module.
« Transaction attributes for the enterprise bean methods.

Both bean and module information are used to create the deployment descriptor. See the WebSphere InfoCenter
and the online help for details on how to use the Application Assembly Tool.

Creating a database for use by entity beans

For entity beans with container-managed persistence (CMP), you must store the bean's persistent data in one of
the supported databases. The Application Assembly Tool automatically generates SQL code for creating
database tables for CMP entity beans. The tool names the database schema and table ejb.beanNamebeantbl
where beanName is the name of the enterprise bean (for example, gb.accountbeantbl). If your CMP entity
beans require complex database mappings, it is recommended that you use VisualAge for Java to generate code
for the database tables. At run time, the WebSphere Administrative Console displays a prompt asking whether
you want to execute the generated SQL code that creates the database table.

For entity beans with bean-managed persistence (BMP), you can create the database and database table by
using the database tools or use an existing database and database table. Because entity beans with BMP handle
the database interaction, any database or database table name is acceptable.

For more information on creating databases and database tables, consult your database documentation and the
online help for the WebSphere Administrative Console.

124

Appendix A. Changes for version 1.1 of the EJB
specification
WebSphere Application Server supports version 1.1 of the EJB specification. This appendix describes features

that are new or have changed in version 1.1 and discusses migration issues for enterprise beans written to
version 1.0 of the EJB specification.

New and updated features

The following enterprise bean features are new or have changed for version 1.1.

« Environmental dependencies for enterprise beans are now specified using entriesin a JINDI naming
context. An instance of an enterprise bean creates a javax.naming.Initial Context object by invoking the
constructor with no arguments specified. It looks up the environment naming context by using the
Initial Context object under the name java.comp/env.

« Primary keys are handled differently in version 1.1 of the EJB specification. Entity bean providers are
not required to specify the primary key class for entity beans with container-managed persistence
(CMP), enabling the deployer to select the primary key fields when the bean is deployed into a
container.

« The deployment descriptor has enhanced support for application assembly.

Migrating from version 1.0 to version 1.1

From the client's perspective, enterprise beans written to version 1.1 of the EJB specification appear nearly
identical to enterprise beans written to version 1.0 of the specification. However, the following EJB 1.1 changes
do affect clients:

« Enterprise beans written to version 1.1 of the EJB specification are registered in a different part of the
JNDI namespace. For example, aclient can look up theinitial context of aversion 1.0 enterprise bean in
JNDI by using the initial Context.lookup method as follows:

initial Context. | ookup("conifibm Hello")
The JNDI lookup for the equivalent version 1.1 enterprise bean is:
i nitial Context. | ookup("java:conp/env/ejb/Hello")

« The UserTransaction object is obtained differently for enterprise beans written to version 1.1 of the EJB
specification. Under version 1.0, it was obtained as:

initial Context.|ookup("jtal/UserTransaction")
Under version 1.1, it is obtained as:
i nitial Context.|ookup("java: conp/ User Transacti on")

» Because entity beans written to version 1.1 of the EJB specification now support primitive primary keys
(instead of having to encapsulate them in a primary key class), the client needs to look up these
primitive keys directly. For example, aclient can look up a primitive key of the type java.lang.Integer as
follows:

account Hore. fi ndByPri mar yKey(new I nt eger(5))
Primary key classes are still supported, although their use for primitive data types is deprecated.
From the application developer's perspective, the following changes need to be made to make enterprise beans
written to version 1.0 of the EJB specification compatible with version 1.1 of the specification.
125

« All deployment descriptors must be converted to the XML format specified in version 1.1 of the EJB
specification.

« Ingenera, enterprise beans written to version 1.0 of the EJB specification are compatible with version
1.1. However, you need to modify or recompile enterprise bean code in the following cases:

126

O

The return value of the ejbCreate method must be modified for all entity beans with CMP. The
€jbCreate method is now required to return the same type as the primary key; the actual value
returned must be null. These beans also must be recompiled. For more information, see
Implementing the ejbCreate and gjbPostCreate methods

If the javax.jts.UserTransaction interface is used. Thisinterface has been renamed to
javax.transaction.User Transaction. Enterprise beans that use this interface must be modified to
use the new interface name. There have also been minor changes to the exceptions thrown by
thisinterface.

If the getCallerldentity or isCallerInRole methods of the javax.ejb.EJBContext interface are
used. These methods were deprecated because the javax.security.ldentity class is deprecated
under the Java 2 platform.

If an entity bean uses the UserTransaction interface, which is not permitted under version 1.1 of
the EJB specification.

If an entity bean whose finder methods do not define the FinderException in the methods' throws
classes. Under version 1.1, the finder methods of entity beans must define this exception.

If an entity bean uses the UserTransaction interface and implements the SessionSynchronization
interface. Entity beans can neither use the UserTransaction interface nor implement the
SessionSynchronization interface under version 1.1.

If a statel ess session bean implements the SessionSynchronization interface. Stateless session
beans should not implement the SessionSynchronization interface under version 1.1.

If an enterprise bean violates any of the new semantic restrictions defined in version 1.1 of the
EJB specification.

Throwing the javax.gjb.RemoteException exception from the bean implementationsis
deprecated in version 1.1. This exception should be replaced by the javax.ejb.EJBException or a
more specific exception such as the javax.glb.CreateException. The javax.ejb.EJBException
inherits from the javax.gjb.RuntimeException and does not need to be explicitly declared in
throws clauses.

Declare the javax.elb.RemoteException exception in the remote and home interfaces, as required
by RMI. Throwing this exception directly by the bean implementation is deprecated. However, it
can be thrown by the container due to a system exception or by mapping an exception thrown by
the bean implementation.

Appendix B. Example code provided with WebSphere
Application Server

This appendix contains information on the example code provided with the WebSphere Application Server.

Information about the examples described in the documentation

The example code discussed throughout this document is taken from a set of examples provided with the
product. This set of examples is composed of the following main components:

« The Account entity bean, which models either a checking or savings bank account and maintains the

Note:

balance in each account. An account ID is used to uniquely identify each instance of the bean class and
to act asthe primary key. The persistent data in this bean is container managed and consists of the
following variables:

o accountld--The account ID that uniquely identifies the account. This variable is of type long.

o type--Aninteger that identifies the account as either a savings account (1) or a checking account
(2). Thisvariableis of typeint.

o balance--The current balance of the account. Thisvariableis of type float.

The major components of this bean are discussed in Developing entity beans with CMP.

The AccountBM entity bean, which is nearly identical to the Account entity bean; however, the
AccountBM bean implements bean-managed persistence. This bean is not used by any other enterprise
bean, application, or servlet contained in the documentation example set. The major components of this
bean are discussed in Developing entity beans with BMP.

The Transfer session bean, which models afunds transfer session that involves moving a specified
amount between two instances of an Account bean. The bean contains two methods: the transferFunds
method transfers funds between two accounts, the getBalance method retrieves the balance for a
specified account. The bean is statel ess. The major components of this bean are discussed in Developing

session beans.

The CreateAccount servlet, which can be used to easily create new bank accounts (and corresponding
Account bean instances) with the specified account 1D, account type, and initial balance. Although this
servlet is designed to make it easy for you to create accounts and demonstrate the other components in
the example set, it aso illustrates servlet interaction with an entity bean. This servlet is discussed in
Developing servlets that use enterprise beans.

The TransferApplication Java application, which provides a graphical user interface that was built with
the abstract windowing toolkit (AWT). The application creates an instance of the Transfer session bean,
which is then manipulated to transfer funds between two selected accounts or to get the balance for a
specified account. The TransferApplication code implements many of the requirements for using
enterprise beans in an EJB client. The parts of this application that are relevant to interacting with an
enterprise bean are discussed in Developing EJB clients.

The TransferFunds servlet, which is a servlet version of the TransferApplication Java application. This
servlet is provided so that you can compare the use of enterprise beans between a Java application and a
Java servlet that basically are doing the same tasks. This document does not discuss this servlet in any
detail.

The example code in the documentation was written to be as simple as possible. The goal of these
examplesisto provide code that teaches the fundamental concepts of enterprise bean and EJB client
development. It is not meant to provide an example of how a bank (or any similar company) possibly

127

approaches the creation of abanking application. For example, the Account bean contains a balance
variable that has atype of float. In areal banking application, you must not use afloat type to keep
records of money; however, using aclass like javamath.BigDecimal or a currency-handling class within
the examples would complicate them unnecessarily. Remember this as you examine these examples.

Information about other examples

Table 2 provides a summary of the enterprise bean-specific examples provided with the EJB server

Table 2. Examples available with the EJB server

IName |Bean types |EJB client types |Additional information
IHello | Statel ess session |Java servlet |Very simple example of a session bean.
|Increment |CMP entity |Java servlet |Very simple example of an entity bean.

128

Appendix C. Extensions to the EJB Specification

This appendix briefly discusses functional extensions to the EJB Specification that are available in the EIJB
server environments contained in WebSphere Application Server. These extensions are specific to WebSphere
Application Server and use of these features is supported only with VisualAge for Java, Enterprise Edition. For
information on implementing these features, consult your Visual Age for Java documentation.

Access beans

Access beans are Java components that adhere to the Sun Microsystems JavaBeans(TM) Specification and are
meant to simplify development of EJB clients. An access bean adapts an enterprise bean to the JavaBeans
programming model by hiding the home and remote interfaces from the access bean user (that is, an EJB client
developer).

There are three types of access beans, which are listed in ascending order of complexity:

« Java bean wrapper--Of the three types of access beans, a Java bean wrapper isthe simplest to create. Itis
designed to allow either a session or entity enterprise bean to be used like a standard Java bean and it
hides the enterprise bean home and remote interfaces from you. Each Java bean wrapper that you create
extends the com.ibm.ivj.g/b.access.AccessBean class.

« Copy helper--A copy helper access bean has al of the characteristics of a Java bean wrapper, but it a'so
incorporates a single copy helper object that contains alocal copy of attributes from a remote entity
bean. A user program can retrieve the entity bean attributes from the local copy helper object that resides
in the access bean, which eliminates the need to access the attributes from the remote entity bean.

« Rowset--A rowset access bean has all of characteristics of both the Java bean wrapper and copy helper
access beans. However, instead of a single copy helper object, it contains multiple copy helper objects.
Each copy helper object corresponds to a single enterprise bean instance.

VisualAge for Java provides a SmartGuide to assist you in creating or editing access beans.

Associations between enterprise beans

In the EJB server environment, an association is arelationship that exists between two CMP entity beans. There
are three types of associations. one-to-one and one-to-many. In a one-to-one association, a CMP entity bean is
associated with a single instance of another CMP entity bean. For example, an Employee bean could be
associated with only asingle instance of a Department bean, because an employee generally belongs only to a
single department.

In a one-to-many association, a CMP entity bean is associated with multiple instances of another CMP entity
bean. For example, a Department bean could be associated with multiple instances of an Employee bean,
because most departments are made up of multiple employees.

The Association Editor is used to create or edit associations between CMP entity beans in VisualAge for Java.

Inheritance in enterprise beans

In Java, inheritance is the creation of anew class from an existing class or a new interface from an existing
interface. The EJB server environment permits two forms of inheritance: standard class inheritance and EJB
inheritance. In standard class inheritance, the home interface, remote interface, or enterprise bean class inherits
properties and methods from base classes that are not themselves enterprise bean classes or interfaces.

129

In enterprise bean inheritance, by comparison, an enterprise bean inherits properties (such as CMP fields and
association ends), methods, and method-level control descriptor attributes from another enterprise bean that

resides in the same group.
VisualAge for Java provides a SmartGuide to assist you in implementing inheritance in enterprise beans.

130

6.6.4: Administering EJB containers (overview)

A container configuration provides information about an enterprisebean container. The administrator can
specify several properties toaddress basic questions about the container location and behavior.

Specifying the server in which the container will reside

Each enterprise bean container resides in a particular application server.

When the administrator adds a new container to the WebSphere administrativedomain, he or she must associate
the container with a particular server (alsoknown as the container's parent).

An application server can host multiple containers.

Specifying how beans in the container will get database connections

Every container can support the two main bean types, session beans and entitybeans:
« Entity beans require database connections because they store permanent data.
« Session beans do not require database access, though they can obtain it indirectly (as needed) by
accessing entity beans.

A data source is an administrative resource that defines a pool of database connections. Servlets and enterprise
beans use data sources to obtain database connections.

When configuring a container, the administrator can specify a default data source for the container. This data
source will be the default data source used by any entity beans installed in the container that use container
managed persistence (CMP).

When configuring a CMP entity bean, the administrator can specify which data source the container must use
for managing the persistent state of the entity bean. If the administrator specifies a data source for an individual
CMP entity bean then this data source will override any data source specified on the container.

Specifying a default data sourceis optional if each CMP entity bean in the container has a data source specified
in it configuration. If a default data source is not specified and a CMP entity bean isinstalled in that container
without specifying a data source for that bean then it will not be possible to start that CMP entity bean.

The default data source for a container is secure. When specifying it, the administrator must provide the user 1D
and password for accessing the data source.

Specifying how the container will manage cached bean instances

Each container keeps a cache of bean instances for ready access. The WebSphere administrator specifies
settings governing the cache size and a policy for removing unused items from the cache.

Specifying where the container will passivate beans to make room in its cache

A container can passivate session beans to make room in its cache. The container saves a serialized session
bean to afile. It restores the bean tothe cache when more room is available.

The WebSphere administrator specifies a passivation directory inwhich to keep the files.

131

6.6.4.0: EJB container properties

Key:

a

Applies to Java administrative console of Advanced Edition Version 4.0

% Applies to Web administrative console of Advanced Single Server Edition Version 4.0
B

Appliesto Application Client Resource Configuration Tool

Application Server "ﬁ
The application server of which the EJB container is a part

Default Data Sour ce ‘2 %
The data source to use to connect to a JDBC-compliant database, such as DB2

Cache clean-up interval & or Clean-up Interval B

Theinterval at which the container attempts to remove unused items from the cache to reduce the total
number of itemsin the cache to the value of the Cache preferred limit property.

The cache manager tries to maintain some unallocated entries that can be allocated quickly, as needed. A
background thread attempts to free some entries while ensuring that some unallocated entries are
maintained. If the thread runs while the application server isidle, then when the application server needs
to allocate new cache entries, it does not pay the performance cost of removing entries from the cache.

In general, increase this parameter as the cache size increases.

For the Advanced Sngle Server Edition: This value must be a positive integer specified in milliseconds.
Cachesize ‘2 %

The number of bucketsin the cache hash table

If you change this value, change the Cache absolute limit property to correspond. For example, if you
change the cache size to 3000, change the cache absolute limit to 3000, unless for some reason you do
not want all of the available cache to be used.

For Advanced Single Server Edition: This value must be a positive integer.
I nactive Pool Cleanup Interval %
The interval at which inactive poolswill be reduced to their minimum size.
For Advanced Sngle Server Edition: The value must be a positive integer specified in milliseconds.

Installed EJB Modules %
The EJB modules that are installed in the EJB container of this server

Node W

The node with which the application server is associated

Passivation Directory ‘i %
132

The directory into which the container will save the persistent state of passivated session beans

Session beans are passivated when the container needs to reclaim space in the bean cache. At
passivation time, the container serializes the bean instance to afile in the passivation directory and
discards the instance from the bean cache. If, at alater time, arequest arrives for the passivated bean
instance, the container retrieves it from the passivation directory, deserializesit, returns it to the cache,
and dispatches the request to it. If any step fails (for example, if the bean instance is no longer in the
passivation directory), then the method invocation fails.

133

6.6.4.1. Administering enterprise bean containers
with the Java administrative console

Use the Java administrative console to administer EJB container services.

Work with resources of this type by locating them in the application server properties:
1. Locate the EJB container service among the application serverservices.

2. When the application server properties are displayed in the properties view, click the Services tabbed

page.
3. Locate the EJB container servicein the list of services.

134

http://localhost/0802_makepdf/ae_orig/nav_ejbnav/06060301.html
http://localhost/0802_makepdf/ae_orig/nav_ejbnav/06060001.html

6.6.4.1.1: Configuring the EJB container services of
application servers with the Java administrative
console

During this task, you will specify settings for the EJB container service ofan existing application server.
1. Locate the service. (Select it in the list of services).

2. Click Edit Propertiesto display the properties of the service.
3. Specify values for the EJB container service properties.

4. When finished, click OK.

135

6.6.5: Administering EJB modules (overview)

Administration of EJB modules consists of the following:

« Creating the module, setting deployment descriptor properties, and generatingcode for deployment using
the Application Assembly Tool

« Setting additional configuration properties using the console

Classpath considerations

An important classpath-related setting to note is the Module Visibility. This application server setting impacts
the portability of applications and standal one modules from other WebSphere Application Server versions and
editions. If your existing module does not run as-is when you transfer it to Version 4.0, you might need to
reassembl e an existing module or change the module visibilitysetting.

See the information on setting classpaths for afull discussion of classpath considerations. See the
applicationserver property reference for information about the module visibility setting.

136

http://localhost/0802_makepdf/ae_orig/nav_ejbnav/060401.html
http://localhost/0802_makepdf/ae_orig/nav_ejbnav/06060300.html

6.6.5.0: EJB module properties

Key:

a

Applies to Java administrative console of Advanced Edition Version 4.0

% Applies to Web administrative console of Advanced Single Server Edition Version 4.0
B

Appliesto Application Client Resource Configuration Tool

Application or "ﬁ Application Ref %

The application installation binding within which the module-to-server installation binding is contained.
Thisistypically the logical name of the enterprise application you configured to contain this EJB
module.

Default Data Sour ce &
The data source to use for this EJB module, unless a different oneis specified

Execution State %

The state that you would like the enterprise bean module to be in, the next time the product is stopped
and started again

Name E or Module Name E
An administrative name for the EJB module

Password s
The password corresponding to the specified user ID

Server s
The application server on which the EJB module isinstalled

URI B

A URI that, when resolved relative to the application URL, specifies the location of the module archive
on afile system. The URI must match the URI of a ModuleRef URI in the deployment descriptor of an
application if the module was packaged as part of a deployed application (EAR).

User ID B
The user ID for accessing the default data source

See also the other application server properties.

137

http://localhost/0802_makepdf/ae_orig/nav_ejbnav/06060300.html

6.6.5.0.1: Assembly properties for entity beans

EJB name (Required, String)

Specifies alogical name for the enterprise bean. This name must beunique within the EJB module.
There is no relationship between thisname and the INDI name.

Display name

Specifies a short name that is intended to be displayed by GUIs.
Description

Contains text describing the entity bean.
Home Interface (Required, String)

Specifies the full name of the enterprise bean's home interfaceclass--for
example,com.ibm.egjs.doc.account.AccountHome.

Remote I nterface (Required, String)

Specifies the full name of the enterprise bean's remote interfacecl ass--for
example,com.ibm.egjs.doc.account.Account.

EJB class (Required, String)
Specifies the full name of the enterprise bean class--for example,com.ibm.gjs.doc.account.AccountBean.
Persistency

Specifies whether an entity bean manages its own persistent storage orwhether storage is managed by
the container. The valid values areBean-managed and Container-managed.

Primary key field

Specifies the name of asimple primary key. Simple primary keys mapto asingle field in the entity bean
class and are made up of primitive Javadata types (such asinteger or long). If exactly one CMP field is
theprimary key, it can be specified here.

Primary key class (Required, String)

Specifies the full name of the bean's primary key

class--forexample,com.ibm.gjs.doc.account.AccountK ey.Composite primary keys map to multiple fields
in the entity bean class (or todata structures built from the primitive Java data types), and must
beencapsulated in a primary key class. More complicated enterprise beansare likely to have composite
primary keys, with multiple instance variablesrepresenting the primary key. A subset of the
container-managed fieldsis used to define the primary key class associated with each instance of
anenterprise bean.

Reentrant

Specifies whether the entity bean is reentrant or not. If anenterprise bean is reentrant, it can invoke
methods on itself or call anotherbean that invokes a method on the calling bean. Only entity beans canbe
reentrant. If an entity bean is not reentrant and a bean instance isexecuting a client request in a
transaction context and another client usingthe same transaction context makes a request on the same
bean instance, theEJB container throws the java.rmi.RemoteException exception tothe second client. If a
bean is reentrant, the container cannotdistinguish this type of illegal loopback call from alegal
concurrent calland the bean must be coded to detect illegal loopback calls.

Small icon

Specifies a JPEG or GIF file containing a small image (16x16pixels). The imageis used as an icon to
represent the entity bean in aGUI.

Largeicon
Specifies a JPEG or GIF file containing alarge image (32x32pixels). Theimage is used as an icon to

138

represent the entity bean in aGUI.
I nheritance root

Specifies whether or not the enterprise bean is at the root of aninheritance hierarchy.
Bean Cache -- Activate at

Specifies the point at which an enterprise bean is activated and placed inthe cache. Removal from the
cache and passivation is also governed bythis setting. Valid values are Once and Transaction.
Onceindicates that the bean is activated when it isfirst accessed in the serverprocess, and passivated
(and removed from the cache) at the discretion of thecontainer--for example, when the cache becomes
full. Transactionindicates that the bean is activated at the start of a transaction andpassivated (and
removed from the cache) at the end of the transaction.The default value is Transaction.

Bean Cache -- Load at

Specifies when the bean loads its state from the database. Thevalue of this property implies whether the
container has exclusive or sharedaccess to the database. Valid values are Activation andTransaction.
Activation indicates that the bean is loaded when it isactivated (Once or Transaction) and implies that
the container has exclusiveaccess to the database. Transaction indicates that the bean is |oadedat the start
of atransaction and implies that the container has shared accessto the database. The default is
Transaction.

The settings of the Activate at and Load at properties govern which commitoptions are used. The
commit options are described in detail in theEnterprise JavaBeans specification, version 1.1.

o For Commit Option A (implies exclusive DB access), use Activate at = Onceand Load at =
Activation. This option reduces database |/O (avoidscalls to the g/ bL oad function) but serializes
all transactions accessing thebean instance. Option A can increase memory usage by maintaining
moreobjects in the cache, but could provide better response time if bean instancesare not
generally accessed concurrently by multiple transactions.

o For Commit Option B (implies shared DB access), use Activate at = Once,Load at = Transaction.
Option B can increase memory usage bymaintaining more objects in the cache. However,
because eachtransaction creates its own copy of an object, there can be multiple copies ofan
instance in memory at any given time (one per transaction), requiring thatthe database be
accessed at each transaction. If an enterprise beancontains a significant number of callsto the
gjbActivate function, usingOption B can be beneficial because the required object isalready in
thecache. Otherwise, this option does not provide significant benefit overOption A.

o For Commit Option C (implies shared DB access), use Activate at =Transaction and Load at =
Transaction. This option can reduce memoryusage by maintaining fewer objects in the cache,
however, there can bemultiple copies of an instance in memory at any given time (one
pertransaction). This option can reduce transaction contention forenterprise bean instances that
are accessed concurrently but notupdated.

Localelocation

Specifies the language used when the enterprise bean retrieves anddisplays message catal ogs. the local
language of the client that invokedthe bean method or the local language of the server where the bean
isrunning. Valid values are server and caller.

Local Transactions-- Boundary

Specifies when alocal transaction begins. The default behavior isthat the local transaction begins when
the method begins and ends when themethod ends.

Local Transactions-- Unresolved action

Specifies the action the container must take if resources are uncommittedby an application in alocal
transaction. A local transaction contextis created when a method executes in what the EJB specification
refersto asan unspecified transaction context. Valid values are Rollback andCommit. The default is
Rollback.

139

L ocal Relationship Roles - Name
Information is not available.

L ocal Relationship Roles - Source EJB Name
Information is not available.

L ocal Relationship Roles - isForward
Information is not available.

L ocal Relationship Roles - isNavigable
Information is not available.

JNDI name

Specifies the INDI name of the bean's home interface. Thisisthe name under which the enterprise bean's
home interface is registeredand therefore is the name that must be specified when an EJB client does
alookup of the home interface.

Data Sour ce - INDI name

Specifies the INDI name for the bean's data source.
Default Authorization - User ID

Specifies the default user ID for connecting to a data source.
Default Authorization - Password

Specifies the default password for connecting to a data source.

140

6.6.5.0.2: Assembly properties for CMP fields

Container-managed persistence (CMP) fields define the variables in the beanclass for which the container must
handl e persistence management.

Name (Required, String)
Specifies a subset of public variables in an enterprise bean'simplementation class.

141

6.6.5.0.3: Assembly properties for method extensions

Method type

Specifies the type of the enterprise bean method. Valid values areHome methods, Remote methods, and
All methods.

Name

Specifies the name of an enterprise bean method, or the asterisk character(*) . The asterisk isused to
denote all the methods of the specifiedinterface--for example, all methods in the remote interface.

Parameters

Contains alist of fully qualified Javatype names of the methodparameters. Used to identify asingle
method among multiple methodswith an overloaded method name.

| solation level attributes

The transaction isolation level determines how isolated one transaction isfrom another. This property
can be set for individual methods in anenterprise bean or for all methods in the enterprise bean. An
asteriskis used to indicate all methods in the bean. However, within atransactional context, the isolation
level associated with the first methodinvocation becomes the required isolation level for all methods
invoked withinthat transaction. If amethod isinvoked with a different isolationlevel from that of the
first method, thejava.rmi.RemoteException exception is thrown.

| solation level
Specifiesthe level of transactional isolation. The valid valuesare as follows:
o Seridizable. Thislevel prohibits the following types ofreads:

= Dirty reads, where a transaction reads a database row containinguncommitted changes
from a second transaction.

= Nonrepeatable reads, where one transaction reads a row, a secondtransaction changes the
same row, and the first transaction rereads the rowand gets a different value.

= Phantom reads, where one transaction reads all rows that satisfy an SQLWHERE
condition, a second transaction inserts arow that also satisfies theWHERE condition, and
the first transaction applies the same WHERE conditionand gets the row inserted by the
second transaction.

0 Repeatable read. Thislevel prohibits dirty reads and nonrepeatabl ereads, but it allows phantom
reads.

o Read committed. This level prohibits dirty reads, but allowsnonrepeatabl e reads and phantom
reads.

o Read uncommitted. Thislevel alows dirty reads, nonrepeatablereads, and phantom reads.

The container uses the transaction isolation level attribute asfollows:

o Session beans and entity beans with bean-managed persistence(BM P)--For each database
connection used by the bean, the container setsthe transaction isolation level at the start of each
transaction unless thebean explicitly sets the isolation level on the connection.

o Entity beans with container-managed persistence (CMP)--The containergenerates database
access code that implements the specified isolationlevel.

Security Identity

Specifies that a principal's credential properties are to be handledas indicated in the Run-As mode
property. Checking this box makes theRun-as Mode properties editable.

Description

Contains text describing or commenting on the securityinstructions.
142

Run-AsMode

Credentia information is used by the security service to determine thepermissions that a principal has on
various resources. At appropriatepoints, the security service determines whether the principa is
authorized touse a particular resource based on the principal’s permissions. Ifthe method invocation is
authorized, the security service does the followingwith the principal's credential properties based on the
value of theRun-as Mode property of the enterprise bean:

o Useldentity of Caller -- the security service makes no changes tothe principal's credential
properties.

o Use ldentity of EJB Server -- the security service alters theprincipal s credential propertiesto
match the credential properties associatedwith the EJB server.

o Use ldentity Assigned to Specified Role -- A principal that has beenassigned to the specified
security role is used for the execution of thebean's methods. This association is part of the
applicationbinding where the role is associated with auser ID and password of a user whois
granted that role.

Role Name

Specifies the name of a security role. If the Use Identity Assignedto Specified Role button is selected, a
principal that has been granted thisrole will be used.

Description
Contains a description of the security role.
Access Intent - Intent type

Specifies whether the method is a read-only method or whether the methodcan update data (or invoke
other methods that can update data, in the sametransaction). The legal values are read or update
(read/write).

Finder descriptor - User

Specifies that the user has provided afinder helper classin the entitybean's home interface. The class
contains specialized findermethods.

Finder descriptor - EJB QL

Describes the semantics of afinder method using the EJB QL (EnterpriseJavaBeans query language).
EJB QL isadeclarative, SQL-like languageintended to be compiled to the target language of the
persistent data storeused by a persistence manager. The language is independent of thebean's mapping to
arelational datastore and is thereforeportable. The EJB query specifies a search based on the

persi stentattributes and relationships of the bean. An EJB query contains aSELECT clause (optional), a
FROM clause (required), a WHERE clause (optional),and an ORDER BY clause (optional). The
SELECT clause specifies the EJBobjects to return. The FROM clause specifies the collections of
objectsto which the query is to be applied. The WHERE clause contains searchpredicates over the
collections. The ORDER BY clause specifies theordering of the resulting collection.

Finder descriptor - Full select

Note: For information on restrictions, see the documentation forDeployment Tool for Enterprise
JavaBeans.

Describes the semantics of the finder method using a SQL SEL ECTstatement. The SELECT statement
indicates the EJB objects toreturn.
Finder descriptor - Where clause

Note: For information on restrictions, see the documentation forDeployment Tool for Enterprise
JavaBeans.

Describes the semantics of the finder method using a SQL WHEREclause. This clause restricts the
143

results that are returned by thequery.

144

6.6.5.0.4:. Assembly properties for session beans

EJB name (Required, String)

Specifies alogical name for the enterprise bean. This name must beunique within the EJB module.
There is no relationship between thisname and the INDI name.

Display name

Specifies a short name that is intended to be displayed by GUIs.
Description

Contains text describing the session bean.
Home interface (Required, String)

Specifies the full package name of the enterprise bean's homeinterface class, for
example,com.ibm.egjs.doc.account.AccountHome.

Remote interface (Required, String)

Specifies the full package name of the enterprise bean's remoteinterface class, for
example,com.ibm.egjs.doc.account.Account.

EJB class (Required, String)

Specifies the full package name of the enterprise bean class, for
example,com.ibm.egjs.doc.account.AccountBean.

Session type

Specifies whether the enterprise bean maintains a conversational state (isa stateful session bean) or does
not (is a stateless session bean).Valid values are stateful and stateless.

Transaction type

Specifies whether the enterprise bean manages its own transactions orwhether the container manages
transactions on behalf of the bean. Validvalues are container or bean.

Small icon

Specifies a JPEG or GIF file containing a small image (16x16pixels). The imageis used as an icon to
represent the session bean ina GUI.

Largeicon

Specifies a JPEG or GIF file containing a large image (32x32pixels). The image is used as an icon to
represent the session bean ina GUI.

Timeout

Specifies the idle timeout value for the enterprise bean inseconds. A zero (0) value indicates that idle
bean instances time outafter the maximum allowable timeout period elapses. By default, thetimeout is
600 seconds or 10 minutes. This property does not apply tosession beans.

I nheritance root
Specifies whether the enterprise bean is at the root of an inheritancehierarchy.
Bean Cache-- Activate at

Appliesto stateful session beans only, not to statel ess beans. Specifies the point at which an enterprise
bean is activated and placed in thecache. Removal from the cache and passivation are al'so governed by
thissetting. Valid values are Once and Transaction. Once indicatesthat the bean is activated when it is
first accessed in the server process andpassivated (and removed from the cache) at the discretion of
thecontainer--for example, when the cache becomes full. Transactionindicates that the bean is activated
at the start of a transaction andpassivated (and removed from the cache) at the end of the transaction. The
default value is Once.

145

Bean Cache-- Load at
This property does not apply to session beans.
L ocale location

Specifies the language used when the enterprise bean retrieves anddisplays message catal ogs: the local
language of the client that invokedthe bean method or the local language of the server where the bean
isrunning. Valid values are server and caller.

Local Transactions-- Boundary

Specifies when alocal transaction begins. The default behavior isthat the local transaction begins when
the method begins and ends when themethod ends. This property is not applicable for session beans.

Local Transactions -- Unresolved action

Specifies the action the container must take if resources are uncommittedby an application in alocal
transaction. A local transaction contextis created when a method executes in what the EJB specification
refers to asan unspecified transaction context. Valid values are Rollback andCommit. The default is
Rollback.

JNDI name

Specifies the INDI name of the bean's home interface. Thisisthe name under which the enterprise bean's
home interface is registeredand therefore is the name that must be specified when an EJB client does
alookup of the home interface.

146

6.6.5.0.5: Assembly properties for security roles

A security roleisalogical grouping of principals. Access tooperations (such as EJB methods) is controlled by
granting accessto arole.

Role name (Required, String)

Specifies the name of a security role.
Description

Contains text describing the security role.

If specifying security roles at the application level (EAR file), thefollowing properties apply:
Role Name (Required, String)
Specifies the name of a security role that is unique to theapplication.
Description
Contains text describing the security role.
Binding -- Groups-- Name
Specifies user groups that are granted the security role.
Binding -- Users-- Name
Specifies users that are granted the security role.
Binding -- Special Subjects-- Name

Specifies one of two special categories of users to which roles can begranted: Everyone or All
authenticated users. If the specialsubject Everyone is granted arole, then all users, including those who
didnot authenticate, are granted the role. In other words, a method on anenterprise bean or aURI is
unprotected if any of the required roles for thatmethod are granted to the special subject Everyone. In the
case of Allauthenticated users, any user who can authenticate by using avalid user IDand password is
considered to be granted that role.

147

6.6.5.0.6: Assembly properties for method
permissions

A method permission is a mapping between one or more security roles and oneor more methods that a member
of the role can invoke. Assemblyproperties for method permissions include an optional description, alist
ofsecurity role names, and alist of methods. The security roles must bedefined, and the methods must be
methods defined in the enterprise bean'sremote or home interfaces.

M ethod per mission name

Specifies a name for the mapping between method permissions and securityrol es.
Description

Contains text describing the mapping between method permissions andsecurity roles.
Methods - Name

Specifies the name of an enterprise bean method, or the asterisk (*)character. The asterisk isused to
denote all the methods of thespecified interface--for example, all methods of the remoteinterface.

Methods - Enterprise Bean
Specifies the name of the enterprise bean that contains the method.
Methods- Type

Distinguishes between a method with the same signature that is defined inboth the home and remote
interface. Valid values are All methods,Remote methods, or Home methods.

Methods - Parameters

Contains alist of fully qualified Java type names of the methodparameters. This property is used to
identify a single method amongmultiple methods with an overloaded method name.

Roles-- Role Name
Specifies the security role that must be granted in order to invoke themethod.

148

6.6.5.0.7: Assembly properties for container
transactions

Container transaction properties specify how the container must managetransaction scopes for the enterprise
bean's method invocations.Specify one or more methods and associate a transaction attribute with eachmethod.

Name

Specifies a name for the mapping between a transaction attribute and oneor more methods.

Description

Contains text describing the mapping.
Transaction Attribute

Specifies how the container must manage the transaction boundaries whendel egating a method
invocation to an enterprise bean's businessmethod. The legal values are Never, Mandatory, Requires
New, Required,Supports, Not Supported, and Bean Managed. The default is NotSupported.

0

Mandatory. Directs the container to always invoke the bean methodwithin the transaction context
associated with the client. If theclient attempts to invoke the bean method without a transaction
context, thecontainer throws the javax.jts. TransactionRequiredExceptionexception to the client.
The transaction context is passed to any EJBobject or resource accessed by an enterprise bean
method.

EJB clients that access these entity beans must do so within an existingtransaction. For other
enterprise beans, the enterprise bean or beanmethod must implement the Bean Managed value or
use the Required or RequiresNew value. For non-enterprise bean EJB clients, the client must
invokea transaction by using the javax.transaction.User Transactioninterface.

Supports. Directs the container to invoke the bean method within atransaction context if the
client invokes the bean method within atransaction. If the client invokes the bean method without
atransaction context, the container invokes the bean method without atransaction context. The
transaction context is passed to anyenterprise bean objects or resources that are used by this bean
method.

Never. Directs the container to invoke bean methods without atransaction context.

= If the client invokes a bean method from within a transaction context, thecontainer throws
the java.rmi.RemoteException exception.

= If the client invokes a bean method from outside a transaction context,the container
behaves in the same way asif the Not Supported transactionattribute was set. The client
must call the method without atransaction context.

Requires New. Directs the container to always invoke the beanmethod within a new transaction
context, regardless of whether the clientinvokes the method within or outside a transaction
context. Thetransaction context is passed to any enterprise bean objects or resources thatare used
by this bean method.

Not Supported. Directs the container to invoke bean methods withouta transaction context. If a
client invokes a bean method from within atransaction context, the container suspends the
association between thetransaction and the current thread before invoking the method on
theenterprise bean instance. The container then resumes the suspendedassociation when the
method invocation returns. The suspendedtransaction context is not passed to any enterprise bean
objects orresources that are used by this bean method.

Required. Directs the container to invoke the bean method within atransaction context. If a client
invokes a bean method from within atransaction context, the container invokes the bean method
within the clienttransaction context. If aclient invokes a bean method outside atransaction
context, the container creates a new transaction context andinvokes the bean method from within

149

that context. The transactioncontext is passed to any enterprise bean objects or resources that are
used bythis bean method.

o Bean Managed. Notifies the container that the bean class directlyhandles transaction
demarcation. This property can be specified onlyfor session beans, and it cannot be specified for
individual beanmethods.

Method Elements - Name

Specifies the name of an enterprise bean method, or the asterisk character(*). The asterisk isused to
denote all the methods of the specifiedinterface--for example, all methods of the remote interface.

Method Elements - Enterprise bean
Specifies which enterprise bean contains the methods indicated in the Nameproperty.
Method Elements - Type

Used to distinguish between a method with the same signature that isdefined in both the home and
remote interface. Valid values are Allmethods, Remote methods, or Home methods. Use All methods if
atransaction attribute applies to all methods of the bean.

Method Elements - Parameters

Contains alist of fully qualified Java type names of the methodparameters. This property is used to
identify a single method amongmultiple methods with an overloaded method name.

150

6.6.5.0.aa: Assembly properties for EJB modules

File name (Required, String)
Specifies the file name of the EJB module, relative to the top level ofthe application package.
Alternative DD

Specifies the file name for an alternative deployment descriptor file touse instead of the original deployment
descriptor file in the module'sJIAR file. Thisfileis the postassembly version of the deploymentdescriptor file. (The
original deployment descriptor file can be editedto resolve dependencies and security information. Directing the use
ofthe alternative deployment descriptor alows you to keep the original deployment descriptor file intact). The value
of the Alternative DDproperty must be the full path name of the deployment descriptor file relativeto the module's
root directory. By convention, thefileisin theALT-INF directory. If this property is not specified, the
deploymentdescriptor fileisread directly from the module's JAR file.

Classpath

The path containing additional classes required by the application but notcontained in the modul€e's archivefile. The
class loader uses thispath. Specify the values relative to the root of the EAR file andseparate the values with spaces.
Absolute values that reference filesor directories on the hard drive are ignored. To specify classes thatare not in JAR
filesbut arein the root of the EAR file, use a period andforward slash (./). Consider the following example
directorystructure in which the file myapp.ear contains an EJB module namedmyejb.jar. Additional classesresidein
classl.jar andclass2.zip. A class named xyz.classis not packaged in aJAR file but isin the root of the EAR file.

myapp. ear/ nyej b. j armyapp. ear/ cl assl. j ar nyapp. ear/ cl ass2. zi pnyapp. ear/ xyz. cl ass
Specify cl assl.jar class2.zip ./ asthevaue of the Classpath property. (Name only the directory
for.classfiles.)

Display name
Specifies a short name that is intended to be displayed by GUIs.

EJB client JAR
Specifies the location of the JAR file containing a subset of deployedclasses needed by the client.

Description
Contains text describing the module.

Small icon

Specifies a JPEG or GIF file containing a small image (16x16pixels). The imageis used as an icon to represent the
module in aGUI.

Largeicon

Specifies a JPEG or GIF file containing alarge image (32x32pixels). Theimage is used as an icon to represent the
module in aGUI.

Generalizations -- Subtype
Information is not available.
Generalizations -- Supertype
Information is not available.
EJB Relationships-- Name
Information is not available.
EJB Relationships-- Source EJB name
Information is not available.
EJB Relationships-- Isforward
Information is not available.
EJB Relationships-- I snavigable
Information is not available.
Default Data Sour ce -- INDI name

151

Specifies the default INDI name for the data source. This defaultis used if binding information is not specified in the
deployment descriptorfor an individual enterprise bean.

Default Authorization - User 1D

Specifies the default user ID for connecting to an enterprise bean'sdata store.
Default Authorization - Password

Specifies the default password for connecting to an enterprise bean'sdata store.

152

6.6.5.1: Administering EJB modules with the Java
administrative console

Work with resources of thistype by locating them in the tree view.

To locate modules according to their membership in enterprise applications, click:

WebSphere Administrative Domain -> Nodes -> node_name -> Enterprise Applications ->
application_name ->EJB modules

To locate modulesinstalled on a particular application server, click:

WebSphere Administrative Domain -> Nodes -> node_name -> Application Servers->
application_server_name ->Installed EJB modules

In either case, the instances of the module will be displayed in thedetails view.

153

http://localhost/0802_makepdf/ae_orig/nav_ejbnav/06060001.html
http://localhost/0802_makepdf/ae_orig/nav_ejbnav/06060001.html

6.6.5.1.1: Installing EJB modules with the Java
administrative console

Use the application installation wizard to install EJB modules onto an application server.

154

http://localhost/0802_makepdf/ae_orig/nav_ejbnav/0606010101.html

6.6.5.1.2: Viewing deployment descriptors of EJB
modules with the Java administrative console

To view the deployment descriptor of an EJB module:
1. Locate the EJB module instance.
2. Right-click your EJB module in the details view and select View Deployment Descriptor from the
popup menu.

A window opens, providing descriptive information about the selected module's EJB JAR and its enterprise
beans and assembly descriptors.

155

http://localhost/0802_makepdf/ae_orig/nav_ejbnav/003501lite.html

6.6.5.1.3: Showing the status of EJB modules with the
Java administrative console

During thistask, you will view the status (such as running or stopped) of each EJB module in an enterprise
application.

1. Locate the EJB module instances.

2. Right-click an instance and select Show Statusto display the Module Status window.
3. When finished viewing status, close the window.

156

6.6.5.1.4: Exporting table DDLs of EJB modules with
the Java administrative console

Y ou can export the DDL for each EJB module that contains container managed persistence (CMP) entity beans.
Y ou can save the DDL filesto the location of your choice.

Later, you (or a database administrator) can use the saved DDL with the database vendor product to create
database tables that correspond to the EJB modules. See Recreating database tables form the exported table

DDL for instructions.

The data store that the DDL schemais loaded into should be the same data store specified in the container
managed entity bean data source bindings. The bindings should be those that were specified for each enterprise
bean, using the Application Installation wizard.
Toexport aDDL:
1. Locate the EJB module instance.
2. Right-click your EJB module in the details view and select Export Table DDL from the popup menu.
3. Inthe Export Table DDL dialog that opens:
a. From the Node drop-down list, select a node to which the DDL should be exported.
b. Inthe Export directory field, specify the target drive and directory for the DDL.
c. Click OK.

The DDL will be exported to the specified node and directory, and will have the name
enterpriseApplicationName_gjbModuleName _Table.ddl.

157

http://localhost/0802_makepdf/ae_orig/nav_ejbnav/06061408.html
http://localhost/0802_makepdf/ae_orig/nav_ejbnav/06061408.html

6.6.5.1.5: Moving EJB modules to other application
servers with the Java administrative console

Y ou can move an EJB module from one application server to a different application server or server group. To
move a module:

1. Locate the EJB module instance.
2. Right-click your EJB module in the details view and select M ove from the popup menu.

3. Inthe Select atarget server or ServerGroup dialog that opens, specify the target application server or
server group and click OK

4. Copy EAR files containing the module to the node that contains the destination server. If the destination
isaserver group, then copy the EAR file to all nodes that contain the clones of the destination server

group.

158

6.6.5.5: Administering EJB modules with Application
Assembly Tool

An EJB module is used to assemble one or more enterprise beans into asingle deployable unit. The Application
Assembly Tool is used to createand edit EJB modules, verify the archive files, and generate deploymentcode.
See therelated topics for links to concepts, instructions forcreating an EJB module, and field help.

159

6.6.5.5.1: Creating an EJB module

EJB modules can be created by using the property dialog boxes or by using awizard.

Using the property dialog boxes
Using the Create EJB Module wizard

Using the property dialog boxes

The steps for creating an EJB module are as follows:

1

6.

Click File->New->EJB Module. Thenavigation pane displays a hierarchical structure used to build the
contentsof the module. The icons represent the components, assembly properties,and files for the
module. A property dialog box containing generalinformation about the module is displayed in the
property pane.

By default, the archive file name and the module display name are thesame. It is recommended that you
change the display name in theproperty pane.

By default, the temporary location of the EJB module isinstallation_directory/ bi n. Y ou must specify a
newfile name and location by clicking File->Save.Y ou must add at |east one enterprise bean to the
module before savingit. Thisis arequirement for avalid archivefile.

Enter values for other properties as needed. View the help for 6.6.5.0.ac Assembly properties for EJB
modules.

Add enterprise beans to the module. Y ou must add at |east oneenterprise bean. First, click theicon
representing the type of beanbeing added (Session Beans or Entity Beans). There are several ways
ofadding beans to a module:

o Import an existing JAR or EAR file containing enterprise beans.Right-click the icon representing
the enterprise bean type and choosel mport. Click Browse to browse the file systemand locate
the desired JAR file. When the file islocated, clickOpen. Select the JAR file in the left window.
Theenterprise beans in the selected JAR file are displayed in the rightwindow. Select the beans to
be added and click Add.The selected items are displayed in the Selected Components
window.Click OK. The property dialog box for the enterprise bean isautomatically populated
with required values. Click the plus sign(+) next to the icon representing the bean type to verify
that thebeans are included in the module.

o Use a copy-and-paste operation to copy archive files from an existingmodule.

o Create anew enterprise bean. Right-click the icon representing theappropriate bean type and
choose New. For entity beans,choose whether the bean has container-managed or
bean-managedpersistence. In the property dialog box, browse for and select theclass files that
make up the bean. By default, the root directory orarchive is the current archive. If needed,
browse the file system forthe directory or archive where the classfiles reside. After you choosea
directory or archive, itsfile structure is displayed. Expand thestructure and locate the files that
you need. Select the file and clickOK . In the property dialog box, click OK.Verify that the beans
are added to the module (expand the hierarchy for thebean type in the navigation pane). If there
are one or more beans,display the properties for each bean by clicking the bean in the top part
ofthe property pane. The corresponding property dialog box is displayedin the bottom part of the
pane.

Specify properties for each enterprise bean. Expand the hierarchyfor each bean type. Click abean
instance and, if needed, edit or enterproperties for that bean. View the help for 6.6.5.0.1: Assembly

properties for entity beans or 6.6.5.0.4: Assembly properties for session beans.

7. Add assembly properties for each bean. Click the plus sign(+) next to the bean instance to reveal

160

property groups.Click the icon representing a group of properties. If properties areaready defined (for
example, for an imported bean), edit the properties inthe property pane. If properties are not defined,
right-click theproperty icon and click New. A property dialog box isdisplayed. Enter values for the
properties and clickOK .
o Specify Environment Entries. View the help for 6.6.34.0.ac Assembly properties for environment
entries.

o Specify EJB References. View the help for 6.6.43.0.1: Assembly properties for EJB references.

o Specify Resource References. View the help for 6.6.43.0.2 Assembly properties for resource
references.

o Specify Security Role References. View the help for 6.6.43.0.3: Assembly properties for security
role references.

o Specify CMP Fields. View the help for 6.6.5.0.2: Assembly properties for CMP fields.

o Specify Method Extensions. View the help for 6.6.5.0.3: Assembly properties for method
extensions.

8. Add assembly properties for the EJB module. In the navigation pane,right-click each property group's
icon. Choose New toadd new values.

o Specify Security roles. View the help for 6.6.5.0.5: Assembly properties for security roles.

o Specify Method permissions. View the help for 6.6.5.0.6: Assembly properties for method
permissions.

o Specify Container transactions. View the help for 6.6.5.0.7: Assembly properties for container
transactions.

9. Add files needed by the application. Right-click the Filesicon in the navigation pane and choose Add
Files. ClickBrowse to navigate to the desired directory or archive.Click Select. If you are adding an
entire archive, selectthe directory that contains the archive. The directory structure isdisplayed in the | eft
pane. Browse the directory structure. Fromthe right pane, select one or more files to be added and
clickAdd. If you select adirectory and click Add, alfilesin the directory, including the directory, are
added. Theselected files are displayed in the Selected Files window. Relativepath names are maintained.
When the Selected Files window contains thecorrect set of files, click OK.

10. Click File->Save to save the archive.

Using the Create EJB Module wizard

Use thiswizard to create an EJB module. The module can then be usedas a stand-alone application, or it can
become part of a J2EE applicationcontaining other modules. An EJB module consists of one or moreenterprise
beans. Y ou can use existing EJB JAR files (import them), orcreate new ones.

During creation of the EJB module, you specify the files for eachenterprise bean to be included in the module.
Y ou also specify otherinformation about the bean, such as security roles and references to otherenterprise beans
and to resource connection factories. After definingthe enterprise beans to be included in the module, you
specify assemblyproperties that apply to the module as a whole. Both bean and modul einformation are used to
create a deployment descriptor.

Y ou can specify either of the following:

« Oneor more EJB 1.1 JAR files, either created manually or withVisualAge for Java. The enterprise beans
must conform to J2EEspecifications. The JAR files can be deployed or undeployed.

o Oneor more EJB 1.0 JAR files. The Application Assembly Toolautomatically converts the file to the
161

http://localhost/0802_makepdf/ae_orig/nav_ejbnav/06063400aa.html#HDRPROPSENVREFS
http://localhost/0802_makepdf/ae_orig/nav_ejbnav/06063400aa.html#HDRPROPSENVREFS
http://localhost/0802_makepdf/ae_orig/nav_ejbnav/0606430001aa.html#HDRPROPSEJBREFS
http://localhost/0802_makepdf/ae_orig/nav_ejbnav/0606430002aa.html#HDRPROPSRESOURCEREFS
http://localhost/0802_makepdf/ae_orig/nav_ejbnav/0606430002aa.html#HDRPROPSRESOURCEREFS
http://localhost/0802_makepdf/ae_orig/nav_ejbnav/0606430003aa.html#HDRPROPSSECREFS
http://localhost/0802_makepdf/ae_orig/nav_ejbnav/0606430003aa.html#HDRPROPSSECREFS

EJB 1.1 specification format,but you must specify dependent classpaths if any.
« Enterprise bean classfiles (not residing in a JAR file).

The wizard creates an EJB module in the file location you specify.
To create an EJB module, click the Wizar dsicon on the tool barand then click EJB M odule. Follow the
instructions on eachpanel.

« Specifying EJB module properties

o Addingfiles

« Specifying EJB Client JAR and classpath

« Choosing EJB moduleicons

« Adding enterprise beans

o Adding security roles

« Adding method permissions

« Adding container transactions

« Setting additional properties and saving the archive
Specifying EJB module properties

On the Specifying EJB M odule Properties pandl:

1. Indicate the application to which this module is to be added. If aparent application is not indicated, the
module is created as a stand-al oneapplication.

2. Specify adisplay name for the module. The display name is used bythe Application Assembly Tool to
identify the module and can be used by othertools.

3. Specify afile name for the module. The file name specifies alocation on your system for the JAR fileto
be created.

4. Provide a short description of the module (optional).
5. Click Next.

Adding files

On the Adding Files panel, specify supplementary files (such adlibrary and utility files) that are to be included
in your EJB module.To add or removefiles:

1. Click Add. Usethe file browser to choose one or morefiles. First, browse for the root directory or
archive where the filesare located and click Select. If you are adding an entirearchive, select the
directory that contains the archive. The directorystructure is displayed in the |eft pane. Browse the
directorystructure. From the right pane, select one or more files to be addedand click Add. If you select
adirectory and clickAdd, all filesin the directory, including the directory, areadded. Relative path
names are maintained. The selected filesare displayed in the Selected Files window. Click OK.Thefiles
are displayed in atable on the wizard panel.

2. If you want to remove afile, select the file in the table and then clickRemove.
3. Continue to add or remove files until you have the correct set offiles.
4. Click Next.

Specifying EJB Client JAR and classpath

162

On the Specifying EJB Client JAR and Classpath panel:

1. Specify the EJB Client JAR file. Thisisthe location of the JARfile containing deployed classes needed
by aclient program for accessing theenterprise beans in this module.

2. Specify the path containing additional classes required by theapplication. This path is used by the
classpath loader.

3. Click Next.

Choosing EJB module icons

On the Choosing EJB Module | cons panel, specify icons for yourmodule.

1. Specify the full path name of afile containing a small icon. Theicon must be a GIF or JPEG image
16x16 pixelsin size.

2. Specify afull path name of afile containing alarge icon. Theicon must be a GIF or JPEG image 32x32
pixelsin size.
3. Click Next.

Adding enterprise beans

The Adding Enterprise Beans panel is used to add new enterprisebeans, import existing beans, or (if you are
modifying this module or make amistake) remove beans.

To add a new enterprise bean:

1. Click New. On the dialog box, choose a bean type(session bean, entity bean with BMP, or entity bean
with CMP). ClickOK.

2. On the Specifying Enter prise Bean Properties panel, entervalues for the properties of the bean. Click
Browse tolocate the root directory or archive where the bean classfilesreside. The files are displayed in
awindow. Locate and click the appropriatefile. Click OK. View the help for 6.6.5.0.1: Assembly

properties for entity beans or 6.6.5.0.4: Assembly properties for session beans. Click Next.

3. On the Specifying Container-managed per sistence (CM P) fieldspanel, define the variables for which
the container must manage persistencemanagement. View the help for 6.6.5.0.2: Assembly properties

for CMP fields. Click Next. This panel isvisibleonly for entity beans with CMP.

4. On the Specifying Specific Enterprise Bean Type Propertiespanel, enter values for the properties of
the bean. View the help for 6.6.5.0.1: Assembly properties for entity beans or 6.6.5.0.4: Assembly

properties for session beans. Click Next.

5. Onthe Choosing Enter prise Bean | cons panel, specify icons forthe bean. Specify the full path name of
afile containing a small iconand large icon. Theicon must be a GIF or JPEG image (16x16 pixels
0r32x32 pixelsin size).

6. Onthe Adding Environment Entries panel, enter values forenvironment entries. Click Add and enter a
name and type(required). Click OK. The entry is displayed in thetable on the wizard panel. To remove
an entry, select the entry andthen click Remove. View the help for 6.6.34.0.a: Assembly properties for

environment entries. Click Next.

7. Onthe Adding Security Role Refer ences panel, enter values forsecurity role references. Click Add to
enter arolename. Click OK. The role name is displayed in atableon the wizard panel. To remove arole,
select the role in the table andthen click Remove. View the help for 6.6.43.0.3: Assembly properties for

security role references. Click Next.
8. On the Adding Resour ce Refer ences panel, enter references forresource connection factories. Click

163

http://localhost/0802_makepdf/ae_orig/nav_ejbnav/06063400aa.html#HDRPROPSENVREFS
http://localhost/0802_makepdf/ae_orig/nav_ejbnav/06063400aa.html#HDRPROPSENVREFS
http://localhost/0802_makepdf/ae_orig/nav_ejbnav/0606430003aa.html#HDRPROPSSECREFS
http://localhost/0802_makepdf/ae_orig/nav_ejbnav/0606430003aa.html#HDRPROPSSECREFS

10.
11.

Add to add areference. Y ou must enter values for a name, type, and authorizationmode. Click OK. The
reference is displayed in a tableon the wizard panel. To remove areference, select the referencein
thetable and then click Remove. View the help for 6.6.43.0.2 Assembly properties for resource

references. Click Next.

On the Adding EJB References panel, enter values for EJBreferences. Click Add to add a reference.

Y ou mustenter avalue for the name, home interface, remote interface, and type.Click OK. The reference
isdisplayed in atable on thewizard panel. To remove areference, select the reference in the tableand
then click Remove. View the help for 6.6.43.0.1: Assembly properties for EJB references.

Click Finish.
Continue to add more enterprise beans as needed.

To import an existing enterprise bean:

1
2.

Click Import.

Browse the file system to locate the desired archive. The contentsof the archive are displayed in a
window. Select one or more JAR(files. The enterprise beansin the JAR file are displayed in the
rightwindow. Select an enterprise bean and then click Add.The enterprise beans are added to the
Selected Components window. ClickOK .

To remove an enterprise bean, select the enterprise bean in the table andthen click Remove.

Continue adding and removing enterprise beans as necessary. ClickNext.

Adding security roles

On the Adding Security Roles panel:

1

3.

Click Add. Type arole name and, optionally, type adescription. Click OK. The role name is displayed
inatable on the wizard panel. View the help for 6.6.5.0.5: Assembly properties for security roles.

Continue to add security roles as needed. If you need to remove arole, select therole in the table and
then click Remove.

Click Next.

Adding method permissions

On the Adding M ethod Permissions panel, indicate which securityroles are permitted to invoke which
methods.

1

o 0k WD

7.

To add method permissions, click Add. Enter a name forthe method permission. View the help for
6.6.5.0.6: Assembly properties for method permissions.

Click Add next to the table of methods. L ocate themethod in the JAR file, select it, and then click OK.
Click Add next to the table of security roles. Selectthe appropriate security role and click OK.

Verify the information and click OK. The methodpermission is displayed in atable on the wizard panel.
To add multiple method permissions, click Add on the wizardpanel and repest the process.

Continue to add and remove methods and corresponding security roles asneeded. If you need to remove
amethod permission, select the item andthen click Remove.

Click Next.

Adding container transactions

On the Adding Container Transactions panel, indicate transactionattributes for the methods of the enterprise

164

http://localhost/0802_makepdf/ae_orig/nav_ejbnav/0606430002aa.html#HDRPROPSRESOURCEREFS
http://localhost/0802_makepdf/ae_orig/nav_ejbnav/0606430002aa.html#HDRPROPSRESOURCEREFS
http://localhost/0802_makepdf/ae_orig/nav_ejbnav/0606430001aa.html#HDRPROPSEJBREFS

bean.

1. To add acontainer transaction, click Add. Enter a nameand choose a transaction attribute from the
menu. View the help for 6.6.5.0.7: Assembly properties for container transactions.

2. Click Add to choose which methods are to be governed by thisattribute. Locate the method in the JAR
file, select it, and then clickOK.

3. Verify the information and click OK. The containertransaction is displayed in atable on the wizard
panel.

4. To add multiple container transactions, click Add on the wizardpanel and repeat the process.

5. Continue adding or removing container transactions as needed. Ifyou need to remove a container
transaction, select the item and then clickRemove.

Setting additional properties and saving the archive

Click Finish to complete the wizard. To change settingsfor properties, click Back to return to the
appropriatepanel. Make any needed changes, and then clickFinish.

After you click Finish, the contents of the archive aredisplayed in an Application Assembly Tool window.
Review the contentsin the navigation pane. Y ou can continue adding or modifying propertiesas needed. For
example, you can add binding information. Whenyou are finished editing the archive, click File->Saveto save
the archivefile.

165

	Numbx:
	L:
	C:
	R:

	P1:
	Numbers:
	Numbx:
	L:
	C:
	R: 1

	P2:
	Numbers:
	Numbx:
	L: 2
	C:
	R:

	P3:
	Numbers:
	Numbx:
	L:
	C:
	R: 3

	P4:
	Numbers:
	Numbx:
	L: 4
	C:
	R:

	P5:
	Numbers:
	Numbx:
	L:
	C:
	R: 5

	P6:
	Numbers:
	Numbx:
	L: 6
	C:
	R:

	P7:
	Numbers:
	Numbx:
	L:
	C:
	R: 7

	P8:
	Numbers:
	Numbx:
	L: 8
	C:
	R:

	P9:
	Numbers:
	Numbx:
	L:
	C:
	R: 9

	P10:
	Numbers:
	Numbx:
	L: 10
	C:
	R:

	P11:
	Numbers:
	Numbx:
	L:
	C:
	R: 11

	P12:
	Numbers:
	Numbx:
	L: 12
	C:
	R:

	P13:
	Numbers:
	Numbx:
	L:
	C:
	R: 13

	P14:
	Numbers:
	Numbx:
	L: 14
	C:
	R:

	P15:
	Numbers:
	Numbx:
	L:
	C:
	R: 15

	P16:
	Numbers:
	Numbx:
	L: 16
	C:
	R:

	P17:
	Numbers:
	Numbx:
	L:
	C:
	R: 17

	P18:
	Numbers:
	Numbx:
	L: 18
	C:
	R:

	P19:
	Numbers:
	Numbx:
	L:
	C:
	R: 19

	P20:
	Numbers:
	Numbx:
	L: 20
	C:
	R:

	P21:
	Numbers:
	Numbx:
	L:
	C:
	R: 21

	P22:
	Numbers:
	Numbx:
	L: 22
	C:
	R:

	P23:
	Numbers:
	Numbx:
	L:
	C:
	R: 23

	P24:
	Numbers:
	Numbx:
	L: 24
	C:
	R:

	P25:
	Numbers:
	Numbx:
	L:
	C:
	R: 25

	P26:
	Numbers:
	Numbx:
	L: 26
	C:
	R:

	P27:
	Numbers:
	Numbx:
	L:
	C:
	R: 27

	P28:
	Numbers:
	Numbx:
	L: 28
	C:
	R:

	P29:
	Numbers:
	Numbx:
	L:
	C:
	R: 29

	P30:
	Numbers:
	Numbx:
	L: 30
	C:
	R:

	P31:
	Numbers:
	Numbx:
	L:
	C:
	R: 31

	P32:
	Numbers:
	Numbx:
	L: 32
	C:
	R:

	P33:
	Numbers:
	Numbx:
	L:
	C:
	R: 33

	P34:
	Numbers:
	Numbx:
	L: 34
	C:
	R:

	P35:
	Numbers:
	Numbx:
	L:
	C:
	R: 35

	P36:
	Numbers:
	Numbx:
	L: 36
	C:
	R:

	P37:
	Numbers:
	Numbx:
	L:
	C:
	R: 37

	P38:
	Numbers:
	Numbx:
	L: 38
	C:
	R:

	P39:
	Numbers:
	Numbx:
	L:
	C:
	R: 39

	P40:
	Numbers:
	Numbx:
	L: 40
	C:
	R:

	P41:
	Numbers:
	Numbx:
	L:
	C:
	R: 41

	P42:
	Numbers:
	Numbx:
	L: 42
	C:
	R:

	P43:
	Numbers:
	Numbx:
	L:
	C:
	R: 43

	P44:
	Numbers:
	Numbx:
	L: 44
	C:
	R:

	P45:
	Numbers:
	Numbx:
	L:
	C:
	R: 45

	P46:
	Numbers:
	Numbx:
	L: 46
	C:
	R:

	P47:
	Numbers:
	Numbx:
	L:
	C:
	R: 47

	P48:
	Numbers:
	Numbx:
	L: 48
	C:
	R:

	P49:
	Numbers:
	Numbx:
	L:
	C:
	R: 49

	P50:
	Numbers:
	Numbx:
	L: 50
	C:
	R:

	P51:
	Numbers:
	Numbx:
	L:
	C:
	R: 51

	P52:
	Numbers:
	Numbx:
	L: 52
	C:
	R:

	P53:
	Numbers:
	Numbx:
	L:
	C:
	R: 53

	P54:
	Numbers:
	Numbx:
	L: 54
	C:
	R:

	P55:
	Numbers:
	Numbx:
	L:
	C:
	R: 55

	P56:
	Numbers:
	Numbx:
	L: 56
	C:
	R:

	P57:
	Numbers:
	Numbx:
	L:
	C:
	R: 57

	P58:
	Numbers:
	Numbx:
	L: 58
	C:
	R:

	P59:
	Numbers:
	Numbx:
	L:
	C:
	R: 59

	P60:
	Numbers:
	Numbx:
	L: 60
	C:
	R:

	P61:
	Numbers:
	Numbx:
	L:
	C:
	R: 61

	P62:
	Numbers:
	Numbx:
	L: 62
	C:
	R:

	P63:
	Numbers:
	Numbx:
	L:
	C:
	R: 63

	P64:
	Numbers:
	Numbx:
	L: 64
	C:
	R:

	P65:
	Numbers:
	Numbx:
	L:
	C:
	R: 65

	P66:
	Numbers:
	Numbx:
	L: 66
	C:
	R:

	P67:
	Numbers:
	Numbx:
	L:
	C:
	R: 67

	P68:
	Numbers:
	Numbx:
	L: 68
	C:
	R:

	P69:
	Numbers:
	Numbx:
	L:
	C:
	R: 69

	P70:
	Numbers:
	Numbx:
	L: 70
	C:
	R:

	P71:
	Numbers:
	Numbx:
	L:
	C:
	R: 71

	P72:
	Numbers:
	Numbx:
	L: 72
	C:
	R:

	P73:
	Numbers:
	Numbx:
	L:
	C:
	R: 73

	P74:
	Numbers:
	Numbx:
	L: 74
	C:
	R:

	P75:
	Numbers:
	Numbx:
	L:
	C:
	R: 75

	P76:
	Numbers:
	Numbx:
	L: 76
	C:
	R:

	P77:
	Numbers:
	Numbx:
	L:
	C:
	R: 77

	P78:
	Numbers:
	Numbx:
	L: 78
	C:
	R:

	P79:
	Numbers:
	Numbx:
	L:
	C:
	R: 79

	P80:
	Numbers:
	Numbx:
	L: 80
	C:
	R:

	P81:
	Numbers:
	Numbx:
	L:
	C:
	R: 81

	P82:
	Numbers:
	Numbx:
	L: 82
	C:
	R:

	P83:
	Numbers:
	Numbx:
	L:
	C:
	R: 83

	P84:
	Numbers:
	Numbx:
	L: 84
	C:
	R:

	P85:
	Numbers:
	Numbx:
	L:
	C:
	R: 85

	P86:
	Numbers:
	Numbx:
	L: 86
	C:
	R:

	P87:
	Numbers:
	Numbx:
	L:
	C:
	R: 87

	P88:
	Numbers:
	Numbx:
	L: 88
	C:
	R:

	P89:
	Numbers:
	Numbx:
	L:
	C:
	R: 89

	P90:
	Numbers:
	Numbx:
	L: 90
	C:
	R:

	P91:
	Numbers:
	Numbx:
	L:
	C:
	R: 91

	P92:
	Numbers:
	Numbx:
	L: 92
	C:
	R:

	P93:
	Numbers:
	Numbx:
	L:
	C:
	R: 93

	P94:
	Numbers:
	Numbx:
	L: 94
	C:
	R:

	P95:
	Numbers:
	Numbx:
	L:
	C:
	R: 95

	P96:
	Numbers:
	Numbx:
	L: 96
	C:
	R:

	P97:
	Numbers:
	Numbx:
	L:
	C:
	R: 97

	P98:
	Numbers:
	Numbx:
	L: 98
	C:
	R:

	P99:
	Numbers:
	Numbx:
	L:
	C:
	R: 99

	P100:
	Numbers:
	Numbx:
	L: 100
	C:
	R:

	P101:
	Numbers:
	Numbx:
	L:
	C:
	R: 101

	P102:
	Numbers:
	Numbx:
	L: 102
	C:
	R:

	P103:
	Numbers:
	Numbx:
	L:
	C:
	R: 103

	P104:
	Numbers:
	Numbx:
	L: 104
	C:
	R:

	P105:
	Numbers:
	Numbx:
	L:
	C:
	R: 105

	P106:
	Numbers:
	Numbx:
	L: 106
	C:
	R:

	P107:
	Numbers:
	Numbx:
	L:
	C:
	R: 107

	P108:
	Numbers:
	Numbx:
	L: 108
	C:
	R:

	P109:
	Numbers:
	Numbx:
	L:
	C:
	R: 109

	P110:
	Numbers:
	Numbx:
	L: 110
	C:
	R:

	P111:
	Numbers:
	Numbx:
	L:
	C:
	R: 111

	P112:
	Numbers:
	Numbx:
	L: 112
	C:
	R:

	P113:
	Numbers:
	Numbx:
	L:
	C:
	R: 113

	P114:
	Numbers:
	Numbx:
	L: 114
	C:
	R:

	P115:
	Numbers:
	Numbx:
	L:
	C:
	R: 115

	P116:
	Numbers:
	Numbx:
	L: 116
	C:
	R:

	P117:
	Numbers:
	Numbx:
	L:
	C:
	R: 117

	P118:
	Numbers:
	Numbx:
	L: 118
	C:
	R:

	P119:
	Numbers:
	Numbx:
	L:
	C:
	R: 119

	P120:
	Numbers:
	Numbx:
	L: 120
	C:
	R:

	P121:
	Numbers:
	Numbx:
	L:
	C:
	R: 121

	P122:
	Numbers:
	Numbx:
	L: 122
	C:
	R:

	P123:
	Numbers:
	Numbx:
	L:
	C:
	R: 123

	P124:
	Numbers:
	Numbx:
	L: 124
	C:
	R:

	P125:
	Numbers:
	Numbx:
	L:
	C:
	R: 125

	P126:
	Numbers:
	Numbx:
	L: 126
	C:
	R:

	P127:
	Numbers:
	Numbx:
	L:
	C:
	R: 127

	P128:
	Numbers:
	Numbx:
	L: 128
	C:
	R:

	P129:
	Numbers:
	Numbx:
	L:
	C:
	R: 129

	P130:
	Numbers:
	Numbx:
	L: 130
	C:
	R:

	P131:
	Numbers:
	Numbx:
	L:
	C:
	R: 131

	P132:
	Numbers:
	Numbx:
	L: 132
	C:
	R:

	P133:
	Numbers:
	Numbx:
	L:
	C:
	R: 133

	P134:
	Numbers:
	Numbx:
	L: 134
	C:
	R:

	P135:
	Numbers:
	Numbx:
	L:
	C:
	R: 135

	P136:
	Numbers:
	Numbx:
	L: 136
	C:
	R:

	P137:
	Numbers:
	Numbx:
	L:
	C:
	R: 137

	P138:
	Numbers:
	Numbx:
	L: 138
	C:
	R:

	P139:
	Numbers:
	Numbx:
	L:
	C:
	R: 139

	P140:
	Numbers:
	Numbx:
	L: 140
	C:
	R:

	P141:
	Numbers:
	Numbx:
	L:
	C:
	R: 141

	P142:
	Numbers:
	Numbx:
	L: 142
	C:
	R:

	P143:
	Numbers:
	Numbx:
	L:
	C:
	R: 143

	P144:
	Numbers:
	Numbx:
	L: 144
	C:
	R:

	P145:
	Numbers:
	Numbx:
	L:
	C:
	R: 145

	P146:
	Numbers:
	Numbx:
	L: 146
	C:
	R:

	P147:
	Numbers:
	Numbx:
	L:
	C:
	R: 147

	P148:
	Numbers:
	Numbx:
	L: 148
	C:
	R:

	P149:
	Numbers:
	Numbx:
	L:
	C:
	R: 149

	P150:
	Numbers:
	Numbx:
	L: 150
	C:
	R:

	P151:
	Numbers:
	Numbx:
	L:
	C:
	R: 151

	P152:
	Numbers:
	Numbx:
	L: 152
	C:
	R:

	P153:
	Numbers:
	Numbx:
	L:
	C:
	R: 153

	P154:
	Numbers:
	Numbx:
	L: 154
	C:
	R:

	P155:
	Numbers:
	Numbx:
	L:
	C:
	R: 155

	P156:
	Numbers:
	Numbx:
	L: 156
	C:
	R:

	P157:
	Numbers:
	Numbx:
	L:
	C:
	R: 157

	P158:
	Numbers:
	Numbx:
	L: 158
	C:
	R:

	P159:
	Numbers:
	Numbx:
	L:
	C:
	R: 159

	P160:
	Numbers:
	Numbx:
	L: 160
	C:
	R:

	P161:
	Numbers:
	Numbx:
	L:
	C:
	R: 161

	P162:
	Numbers:
	Numbx:
	L: 162
	C:
	R:

	P163:
	Numbers:
	Numbx:
	L:
	C:
	R: 163

	P164:
	Numbers:
	Numbx:
	L: 164
	C:
	R:

	P165:
	Numbers:
	Numbx:
	L:
	C:
	R: 165

