L[[2RIET(N Application Server for z/0S, Version 6.0.1

oS <=n 2
oS

i,
-~ T Y
@ o 2 |

Securing applications and their environment

SA22-7961-03

Note
FBefore using this information, be sure to read the general information under [‘Notices” on page 1109,

Compilation date: March 9, 2005

© Copyright International Business Machines Corporation 2005. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents
How to send your comments.

Chapter 1. Overview and new features for securing applications and their environment .
Contents of this section: Securing applications and their environments

What is new for security specialists

Enabling security for WSIF

Chapter 2. How do | secure applications and their environments?
Chapter 3. Securing applications and their environments

Chapter 4. Integrating IBM WebSphere Application Server security with existing security
systems . ..

Network communlcat|on usmg Secure Sockets Layer and the Transport Channel Serwce

Security considerations for WebSphere Application Server for z/OS .

Interoperability issues for security

Interoperating with a C++ common object request broker arch|tecture cllent

Interoperating with previous product versions .

Security: Resources for learning .

Chapter 5. Planning to secure your environment. .
Security considerations when adding a Base Application Server node to Network Deployment .
Security considerations specific to a multi-node or process Network Deployment environment
Preparing truststore files . .

Chapter 6. Implementing security considerations at installation time .
Securing your environment after installation .
Protecting plain text passwords
Setting up WebSphere Application Server for z/OS securlty
Security customization dialog settings . .
Enabling global security for WebSphere Appllcatlon Server .
Selecting a user registry . . .
Selecting an authentication mechanlsm
Authorization checking . .
Setting up Secure Sockets Layer securlty for WebSphere Appl|cat|on Server for z/OS .
Setting permission for files created by applications . Coe e
Setting up RACF protection for DB2
Understanding System Authorization Facility proflle names generated by the Customlzatlon Dlalog
PropFilePasswordEncoder command reference

Chapter 7. Migrating security configurations from previous releases .

Migrating custom user registries . .

Migrating trust association interceptors

Migrating Common Object Request Broker Arch|tecture programmatlc Iog|n to Java Authent|cat|on and
Authorization Service .

Migrating from the CustomLoglnServIet class to servlet f|Iters

Chapter 8. Developing secured applications

Developing with programmatic security APIs for Web appllcatlons
Example: Web applications code . .
Developing servlet filters for form login processmg
Configuring servlet filters .

Developing form login pages

© Copyright IBM Corp. 2005

awn =

~

. 13

. 15
.19
. 20
. 23
. 23
. 24
. 25

.27
. 35
. 36
. 38

. 39
. 39
. 40
. 43
. 44
. 44
. 48
. 49
. 50
. 60
.71
.71

72

. 73

. 75
. 76
. 79

. 81
. 84

. 87
. 88
. 90
.9
. 95
. 96

Example: Form login
Developing with programmatic APIs for EJB appllcatlons
Example: Enterprise bean application code
Programmatic login

Web authentication using the Java Authentlcatron and Authonzatlon Serwce programmlng modeI
Developing programmatic logins with the Java Authentication and Authorization Service .

Example: Programmatic logins .

Custom login module development for a system Iogln conflguratlon
Example: Customizing a server-side Java Authentication and Authorization Serwce authentrcatlon and

login configuration .
Example: Getting the Caller Subject from the Thread
Example: Getting the RunAs Subject from the Thread
Example: Overriding the RunAs Subject on the Thread .
Example: User revocation from a cache. .
Developing your own J2C principal mapping module .
Developing custom user registries .

Using DB2 in a custom user registry .

Example: Custom user registries

UserRegistry interface methods.
Trust association interceptor support for Subject creat|on

Chapter 9. Assembling secured applications .
Enterprise bean component security .
Securing enterprise bean applications
Web component security
Securing Web applications using an assembly tooI
Role-based authorization .

Naming roles

Adding users and groups to roIes usmg an assembly tool .

Mapping users to RunAs roles using an assembly tool

Chapter 10. Deploying secured applications .
Assigning users and groups to roles .
Security role to user and group selections .
Delegations .
Assigning users to RunAs roles .
EJB 2.1 method protection level settlngs
RunAs roles to users mapping . . .
Updating and redeploying secured applrcatlons .

Chapter 11. Testing security
Chapter 12. Administering security.

Configuring global security.
Enabling global security.

Synchronizing a Java thread |dent|ty and an operatlng system thread |dent|ty

Configuring global security.
Global security and server security

Using System Authorization Facility keyrrngs wrth Java Secure Sockets Extensmn .

Configuring server security
Server security settings .
Server-level security settings .
RACF server class profiles
Administrative console and naming service authorlzat|on
Assigning users to administrator roles .
Console groups and CORBA naming service groups .

iv 1BM WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

.97
. 100
. 102
. 104

112

. 114
. 116

.17

. 131
. 137
. 138
. 139
. 140
.14
. 143
. 144
. 146
. 146
. 153

. 155
. 156
. 156
. 158
. 159
. 161
. 163
. 165
. 166

. 169
. 170
171
. 173
. 175
. 176
177
. 178

. 181

. 183
. 184
. 187
. 194
. 204
. 205
. 206
. 208
. 209
. 210
. 211
. 213
. 216
. 218

Assigning users to naming roles .
Special considerations for controlling access to nammg roIes usmg SAF authonzatlon.
Console users settings and CORBA naming service user settings .

Authentication mechanisms

Steps for selecting an authentication mechanlsm
Steps for selecting the SWAM authentication mechanlsm
Steps for selecting LTPA as the authentication mechanism .

Steps for selecting ICSF as the authentication mechanism .
Configuring authentication mechanisms . .
Simple WebSphere authentication mechanism
Lightweight Third Party Authentication
Configuring Lightweight Third Party Authentlcatlon
Integrated Cryptographic Services Facility settings .
Trust associations . .
Configuring trust assomaﬂon mterceptors
Configuring single signon . .
Single signon using WebSEAL or the T|voI| Access Manager plug in for Web servers .
Creating a trusted user account in Tivoli Access Manager . . .
Configuring WebSEAL for use with WebSphere Application Server

. 220
. 221
. 221
. 223
. 225
. 225
. 225
. 226
. 226
. 227
. 227
. 228
. 233
. 234
. 238
. 240
. 248
. 249
. 249

Configuring Tivoli Access Manager plug-in for Web servers for use with WebSphere Appl|cat|on

Server .
Configuring single S|gnon usmg the trust assomahon mterceptor
Configuring single signon using trust association interceptor ++ .
Global signon principal mapping .
Configuring global signon principal mapplng .o
The Tivoli Access Manager com.tivoli.pd.jcfg. PDtheCfg ut|I|ty
The Tivoli Access Manager com.tivoli. pd jcfg SvrSsICfg utility .
User registrieso -
Steps for selecting a user reglstry
Steps for selecting SAF Authorization
Steps for selecting an LDAP user registry .
Steps for selecting a custom user registry .
Configuring user registries.
Local operating system user reglstrles .
Configuring local operating system user reg|str|es .
Lightweight Directory Access Protocol
Configuring Lightweight Directory Access Protocol user reglstrles
Configuring Lightweight Directory Access Protocol search filters .
Using specific directory servers as the LDAP server . .
Locating a user’s group memberships in Lightweight D|rectory Access Protocol .
Dynamic groups and nested group support
Dynamic and nested group support for the SunONE or |Planet Dlrectory Server
Configuring dynamic and nested group support for the SunONE or iPlanet Directory Server
Dynamic groups and nested group support for the IBM Tivoli Directory Server
Configuring dynamic and nested group support for the IBM Tivoli Directory Server .
Custom user registries .
Configuring custom user reglstnes
Java Authentication and Authorization SerV|ce
Java Authentication and Authorization Service author|zat|on
Configuring application logins for Java Authentication and Authorization Serwce
Login configuration for Java Authentication and Authorization Service . .
Configuration entry settings for Java Authentication and Authorization Service.

System login configuration entry settings for Java Authentication and Authorization Serwce.

Login module settings for Java Authentication and Authorization Service .
Login module order settings for Java Authentication and Authorization Service
Login configuration settings for Java Authentication and Authorization Service.

. 250
. 251
. 252
. 254
. 256
. 259
. 260
. 263
. 264
. 265
. 265
. 267
. 267
. 268
.27
. 273
. 274
. 281
. 283
. 286
. 288
. 288
. 289
. 289
. 290
. 290
. 292
. 320
. 320
. 322
. 325
. 341
. 343
. 350
. 351
. 352

Contents

\'}

J2EE Connector security .
Managing J2EE Connector Archltecture authentlcatlon data entrles

Identity mapping .

Configuring inbound |dent|ty mapplng
Example: Custom login module for mbound mappmg

Configuring outbound mapping to a different target realm .

Example: Using the WSLogin configuration to create a basic authentrcatron subject
Example: Sample login configuration for RMI_OUTBOUND

Security attribute propagation e e

Enabling security attribute propagation .

Default PropagationToken .

Implementing a custom PropagatronToken .
Example: com.ibm.wsspi.security.token. PropagatronToken |mpIementat|on .
Example: custom PropagationToken login module .

Default AuthorizationToken

Implementing a custom AuthonzatlonToken
Example: com.ibm.wsspi.security.token. AuthorrzatronToken |mplementat|on
Example: custom AuthorizationToken login module.

Default SingleSignonToken

Implementing a custom SlngIeS|gnonToken
Example: com.ibm.wsspi.security.token. SlngIeS|gnonToken |mplementat|on
Example: custom SingleSignonToken login module.

Example: HTTP cookie retrieval.

Default AuthenticationToken . .

Implementing a custom Authent|cat|onToken .

Example: com.ibm.wsspi.security.token. Authent|cat|onToken |mplementat|on
Example: custom AuthenticationToken login module

Propagating a custom Java serializable object

Authorization in WebSphere Application Server .

JACC providers.

Authorization providers settrngs

JACC support in WebSphere Application Server
JACC policy context handlers
JACC policy context identifiers (ContextID) format
JACC policy propagation
JACC registration of the provider |mplementat|on classes

Enabling an external JACC provider .

External Java Authorization Contract for Contamers provrder settmgs

Propagating security policy of installed applications to a JACC provider using wsadmm scrlptlng

Configuring a JACC provider .
Interfaces used to support JACC
Tivoli Access Manager integration as the JACC provrder .
Tivoli Access Manager security for WebSphere Application Server .
Creating the security administrative user
Tivoli Access Manager JACC provider conflguratlon
Configuring the JACC provider for Tivoli Access Manager usmg the wsadmm utlllty
Configuring the JACC provider for Tivoli Access Manager using the administrative console .
Tivoli Access Manager JACC provider settings .
Enabling the JACC provider for Tivoli Access Manager .
Configuring additional authorization servers
Role-based security with embedded Tivoli Access Manager
Administering security users and roles with Tivoli Access Manager .
Configuring Tivoli Access Manager groups . .
Tivoli Access Manager JACC provider configuration propertles
Static role caching properties
Dynamic role caching properties

Vi 1BM WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

. 353
. 356
. 358
. 359
. 364
. 368
. 369
. 371
. 373
. 378
. 380
. 386
. 387
. 392
. 394
. 398
. 399
. 404
. 407
. 408
. 409
. 414
. 416
. 419
. 420
. 422
. 427
. 429
. 434
. 435
. 436
. 437
. 440
. 441
. 441
. 443
. 443
. 444

447

. 449
. 450
. 454
. 456
. 459
. 459
. 460
. 462
. 464
. 466
. 467
. 467
. 469
. 469
. 470
. 470
. 471

Object caching properties .
Role-based policy framework propertles
System-dependent configuration properties
Logging Tivoli Access Manager security .
Enabling embedded Tivoli Access Manager
Disabling embedded Tivoli Access Manager client .
Disabling embedded Tivoli Access Manager client using the Admlnlstrat|on Console
Disabling embedded Tivoli Access Manager client using wsadmin .
Forcing the unconfiguration of the Tivoli Access Manager JACC provider
Updating console users and groups . .
The Tivoli Access Manager migrateEAR ut|I|ty
Troubleshooting authorization providers .
Authentication protocol for EJB security .
Common Secure Interoperability Version 2 features
Identity assertion .
Message layer authentlcatron
Secure Sockets Layer client certificate authentlcatlon
Supported authentication protocols
Configuring Common Secure Interoperability VerS|on 2 and Secunty Authent|cat|on Serwce
authentication protocols .
Common Secure Interoperability VerS|on 2 and Secunty Authentlcatron Serwce cI|ent conflguratlon
z/OS Secure Authentication Service authentication settings
Configuring Common Secure Interoperability Version 2 inbound authentlcatlon
Configuring Common Secure Interoperability Version 2 outbound authentication .
Configuring inbound transports .
Configuring outbound transports
Secure Sockets Layer .
Authenticity .
Confidentiality
Integrity
Configuring Secure Sockets Layer
Configuring Secure Sockets Layer for Web cllent authentlcatlon
Configuring Secure Sockets Layer for the Lightweight Directory Access Protocol cllent
Changing the default Secure Sockets Layer repertoire key files .
Configuring Secure Sockets Layer for Java client authentication .
Secure Sockets Layer configuration repertoire settings .
Digital certificates . .
Configuring to use cryptograph|c tokens
Using Java Secure Socket Extension and Java Cryptography ExtenS|on W|th Servlets and enterprlse
bean files .
Configuring Java 2 securrty
Using PolicyTool to edit policy flles
Migrating Java 2 security policy .

Chapter 13. Configuring security with scripting .
Enabling and disabling global security using scripting .
Enabling and disabling Java 2 security using scripting

Chapter 14. Learn about WebSphere appllcatlons
Web applications . ..
Security constraints .

EJB applications .
Configuring security for message drlven beans that use Ilstener ports.
Configuring security for EJB 2.1 message-driven beans .

Client applications. .
Accessing secure resources usmg SSL and applet cl|ents .

Contents

. 471
. 472
. 473
. 474
. 475
. 476
. 476
. 477
. 477
. 478
. 478
. 481
. 484
. 488
. 488
. 489
. 490
. 491

. 491

492

. 496
. 498
. 504
. 508
. 510
. 512
. 514
. 515
. 517
. 517
. 519
. 519
. 522
. 522
. 525
. 531
. 535

. 537
. 541
. 543
. 571

. 575
. 576
. 576

. 579
. 579
. 579
. 580
. 580
. 580
. 581
. 581

Vii

Web services
Transport level secunty

Configuring HTTP outbound transport IeveI securlty W|th the admlnlstratlve console.

Configuring HTTP outbound transport level security with an assembly tool .
Configuring HTTP outbound transport-level security using Java properties .
HTTP basic authentication.

Configuring HTTP basic authent|cat|on W|th the admlnlstratlve console
Configuring HTTP basic authentication with an assembly tool.

Configuring HTTP basic authentication programmatically

Configuring additional HTTP transport properties using the adm|n|strat|ve console .

Configuring additional HTTP transport properties with an assembly tool .
Configuring additional HTTP transport properties using wsadmin
Provide HTTP endpoint URL information
Publish WSDL zip files settings . .
Securing Web services for version 6.0.x appllcatlons based on WS Securlty
Securing Web services for version 5.x applications based on WS-Security .
Security API for the UDDI Version 3 Registry

Data access resources
Security of lookups with component managed authentlcahon

Messaging resources .
Configuring authorization securlty for a VerS|on 5 default messagmg prowder
Configuring security for message-driven beans that use listener ports
Configuring security for EJB 2.1 message-driven beans

Mail, URLs, and other J2EE resources.
JavaMail security permissions best practices

Learn about WebSphere programming extensions
Scheduler

Chapter 15. Tuning security configurations .
Tuning CSIv2 .

Tuning LDAP authentlcahon

Tuning Web authentication .

Tuning authorization

Security cache properties

Tuning security

Chapter 16. Troubleshooting security configurations .
Errors when trying to configure or enable security

Access problems after enabling security .

Errors after enabling security

Errors after configuring or enabling Secure Sockets Layer
Security components troubleshooting tips.

Notices .

Trademarks and service marks .

viii 1BMm WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

. 582
. 582
. 583
. 584
. 585
. 586
. 586
. 588
. 589
. 591
. 592
. 593
. 594
. 595
. 596
. . 900
. 1074
. 1074
. 1074
. 1075
. 1075
. 1079
. 1080
. 1081
. 1081
. 1081
. 1082

. 1083
. 1084
. 1084
. 1084
. 1085
. 1085
. 1086

. 1087
. 1087
. 1088
. 1091
. 1095
. 1098

. 1109

111

How to send your comments

Your feedback is important in helping to provide the most accurate and highest quality information.
» To send comments on articles in the WebSphere Application Server Information Center
1. Display the article in your Web browser and scroll to the end of the article.

2. Click on the Feedback link at the bottom of the article, and a separate window containing an e-mail
form appears.

3. Fill out the e-mail form as instructed, and click on Submit feedback .

* To send comments on PDF books, you can e-mail your comments to: wasdoc@us.ibm.com or fax
them to 919-254-0206.

Be sure to include the document name and number, the WebSphere Application Server version you are
using, and, if applicable, the specific page, table, or figure number on which you are commenting.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information
in any way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2005 ix

X IBM WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

Chapter 1. Overview and new features for securing
applications and their environment

[“What is new for security specialists” on page :_3|

This topic provides an overview of new and changed features in security.

|[WebSphere security architecture|

This IBM Education Assistant presentation provides an overview of the security architecture.
Additional presentations are available that focus on the following concepts:

« [CSIv2 security overview|

» [JACC overvie

« [Resource security overview

Introduction: Security|

This topic describes how IBM WebSphere Application Server provides security infrastructure and
mechanisms to protect sensitive Java 2 Platform, Enterprise Edition (J2EE) resources and
administrative resources and to address enterprise end-to-end security requirements on
authentication, resource access control, data integrity, confidentiality, privacy, and secure
interoperability.

Chapter 4, “Integrating IBM WebSphere Application Server security with existing security systems,”|
on page 15|

This topic describes how the product security features relate to the security features of the
environment into which you have added application serving capability.

[Chapter 5, “Planning to secure your environment,” on page 27|

Several communication links are provided from a browser on the Internet, through Web servers
and product servers, to the enterprise data at the back-end. This topic examines some typical
configuration and common security practices. WebSphere Application Server security is built on a
layered security architecture. This section also examines the security protection offered by each
security layer and common security practice for good quality of protection in end-to-end security.

© Copyright IBM Corp. 2005 1

ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Security/Presentations/WASv6_Sec_Architecture/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Security/Presentations/WASv6_Sec_CSIv2/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Security/Presentations/WASv6_Sec_JACC/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Security/Presentations/WASv6_Sec_JDBC_J2C/playershell.swf

Samples

The [Eamples Gallery offers:

* Login - Form Login
The Form Login Sample demonstrates a very simple
example of how to use the login facilities for
WebSphere Application Server to implement and
configure login applications. The Sample uses the Java
2 Platform, Enterprise Edition (J2EE) form-based login
technology to customize the look and feel of the login
screens. It uses servlet filters to log the user
information and the date information. The Sample
finishes the session by using the form-based logout
function, an IBM extension to the J2EE specification.

* Login - JAAS Login
The JAAS Login Sample demonstrates how to use the
Java Authentication and Authorization Service (JAAS)
with WebSphere Application Server. The Sample uses
server-side login with JAAS to authenticate a real user
to the WebSphere security run time. Based upon a
successful login, the WebSphere security run time uses
the authenticated Subject to perform authorization
checks on a protected stateless session enterprise
bean. If the Sample runs successfully, it displays all the
principals and public credentials of the authenticated
user.

Contents of this section: Securing applications and their environments

Chapter 4, “Integrating IBM WebSphere Application Server security with existing security systems,’]

on page 1§|
This section provides interoperability information. WebSphere Application Server security is an
integral part of your multiple-tier enterprise computing framework. WebSphere Application Server
adopts the open architecture paradigm and provides many plug-in points to integrate with
enterprise software components to provide end-to-end security. WebSphere Application Server
plug-in points are based on standard J2EE specifications wherever applicable. WebSphere
Application Server is actively involved in various standard bodies to externalize and to standardize
plug-in interfaces.

[Chapter 5, “Planning to secure your environment,” on page 27|
This section examines some typical configuration and common security practices. There are
several communication links from a browser on the Internet, through Web servers and product
servers, to the enterprise data at the back end. WebSphere Application Server security is built on
a layered security architecture. This section also examines the security protection offered by each
security layer and common security practice for good quality of protection in end-to-end security.

|Chapter 6, “Implementing security considerations at installation time,” on page 39|
This section describes how to implement security before, during, and after installing the product.

|Chapter 7, “Migrating security configurations from previous releases,” on page 75|
This section describes how to migrate your security configurations from a previous product
release.

|Chapter 8, “Developing secured applications,” on page 87|
This section describes how to implement declarative and programmatic security while developing,
assembling, and deploying your applications. The product security components provide or

2 1BM WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

collaborate with other services to provide authentication, authorization, delegation, and data
protection. The product also supports the security features described in the Java 2 Enterprise
Edition (J2EE) specification.

[Chapter 9, “Assembling secured applications,” on page 155
This section describes how to use assembly tools to secure applications and the EJB and Web
modules that comprise them.

|Chapter 9, “Assembling secured applications,” on page 155|
This section describes security tasks and considerations as you are deploying applications onto
the application server and testing that users can access the secured applications.

|Chapter 12, “Administering security,” on page 183|
This section describes how to configure and administer security features, including:

* Global security
» Authentication mechanisms (directories and user registries)

« Authorization policies and providers, including Java Authentication and Authorization Service
(JAAS)

* Trust association interceptors

+ Single signon

« Common Secure Interoperability Version 2 (CSIv2)
» Secure Sockets Layer (SSL)

» Java 2 Security manager

« Security attribute propagation

[Chapter 14, “Learn about WebSphere applications,” on page 579
This section provides security instructions that are specific to the various types of applications,
such as Web applications or Web services.

[Chapter 15, “Tuning security configurations,” on page 1083|
This section describes how enabling security decreases performance. This information includes
considerations for increasing performance.

[Chapter 16, “Troubleshooting security configurations,” on page 1087|
This section describes how to troubleshoot errors related to security.

What is new for security specialists

This topic highlights what is new or changed in Version 6.0.x, and is aimed at those who are responsible
for securing applications and the application serving environment.

The biggest improvement in security involves the set of supported specifications.

External JACC provider support The Java Authorization Contract for Containers
specification (JACC) version 1.0, introduced in
WebSphere Application Server Version 6.0.x and defined
by Java 2 Platform, Enterprise Edition (J2EE) Version 1.4,
defines a contract between J2EE containers and external
authorization providers. Based on this specification,
WebSphere Application Server enables you to plug in an
external provider to make authorization decisions when
you are accessing J2EE resources. When you use this
feature, WebSphere Application Server supports Tivoli
Access Manager as the default JACC provider.

For more information, see FJACC providers” on page 435

Chapter 1. Overview and new features 3

Java 2 security manager

JCA 1.5 support

SSL channel framework

Web authentication using the Java Authentication and
Authorization Service programming model

WebSphere Application Server Version 6.0.x provides you
with greater control over the permissions granted to
applications for manipulating non-system threads. You can
permit applications to manipulate non-system threads
using the was.policy file. However, these thread control
permissions are disabled, by default.

For more information, see [‘Configuring the was.policy file’|

on page 556.

WebSphere Application Server Version 6.0.x supports the
J2EE Connector Architecture (JCA) Version 1.5
specification, which provides new features such as the
inbound resource adapter. For more information, see
[J2EE Connector Architecture resource adapters|.

From a security perspective, WebSphere Application
Server Version 6.0.x provides an enhanced custom
principal and credential mapping programming interface
and custom mapping properties at the resource reference
level. The custom JAAS LoginModule, which was
developed for JCA principal and credential mapping for
WebSphere Application Server Version 5.x, continues to
be supported.

The Secure Sockets Layer channel framework
incorporates the new IBMJSSE2 implementation and
separates the security function of Java Secure Sockets
Extension (JSSE) from the network communication
function.

WebSphere Application Server Version 6.0.x enables you
to use the Java Authentication and Authorization Service
(JAAS) programming model to perform Web authentication
in your application code. To use this function, you must
create your own JAAS login configuration by cloning the
WEB_INBOUND login configuration and define a
cookie=true login option. After a successful login using
your login configuration, the Web login session is tracked
by single signon (SSO) token cookies. This option
replaces the SSOAuthenticator interface, which was
deprecated in WebSphere Application Server Version 4.

For more information, see ['Java Authentication and|
|Authorization Service authorization” on page 320

4 BM WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

Web services security

WebSphere Application Server Version 6.0.x increases the
extensibility of Web services security by providing a
pluggable architecture. The implementation in WebSphere
Application Server includes many of the features
described in the Organization for the Advancement of
Structured Information Standards (OASIS) Web Services
Security Version 1 standard. As part of this standard,
WebSphere Application Server supports custom,
pluggable tokens that are used for signing and encryption;
pluggable signing and encryption algorithms; pluggable
key locators for locating a key that is used for digital
signature or encryption; signing or encrypting elements in
a Simple Object Access Protocol (SOAP) message; and
specifying the order of the signing or encryption
processes.

Enabling security for WSIF

The Web Services Invocation Framework (WSIF) interacts with a security manager in the following ways:
* WSIF runs in the Java 2 platform, Enterprise Edition (J2EE) security context without modification.
* When WSIF is run under a J2EE container, port implementations can use the security context to pass

on security tokens or credentials as necessary.

« WSIF implementations can automatically convert J2EE security context into appropriate context for

onward services.

For WSIF to interact effectively with the WebSphere Application Server security manager, enable the
following permission in the was.policy file: FilePermission to load the WSDL. This permission is required
when a WSDL file is referred to using the file:// protocol.

Chapter 1. Overview and new features 9

6 1BM WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

Chapter 2. How do | secure applications and their
environments?

+ [Develop and deploy secure applications|

« [Secure the application hosting environment|

+ [Troubleshoot security|

Legend for "How do 1?...” links

Documentation Show me Tell me Guide me Teach me

Refer to the detailed |Watch a brief View the presentation |Be led through the Perform the tutorial

steps and reference | multimedia for an overview console pages with sample code
demonstration

Approximate time: Approximate time: 3 | Approximate time: Approximate time: Approximate time: 1
Varies to 5 minutes 10 minutes+ 1/2 hour+ hour+

Develop and deploy secure applications

These tasks involve securing your applications during development (optional, programmatic security),
assembly (declarative security), and after deploying them on the application server.

Secure Web applications: Authentication and authorization

Most of the security for an application is configured during the assembly stage. The security
configured during the assembly stage is called declarative security because the security is
declared or defined in the deployment descriptors. Declarative security is enforced by the security
run time. For some applications, declarative security is not sufficient to express the security model
of the application. For these applications, you can use programmatic security.

Documentation ell me
* [Declarative
e |Programmatic

Related documentation topics:
- [Session security support]
« [Chapter 8, “Developing secured applications,” on page 87|

Secure EJB applications: J2EE authorization

Most of the security for an application is configured during the assembly stage. The security
configured during the assembly stage is called declarative security because the security is
declared or defined in the deployment descriptors. The declarative security is enforced by the
security run time. For some applications, declarative security is not sufficient to express the
security model of the application. For these applications, you can use programmatic security.

© Copyright IBM Corp. 2005 7

ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Security/Presentations/WASv6_Sec_Authentication/playershell.swf

Documentation
» |Declarative
» |Programmatici

Use Web services security (WS-Security)

Use any of many methods to integrate message-level security into an application serving
environment. Web services security for WebSphere Application Server is based on standards
included in the Web services security (WS-Security) specification. These standards address how
to provide protection for messages exchanged in a Web service environment. The specification
defines the core facilities for protecting the integrity and confidentiality of a message and provides
mechanisms for associating security-related claims with the message.

Enable Java 2 security

Java 2 security is disabled by default, but is enabled automatically when global security is
enabled. Whether you use it is independent of your decision to use J2EE role-based authorization.
Java 2 security provides an extra level of access control protection on top of the J2EE role-based
authorization. It particularly addresses the protection of system resources and APIs.

Documentation ell me
* |Console
* |Scripting|

Develop JAAS clients

If you plan to write a login module that adds information to the Subject of a system login, refer to
this topic for the main Java Authentication and Authorization Service (JAAS) plug in points for
configuring system logins.

Documentation

Enable resource security (overview)

Applications access many resources for data access, messaging, mail, and other purposes.

Enable resource security: J2C and JDBC data sources

Secure the Java DataBase Connectivity (JDBC) data sources and Java 2 Connector (J2C)
resources used by applications to access data.

Related documentation topics:
+ [“Security of lookups with component managed authentication” on page 1074

8 IBM WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Security/Presentations/WASv6_Sec_Authentication/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/WebServices/Simulations/WASv6_WS_Security_Binding.viewlet/WASv6_WS_Security_Binding_viewlet_swf.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/WebServices/Presentations/WASV6_WSSecurity_Overview/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Security/Presentations/WASv6_Sec_Java2_Security/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Security/Presentations/WASv6_Sec_JDBC_J2C/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Security/Presentations/WASv6_Sec_JDBC_J2C/playershell.swf

« [‘JavaMail security permissions best practices” on page 1081

Enable resource security: JMS resources

Secure the Java Message Service (JMS) resources used by applications to obtain messaging

support.

Secure the application hosting environment

The counterpart of secure your applications, before and after deployment, is to secure the server hosting
environment into which the applications are deployed.

Secure the administrative environment

Use the administrative console to assign users to administrative roles.

Tell me
+ [Security for system|
administratod
* [Securin

administrative
environment

Configure security with wsadmin scripting (overview)

Scripting is a non-graphical alternative that you can use to configure and manage WebSphere
Application Server. The WebSphere Application Server wsadmin tool provides the ability to run
scripts. The wsadmin tool supports a full range of product administrative activities.

Documentation

Configure global security

Configure global security, which applies to all applications running in the environment and
determines whether security is used at all, the type of registry against which authentication takes
place, and other values, many of which act as defaults.

Documentation
* |Console
* [Scripting

Authenticate users with the local operating system user registry

Configure the product to authenticate users against the local operating system user registry. The
product provides and supports the implementation for Windows operating system registries, AlX,
Solaris, z/OS and multiple versions of Linux operating systems. The respective operating system

Chapter 2. How do | secure applications and their environments?

9

ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Security/Presentations/WASv6_Sec_SIBus/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Security/Presentations/WASv6_Sec_Administration/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Security/Presentations/WASv6_Sec_Administration/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_Admin_Security/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_Admin_Security/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_Admin_Security/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Security/Presentations/WASv6_Sec_Administration/playershell.swf

APls are called by the product processes (servers) for authenticating a user and other
security-related tasks (for example, getting user or group information).

Show me
* |ISWAM
- [CTPA

Authenticate users with an LDAP user registry

Configure the product to authenticate users against a Lightweight Directory Access Protocol
(LDAP) user registry. The product provides and supports implementation of most major LDAP
directory servers, which can act as the repository for user and group information. These LDAP
servers are called by the product processes (servers) for authenticating a user and other
security-related tasks (for example, getting user or group information). This support is provided by
using different user and group filters to obtain the user and group information. These filters have
default values that you can modify to fit your needs. The custom LDAP feature enables you to use
any other LDAP server (which is not in the product supported list of LDAP servers) for its user
registry by using the appropriate filters.

Authenticate with a custom user registry

After you have implemented the UserRegistry interface, you can configure the product to use your
custom user registry to authenticate users.

Set up Single Signon (SSO)

With single signon (SSO) support, Web users can authenticate once when accessing Web
resources across multiple WebSphere Application Servers. Form login mechanisms for Web
applications require that SSO is enabled.

Documentation

Set up Secure Sockets Layer (SSL) between remote servers or clients and servers

Secure Sockets Layer (SSL) is used by multiple components within WebSphere Application Server
to provide trust and privacy.

Documentation

Related documentation topics:
. |“Accessing secure resources using SSL and applet clients” on page 581|

Set up CSIv2

Configure Common Secure Interoperability Version 2 (CSIv2) features including SSL client
certificate authentication, message layer authentication, identity assertion, and security attribute

10 1BM WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Security/Simulations/WASv6_Sec_SWAM_LocalOS.viewlet/WASv6_Sec_SWAM_LocalOS_viewlet_swf.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Security/Simulations/WASv6_Sec_LTPA_LocalOS.viewlet/WASv6_Sec_LTPA_LocalOS_viewlet_swf.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Security/Presentations/WASv6_Sec_Authentication/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Security/Simulations/WASv6_Sec_Registry_LDAP.viewlet/WASv6_Sec_Registry_LDAP_viewlet_swf.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Security/Presentations/WASv6_Sec_Authentication/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Security/Simulations/WASv6_Sec_Registry_Custom.viewlet/WASv6_Sec_Registry_Custom_viewlet_swf.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Security/Presentations/WASv6_Sec_Authentication/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Security/Simulations/WASv6_Sec_SSL.viewlet/WASv6_Sec_SSL_viewlet_swf.html

propagation.

Documentation

Configure an authorization provider (JACC)

Configure the product to use an external security provider you have set up to work with
WebSphere Application Server that can support Java 2 Platform, Enterprise Edition (J2EE)
authorization based on the JACC specification.

Documentation ell me

Troubleshoot security problems

Troubleshoot several types of problems related to enabling or configuring security.

Troubleshoot the security subsystem

Troubleshoot several types of problems related to enabling or configuring security.

Documentation

Chapter 2. How do | secure applications and their environments? 11

ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Security/Presentations/WASv6_Sec_CSIv2/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Security/Presentations/WASv6_Sec_JACC/playershell.swf

12 BM WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

Chapter 3. Securing applications and their environments

WebSphere Application Server supports the Java 2 Platform, Enterprise Edition (J2EE) model for creating,
assembling, securing, and deploying applications. This article provides a high-level description of what is
involved in securing resources in a J2EE environment. Applications are often created, assembled, and
deployed in different phases and by different teams.

Consult the J2EE specifications for complete details.

1. Plan to secure your applications and environment. For more information, see [Chapter 5, “Planning to|
[secure your environment,” on page 27| Complete this step before you install the WebSphere
Application Server.

2. Consider pre-installation and post-installation requirements. For more information, see|Chapter 6,
[‘Implementing security considerations at installation time,” on page 39.| For example, during this step,
you learn how to protect security configurations after you install the product.

3. Migrate your existing security systems.

4. Develop secured applications. For more information, see |Chapter 8, “Developing securedl
lapplications,” on page 87
5. Assemble secured applications. For more information, see |Chapter 9, “Assembling secured

|app|ications,” on page 155.| Development tools, such as the|Assembling applicationg, are used to
assemble J2EE modules and to set the attributes in the deployment descriptors.

Most of the steps in assembling J2EE applications involve deployment descriptors; deployment
descriptors play a central role in application security in a J2EE environment.

Application assemblers combine J2EE modules, resolve references between them, and create from
them a single deployment unit, typically an Enterprise Archive (EAR) file. Component providers and
application assemblers can be represented by the same person but do not have to be.

6. Deploy secured applications. For more information, see [Chapter 10, “Deploying secured applications,’]
ﬁ

One of the important tasks the deployer performs is mapping actual users and groups to application
roles. For zZSAS authorization, user or group to role mapping is done by the security administrator
(through permission to a SAF EJBROLE representing the application role).

7. Test secured applications. For more information, see |Chapter 11, “Testing security,” on page 181

8. Manage security configurations. For more information, see|Chapter 12, “Administering security,” on|

9. Improve performance by tuning security configurations. For more information, see |Chapter 15,
[Tuning security configurations,” on page 1083 |

10. Troubleshoot security configurations. For more information, see |[Chapter 16, “Troubleshooting security|
[configurations,” on page 1087

Your applications and production environment are secured.

See [‘Security: Resources for learning” on page 25 for more information on the WebSphere Application
Server security architecture.

Related concepts
[Introduction: Security|

© Copyright IBM Corp. 2005 13

14 BMm WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

Chapter 4. Integrating IBM WebSphere Application Server
security with existing security systems

WebSphere Application Server plays an integral part of the multiple-tier enterprise computing framework.
WebSphere Application Server adopts the open architecture paradigm and provides many plug-in points to
integrate with enterprise software components to provide end-to-end security. WebSphere Application
Server plug-in points are based on standard Java 2 Platform, Enterprise Edition (J2EE) specifications
wherever applicable. The WebSphere Application Server development team is actively involved in various
standard bodies to externalize and to standardize plug-in interfaces.

In the following example, several typical multiple-tier enterprise network configurations are discussed. In
each case, various WebSphere Application Server plug-in points are used to integrate with other business
components. The discussion starts with a basic multiple-tier enterprise network configuration:

Enterprise
Secure reverse Application "
Information
proxy server SOTVol System
CSlv2 security protocol
Trust Credential
association redential g, A ‘I’!'eb‘s_l’h:'e — JZEEt
interceptor mapping pplication server connector
Security server Access manager
(Authentication) (Authorization) Principal/
credential
JAAS UserRegistry Security Role-based mapping
login module interface authorization engine
U ist JAAS
Serregistry login module

Terminology

A list of terms used in this discussion follows:

Protocol firewall
Prevents unauthorized access from the Internet to the demilitarized zone. The role of this node is
to provide the Internet traffic access only on certain ports and to block other IP ports.

Note: Firewalls can be used to create demilitarized zones, which serve as machines that are
isolated from both the public Internet and other machines in the configuration. This
improves portal security, especially for sensitive back-end resources such as databases.

WebSphere Application Server plug-in

Redirects all the requests for servlets and JavaServer Pages (JSP) pages. Also referred to in

WebSphere Application Server literature as the Web server redirector, it was introduced to

separate the Web server from the application server. The advantage of using Web server

redirector is that you can move an application server and all the application business logic behind
the domain firewall.

© Copyright IBM Corp. 2005 15

Domain firewall
Prevents unauthorized access from the demilitarized zone to an internal network. The role of this
firewall is to allow the network traffic originating from the demilitarized zone and not from the
Internet.

Directory
Provides information about the users and their rights in the application. The information can
contain user IDs, passwords, certificates, access groups, and so forth. This node supplies the
information to the security services like authentication and authorization service.

Enterprise information system
Represents existing enterprise applications and business data in back-end databases.

The Web server plug-in

WebSphere Application Server provides the infrastructure to run application logic and communicate with
the internal back-end systems and database that web applications and enterprise beans can access.
WebSphere Application Server has a built in HTTPS server that can accept client requests. A typical
configuration, however, places WebSphere Application Server behind the domain firewall for better
protection. A WebSphere Application Server plug-in to the Web server configuration can redirect Web
requests to WebSphere Application Server. WebSphere Application Server provides plug-ins for many
popular Web servers.

You can configure WebSphere Application Server and the Web server plug-in to communicate through
secure SSL channels. You can configure a WebSphere Application Server HTTP server to open
communication channels only with a restricted set of Web server plug-ins.

The WebSphere Application Server plug-in routes HTTP requests according to the virtual host and port
configuration and URL pattern matching. Client authentication and finer grained access control are handled
by WebSphere Application Server behind the firewall.

Tivoli WebSEAL

In cases where the Web server can contain sensitive data and direct access is not desirable, the following
configuration uses Tivoli WebSEAL to shield a Web server from unauthorized requests. WebSEAL is a
Reverse Proxy Security Server (RPSS) that uses Tivoli Access Manager to perform coarse-grained access
control to filter out unauthorized requests before they reach the domain firewall. WebSEAL uses Tivoli
Access Manager to perform access control.

User registry implementations

WebSphere Application Server supports various user registry implementations through the pluggable user
registry interface.

Note: You can update the WEB_INBOUND System Login Configuration entry with a custom JAAS login
module that can map the client user ID from the TAI plug-in to a WebSphere Application Server
user ID. You also can change the WEB_INBOUND System Login Configuration entry to map the
principal or subject from the TAI plug-in to a user ID identified in the WebSphere Application Serve
user registry. In addition to providing identity mapping facilities, security attributes generated by
other security systems can be propagated using WebSphere Application Server runtime. For more
information, refer to ['Enabling security attribute propagation” on page 378

WebSphere Application Server also supports users in developing their own custom registry and plug-in
through the pluggable user registry interface. When integrated with a third party security provider,
WebSphere Application Server can share the user registry with the third-party security provider. In the
particular example of integrating with WebSEAL, you can configure WebSphere Application Server to use
the LDAP user registry, which can be shared with WebSEAL and Tivoli Access Manager. Moreover, you

16 1BM WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

can configure WebSphere Application Server to use the Lightweight Third Party (LTPA) authentication
mechanism, which supports the Trust Association Interceptor plug-in point.

Basically, the RPSS performs authentication and adds proper authentication data into the request header
and then redirects the request to Web server. A trust relationship is formed between an RPSS and
WebSphere Application Server, and the RPSS can assert client identity to WebSphere Application Server
to achieve single signon (SSO) between RPSS and WebSphere Application Server. When the request is
forwarded to WebSphere Application Server, WebSphere Application Server uses the TAI plug-in for the
particular RPSS server to evaluate the trust relationship and to extract the authenticated client identity.
WebSphere Application Server then maps the client identity to a WebSphere Application Server security
credential. For instructions on setting up a trust association interceptor, refer to f‘Trust associations” on|
lbage 234 [[‘Configuring trust association interceptors” on page 238.|

Browser : Demilitarized Zone : Internet Enterprise
| (DM2) 1 | Information
1 - 1 Systems
1
1
1
= a = Web VXeb”i part]izr: 1 Database
% everse. % server pSP — (DB2 version
& [ppf Proxysecurity | 51 S 5 erver 8.1 fix pack 6)
El server £
g (WebSeal, £ WebSphere [Trust
T and so on) 8 Application Association
Server plug-in Interceptor
|| MQ
CICS
]

IBM Directory

Third-party (LDAP)

security provider
(Tivoli Access Manager,
and so on)

When configured to use the LDAP user registry, WebSphere Application Server uses LDAP to perform
authentication. The client ID and password are passed from WebSphere Application Server to the LDAP
server. You can configure WebSphere Application Server to set up an SSL connection to LDAP so that
passwords are in the clear. To set up an SSL connection from WebSphere Application Server to the LDAP
server, refer to [‘Configuring Secure Sockets Layer for the Lightweight Directory Access Protocol client” on|

|Qage 51 9.|

J2EE Connector Architecture (J2CA)

WebSphere Application Server supports the J2EE Connector Architecture (J2CA or JCA can be used to
abbreviate J2EE Connector Architecture, but this documentation will use J2CA). The connector
architecture defines a standard interface for WebSphere Application Server to connect to heterogeneous
enterprise information systems (EIS). Examples of EIS includes database systems, transaction processing
(such as CICS), and messaging (such as Message Queue (MQ)). The EIS implementation (environments,
servers and monitors) can perform authentication and access control to protect business data and
resources. Resource Adapters authenticate EIS. The authentication data can be provided either by
application code or by WebSphere Application Server. WebSphere Application Server provides a principal
mapping plug-in point. A principal mapping module plug-in maps the authenticated client principal to a
password credential, (that is, user ID and password, for the EIS security domain). WebSphere Application
Server ships a default principal mapping module, which maps any authenticated client principal to a
configured pair of user IDs and passwords.

Chapter 4. Integrating IBM WebSphere Application Server security with existing security systems 17

When using some local EIS connectors, WebSphere Application Server for z/OS provides facilities to
assign the J2EE user ID as the owner of a connection. For more information, refer to [Connection thread|

Each connector can be configured to use a different set of IDs and passwords. For a description on how
to configure J2CA principal mapping user IDs and passwords, refer to[‘Managing J2EE Connector|
IArchitecture authentication data entries” on page 356

Mapping modules

A principal mapping module is a special purpose Java Authentication and Authorization Service (JAAS)
login module. You can develop your own principal mapping module to fit your particular business
application environment. For detailed steps on developing and configuring a custom principal mapping
module, refer to the articles, ['Developing your own J2C principal mapping module” on page 141| and
|“Configuring application logins for Java Authentication and Authorization Service” on page 322

Resource Access Control Facility (RACF)

Use Resource Access Control Facility (RACF) to take advantage of MQ profiles and run an application that
uses Java Message Service (JMS). Using a System Authorization Facility (SAF) mapped user ID, you can
issue JMS application programming interfaces (API) to:

« Connect to a queue manager
* Put and get from a queue
Related concepts

[Trust associations” on page 234

Trust association enables the integration of IBM WebSphere Application Server security and third-party
security servers. More specifically, a reverse proxy server can act as a front-end authentication server
while the product applies its own authorization policy onto the resulting credentials passed by the proxy
server.

Related tasks

[‘Configuring Secure Sockets Layer” on page 517

[‘Configuring trust association interceptors” on page 238§|

[‘Configuring Lightweight Third Party Authentication” on page 228

[‘Configuring single signon” on page 240|

[‘Configuring user registries” on page 267|

[‘Configuring Lightweight Directory Access Protocol user registries” on page 274
[‘Configuring Lightweight Directory Access Protocol search filters” on page 281|
[‘Developing custom user registries” on page 143

[‘Configuring custom user registries” on page 292

“‘Migrating custom user registries” on page 76
[‘Developing your own J2C principal mapping module” on page 141|

“‘Configuring application logins for Java Authentication and Authorization Service” on page 322
Related reference

“Supported directory services” on page 286|

“Custom user registries” on page 296|

A custom user registry is a customer-implemented user registry, that implements the UserRegistry Java
interface, as provided by the product. A custom-implemented user registry can support virtually any
type of an account repository from a relational database, flat file, and so on. The custom user registry
provides considerable flexibility in adapting product security to various environments where some form
of a user registry, other than Lightweight Directory Access Protocol (LDAP) or Local Operating System
(LocalOS), already exists in the operational environment.

18 1BM WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

Network communication using Secure Sockets Layer and the
Transport Channel Service

To fully support the required communications for WebSphere Application Server, a secure communication
mechanism is required to ensure that applications are [Communicating securelyl Configure the Secure
Sockets Layer (SSL) channel as part of the transport channel service to provide secure communication for
all users.

The SSL channel is a protocol channel providing the same interface as the Transmission Control Protocol
(TCP) channel. The SSL channel implements the same application interface that the TCP channel
implements so upstream channels can be written to use only TCP channel functions. (SSL function can be
provided using the SSL channel without modifying the upstream channel.) The SSL channel communicates
with the network using a downstream channel that implements the TCP channel interface.

When the SSL channel is constructed, its initialization parameters provide the information required to use
Java Secure Socket Extension (JSSE) services. The SSL channel:

* Uses JSSE APIs to perform security functions
» Uses the JSSE security provider to obtain a configured key store
» Loads the key store from the configured key store name using the configured key store password

The SSL channel receives configuration information from JSSE repertoires configured and maintained by
WebSphere Application Server. The SSL channel configuration attribute for the security repertoire name
provides a reference to all the security attributes required to initialize the SSL channel. If a security
repertoire is not available, channel data can be filled in with a map of the property names. If properties are
specified in addition to the repertoire name, they override the parameters in the repertoire. Additional
security information can be provided as part of individual container configuration.

Note: &1#* Although WebSphere Application Server for z/OS supports System SSL (SSSL) repertoires
and JSSE repertoires, SSSL repertoires cannot be used with the SSL channel. Only JSSE
repertoires can be used with the SSL Channel.

For more information on the SSL channel, refer to [Transport chains| or|[Transport protocol for a high
lavailability manager]

For general information on the SSL, refer to[Secure Sockets Layer|
Related concepts

[Transport chains|

Transport chains represent a network protocol stack that is used for I/O operations within an
application server environment. Transport chains are part of the channel framework function that
provides a common networking service for all components, including the service integration bus
component of IBM service integration technologies, WebSphere Secure Caching Proxy, and the high
availability manager core group bridge service.

[‘SSL repertoires” on page 63|

The Secure Sockets Layer (SSL) configuration repertoire allows administrators to define any number of
SSL settings which can be used to make HTTPS, IIOPS or LDAPS connections.

Related tasks

[Transport chains collection|

Use this page to view or manage transport chains. Transport chains enable communication through
transports, or protocol stacks, which are usually socket based.

Transport chain settings|

Transport protocol for a high availability manage

The high availability manager network components can be built on either a channel framework, unicast

Chapter 4. Integrating IBM WebSphere Application Server security with existing security systems 19

or multicast transport protocol. Channel framework is the default protocol, but there are options and
features available with multicast that might be a better match for your application server environment.
Multicast emulation can be used with any of these protocols.

[‘Setting up Secure Sockets Layer security for WebSphere Application Server for z/OS” on page 60)

This topic assumes you understand the SSL protocol and how cryptographic services system SSL
works on z/OS or OS/390. Secure sockets layer (SSL) is used by multiple components within
WebSphere Application Server to provide trust and privacy. Such components include the built-in HTTP
transport, the ORB (client and server), and the secure Lightweight Directory Access Protocol (LDAP)
client. Configuring SSL is different between client and server with WebSphere Application Server. If you
want the added security of protected communications and user authentication in a network, you can

use secure sockets layer (SSL) security.

Security considerations for WebSphere Application Server for z/0S
Functions supported on WebSphere Application Server for z/OS

WebSphere Application Server for z/OS supports the following functions.

Table 1. Functions supported on WebSphere Application Server for z/OS

Function

Additional information

RunAs EJB

For more information, see|“Delegations” on page 173/

RunAs for Servlets

For more information, see|“Delegations” on page 173/

SAF-based IIOP Protocols

For more information, see[‘Common Secure Interoperability|
Version 2 and Security Authentication Service client|
configuration” on page 492 |

z/OS connector facilities

For more information, see|Resource Recovery Services (RRS)

Global security enable or disable

For more information, see[“Enabling global security” on page 59|
and [‘Disabling global security” on page 48|

SAF keyrings

For more information, see[‘Using System Authorization Facility|
|keyrings with Java Secure Sockets Extension” on page 206.

Authentication functions

Authentication function examples: Basic, SSL digital certificates,
form-based login, security constraints, trust association
interceptor

J2EE security resources

For more information, see|Chapter 3, “Securing applications and|
[their environments,” on page 13]

Web authentication (LTPA)

For more information, see|“Steps for selecting LTPA as the|
lauthentication mechanism” on page 225

IIOP using LTPA

For more information, see|“Lightweight Third Party]|
|Authentication” on page 227

WebSphere application bindings

WebSphere application bindings can be used to provide user to
role mappings.

Synch to OS Thread

For more information, see|“Synchronizing a Java thread identity|
land an operating system thread identity” on page 194

J2EE role-based naming security

For more information, see |Java 2 Platform, Enterprise Edition|
|(J2EE) specification]

J2EE role-based administrative security

For more information, see |Java 2 Platform, Enterprise Edition|
[(J2EE) specification|

SAF registries

For more information, see|“User registries” on page 263/

Identity assertion

For more information, see|ldentity assertion

20 1B™ WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

Table 1. Functions supported on WebSphere Application Server for z/OS (continued)

Function Additional information

Authentication protocols Example: z/SAS, CSIV2
For more information, see|“Supported authentication protocols’
on page 491.

CSIv2 conformance level "0" For more information, see|Chapter 5, “Planning to secure your|

lenvironment,” on page 27.

J2EE 1.4 compliance For more information, see|Java 2 Platform, Enterprise Edition|

|(J2EE) specification]

JAAS programming model WebSphere extensions | For more information, see[‘Web authentication using the Javq
|7

[Authentication and Authorization Service programming mode

on page 112.|

All basic WebSphere Application Server provide the following functions:

Using RunAs: Use RunAs to change the identity of a caller, server, or role. This designation is now
part of the servlet specification.

Support of SAF-based IIOP authentication protocols: Network Deployment uses Secure
Authentication Services (SAS) for IIOP authentication. z/OS has its own version of SAS called z/OS
Secure Authentication Services (z/SAS) (with similar functions but different mechanisms), and it handles
functions such as local security, Secure Sockets Layer (SSL)-based authorization, digital certificates
with System Authorization Facility (SAF) mapping, and SAF identity assertion.

SAF-based authorization and RunAs capability: This allows you to use SAF (EJBROLE) profiles for
permission and delegation security information.

Support for z/0S connector facilities: Instead of using an alias where a user ID and password is
stored, the ability to propagate local OS identities is supported.

SAF keyring support for HTTP and IIOP: Use SystemSSL for HTTP, IIOP, and SAF key ring support.
You can also use JSSE.

Authentication functions: Web Authentication mechanisms such as basic, SSL digital certificates,
form-based login, security constraints, and trust association interceptor offer the same functionality in
Version 6.0.x as offered in Version 5.

Authorization for J2EE resources: Authorization for J2EE resources employs roles similar to the ones
used in Version 4, and these roles are used as descriptors.

Security enablement: Security can be enabled or disabled globally. When the server comes up there is
some level of security on, but security is disabled until the administrator sets it up.

Web authentication using LTPA and SWAM: Single-signon using Lightweight Third Party
Authentication (LTPA) or Simple WebSphere Authentication Mechanism (SWAM) is supported.

lIOP authentication using LTPA: IIOP authentication using LTPA is supported.

WebSphere Application Bindings for Authorization: WebSphere Application Bindings for
Authorization are now supported.

Synch to OS Thread: Application Synch to OS Thread is supported.

J2EE role-based naming security: J2EE roles are used to protect access to the namespace. The new
roles and tasks are cosNamingRead, cosNamingWrite, cosNamingCreate, and cosNamingDelete.
Role-based administrative security: The roles delimiting security are:

Monitor (least authorization and is read-only)

Operator (can do runtime changes)

Configurator (can monitor and configuration privileges)

Administrator (most authorization)

Comparing WebSphere Application Server for z/0S with other WebSphere Application Server
platforms

A key similarity:

Chapter 4. Integrating IBM WebSphere Application Server security with existing security systems 21

Pluggable security model: The pluggable security model can be authenticated in IIOP (CSIv2), Web

Trust Authentication, Java Management Extensions (JMX) Connectors, or the Java Authentication and

Authorization Service (JAAS) programming model. You must:

1. Determine which registry is appropriate and what authentication (token) mechanisms are needed

2. Determine whether or not the registry is local or remote, and what Web authorizations should be
used - Web authorizations include Simple WebSphere authentication mechanism (SWAM) and
Lightweight Third-Party Authentication (LTPA)

Key differences include:

SAF registries: Local operating system registries provide premium functionality on z/OS because z/OS
spans a sysplex rather than a single server. z/OS provides certificate to user mapping, authorization,
and delegation functions.

Identity assertion: Use trusted servers or CBIND to get the authorization required for the server doing
the assertion. Distributed platform requires a server to be placed in the trusted server list. z/OS requires
a server ID to have a specific CBIND authorization. The Assertion types are SAF user ID, Distinguished
Name (DN), and SSL client certificate.

zSAS and SAS authentication protocols for IIOP clients: z/SAS differs from SAS because it
supports RACF PassTickets. The SAS layer in WebSphere Distributed uses CORBA portable
interceptors to implement their Secure Association Service, and z/OS does not.

CORBA features: z/OS does not support CORBA security interfaces including the CORBA current,
LoginHelper, Credentials, and ServerSideAuthenticator models. CORBA functions have been migrated
to JAAS.

Authentication protocols: CSIv2 is an Object Management Group (OMG) specification for the z/OS
Security Server and is automatically enabled when WebSphere security is enabled. This is a
three-layered approach involving a transport layer (SSL/TLS) for message protection, supplemental
client authentication layer for user ID and password (GSSUP), and security attribute layer used by
middle servers (who must be specially authorized to the target server) for identity assertion.

J2EE 1.3 compliance

Being J2EE-compliant involves:

CSlv2 conformance level "0": This is an OMG (related to the z/OS Security Server) specification,
which is part of what used to be the CORBA support. CSIv2 is automatically enabled when security is
enabled.

Use of Java 2 security: There is "security-enabled” and "Java 2 security-enabled”, and the default for
Java2 is "on”. This provides a fine-grained access control that is code-based as opposed to
subject-based authorization. Each class belongs to one particular domain. Permissions protected by
Java 2 security include file access, network access, sockets, exiting Java virtual machine (JVM),
administration of properties, and threads. The "security manager” is what Java 2 uses as a mechanism
for managing security and enforcing the required protections. Extensions to Java 2 security include use
of dynamic policy (permissions resource type-based rather than code-based), use of specific default
permissions defined for resources in template profiles, and use of filter files to disable policy.

Use of JAAS programming: JAAS programming includes a standard set of APIs for authentication.
JAAS is the strategic authorization and authentication mechanism. IBM Developer Kit for Java
Technology Edition Version 1.4.2 WebSphere Application Server shipped with WebSphere Version 6.0.x
(but some extensions are supplied).

Use of the serviet RunAs function: WebSphere Application Server on the distributed platforms (not
the z/OS platform) refers to this function as "Delegation Policy”. You can change identity to run as a
system, caller, or role (user). This function is now part of the servlet specification. Authentication
involves using a user ID and password and then mapping the alias to the appropriate XML file to find
the user ID of the RunAs role.

Compliance with WebSphere Network Deployment at the API/SPI level

Compliance with WebSphere Network Deployment at the API/SPI level makes deploying applications from
Network Deployment on z/OS easier. Features enhanced or deprecated by Network Deployment are

22 BM WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

enhanced or deprecated by z/OS. However, this does not mean there is no migration for z/OS customers.

Compliance with WebSphere Network Deployment at the API/SPI level includes:

* WebSphere Application Server extensions to the JAAS programming model: The authorization
model is an extension of the Java 2 security model for JAAS programming (so it works with the J2EE
model). Subject-based authorization is performed on authenticated user IDs. Instead of merely logging
in with a user ID and password, there is now a login process that includes creating a login context,
passing callback handlers that prompt for user ID and password, and logging in. WebSphere Application
Server for z/OS supplies the login module, the callback handler to retrieve the necessary data, the
callbacks, the WSSubject choice, getCallerSubject, and getRunAsSubiject .

» Use of the WebSphere Application Server security APIs: z/OS supports WebSphere Application
Server security APIs.

* Use of secure JMX connectors: JMX connectors can be used with user ID and password credentials.
The two connector types are RMI and SOAP/HTTPS (and are for administration). The SOAP connector
uses the JSSE SSL repertoires. The RMI connector is subject to the same advantages and restrictions
as IIOP mechanisms (such as CSIv2).

Related tasks
[Chapter 3, “Securing applications and their environments,” on page 13

Interoperability issues for security

To have interoperability of Security Authentication Service (SAS) between C++ and WebSphere Application
Server, use the Common Secure Interoperability Version 2 (CSIv2) authentication protocol over Remote
Method Invocation over the Internet Inter-ORB Protocol (RMI-IIOP).

To have interoperability of SAS between WebSphere Application Server and WebSphere Application
Server for z/OS use the zSAS authentication protocol over RMI-IIOP.

Related tasks
[‘Interoperating with a C++ common object request broker architecture client]

Interoperating with a C++ common object request broker architecture
client

You can achieve interoperability between C++ CORBA clients and WebSphere Application Server using
the z/OS Secure Authentication Services (z/SAS) protocols. z/SAS supports many of the same functions
as Common Secure Interoperability Version 2 (CSIv2), only z/SAS uses a proprietary architecture. z/SAS
supports three types of authentication:

» User ID and password authentication
* User ID and password authentication over SSL
» SSL client certificate authentication

Security authentication from non-Java based C++ client to enterprise beans. WebSphere Application
Server supports security in the CORBA C++ client to access protected enterprise beans. If configured,
C++ CORBA clients can access protected enterprise bean methods using client certificate to achieve
mutual authentication on WebSphere Application Server applications.

To support the C++ CORBA client in accessing protected enterprise beans:

* Create an environment file for the client, such as current.env. Set the variables listed below
(security_sslKeyring, client_protocol_user, client_protocol_password) in the file.

» Point to the environment file using the fully qualified path name through the environment variable
WAS_CONFIG_FILE. For example, in the test shell script test.sh, export:

/WebSphere/V6ROMO/DeploymentManager/profiles/default/config/cells/PLEXINetwork/nodes/PLEX1Manager/servers/dmgr

Chapter 4. Integrating IBM WebSphere Application Server security with existing security systems 23

Some of the environment file terms are explained below:

default
profile name

PLEX1Network
cell name

PLEX1Manager
node name

dmgr server name

C++ security setting Description

client_protocol_password Specifies the password for the user ID.

client_protocol_user Specifies the user ID to be authenticated at the target
server.

security_sslKeyring Specifies the name of the RACF keyring the client will
use. The keyring must be defined under the user ID that
is issuing the command to run the client.

Related tasks
[‘Configuring Common Secure Interoperability Version 2 inbound authentication” on page 498
[“Configuring inbound transports” on page 508

Interoperating with previous product versions

IBM WebSphere Application Server, Version 6.0.x interoperates with the previous product versions such as
Version 5.x. Interoperability is achieved using the zSAS security mechanism for localOS and SAF-based
authorization.

1. If SSL is configured on a previous product version, your servers must have a basis to establish trust.
Using Resource Access Control Facility (RACF), your system can check to ensure that the
intermediate server can be trusted (to confer this level of trust, CBIND authorization is granted by
administrators to RACF user IDs that run secure system code). System SSL repertoires use a System
Authorization Facility (SAF) keyring to retrieve the personal certificate and trust stores. You must
connect the trust basis for the server certificates (on the default setup the certificate authority
certificate) of the previous version server into the keyring of the WebSphere Application Server for
z/OS Version 6.0.x server.

2. Extract and add server certificates into the server key ring file of the previous version.

a. Open the server key ring file using the key management utility (iKeyman) and extract the server
certificate to a file.

b. Open the server key ring of the previous product version, using the key management utility and
add the certificate extracted from WebSphere Application Server Version 6.0.x.

3. Extract and add server certificates into the server key ring file of the previous version.

a. Open the server key ring file using the key management utility (iKeyman) and extract the server
certificate to a file.

b. Open the server key ring of the previous product version, using the key management utility and
add the certificate extracted from the product.

4. Extract and add trust certificates into the trust key ring file of the previous product version.

a. Open the trust key ring file using the key management utility and extract the trust certificate to a
file.

b. Open the trust key ring file of the previous product version using the key management utility and
add the certificate extracted from the product.

24 BM WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

5. If single signon (SSO) is enabled, export keys from the product and import them into the previous
product version.

6. Verify that the application uses the correct JNDI name. In WebSphere Application Server Version 6.0.x,
the enterprise beans are registered with long JNDI names like,
(top) /nodes/node_name/servers/server name/HelloHome. Whereas in previous releases, enterprise
beans are registered under a root like, (top)/HelloHome. Therefore, EJB applications from previous
versions perform a lookup on the Version 6.0.x enterprise beans.

You can also create EJB name bindings that are compatible with the previous version. To create an
EJB name binding at the root Version 6.0.x, start the administrative console and click Environment >
Naming > Naming Space Bindings > New > EJB > Next. Complete all the fields and enter a short
name (for example, -HelToHome) as the JNDI Name. Click Next and Finish.

7. Stop and restart all the servers.

8. Make sure that the correct naming bootstrap port is used to perform naming lookup. In previous
product versions, the naming bootstrap port is 900. In Version 6.0.x, the bootstrap port is 2809.

Security: Resources for learning

Use the following links to find relevant supplemental information about Securing applications and their
environment. The information resides on IBM and non-IBM Internet sites, whose sponsors control the
technical accuracy of the information.

These links are provided for convenience. Often, the information is not specific to the IBM WebSphere
Application Server product, but is useful in all or part for understanding the product. When possible, links
are provided to technical papers and Redbooks that supplement the broad coverage of the release
documentation with in-depth examinations of particular product areas.

View links to additional information about:

+ [*Planning, business scenarios and IT architecture”|
* [‘Programming model and decisions’]

« [‘Programming specifications’|

+ [*Administration” on page 26|

Planning, business scenarios and IT architecture

+ [WebSphere Application Server Library|

+ [WebSphere Application Server Support

« [WebSphere Application Server Version 5 Security Redbook|
+ [Accessing the Samples (Samples Gallery)|

The technology sample in the WebSphere Application Server Samples Gallery contains several
security-related samples including the form login sample and the Java Authentication and Authorization
Service (JAAS) login sample.

+ [WebSphere Application Server security: Presentation series|

Programming model and decisions
* Sun Java Secure Socket Extension (JSSE) documentation:

Refer to |http://www-|

1 06.ibm.com/developerworks/websphere/library/techarticles/0403_yu/0403_yu.htmI?ca:dnp-l
314#IDACKF3B| for information on setting up WebSphere Application Server using Sun Java Secure
Socket Extension (JSSE) at runtime.

- Java 2 security documentation]IBM SDK for z/OS, Java 2 Technology Edition, Version 1.4|

— Refer toJava 2 Security check permission algorithm|

Programming specifications
+ [J2EE Specifications]
« [EJB Specifications|

Chapter 4. Integrating IBM WebSphere Application Server security with existing security systems 25

http://www-3.ibm.com/software/webservers/appserv/library.html
http://www-3.ibm.com/software/webservers/appserv/support.html
http://www.redbooks.ibm.com/pubs/pdfs/redbooks/sg246573.pdf
http://www-106.ibm.com/developerworks/websphere/library/techarticles/0409_botzum/0409_botzum.html
http://www-106.ibm.com/developerworks/websphere/library/techarticles/0403_yu/0403_yu.html?ca=dnp-314#IDACKF3B
http://www-106.ibm.com/developerworks/websphere/library/techarticles/0403_yu/0403_yu.html?ca=dnp-314#IDACKF3B
http://www-106.ibm.com/developerworks/websphere/library/techarticles/0403_yu/0403_yu.html?ca=dnp-314#IDACKF3B
http://www.ibm.com/servers/eserver/zseries/software/java/j14pcont.html
http://java.sun.com/j2se/1.3/docs/api/java/security/AccessController.html
http://java.sun.com/j2ee/download.html
http://java.sun.com/products/ejb/docs.html

Servlet Specifications]

Common Secure Interoperability Version 2 (CSIv2) Specification|

Java 2 Platform, Standard Edition, v 1.4.2 API Specification|

Java Authorization Contract for Containers (JSR 115) Specification|

Administration

z/OS WebSphere Application Server V5 and J2EE 1.3 Security Handbook|

This redbook is designed to help application programmers, security administrators, and application and
network architects understand the features provided by WebSphere Application Server Version 5.x on
the z/OS platform.

IBM WebSphere V4.0 Advanced Edition Security|

IBM HTTP Server Support and Documentation|

IBM Directory Server Support and Documentation|

IBM developer kits|

This Web site provides access to the IBM developer kits provided by the IBM Centre for Java
Technology Development. Using this Web site, you can find various security and diagnostic information
including information on the Federal Information Processing Standard, Java Version 1.4.1, Java Version
1.4.2, the iKeyman tool, and the Public Key Cryptography Standards (PKCS).

IBM cryptographic hardware devices

Supported hardware, software and APIs prerequisite Web site]

Understanding LDAP - Design and Implementation|

WebSphere security fundamentals|

WebSphere Application Server V6 Migration Guide)

26 1BM WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

http://java.sun.com/products/servlet/download.html
http://www.omg.org/technology/documents/corba_spec_catalog.htm#CSIv2
http://java.sun.com/j2se/1.4/docs/api/index.html
http://java.sun.com/j2ee/javaacc/
http://www.redbooks.ibm.com/redpieces/abstracts/sg246086.html?Open
http://www.redbooks.ibm.com/pubs/pdfs/redbooks/sg246520.pdf?#M10.8.newlink.WebSphereSecurityModel
http://www-3.ibm.com/software/webservers/httpservers/support.html
http://www-3.ibm.com/software/network/directory/support/
http://www.ibm.com/developerworks/java/jdk/index.html
http://www.ibm.com/security/cryptocards/html/library.shtml
http://www-3.ibm.com/software/webservers/appserv/doc/latest/prereq.html
http://www.redbooks.ibm.com/abstracts/sg244986.html?Open
http://www.redbooks.ibm.com/redpieces/abstracts/redp3944.html
http://www.redbooks.ibm.com/redpieces/abstracts/sg246369.html

Chapter 5. Planning to secure your environment

When you access information on the Internet, you connect through Web servers and product servers to
the enterprise data at the back end. This section examines some typical configurations and common
security practices. WebSphere Application Server security is built on a layered security architecture as
showed in the following figure. This section also examines the security protection that is offered by each
security layer and common security practice for good quality of protection in end-to-end security. The
following figure illustrates the building blocks that comprise the operating environment for security within
WebSphere Application Server:

WebSphere Security Layers

* Naming * HTML
» Userregistry * Servlet or JSP file WebSphere Application Server resources
* JMXmessage Enterprise beans
beans * Web services
A4
1 1
Access control : :
v_ v
| WebSphere security | WebSphere Application Server security
| J2EE security API |

| CORBA security (CSIv2) | Java security

| Java 2 security |

| Java Virtual Machine (JVM) 1.4 |

| Operating system security | Platform security

* Operating System Security -

The security infrastructure of the underlying operating system provides certain security services for
WebSphere Application Server. The operating system identity of the servant task, as established by the
STARTED profile, is the identity that is used to control access to system resources such as files or
sockets. For additional access protection to these resources, Java 2 security is required.

On the z/OS platform, in addition to knowledge of Secure Sockets Layer (SSL) and Transport Layer

Security (TLS), the administrator must be familiar with System Authorization Facility (SAF) and a z/OS

Security Server such as Resource Access Control Facility (RACF). Using RACF, an administrator can:

— ldentify and verify users

— Protect user and group resources at the operating system level

— Assign identities to the started tasks for WebSphere Application Server

— Utilize the z/OS Security Server facilities for authentication and mapping of network clients to SAF
such as errors authentication and X.509 client certificates

— Record and analyze (audit) security information

In addition to these tasks, if the local OS user registry or SAF authorization is selected, you can use
operating system security for authentication and authorization to Java 2 Platform, Enterprise Edition
(J2EE) resources.

* Network Security - The Network Security layers provide transport level authentication and message
integrity and confidentiality. You can configure the communication between separate application servers
to use Secure Sockets Layer (SSL). Additionally, you can use IP Security and Virtual Private Network
(VPN) for added message protection.

© Copyright IBM Corp. 2005 27

WebSphere Application Server z/OS provides SystemSSL for communication using the Internet.
SystemSSL is composed of the Secure Sockets Layer (SSL) and Transport Layer Security (TLS), which
enable secure file transfer by providing data privacy and message integrity.

« JVM 1.4 - The JVM security model provides a layer of security above the operating system layer.

» Java 2 Security - The Java 2 Security model offers fine-grained access control to system resources
including file system, system property, socket connection, threading, class loading, and so on.
Application code must explicitly grant the required permission to access a protected resource.

* CSIv2 Security - CSIv2 is an [IOP-based, three-tiered, security protocol developed by the Object
Management Group (OMG). This protocol provides message protection, interoperable authentication,
and delegation. The three layers include a base transport security layer, a supplemental client
authentication layer, and a security attribute layer. WebSphere Application Server for z/OS supports
CSlIv2, conformance level 0.

* OMG CSIv2 Security - Any calls made among secure Object Request Brokers (ORB) are invoked over
the Common Security Interoperability Version 2 (CSIv2) security protocol that sets up the security
context and the necessary quality of protection. After the session is established, the call is passed up to
the enterprise bean layer. For backward compatibility, WebSphere Application Server supports the
Secure Authentication Service (SAS) security protocol, which was used in prior releases of WebSphere
Application Server and other IBM products.

SAF authorization is an alternative to WebSphere Application Server authorizations.

* J2EE Security - The security collaborator enforces Java 2 Platform, Enterprise Edition (J2EE)-based
security policies and supports J2EE security APIs.

* WebSphere Security - WebSphere Application Server security enforces security policies and services
in a unified manner on access to Web resources, enterprise beans, and JMX administrative resources.
It consists of WebSphere Application Server security technologies and features to support the needs of
a secure enterprise environment.

WebSphere Application Server Network Deployment installation: The following figure shows a typical
multiple-tier business computing environment for a WebSphere Application Server Network Deployment
installation.

Important: There is a node agent instance on every computer node.

Each product application server consists of a Web container, an EJB container, and the administrative
subsystem.

The WebSphere Application Server deployment manager contains only WebSphere administrative code
and the administrative console.

The administrative console is a special J2EE Web application that provides the interface for performing
administrative functions. WebSphere Application Server configuration data is stored in XML descriptor files,
which must be protected by operating system security. Passwords and other sensitive configuration data
can be modified using the administrative console. However, you must protect these passwords and
sensitive data. For more information, see ['Protecting plain text passwords” on page 40

When using SAF registries and ICSF encryption, the requirement to store passwords in configuration data
is generally avoided.

The administrative console Web application has a setup data constraint that requires the administrative
console servlets and JSP files to be accessed only through an SSL connection when global security is
enabled.

During installation, the administrative console is configured to use a System SSL port with a keyring that
you define. The customization dialogs provide RACF customization jobs to create unique server
certificates (for servers within a given cell) using a common certificate authority. It is more secure if you
first enable global security and complete other configuration tasks after global security is enforced.

28 1BM WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

Browser Enterprise

Demilitarized Zone Information
. (DMZ) Internet Systems
= Reverse — Web Web§phgre Database
g proxy security g server Application | (DB2 version
g sever || E(> .| Senver 8.1 fix pack 6)
9 (WebSeal, c
S and so on) g WebSphere T"U.St'
09_ 8 Application Association

Server plug-in Interceptor
- MQ
CICS
Third-party IBM Directory
security provider (LDAP)

(Tivoli Access Manager,
and so on)

Global and administrative security:

WebSphere Application Servers interact with each other through CSIv2 and z/OS Secure Authentication
Services (z/SAS) security protocols as well as the HTTP and HTTPS protocols.

You can configure these protocols to use Secure Sockets Layer (SSL) when you enable WebSphere
Application Server global security. The WebSphere Application Server administrative subsystem in every
server uses Simple Object Access Protocol (SOAP) Java Management Extensions (JMX) connectors and
Remote Method Invocation over the Internet Inter-ORB Protocol (RMI/IIOP) JMX connectors to pass
administrative commands and configuration data. When global security is disabled, the SOAP JMX
connector uses the HTTP protocol and the RMI/IIOP connector uses the TCP/IP protocol. When global
security is enabled, the SOAP JMX connector always uses the HTTPS protocol. When global security is
enabled, you can configure the RMI/IIOP JMX connector to either use SSL or to use TCP/IP. It is
recommended that you enable global security and enable SSL to protect the sensitive configuration data.

Note: With APAR PQ83540 support, you can enable HTTPS for applications even when global security is
disabled. You can configure the SSL port for a particular server by adding the SSL port to the HTTP
port list in the server Web container in addition to where it is added to the virtual hosts in the
Environment configuration. You can then connect to the Web application using HTTPS and the
correct port. Internal WebSphere Application Server for zZOS communication does not use SSL
unless you enable global security.

Global security and administrative security configuration is at the cell level.

When global security is enabled, you can disable application security at each individual application server
by clearing the Enable global security option on the global security panel. The global security panel is
accessed through the administrative console by clicking Security > Global security. Disabling application
server security does not affect the administrative subsystem in that application server, which is controlled
by the global security configuration only. Both administrative subsystem and application code in an
application server share the optional per server security protocol configuration. For more information, see
[‘Configuring server security” on page 208.|

Chapter 5. Planning to secure your environment 29

Security for J2EE resources: Security for J2EE resources is provided by the Web container and the EJB
container. Each container provides two kinds of security: declarative security and programmatic security.

In declarative security, an application security structure includes network message integrity and
confidentiality, authentication requirements, security roles, and access control. Access control is expressed
in a form that is external to the application. In particular, the deployment descriptor is the primary vehicle
for declarative security in the J2EE platform. WebSphere Application Server maintains J2EE security
policy, including information derived from the deployment descriptor and specified by deployers and
administrators in a set of XML descriptor files. At run time, the container uses the security policy that is
defined in the XML descriptor files to enforce data constraints and access control.

When declarative security alone is not sufficient to express the security model of an application, you might
use |“Programmatic login” on page 104| to make access decisions. When global security is enabled and
application server security is not disabled at the server level, J2EE applications security is enforced. When
the security policy is specified for a Web resource, the Web container performs access control when the
resource is requested by a Web client. The Web container challenges the Web client for authentication
data if none is present according to the specified authentication method, ensures the data constraints are
met, and determines whether the authenticated user has the required security role. The Web security
collaborator enforces role-based access control by using an access manager implementation. An access
manager makes authorization decisions that are based on security policy derived from the deployment
descriptor. An authenticated user principal can access the requested servlet or JavaServer Pages (JSP)
file if it has one of the required security roles. Servlets and JSP pages can use the HttpServletRequest
methods isUserInRole and getUserPrincipal.

When cell level security is enabled, unless server security is disabled, the EJB container enforces access
control on EJB method invocation.

The authentication takes place regardless of whether method permission is defined for the specific EJB
method. The EJB security collaborator enforces role-based access control by using an access manager
implementation. An access manager makes authorization decisions that are based on security policy
derived from the deployment descriptor. An authenticated user principal can access the requested EJB
method if it has one of the required security roles. EJB code can use the EJBContext methods
isCallerInRole and getCallerPrincipal. Use the J2EE role-based access control to protect valuable
business data from access by unauthorized users from both the Internet and the intranet. Refer to
“Securing Web applications using an assembly tool” on page 159|and [‘Securing enterprise bean|
applications” on page 156

Role-based security: WebSphere Application Server extends the security, role-based access control to
administrative resources including the JMX system management subsystem, user registries, and JNDI
name space. WebSphere administrative subsystem defines four administrative security roles:

Monitor role
A monitor can view the configuration information and status, but cannot make any changes.

Operator role
An operator can trigger run-time state changes, such as start an application server or stop an
application, but cannot make configuration changes.

Configurator role
A configurator can modify the configuration information, but cannot change the state of the run
time.

Administrator role
An operator as well as a configurator, which additionally can modify sensitive security configuration
and security policy such as setting server ID and password, enable or disable global security and
Java 2 security, and map users and groups to the administrator role.

30 BM™ WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

A user with the configurator role can perform most administrative work including installing new applications
and application servers. There are certain configuration tasks a configurator does not have sufficient
authority to do when global security is enabled, including modifying a WebSphere Application Server
identity and password, LTPA password and keys, and assigning users to administrative security roles.
Those sensitive configuration tasks require the administrative role because the server ID is mapped to the
administrator role.

Those sensitive configuration tasks require the administrative role.

WebSphere Application Server administrative security is enforced when global security is enabled. It is
recommended that WebSphere Application Server global security be enabled to protect administrative
subsystem integrity. Application server security can be selectively disabled if there is no sensitive
information to protect. For securing administrative security, refer to |“Assigning users to administrator roles’1
|on page 216| and r‘Assigning users and groups to roles” on page 170/

Java 2 security permissions: WebSphere Application Server uses the Java 2 security model to create a
secure environment to run application code. Java 2 security provides a fine-grained and policy-based
access control to protect system resources such as files, system properties, opening socket connections,
loading libraries, and so on. The J2EE Version 1.4 specification defines a typical set of Java 2 security
permissions that Web and EJB components expect to have. These permissions are shown in the following
table.

Table 2. Java 2 security permissions set for EJB components

Security Permission Target Action
java.lang.RuntimePermission queuePrintJob

java.net.SocketPermission * connect
java.util.PropertyPermission * read

The WebSphere Application Server Java 2 security default policies are based on the J2EE Version 1.4
specification. The specification granted Web components read and write file access permission to any file
in the file system, which might be too broad. The WebSphere Application Server default policy gives Web
components read and write permission to the subdirectory and the subtree where the Web module is
installed. The default Java 2 security policy for all Java virtual machines and WebSphere Application
Server processes are contained in the following policy files:

${java.home}/jre/1ib/security/java.policy
Used as the default policy for the Java virtual machine (JVM).

$WAS_HOME/properties/server.policy
Used as the default policy for all product server processes

To simplify policy management, WebSphere Application Server policy is based on resource type rather
than code base (location). The following files are the default policy files for WebSphere Application Server
subsystem. These policy files, which are an extension of WebSphere Application Server run time and are
referred to as Service Provider Programming Interfaces (SPI), are shared by multiple J2EE applications:

$WAS_HOME/config/cells/cell name/nodes/node_name/spi.policy
Used for embedded resources that are defined in the resources.xml file, such as the Java
Message Service (JMS), JavaMail, and JDBC drivers.

$WAS_HOME/config/cells/cell_name/nodes/node_name/1ibrary.policy
Used by the shared library that is defined by the WebSphere Application Server administrative
console.

$WAS_HOME/config/cells/cell name/nodes/node_name/app.policy
Used as the default policy for J2EE applications.

Chapter 5. Planning to secure your environment 31

In general, applications should not require more permissions to run than those recommended by the J2EE
specification to be portable among various application servers. However, some applications might require
more permissions. WebSphere Application Server supports a per application policy file, was.policy, to be
packaged together with each application from granting extra permissions to that application.

Attention: Grant extra permissions to an application after careful consideration because of the potential of
compromising the system integrity.

Loading libraries into the WebSphere Application Server does allow applications to leave the Java
sandbox. When you install an application for WebSphere Application Server, the server uses a permission
filtering policy file to alert you when an application requires additional permissions and causes the affected
application installation to fail. For example, it is recommended that you not give the
java.lang.RuntimePermission exitVM permission to an application so that application code cannot
terminate WebSphere Application Server. The filtering policy is defined by the filterMask in
${WAS_INSTALL_ROOT}/profiles/profile_name/config/cells/cell_name/filter.policy. Moreover,
WebSphere Application Server also performs run-time permission filtering that is based on the run-time
filtering policy to ensure that application code is not granted a permission that is considered harmful to
system integrity.

Therefore, many applications developed for prior releases of WebSphere Application Server might not be
Java 2 Security ready. To migrate those applications to WebSphere Application Server Version 6.0.x
quickly, you might temporarily give those applications java.security.Al1Permission in the was.policy file.
It is recommended that you test those applications to ensure that they execute in an environment where
Java 2 Security is active. For example, identity what extra permissions, if any, are required, and to grant
only those permissions to a particular application. Not granting applications Al1T1Permission can certainly
reduce the risk of compromising system integrity. For more information on migrating applications to
WebSphere Application Server Version 6.0.x, refer to ['Migrating Java 2 security policy” on page 571

The WebSphere Application Server run time uses Java 2 Security to protect sensitive run-time functions;
therefore, it is recommended that you enforce Java 2 security. Applications that are granted A11Permission
not only have access to sensitive system resources, but also WebSphere Application Server run-time
resources and can potentially cause damage to both. In cases where an application can be trusted to be
safe, WebSphere Application Server allows Java 2 Security to be disabled on a per application server
basis. You can enforce Java 2 security by default in the security center and disable the per application
server Java 2 Security flag to disable it at the particular application server.

When you specify the Enable global security and Enable Java 2 Security options on the Global security
panel of the administrative console, the information, along with other sensitive configuration data, are
stored in a set of XML configuration files. Both role-based access control and Java 2 Security
permission-based access control are employed to protect the integrity of the configuration data. The
example uses configuration data protection to illustrate how system integrity is maintained.

* When Java 2 security is enforced, the application code cannot access the WebSphere Application
Server run-time classes that manage the configuration data unless it is granted the required WebSphere
Application Server run-time permissions.

* When Java 2 security is enforced, application code cannot access the WebSphere Application Server
configuration XML files unless it has been granted the required file read and write permission.

* The JMX administrative subsystem provides SOAP over HTTP or HTTPS and RMI/IIOP remote
interface to enable application programs to extract and to modify configuration files and data. When
global security is enabled, an application program can modify the WebSphere Application Server
configuration if the application program has presented valid authentication data and the security identity
has the required security roles.

+ If a user can disable Java 2 security, then that user can modify the WebSphere Application Server
configuration including the WebSphere Application Server security identity and authentication data along
with other sensitive data. Only users with the administrator security role can disable Java 2 security.

» Only users with administrator role can disable global security, change server ID and password, map
users and groups to administrative roles, and so on.

32 BM™ WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

The CSIv2 security protocol also supports client certificate authentication. SSL client authentication can
also be used to set up secure communication among selected set of servers based on trust relationship.

If you start from the WebSphere Application Server plug-in at the Web server, SSL mutual authentication
can be configured between it and the WebSphere Application Server HTTPS server. When using self
signed certificates, one can restrict the WebSphere Application Server plug-in to communicate with only
the selected two WebSphere Application Server servers as shown in the following picture. Suppose you
want to restrict the HTTPS server in WebSphere Application Server A and in WebSphere Application
Server B to accept secure socket connections only from WebSphere Application Server plug-in W.

You can generate three self-signed certificates using RACF, such as certificate W, A, and B. The
WebSphere Application Server plug-in is configured to use certificate W and trust certificate A and B. The
HTTPS server of WebSphere Application Server A is configured to use certificate A and to trust certificate
W. The HTTPS server of WebSphere Application Server B is configured to use certificate B and to trust
certificate W.

I I
I I
I | .
| | | Enterpr|§e
1 | Internet I Information
1 1 ! Systems
1 1 I
: Demilitarized Zone : V/_\\/ebfpf:gre V/-\\/ebIlSprt\.ere : Database
: (DMZ) ! pplication pplication | (0B2 version
. > ServerA | > Server C 8.1 fix pack 6)
Web
= server — Administrative Administrative
H s
S » 0
(_g WebSphere £ | Mma
3 Application £ WebSphere WebSphere cics
o Server plug-in e Application Application
w — > Server B > Server D
Administrative Administrative

IBM Directory WebSphere M
(LDAP) Application Server
Deployment Manager,

Administrative
Console

The trust relationship depicted in the previous picture is shown in the following table.

Server Key Trust
WebSphere Application Server plug-in W A B
WebSphere Application Server A A W
WebSphere Application Server B B w

In a z/OS installation, the WebSphere Application Server deployment manager is a central point of
administration. System management commands are sent from the deployment manager to each individual
application server. When global security is enabled, all WebSphere Application Server servers can be
configured to require SSL and mutual authentication. Suppose you want to further restrict that WebSphere
Application Server application. Server A can only communicate with WebSphere Application Server C and
WebSphere Application Server B can only communicate with WebSphere Application Server D. Note that

Chapter 5. Planning to secure your environment 33

as mentioned previously, all WebSphere Application Servers must be able to communicate with
WebSphere Application Server deployment manager E. Therefore, when using self-signed certificates, you
might set up the CSIv2 and SOAP/HTTPS key and trust relationship as shown in the following table.

Server Key Trust
WebSphere Application Server A A C,E
WebSphere Application Server B B D, E
WebSphere Application Server C C A E
WebSphere Application Server D D B, E
WebSphere Application Server E A B, C D

Deployment Manager E

When WebSphere Application Server is configured to use an Lightweight Directory Access Protocol
(LDAP) user registry, you also can configure SSL with mutual authentication between every application
server and the LDAP server with self-signed certificates so that a password is not passed in clear text
from WebSphere Application Server to the LDAP server.

In this example, the node agent processes are not discussed. Each node agent must communicate with
application servers on the same node and with the Deployment Manager. Node agents also must
communicate with LDAP servers when they are configured to use an LDAP user registry. It is reasonable
to let the deployment manager and the node agents use the same certificate. Suppose application server
A and C are on the same computer node. The Node agent on that node needs to have certificates A and
C in its trust store.

1. Determine which versions of WebSphere Application Server you are using.
2. Review the WebSphere Application Server security architecture.

3. Review each of the following topics as also defined in Related reference.
« [‘Global security and server security” on page 205|
« [“Authentication protocol for EJB security” on page 484
— [‘Supported authentication protocols” on page 491|
— [‘Common Secure Interoperability Version 2 features” on page 488
— [‘ldentity assertion” on page 48§
« [‘Authentication mechanisms” on page 223|
— [‘Lightweight Third Party Authentication settings” on page 231|
— [Trust associations” on page 234|
— [Single signon|
« [‘User registries” on page 263
— [‘Local operating system user registries” on page 268|
— [‘Lightweight Directory Access Protocol” on page 273|
« [‘Custom user registries” on page 290|
« [Java 2 security|
— [“Java 2 security policy files” on page 544}
+ [‘Java Authentication and Authorization Service” on page 320|
— [‘Programmatic login” on page 104
« [*J2EE Connector security” on page 353
* |Access control exception
— [‘Role-based authorization” on page 161|
— [‘Administrative console and naming service authorization” on page 213|
. |“Secure Sockets Layer” on page 512
— [*Authenticity” on page 514|
- [‘Confidentiality” on page 515|
— [‘Integrity” on page 517
Related concepts

34 B™ WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

[‘Programmatic login” on page 104
Programmatic login is a type of form login that supports application presentation site-specific login
forms for the purpose of authentication.

Related tasks
|“Assigning users to administrator roles” on page 216|
[‘Assigning users to naming roles” on page 220

Security considerations when adding a Base Application Server node
to Network Deployment

At some point, you might decide to centralize the configuration of your stand-alone base application
servers by adding them into a Network Deployment cell. If your base application server is currently
configured with security, there are some issues to consider. The major issue when adding a node to the
cell is whether the user registries between the base application server and the Deployment Manager are
the same.

When adding a node to a cell, the newly federated node automatically inherits the user registry (LocalOS,
LDAP or Custom), authentication mechanism (LTPA or ICSF), and authorization setting (WebSphere
bindings or System Authorization Facility (SAF) EJBROLE profiles) of the existing Network Deployment
cell.

For distributed security, all servers in the cell must use the same user registry and authentication
mechanism. To recover from a user registry change, you must modify your applications so that the user
and group to role mappings are correct for the new user registry. To do this, see the article on
lusers and groups to roles” on page 170.|

Another important consideration is the SSL public-key infrastructure. Prior to performing addNode with the
Deployment Manager, verify that addNode can communicate as an SSL client with the Deployment
Manager. This requires that the addNode truststore (configured in sas.client.props) contains the signer
certificate of the Deployment Manager personal certificate as found in the keystore (specified in the
administrative console).

The following are other issues to consider when running the addNode command with security:

1. When attempting to run system management commands such as addNode, you need to explicitly
specify administrative credentials to perform the operation. The addNode command accepts -username
and -password parameters to specify the userid and password, respectively. The user ID and password
that are specified must be an administrative user; for example, a user that is a member of the console
users with Operator or Administrator privileges or the administrative user ID configured in the User
Registry. An example for addNode, addNode CELL_HOST 8879 -includeapps -username user -password
pass. -includeapps is optional, but this option attempts to include the server applications into the
Deployment Manager. The addNode command might fail if the user registries used by the WebSphere
Application Server and the Deployment Manager are not the same. To correct this problem, either
make the user registries the same or turn off security. If you change the user registries, remember to
verify that the users to roles and groups to roles mappings are correct. See |addNode commandl for
more information on the addNode syntax.

Note: You can also run the addNode command using the z/OS Customization Dialog. If you issue the
addNode command with security enabled using the z/OS Customization Dialog or command
line, you must use a user ID with authority and specify the -user and -password options.

2. Adding a secured remote node through the administrative console is not supported. You can either
disable security on the remote node before performing the operation or perform the operation from the
command line using the addNode script.

Chapter 5. Planning to secure your environment 35

3. Before running the addNode command, you must verify that the truststore files on the nodes
communicate with the keystore files and SAF Keyring owned by the Deployment Manager and vice
versa. If you have generated the certificates for deployment manager using the same certificate
authority as you used for the node agent process, this will be successful. Note that the following SSL
configurations must contain keystores and truststores that can interoperate:

» System SSL repertoire specified in the Administrative Console using System Administration >
Deployment Manager > HTTP Transports > sslportho > SSL

» SSL repertoire for appropriate JMX Connector if SOAP is specified System Administration > dmgr
> Administration Services > JMX Connectors > SOAPConnector > Custom Properties >
sslConfig

» SSL repertoire specified in NodeAgent System Administration > Node agents > NodeAgent
Server > Administration Services > JMX Connectors > SOAPConnector > Custom Properties
> sslConfig

Note: WebSphere Application Server for z/OS defines security domain names using the z/OS
Customization Dialog. Use caution when adding a node to a Deployment Manager configuration
that defines a different security domain.

4. After running addNode, the application server is in a new SSL domain. It might contain SSL
configurations that point to keystore and truststore files that are not prepared to interoperate with other
servers in the same domain. Consider which servers will be intercommunicating and ensure that the
servers are trusted within your truststore files.

Proper understanding of the security interactions between distributed servers greatly reduces problems
encountered with secure communications. Security adds complexity because additional function needs to
be managed. For security to function, it needs thorough consideration during the planning of your
infrastructure. This document helps to reduce the problems that could occur due to inherent security
interactions.

When you have security problems related to the WebSphere Application Server Network Deployment
environment, check the |[Chapter 16, “Troubleshooting security configurations,” on page 1087| section to see
if you can get information about the problem. When trace is needed to solve a problem, because servers
are distributed, quite often it is required to gather trace on all servers simultaneously while recreating the
problem. This trace can be enabled dynamically or statically, depending on the type problem occurring.

Security considerations specific to a multi-node or process Network
Deployment environment

WebSphere Application Server Network Deployment allows for centralized management of distributed
nodes and application servers. This inherently brings complexity, especially when security is included into
the mix. Because everything is distributed, security plays an even larger role in ensuring that
communications are appropriately secure between applications servers and node agents, and between
node agents (a node specific configuration manager) and the Deployment Manager (a domain-wide,
centralized configuration manager). The following issues should be considered when operating in this
environment, but preferably prior to going to this environment.

Because the processes are distributed, an authentication mechanism must be selected that supports an
authentication token such as LTPA. The tokens are encrypted and signed and therefore, forwardable to
remote processes. However, the tokens have expirations. The Simple Object Access Protocol (SOAP)
connector (the default connector) used for administrative security does not have retry logic for expired
tokens, however, the protocol is stateless so a new token is created for each request (if there is not
sufficient time to execute the request with the given time left in the token). An alternative connector is the
Remote Method Invocation (RMI) connector, which is stateful and has some retry logic to correct expired
tokens by resubmitting the requests after the error is detected.

36 BM™ WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

Note: LTPA Tokens also have expiration times that are set on the WebSphere Application Server
Administrative Console

Additional considerations are dealing with SSL.WebSphere Application Server for z/OS can use RACF
keyrings to store the keys and truststores used for SSL, but different SSL protocols are used internally.
You must be sure to set up both:

» A System Secure Sockets Layer (SSL) repertoire for use by the Web Container

* A Java Secure Sockets Extension (JSSE) SSL repertoire for use by the SOAP HTTP connector if the
SOAP connector is used for administrative requests

Verify that the keystores and truststores you configure are setup to trust only the servers to which they
communicate. But make sure they do include the necessary signer certificates from those servers in the
trustfiles of all servers in the domain. When using a certificate authority (CA) to create personal
certificates, it is easier to ensure that all servers trust one another by having the CA root certificate in all
the signers.

The customization dialogs for WebSphere Application Server for z/OS use the same certificate authority to
generate certificates for all servers within a given cell, including those of the node agents and the
deployment manager.

The following are issues to consider when using or planning for a Network Deployment environment.

1. When attempting to run system management commands such as stopNode, you should explicitly
specify administrative credentials to perform the operation. Most commands accept -user and
-password parameters to specify the user ID and password, respectively. The user ID and password
that are specified should be an administrative user; for example, a user who is a member of the
console users with Operator or Administrator privileges or the administrative user ID configured in
the user registry. An example for stopNode, stopNode -username user -password pass.

2. Verify that the configuration at the node agents are always synchronized with the Deployment Manager
prior to starting or restarting a node. To manually get the configuration synchronized, issue the
syncNode command from each node that is not synchronized. To synchronize the configuration for
node agents that are started, click System Administration > Nodes and select all started nodes. Click
Synchronize.

3. Verify that the LTPA token expiration period is long enough to complete your longest downstream
request. Some credentials are cached and therefore the timeout does not always count in the length of
the request.

4. The administrative connector used by default for system management is SOAP. SOAP is a stateless
HTTP protocol. For most situations, this connector is sufficient. When running into a problem using the
SOAP connector it might be desirable to change the default connector on all servers from SOAP to
RMI. The RMI connector uses CSIv2, a stateful, interoperable protocol, and can be configured to use
identity assertion (downstream delegation), message layer authentication (BasicAuth or Token), and
client certificate authentication (for server trust isolation). To change the default connector on a given
server, go to Administration Services in Additional Properties for that server.

5. An error message might occur within the administrative subsystem security. This indicates that the
sending process did not supply a credential to the receiving process. Typically the causes for this
problem are:

* The sending process has security disabled while the receiving process has security enabled. This
typically indicates one of the two processes are not in sync with the cell.

Note: Having security disabled for a specific application server should not have any effect on
administrative security.

Proper understanding of the security interactions between distributed servers greatly reduces problems
encountered with secure communications. Security adds complexity because additional function must be

Chapter 5. Planning to secure your environment 37

managed. For security to work properly, it needs thorough consideration during the planning of your
infrastructure. Hopefully, this document will help to reduce the problems that can occur due to inherent
security interactions.

When you have security problems related to the WebSphere Application Server Network Deployment
environment, check the|Chapter 16, “Troubleshooting security configurations,” on page 1087| section to find
additional information about the problem. When trace is needed to solve a problem because servers are
distributed, quite often it is required to gather trace on all servers simultaneously while recreating the
problem. This trace can be enabled dynamically or statically, depending on the type problem occurring.

Preparing truststore files

Secure Sockets Layer (SSL) protocol protects the communication between WebSphere Application

Servers. To complete the SSL connection, establish a valid truststore file for the WebSphere Application

Server. A truststore is a key database file that contains the public keys. A keystore is anything that Java or

the System SSL libraries can read to acquire key information. For more information about how to create a

new keystore, see [Creating login key files|

1. Extract the public key of the server by using the key management tool from WebSphere Application
Server. For details, see [‘Configuring the server for request decryption: choosing the decryption|
[method” on page 1015

Note: For more details on using z/OS and keyrings, see [Chapter 5, “Planning to secure you
fenvironment,” on page 27.
2. Add the public key from the WebSphere Application Server as a signer certificate into the requesting
WebSphere Application Server truststore.

The WebSphere Application Server truststore file is now ready to use for SSL connections with the
WebSphere Application Server.

See [Configuring the application server for interoperability| for information on interoperability.

38 iBM™ WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

Chapter 6. Implementing security considerations at
installation time

Complete the following tasks to implement security before, during, and after installing WebSphere
Application Server.

1. [Installing the product and additional software| This step describes how to install WebSphere Application
Server on the z/OS platform.

2. During installation you are prompted to [Chapter 7, “Migrating security configurations from previoug
[releases,” on page 75/

3. [“Securing your environment after installation.”’| This step provides information on how to protect
password information after you install WebSphere Application Server.

Related information
|“Security customization dialog settings” on page 44|

Securing your environment after installation

WebSphere Application Server depends on several configuration files created during installation. These
files contain password information and need protection. Although the files are protected to a limited degree
during installation, this basic level of protection is probably not sufficient for your site. Verify that these files
are protected in compliance with the policies of your site.

The files in the WAS_HOME/config and WAS_HOME/properties directories need protection. For example, give
permission to the user who logs onto the system for WebSphere Application Server primary administrative
tasks. Other users or groups, such as WebSphere Application Server console users and console groups,
who perform partial WebSphere Application Server administrative tasks, like configuring, starting servers
and stopping servers, need permissions as well.

The files in the WAS_HOME/properties directory that must be readable by everybody are:
e TraceSettings.properties
e client.policy

e client_types.xml

e implfactory.properties

* sas.client.props

* sas.stdclient.properties
* sas.tools.properties

* soap.client.props

* wsadmin.properties

* wsjaas_client.conf

Note: The value for WAS_HOME directory is specified in the customization dialogs when WebSphere
Application Server for z/OS is installed (for both the base product and Network Deployment).

Secure files on WebSphere Application Server for z/OS systems.
1. Use the z/OS Customization Dialog and follow the generated instructions to customize your system.
The customization jobs that are generated perform the following functions:

» Create System Authorization Facility (SAF) WebSphere Application Server user IDs that are needed
for WebSphere administrator and WebSphere server processes

» Create a SAF WebSphere Application Server configuration group and add the SAF WebSphere
Application Server user IDs

* Provide a mapping from a Java 2, Enterprise Edition (J2EE) principal to SAF user ID (you can
generate a sample mapping module or you can specify one that you created yourself)

© Copyright IBM Corp. 2005 39

» Associate WebSphere Application Server-started tasks with the SAF user IDs and groups defined
previously

» Populate the file system with the system and property files that are needed to run WebSphere
Application Server

« Change the ownership of these files to that of the WebSphere Application Server administrator
* Create the appropriate file permissions

Note: All files in the WAS_HOME/config directory must have write and read access by all members of
the WebSphere configuration group, but must not be accessible by everyone (mode 770). All
files in WAS_HOME/properties must have write and read access by all members of the
WebSphere configuration group. Set the access permissions for the following files as it pertains
to your security guidelines:

TraceSettings.properties
client.policy
client_types.xml
implfactory.properties
sas.client.props
sas.stdclient.properties
sas.tools.properties
soap.client.props
wsadmin.properties
wsjaas_client.conf

For example, you might issue the following command: chmod 770 file_name. file_name is the
name of the file listed previously. These files contain sensitive information such as passwords.

2. Add WebSphere administrators who perform full or partial WebSphere Application Server
administration tasks to the WebSphere configuration group.

3. Restrict access to the /var/mgm directories and the log files that are needed for WebSphere Application
Server embedded messaging (or WebSphere MQ as the JMS provider). Give write access only to the
magm user ID or members of the mgm user group.

After securing your environment, only the users given permission can access the files. Failure to
adequately secure these files can lead to a breach of security in your WebSphere Application Server

applications.

If failures occur that are caused by file accessing permissions, check the permission settings.

Protecting plain text passwords

WebSphere Application Server contains several plain text passwords. These passwords are not encrypted,
but are encoded. WebSphere Application Server provides the PropFilePasswordEncoder utility, which you
can use to encode these passwords. However, the utility does not encode passwords that are contained
within XML or XMl files. Instead, WebSphere Application Server automatically encodes the passwords in
the following XML or XMI files as the files are modified by the administrative console.

40 BM™ WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

Table 3. XML and XMl files the contain plain text passwords

File name

Additional information

WAS_INSTALL ROOT/profiles/profile name/config/
cells/cell_name/security.xml

The following fields contain encoded
passwords:

* LTPA password

* JAAS authentication data

* User registry server password

* LDAP user registry bind password
* Key store password

* Trust store password

war/WEB-INF/ibm_web_bnd.xm1

Specifies the passwords for the default basic
authentication for the "resource-ref” bindings
within all the descriptors (except in the Java
cryptography architecture).

ejb jar/META-INF/ibm_ejbjar_bnd.xml

Specifies the passwords for the default basic
authentication for the "resource-ref” bindings
within all the descriptors (except in the Java
cryptography architecture).

client jar/META-INF/ibm-appclient_bnd.xml

ear/META-INF/ibm_application_bnd.xml

WAS_INSTALL_ROOT /profiles/profile_name/config/
cells/cell_name/nodes/node_name/servers/
server_name/server.xml

WAS_INSTALL_ROOT/profiles/profile_name/config/
cells/cell_name/nodes/node_name/servers/
server_name/resources.xml

For Network Deployment:

WAS_INSTALL_ROOT/profiles/profile_name/config
/cells/cell _name/ws-security.xml

ibm-webservices-bnd.xmi

ibm-webservicesclient-bnd.xmi

Specifies the passwords for the default basic
authentication for the "resource-ref” bindings
within all the descriptors (except in the Java
cryptography architecture).

Specifies the passwords for the default basic
authentication for the "run as” bindings within
all the descriptors.

The following fields contain encoded
passwords:

* Key store password

* Trust store password

* Authentication target password

+ Session persistence password

* DRS Client data replication password

The following fields contain encoded
passwords:

» WAS40Datasource password

* mailTransport password

* mailStore password

* MQQueue queue mgr password

You can use the PropFilePasswordEncoder utility to encode the passwords that are found in the following

files.

Table 4. Files that you can encode using the PropFilePasswordEncoder utility

File name

Additional information

WAS _INSTALL_ROOT/profiles/profile_name
/properties/sas.client.props

Specifies the passwords for the following files:
» com.ibm.ssl.keyStorePassword
» com.ibm.ssl.trustStorePassword
» com.ibm.CORBA.loginPassword

Chapter 6. Implementing security considerations at installation time 41

Table 4. Files that you can encode using the PropFilePasswordEncoder utility (continued)

File name | Additional information
WAS_INSTALL_ROOT/profiles/profile_name Specifies passwords for:
/properties/soap.client.props * com.ibm.ssl.keyStorePassword

« com.ibm.ssl.trustStorePassword
» com.ibm.SOAP.loginPassword

WAS_INSTALL_ROOT/profiles/profile_name Specifigs passwords for:
/properties/sas.tools.properties » com.ibm.ssl.keyStorePassword

e com.ibm.ssl.trustStorePassword
» com.ibm.CORBA.loginPassword

WAS_INSTALL_ROOT/profiles/profile_name Specifies passwords for:
/properties/sas.stdclient.properties * com.ibm.ssl.keyStorePassword

e com.ibm.ssl.trustStorePassword
» com.ibm.CORBA.loginPassword

WAS_INSTALL_ROOT/profiles/profile_name
/properties/wsserver.key

To re-encode a password in one of the previous files, complete the following steps:

1.

Access the file using a text editor and type over the encoded password in plain text. The new
password is shown in plain text and must be encoded.

Use the PropFilePasswordEncoder.bat or PropFilePasswordEncode.sh file in the
WAS INSTALL ROOT/profiles/profile name/bin/ directory to re-encode the password.

If you are re-encoding z/SAS properties files, type PropFilePasswordEncoder file name -sas and the
PropFilePasswordEncoder.bat file encodes the known z/SAS properties.

If you are encoding files that are not z/SAS properties files, type PropFilePasswordEncoder file name
password _properties_list

file_name is the name of the z/SAS properties file. password_properties_list is the name of the
properties to encode within the file.

Use the PropFilePasswordEncoder utility to encode WebSphere Application Server password files only.
The utility cannot encode passwords contained in XML files or other files that contain open and close
tags.

If you reopen the affected file or files, the passwords do not display in plain text. Instead, the passwords
appear encoded. WebSphere Application Server does not provide a utility for decoding the passwords.

Note: The reliance on passwords in configuration files can be minimized on WebSphere Application

42

Server for z/OS by taking advantage of z/OS-specific features:
» Using a SAF registry removes the requirement for a user registry server password.
» Using ICSF as the authentication mechanism moves the encryption key into the hardware.

» Selection of SAF authorization and delegation so case role-to-user binding passwords are
removed.

« Trust and key file passwords are no longer required when a RACF keyring is used for all SSL
repertoires.

« The need for JAAS authentication data might be removed when native connectors are used,and
if sync-to-thread is configured or allowed.

IBM WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

Setting up WebSphere Application Server for z/OS security

WebSphere Application Server for z/OS supports access to resources by clients and servers in a
distributed. Determine how to control access to these resources and prevent inadvertent or malicious
destruction of the system or data.

These are the pieces in the distributed network that you must consider:

* You must authorize servers to the base operating system services in z/OS or OS/390. These services
include SAF security, database management, and transaction management.

— For the server clusters, you must distinguish between controllers and servants. Controllers run
authorized system code, so they are trusted. Servants run application code and are given access to
resources, so carefully consider the authorization you give servants.

— You must also distinguish between the level of authority for run-time servers and for your own
application servers have. For example, the node needs the authority to start other clusters, while
your own application clusters do not need this authority.

* You must authorize clients (users) to servers and objects within servers. The characteristics of each
client requires special consideration:

— Is the client on the local system or is it remote? The security of the network becomes a consideration
for remote clients.

— Will you allow unidentified (unauthenticated) clients to access the system? Some resources on your
system might be intended for public access, while others you might need to protect. To access
protected resources, clients must establish their identities and have authorization to use those
resources.

» Authentication is the process of establishing the identity of a client in a particular context. A client can
be an end user, a machine, or an application. The term authentication mechanism in WebSphere
Application Server on z/OS refers more specifically to the facility in which WebSphere identifies an
authenticated identity, using HTTP and JMX facilities. When configuring a cell, you must select a single
authentication mechanism. The choices for authentication mechanism include:

— Simple WebSphere Authorization Mechanism (SWAM) - only on Base Application Server, not
available on the Network Deployment configuration

— Lightweight Third Party Authentication (LTPA)

— Integrated Cryptogragphic Service Facility (ICSF)

* Information about users and groups reside in a user registry. In WebSphere Application Server, a user
registry authenticates a user and retrieves information about users and groups to perform
security-related functions, including authentication and authorization. Implementation is provided to
support multiple operating system or operating environment-based user registries. When configuring a
cell, you must select a single user registry. The user registry can be local or remote. The choices for
user registry include:

— SAF-based local registry (default)

— Lightweight Directory Access Protocol (LDAP) - LDAP can be either a local or remote registry

— Custom user registry - A custom user registy is set up to meet unique registry needs. WebSphere
provides a simple user registry sample called the FileBasedRegistrySample.

If you need to protect resources, it is critical that you identify who accesses those resources. Thus, any

security system requires client (user) identification, also known as authentication. In a distributed network

supported by WebSphere Application Server for z/OS, clients can access resources from:

* Within the same system as a server

» Within the same sysplex as the server

* Remote z/OS or OS/390 systems

* Heterogeneous systems, such as WebSphere Application Server on distributed platforms, CICS, or
other J2EE -compliant systems.

Additionally, clients can request a service that requires a server to forward the request to another cluster.

In such cases, the system must handle delegation, the availability of the client identity for use by
intermediate clusters and target clusters.

Chapter 6. Implementing security considerations at installation time 43

Finally, in a distributed network, how do you verify that messages being passed are confidential and have
not been tampered? How do you verify that clients are who they claim to be? How do you map network
identities to z/OS or OS/390 identities? These issues are addressed by the following support in
WebSphere Application Server for z/OS:

* The use of SSL and digital certificates

* Kerberos

* Common Secure Interoperability, Version 2 (CSIv2)

Related reference
[‘PropFilePasswordEncoder command reference” on page 73

Security customization dialog settings

The Customization Dialog enables you to create a security domain for your WebSphere Application Server
for z/OS configuration. For more information, see the following articles:

Planning a security domain|

The article provides the background, planning, and the variable information that is needed for
configuration.

+ [Creating a security domain|
The article explains the process of configuring the security domain using the Customization Dialog.

Note:

* You must set up a base Application Server using the dialogs before using this one to set up a
Network Deployment node, which is managed by the deployment manager process (dmgr). It is
critical that you LOAD saved environment variables from the base Application Server into the
deployment manager node that federates the base node. Do this before performing security
customization on the deployment manager node.

« |If the APPL class is active and you have defined a profile for WebSphere, make sure that all
z/OS identities using WebSphere services have READ permission to the WebSphere Application
Server APPL profile. This includes all WebSphere Application Server identities, WebSphere
Application Server unauthenticated identities, WebSphere Application Server administrative
identities, user IDs based on role-to-user mappings, and all user identities for system users. If
you have not defined a security domain, the APPL profile used is CBS390 or the name used as
the security domain identifier. If you have defined a security domain, the APPL profile used is the
security domain name.

* When adding an administrator to the administrative console using local operating system
security, if the APPL class is activated, the administrator’s user ID must be authorized to the
CBS390 (or the name specified as the security domain identifier) APPL class for RACF as well. If
the administrator’s user ID is not authorized to CBS390 APPL, message BBOS0108E is issued,
indicating that the credential-handling function (RunAsGetSpecCred) failed in routine because the
user is not authorized.

Related reference
|“Summary of controls” on page 52|

Enabling global security for WebSphere Application Server

Before you can enable global security you must select both an authentication mechanism and a user
registry.

You need to start the administrative console by specifying the following Web site:
http://server_hostname:9060/ibm/console.

Perform the following steps to enable global security.
1. Click Security > Global Security in the Navigation tree on the left.

44 B™ WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

10.

11.

12.

Select the Enable global security option. Global security is disabled by default.

Select the Enforce Java 2 Security option to enable Java 2 Security permission checking. By
default, Java 2 security is disabled. However, if you enable global security, Java 2 security is
automatically enabled. You can choose to disable Java 2 security, even when global security is
enabled.

When Java 2 Security is enabled and if an application requires more Java 2 security permissions
then are granted in the default policy, then the application might fail to run properly until the required
permissions are granted in either the app.policy file or the was.policy file of the application.
AccessControl exceptions are generated by applications that do not have all the required
permissions. Review the Java 2 Security and Dynamic Policy documentation if you are unfamiliar with
Java 2 security.

Select the Enforce fine-grained JCA security option if you need to restrict application access to
sensitive Java Connector Architecture (JCA) mapping authentication data. For more information, see
[‘Global security settings” on page 189.|

Select the Use domain-qualified user IDs option. If this option is enabled, user names appear with
their fully qualified domain attribute when retrieved programmatically.

Enter the cache timeout value for security cache in seconds in the Cache timeout field. When the
timeout is reached, the Application Server clears the security cache and rebuilds the security data.
Since this affects performance, this value should not be set too low. Default: 600 seconds.

Select the Issue permission warning option. The filter.policy file contains a list of permissions
that an application should not have according to the J2EE 1.3 Specification. If an application is
installed with a permission specified in this policy file and this option is enabled, a warning is issued.
The default is enabled.

Select which security protocol is active when security is enabled from the Active Protocol menu.
Specifies the active authentication protocol for RMI/IIOP requests when security is enabled.

WebSphere Application Server includes the Object Management Group (OMG) protocol called CSIv2,
which supports increased vendor interoperability and additional features. If all servers in your entire
security domain are Version 6 servers, it is best to specify CSIv2 as your protocol. The default is both
CSlv2 and z/SAS.

Select which authentication mechanism is active which security is enabled from the Active
Authentication Mechanism menu. The Active Authentication Mechanism menu specifies the
authentication mechanism which is active when security is enabled. In WebSphere Application Server
Version 6, Simple WebSphere Authentication Mechanism (SWAM) and Lightweight Third Party
Authentication (LTPA) are the supported authentication mechanisms. Only LTPA is configurable on
WebSphere Application Server Network Deployment. SWAM is not configurable on WebSphere
Application Server Network Deployment.

Use the Active user registry menu to specify the user registry that is active when security is enabled.
You can configure settings for one of the following user registries:
* Local operating system.

The implementation is a SAF compliant registry such as the Resource Access Control Facility
(RACF), which is shared in an MVS sysplex.

* LDAP user registry. The LDAP User Registry settings are used when users and groups reside in
an external LDAP directory. When security is enabled and any of these properties are changed, go
to the Global Security panel and click OK or Apply to validate the changes.

* Custom user registry.

The default user registry is local OS. However, you can configure the supported user registries under
the User registries section of this administrative console panel.

Click the Use the Federal Information Processing Standard (FIPS) option if you are using a
FIPS-certified JSSE. WebSphere Application Server Version 6 supports a channel framework that
uses IBMJSSE2. IBMJSSE2 uses IBMJCEFIPS for cryptographic support when you enable the Use
the Federal Information Processing Standard (FIPS) option.

Click OK.

Chapter 6. Implementing security considerations at installation time 45

This panel performs a final validation of the security configuration. When you click OK or Apply from
this panel, the security validation routine is performed and any problems are reported at the top of the
page. When you complete all of the fields, click OK or Apply to accept the selected settings. Click
Save (at the top of the panel) to persist these settings out to a file. If you see any informational
messages in red text color, then there is a problem with the security validation. Typically, the
message indicates the problem. So, review your configuration to verify that the user registry settings
are accurate and the correct registry is selected. In some cases, the LTPA configuration may not be
fully specified. See [‘Global security settings” on page 189 for detailed information.

Configuration is successful when error messages do not display at the top of the panel.
Related reference

[‘Global security settings” on page 189
Use this page to configure security. When you enable security, you are enabling security settings on a
global level.

Enabling global security on a base application server node

Global security activates a number of WebSphere security settings. Most of the settings receive their
default value from the installation scripts, run during server installation. The following is a checklist for
enabling global security on a base application server node, using the SAF-based (LocalOS) user registry
and LTPA authentication:
1. Verify that you are running W510200 or later.
2. Verify that Configure for local OS security registry is set to Y in the customization dialog security
domain setup.
3. Verify that the customization dialog jobs BBOSBRAK and BBOCBRAK, which create keyrings and
certificates, were run and completed successfully.
Start the server if it is not already up.
5. Access the administrative console. You can use any user ID. A password is not necessary.
6. Specify LTPA as the authentication mechanism.
a. Click Security> Global security.
b. Under Authentication, click Authentication mechanisms > LTPA .
c. Enter a password and confirm the password by entering it again.
d. Click Apply and Save.
7. Specify the SAF properties.
a. Click Security > Global security.
b. Under User registries, click Local OS.
c. Under Additional properties, click z/0OS SAF properties.

If you set Use SAF EJBROLE profiles to enforce J2EE roles to Y in the customization dialog,
then the Authorization option is selected and the correct EJBROLE profiles for initial security setup
were created by the BBOSBRAK and BBOCBRAK jobs.

If you need to use SAF authorization for Java 2 Platform, Enterprise Edition (J2EE) roles, and you
did not set the Use SAF EJBROLE profiles to enforce J2EE roles option in the customization

dialog, then you must create the EJBROLE profiles manually, select the Authorization option , and
click Apply and Save. For more information, see [‘Controlling access to console users when using|
la Local OS Registry” on page 51|

If you wish to use WebSphere Application Server authorization for J2EE roles, verify that the
Authorization option is deselected. If you change the setting, click Apply and Save.
8. Set the EnableTrustedApplications property in the custom properties for global security.
a. Click Security > Global security.
b. Under Additional properties, click Custom properties.
c. Verify that the EnableTrustedApplications property value is set to true. If the property value is
false, click the property name and change the value to true.
d. Click Apply and Save
9. Verify that the global security options are correct.
a. Click Security > Global security.

B

46 1BM WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

10.

b. Verify that the Enable global security option is selected.
c. Select the appropriate authentication mechanism.

WebSphere Application Server includes the Object Management Group (OMG) protocol called
CSlv2, which supports increased vendor interoperability and additional features. If all servers in
your entire security domain are Version 6.0.x servers, it is best to specify CSlIv2 as your protocol.
The default is both CSIv2 and z/SAS.
d. Under Active authentication mechanism, select Lightweight Third Party Authentication (LTPA).
e. Under Active user registry, select Local OS (single, stand-alone server or sysplex and root
administrator only.
f. Click Apply and Save.
Restart the server and connect to the administrative console using your browser. The server should
successfully redirect you to the SSL port, where you might receive certificate warnings from your
browser. Then, you should see the login page where you can enter the valid administrative user ID
and password.

Disabling global security

Complete the following steps to disable global security.

1.

2.
3.
4

Log into the administrative console.

Click Security > Global security.

Deselect the Enable global security option.
Restart the server.

If global security is not working properly, it can cause the server to not start, or start without providing
you with the ability to log on. To disable global security in this case, edit the server security.xml file.
The security.xml file can be found in the
mount_point/AppServer/config/cells//AppServer/config/cells/cell_name/ directory.

To disable global security, edit the security.xml. Search for the line that begins with the following tag:
<security:Security:. In that line search for Enabled. The word following Enabled is True. Change it
to False. Save the file. Restart the server. Global security is now disabled.

Enabling global security on a base application server node

Global security activates a number of WebSphere security settings. You may not understand all of these
settings or know what value they should be set to. Fortunately, most of the settings receive their default
value from the installation scripts, run during server installation. The following is a checklist for enabling
global security on a Base Application Server Node:

1.
2.

3.

B

oo

Ensure that you are running W500101 or later.

Ensure that the installation scripts were run, including the security panel. On the security panel, make
sure you selected the option generate RACF commands for the above.

Ensure that you ran the job that submits the RACF commands created by the installation scripts. This
builds the keyrings and certificates.

Start the server if it is not already up.

Go to the admin console. Sign in using any user ID. A password is not needed.

Click Security > Global security. Under Authentication, click Authentication mechanisms > LTPA.

Fill in a password and confirm it by entering it again. Click Apply and Save.

Click Security > Global security. Under User registries, click Local OS. Under additional properties,
click Custom Properties. If you want WebSphere to use RACF EJBROLE profiles for determining if

a user has a role, select

com.ibm.security.SAF.authorization

and
com.ibm.security.SAF.delegation

Chapter 6. Implementing security considerations at installation time 47

and set them to true. Otherwise, leave them set to false. If you change them, click Apply and Save.
If you chose to use EJBROLE profiles, use RACF to PERMIT your administrative user IDs to the
EJBROLE class profile administrator. If you chose not to use EJBROLE profiles, you should click
System Administration > Console Users, and add your user IDs as administrators. Click Apply and
Save.

8. Click Security > Global security. Under User registries, click Local OS. Under Additional properties,
click Custom properties.

9. Click EnableTrustedApplications and set its value to frue. Click Apply and Save.

10. Click Security > Global Security. Select the Enable global security option and then deselect the
Enforce Java 2 Security option. The Active Protocol should be CSI and SAS. The Active
Authentication Mechanism should be LTPA. The Active User Registry should be Local OS. Click
Apply and Save.

Now you can cancel the server, restart it, and connect to the administrative console using your browser.
The server should successfully redirect you to the SSL port, where you get the usual certificate warnings.
Then you should see the login page where you can enter the valid administrative user ID and password.

Disabling global security

You can disable global security through the administrative console. If global security is not working
properly, it can cause the server to not start, or to start without providing you with the ability to log into the
administrative console. If you can log into the administrative console, you can disable global security by
completing the following steps:

1. Log into the administrative console and select Security > Global Security.
2. Deselect the Enable global security option.
3. Restart the server.

If you cannot log into the administrative console and you must disable global security, edit the server
security.xml file. You can find the security.xml file, by default, in the
install_dir/AppServer/profiles/profile _name/config/cells/cell name/. To disable global security, edit
the security.xml file using the following steps:

1. Search for the line that begins: <security:Security:

2. In that line, search for Enabled.

3. Change the Enabled value to False.
4. Save the file.

5. Restart the server.

Global security is disabled.
Related tasks
[‘Enabling global security” on page 187]

Selecting a user registry

Information about users and groups reside in a user registry. In WebSphere Application Server, a user
registry authenticates a user and retrieves information about users and groups to perform security-related
functions, including authentication and authorization.

WebSphere Application Server for z/OS is designed with the capability to support multiple operating
systems or operating environment-based user registries (z/OS SAF registry) and most of the major
Lightweight Directory Access Protocol (LDAP)-based user registries. You can use the custom LDAP
feature to support any LDAP server by setting up the correct configuration (user and group filters).
However, support is not extended to these custom LDAP servers because there are many possibilities that
cannot be tested.

48 BM WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

In addition to Local OS and LDAP registries, WebSphere Application Server also provides a plug-in to
support any registry by using the custom user registry feature. The custom user registry feature allows the
configuration of any user registry that is not made available through the security configuration panels of
the WebSphere Application Server. The possibilities are endless with the implementation of the
UserRegistry interface. This interface is very helpful in situations where the current user and group
information exists in some other formats (for example, a database) and cannot move to Local OS or LDAP.
In such a case, implement the UserRegistry interface so that WebSphere Application Server can use the
existing registry for all the security-related operations. The process of implementing a custom user registry
is a software implementation effort and it is expected that the implementation does not depend on other
WebSphere Application Server resources, for example, data sources, for its operation.

Before configuring the user registry, decide which registry to use. The choices of user registry include:
* Local OS - SAF-based

- LDAP

» Custom user registry

Though different types of user registries are supported, only a single user registry can be active at one
time. All processes in WebSphere Application Server can use one active registry. Configuring the correct
registry is a prerequisite to assigning users and groups to roles for applications. This is usually done as
part of enabling global security. Restart the servers and assign users and groups to roles for all your
applications.
Related concepts
[‘User registries” on page 263|
Information about users and groups reside in a user registry.
[‘Selecting an authentication mechanism’|
Once you have your system up and running, the next step in setting up security is to select an
authentication mechanism. An authentication mechanism defines rules about security information (for
example, whether a credential is forwardable to another Java process) and the format of how security
information is stored in both credentials and tokens. Authentication is the process of establishing
whether a client is valid in a particular context. A client can be either an end user, a machine, or an
application.

Related tasks

[Chapter 12, “Administering security,” on page 183
Related reference

[‘Example: Custom user registries” on page 146
Related information

[‘Steps for selecting a user registry” on page 264

Information about users and groups reside in a user registry. In WebSphere Application Server, a user
registry authenticates a user and retrieves information about users and groups to perform
security-related functions, including authentication and authorization.

Selecting an authentication mechanism

Once you have your system up and running, the next step in setting up security is to select an
authentication mechanism. An authentication mechanism defines rules about security information (for
example, whether a credential is forwardable to another Java process) and the format of how security
information is stored in both credentials and tokens. Authentication is the process of establishing whether a
client is valid in a particular context. A client can be either an end user, a machine, or an application.

An authentication mechanism in WebSphere Application Server typically collaborates closely with a user

registry. The user registry is the user and groups accounts repository that the authentication mechanism
consults with when performing authentication. The authentication mechanism is responsible for creating a

Chapter 6. Implementing security considerations at installation time 49

credential which is an internal product representation of successfully authenticated client user. Not all
credentials are created equal. The abilities of the credential are determined by the configured
authentication mechanism.

Although this product provides several authentication mechanisms, only a single active authentication
mechanism can be configured at once. The active authentication mechanism is selected when configuring
WebSphere Application Server global security. WebSphere Application Server for z/OS supports the
following authentication mechanisms:

» Simple WebSphere Authentication Mechanism (SWAM)

» Lightweight Third Party Authentication (LTPA)

* Integrated Cryptographic Service Facility (ICSF)

Related concepts

[“Lightweight Third Party Authentication” on page 227

Lightweight Third Party Authentication (LTPA) is intended for distributed, multiple application server and
machine environments. It supports forwardable credentials and single signon (SSO). LTPA can support
security in a distributed environment through cryptography. This support permits LTPA to encrypt,
digitally sign, and securely transmit authentication-related data, and later decrypt and verify the
signature.

[‘Authentication mechanisms” on page 223

An authentication mechanism defines rules about security information (for example, whether a
credential is forwardable to another Java process), and the format of how security information is stored
in both credentials and tokens.

[‘Selecting a user registry” on page 48]

Information about users and groups reside in a user registry. In WebSphere Application Server, a user
registry authenticates a user and retrieves information about users and groups to perform
security-related functions, including authentication and authorization.

Related tasks
[‘Configuring authentication mechanisms” on page 226
Related information

[‘Steps for selecting an authentication mechanism” on page 225

Information about users and groups reside in a user registry. In WebSphere Application Server, a user
registry authenticates a user and retrieves information about users and groups to perform
security-related functions, including authentication and authorization. Implementation is provided to
support multiple operating system or operating environment-based user registries such as z/OS System
Authorization Facility (SAF) registry and most of the major Lightweight Directory Access Protocol
(LDAP)-based user registries. You can use the custom LDAP feature to support any LDAP server by
setting up the correct configuration (user and group filters). However, support is not extended to these
custom LDAP servers since there are many possibilities that cannot be tested.

Authorization checking

Each controller, servant, and client must be associated with an MVS user ID. When a request flows from a
client to the server or from a server to another server, WebSphere Application Server for z/OS passes the

user identity (client or server) with the request. This way, each request is performed on behalf of the user

identity and the system checks to see if the user identity has the authority to make such a request.

There are three distinct levels of authorization checking.
1. Operating system-level security

This first level of authentication is required by z/OS to protect its resources through the use of a
System Authorization Facility (SAF) credential. This security is always enabled. For SAF, controllers,
servants, and default clients must be associated with an MVS user ID. Operating system resources are
accessible by applications when they are granted access to the MVS user ID of the servant.

2. Cell-level security

50 1BM™ WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

The second level, which is in effect whenever WebSphere Application Server security is enabled at the
cell level, is required to protect WebSphere’s administrative resources.

3. Server security

The third level, which is in effect whenever WebSphere Application Server security is enabled for a
given server, is a set of authorization checking mechanisms required to control access to WebSphere
J2EE applications. On a base server, the cell and server levels of security can be viewed as the same.

When WebSphere Application Server security is enabled, WebSphere administrative and Java 2 Platform,
Enterprise Edition (J2EE) authorizations can be performed using the identity authenticated with the
configured user registry.

When the user registry is configured to be Local0S, the operating system and WebSphere identities are
the same. If the Local OS user registry is active, or if pluggable identity mapping modules are in place to
map WebSphere Application Server user identities to operating system (SAF) identities, authorization
checking can be configured to use SAF EJBROLE profiles by setting the registry custom property
com.ibm.security.SAF.authorization to true. Otherwise, WebSphere application bindings are used to
provide user to role mappings.

Related reference
[“Specifics about server process authorization checking” on page 55|

Controlling access to console users when using a Local OS Registry

The user registry and authorization settings for the cell control how you add console users. If the user
registry custom property com.ibm.security.SAF.authorization is set to true, then System Authorization
Facility (SAF) EJBROLE profiles are used to authorize console users. (For non-LocalOS user registries,
you must use identity mapping to map WebSphere identities to SAF user IDs). If
com.ibm.security.SAF.authorization is set to false, the administrative console is used to authorize
console users and groups.

Regardless of which type of registry or authorization setting is chosen, the configuration process
authorizes the WebSphere configuration group (to which all WebSphere Server identities are permitted),
and an MVS user ID for the WebSphere administrator identity to do the following tasks:

* Access all administrative console functions
» Use the administrative scripting tool when security is first enabled

When SAF authorization is selected on z/OS, the special subject of server is not used as the
administrative user ID. (Note that the customization dialogs generate an administrative user, who is a
member of the administrative group, which can be used for authorization.)

Using SAF Authorization to control access to Administrative functions: When SAF Authorization is
selected during systems customization, administrative EJBROLE profiles for all administrative roles are
defined by the RACF jobs generated using the Configuration Dialog. If SAF Authorization is selected
subsequently, issue the following RACF commands (or equivalent security server commands) to enable
your servers and administrator to administer WebSphere Application Server:

RDEFINE EJBROLE (optionalSecurityDomainName.)administrator UACC(NONE)
RDEFINE EJBROLE (optionalSecurityDomainName.)monitor UACC (NONE)
RDEFINE EJBROLE (optionalSecurityDomainName.)configurator UACC(NONE)
RDEFINE EJBROLE (optionalSecurityDomainName.)operator UACC (NONE)

PERMIT (optionalSecurityDomainName.)administrator CLASS(EJBROLE) ID(configGroup) ACCESS(READ)
PERMIT (optionalSecurityDomainName.)monitor CLASS (EJBROLE) ID(configGroup) ACCESS(READ)
PERMIT (optionalSecurityDomainName.)configurator CLASS(EJBROLE) ID(configGroup) ACCESS(READ)
PERMIT (optionalSecurityDomainName.)operator CLASS (EJBROLE) ID(configGroup) ACCESS(READ)

Chapter 6. Implementing security considerations at installation time 51

If additional users require access to administrative functions, you can permit a user to any of the above
roles as follows by issuing the following RACF command:

PERMIT (optionalSecurityDomainName.)rolename CLASS(EJBROLE) ID(mvsid) ACCESS(READ)

You can give a user access to all administrative functions by connecting it to the configuration group:
CONNECT mvsid GROUP(configGroup)

Using WebSphere Authorization to control access to administrative functions: To assign users to
administrative roles, go to the administrative console, expand System Administration, and click Console
Users or Console Groups, and then add the user's WebSphere Application Server for z/OS user
identities as desired. For more information on console user roles, refer [‘Administrative console and naming|
lservice authorization” on page 213

Note:

* When SAF Authorization is in effect, WebSphere Application Server authorization, as specified in
the administrative console, is ignored.

e SAF role names are case-sensitive.
Related concepts

[‘Administrative console and naming service authorization” on page 213
WebSphere Application Server extends the Java 2 Platform, Enterprise Edition (J2EE) security
role-based access control to protect the product administrative and naming subsystems.

Related reference
[‘Summary of controls’|
[‘Security customization dialog settings” on page 44|

Summary of controls

Each controller, servant, and client must have its own MVS user ID. When a request flows from a client to
the cluster or from a cluster to a cluster, WebSphere Application Server for z/OS passes the user identity
(client or cluster) with the request. Thus, each request is performed on behalf of the user identity and the
system checks to see if the user identity has the authority to make such a request. The tables in this
article outline System Authorization Facility (SAF) and non-SAF authorizations.

Summary of z/OS security controls independent of global security setting

In a WebSphere Application Server for z/OS configuration, there are many different types of processes:
* Deployment managers

* Node agents

» Location service daemons

* WebSphere Application Servers

Each of these can be viewed as either a WebSphere Application Server for z/OS controller process or pair
of processes (a controller and servant).

Each controller and servant must run under a valid MVS user ID assigned as part of the definition of a
started task. This MVS user ID must have a valid UNIX Systems Services user identity (UID) and be
connected to WebSphere configuration group that is common to all servers in the cell with a valid MVS
and UNIX System Services group identity (GID) identity.

The following table summarizes the controls used to grant authorizations needed by these controllers and

servants to access operating system resources. By understanding and using these controls, you can
control all resource accesses in WebSphere Application Server for z/OS.

52 Bm™ WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

Table 5. Summary of controls and SAF authorizations

Control Authorization
DATASET class Access to data sets
DSNR class Access to Database 2 (DB2)

FACILITY class (BPX.WLMSERVER)

Access to the BPX.WLMSERVER profile to perform
Workload Management (WLM) enclave management in
the servant. Without this access, classification is not
performed.

FACILITY class (IMSXCF.OTMACI)

Access to Open Transaction Manager Access (OTMA) for
Information Management System (IMS), and access to
the BPX.WLMSERVER profile

HFS file permissions

Access to Hierarchical File System (HFS) files

LOGSTRM class

Access to log streams

OPERCMDS class

Access to startServer.sh shell script and Integral
JMSProvider

SERVER class

Access to controller by a servant

STARTED class

Associate user ID (and optionally group ID) to start
procedure

SURROGAT class (*.DFHEXCI)

Access to EXCI for Customer Information Control System
(CICS) access

The customization dialogs and Resource Access Control Facility (RACF) customization jobs set these up

for the initial server settings for the *’ed profiles.

Note: Examples of authorizations for the other profiles can be found in the generated exec file in
HLQ.DATA(BBOWBRAC). The selection of an identity to be used for authorization to native connector
resources (CICS, DB2, IMS) is dependent on the:

» Type of connector

* Resource authentication (resAuth) setting of the deployed application

* Availability of an alias
* Global security setting

Resource managers such as DB2, IMS, and CICS have implemented their own resource controls,
which control the ability of clients to access resources. When resource controls are used by DB2,
use the DSNR RACEF class (if you have RACF support) or issue the relevant DB2 GRANT

statements. You can:

* Access OTMA for IMS through the FACILITY Class (IMSXCF.0TMACI)
* Access EXCI for CICS through the SURROGAT class (*.DFHEXCI)
« Control access to data sets through the DATASET class and HFS files through file permission

Note that MVS SAF Authorization to all other MVS subsystem resources accessed by J2EE
applications is typically performed using the identity of the servant MVS user ID. Refer to

‘Understanding Java 2 Platform, Enterprise Edition identity and an operating system thread identity’]

on page 202| for more information.

The BPX.WLMSERVER profile in the FACILITY class is used to authorize an address space to use
the Language Environment (LE) run-time services that interface with workload management (WLM)
to perform workload management within a server region. These LE run-time services are by used
by WebSphere Application Server to extract classification information from enclaves and to manage
the association of work with an Enclave. Because unauthorized interfaces are used to manipulate

Chapter 6. Implementing security considerations at installation time 53

WLM enclaves for server region work that has not been passed from a controller to a servant,
WebSphere Application Server servants should be permitted READ access to this profile. Without
this permission, attempts to create, delete, join, or leave a WLM enclave fails with a
java.lang.SecurityException.

Summary of z/0OS security controls in effect when global security is enabled

When global security is enabled, SSL must be available for encryption and message protection. In
addition, authentication and authorization of J2EE and administrative clients is enabled.

The FACILITY class authorization needed for SSL services and the definition of SAF keyrings are required
when global security is enabled. The remainder of the z/OS security controls described here are valid only
when LocalOS is chosen as the registry. For a description of non-z/OS-specific WebSphere Application
Server controls, refer to |Assembling secured applications} [Deploying secured applications, and [Managing|

When a request flows from a client to the WebSphere Application Server or from a cluster to a cluster,
WebSphere Application Server for z/OS passes the user identity (client or cluster) with the request. Thus
each request is performed on behalf of the user identity and the system checks to see if the user identity
has the authority to make such a request. The tables in this article outline z/OS specific authorizations
using SAF.

The following table summarizes the controls used to grant authorizations to resources. By understanding
and using these controls, you can control access to all resources in WebSphere Application Server for
z/OS.

Table 6. Summary of controls and SAF authorizations

Control Authorization

CBIND class Access to a cluster

EJBROLE or GEJBROLE class Access to methods in enterprise beans

FACILITY class (IRR.DIGTCERT.LIST and SSL key rings, certificates, and mappings
IRR.DIGTCERT.LISTRING)

FACILITY Class (IRR.RUSERMAP) Kerberos credentials

PTKTDATA class PassTicket enabling in the sysplex

Set OS Thread Identity to RunAs Identity J2EE cluster property used to enable the execution

identity for non-J2EE resources

Related concepts

[‘Cluster authorizations” on page 55

This section discusses the kinds of authorization checking WebSphere Application Server for z/OS
does for a clusters. Servants must have access to profiles in the RACF SERVER class. This controls
whether a servant can call authorized routines in the controller.

[‘Using CBIND to control access to clusters” on page 56|

You can use the CBIND class in RACF to restrict a client’s ability to access clusters from Java
Application Clients or other J2EE compliant servers. You will need READ permission to access
clusters.

Related tasks

[‘Controlling access to console users when using a Local OS Registry” on page 51|
[Chapter 10, “Deploying secured applications,” on page 169

[Chapter 9, “Assembling secured applications,” on page 155|

Related reference

[‘Specifics about server process authorization checking” on page 55|

54 Bm WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

Cluster authorizations

This section discusses the kinds of authorization checking WebSphere Application Server for z/OS does
for a clusters. Servants must have access to profiles in the RACF SERVER class. This controls whether a
servant can call authorized routines in the controller.

The following explains the kinds of authorization checking WebSphere Application Server for z/OS does for

clusters.

1. Servants must have access to profiles in the RACF SERVER class. This controls whether a servant
can call authorized routines in the controller.

Controllers do not require such access control. Only authorized programs, loaded from Authorized
Program Facility (APF) libraries, run in controllers.

2. Resource managers such as DB2, IBM Information Management System (IMS), and Customer
Information Control System (CICS) have implemented their own resource controls, which control the
ability of applications to access resources.

When resource controls are used by DB2, all controllers and servants need to be granted access to
the relevant resources. You can grant access by using the DSNR RACF class (if you have RACF
support) or by issuing the relevant DB2 GRANT statements.

Access to OTMA for IMS access is accomplished through the FACILITY Class (IMSXCF.OTMACI).
Access to EXCI for CICS is accomplished through the SURROGAT class (*.DFHEXCI).

You can control access to data sets through the DATASET class and HFS files through file
permissions.

Related concepts

[‘Using CBIND to control access to clusters” on page 56|

You can use the CBIND class in RACF to restrict a client’s ability to access clusters from Java
Application Clients or other J2EE compliant servers. You will need READ permission to access
clusters.

Related reference

[‘Summary of controls” on page 52|

Specifics about server process authorization checking: To control access to WebSphere Application
Server for z/OS resources:
* As a general rule, give greater authority to controllers and less authority to servants.

Table 7. Level of trust and authority for regions

Region Level of trust and access authority

Controller Note:
» Contains WebSphere Application Server for z/OS system code.
¢ Trusted, runs APF-authorized
» Contains communication ports and manipulation of SAF client
identities

Servant Note:

» Contains WebSphere Application Server for z/OS system code,
application code, and pluggable service providers (such as jdbc
drivers)

» Supports Java 2 Security to protect sensitive data and system
services

* Untrusted

* Regarding the WebSphere Application Server for z/OS run-time clusters, the general rule is to give less
authority to the location service daemon, and greater authority to the node, as explained in the table
below:

Chapter 6. Implementing security considerations at installation time 55

Table 8. Assigning authorities to WebSphere Application Server for z/OS run-time cluster control and servants

Run-time Cluster Region Required Authorities
Location service Control e STARTED class
daemon * Access to WLM services

* Access to DNS

¢ OPERCMDS access to START, STOP, CANCEL, FORCE, and
MODIFY other clusters

* |IRR.DIGTCERT.LIST and IRR.DIGCERT.LISTRING in FACILITY

(SSL)
Node Control STARTED class
Controller Control e SSL
* Kerberos

* READ authority to the SERVER class,
» OPERCMDS access to START, STOP, CANCEL, FORCE and
MODIFY other servers

Servant Control The following classes:
« OTMA
 SERVER
+ DSNR,

+ DATASET

* SURROGATE
« STARTED

*+ LOGSTREEAM

* Remember to protect the Resource Recovery Services (RRS) log streams. By default, UACC is READ.
» Protect the WebSphere Application Server for z/OS properties XML files, especially if they contain
passwords. For more information, see the WebSphere Application Server variables in the administrative
console or the documentation.
* Deployment Manager also needs permission to start and stop servers.
Related concepts
[‘Using CBIND to control access to clusters’]
You can use the CBIND class in RACF to restrict a client’s ability to access clusters from Java

Application Clients or other J2EE compliant servers. You will need READ permission to access
clusters.

Using CBIND to control access to clusters
You can use the CBIND class in RACF to restrict a client’s ability to access clusters from Java Application
Clients or other J2EE compliant servers. You will need READ permission to access clusters.

You can also use this class to specify which servers are trusted to assert identities (with no authenticator):
» z/OS Secure Authentication Services (z/SAS) identity assertion accepted

» Common Secure Interoperability Version 2 (CSIv2) identity assertion

* Web container HTTP transport

This validates an intermediate server to send certificates (MutualAuthCBindCheck=true.certificates). You
can deactivate the class if you do not require this kind of access control.

Servers are either clustered or not clustered. The value of cluster_name is:
1. For a clustered server, the cluster_name used in these profiles is the cluster short name.

2. For an unclustered server, instead of a cluster_name a server custom property
(ClusterTransitionName) is used.

Note: When you convert a server into a clustered server the ClusterTransitionName becomes the cluster’s
short name.

56 B™ WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

The following explains the CBIND authorization checking by WebSphere Application Server for z/OS.

1.

You can use the CBIND class in RACF to restrict the ability of a client to access clusters, or you can
deactivate the class if you do not require this kind of access control. There are two types of profiles

WebSphere Application Server for z/OS uses in the CBIND class:

* One that controls whether a local or remote client can access clusters. The name of the profile has

this form:
CB.BIND.cluster_name
where cluster_name is the name of the cluster.
* One that controls whether a client can invoke J2EE applications in a cluster. The name of the
profile has this form:

CB.cluster_name

where cluster_name is the name of the cluster.

Note: When you add a new cluster, you must authorize all Java Client user IDs and Servers to have

read access to the CB.cluster_name and CB.BIND.cluster_name RACF profiles.

Example: WSADMIN needs read authority to the CB.BBOC001 and CB.BIND.BBOCO001
profiles:

PERMIT CB.BB0COO1 CLASS(CBIND) ID(WSADMIN) ACCESS(READ)
PERMIT CB.BIND.BBOCOO1 CLASS(CBIND) ID(WSADMIN) ACCESS(READ)

2. You can also use the System Authorization Facility (SAF) CBIND class to indicate that a process is

trusted to assert identities to WebSphere Application Server for z/OS. This usage is primarily intended

for use by trusted intermediate servers who have already authenticated their callers.
The intermediate server (or process) must establish its network identity to WebSphere Application

Server for z/OS using SSL client certificates. This network identity is mapped to an MVS user ID by

SAF security service. This mapped identity must be granted CONTROL access to the
CB.BIND.cluster_name process in order to be authorized to assert identities.

The use of CBIND profiles to establish trust is used by the following authentication mechanisms:

* Web container HTTP transport (which validates unencrypted client certificates when the property:

MutualAuthCBindCheck=true is set)
« CSIv2 identity assertion for IIOP
« z/SAS identity assertion accepted

For example, WEBSERV needs to assert client certificates received from its callers: PERMIT
CB.BBOCOO1 CLASS(CBIND) ID(WEBSERV) ACCESS(CONTROL)

Refer to [‘System Authorization Facility for role-based authorization’| for more information.
Related concepts

[‘Cluster authorizations” on page 55
This section discusses the kinds of authorization checking WebSphere Application Server for z/OS

does for a clusters. Servants must have access to profiles in the RACF SERVER class. This controls

whether a servant can call authorized routines in the controller.
Related reference
|“Specifics about server process authorization checking” on page 55|

System Authorization Facility for role-based authorization: EJBROLE: As an alternative to

WebSphere authorization, Security Authorization Facility (SAF)-based authorization (for example, using the

RACF EJBROLE profile) can be used to control a client’s access to Java 2 Platform, Enterprise Edition

(J2EE) roles in EJB and Web applications, including the WebSphere administrative console application.

If

the user registry custom property com.ibm.security.SAF.authorization is set to true, then SAF EJBROLE

Chapter 6. Implementing security considerations at installation time

57

profiles are used to authorize J2EE roles. (For non-LocalOS user registries, identity mapping must be in
place to map WebSphere identities to SAF identities).

Defining EJBROLES belongs to the application deployment process. If the user ID has at least READ
access to the EJBROLE profile defined in that corresponds to the J2EE role defined by the application, the
user ID is considered to be in Role. (Do not be confused by the name EJBROLE. It is used for J2EE roles
in both EJBs and Web applications.)

When an application deployer uses a role in the deployment descriptor of a component, the role name
must be identical to the name of an EJBROLE profile. A security administrator defines EJBROLE profiles
and permits SAF users or groups to the profiles. In order to be considered as eligible for a role, a user
must have read access to the EJBROLE profile or must be connected to a SAF group that has read
access.

The specification of a security domain prefix affects the specific EJBROLE profiles used by WebSphere
Application Server for z/OS system resources when SAF authorization is chosen. When
SecurityDomainType = cellQualified, the WebSphere Application Server for z/OS run time J2EE
application EJBROLE profiles are done by the specification of a security domain prefix. This enables you
to deploy the same application on different cells in the same sysplex, but have different user to role
mappings if desired.

Example: Your application has two J2EE role names: juniorTellers and seniorTellers. These are mixed
case roles.

In your SAF registry, you have an MVS group called JTELLER and STELLER and a MVS user ID called
BANKADM. The JTELLER group is required to access to the juniorTellers role, and the STELLER group is
required to acces the seniorTellers role. The BANKADM user ID is required to access both roles.

You have two cells, both defined to use a security Domain prefix. The security domain names are
PRODCELL and TESTCELL, respectively. The TEST1 user ID should have access to both roles, but only in the
test environment TESTCELL.

If you wanted to deploy the same application in both cells, you must define distinct profiles using a RACF
(or equivalent security subsystem) as follows.

If RACF is used as your security server, enable this by issuing the following commands:

/* the EJBROLE class must be active, this step is done by the customization dialogs =*/
SETROPTS CLASSACT (EJBROLE)

/* first define the roles in RACF */
RDEFINE EJBROLE PRODCELL.juniorTellers UACC(NONE)
RDEFINE EJBROLE PRODCELL.seniorTellers UACC(NONE)

RDEFINE EJBROLE TESTCELL.juniorTellers UACC(NONE)
RDEFINE EJBROLE TESTCELL.seniorTellers UACC(NONE)

/* permit the appropriate users and groups to the various roles */
PERMIT PRODCELL.juniorTellers CLASS(EJBROLE) ID(JTELLER BANKADM) ACCESS(READ)
PERMIT PRODCELL.seniorTellers CLASS(EJBROLE) ID(STELLER BANKADM) ACCESS(READ)

PERMIT TESTCELL.juniorTellers CLASS(EJBROLE) ID(TEST1) ACCESS(READ)
PERMIT TESTCELL.seniorTellers CLASS(EJBROLE) ID(TEST1) ACCESS(READ)

/* refresh the EJBROLE class in RACF =*
SETROPTS RACLIST(EJBROLE) REFRESH"

Grouping EJBROLES (GEJBROLE): The SAF interface also supports a grouping class for the EJBROLE
class. This grouping class is called GEJBROLE. It is particularly useful when you have a need to give
access to the same users or groups for several roles.

58 iBm™ WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

The GEJBROLE grouping class provides a capability not natively available in other J2EE servers. Using
the J2EE security model, if we have several components or applications that use different role names for
similar functions (such as Hire, Promote, GrantPayraise for managerial functions), there are several
options to handle this issue:

» Adjust the applications’ deployment descriptors so that they conform to the roles already defined in our
enterprise (such as Managers). This is time consuming and error prone, especially since it might require
a readjustment of the deployment descriptor each time the application was changed or reinstalled.

» Define the EJBROLE profiles for each of the roles required by the application. Then the users and
groups to be given access to these roles would have to be permitted. This could become an
administrative headache, since the same users and groups would be permitted to several different
profiles with similar meanings.

» Use the grouping class to avoid the worst pitfalls of the other two options. You must still define
EJBROLE profiles for each of the roles required by the application. Instead of permitting all of the same
users and groups to the new profiles, create a profile (such as Supervisors) in the grouping class and
add all of the new EJBROLE profiles to it. Every user and group that needs access to these roles can
now be permitted in one place--the Supervisors profile. You can further avoid administrative work by
simply adding our existing EJBROLE profile (Managers) to the grouping class profile (Supervisors).

This following explains the relation between GEJBROLES, EJBROLES and EJBROLES within the
GEJBROLE (ADDMEM).

Tip: Implementing GEJBROLES includes:
1. Plan organizational role profiles in RACF class GEJBROLEs.

2. Create the access list by permitting user groups to the GEJBROLE profiles, then add roles to the
GEJBROLE profiles.

A GEJBROLE with only one EJBROLE is OK.

Do not use a mixture of EJBROLE and GEJBROLE for permitting users to roles.
If possible, permit users to GEJBROLE profiles only.

6. Generally use GEJBROLE in preference to EJBROLE.

ok~ w

Enabling global security

Global security can be thought of as a "big switch” that activates a wide variety of security settings for
WebSphere Application Server. Values for these settings can be specified, but they will not take effect until
global security is activated. The settings include the authentication of users, the use of Secure Sockets
Layer (SSL), the choice of user registry and Java 2 security. In particular, application security, including
authentication and role-based authorization, is not enforced unless global security is active. Global security
is disabled by default to simplify the installation of the server. However, after you build a server and install
the administrative console, any user can log on to the administrative console and a password is not
required. Global security is necessary to secure the administrative console. However, proper planning is
required because incorrectly enabling global security can lock you out of the administrative console, or
cause the server to abend.

Why turn on global security?

Turning on global security activates the settings that protect your server from unauthorized users. There
might be some environments where no security is needed such as a development system. On these
systems you can elect not to enable global security. However, in most environments you should keep
unauthorized users from accessing the administrative console and your business applications. Global
security must be enabled to restrict access.

What does global security protect?

The settings that are activated when global security is enabled include:
» Authentication of HTTP clients

Chapter 6. Implementing security considerations at installation time 59

* Authentication of IIOP clients

* Administrative console security

* Naming security

» Use of SSL transports

* Role-based authorization checks of servlets, enterprise beans, and mbeans
» Propagation of identities (RunAs)

* CBIND checks

Related concepts

|“Setting up WebSphere Application Server for z/OS security” on page 43|

WebSphere Application Server for z/OS supports access to resources by clients and servers in a
distributed. Determine how to control access to these resources and prevent inadvertent or malicious
destruction of the system or data.

Setting up Secure Sockets Layer security for WebSphere Application
Server for z/OS

This topic assumes you understand the SSL protocol and how cryptographic services system SSL works
on z/OS or OS/390. Secure sockets layer (SSL) is used by multiple components within WebSphere
Application Server to provide trust and privacy. Such components include the built-in HTTP transport, the
ORB (client and server), and the secure Lightweight Directory Access Protocol (LDAP) client. Configuring
SSL is different between client and server with WebSphere Application Server. If you want the added
security of protected communications and user authentication in a network, you can use secure sockets
layer (SSL) security.

SSL is an integral part of the security provided by WebSphere Application Server for z/OS. It is activated
when global security is enabled. When global security is enabled, SSL is always used by the
administrative subsystem to secure administrative commands, the administration console, and
communications between WebSphere Application Server processes.

The WebSphere Application Server for z/OS run time can optionally use SSL when server security is
enabled in these cases:

+ SSL is used to protect Web application when confidentiality is specified as a Web Application Security
Constraint. A transport guarantee of CONFIDENTIAL or INTEGRAL guarantees that the communication
between the Web client and the Web server is secured and is transported over HTTPS (HTTP SSL). In
addition, you can use SSL to perform client authentication when the security constraint (CLIENT_CERT)
is specified during application deployment .

» SSL can be used to protect Inter-ORB Protocol (IIOP) requests when SSL/TLS is supported (or
required) in the Common Secure Interoperability version 2 (CSIv2) transport settings. These are set by
clicking Security > Global security. Under Authentication, click Authentication protocol > CSiv2
inbound transport or CSIv2 outbound transport.

» SSL can be used to protect IIOP requests when z/OS Secure Authentication Services (z/SAS) protocols
are selected. SSL is used with SSL basic authentication, SSL client authentication, z/SAS identity
assertion, and z/SAS Kerberos. SSL client authentication and z/SAS identity assertion also uses SSL
transmitted digital certificates to authenticate the sender of the request.

» SSL can be used to protect communications between an LDAP client and server when the active user
registry is LDAP.

When configuring SSL, there are two types of SSL repertoires on WebSphere Application Server for z/OS.

The type of repertoire relates to the underlying services used to process SSL.

» System SSL (SSSL repertoires) are required for Web container (HTTP Transports) SSL, and Inter-ORB
(IOP) SSL processing, both CSIv2 and zSAS SSL Transports. In addition a System SSL repertoire must
be specified if the RMI connector is chosen for administrative requests. System SSL repertoires use a
System Authorization Facility (SAF) Keyring to retrieve the personal certificate and trust stores of the
Application Server. All system SSL repertoires for a given process must use the same SAF Keyring.

60 1BM™ WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

» Java Secure Socket Extension (JSSE) must be selected as the SSL repertoire type for administrative
requests using the HTTP/SOAP Connector. JSSE repertoires can (with APAR PQ77586 applied) specify
either a SAF keyring for the keystore or truststore, or an HFS file.

This topic gives a brief explanation of the SSL protocol and how SSL works on z/OS or 0S/390. For
information about the SSL protocol, go to the following Web site: |http:/home.netscape.com/eng/ssl3/ssl-

For more information about Cryptographic Services System SSL, go to the following Web site:
[System Secure Sockets Layer Programming|

Secure Sockets Layer (SSL) is used by multiple components within WebSphere Application Server to
provide trust and privacy. These components are the built-in HTTP Transport, the ORB (client and server),
and the secure LDAP client. Configuring SSL is different between client and server with WebSphere
Application Server. If you want the added security of protected communications and user authentication in
a network, you can use Secure Sockets Layer (SSL) security. The SSL support in WebSphere Application
Server for z/OS has several objectives:

» To provide ways accepted by the industry to protect the security of messages as they flow across the
network. This is often called transport layer security. Transport layer security is a function that provides
privacy and data integrity between two communicating applications. The protection occurs in a layer of
software on top of the base transport protocol (for example, on top of TCP/IP).

SSL provides security over the communications link through encryption technology, ensuring the
integrity of messages in a network. Because communications are encrypted between two parties, a third
party cannot tamper with messages. SSL also provides confidentiality (ensuring the message content
cannot be read), replay detection, and out-of-sequence detection.

» To provide a secure communications medium through which various authentication protocols can
operate. A single SSL session can carry multiple authentication protocols, that is, methods to prove the
identities of the parties communicating.

SSL support always provides a mechanism by which the server proves its identity. The SSL support on

WebSphere Application Server for z/OS allows these ways for the client to prove its identity:

— Basic authentication (also known as SSL Type 1 authentication), in which a client proves its identity
to the server by passing a user identity and password known by the target server.

With SSL basic authentication:

- A z/OS or OS/390 client can communicate securely with WebSphere Application Server for z/OS
with a user ID and password as defined by the CSIv2 user name and password mechanism
(GSSUP).

- A WebSphere Application Server client can communicate securely with a WebSphere Application
Server for z/OS server by using a MVS user ID and password.

- Because a password is always required on a request, only simple client-to-server connections can
be made. That is, the server cannot send a client’s user ID to another server for a response to a
request.

— Client certificate support, in which both the server and client supply digital certificates to prove their
identities to each other.

When digital certificates are provided for authentication to WebSphere Application Server for z/OS
the decrypted certificate is mapped to a valid user identity in the active user registry. Web
applications can have thousands of clients, which makes managing client authentication an
administrative burden. When Local OS is the active user registry on WebSphere Application Server
for z/OS, SAF certificate name filtering allows you to map client certificates, without storing them, to
MVS user IDs. Through certificate name filtering, you can authorize sets of users to access servers
without the administrative overhead of creating MVS user IDs and managing client certificates for
every user.

— SSL support always provides a mechanism by which the server proves its identity. A variety of
mechanisms can be used to prove the clients identity. The SSL v3 (and TLS) protocol provides for
the ability for client digital certificates to optionally be exchanged. These certificates can be used for
authentication.

Chapter 6. Implementing security considerations at installation time 61

http://home.netscape.com/eng/ssl3/ssl-toc.html
http://home.netscape.com/eng/ssl3/ssl-toc.html
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

— CSilv2 identity assertion, which provides support for z/OS and OS/390 principals, X501 distinguished
names, and X509 digital certificates.

— ldentity assertion, or trusted association, in which an intermediate server can send the identities of its
clients to a target server in a secure yet efficient manner. This support uses client certificates to
establish the intermediate server as the owner of an SSL session. Through the Resource Access
Control Facility (RACF), the system can check that the intermediate server can be trusted (to confer
this level of trust, CBIND authorization is granted by administrators to RACF IDs that run secure
system code exclusively). Once trust in this intermediate server is established, client identities (MVS
user IDs) need not be separately verified by the target server; those client identities are simply
asserted without requiring authentication.

» To be securely interoperable with other products, such as:

— CICS Transaction Server for z/0OS

— Other WebSphere Application Server versions

— CORBA-compliant object request brokers

SSL is disabled by default and SSL support is optional. If you are running WebSphere Application Server
for z/OS with security turned on, SSL is required by the administrative console.

If you choose to use SSL, there are two types of SSL repertoires from which you must choose:
* System SSL (SSSL) is the SSL repertoire type used for Web container and ORB transport.
» Java Secure Socket Extension (JSSE) is the SSL repertoire type used for the JMX SOAP Connector

The following table describes how an SSL connection works:

Stage Description

Negotiation After the client locates the server, the client and server negotiate the type of
security for communications. If SSL is to be used, the client is told to connect to a
special SSL port.

Handshake The client connects to the SSL port and the SSL handshake occurs. If successful,

encrypted communication starts. The client authenticates the server by inspecting
the server’s digital certificate.

If client certificates are used during the handshake, the server authenticates the
client by inspecting the client’s digital certificate.

Ongoing communication

During the SSL handshake, the client and server negotiate a cipher spec to be
used to encrypt communications.

First client request

The determination of client identity depends upon the client authentication
mechanism chosen, which is one of the following:

* CSlv2 user ID and password (GSSUP)

* CSIv2 asserted identity

» zSAS Kerberos

» zSAS basic authentication assertedildentities

» zSAS asserted identities

» CSlv2 client certificates

» zSAS client certificates

Rules:

* Only server controllers and z/OS or OS/390 clients require access to Cryptographic Services System
SSL. Your controllers and z/OS or OS/390 clients require access to the hlg. SGSKLOAD data set. Place
SGSKLOAD into LPA. You must use system SSL to establish secure communications. It is
recommended that the system SSL load library exist in the linklist and be under program control. Verify
that the load library exists in the link list. To turn on program control for the library, issue the following
RACF commands from a user ID that has the proper authority:

62 1BM WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

RALTER PROGRAM * ADDMEM(hig.SGSKLOAD’ /NOPADCHK) UACC(READ)
SETROPTS WHEN(PROGRAM) REFRESH

For more information, see z/OS System Secure Sockets Layer Programming.

» Either a Java or C++ client on z/OS or OS/390 is interoperable with a WebSphere Application Server
for z/OS or workstation Application Server, and can use SSL. CSIv2 security only supports Java clients
on z/OS or OS/390.

« Part of the handshake is to negotiate the cryptographic specs used by SSL for message protection.
There are two factors that determine the cipher specs and key sizes used:

— The security level of the cryptographic services installed on the system, which determines the cipher
specs and key sizes available to WebSphere Application Server for z/OS.

— The configuration of the server through the administrative console allows you to specify SSL cipher
suites.

For more information, see z/OS System Secure Sockets Layer Programming.
» For z/OS system SSL sockets you must use RACF or an equivalent to store digital certificates and
keys. Placing digital certificates and keys into a key database in the HFS is not an option.

Tip: To define SSL basic authentication security, you must first request a signed certificate for your server
and a certificate authority (CA) certificate from the certificate authority that signed your server
certificate. After you have received a signed certificate for your server and a CA certificate from the
certificate authority, you must use RACF to authorize the use of digital certificates, store server
certificates, and server key rings in RACF, create an SSL repertoire alias, and define SSL security
properties for your server through the administrative console.

For clients, you must create a key ring and attach to it the CA certificate from the certificate authority that
issued the server’s certificate. For a z/OS or OS/390 client, you must use RACF to create a client key ring
and to attach the CA certificate to that key ring. For the client to authenticate the server, the server
(actually, the controller user ID) must possess a signed certificate created by a certificate authority. The
server passes the signed certificate to prove its identity to the client. The client must possess the CA
certificate from the same certificate authority that issued the server’s certificate. The client uses the CA
certificate to verify that the server’s certificate is authentic. Once verified, the client can be sure that
messages are truly coming from that server, not someone else. For the server to authenticate the client,
note that there is no client certificate that the client passes to prove its identity to the server. In the SSL
basic authentication scheme, the server authenticates the client by challenging the client for a user ID and
password.

See [‘Setting up a keyring for use by Daemon Secure Sockets Layer” on page 64| for information on
creating a keyring for the daemon’s MVS user ID.

SSL repertoires
The Secure Sockets Layer (SSL) configuration repertoire allows administrators to define any number of
SSL settings which can be used to make HTTPS, IIOPS or LDAPS connections.

Using the SSL configuration repertoire, you can pick one of the SSL settings defined here from any
location within the administrative console which allows SSL connections. This simplifies the SSL
configuration process since you can reuse many of these SSL configurations by simply specifying the alias
in multiple places. The appropriate repertoire is referenced during the configuration of a service that sends
and receives requests encrypted using SSL, such as the Web and enterprise beans containers. Before
deleting SSL configurations from the repertoire, remember that if an SSL configuration alias is referenced
somewhere, and it is deleted here, an SSL connection will fail if the deleted alias is accessed.

Note: You can also create an alias, but first you must create an SSL configuration repertoire alias or
entry. You can then select the alias later when a component is configured for SSL support.

If you choose to use SSL, there are two types of SSL repertoires from which you must choose:

Chapter 6. Implementing security considerations at installation time 63

» System SSL (SSSL) is the SSL repertoire type used for Web container and the object request broker
(ORB) transport

» Java Secure Socket Extension (JSSE) is the SSL repertoire type used for the Java Management
Extensions (JMX) Simple Object Access Protocol (SOAP) Connector

Defining Secure Sockets Layer security for servers

You need to request a certificate authority (CA) certificate and a signed certificate for your server. If you
plan to implement Secure Sockets Layer (SSL) client certificate support, you must also have certificate
authority certificates from each certificate authority that verifies your client certificates. You must have a
user ID with the authority to use the RACDCERT command in the Resource Access Control Facility
(RACF) (for example, SPECIAL authority).

Complete the following steps for RACF to authorize the server to use digital certificates. SSL uses digital

certificates and public and private keys. If your application server uses SSL, you must use RACF to store
digital certificates, and you must use public and private keys for the user identities under which the server
controllers run.

1. For each server that uses SSL, create a key ring for the controller user ID of that server. Example:
Your controller is associated with the user ID called ASCR1. Issue the following command:
RACDCERT ADDRING(ACRRING) ID(ASCR1)

2. Receive the certificate for your application server from the certificate authority. Example: You
requested a certificate and the certificate authority returned the signed certificate to you, which you
stored in a file called ASCR1.CA. Issue the following command:

RACDCERT ID (ASCR1) ADD('ASCR1.CA') WITHLABEL('ACRCERT') PASSWORD('password')

3. Connect the signed certificate to the controller user ID’s key ring and make the certificate the default
certificate. Example: Connect the certificate labeled ACRCERT to the key ring ACRRING owned by
ASCR1. Issue the following command:

RACDCERT ID(ASCR1) CONNECT (ID(ASCR1) LABEL('ACRCERT') RING(ACRRING) DEFAULT)

4. If you plan to have the server authenticate clients (SSL client certificate support), complete the
following steps:

a. Receive each certificate authority (CA) certificate that verifies your client certificates. Example:
Receive the CA certificate that will verify a client with user ID CLIENT1. That certificate is in a file
called USER.CLIENT1.CA. Issue the following command:

RACDCERT ADD('USER.CLIENT1.CA') WITHLABEL('CLIENT1 CA') CERTAUTH

b. Give each CA certificate the CERTAUTH attribute.
Connect each client’s certificate authority (CA) certificate to the controller user ID’s key ring.
Example: Connect the CLIENT1 CA certificate to the ring ACRRING owned by ASCR1.
RACDCERT ID(ASCR1) CONNECT(CERTAUTH LABEL('CLIENT1 CA') RING(ACRRING))

5. Give read access for IRR.DIGTCERT.LIST and IRR.DIGTCERT.LISTRING in the RACF FACILITY
class to the controller user ID. Example: Your controller user ID is ASCR1. Issue:

PERMIT IRR.DIGTCERT.LIST CLASS(FACILITY) ID(ASCR1) ACC(READ)
PERMIT IRR.DIGTCERT.LISTRING CLASS(FACILITY) ID(ASCR1) ACC(READ)

You are done with the RACF phase when the RACF commands succeed.
Related concepts

[‘SSL repertoires” on page 63|
The Secure Sockets Layer (SSL) configuration repertoire allows administrators to define any number of
SSL settings which can be used to make HTTPS, IIOPS or LDAPS connections.

Setting up a keyring for use by Daemon Secure Sockets Layer:

64 BM WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

Modify the customization job commands generated in BBOCBRAK (or HLQ.DATA(BBODBRAK) on
WebSphere Application Server Network Deployment) to perform these steps:

1. Create a keyring for the daemon’s MVS user ID to own. Generally, this is the same keyring name that
was created for your application servers. Issue the following TSO command: RACDCERT
ADDRING (keyringname) ID(daemonUserid)

2. Generate a digital certificate for the daemon’s MVS user ID to own. Issue the following TSO command:
RACDCERT ID (daemonUserid) GENCERT SUBJECTSDN(CN(’create a unique CN’) O(’IBM’))
WITHLABEL(*TabelName’) SIGNWITH(CERTAUTH LABEL(’WebSphereCA’))

3. Connect the generated certificate to the daemon’s keyring. Issue the following TSO command:
RACDCERT ID(daemonUserid) CONNECT (LABEL(’labelName’) RING(keyringname) DEFAULT)

4. Connect the certificate authority (CA) certificate to the server’s keyring. Issue the following TSO
command: RACDCERT CONNECT (CERTAUTH LABEL(WebSphereCA) RING(keyringname))

Tip: The CA certificate that is generated during configuration (WAS Test CertAuth) is an example. Use the
CA you normally use to create user certificates, and connect the CA certificate to the daemon and
server keyrings.

Related concepts

[‘Daemon Secure Sockets Layer” on page 69|

Use the administrative console panel to modify the port and Secure Sockets Layer (SSL) port settings
and to specify the SSL settings (the SSL repertoire). The default repertoire is the same one used for
the server, which is a SystemSSL IIOP repertoire. During daemon initialization the SSL usage
initialization is attempted if security is enabled and a valid repertoire is found. In order to turn off the
daemon SSL port a cell-level WebSphere variable (DAEMON_security disable_daemon_ss1) must be
created and set to true. The default for this variable is false.

Setting up a keyring for use by cryptographic services:

Modify the customization job commands generated in BBOCBRAK (or HLQ.DATA(BBODBRAK) on
WebSphere Application Server Network Deployment) to perform these steps:

1. Create a keyring for the daemon’s MVS user ID to own. Generally, this is the same keyring name that
was created for your application servers. Issue the following TSO command: RACDCERT
ADDRING (keyringname) ID(daemonUserid) ICSF

2. Generate a digital certificate for the daemon’s MVS user ID to own. Issue the following TSO command:
RACDCERT ID (daemonUserid) GENCERT SUBJECTSDN(CN(’create a unique CN’) O(’IBM’))
WITHLABEL (*TabeTName’) SIGNWITH(CERTAUTH LABEL(’WebSphereCA’)) ICSF

3. Connect the generated certificate to the daemon’s keyring. Issue the following TSO command:
RACDCERT ID(daemonUserid) CONNECT (LABEL(’labelName’) RING(keyringname) DEFAULT) ICSF

4. Connect the certificate authority (CA) certificate to the server’s keyring. Issue the following TSO
command: RACDCERT CONNECT (CERTAUTH LABEL (WebSphereCA) RING(keyringname)) ICSF

Tip: The certificate authority (CA) certificate that is generated during configuration (WAS Test CertAuth) is
an example. Use the CA you normally use to create user certificates, and connect the CA certificate
to the daemon and server keyrings.

Defining SSL security for clients and servers:

Note that this assumes you use z/OS Security Server (RACF) as your security server. You must obtain a
copy of the certificate authority (CA) certificate used to sign the server certificates. The server certificates
connect your client to the server. You must also have a user ID with the appropriate authority (such as
SPECIAL) to use the z/OS Security Server Resource Access Control Facility (RACF) RACDCERT
command. For more information on the RACDCERT command, refer to z/OS Security Server RACF
Command Language Reference (SA22-7687-05), available at
[http://www.ibm.com/servers/eserver/zseries/zos/bkserv/r5pdf/secserv.html. For more information on the

Chapter 6. Implementing security considerations at installation time 65

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/r5pdf/secserv.html

RACF in general, refer to z/OS Security Server RACF Security Administrator's Guide (SA22-7683-05),
available at |nttp://www.ibm.com/servers/eserver/zseries/zos/bkserv/r5pdf/secserv.html.

Complete the following RACF steps to allow the client to use digital certificates. Simple Object Access

Protocol (SOAP), Secure Socket Layer (SSL), and Java Secure Socket Extensions (JSSE) use digital

certificates that have public and private keys. If your client uses SOAP, SSL or JSSE, you must use RACF

to store digital certificates that have public and private keys for the user identities under which the client

runs.

1. For each administrative client program that uses SOAP, create a keyring for the client user ID. For
example, if your client is running with a user ID called CLIENTID, issue the following command:

RACDCERT ADDRING(ACRRING) ID(CLIENTID)
2. The keyring created in the step above must include the public certificate of any certificate authority

(CA) certificates that are required to establish trust in the servers to which your administrative client

connects to. For each CA certificate complete the following steps:

a. Determine whether this CA certificate is currently stored in RACF. If so, record the existing
certificate label. If not you must:

1) Receive each CA certificate used to sign a server certificate. For example, to receive the CA
certificate that is stored in the USER.SERVER1.CA file and that verifies a server with the user ID
SERVERT1, issue the following command:

RACDCERT ADD('USER.SERVER1.CA') WITHLABEL('SERVER1 CA') CERTAUTH

2) Connect each server’s CA certificate to the client user ID’s keyring. For example, to connect
the SERVER1 CA certificate to the ring ACRRING owned by CLIENTID:
RACDCERT ID(CLIENTID) CONNECT(CERTAUTH LABEL('SERVER1 CA') RING(ACRRING))

3. If the servers your administrative client connect to implements SSL client certificate support, you must
create certificates for your client and add them to the server keyrings. Refer to [Defining SSL security|
for instructions on setting up keyrings for the servers.

4. Give READ access for the IRR.DIGTCERT.LIST and IRR.DIGTCERT.LISTRING profiles in the RACF
FACILITY class to the client user ID. For example, if your client user ID is CLIENTID, issue the
following command:

PERMIT IRR.DIGTCERT.LIST CLASS(FACILITY) ID(CLIENTID) ACC(READ)
PERMIT IRR.DIGTCERT.LISTRING CLASS(FACILITY) ID(CLIENTID) ACC(READ)

You are done with the RACF phase when the RACF commands have run successfully.
Steps to create a new System SSL repertoire alias
You must start the administrative console.

The steps outline the necessary actions to generate a new System Secure Sockets Layer (SSL) repertoire
alias. Using the SSL configuration repertoire, you can pick one of the SSL settings defined here from any
location within the administrative console that allows SSL connections. This simplifies the SSL
configuration process since you can reuse many of these SSL configurations by simply specifying the alias
in multiple places.

1. Click Security > SSL on the left-hand navigation tree to open the SSL Configuration Repertoires
panel.

2. To create a new System SSL alias, select the check box next to the word Alias and click on the New
SSSL repertoire button near the top of the panel. The System SSL Repertoire panel appears.

3. Enter the alias name in the Alias field.

4. Specify the SSL Resource Access Control Facility (RACF) key ring in the Key file name field. All
repertoires used by the same server (such as HTTPS, CSIV2, z/SAS) must have the same keyring
name. If the keyring names are not the same, the HTTPS keyring name is used to initialize the server.
If you specify the wrong RACF key ring, the server gets an error message at run time.

66 1BM WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/r5pdf/secserv.html

5.

6.

7.

8.

9.

Optional: Select the Client authentication option for your authentication protocol. This option enables
client authentication to occur if this repertoire is selected for HTTPS. However, the value is ignored if
you use using Common Secure Interoperability Version 2 (CSIv2) or z/OS Secure Authentication
Services (z/SAS).

To enable client authentication for CSIlv2, click Security > Global security. Under Authentication, click
Authentication protocol > CSlIv2 inbound authentication. Select the appropriate option for Client
certificate authentication.

To enable client authentication for z/SAS, click Security > Global security. Under Authentication, click
Authentication protocol > z/SAS authentication. Select the Client certificate option.

Select High, Medium, or Low from the Security level menu to specify the high, medium, or low set of
cipher suites. If you add specific cipher suites on this panel, those cipher suites take precedence over
the high, medium, or low specification. If a cipher list is specified, WebSphere Application Server uses
the list. If the cipher list is empty, WebSphere Application Server uses the high, medium, low
specification. The following list explains these specifications:

High 128-bit cipher suites with digital signature.

Medium
40-bit cipher suites with digital signature.
Low No encryption is used, but digital signature is used.

Specify the SSL V3 timeout value in the V3 timeout field. This value is the length of time, in seconds,
that the system holds session keys. The range is 0-86400 (1 day). The default is 600 seconds.

Select the cipher suites that you want to add from the Cipher suites menu. By default, this is not set,
and the cipher suites available are determined by the value of the Security Level (High, Medium, or
Low). A cipher suite is a combination of cryptographic algorithms used for an SSL connection.

Click OK when you have made all your selections.
Related concepts

[‘SSL repertoires” on page 63|

The Secure Sockets Layer (SSL) configuration repertoire allows administrators to define any number of
SSL settings which can be used to make HTTPS, IIOPS or LDAPS connections.

Related tasks

“Using Java Secure Socket Extension and Java Cryptography Extension with Servlets and enterprise]
bean files” on page 537|

Creating a new Java Secure Socket Extension repertoire alias

The following steps describe how to generate a new Java Secure Socket Extension (JSSE) repertoire
alias. Using the JSSE repertoire, you can pick one of the JSSE repertoire settings defined here from any
location within the administrative console. This simplifies the JSSE repertoire configuration process
because you can reuse many of these JSSE configurations by simply specifying the alias in multiple
places.

1.

Click Security > SSL on the left-hand navigation tree to open the SSL Configuration Repertoires
panel.

To create a new JSSE repertoire, click New JSSE repertoire near the top of the panel. The JSSE
Repertoire panel appears.

Enter the alias name in the Alias field.

Optional: Select the Client authentication option for your authentication protocol. This option
enables client authentication to occur if this repertoire is selected for HTTPS. However, the value is
ignored if you use using Common Secure Interoperability Version 2 (CSIv2) or z/OS Secure
Authentication Services (z/SAS).

To enable client authentication for CSIv2, click Security > Global security. Under Authentication,
click Authentication protocol > CSIv2 inbound authentication. Select the appropriate option for
Client certificate authentication.

Chapter 6. Implementing security considerations at installation time 67

10.

11.

12.
13.

To enable client authentication for z/SAS, click Security > Global security. Under Authentication,
click Authentication protocol > z/SAS authentication. Select the Client certificate option.

Select High, Medium, or Low from the Security level menu to specify the high, medium, or low set of
cipher suites. If you add specific cipher suites on this panel, those cipher suites take precedence over
the high, medium, or low specification. If a cipher list is specified, WebSphere Application Server uses
the list. If the cipher list is empty, WebSphere Application Server uses the high, medium, low
specification. The following list is an explanation of the high, medium, and low specifications:

High 128-bit cipher suites with digital signature.

Medium
40-bit cipher suites with digital signature.
Low No encryption is used, but digital signature is used.

Select the cipher suites that you want to add from the Cipher suites menu. By default, this is not set.
The set of cipher suites available is determined by the value of the Security Level (High, Medium, or
Low). A cipher suite is a combination of cryptographic algorithms used for an SSL connection.

Select the Cryptographic token option if hardware or software cryptographic support is available.

Indicate which JSSE provider that you are using by selecting either Predefined JSSE provider or
Custom JSSE provider in the Provider field. WebSphere Application Server comes with the
IBMJSSE provider predefined.

If you are not using the IBMJSSE provider, configure a custom provider by selecting Custom JSSE
provider. Under Additional properties, click Custom Properties > New. After specifying the custom
provider, return to the JSSE repertoire panel.

Select an SSL or TLS protocol version.

Note: The protocol chosen for the server must match the protocol chosen for the client. Also, in order
for two servers to interoperate, they must use the same protocol.

Specify the name of the key file in the Key file name field. Specify the fully qualified path to the
Secure Sockets Layer (SSL) key file that contains public keys and private keys. Type safkeyring:///
if you are using a RACF key ring for the key file.

Specify the password needed to access the key file in the Key file password field. Type password if
you are using a RACF key ring for the key store.

Select the format of the key file from the Key file format menu.
Click OK when you have made all your selections.
Related concepts

[‘SSL repertoires” on page 63|

The Secure Sockets Layer (SSL) configuration repertoire allows administrators to define any number of
SSL settings which can be used to make HTTPS, IIOPS or LDAPS connections.

Related tasks

“Using Java Secure Socket Extension and Java Cryptography Extension with Servlets and enterprise
bean files” on page 537|

Setting up a keyring for use by Daemon Secure Sockets Layer

Mo

dify the customization job commands generated in BBOCBRAK (or HLQ.DATA(BBODBRAK) on

WebSphere Application Server Network Deployment) to perform these steps:

1.

68

Create a keyring for the daemon’s MVS user ID to own. Generally, this is the same keyring name that
was created for your application servers. Issue the following TSO command: RACDCERT
ADDRING (keyringname) ID(daemonUserid)

Generate a digital certificate for the daemon’s MVS user ID to own. Issue the following TSO command:
RACDCERT ID (daemonUserid) GENCERT SUBJECTSDN(CN(’create a unique CN’) O(’IBM’))
WITHLABEL(*TabelName’) SIGNWITH(CERTAUTH LABEL(’WebSphereCA’))

IBM WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

3. Connect the generated certificate to the daemon’s keyring. Issue the following TSO command:
RACDCERT ID(daemonUserid) CONNECT (LABEL(’labelName’) RING(keyringname) DEFAULT)

4. Connect the certificate authority (CA) certificate to the server’s keyring. Issue the following TSO
command: RACDCERT CONNECT (CERTAUTH LABEL (WebSphereCA) RING(keyringname))

Tip: The CA certificate that is generated during configuration (WAS Test CertAuth) is an example. Use the
CA you normally use to create user certificates, and connect the CA certificate to the daemon and
server keyrings.

Related concepts

[‘Daemon Secure Sockets Layer’|

Use the administrative console panel to modify the port and Secure Sockets Layer (SSL) port settings
and to specify the SSL settings (the SSL repertoire). The default repertoire is the same one used for
the server, which is a SystemSSL IIOP repertoire. During daemon initialization the SSL usage
initialization is attempted if security is enabled and a valid repertoire is found. In order to turn off the
daemon SSL port a cell-level WebSphere variable (DAEMON_security disable_daemon_ss1) must be
created and set to true. The default for this variable is false.

Daemon Secure Sockets Layer

Use the administrative console panel to modify the port and Secure Sockets Layer (SSL) port settings and
to specify the SSL settings (the SSL repertoire). The default repertoire is the same one used for the
server, which is a SystemSSL [IOP repertoire. During daemon initialization the SSL usage initialization is
attempted if security is enabled and a valid repertoire is found. In order to turn off the daemon SSL port a
cell-level WebSphere variable (DAEMON_security disable daemon_ss1) must be created and set to true.
The default for this variable is false.

SSL can be used to protect locations in the SSL daemon using the Location Service Daemon if:
» Global security is enabled

* A daemon SSL repertoire is configured in the administrative console (the daemon SSL repertoire refers
to a valid RACF keyring that is owned by the MVS user ID associated with the daemon process)

» A certificate and keyring have been defined

On the administrative console, click System administration > Node groups >sysplex_node_group_name.
Under Additional properties, click z/OS location service.

Location service daemon
This panel specifies the configuration settings for the location service daemon for this cell.

Changes made to these settings to the entire cell and to the Tocation service daemon instance
on each node in the cell.

Job Name BBODMNC Specifies z/0S jobname of location
service daemon.

Host Name BOSSXXXX.PLEX1.L2.IBM.COM Specifies host name to be used when
contacting location service daemon.

Port 5755 Specifies port Tocation service daemon
listens on for unencrypted communication.

SSL Port 5756 Specifies port Tocation service daemon
listens on for encrypted communication.

SSL Setting PLEX1Manager/DefaultIIOPSSL Specifies a list of predefined SSL

settings to choose from for connections.
These are configured at the SSL repertoire
panel.

You can use the customization dialog to specify authentication information, including the daemon’s user
ID, UID, and SSL port. This panel is located under Server Customization. RACF commands are
generated to create a keyring for server use (the default is WASKeyring). The customization dialog
generates the daemon keyring and the certificate. To generate the daemon keyring and certificate from the

Chapter 6. Implementing security considerations at installation time 69

customization dialog, select Security Domain > SSL Customization > Enable SSL on the Location
Service Daemon. If you type Y next to this option, the RACF commands are generated to do the following
tasks:

» Create a daemon keyring and certificate
» Connect the certificate and certificate authority (CA) certificates to the keyring.

Important: This option does not control the use of the daemon SSL.
This is appropriate if the user IDs are the same, but if the daemon has a separate user ID, see [Setting up

|a Keyring for use by WebSphere Application Server for z/OS|. The values selected are picked up by the
administrative console.

If the daemon process is assigned the same MVS user ID assigned to a secure WebSphere Application
Server, the keyring you use to secure WebSphere Application Server can also be used to secure daemon
requests. If the daemon process is not assigned the same MVS user ID assigned to a secure WebSphere
Application Server, it is recommended that you perform the daemon SSL setup similarly to the setup for
your WebSphere Application Server. Modify the customization job commands generated in BBOCBRAK (or
HLQ.DATA(BBODBRAK) on WebSphere Application Server Network Deployment) to perform the steps in
[Setting up a Keyring for use by WebSphere Application Server for z/OS|

Related tasks
[‘Setting up a keyring for use by Daemon Secure Sockets Layer” on page 64
[“Steps to create a new System SSL repertoire alias” on page 66|

SSL considerations for WebSphere Application Server administrators

The Resource Access Control Facility (RACF) customization jobs create an SSL Keyring owned by the
WebSphere Application Server for z/OS administrator containing the digital certificate needed to
communicate with WebSphere Application Server. However, additional customization is required for
administration by other MVS user IDs.

Note that the MVS user ID in the description below is the MVS user ID under which the wsadmin.sh
process is running, not the user ID specified in the wsadmin request.

In the example below:
* yyyyy is the user ID of the new WebSphere Application Server for z/OS administrator
* xxxxX is the name of the keyring specified in soap.client.props

» zzzzz is the label name used in the BBOSBRAK jobs to specify which certificate authority certificate
was used to generate server keys

1. If the new administrator is not a member of the WebSphere Application Server for z/OS administrative
group, make sure that the new user ID has access to the appropriate RACF keyrings and digital
certificates. For example:

PERMIT IRR.DIGTCERT.LIST CLASS(FACILITY) ID(yyyyy) ACC(READ)
PERMIT IRR.DIGTCERT.LISTRING CLASS(FACILITY) ID(yyyyy) ACC(READ)

2. Use the setup completed by the customization jobs as a model for the additional steps. This
information is in the BBOCBRAK member of the <HLQ>.DATA data set generated during the
customization process. The BBOCBRAK job contains the set of RACF commands that were used:

/* Generating SSL keyrings for WebSphere administrator */
RACDCERT ADDRING (xxxxx) ID(yyyyyy)
/* Connect WAS CA Certificates to Servers keyring */

"RACDCERT ID(yyyyy) CONNECT (RING(xxxxxx) LABEL('zzzzzzz') CERTAUTH"
SETROPTS RACLIST(FACILITY) REFRESH"

70 1BM™ WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

Setting up SSL connections for Java clients

To configure SSL for use between Java clients running on a workstation and the WebSphere Application
Server for z/OS Java 2 Platform, Enterprise Edition (J2EE) server:

1. Determine what SSL repertoire the server is using. For example: WASKeyring.
2. Determine the user ID the server is running. For example: CBSYMSR1.

3. Export the certificate authority from RACF. For example: RACDCERT CERTAUTH
EXPORT (LABEL (’WebSphereCA’)) DSN(’IBMUSER.WAS.CA’) FORMAT(CERTDER)

4. Move the file to the workstation. (Note that the FTP transfer must use binary.) For example: c:\tmp
directory

5. Add the digital certificate to the TrustStore used by the client. For example: DummyClientTrustFile.jks
file: keytool -import -file c:\tmp\IBMUSER.WAS.CA -keystore DummyClientTrustFile.jks]

Setting permission for files created by applications

Files created by applications running in the servant will have permission bits set according to the default
umask. To change the default umask for the servant, specify the _EDC_UMASK_DFLT environment
variable in the JCL procedure for the servant. Deployment manager and application servers require group
read/write access to the data in their config root.

Deployment manager and application servers require group read/write access to the data in their config
root. The server must run with a 007 umask in order to support system management functions. Do not
change this umask setting and your server will function correctly.

On the JCL EXEC statement, specify:
PARM="ENVAR("_EDC_UMASK_DFLT=xxx")
where xxx is the umask value to use (which is 007).

Recommendation: A umask value of 007 will cause files to be created with permission bits set to 770.
This is the value recommended by IBM.

Note: See the following documents for more information:
* z/OS Language Environment Programming Reference, for more information on ENVAR
* z/OS C/C++ Programming Guide, for more information on how to change the UMASK defaults
* z/OS UNIX System Services Command Reference

Related reference
[‘Summary of controls” on page 52|

Security auditing
Security auditing is handled in the usual way by the security product. WebSphere Application Server for
z/OS uses the System Authorization Facility (SAF), which provides an auditing mechanism consistent with
other functions in z/OS or OS/390.

Related reference

[‘Summary of controls” on page 52|

Setting up RACF protection for DB2

You can use the Resource Access Control Facility (RACF) DSNR resource class to protect DB2 resources.
This helps you centralize security management. This section gives you pointers to general information
about setting up RACF protection for DB2 and specific information about the resources, groups, user IDs,
and permissions used by WebSphere Application Server for z/OS.

There are three functional areas in RACF to consider regarding protection for DB2:

Chapter 6. Implementing security considerations at installation time 71

« RACF DSNR class

The RACF DSNR class controls access to the DB2 subsystems. If the DSNR class is active, then
WebSphere Application Server for z/OS controllers and servants need access to the db2_ssn. RRSAF
profiles, where db2_ssn is your DB2 subsystem name. If a controller or servant does not have access,
then that region will not initialize.

» Secondary authorization IDs

DB2 identification and signon exits (DSN3@ATH and DSN3@ SGN) are used to assign authorization
IDs. If you want to use secondary authorization IDs (RACF group names), then you must replace the
default exits with these two sample routines. For details on how to install these sample routines, see
DB2 Administration Guide.

» Grant statements

WebSphere Application Server for z/OS does not support the protection of DB2 objects through the
DSNX@ XAC exit. To protect DB2 objects, you must use GRANT statements.

Related concepts

|“Using CBIND to control access to clusters” on page 56|

You can use the CBIND class in RACF to restrict a client’s ability to access clusters from Java
Application Clients or other J2EE compliant servers. You will need READ permission to access
clusters.

Steps for defining DB2 options for RACF

You must complete general tasks for enabling Resource Access Control Facility (RACF) protection for your
DB2 system. This includes adding entries to the RACF router table, installing identification and signon
exits, and defining RACF user IDs for DB2 started tasks. You must also have your copy of the BBOCBRAJ
sample provided with WebSphere Application Server for z/OS.

Perform the following steps to define DB2 resources and authorizations in RACF:

1. Remove the comment marks that surround the REXX and RACF commands. As shipped, the DSNR
profile section is commented out.

2. Copy the BBOCBRAJ job to a new file.

3. Submit the job from a user ID with RACF SPECIAL authority.

You know you are done when the job completes successfully.
Related concepts

[‘Using CBIND to control access to clusters” on page 56|

You can use the CBIND class in RACF to restrict a client’s ability to access clusters from Java
Application Clients or other J2EE compliant servers. You will need READ permission to access
clusters.

Understanding System Authorization Facility profile names generated
by the Customization Dialog

The WebSphere Application Server for z/OS Customization Dialog generates jobs that help you create the
necessary System Authorization Facility (SAF) profiles, such as STARTED, CBIND, or SERVER, that

enable your server to run. This article helps you understand how to work with these profiles and determine
if you need to also create your own.

At runtime, normal SAF specific and generic profile matching uses a combination of the cell short name,
cluster short name (or cluster transition name for a non-clustered server), and server short name to select
the appropriate matching profile. See |Global security settings| for more information on SAF profiles.

WebSphere Application Server for z/OS customization uses two schemes, specific and generic, in the
creation of SAF profiles:

72 1BM WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

» With the specific profile scheme, a set of fully-qualified, specific profiles are created to exactly match the
short names that apply to the server you customize. This is either an application server or deployment
manager.

» With the generic profile scheme, a set of generic profiles are also created. (For example, the STARTED
class BBO™.” profiles.) The purpose of these generic profiles is to provide a default profile for any server
that is created administratively and that has a default name so that the servers can operate successfully
by default.

Examples:

— An application server created through the administrative console has a default server short name of
BBOSnNnn and a cluster short name (or cluster transition name for a non-clustered server) of
BBOCnnn, where nnn is a unique number. By default, this server can start using the BBO* generic
profiles.

— Node federation creates a node agent server. If the base application server you federate is
configured with a Java Message Service (JMS) integral provider, then a standalone JMS server is
also created. The node agent has a default name of BBONnnn and the JMS server is BBOJnnn,
where nnn is a unique number. By default, these servers can start using the BBO* generic profiles.

The generic profiles that customization creates are not required and exist only for your convenience in
case you use the default server short names and cluster short names (or cluster transition names for
non-clustered servers) generated by WebSphere Application Server for z/OS. You may choose to delete
the generic profiles if, for example, your organization has particular naming conventions and you will not
use the default names generated by WebSphere Application Server for z/OS. In that case, ensure that you
have your own strategy for creating the required SAF profiles, either generic or specific, with your own
naming convention--WebSphere Application Server for z/OS does not create them for you.

Related concepts
[EJBROLES and GEJBROLES|
Related reference

[Global security settings|

Use this page to configure security. When you enable security, you are enabling security settings on a
global level.

[RACF server class profiles|

The Resource Access Control Facility (RACF) server class profiles are used to control dynamic
application environments. Dynamic application environments are displayed and controlled separately
from static application environments.

PropFilePasswordEncoder command reference

Purpose

The PropFilePasswordEncoder command encodes passwords located in plain text property files. This
command encodes both Secure Authentication Server (SAS) property files and non-SAS property files.
After you have encoded the passwords, note that a decoding command does not exist. To encode
passwords, you must run this command from the install dir/bin directory of a WebSphere Application
Server installation.

Syntax

The command syntax is as follows:

PropFilePasswordEncoder file name

Parameters

The following option is available for the PropFilePasswordEncoder command:

Chapter 6. Implementing security considerations at installation time 73

-sas
Encodes SAS property files.

The following examples demonstrate the correct syntax.

PropFilePasswordEncoder file_name password_properties_list
PropFilePasswordEncoder file_name -SAS

Related tasks
[‘Protecting plain text passwords” on page 40|

74 1BM WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

Chapter 7. Migrating security configurations from previous
releases

This article addresses the need to migrate your security configurations from a previous release of IBM
WebSphere Application Server to WebSphere Application Server Version 6. Complete the following steps
to migrate your security configurations:

» Before migrating your configurations, verify that the administrative server of the previous release is
running.

» If security is enabled in the previous release, obtain the server ID and password of the previous
release. This information is needed to log onto the administrative server of the previous release during
migration.

* You can optionally disable security in the previous release before migrating the installation. There is no
logon required during the installation.

1. Start the First steps wizard by launching the firststeps.bat or firststeps.sh file. The first steps file
is located in the following directory:

« Jinstall_root/profiles/profile name/firststeps/firststeps.sh
2. On the First steps wizard panel, click Migration wizard.
3. Follow the instructions provided in the First steps wizard to complete the migration.

The security configuration of previous WebSphere Application Server releases and its applications are
migrated to the new installation of WebSphere Application Server Version 6.

This task is for migrating an installation.

If a custom user registry is used in the previous version, the migration process does not migrate the class
files used by the custom user registry in the previous_install root/classes directory. Therefore, after
migration, copy your custom user registry implementation classes to the install root/classes directory.

If you upgrade from WebSphere Application Server, Version 5.x or 4.0.x to WebSphere Application Server,
Version 6.0.x, the data that is associated with Version 5.x or 4.0.x trust associations is not automatically
migrated to Version 6.0.x. To migrate trust associations, see [‘Migrating trust association interceptors” on|

Related concepts

[{J2EE Connector security” on page 353

The J2EE connector architecture defines a standard architecture for connecting the Java 2 Platform,
Enterprise Edition (J2EE) to heterogeneous enterprise information systems (EIS). Examples of EIS
include Enterprise Resource Planning (ERP), mainframe transaction processing (TP) and database
systems.

[‘Custom user registries” on page 290)

A custom user registry is a customer-implemented user registry, that implements the UserRegistry Java
interface, as provided by the product. A custom-implemented user registry can support virtually any
type of an account repository from a relational database, flat file, and so on. The custom user registry
provides considerable flexibility in adapting product security to various environments where some form
of a user registry, other than Lightweight Directory Access Protocol (LDAP) or Local Operating System
(LocalOS), already exists in the operational environment.

[‘Java Authentication and Authorization Service” on page 320

The standard Java 2 security application programming interface (API) helps enforce access control,
based on the location of the code source or the author or packager of the code that signed the jar file.
The current principal of the running thread is not considered in the Java 2 security authorization.
Instances where authorization is based on the principal (as opposed to the code base) and the user
exist. The Java Authentication and Authorization Service is a standard Java API that supports the Java
2 security authorization to extend the code base on the principal as well as the code base and users.

© Copyright IBM Corp. 2005 75

[‘Web component security” on page 158|

A Web module consists of servlets, JavaServer Pages (JSP) files, server-side utility classes, static Web
content (HTML, images, sound files, cascading style sheets (CSS)), and client-side classes (applets).
You can use development tools such as Rational Application Developer to develop a Web module and
enforce security at the method level of each Web resource.

Related tasks
[“Configuring inbound identity mapping” on page 359

Migrating custom user registries

Before you perform this task, it is assumed that you already have a custom user registry implemented and
working with WebSphere Application Server Version 6. The custom registry interface is the UserRegistry
interface.

In WebSphere Application Server Version 6.0.x, in addition to the UserRegistry interface, the custom user
registry requires the Result object to handle user and group information. This file is already provided in the
package and you are expected to use it for the getUsers, getGroups and the getUsersForGroup methods.

You cannot use other WebSphere Application Server components (for example, datasources) to initialize
the custom registry because other components like the containers are initialized after security and are not
available during the registry initialization. A custom registry implementation is a pure custom
implementation, independent of other WebSphere Application Server components.

The EJB method getCallerPrincipal() and the servlet methods getUserPrincipal() and getRemoteUser()
return the security name instead of the display name. However, if you need the display names to return,
set the WAS_UseDisplayName property to true. See the getUserDisplayName method description or the
Javadoc, for more information.

If the migration tool was used to migrate the WebSphere Application Server Version 5 configuration to
WebSphere Application Server Version 6.0.x, be aware that this migration does not involve any changes to
your existing code. Because the WebSphere Application Server Version 5 custom registry works in
WebSphere Application Server Version 6.0.x without any changes to the implementation (except when
using data sources) you can use the Version 5-based custom registry after the migration without modifying
the code. Consider that the migration tool might not copy your implementation files from Version 4 to
Version 6.0.x. You might have to copy them to the class path in the Version 6 setup (preferably to the
classes subdirectoy). If you are using the WebSphere Application Server Network Deployment version,
copy the files to the cell and to each of the nodes class paths.

In WebSphere Application Server Version 6.0.x, a case insensitive authorization can occur when using the
custom registry. This authorization is in effect only on the authorization check. This function is useful in
cases where your custom registry returns inconsistent (in terms of case) results for user and group unique
IDs.

Note: Setting this flag does not have any effect on the user names or passwords. Only the unique IDs
returned from the registry are changed to lower-case before comparing them with the information in
the authorization table, which is also converted to lowercase during run time.

Before proceeding, look at the UserRegistry interface. See I“Developing custom user registries” on pagel
for a description of each of these methods in detail.

The following steps go through in detail all the changes required to move your WebSphere Application
Server Version 5 custom user registry to the WebSphere Application Server Version 6.0.x custom user
registry. The steps are very simple and involve minimal code changes. The sample implementation file is
used as an example when describing some of the steps.

1. Change your implementation to UserRegistry instead of CustomRegistry. Change:

76 1BM WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

pubTic class FileRegistrySample implements CustomRegistry
to
public class FileRegistrySample implements UserRegistry

Throw the java.rmi.RemoteException in the constructors public FileRegistrySample() throws
java.rmi.RemoteException

Change the mapCertificate method to take a certificate chain instead of a single certificate. Change

public String mapCertificate(X509Certificate cert)
to
public String mapCertificate(X509Certificate[]cert)

Having a certificate chain gives you the flexibility to act on the chain instead of one certificate. If you
are only interested in the first certificate just take the first certificate in the chain before processing. In
WebSphere Application Server Version 6, the mapCertificate method is called to map the user in a
certificate to a valid user in the registry, when certificates are used for authentication by the Web or
the Java clients (transport layer certificates, Identity Assertion certificates).

Remove the getUsers() method.

Change the signature of the getUsers(String) method to return a Result object and accept an
additional parameter (int). Change:

public List getUsers(String pattern)
to
public Result getUsers(String pattern, int Timit)

In your implementation, construct the Result object from the list of the users obtained from the
registry (whose number is limited to the value of the limit parameter) and call the setHasMore()
method on the Result object if the total number of users in the registry exceeds the limit value.

Change the signature of the getUsersForGroup(String) method to return a Result object and accept
an additional parameter (int) and throw a new exception called NotimplementedException. Change
the following:

public List getUsersForGroup(String groupName)
throws CustomRegistryException,
EntryNotFoundException {

to

public Result getUsersForGroup(String groupSecurityName, int limit)
throws NotImplementedException,
EntryNotFoundException,
CustomRegistryException {

In WebSphere Application Server Version 6, this method is not called directly by the WebSphere
Application Server Security component. However, other components of the WebSphere Application
Server like the WebSphere Business Integration Server Foundation Process Choreographer use this
method when staff assignments are modeled using groups. Because this already is implemented in
WebSphere Application Server Version 6.0.x, it is recommended that you change the implementation
similar to the getUsers method as explained in step 5.

Remove the getUniqueUserlds(String) method.
Remove the getGroups() method.

Change the signature of the getGroups(String) method to return a Result object and accept an
additional parameter (int). change the following:

public List getGroups(String pattern)

Chapter 7. Migrating security configurations from previous releases 77

10.

1.

12.

13.

to

public Result getGroups(String pattern, int Timit)

In your implementation, construct the Result object from the list of the groups obtained from the
registry (whose number is limited to the value of the limit parameter) and call the setHasMore()
method on the Result object if the total number of groups in the registry exceeds the limit value.

Add the createCredential method. This method is not called at this time, so return as null.

public com.ibm.websphere.security.cred.WSCredential
createCredential (String userSecurityName)
throws CustomRegistryException,
NotImplementedException,
EntryNotFoundException {
return null;

}
The first and second lines of the previous code example normally appear on one line. However, it
extended beyond the width of the page.
To build the WebSphere Application Server Version 6.0.x implementation, make sure you have the
sas.jar and wssec.jar in your class path.

%install_root%\java\bin\javac -classpath %WAS_HOME%\1ib\wssec.jar;
%WAS _HOME%\1ib\sas.jar FileRegistrySample.java

Type the previous lines as one continuous line.

Copy the implementation classes to the product class path. The %install _root%/1ib/ext directory is
the preferred location. If you are using the Network Deployment product, make sure that you copy
these files to the cell and all the nodes. Without the files in each of the node class paths the nodes
and the application servers in those nodes cannot start when security is on.

Use the administrative console to set up the custom registry. Follow the instructions in the
[‘Configuring custom user registries” on page 292|article to set up the custom registry including the
IgnoreCase flag. Make sure that you add the WAS_UseDisplayName properties, if required.

Migrates to a WebSphere Application Server Version 6.0.x custom registry.

This step is required to migrate a custom registry from WebSphere Application Server Version 5 to
WebSphere Application Server Version 6.0.x.

If you are enabling security, make sure you complete the remaining steps. Once completed, save the
configuration and restart all the servers. Try accessing some J2EE resources to verify that the custom
registry migration was successful.

78

Related concepts

[‘Custom user registries” on page 290|

A custom user registry is a customer-implemented user registry, that implements the UserRegistry Java
interface, as provided by the product. A custom-implemented user registry can support virtually any
type of an account repository from a relational database, flat file, and so on. The custom user registry
provides considerable flexibility in adapting product security to various environments where some form
of a user registry, other than Lightweight Directory Access Protocol (LDAP) or Local Operating System
(LocalOS), already exists in the operational environment.

Related tasks

|“Developing custom user registries” on page 143|

Related reference

[‘UserRegistry.java files” on page 293|

[FileRegistrySample.java file” on page 300

IBM WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

Migrating trust association interceptors

The following topics are addressed in this document:

Changes to the product-provided trust association interceptors
roduct-provided trust association interceptor:
Changes to the custom trust association interceptors
 |Migrating custom trust association interceptor.

Changes to the product-provided trust association interceptors

For the product provided implementation for the WebSeal server a new optional property
com.ibm.websphere.security.webseal.ignoreProxy has been added. If this property is set to true or yes,
the implementation does not check for the proxy host names and the proxy ports to match any of the host
names and ports listed in the com. ibm.websphere.security.webseal.hostnames and the
com.ibm.websphere.security.webseal.ports property respectively. For example, if the VIA header contains
the following information:

HTTP/1.1 Fred (Proxy), 1.1 Sam (Apache/1.1),
HTTP/1.1 webseal1:7002, 1.1 webseal2:7001

Note: The previous VIA header information was split onto two lines due to the width of the printed page.

and the com.ibm.websphere.security.webseal.ignoreProxy is set to true or yes, the host name Fred is
not be used when matching the host names. By default, this property is not set, which implies that any
proxy host names and ports expected in the VIA header should be listed in the host names and the ports
properties to satisfy the isTargetInterceptor method.

Migrating product-provided trust association interceptors

The properties located in the webseal.properties and trustedserver.properties files are not migrated
from previous versions of the WebSphere Application Server. You must migrate the appropriate properties
to WebSphere Application Server Version 6 using the trust association panels in the administrative
console. For more information, see|Configuring trust association interceptors}

Changes to the custom trust association interceptors

If the custom interceptor extends,
com.ibm.websphere.security.WebSphereBaseTrustAssociationInterceptor, then implement the following
new method to initialize the interceptor:

public int init (java.util.Properties props);

WebSphere Application Server checks the return status before using the Trust Association implementation.
Zero (0) is the default value for indicating the interceptor was successfully initialized.

However, if a previous implementation of the trust association interceptor returns a different error status
you can either change your implementation to match the expectations or make one of the following
changes:
Method 1:
Add the com.ibm.websphere.security.trustassociation.initStatus property in the trust
association interceptor custom properties. Set the property to the value that indicates that the
interceptor is successfully initialized. All of the other possible values imply failure. In case of
failure, the corresponding trust association interceptor is not used.
Method 2:
Add the com.ibm.websphere.security.trustassociation.ignorelnitStatus property in the trust

Chapter 7. Migrating security configurations from previous releases 79

association interceptor custom properties. Set the value of this property to true, which tells
WebSphere Application Server to ignore the status of this method. If you add this property to the
custom properties, WebSphere Application Server does not check the return status, which is
similar to previous versions of WebSphere Application Server.

The public int init (java.util.Properties props); method replaces the public int init (String
propsFile) method.

The init(Properties) method accepts a java.util.Properties object which contains the set of properties
required to initialize the interceptor. All the properties set for an interceptor (by using the Custom
Properties link for that interceptor or using scripting) will be sent to this method. The interceptor can then
use these properties to initialize itself. For example, in the product provided implementation for the
WebSEAL server, this method reads the hosts and ports so that a request coming in can be verified to
come from trusted hosts and ports. A return value of 0 implies that the interceptor initialization is
successful. Any other value implies that the initialization was not successful and the interceptor will not be
used.

All the properties set for an interceptor (by using the Custom Properties link in the administrative console
for that interceptor or using scripting) is sent to this method. The interceptor can then use these properties
to initialize itself. For example, in the product-provided implementation for the WebSEAL server, this
method reads the hosts and ports so that an incoming request can be verified to come from trusted hosts
and ports. A return value of 0 implies that the interceptor initialization is successful. Any other value implies
that the initialization was not successful and the interceptor is ignored.

Note: The init(String) method still works if you want to use it instead of implementing the
init(Properties) method. The only requirement is that the file name containing the custom trust
association properties should now be entered using the Custom Properties link of the interceptor
in the administrative console or by using scripts. You can enter the property using either of the
following methods. The first method is used for backward compatibility with previous versions of
WebSphere Application Server.

Method 1:
The same property names used in the previous release are used to obtain the file name.
The file name is obtained by concatenating the .config to the
com.ibm.websphere.security.trustassociation.types property value. If the file name is
called myTAI.properties and is located in the C:/WebSphere/AppServer/properties
directory, set the following properties:
e com.ibm.websphere.security.trustassociation.types = myTAItype
e com.ibm.websphere.security.trustassociation.myTAItype.config =

C:/WebSphere/AppServer/properties/myTAI.properties

Method 2:
You can set the com.ibm.websphere.security.trustassociation.initPropsFile property in
the trust association custom properties to the location of the file. For example, set the
following property:

com.ibm.websphere.security.trustassociation.initPropsFile=
C:/WebSphere/AppServer/properties/myTAL.properties

The previous line of code was split into two lines due to the width of the screen. Type as
one continuous line.

However, it is highly recommended that your implementation be changed to implement the init(Properties)
method instead of relying on init (String propsfile) method.

Migrating custom trust association interceptors

80 BM™ WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

The trust associations from previous versions of WebSphere Application Server are not automatically
migrated to WebSphere Application Server Version 6.0.x. Users can manually migrate these trust
associations using the following steps:

1. Recompile the implementation file, if necessary.

For more information, refer to the "Changes to the custom trust association interceptors” section
previously discussed in this document.

To recompile the implementation file, type the following:

%WAS_HOME%/java/bin/javac -classpath %WAS HOME%/1ib/wssec.jar;
%WAS_HOME%/1ib/j2ee.jar <your implementation file>.java

Note: The previous line of code was broken into two lines due to the width of the page. Type the code
as one continuous line.

2. Copy the custom trust association interceptor class files to a location in your product class path. It is
suggested that you copy these class files into the %WAS_HOME%/1ib/ext directory.

3. Start the WebSphere Application Server.

4. Enable security to use the trust association interceptor. The properties located in your custom trust
association properties file and in the trustedserver.properties file are not migrated from previous
versions of WebSphere Application Server. You must migrate the appropriate properties to WebSphere
Application Server Version 6 using the trust association panels in the administrative console. For more
information, see |[Configuring trust association interceptors}

Related tasks
[‘Configuring trust association interceptors” on page 238

Migrating Common Object Request Broker Architecture programmatic
login to Java Authentication and Authorization Service

Note: Common Object Request Broker Architecture (CORBA) application programming interfaces (API)
are not supported in the WebSphere Application Server for z/OS environment. If you have an
application that you are porting from another WebSphere Application Server product to WebSphere
Application Server for z/OS you must be aware that the security APIs that are deprecated in
Version 6.0.x. If you wish to use these applications on WebSphere Application Server for z/OS
Version 6.0.x, you must migrate to Java Authentication and Authorization Service (JAAS).

WebSphere Application Server fully supports the Java Authentication and Authorization Service (JAAS) as
programmatic login application programming interfaces (API). See [‘Configuring application logins for Javal
Authentication and Authorization Service” on page 322|and [‘Developing programmatic logins with the Javal
Authentication and Authorization Service” on page 114,|for more details on JAAS support.

This document outlines the deprecated CORBA programmatic login APIs and the alternatives provided by

JAAS. The following are the deprecated CORBA programmatic login APIs and are not supported on

WebSphere Application Server for z/OS:

* ${user.install.root}/installedApps/sampleApp.ear/default_app.war/WEB-
INF/classes/LoginHelper.java.

The sampleApp is not included in Version 6.
* ${user.install.root}/installedApps/sampleApp.ear/default _app.war/WEB-
INF/classes/ServerSideAuthenticator. java.

The sampleApp is not included in Version 6.
+ com.ibm.IExtendedSecurity._LoginHelper.

This API is not included in Version 6.
» org.omg.SecurityLevel2.Credentials.

This API is included with the product, but is not to be used with z/OS.

Chapter 7. Migrating security configurations from previous releases 81

The APIs provided in WebSphere Application Server Version 6.0.x are a combination of standard JAAS
APls and a product implementation of standard JAAS interfaces.

The supported APIs provided in WebSphere Application Server for z/OS Version 6 are a combination of
standard JAAS APIs and product implementation of standard JAAS interfaces (also some minor
extension).

The following information is only a summary; refer to the JAAS documentation for your platform located at:
Ihttp://www.ibm.com/developerworks/java/jdk/security/ .
* Programmatic login APIs:
— javax.security.auth.login.LoginContext
— javax.security.auth.callback.CallbackHandler interface: The WebSphere Application Server product
provides the following implementation of the javax.security.auth.callback.CallbackHandler interface:
com.ibm.websphere.security.auth.callback.WSCallbackHandlerimpl
Provides a non-prompt CallbackHandler when the application pushes basic authentication
data (user ID, password, and security realm) or token data to product LoginModules. This
APl is recommended for server-side login.
com.ibm.websphere.security.auth.callback.WSStdinCallbackHandlerimpl
Provides a stdin login prompt CallbackHandler to gather basic authentication data (user ID,
password, and security realm). This APl is recommended for client-side login.

Note: If this APl is used on the server side, the server is blocked for input.
— javax.security.auth.callback.Callback interface:
javax.security.auth.callback.NameCallback
Provided by JAAS to pass the user name to the LoginModules interface.
javax.security.auth.callback.PasswordCallback
Provided by JAAS to pass the password to the LoginModules interface.
com.ibm.websphere.security.auth.callback.WSCredTokenCallbackimpl
Provided by the product to perform a token-based login. With this API, an application can
pass a token-byte array to the LoginModules interface.
— javax.security.auth.spi.LoginModule interface

WebSphere Application Server provides LoginModules implementation for client and server-side
login. Refer to [‘Configuring application logins for Java Authentication and Authorization Service” on|
|Eage 322] for detalils.
* javax.security.Subject:
com.ibm.websphere.security.auth.WSSubject
An extension provided by the product to invoke remote J2EE resources using the credentials in
the javax.security.Subject

Note: An application must invoke the WSSubject.doAs() method for J2EE resources to be
accessed using the subject generated by an explicit invocation of a WebSphere login
module.

com.ibm.websphere.security.cred.WSCredential

After a successful JAAS login with the WebSphere Application Server LoginModules intefaces, a

com.ibm.websphere.security.cred.WSCredential credential is created and stored in the

Subject.

com.ibm.websphere.security.auth.WSPrincipal
An authenticated principal, that is created and stored in a Subject that is authenticated by the
WebSphere LoginModules interface.

Use the following example to migrate the CORBA-based programmatic login APIs to the JAAS
programmatic login APIs. The following example assumes that the application code is granted for the
required Java 2 security permissions. For more information, see [‘Configuring application logins for Java|
IAuthentication and Authorization Service” on page 322,|[‘Configuring Java 2 security” on page 541/and the
JAAS documentation located at: |http://www.ibm.com/developerworks/java/jdk/security/.

82 BM WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

http://www.ibm.com/developerworks/java/jdk/security/
http://www.ibm.com/developerworks/java/jdk/security/

public class TestClient {

private void performLogin() {
// Create a new JAAS LoginContext.
javax.security.auth.login.LoginContext Tc = null;

try {

// Use GUI prompt to gather the BasicAuth data.

1c = new javax.security.auth.login.LoginContext("WSLogin”,

new com.ibm.websphere.security.auth.callback.WSGUICallbackHandlerImpl());

// create a LoginContext and specify a CallbackHandler implementation

// CallbackHandler implementation determine how authentication data is collected
// in this case, the authentication date is collected by Tlogin prompt

// and pass to the authentication mechanism implemented by the LoginModule.

} catch (javax.security.auth.login.LoginException e) {

System.err.printin("ERROR: failed to instantiate a LoginContext and the exception:
+ e.getMessage());

e.printStackTrace();

”

// may be javax.security.auth.AuthPermission "createlLoginContext” is not granted
// to the application, or the JAAS Login Configuration is not defined.
}

if (Tc !'= null)

try {

1c.Togin(); // perform Togin
javax.security.auth.Subject s = 1c.getSubject();
// get the authenticated subject

// Invoke a J2EE resources using the authenticated subject
com.ibm.websphere.security.auth.WSSubject.doAs (s,

new java.security.PrivilegedAction() {

public Object run() {

try {

bankAccount.deposit(100.00); // where bankAccount is an protected EJB
} catch (Exception e) {

System.out.printTn("ERROR: error while accessing EJB resource, exception:
+ e.getMessage());

e.printStackTrace();

}

return null;

}
}
)s

// Retrieve the name of the principal from the Subject

// so we can tell the user that login succeeded,

// should only be one WSPrincipal.

java.util.Set ps =
s.getPrincipals(com.ibm.websphere.security.auth.WSPrincipal.class);
java.util.Iterator it = ps.iterator();

while (it.hasNext()) {

com.ibm.websphere.security.auth.WSPrincipal p =
(com.ibm.websphere.security.auth.WSPrincipal) it.next();
System.out.printin(”"Principal: ” + p.getName());

Chapter 7. Migrating security configurations from previous releases

83

}

} catch (javax.security.auth.login.LoginException e) {
System.err.printin(”ERROR: Togin failed with exception:
e.printStackTrace();

n

+ e.getMessage());

// login failed, might want to provide relogin Tlogic
}
}

Related tasks

[‘Configuring application logins for Java Authentication and Authorization Service” on page 322
“Developing programmatic logins with the Java Authentication and Authorization Service” on page 114|
“Migrating custom user registries” on page 76|

|“Configuring Java 2 security” on page 541|

Migrating from the CustomLoginServlet class to servlet filters

The CustomLoginServlet class was deprecated in WebSphere Application Server Version 5. Those
applications using the CustomLoginServlet class to perform authentication now need to use form-based
login. Using the form-based login mechanism, you can control the look and feel of the login screen. In
form-based login, a login page is specified that displays when retrieving the user ID and password
information. You also can specify an error page that displays when authentication fails.

If login and error pages are not enough to implement the CustomLoginServlet class, use servlet filters.
Servlet filters can dynamically intercept requests and responses to transform or use the information
contained in the requests or responses. One or more servlet filters attach to a servlet or a group of
servlets. Servlet filters also can attach to JSP files and HTML pages. All the attached servlet filters are
called before invoking the servlet.

Both form-based login and servlet filters are supported by any Servlet 2.3 specification-compliant Web
container. A form login servlet performs the authentication and servlet filters can perform additional
authentication, auditing, or logging tasks.

To perform pre-login and post-login actions using servlet filters, configure these servlet filters for either
form login page or for /j_security check URL. The j_security check is posted by the form login page
with the j_username parameter, containing the user name and the j_password parameter containing the
password. A servlet filter can use user name and password information to perform more authentication or
meet other special needs.

1. Develop a form login page and error page for the application, as described in [‘Developing form login|
lpages” on page 96|

2. Configure the form login page and the error page for the application as described in
fpplications using an assembly tool” on page 159.|

3. Develop servlet filters if additional processing is required before and after form login authentication.
Refer to [‘Developing servlet filters for form login processing” on page 91|for details.

4. Configure the servlet filters developed in the previous step for either the form login page URL or for the
/3i_security_check URL. Use an assembly tool or development tools like Rational Application
Developer to configure filters. After configuring the servlet filters, the web-xm1 file contains two stanzas.
The first stanza contains the servlet filter configuration, the servlet filter, and its implementation class.
The second stanza contains the filter mapping section and a mapping of the servlet filter to the URL.
For more information, see [‘Configuring servlet filters” on page 95|

84 BM™ WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

This migration results in an application that uses form-based login and servlet filters without the use of the
CustomLoginServlet class.

The use of form-based login and servlet filters by the new application are used to replace the

CustomLoginServlet class. Servlet filters also are used to perform additional authentication, auditing and
logging.

Related tasks

[‘Developing form login pages” on page 96|

“Securing Web applications using an assembly tool” on page 159|
“Developing servlet filters for form login processing” on page 91|
[‘Configuring servlet filters” on page 95|

Chapter 7. Migrating security configurations from previous releases 85

86 1BM WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

Chapter 8. Developing secured applications

IBM WebSphere Application Server provides security components that provide or collaborate with other
services to provide authentication, authorization, delegation, and data protection. WebSphere Application
Server also supports the security features described in the Java 2 Platform, Enterprise Edition (J2EE)
specification. An application goes through three stages before it is ready to run:

* Development

* Assembly

* Deployment

Most of the security for an application is configured during the assembly stage. The security configured
during the assembly stage is called declarative security because the security is declared or defined in the
deployment descriptors. The declarative security is enforced by the security run time. For some
applications, declarative security is not sufficient to express the security model of the application. For these
applications, you can use programmatic security.

1. Develop secure Web applications. For more information, see |“Developing with programmatic security{
[APIs for Web applications” on page 88.|

Develop servlet filters for form login processing. For more information, see |“Developing servlet filters|
[for form login processing” on page 91

N

3. Develop form login pages. For more information, see|“DeveIoping form login pages” on page 96.|

4. Develop enterprise bean component applications. For more information, see |“Developing witH
[programmatic APIs for EJB applications” on page 100.|

5. Develop with Java Authentication and Authorization Service to log in programmatically. For more
information, see [‘Developing programmatic logins with the Java Authentication and Authorization|
[Service” on page 114

6. Develop your own Java 2 security mapping module. For more information, see [‘Configuring application
[logins for Java Authentication and Authorization Service” on page 322

7. Develop custom user registries. For more information, see [Developing custom user registries” on page]

Develop a custom interceptor for trust associations. For more information, see [‘Trust association|
[interceptor support for Subject creation” on page 153]

Related concepts

[‘Web component security” on page 158]

A Web module consists of servlets, JavaServer Pages (JSP) files, server-side utility classes, static Web
content (HTML, images, sound files, cascading style sheets (CSS)), and client-side classes (applets).
You can use development tools such as Rational Application Developer to develop a Web module and
enforce security at the method level of each Web resource.

[‘Enterprise bean component security” on page 156|

An EJB module consists of one or more beans. You can use development tools such as Rational
Application Developer to develop an EJB module. You can also enforce security at the EJB method
level.

[‘Trust associations” on page 234

Trust association enables the integration of IBM WebSphere Application Server security and third-party
security servers. More specifically, a reverse proxy server can act as a front-end authentication server
while the product applies its own authorization policy onto the resulting credentials passed by the proxy
server.

[‘Java Authentication and Authorization Service” on page 320

The standard Java 2 security application programming interface (API) helps enforce access control,
based on the location of the code source or the author or packager of the code that signed the jar file.
The current principal of the running thread is not considered in the Java 2 security authorization.
Instances where authorization is based on the principal (as opposed to the code base) and the user

©

© Copyright IBM Corp. 2005 87

exist. The Java Authentication and Authorization Service is a standard Java API that supports the Java
2 security authorization to extend the code base on the principal as well as the code base and users.

[‘{J2EE Connector security” on page 353

The J2EE connector architecture defines a standard architecture for connecting the Java 2 Platform,
Enterprise Edition (J2EE) to heterogeneous enterprise information systems (EIS). Examples of EIS
include Enterprise Resource Planning (ERP), mainframe transaction processing (TP) and database
systems.

[‘Custom user registries” on page 290

A custom user registry is a customer-implemented user registry, that implements the UserRegistry Java
interface, as provided by the product. A custom-implemented user registry can support virtually any
type of an account repository from a relational database, flat file, and so on. The custom user registry
provides considerable flexibility in adapting product security to various environments where some form
of a user registry, other than Lightweight Directory Access Protocol (LDAP) or Local Operating System
(LocalOS), already exists in the operational environment.

Developing with programmatic security APIs for Web applications

Programmatic security is used by security-aware applications when declarative security alone is not
sufficient to express the security model of the application. Programmatic security consists of the following
methods of the HttpServietRequest interface:
getRemoteUser()
Returns the user name the client used for authentication. Returns null if no user is authenticated.
isUserinRole
(String role name): Returns true if the remote user is granted the specified security role. If the
remote user is not granted the specified role, or if no user is authenticated, it returns false.
getUserPrincipal()
Returns the java.security.Principal object containing the remote user name. If no user is
authenticated, it returns null.

You can enable a login module to indicate which principal class is returned by these calls. Refer to f‘Usina
a Java Authentication and Authorization Services login module to map a registry principal to a System
Authorization Facility user ID” on page 339|for more information.

When the isUserInRole() method is used, declare a security-role-ref element in the deployment descriptor
with a role-name subelement containing the role name passed to this method. Since actual roles are
created during the assembly stage of the application, you can use a logical role as the role name and
provide enough hints to the assembler in the description of the security-role-ref element to link that role to
the actual role. During assembly, the assembler creates a role-link subelement to link the role name to the
actual role. Creation of a security-role-ref element is possible if development tools such as Rational Web
Developer is used. You also can create the security-role-ref element during assembly stage using an
assembly tool.

1. Add the required security methods in the servlet code.

2. Create a security-role-ref element with the role-name field. If a security-role-ref element is not created
during development, make sure it is created during the assembly stage.

A programmatically secured servlet application.

This step is required to secure an application programmatically. This action is particularly useful is when a
Web application wants to access external resources and wants to control the access to external resources
using its own authorization table (external-resource to remote-user mapping). In this case, use the
getUserPrincipal() or getRemoteUser() methods to get the remote user and then it can consult its own
authorization table to perform authorization. The remote user information also can help retrieve the
corresponding user information from an external source such as a database or from an enterprise bean.
You can use the isUserInRole() method in a similar way.

88 iBM™ WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

After development, a security-role-ref element can be created:

<security-role-ref>

<description>Provide hints to assembler for linking this role
name to an actual role here<\description>
<role-name>Mgr<\role-name>

</security-role-ref>

During assembly, the assembler creates a role-link element:

<security-role-ref>

<description>Hints provided by developer to map the role
name to the role-link</description>
<role-name>Mgr</role-name>
<role-link>Manager</role-1link>

</security-role-ref>

You can add programmatic servlet security methods inside any servlet doGet(), doPost(), doPut(),
doDelete() service methods. The following example depicts using a programmatic security API:

public void doGet(HttpServletRequest request,
HttpServietResponse response) {

// to get remote user using getUserPrincipal()
java.security.Principal principal = request.getUserPrincipal();
String remoteUser = principal.getName();

// to get remote user using getRemoteUser()
remoteUser = request.getRemoteUser();

// to check if remote user is granted Mgr role
boolean isMgr = request.isUserInRole("Mgr”);

// use the above information in any way as needed by
// the application

}

After developing an application, use an assembly tool to create roles and to link the actual roles to role
names in the security-role-ref elements. For more information, see [‘Securing Web applications using an|
lassembly tool” on page 159|

Related concepts

“Using a Java Authentication and Authorization Services login module to map a registry principal to a|
System Authorization Facility user ID” on page 339

“Role-based authorization” on page 161|
Use authorization information to determine whether a caller has the necessary privileges to request a
service.

Related tasks
|“Securing Web applications using an assembly tool” on page 159|

Chapter 8. Developing secured applications 89

Example: Web applications code

The following example depicts a Web application or servlet using the programmatic security model. The
following example is one usage and not necessarily the only usage of the programmatic security model.
The application can use the information returned by the getUserPrincipal(), isUserInRole() and
getRemoteUser() methods in any other way that is meaningful to that application. Using the declarative
security model whenever possible is strongly recommended.

File : HelloServlet.java
public class HelloServiet extends javax.servlet.http.HttpServiet ({

public void doPost(
javax.servlet.http.HttpServietRequest request,
javax.servlet.http.HttpServletResponse response)
throws javax.servlet.ServletException, java.io.IOException {
}

public void doGet(
javax.servlet.http.HttpServietRequest request,
javax.servlet.http.HttpServlietResponse response)
throws javax.servlet.ServletException, java.io.IOException {

String s = "Hello";

// get remote user using getUserPrincipal()
java.security.Principal principal = request.getUserPrincipal();
String remoteUserName = "";
if(principal != null)
remoteUserName = principal.getName();
// get remote user using getRemoteUser()
String remoteUser = request.getRemoteUser();

// check if remote user is granted Mgr role
boolean isMgr = request.isUserInRole("Mgr");

// display Hello username for managers and bob.
if (isMgr || remoteUserName.equals("bob"))
s = "Hello " + remoteUserName;

String message = "<html> \n" +
"<head><title>Hello Servlet</title></head>\n" +
"<body> /n +"
"<hl1> " +s+ </hl>/n " +
byte[] bytes = message.getBytes();

// displays "Hello" for ordinary users

// and displays "Hello username" for managers and "bob".
response.getOutputStream() .write(bytes);

}

After developing the servlet, you can create a security role reference for the HelloServlet as shown in the
following example:

90 1BM™ WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

<security-role-ref>
<description> </description>
<role-name>Mgr</role-name>
</security-role-ref>

Developing servlet filters for form login processing

You can control the look and feel of the login screen using the form-based login mechanism. In
form-based login, you specify a login page that is used to retrieve the user ID and password information.
You also can specify an error page that displays when authentication fails.

If additional authentication or additional processing is required before and after authentication, servlet
filters are an option. Servlet filters can dynamically intercept requests and responses to transform or use
the information contained in the requests or responses. One or more servlet filters can be attached to a
servlet or a group of servlets. Servlet filters also can attach to JavaServer Pages (JSP) files and HTML
pages. All the attached servlet filters are called before the servlet is invoked.

Both form-based login and servlet filters are supported by any servlet version 2.3 specification complaint
Web container. The form login servlet performs the authentication and servlet filters perform additional
authentication, auditing, or logging information.

To perform pre-login and post-login actions using servlet filters, configure these filters for either form login
page support or for the /j_security_check URL. The j_security_check is posted by a form login page with
the j_username parameter containing the user name and the j_password parameter containing the
password. A servlet filter can use the user name parameter and password information to perform more
authentication or other special needs.

A servlet filter implements the javax.servlet.Filter class. There are three methods in the filter class that

need implementing:

+ init(javax.servlet.FilterConfig cfg). This method is called by the container exactly once when the
servlet filter is placed into service. The FilterConfig passed to this method contains the init-parameters
of the servlet filter. Specify the init-parameters for a servlet filter during configuration using the assembly
tool.

» destroy(). This method is called by the container when the servlet filter is taken out of a service.

» doFilter(ServletRequest req, ServietResponse res, FilterChain chain). This method is called by the
container for every servlet request that maps to this filter before invoking the servlet. FilterChain passed
to this method can be used to invoke the next filter in the chain of filters. The original requested servlet
executes when the last filter in the chain calls the chain.doFilter() method. Therefore, all filters should
call the chain.doFilter() method for the original servlet to execute after filtering. If an additional
authentication check is implemented in the filter code and results in failure, the original servlet does not
be execute. The chain.doFilter() method is not called and can be redirected to some other error page.

If a servlet maps to many servlet filters, servlet filters are called in the order that is listed in the deployment
descriptor of the application (web.xm1).

An example of a servlet filter follows: This login filter can map to /j_security_check to perform pre-login and
post-login actions.

import javax.servlet.*;
public class LoginFilter implements Filter {
protected FilterConfig filterConfig;

// Called once when this filter is instantiated.
// If mapped to j_security check, called

Chapter 8. Developing secured applications 91

// very first time j security check is invoked.

public void init(FilterConfig filterConfig) throws ServletException {
this.filterConfig = filterConfig;
}

public void destroy() {
this.filterConfig = null;
}

// Called for every request that is mapped to this filter.
// If mapped to j_security check,
// called for every j security check action
public void doFilter(ServlietRequest request,
ServletResponse response, FilterChain chain)

throws java.io.IOException, ServletException {

// perform pre-login action here

chain.doFilter(request, response);
// calls the next filter in chain.

// j_security check if this filter is
// mapped to j_security check.
// perform post-Togin action here.

}
}

Place the servlet filter class file in the WEB-INF/classes directory of the application.

Related concepts

[Accessing the Samples (Samples Gallery)|

This topic describes how to install and access the Samples Gallery, which offers a set of Samples that
demonstrate common Web application tasks. The Gallery also contains descriptions of where to find
additional Samples and coding examples.

Related tasks
[‘Developing form login pages” on page 96|
[‘Securing Web applications using an assembly tool” on page 159

Example: Servlet filters
This example illustrates one way the servlet filters can perform pre-login and post-login processing during
form login.

Servlet filter source code: LoginFilter.java

[**

*

LR O .

92

A servlet filter example: This example filters j security check and
performs pre-Togin action to determine if the user trying to log in

is in the revoked 1ist. If the user is on the revoked Tist, an error is
sent back to the browser.

This filter reads the revoked Tist file name from the FilterConfig

passed in the init() method. It reads the revoked user list file and
creates a revokedUsers 1ist.

IBM WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

* When the doFilter method is called, the user logging in is checked

* to make sure that the user is not on the revoked Users Tist.
*

*/

import javax.servlet.*;
import javax.servlet.http.x*;
import java.io.x;

public class LoginFilter implements Filter {
protected FilterConfig filterConfig;

java.util.List revokelist;

JEZ

* init() : init() method called when the filter is instantiated.

* This filter is instantiated the first time j security check is

*x invoked for the application (When a protected servlet in the

x application is accessed).

*/

public void init(FilterConfig filterConfig) throws ServletException {
this.filterConfig = filterConfig;

// read revoked user list
revokelList = new java.util.ArrayList();
readConfig();

[**
x destroy() : destroy() method called when the filter is taken
* out of service.
*/
public void destroy() {
this.filterConfig = null;
revokelList = null;

}

[**

x doFilter() : doFilter() method called before the servlet to

* which this filteris mapped is invoked. Since this filter is

* mapped to j_security check,this method is called before

* j security check action is posted.

*/
public void doFilter(ServletRequest request, ServletResponse response,

FilterChain chain) throws java.io.IOException, ServietException {

HttpServletRequest req = (HttpServletRequest)request;
HttpServletResponse res = (HttpServletResponse)response;
// pre login action

// get username

Chapter 8. Developing secured applications

93

ring username = req. rameter(”j username”);
St sername eq.getParameter(”j username”)

// if user is in revoked 1list send error

if (revokeList.contains(username)) {
res.sendError(javax.serviet.http.HttpServletResponse.SC_UNAUTHORIZED);
return;

}

// call next filter in the chain : let j_security check authenticate
/] user
chain.doFilter(request, response);

// post login action

}
[**

% readConfig() : Reads revoked user list file and creates a revoked
* user list.
*/
private void readConfig() {
if (filterConfig != null) {

// get the revoked user list file and open it.

BufferedReader in;

try {
String filename = filterConfig.getInitParameter("RevokedUsers”);
in = new BufferedReader(new FileReader(filename));

} catch (FileNotFoundException fnfe) {
return;

}

// read all the revoked users and add to revokelist.
String userName;
try {
while ((userName = in.readLine()) != null)
revokelList.add(userName);
} catch (IOException ioe) {
}

}

Important: In the previous code sample, the line that begins public void doFilter(ServietRequest
request was broken into two lines due to the width of the page. The public void
doFilter(ServletRequest request line and the line after it are one continuous line.

Portion of the web.xm1 file showing the LoginFilter configured and mapped to j_security_check:

<filter id="Filter_1">

<filter-name>LoginFilter</filter-name>

<filter-class>LoginFilter</filter-class>

94 BM WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

<description>Performs pre-login and post-login operation</description>
<init-param>
<param-name>RevokedUsers</param-name>
<param-value>c:\WebSphere\AppServeninstalledApps\
<app-name>\revokedUsers.Ist</param-value>
</init-param>
</filter-id>

<filter-mapping>
<filter-name>LoginFilter</filter-name>
<url-pattern>/j_security_check</url-pattern>
</filter-mapping>

An example of a revoked user list file:

userl
cn=userl,o=ibm,c=us
user99
cn=user99,o=ibm,c=us

Configuring servlet filters

IBM Rational Application Developer or an assembly tool can configure the servlet filters. There are two
steps in configuring a servlet filter.

1. Name the servlet filter and assign the corresponding implementation class to the servlet filter.

Optionally, assign initialization parameters that get passed to the init() method of the servlet
filter.After configuring the servlet filter, the application deployment descriptor, web.xml, contains a
servlet filter configuration similar to the following example:

<filter id="Filter_1">
<filter-name>LoginFilter</filter-name>
<filter-class>LoginFilter</filter-class>
<description>Performs pre-Togin and post-login
operation</description>
<init-param>// optional
<param-name>ParameterName</param-name>
<param-value>ParameterValue</param-value>
</init-param>
</filter>
2. Map the servlet filter to URL or servlet.

After mapping the servlet filter to a servlet or a URL, the application deployment descriptor (web.xm1)
contains servlet mapping similar to the following example:

<filter-mapping>
<filter-name>LoginFilter</filter-name>
<url-pattern>/j_security_check</url-pattern>
/I can be servlet <servlet>servletName</servlet>
</filter-mapping>

You can use servlet filters to replace the CustomLoginServlet, and to perform additional authentication,
auditing, and logging.

The WebSphere Application Server Samples Gallery provides a form login sample that demonstrates how
to use the WebSphere Application Server login facilities to implement and configure form login procedures.

Chapter 8. Developing secured applications 95

The sample integrates the following technologies to demonstrate the WebSphere Application Server and
Java 2 Platform, Enterprise Edition (J2EE) login functionality:

« J2EE form-based login
» J2EE servlet filter with login
* IBM extension: form-based login

The form login sample is part of the Technology Samples package. For more information on how to access
the form login sample, see |Accessing the Samples (Samples Gallery),

Related concepts

[Accessing the Samples (Samples Gallery)|

This topic describes how to install and access the Samples Gallery, which offers a set of Samples that
demonstrate common Web application tasks. The Gallery also contains descriptions of where to find
additional Samples and coding examples.

Related tasks
[‘Developing servlet filters for form login processing” on page 91|
[“Migrating from the CustomLoginServlet class to servlet filters” on page 84

Developing form login pages

A Web client or browser can authenticate a user to a Web server using one of the following mechanisms:

» HTTP basic authentication: A Web server requests the Web client to authenticate and the Web client
passes a user ID and password in the HTTP header.

» HTTPS client authentication: This mechanism requires a user (Web client) to possess a public key
certificate. The Web client sends the certificate to a Web server that requests the client certificates. This
is a strong authentication mechanism and uses the Hypertext Transfer Protocol with Secure Sockets
Layer (HTTPS) protocol.

* Form-based Authentication: A developer controls the look and feel of the login screens using this
authentication mechanism.

The Hypertext Transfer Protocol (HTTP) basic authentication transmits a user password from the Web
client to the Web server in simple base64 encoding. Form-based authentication transmits a user password
from the browser to the Web server in plain text. Therefore, both HTTP basic authentication and
form-based authentication are not very secure unless the HTTPS protocol is used.

The Web application deployment descriptor contains information about which authentication mechanism to
use. When form-based authentication is used, the deployment descriptor also contains entries for login
and error pages. A login page can be either an HTML page or a JavaServer Pages (JSP) file. This login
page displays on the Web client side when a secured resource (servlet, JSP file, HTML page) is accessed
from the application. On authentication failure, an error page displays. You can write login and error pages
to suit the application needs and control the look and feel of these pages. During assembly of the
application, an assembler can set the authentication mechanism for the application and set the login and
error pages in the deployment descriptor.

Form login uses the servlet sendRedirect() method, which has several implications for the user. The

sendRedirect() method is used twice during form login:

* The sendRedirect() method initially displays the form login page in the Web browser. It later redirects
the Web browser back to the originally requested protected page. The sendRedirect(String URL)
method tells the Web browser to use the HTTP GET (not the HTTP POST) request to get the page
specified in the URL. If HTTP POST is the first request to a protected servlet or JavaServer Pages
(JSP) file, and no previous authentication or login occurred, then HTTP POST is not delivered to the
requested page. However, HTTP GET is delivered because form login uses the sendRedirect() method,
which behaves as an HTTP GET request that tries to display a requested page after a login occurs.

96 1BM WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

» Using HTTP POST, you might experience a scenario where an unprotected HTML form collects data
from users and then posts this data to protected servlets or JSP files for processing, but the users are
not logged in for the resource. To avoid this scenario, structure your Web application or permissions so
that users are forced to use a form login page before the application performs any HTTP POST actions
to protected servlets or JSP files.

1. Create a form login page with the required look and feel including the required elements to perform
form-based authentication. For an example, see [‘Example: Form login’|

2. Create an error page. You can program error pages to retry authentication or display an appropriate
error message.

3. Place the login page and error page in the Web archive (WAR) file relative to the top directory. For
example, if the login page is configured as /1ogin.html in the deployment descriptor, place it in the top
directory of the WAR file. An assembler can also perform this step using the assembly tool.

4. Create a form logout page and insert it to the application only if required. This step is required when a
Web application requires a form-based authentication mechanism.

See the ['‘Example: Form login’] article for sample form login pages.

The WebSphere Application Server Samples Gallery provides a form login sample that demonstrates how
to use the WebSphere Application Server login facilities to implement and configure form login procedures.
The sample integrates the following technologies to demonstrate the WebSphere Application Server and
Java 2 Platform, Enterprise Edition (J2EE) login functionality:

* J2EE form-based login
* J2EE servlet filter with login
* |IBM extension: form-based login

The form login sample is part of the Technology Samples package. For more information on how to access
the form login sample, see [Accessing the Samples (Samples Gallery)|

After developing login and error pages, add them to the Web application. Use the assembly tool to
configure an authentication mechanism and insert the developed login page and error page in the
deployment descriptor of the application.

Related concepts

[‘Web component security” on page 158|

A Web module consists of servlets, JavaServer Pages (JSP) files, server-side utility classes, static Web
content (HTML, images, sound files, cascading style sheets (CSS)), and client-side classes (applets).
You can use development tools such as Rational Application Developer to develop a Web module and
enforce security at the method level of each Web resource.

[Accessing the Samples (Samples Gallery)|

This topic describes how to install and access the Samples Gallery, which offers a set of Samples that
demonstrate common Web application tasks. The Gallery also contains descriptions of where to find
additional Samples and coding examples.

Related reference
[‘Security: Resources for learning” on page 25|

Example: Form login

For the authentication to proceed appropriately, the action of the login form must always be
J_security_check. The following example shows how to code the form into the HTML page:

<form method="POST" action="j_security_check”>
<input type="text” name="j_username”>

<input type="text” name="j password”>

<\form>

Chapter 8. Developing secured applications 97

use the j_username input field to get the user name and use the j_password input field to get the user
password.

On receiving a request from a Web client, the Web server sends the configured form page to the client
and preserves the original request. When the Web server receives the completed Form page from the
Web client, it extracts the user name and password from the form and authenticates the user. On
successful authentication, the Web server redirects the call to the original request. If authentication fails,
the Web server redirects the call to the configured error page.

The following example depicts a login page in HTML (Togin.htm1):

<!IDOCTYPE HTML PUBLIC "-//W3C/DTD HTML 4.0 Transitional//EN">

<htm1>

<META HTTP-EQUIV = "Pragma” CONTENT="no-cache”>

<title> Security FVT Login Page </title>

<body>

<h2>Form Login</h2>

<FORM METHOD=POST ACTION="j security check”>

<p>

 Enter user ID and password:

 User ID <input type="text"” size="20" name="j username”>
 Password <input type="password” size="20" name="j password”>

 And then click this button:
<input type="submit” name="1login” value="Login">

</p>

</form>
</body>
</html>

The following example depicts an error page in a JSP file:

<!DOCTYPE HTML PUBLIC "-//W3C/DTD HTML 4.0 Transitional//EN">

<html>

<head><title>A Form Togin authentication failure occurred</head></title>
<body>

<H1>A Form login authentication failure occurred</H1>

<P>Authentication may fail for one of many reasons. Some possibilities include:
<QL>

The user-id or password may be entered incorrectly; either misspelled or the
wrong case was used.

The user-id or password does not exist, has expired, or has been disabled.
</0L>

</p>

</body>
</html>

After an assembler configures the Web application to use form-based authentication, the deployment
descriptor contains the login configuration as shown:

98 BM WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

<login-config id="LoginConfig 1">
<auth-method>FORMauth-method>FORM>

<realm-name>Example Form-Based Authentication Area</realm-name>
<form-login-config id="FormLoginConfig 1">
<form-login-page>/login.html</form-login-page>
<form-error-page>/error.jsp</form-error-page>
</form-login-config>

</login-config>

A sample Web application archive (WAR) file directory structure showing login and error pages for the
previous login configuration:

META-INF
META-INF/MANIFEST.MF
login.html
error.jsp
WEB-INF/
WEB-INF/classes/
WEB-INF/classes/aServlet.class

Form logout

Form logout is a mechanism to log out without having to close all Web-browser sessions. After logging out
the form logout mechanism, access to a protected Web resource requires reauthentication. This feature is
not required by J2EE specifications, but is provided as an additional feature in WebSphere security.

Suppose that it is desirable to log out after logging into a Web application and perform some actions. A
form logout works in the following manner:

1. The logout-form URI is specified in the Web browser and loads the form.

2. The user clicks Submit on the form to log out.

3. The WebSphere security code logs the user out.

4. Upon logout, the user is redirected to a logout exit page.

Form logout does not require any attributes in a deployment descriptor. It is an HTML or JSP file that is
included with the Web application. The form-logout page is like most HTML forms except that like the
form-login page, it has a special post action. This post action is recognized by the Web container, which
dispatches it to a special internal WebSphere form-logout servlet. The post action in the form-logout page
must be ibm_security Togout.

You can specify a logout-exit page in the logout form and the exit page can represent an HTML or JSP file
within the same Web application to which that the user is redirected after logging out. The logout-exit page
is specified as a parameter in the form-logout page. If no logout-exit page is specified, a default logout
HTML message is returned to the user. Here is a sample form logout HTML form. This form configures the
logout-exit page to redirect the user back to the login page after logout.

<IDOCTYPE HTML PUB1iC "-//W3C/DTD HTML 4.0 Transitional//EN">
<html>
<META HTTP-EQUIV = "Pragma” CONTENT="no-cache”>
<title>Logout Page </title>
<body>
<h2>Sample Form Logout</h2>
<FORM METHOD=POST ACTION="ibm_security logout” NAME="1ogout”>
<p>

 Click this button to log out:

Chapter 8. Developing secured applications 99

<input type="submit” name="logout” value="Logout">
<INPUT TYPE="HIDDEN" name="logoutExitPage” VALUE="/Togin.html">
</p>
</form>
</body>
</html>

The WebSphere Application Server samples gallery provides a form login sample that demonstrates how
to use the WebSphere Application Server login facilities to implement and configure form login procedures.
The sample integrates the following technologies to demonstrate the WebSphere Application Server and
Java 2 Platform, Enterprise Edition (J2EE) login functionality:

» J2EE form-based login
» J2EE servlet filter with login
* IBM extension: form-based login

The form login sample is part of the Technology Samples package. For more information on how to access
the form login sample, see [Accessing the Samples (Samples Gallery)|

Related concepts

[Accessing the Samples (Samples Gallery)|

This topic describes how to install and access the Samples Gallery, which offers a set of Samples that

demonstrate common Web application tasks. The Gallery also contains descriptions of where to find
additional Samples and coding examples.

Developing with programmatic APIs for EJB applications

Programmatic security is used by security-aware applications when declarative security alone is not

sufficient to express the security model of the application. The javax.ejb.EJBContext interface provides

two methods whereby the bean provider can access security information about the enterprise bean caller.

+ IsCallerinRole(String rolename): Returns true if the bean caller is granted the specified security role
(specified by role name). If the caller is not granted the specified role, or if the caller is not
authenticated, it returns false. If the specified role is granted Everyone access, it always returns true.

» getCallerPrincipal(): Returns the java.security.Principal object containing the bean caller name. If the
caller is not authenticated, it returns a principal containing UNAUTHENTICATED name.

You can enable a login module to indicate which principal class is returned by these calls.

When the isCallerInRole() method is used, declare a security-role-ref element in the deployment
descriptor with a role-name subelement containing the role name passed to this method. Since actual
roles are created during the assembly stage of the application, you can use a logical role as the role name
and provide enough hints to the assembler in the description of the security-role-ref element to link that
role to actual role. During assembly, assembler creates a role-link sub element to link the role-name to the
actual role. Creation of a security-role-ref element is possible if development tools such as Rational Web
Developer is used. You also can create the security-role-ref element during the assembly stage using an
assembly tool.

1. Add the required security methods in the Enterprise JavaBeans (EJB) module code.

2. Create a security-role-ref element with a role-name field for all the role names used in the
isCallerInRole() method. If a security-role-ref element is not created during development, make sure
it is created during the assembly stage.

A programmatically secured EJB application.

Hard coding security policies in applications is strongly discouraged. The Java 2 Platform, Enterprise
Edition (J2EE) security model capabilities of declaratively specifying security policies is encouraged
wherever possible. Use these APIs to develop security-aware EJB applications. An example where this

100 BM™ WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

implementation is useful is when an EJB application wants to access external resources and wants to
control the access to these external resources using its own authorization table (external-resource to user
mapping). In this case, use the getCallerPrincipal () method to get the caller identity and then the
application can consult its own authorization table to perform authorization. The caller identification also
can help retrieve the corresponding user information from an external source, such as database or from
another enterprise bean. You can use the isCallerinRole() method in a similar way.

After development, a security-role-ref element can be created:

<security-role-ref>

<description>Provide hints to assembler for linking this role-name to
actual role here<\description>

<role-name>Mgr<\role-name>

</security-role-ref>

During assembly, the assembler creates a role-link element:

<security-role-ref>

<description>Hints provided by developer to map role-name to role-link</description>
<role-name>Mgr</role-name>

<role-1ink>Manager</role-1link>

</security-role-ref>

You can add programmatic EJB component security methods (isCallerinRole() and getCallerPrincipal())
inside any business methods of an enterprise bean. The following example of programmatic security APIs
includes a session bean:

public class aSessionBean implements SessionBean {

// SessionContext extends EJBContext. If it is entity bean use EntityContext
javax.ejb.SessionContext context;

// The following method will be called by the EJB container

// automatically

public void setSessionContext(javax.ejb.SessionContext ctx) {
context = ctx; // save the session bean’s context

}

private void aBusinessMethod() {

// to get bean’s caller using getCallerPrincipal()
java.security.Principal principal = context.getCallerPrincipal();
String callerld= principal.getName();

// to check if bean’s caller is granted Mgr role
boolean isMgr = context.isCallerInRole("Mgr”);

// use the above information in any way as needed by the
//application

Chapter 8. Developing secured applications 101

}

After developing an application, use an assembly tool to create roles and to link the actual roles to role
names in the security-role-ref elements. For more information, see |“Securing enterprise bean applications”|

on page 156.

Related tasks

|“Securing enterprise bean applications” on page 156|
Related reference

|“Security: Resources for learning” on page 25|

Example: Enterprise bean application code

The following Enterprise JavaBeans (EJB) component example illustrates the use of isCallerInRole() and
getCallerPrincipal() methods in an EJB module. Using that declarative security is recommended. The
following example is one way of using the isCallerinRole() and getCallerPrincipal() methods. The
application can use this result in any way that is suitable.

A remote interface
File : Hello.java

package tests;

import java.rmi.RemoteException;

[**

* Remote interface for Enterprise Bean: Hello

*/

public interface Hello extends javax.ejb.EJBObject {
public abstract String getMessage()throws RemoteException;
public abstract void setMessage(String s)throws RemoteException;

}
A home interface

File : HelloHome.java
package tests;

[x%
* Home interface for Enterprise Bean: Hello
*/
public interface HelloHome extends javax.ejb.EJBHome {
[**
* Creates a default instance of Session Bean: Hello
*/

public tests.Hello create() throws javax.ejb.CreateException,
java.rmi.RemoteException;

}
A bean implementation
File : HelloBean.java

package tests;

[x*

102 BM™ WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

* Bean implementation class for Enterprise Bean: Hello
*/
public class HelloBean implements javax.ejb.SessionBean {
private javax.ejb.SessionContext mySessionCtx;
[*%
* getSessionContext
*/
public javax.ejb.SessionContext getSessionContext() {
return mySessionCtx;
}
[**
* setSessionContext
*/
public void setSessionContext(javax.ejb.SessionContext ctx) {
mySessionCtx = ctx;
}
[**
* ejbActivate
*/
public void ejbActivate() {
}
[*%
* ejbCreate
*/
public void ejbCreate() throws javax.ejb.CreateException {
}
[**
* ejbPassivate
*/
public void ejbPassivate() {
}
[*%
* ejbRemove
*/
public void ejbRemove() {
}

public java.lang.String message;

//business methods

// all users can call getMessage()
public String getMessage() throws java.rmi.RemoteException {
return message;

}

// all users can call setMessage() but only few users can set new message.
public void setMessage(String s) throws java.rmi.RemoteException {

// get bean’s caller using getCallerPrincipal()
java.security.Principal principal = mySessionCtx.getCallerPrincipal();
java.lang.String callerld= principal.getName();

// check if bean’s caller is granted Mgr role
boolean isMgr = mySessionCtx.isCallerInRole("Mgr”);

Chapter 8. Developing secured applications

103

// only set supplied message if caller is "bob” or caller is granted Mgr role
if (isMgr || callerId.equals("bob”))

message = S;
else

message = "Hello”;

}

After development of the entity bean, create a security role reference in the deployment descriptor under
the session bean, Hello:

<security-role-ref>

<description>0Only Managers can call setMessage() on this bean (Hello)</description>
<role-name>Mgr</role-name>

</security-role-ref>

For an explanation of how to create a <security-role-ref> element, see [‘Securing enterprise bean|
lapplications” on page 156 Use the information under Map security-role-ref and role-name to role-link to
create the element.

Related tasks
[‘Securing enterprise bean applications” on page 156

Programmatic login

Programmatic login is a type of form login that supports application presentation site-specific login forms
for the purpose of authentication.

When enterprise bean client applications require the user to provide identifying information, the writer of
the application must collect that information and authenticate the user. You can broadly classify the work of
the programmer in terms of where the actual user authentication is performed:

* In a client program

* In a server program

Users of Web applications can receive prompts for authentication data in many ways. The <login-config>
element in the Web application deployment descriptor file defines the mechanism used to collect this
information. Programmers who want to customize login procedures, rather than relying on general purpose
devices like a 401 dialog window in a browser, can use a form-based login to provide an
application-specific HTML form for collecting login information.

No authentication occurs unless global security is enabled. If you want to use form-based login for Web
applications, you must specify FORM in the auth-method tag of the <login-config> element in the
deployment descriptor of each Web application.

Applications can present site-specific login forms by using the WebSphere Application Server form-login
type. The Java 2 Platform, Enterprise Edition (J2EE) specification defines form login as one of the
authentication methods for Web applications. WebSphere Application Server provides a form-logout
mechanism.

Java Authentication and Authorization Service programmatic login

Java Authentication and Authorization Service (JAAS) is a new feature in WebSphere Application Server. It
is also mandated by the J2EE 1.3 Specification. JAAS is a collection of strategic authentication application

104 BM™ WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

programming interfaces (API) that replace the Common Object Request Broker Architecture (CORBA)
programmatic login APIs. WebSphere Application Server provides some extensions to JAAS:

Before you begin developing with programmatic login APIs, consider the following points :

» For the pure Java client application or client container application, initialize the client Object Request
Broker (ORB) security prior to performing a JAAS login. Do this by executing the following code prior to
the JAAS login:

import java.util.Hashtable;
import javax.naming.Context;
import javax.naming.InitialContext;

// Perform an InitialContext and default Tookup prior to Togging
// in to initialize ORB security and for the bootstrap host/port
// to be determined for SecurityServer lookup. If you do not want
// to validate the userid/password during the JAAS login, disable
// the com.ibm.CORBA.validateBasicAuth property in the

// sas.client.props file.

Hashtable env = new Hashtable();

env.put(Context.INITIAL CONTEXT_FACTORY,
"com.ibm.websphere.naming.WsnInitialContextFactory”);

env.put(Context.PROVIDER_URL,
"corbaloc:iiop:myhost.mycompany.com:2809");

Context initialContext = new InitialContext(env);

Object obj = initialContext.lookup("");

For more information, see [‘Example: Programmatic logins” on page 116.|

» For the pure Java client application or client container application, make sure that the host name and
the port number of the target Java Naming and Directory Interface (JNDI) bootstrap properties are
specified properly. See the [Developing applications that use CosNaming (CORBA Naming interface)|
section for details.

« If the application uses custom JAAS login configuration, make sure that the custom JAAS login
configuration is properly defined. See the [‘Configuring application logins for Java Authentication and|
[Authorization Service” on page 322 section for details.

* Some of the JAAS APlIs are protected by Java 2 security permissions. If these APIs are used by

application code, make sure that these permissions are added to the application was.policy file. See

“Adding the was.policy file to applications” on page 562| to the application, [‘Using PolicyTool to edit

policy files” on page 543 and|“Configuring the was.policy file” on page 556 sections for details. For more

details of which APIs are protected by Java 2 Security permissions, check the IBM Developer Kit, Java
edition; JAAS and the WebSphere Application Server public APls Javadoc for more details. The
following list indicates the APIls used in the samples code provided in this documentation.

— javax.security.auth.login.LoginContext constructors are protected by
javax.security.auth.AuthPermission "createLoginContext”.

— javax.security.auth.Subject.doAs() and com.ibm.websphere.security.auth.WSSubject.doAs() are

protected by javax.security.auth.AuthPermission "doAs”".

— javax.security.auth.Subject.doAsPrivileged() and

com.ibm.websphere.security.auth. WSSubject.doAsPrivileged() are protected by
javax.security.auth.AuthPermission "doAsPrivileged”.

» com.ibm.websphere.security.auth. WSSubject: Due to a design oversight in JAAS Version 1.0,
javax.security.auth.Subject.getSubject() does not return the Subject associated with the thread of
execution inside a java.security.AccessController.doPrivileged() code block. This can present an
inconsistent behavior that is problematic and causes an undesirable effort to work around. The
com.ibm.websphere.security.auth.WSSubject API provides a work around to associate Subject to thread
of execution. The com.ibm.websphere.security.auth.WSSubject API extends the JAAS model to J2EE

Chapter 8. Developing secured applications 105

resources for authorization checks. The Subject associated with the thread of execution within

com.ibm.websphere.security.auth. WSSubject.doAs() or

com.ibm.websphere.security.auth. WSSubject.doAsPrivileged() code block is used for J2EE resources

authorization checks.

» Administrative console support for defining new JAAS login configuration: You can configure JAAS login
configuration in the administrative console and store it in the WebSphere Configuration API. Applications
can define new JAAS login configuration in the administrative console and the data is persisted in the
configuration repository (stored with the WebSphere Configuration API). However, WebSphere
Application Server still supports the default JAAS login configuration format (plain text file) provided by
the JAAS default implementation. If there are duplication login configurations defined in both the
WebSphere Configuration APl and the plain text file format, the one in the WebSphere Configuration
API takes precedence. There are advantages to defining the login configuration in the WebSphere
Configuration API:

— Administrative console support in defining JAAS login configuration.

— You can manage the JAAS configuration login configuration centrally.

— The JAAS configuration login configuration is distributed in a Network Deployment installation.

» JAAS login configurations for WebSphere Application Server: WebSphere Application Server provides
JAAS login configurations for application to perform programmatic authentication to the WebSphere
Application Server security run time. These JAAS login configurations for WebSphere Application Server
perform authentication to the configured authentication mechanism (SWAM or LTPA) and user registry
(Local OS, LDAP, or Custom) based on the authentication data supplied. The authenticated Subject
from these JAAS login configurations contain the required Principal and Credentials that can be used by
WebSphere Application Server security run time to perform authorization checks on J2EE role-based
protected resources. Here are the JAAS login configurations provided by WebSphere Application
Server:

— WSLogin JAAS login configuration: A generic JAAS login configuration that a Java Client, client
container application, servlet, JSP file, enterprise bean, and so on, can use to perform authentication
based on a user ID and password, or a token to the WebSphere Application Server security run time.
However, this does not honor the CallbackHandler specified in the Client Container deployment
descriptor.

— ClientContainer JAAS login configuration: This JAAS login configuration honors the CallbackHandler
specified in the client container deployment descriptor. The login module of this login configuration
uses the CallbackHandler in the client container deployment descriptor if one is specified, even if the
application code specified one CallbackHandler in the LoginContext. This is for client container
application.

— Subjects authenticated with the previously mentioned JAAS login configurations contain a
com.ibm.websphere.security.auth.WSPrincipal and a com.ibm.websphere.security.auth. WSCredential.
If the authenticated Subject is passed to the com.ibm.websphere.security.auth. WSSubject.doAs() (or
the other doAs() methods), the WebSphere Application Server security run time can perform
authorization checks on J2EE resources, based on the Subject
com.ibm.websphere.security.auth.WSCredential.

+ Customer-defined JAAS login configurations: You can define other JAAS login configurations. See
[Configuring application logins for Java Authentication and Authorization Service” on page 322 section
for details. Use these login configurations to perform programmatic authentication to the custom
authentication mechanism. However, the subjects from these customer-defined JAAS login
configurations might not be used by WebSphere Application Server security run time to perform
authorization checks if the subject does not contain the required principal and credentials.

Finding the root cause login exception from a JAAS login

If you get a LoginException after issuing the LoginContext.login() API, you can find the root cause
exception from the configured user registry. In the login modules, the registry exceptions are wrapped by a
com.ibm.websphere.security.auth.WSLoginFailedException. This exception has a getCause() method that
allows you to pull out the exception that was wrapped after issuing the above command.

106 BM™ WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

Note: You are not always guaranteed to get an exception of type WSLoginFailedException, but you

should note that most of the exceptions generated from the user registry show up here.

The following is a LoginContext.login() APl example with associated catch block. WSLoginFailedException
has to be casted to com.ibm.websphere.security.auth.WSLoginFailedException if you want to issue the
getCause() API.

Note: The determineCause() example below can be used for processing CustomUserRegistry exception

try

/1

types.

{
}

catch (LoginException Te)

{

drill down through the exceptions as they might cascade through the runtime

1c.login();

Throwable root_exception = determineCause(le);

/1
/1

now you can use "root_exception” to compare to a particular exception type
for example, if you have implemented a CustomUserRegistry type, you would

// know what to Took for here.

}

/* Method used to drill down into the WSLoginFailedException to find the
"root cause” exception */

public Throwable determineCause(Throwable e)

{

Throwable root_exception = e, temp_exception = null;

// keep looping until there are no more embedded WSLoginFailedException or
// WSSecurityException exceptions
while (true)

{

if (e instanceof com.ibm.websphere.security.auth.WSLoginFailedException)

{

temp_exception = ((com.ibm.websphere.security.auth.WSLoginFailedException)
e).getCause();
}

else if (e instanceof com.ibm.websphere.security.WSSecurityException)

{

temp_exception = ((com.ibm.websphere.security.WSSecurityException)
e) .getCause();
}

else if (e instanceof javax.naming.NamingException)
// check for Ldap embedded exception
{

temp_exception = ((javax.naming.NamingException)e).getRootCause();

}

else if (e instanceof your_custom_exception_here)

{

// your custom processing here, if necessary

}

else

Chapter 8. Developing secured applications

107

// this exception is not one of the types we are looking for,
// lets return now, this is the root from the WebSphere
// Application Server perspective
return root_exception;

}

if (temp_exception != null)

{
// we have an exception, let’s go back an see if this has another
// one embedded within it.
root_exception = temp_exception;
e = temp_exception;
continue;

}

else

{
// we finally have the root exception from this call path, this
// has to occur at some point
return root_exception;

}

}
}

Finding the root cause login exception from a Servlet filter

You can also receive the root cause exception from a servlet filter when addressing post-Form Login
processing. This is suitable because it shows the user what happened. The following APl can be issued to
obtain the root cause exception:

Throwable t = com.ibm.websphere.security.auth.WSSubject.getRootLoginException();
if (t 1= null)
t = determineCause(t);

Note: Once you have the exception you can run it through the determineCause() example above to get
the native registry root cause.

Enabling root cause login exception propagation to pure Java clients

Currently, the root cause does not get propagated to a pure client for security reasons. However, you
might want to propagate the root cause to a pure client in a trusted environment. If you want to enable
root cause login exception propagation to a pure client, click Security > Global Security > Custom
Properties on the WebSphere Application Server administrative console and set the following property:

com.ibm.websphere.security.registry.propagateExceptionsToClient=true

Non-prompt programmatic login

WebSphere Application Server provides a non-prompt implementation of the
javax.security.auth.callback.CallbackHandler interface, which is called
com.ibm.websphere.security.auth.callback.WSCallbackHandlerimpl. Using this interface, an application can
push authentication data to the WebSphere LoginModule instance to perform authentication. This
capability proves useful for server-side application code to authenticate an identity and to use that identity
to invoke downstream J2EE resources.

javax.security.auth.login.LoginContext 1c = null;

108 BM™ WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

try {
1c = new javax.security.auth.login.LoginContext("WSLogin",

new com.ibm.websphere.security.auth.callback.WSCallbackHandlerImpl("user”,
"securityrealm”, "securedpassword”));

// create a LoginContext and specify a CallbackHandler implementation

// CallbackHandler implementation determine how authentication data is collected
// in this case, the authentication data is ”"push” to the authentication mechanism
// implemented by the LoginModule.

} catch (javax.security.auth.login.LoginException e) {

System.err.printIn("ERROR: failed to instantiate a LoginContext and the exception:
+ e.getMessage());

e.printStackTrace();

n

// may be javax.security.auth.AuthPermission "createlLoginContext” is not granted
// to the application, or the JAAS login configuration is not defined.

}

if (Tc !'= null)

try {

Tc.login(); // perform login
javax.security.auth.Subject s = 1c.getSubject();
// get the authenticated subject

// Invoke a J2EE resource using the authenticated subject
com.ibm.websphere.security.auth.WSSubject.doAs (s,

new java.security.PrivilegedAction() {

public Object run() {

try {

bankAccount.deposit(100.00); // where bankAccount is a protected EJB

} catch (Exception e) {

System.out.printITn("ERROR: error while accessing EJB resource, exception:
+ e.getMessage());

e.printStackTrace();

}

return null;

}

}

)s

} catch (javax.security.auth.login.LoginException e) {
System.err.printIn("ERROR: Tlogin failed with exception: " + e.getMessage());
e.printStackTrace();

”n

// login failed, might want to provide relogin Tlogic

}

You can use the com.ibm.websphere.security.auth.callback.WSCallbackHandlerlmpl callback handler with
a pure Java client, a client application container, enterprise bean, JavaServer Pages (JSP) files, servlet, or
other Java 2 Platform, Enterprise Edition (J2EE) resources. See f‘ExampIe: Programmatic logins” on page|
for more information about object request broker (ORB) security initialization requirements in a Java
pure client

User interface prompt programmatic login

WebSphere Application Server also provides a user interface implementation of the
javax.security.auth.callback.CallbackHandler implementation to collect authentication data from user

Chapter 8. Developing secured applications 109

through user interface login prompts. This callback handler,
com.ibm.websphere.security.auth.callback.WSGUICallbackHandTerImpl, presents a user interface login
panel to prompt users for authentication data.

Note: This requires an X11 server to be called out by the DISPLAY environment on z/OS and UNIX
systems.

javax.security.auth.login.LoginContext 1c = null;

try {
1c = new javax.security.auth.login.LoginContext("WSLogin",
new com.ibm.websphere.security.auth.callback.WSGUICallbackHandlerImpl());

// create a LoginContext and specify a CallbackHandler implementation

// CallbackHandler implementation determine how authentication data is collected
// in this case, the authentication date is collected by GUI login prompt

// and pass to the authentication mechanism implemented by the LoginModule.

} catch (javax.security.auth.login.LoginException e) {

System.err.printIn("ERROR: failed to instantiate a LoginContext and the exception:
+ e.getMessage());

e.printStackTrace();

n

// may be javax.security.auth.AuthPermission "createLoginContext” is not granted
// to the application, or the JAAS login configuration is not defined.
}

if (1c != null)

try {

1c.login(); // perform login
javax.security.auth.Subject s = 1c.getSubject();
// get the authenticated subject

// Invoke a J2EE resources using the authenticated subject
com.ibm.websphere.security.auth.WSSubject.doAs (s,

new java.security.PrivilegedAction() {

public Object run() {

try {

bankAccount.deposit(100.00); // where bankAccount is a protected enterprise bean
} catch (Exception e) {

System.out.printin("ERROR: error while accessing EJB resource, exception:
+ e.getMessage());

e.printStackTrace();

}

return null;

}

}

)3

} catch (javax.security.auth.login.LoginException e) {
System.err.printin("ERROR: Togin failed with exception:
e.printStackTrace();

n

n

+ e.getMessage());

// login failed, might want to provide relogin Tlogic

}

110 1BM WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

Attention: Do not use the com.ibm.websphere.security.auth.callback. WSGUICallbackHandlerlmpl callback
handler for server-side resources (like enterprise bean, servlet, JSP file, or any other server
side resources). The user interface login prompt blocks the server for user input. This behavior

is not desirable for a server process.
Stdin prompt programmatic login

WebSphere Application Server also provides a stdin implementation of the

javax.security.auth.callback.CallbackHandler interface to collect authentication data from a user through

stdin, which is called com.ibm.websphere.security.auth.callback.WSStdinCallbackHandlerImpl. This
callback handler prompts a user for authentication data.

javax.security.auth.login.LoginContext Tc = null;

try {
1c = new javax.security.auth.login.LoginContext("WSLogin”,
new com.ibm.websphere.security.auth.callback.WSStdinCallbackHandlerImpl());

// create a LoginContext and specify a CallbackHandler implementation

// CallbackHandler implementation determine how authentication data is collected

// in this case, the authentication date is collected by stdin prompt

// and pass to the authentication mechanism implemented by the LoginModule.

} catch (javax.security.auth.login.LoginException e) {

System.err.printIn("ERROR: failed to instantiate a LoginContext and the exception:
" + e.getMessage());

e.printStackTrace();

// may be javax.security.auth.AuthPermission "createLoginContext” is not granted
// to the application, or the JAAS Togin configuration is not defined.

}

if (1c !'= null)

try {

1c.Togin(); // perform Togin
javax.security.auth.Subject s = 1c.getSubject();
// get the authenticated subject

// Invoke a J2EE resource using the authenticated subject

com.ibm.websphere.security.auth.WSSubject.doAs (s,

new java.security.PrivilegedAction() {

public Object run() {

try {

bankAccount.deposit(100.00);

// where bankAccount is a protected enterprise bean

} catch (Exception e) {

System.out.printTn("ERROR: error while accessing EJB resource, exception:
+ e.getMessage());

e.printStackTrace();

}

return null;

}

}

)s

} catch (javax.security.auth.login.LoginException e) {

System.err.printIn("ERROR: Togin failed with exception: " + e.getMessage());

e.printStackTrace();

Chapter 8. Developing secured applications

111

// login failed, might want to provide relogin Togic

}

Do not use the com.ibm.websphere.security.auth.callback.WSStdinCallbackHandlerImpl callback handler
for server side resources (like enterprise beans, servlets, JSP files, and so on). The input from the stdin
prompt is not sent to the server environment. Most servers run in the background and do not have a
console. However, if the server does have a console, the stdin prompt blocks the server for user input.
This behavior is not desirable for a server process.

Related tasks

[‘Developing programmatic logins with the Java Authentication and Authorization Service” on page 114|
Related reference

|“Custom login module development for a system login configuration” on page 117|

“Example: Customizing a server-side Java Authentication and Authorization Service authentication and
login configuration” on page 131|

“Example: Getting the Caller Subject from the Thread” on page 137

[‘Example: Getting the RunAs Subject from the Thread” on page 138

The RunAs subject (or invocation subject) contains the user authentication information for the RunAs
mode set in the application deployment descriptor for this method.

[‘Example: Overriding the RunAs Subject on the Thread” on page 139

To extend the function provided by the Java Authentication and Authorization Service (JAAS)
application programming interfaces (APIs), you can set the RunAs subject (or invocation subject) with a
different valid entry that is used for outbound requests on this execution thread.

[‘Example: Programmatic logins” on page 116|

Web authentication using the Java Authentication and Authorization
Service programming model

WebSphere Application Server supports the Java 2 Platform, Enterprise Edition (J2EE) declarative security
model. You can define authentication and access control policy using the J2EE deployment descriptor. You
can further stack custom LoginModules to customize WebSphere Application Server authentication
mechanism. A custom LoginModule can perform principal and credential mapping, custom security token-
and custom credential-processing, and error-handling among other possibilities. Typically, you do not need
to use application code to perform authentication function. Note that you should use the programming
techniques described in this section if you have to perform authentication function in application code. For
example, if you have applications that programmed to the SSOAuthenticator helper function, you can use
the following programming interface. The SSOAuthenticator helper function was deprecated starting with
WebSphere Application Server Release 4.0. Note that you should use declarative security (you should use
the techniques described in this section as the last resort).

When the Lightweight Third-Party Authentication (LTPA) authentication mechanism single signon (SSO)
option is enabled, the Web client login session is tracked by an LTPA SSO token cookie after successful
login. At logout, this token is deleted to terminate the login session (but note that the server-side subject is
not deleted). When you use declarative security model, the WebSphere Application Server Web container
performs client authentication and login session management automatically. You can perform
authentication in application code by setting a login page without a J2EE security constraint and directing
client requests to your login page first. Your login page can use the JAAS programming model to perform
authentication. You need to do the following to enable WebSphere Application Server Web LoginModules
to generate SSO cookies.

1. Create a new system login JAAS configuration on the Global Security panel.

a. Clone the WEB_INBOUND login configuration and give it a new alias. WebSphere Application
Server Web container uses the WEB_INBOUND login configuration to authenticate Web clients.

112 BM WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

C.

Changing the WEB_INBOUND login configuration affects all Web applications in the cell. You
should create your own login configuration by cloning the contents of the WEB_INBOUND login
configuration.

There are two LoginModules defined in your login configuration: 1tpaLoginModule and
wsMapDefaultInboundLoginModule. Select the TtpalLoginModule, and then select Custom properties.
Add a login property name cookie with a value of true. The two LoginModules are enabled to
generate LTPA SSO cookies. The cookie option defined at the TtpaLoginModule applies to both
LoginModuTes in your login configuration. You should never add the cookie login option to the
original WEB_INBOUND login configuration.

Stack your custom LoginModule(s) in the new login configuration (optional).

2. Use your login page for programmatic login:

a.

Perform a JAAS LoginContext.login using your newly defined login configuration. After a successful
login, either the 1tpaLoginModule or the wsMapDefaultInboundLoginModule generates an LTPA SSO
cookie upon a successful authentication. Exactly which LoginModule generates the SSO cookie
depends on many factors, including system authentication configuration and runtime condition
(which is beyond the scope of this section).

Call the modified WSSubject.setRunAsSubject method to add the subject to the authentication

cache. The subject must be a WebSphere Application Server JAAS subject created by
LoginModule. Adding the subject to the authentication cache recreates a subject from SSO token.

3. Use your programmatic logout page to revoke SSO cookies:

a.

Invoke the revokeSS0Cookies method from the WSSecurityHelper class to revoke all SSO cookies.
The term cookies is used because WebSphere Application Server Release 5.1.1 (and later) release
supports a new LTPA SSO token with a different encryption algorithm, but can be configured to
generate the original LTPA SSO token for backward compatibility. Note that the subject is still in the
authentication cache and only the SSO cookies are revoked.

Use the following code sample to perform authentication:
Suppose you wrote a LoginServlet.java:

Import com.ibm.wsspi.security.auth.callback.WSCallbackHandlerFactory;
Import com.ibm.websphere.security.auth.WSSubject;

publi

c Object login(HttpServletRequest req, HttpServietResponse res)

throws ServletException {

PrintWriter out = null;

try {
out

= res.getWriter();
res.setContentType("text/html");

} catch (java.io.IOException e){
// Error handling

}

Subject subject

try {

null;

LoginContext Tc = new LoginContext("system.Your login configuration",

WSCall

backHandlerFactory.getInstance().getCallbackHandler(

userid, null, password, req, res, null));

lc.1
subj

ogin();
ect = Tc.getSubject();
WSSubject.setRunAsSubject (subject);

} catch(Exception e) {
// catch all possible exceptions if you want or handle them separately

out.

printIn("Exception in LoginContext login + Exception = " +

e.getMessage());
throw new ServletException(e.getMessage());

}

The following is sample code to revoke the SSO cookies upon a programming logout:

Chapter 8. Developing secured applications 113

The LogoutServlet.java:

public void Togout(HttpServletRequest req, HttpServletResponse res,
Object retCreds) throws ServletException {
PrintWriter out =null;
try {
out = res.getWriter();
res.setContentType("text/html");
} catch (java.io.IOException e){
// Error Handling
1
try {
WSSecurityHelper.revokeSSOCookies(req, res);
} catch(Exception e) {
// catch all possible exceptions if you want or handle them separately
out.printTn("JAASLogoutServiet: Togout Exception = " + e.getMessage());
throw new ServletException(e);
1
}

For more information on JAAS authentication, refer to|Developing programmatic logins with the Javal
Authentication and Authorization Service] For more information on AuthenLoginModule, refer to|Example]]
Customizing a server-side Java Authentication and Authorization Service authentication and login|

configurationl

Related tasks
[‘Developing programmatic logins with the Java Authentication and Authorization Service”|
Related reference

“Example: Customizing a server-side Java Authentication and Authorization Service authentication and
login configuration” on page 131

Developing programmatic logins with the Java Authentication and
Authorization Service

Java Authentication and Authorization Service (JAAS) represents the strategic application programming
interfaces (API) for authentication.

WebSphere Application Server provides some extension to JAAS:

« Refer to the [Developing applications that use CosNaming (CORBA Naming interface)| article for details
on how to set up the environment for thin client applications to access remote resources on a server.

 If the application uses custom JAAS login configuration, verify that it is properly defined. See the
[Configuring application logins for Java Authentication and Authorization Service” on page 322 article for
details.

+ Some of the JAAS application programming interfaces (API) are protected by Java 2 Security

PolicyTool to edit policy files” on page 543 and [‘Configuring the was.policy file” on page 556/ articles for

details. For more details on which APIs are protected by Java 2 Security permissions, check the IBM

Application Developer Kit, Java Technology Edition; JAAS and WebSphere Application Server public

APIs Javadoc in[‘Security: Resources for learning” on page 25./Some of the APIs used in the sample

code in this documentation and the Java 2 Security permissions required by these APIs follow:

— javax.security.auth.login.LoginContext constructors are protected by
javax.security.auth.AuthPermission "createLoginContext”

— javax.security.auth.Subject.doAs() and com.ibm.websphere.security.auth.WSSubject.doAs() are

protected by javax.security.auth.AuthPermission "doAs”

114 BM WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

— javax.security.auth.Subject.doAsPrivileged() and
com.ibm.websphere.security.auth. WSSubject.doAsPrivileged() are protected by
javax.security.auth.AuthPermission "doAsPrivileged”

* Enhanced model to Java 2 Platform, Enterprise Edition (J2EE) resources for authorization
checks. Due to a design oversight in JAAS Version 1.0, the
javax.security.auth.Subject.getSubject() method does not return the Subject associated with the
thread of execution inside a java.security.AccessController.doPrivileged() code block. This can
present an inconsistent behavior, which might have undesirable effects. The
com.ibm.websphere.security.auth.WSSubject provides a workaround to associate a Subject to a thread
of execution. The com. ibm.websphere.security.auth.WSSubject extends the JAAS model to J2EE
resources for authorization checks. If the Subject associates with the thread of execution within the
com.ibm.websphere.security.auth.WSSubject.doAs() method or if the
com.ibm.websphere.security.auth.WSSubject.doAsPrivileged() code block contains product
credentials, the Subject is used for J2EE resources authorization checks.

» User Interface support for defining new JAAS login configuration. You can configure JAAS login
configuration in the administrative console and store it in the WebSphere Common Configuration Model.
Applications can define a new JAAS login configuration in the administrative console and the data is
persisted in the configuration repository (stored in the WebSphere Common Configuration Model).
However, WebSphere Application Server still supports the default JAAS login configuration format (plain
text file) provided by the JAAS default implementation. If there are duplication login configurations
defined in both the WebSphere Common Configuration and the plain text file format, the one in the
WebSphere Common Configuration takes precedence. There are advantages to defining the login
configuration in the WebSphere Common Configuration:

— Ul support in defining JAAS login configuration

— JAAS configuration login configuration can be managed centrally

— JAAS configuration login configuration is distributed in a Network Deployment installation

« Application support for programmatic authentication. WebSphere Application Server provides JAAS
login configurations for applications to perform programmatic authentication to the WebSphere security
run time. These configurations perform authentication to the WebSphere-configured authentication
mechanism (Simple WebSphere Authentication Mechanism (SWAM) or Lightweight Third Party
Authentication (LTPA)) and user registry (Local OS, Lightweight Directory Access Protocol (LDAP) or
Custom) based on the authentication data supplied. The authenticated Subject from these JAAS login
configurations contains the required Principal and Credentials that the WebSphere security run time can
use to perform authorization checks on J2EE role-based protected resources. Here are the JAAS login
configurations provided by the WebSphere Application Server:

— WSLogin JAAS login configuration. A generic JAAS login configuration can use Java clients, client
container applications, servlets, JavaServer Pages (JSP) files, and Enterprise JavaBeans (EJB)
components to perform authentication based on a user ID and password, or a token to the
WebSphere security run time. However, this does not honor the CallbackHandler specified in the
client container deployment descriptor.

— ClientContainer JAAS login configuration. This JAAS login configuration honors the
CallbackHandler specified in the client container deployment descriptor. The login module of this
login configuration uses the CallbackHandler in the client container deployment descriptor if one is
specified, even if the application code specified one CallbackHandler in the LoginContext. This is for
a client container application.

A Subject authenticated with the previously mentioned JAAS login configurations contains a
com.ibm.websphere.security.auth.WSPrincipal principal and a
com.ibm.websphere.security.cred.WSCredential credential. If the authenticated Subject is passed in
com.ibm.websphere.security.auth.WSSubject.doAs() or the other doAs() methods, the product
security run time can perform authorization checks on J2EE resources based on the Subject
com.ibm.websphere.security.cred.WSCredential.

» Customer-defined JAAS login configurations. You can define other JAAS login configurations to
perform programmatic authentication to your authentication mechanism. See the|“Configurina
|app|ication logins for Java Authentication and Authorization Service” on page 322 article for details. For
the product security run time to perform authorization checks, the subjects from these customer-defined
JAAS login configurations must contain the required principal and credentials.

Chapter 8. Developing secured applications 115

See the article, ['Example: Programmatic logins.”|
Related concepts
[‘Programmatic login” on page 104
Programmatic login is a type of form login that supports application presentation site-specific login
forms for the purpose of authentication.

Related reference
[‘Security: Resources for learning” on page 25|

Example: Programmatic logins

The following example illustrates how application programs can perform a programmatic login using Java
Authentication and Authorization Service (JAAS):

LoginContext Ic = null;

try {
Ilc = new LoginContext("WSLogin",

new WSCallbackHandlermpl("userName”, "realm”, "password"));
} catch (LoginException le) {
System.out.printin("Cannot create LoginContext. " + le.getMessage());
/I insert error processing code
} catch(SecurityException se) {
System.out.printlin("Cannot create LoginContext.” + se.getMessage();
/I Insert error processing

}

try {
Ic.login();

} catch(LoginExcpetion le) {
System.out.printlin("Fails to create Subject. " + le.getMessage());
/I Insert error processing code

As shown in the example, the new LoginContext is initialized with the WSLogin login configuration and the
WSCallbackHandlerImpl CallbackHandler. Use the WSCallbackHandlerImpl instance on a server-side
application where prompting is not desirable. A WSCallbackHandTerImpl instance is initialized by the
specified user ID, password, and realm information. The present WSLoginModuleImpl class implementation
that is specified by WSLogin can only retrieve authentication information from the specified
CallbackHandTer. You can construct a LoginContext with a Subject object, but the Subject is disregarded
by the present WSLoginModuleImpl implementation. For product client container applications, replace
WSLogin by ClientContainer login configuration, which specifies the WSC1ientLoginModuleImp]l
implementation that is tailored for client container requirements.

For a pure Java application client, the product provides two other CallbackHandler implementations:
WSStdinCallbackHandlerImpl and WSGUICallbackHandlerImpl, which prompt for user ID, password, and
realm information on the command line and pop-up panel, respectively. You can choose either of these
product CallbackHandler implementations depending on the particular application environment. You can
develop a new CallbackHandler if neither of these implementations fit your particular application
requirement.

You also can develop your own LoginModule if the default WSLoginModuleImpl implementation fails to meet
all your requirements. This product provides utility functions that the custom LoginModule can use, which
are described in the next section.

In cases where there is no java.naming.provider.url set as a system property or in the jndi.properties
file, a default InitialContext does not function if the product server is not at the Tocalhost:2809 location.

116 1BM WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

In this situation, perform a new InitialContext programmatically ahead of the JAAS login. JAAS needs to
know where the SecurityServer resides to verify that the user ID or password entered is correct, prior to
doing a commit(). By performing a new InitialContext in the way specified below, the security code has
the information needed to find the SecurityServer location and the target realm.

Attention: The first line starting with env.put was split into two lines because it extends beyond the width
of the printed page.

import java.util.Hashtable;
import javax.naming.Context;
import javax.naming.InitialContext;

/I Perform an InitialContext and default lookup prior to logging in so that target realm
/l and bootstrap host/port can be determined for SecurityServer lookup.

Hashtable env = new Hashtable();

env.put(Context.INITIAL_CONTEXT_FACTORY,
"com.ibm.websphere.naming.WsnlinitialContextFactory”);

env.put(Context. PROVIDER_URL, "corbaloc:iiop:myhost.mycompany.com:2809");

Context initialContext = new InitialContext(env);

Object obj = initialContext.lookup("");

LoginContext Ic = null;
try {

lc = new LoginContext("WSLogin",

new WSCallbackHandlerlmpl("userName”, "realm”, "password"));

} catch (LoginException le) {

System.out.printin("Cannot create LoginContext. " + le.getMessage());

/I insert error processing code
} catch(SecurityException se) {

System.out.printlin("Cannot create LoginContext.” + se.getMessage();

/I Insert error processing

}

try {
Ic.login();

} catch(LoginException le) {
System.out.printlin("Fails to create Subject. " + le.getMessage());
/I Insert error processing code

}

Custom login module development for a system login configuration

For WebSphere Application Server, there are multiple Java Authentication and Authorization Service
(JAAS) plug in points for configuring system logins. WebSphere Application Server uses system login
configurations to authenticate incoming requests, outgoing requests, and internal server logins. Application
login configurations are called by Java 2 Platform, Enterprise Edition (J2EE) applications for obtaining a
Subject based on specific authentication information. This login configuration enables the application to
associate the Subject with a specific protected remote action. The Subject is picked up on the outbound
request processing. The following list are the main system plug in points. If you write a login module that
adds information to the Subject of a system login, these are the main login configurations to plug in:

« WEB_INBOUND
* RMI_OUTBOUND

Chapter 8. Developing secured applications 117

* RMI_INBOUND
* DEFAULT

WEB_INBOUND login configuration

The WEB_INBOUND login configuration authenticates Web requests. Figure 1 shows an example of a
configuration using a Trust Association Interceptor (TAI) that creates a Subject with the initial information
that is passed into the WEB_INBOUND login configuration. If the trust association interceptor is not
configured, the authentication process goes directly to the WEB_INBOUND system login configuration,
which consists of all of the login modules combined in Figure 1. Figure 1 shows where you can plug in
custom login modules and where the ltpaLoginModule and wsMapDefaultinboundLoginModule are
required.

Figure 1

Web request
requiring
authorization

l

Web
container

Already authenticated

Authenticated?

A

<¢——— IBM required
Authenticate

ItpaLoginModule authentication
l r —l modules

Trust Custom Custom
association login login
interceptor? module module
l secSquji?:/e:;me wsMapDefaultinboundLoginModule
Use trust
association ~ or unique I.D. —l
interceptor
Optional CILJStpm
custom credential mgglunle
Hashtable
Trust in Subject

association Web authentication

interceptor plug points

Single application server

For more detailed information on the WEB_INBOUND configuration including its associated callbacks, see
"RMI_INBOUND, WEB_INBOUND, DEFAULT” in [‘System login configuration entry settings for Javal
IAuthentication and Authorization Service” on page 343.|

RMI_OUTBOUND login configuration

The RMI_OUTBOUND login configuration is a plug point for handling outbound requests. WebSphere
Application Server uses this plug point to create the serialized information that is sent downstream based
on the Subject passed in (the invocation Subject) and other security context information such as
PropagationTokens. A custom login module can use this plug point to change the identity. For more

118 1BM WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

information, see [‘Configuring outbound mapping to a different target realm” on page 368 Figure 2 shows
where you can plug in custom login modules and shows where the wsMapCSlv20utboundLoginModule is
required.

Figure 2

Outbound
RMI request

!

Common Secure
Interoperability version 2

Already established
\ Remote
enterprise bean
container

session established RMI outbound
authentication
plug points
Authenticate
— —
Custom Custom
login —> wsMapCSIv20utoundLoginModule login
module module I
T Possibly modified
IBM required Subject and propagation
authentication module attributes. Opportunity

for mapping, if needed.

Single application server

For more information on the RMI_OUTBOUND login configuration including its associated callbacks, see
"RMI_OUTBOUND" in [‘System login configuration entry settings for Java Authentication and Authorization|
[Service” on page 343

RMI_INBOUND login configuration

The RMI_INBOUND login configuration is a plug point that handles inbound authentication for enterprise
bean requests. WebSphere Application Server uses this plug point for either an initial login or a
propagation login. For more information about these two login types, see [‘Security attribute propagation”|
During a propagation login, this plug point is used to de-serialize the information received
from an upstream server. A custom login module can use this plug point to change the identity, handle
custom tokens, add custom objects into the Subject, and so on. For more information on changing the
identity using a Hashtable, which is referenced in figure 3, see [‘Configuring inbound identity mapping” on|
Figure 3 shows where you can plug in custom login modules and shows that the
ltpaLoginModule and wsMapDefaultinboundLoginModule are required.

Figure 3

Chapter 8. Developing secured applications 119

RMI inbound
request

|

Already authenticated
\ Enterprise
bean

Authenticated?

RMI inbound container
authentication y
lug points
Authenticate PR
Custom Custom Custom
login login login
module module module
T ItpaL.oginModule wsMapDefaultinboundLoginModule
Opti 1 t credential \ IBM required /
Hashtable in Subject authentication modules

Single application server

For more information on the RMI_INBOUND login configuration including its associated callbacks, see
"BMI_INBOUND, WEB_INBOUND, DEFAULT" in [‘System login configuration entry settings for Javal
|Authentication and Authorization Service” on page 343

DEFAULT login configuration

The DEFAULT login configuration is a plug point that handles all of the other types of authentication
requests, including administrative Simple Object Access Protocol (SOAP) requests and internal
authentication of the server ID. Propagation logins typically do not occur at this plug point.

For more information on the DEFAULT login configuration including its associated callbacks, see
"RMI_INBOUND, WEB_INBOUND, DEFAULT" in [‘System login configuration entry settings for Javal
[Authentication and Authorization Service” on page 343.|

Writing a login module

When you write a login module that plugs into a WebSphere Application Server application login or system
login configuration, read the JAAS programming model located at: |http://java.sun.com/products/jaas. The
JAAS programming model provides basic information about JAAS. However, before writing a login module
for the WebSphere Application Server environment, read the following sections in this article:

* Useable callbacks

» Shared state variables

* Initial versus propagation logins
» Sample custom login module

Useable callbacks

Each login configuration must document the callbacks that are recognized by the login configuration.
However, the callbacks are not always passed data. Thus, the login configuration must contain logic to
know when specific information is present and how to use the information. For example, if you write a
custom login module that can plug into all four of the pre-configured system login configurations mentioned

120 BM™ WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

http://java.sun.com/products/jaas

previously, three sets of callbacks might be presented to authenticate a request. Other callbacks might be
present for other reasons, including propagation and making other information available to the login
configuration.

Login information can be presented in the following combinations:

User name (NameCallback) and password (PasswordCallback)
This information is a typical authentication combination.

User name only (NameCallback)
This information used for identity assertion, Trust Association Interceptor (TAIl) logins, and
certificate logins.

Token (WSCredTokenCallbackimpl)
This information is for Lightweight Third Party Authentication (LTPA) token validation.

Propagation token list (WSTokenHolderCallback)
This information is used for a propagation login.

The first three combinations are used for typical authentication. However, when the
WSTokenHolderCallback is present in addition to one of the first three information combinations, the login
is called a propagation login. A propagation login means that some security attributes are propagated to
this server from another server. The servers can reuse these security attributes if the authentication
information validates successfully. In some cases, a WSTokenHolderCallback might not have sufficient
attributes for a full login. Thus, check the requiresLogin() method on the WSTokenHolderCallback to
determine if a new login is required. You can always ignore the information returned by the requiresLogin()
method, but, as a result, you might duplicate information. The following is a list of the callbacks that might
be present in the system login configurations. The list includes the callback name and a description of their
responsibility.

callbacks[0] = new javax.security.auth.callback.NameCallback("Username: ");
This callback handler collects the user name for the login. The result can be the user name for a
basic authentication login (user name and password) or a user name for an identity assertion
login.

callbacks[1] = new javax.security.auth.callback.PasswordCallback("Password: ", false);
This callback handler collects the password for the login.

callbacks[2] = new

com.ibm.websphere.security.auth.callback.WSCredTokenCallbackimpl("Credential Token: ");
This callback handler collects the Lightweight Third Party Authentication (LTPA) token, or other
token type, for the login. It is typically present when a user name and password is not present.

callbacks[3] = new com.ibm.wsspi.security.auth.callback.WSTokenHolderCallback("Authz Token
List: ");
This callback handler collects the ArrayList of TokenHolder objects that are returned from a call to
the WSOpaqueTokenHelper.createTokenHolderListFromOpaqueToken () APl using the Common
Secure Interoperability version 2 (CSIv2) authorization token as input.

callbacks[4] = new
com.ibm.websphere.security.auth.callback.WSServiletRequestCallback("HttpServietRequest: ");
This callback handler collects the HTTP servlet request object, if present. It enables login modules
to get information from the HTTP request for use in the login. This callback handler is presented
from the WEB_INBOUND login configuration only.

callbacks[5] = new

com.ibm.websphere.security.auth.callback.WSServiletResponseCallback("HttpServietResponse: ");
This callback handler collects the HTTP servlet response object, if present. It enables login
modules to put information into the HTTP response as a result of the login. An example of this
situation might be adding the SingleSignonCookie to the response.This callback handler is
presented from the WEB_INBOUND login configuration only.

Chapter 8. Developing secured applications 121

callbacks[6] = new

com.ibm.websphere.security.auth.callback.WSAppContextCallback(”ApplicationContextCallback: ");
This callback handler collects the Web application context used during the login. It consists of a
HashMap, which contains the application name and the redirect URL, if present. This callback
handler is presented from the WEB_INBOUND login configuration only.

Shared state variables

Shared state variables are used to share information between login modules during the login phase. The
following list contains recommendations for using the shared state variables:

* When you have a custom login module, use the shared state variables to communicate to a WebSphere
Application Server login module using a documented shared state variable as shown in the following
table.

« Try not to update the Subject until the commit phase. If you call the abort() method, you must remove
any objects added to the Subject.

* Enable the login module that adds information into the shared state Map during login to remove this
information during commit in case the same shared state is used for another login.

» If an abort or logout occurs, clean up the information in the login configuration for the shared state and
the Subject.

The com.ibm.wsspi.security.token.AttributeNameConstants. WSCREDENTIAL_PROPERTIES_KEY shared
state variable can inform the WebSphere Application Server login configurations about asserted privilege
attributes. This variable references the com.ibm.wsspi.security.cred.propertiesObject property. You should
associate a java.util.Hashtable with this property. This hashtable contains properties used by WebSphere
Application Server for login purposes and ignores the callback information. This hashtable enables a
custom login module, which is carried out first in the login configuration, to map user identities or enable
WebSphere Application Server to avoid making unnecessary user registry calls if you already have the
required information. For more information, see [‘Configuring inbound identity mapping” on page 359.|

If you want to access the objects that WebSphere Application Server creates during a login, refer to the
following shared state variables. The variables are set in the following login modules: ItpaLoginModule,
swamLoginModule, and wsMapDefaultinboundLoginModule.

Shared state variable
com.ibm.wsspi.security.auth.callback.Constants. WSPRINCIPAL_KEY

Purpose
Specifies the com.ibm.websphere.security.auth.WSPrincipal object. See the WebSphere
Application Server Javadoc for application programming interface (APIl) usage. This shared state
variable is for read-only purposes. Do not set this variable in the shared state for custom login
modules.

Login module in which variables are set
ltpaLoginModule, swamLoginModule, and wsMapDefaultinboundLoginModule

Shared state variable
com.ibm.wsspi.security.auth.callback.Constants. WSCREDENTIAL_KEY

Purpose
Specifies the com.ibm.websphere.security.cred. WSCredential object. See the WebSphere
Application Server Javadoc for APl usage. This shared state variable is for read-only purposes. Do
not set this variable in the shared state for custom login modules.

Login module in which variables are set
wsMapDefaultinboundLoginModule

Shared state variable
com.ibm.wsspi.security.auth.callback.Constants. WSAUTHZTOKEN_KEY

122 BM™ WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

Purpose
Specifies the default com.ibm.wsspi.security.token.AuthorizationToken object. Login modules can
use this object to set custom attributes plugged in after wsMapDefaultinboundLoginModule. The
information set here is propagated downstream and available to the Application. See the
WebSphere Application Server Javadoc for API usage.

Initial versus propagation logins

As mentioned previously, some logins are considered initial logins because of the following reasons:
* |t is the first time authentication information is presented to WebSphere Application Server.

» The login information is received from a server that does not propagate security attributes so this
information must be gathered from a user registry.

Other logins are considered propagation logins when a WSTokenHolderCallback is present and contains
sufficient information from a sending server to recreate all the required objects needed by WebSphere
Application Server run time. In cases where there is sufficient information for WebSphere Application
Server run time, the information you might add to the Subject is likely exists from the previous login. To
verify if your object is present, you can get access to the ArrayList present in the WSTokenHolderCallback,
and search through this list looking at each TokenHolder getName() method. This search is used to
determine if WebSphere Application Server is deserializing your custom object during this login. Check the
class name returned from the getName() method using the String startsWith() method because the run
time might add additional information at the end of the name to know which Subject set to add the custom
object after de-serialization.

The following code snippet can be used in your login() method to determine when sufficient information is
present. For another example, see [‘Configuring inbound identity mapping” on page 359

// This is a hint provided by WebSphere Application Server that

// sufficient propagation information does not exist and, therefore,
// a Togin is required to provide the sufficient information. In this
// situation, a Hashtable login might be used.

boolean requiresLogin = ((com.ibm.wsspi.security.auth.callback.
WSTokenHolderCallback) callbacks[1]).requiresLogin();

if (requiresLogin)
{

// Check to see if your object exists in the TokenHolder Tist,
if not, add it.
java.util.ArraylList authzTokenList
getTokenHolderList();boolean found

((WSTokenHolderCallback) callbacks[6]).
false;

if (authzTokenList != null)
{

Iterator tokenListIterator = authzTokenList.iterator();

while (tokenListIterator.hasNext())

{

com.ibm.wsspi.security.token.TokenHolder th = (com.ibm.wsspi.security.token.
TokenHolder) tokenListIterator.next();

if (th !'= null && th.getName().startsWith("com.acme.myCustomClass"))
{

found=true;

break;

}

}

if (!found)

{

// go ahead and add your custom object.
}

}

}

Chapter 8. Developing secured applications 123

else

{

// This code indicates that sufficient propagation information is present.
// User registry calls are not needed by WebSphere Application Server to
// create a valid Subject. This code might be a no-op in your login module.

}

Sample custom login module

You can use the following sample to get ideas on how to use some of the callbacks and shared state
variables.

{

// Defines your login module variables
com.ibm.wsspi.security.token.AuthenticationToken customAuthzToken = null;
com.ibm.wsspi.security.token.AuthenticationToken defaultAuthzToken = null;
com.ibm.websphere.security.cred.WSCredential credential = null;
com.ibm.websphere.security.auth.WSPrincipal principal = null;

private javax.security.auth.Subject _subject;

private javax.security.auth.callback.CallbackHandler _callbackHandler;
private java.util.Map _sharedState;

private java.util.Map _options;

public void initialize(Subject subject, CallbackHandler callbackHandler,
Map sharedState, Map options)
{

_subject = subject;
_callbackHandler = callbackHandler;
_sharedState = sharedState;
_options = options;

}

public boolean Togin() throws LoginException

{

boolean succeeded = true;

// Gets the CALLBACK information

javax.security.auth.callback.Callback callbacks[] = new javax.security.
auth.callback.Callback[7];

callbacks[0] = new javax.security.auth.callback.NameCallback(
"Username: ");

callbacks[1] = new javax.security.auth.callback.PasswordCallback(
"Password: ", false);

callbacks[2] = new com.ibm.websphere.security.auth.callback.
WSCredTokenCallbackImpl ("Credential Token: ");

callbacks[3] = new com.ibm.wsspi.security.auth.callback.
WSServletRequestCallback ("HttpServletRequest: ");

callbacks[4] = new com.ibm.wsspi.security.auth.callback.
WSServletResponseCallback ("HttpServletResponse: ");

callbacks[5] = new com.ibm.wsspi.security.auth.callback.
WSAppContextCallback ("ApplicationContextCallback: ");

callbacks[6] = new com.ibm.wsspi.security.auth.callback.
WSTokenHolderCallback ("Authz Token List: ");

try

callbackHandler.handle(callbacks);
}

catch (Exception e)

// Handles exceptions
throw new WSLoginFailedException (e.getMessage(), e);

}

// Sees which callbacks contain information

uid = ((NameCallback) callbacks[0]).getName();

char password[] = ((PasswordCallback) callbacks[1]).getPassword();

124 BM WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

byte[] credToken = ((WSCredTokenCallbackImpl) callbacks[2]).getCredToken();

javax.servlet.http.HttpServietRequest request = ((WSServletRequestCallback)
callbacks[3]).getHttpServietRequest();

javax.servlet.http.HttpServietResponse response = ((WSServletResponseCallback)
callbacks[4]).getHttpServietResponse();

java.util.Map appContext = ((WSAppContextCallback)
callbacks[5]).getContext();

java.util.List authzTokenList = ((WSTokenHolderCallback)
callbacks[6]).getTokenHolderList();

// Gets the SHARED STATE information

principal = (WSPrincipal) _sharedState.get(com.ibm.wsspi.security.
auth.callback.Constants.WSPRINCIPAL_KEY);

credential = (WSCredential) _sharedState.get(com.ibm.wsspi.security.
auth.callback.Constants.WSCREDENTIAL_KEY);

defaultAuthzToken = (AuthorizationToken) _sharedState.get(com.ibm.
wsspi.security.auth.callback.Constants.WSAUTHZTOKEN KEY);

// What you tend to do with this information depends upon the scenario
// that you are trying to accomplish. This example demonstrates how to
// access various different information:

// - Determine if a login is initial versus propagation

// - Deserialize a custom authorization token (For more information, see
// |"Secur1ty attribute propagation" on page 37ﬂ

// - Add a new custom authorization token (For more information, see

// |'Security attribute propagation" on page 373

Look for a WSCredential and read attributes, if found.

Look for a WSPrincipal and read attributes, if found.

// - Look for a default AuthorizationToken and add attributes, if found.
// - Read the header attributes from the HttpServietRequest, if found.
// - Add an attribute to the HttpServletResponse, if found.

// - Get the web application name from the appContext, if found.

~
~ ~
1 1

// - Determines if a login is initial versus propagation. This is most
// useful when Togin module is first.
boolean requiresLogin = ((WSTokenHolderCallback) callbacks[6]).requiresLogin();

// initial login - asserts privilege attributes based on user identity
if (requiresLogin)

{

// 1f you are validating a token from another server, there is an
// application programming interface (API) to get the uniqueID from it.
if (credToken != null && uid == null)
{
try
{
String uniquelID = WSSecurityPropagationHelper.
validateLTPAToken (credToken);
String realm = WSSecurityPropagationHelper.getRealmFromUniquelD
(uniquelD);
// Now set it to the UID so you can use that to either map or
// login with.
uid = WSSecurityPropagationHelper.getUserFromUniqueID (uniquelD);

catch (Exception e)

// handle exception
}
}
// Adds a Hashtable to shared state.
// Note: You can perform custom mapping on the NameCallback value returned
// to change the identity based upon your own mapping rules.
uid = mapUser (uid);

// Gets the default InitialContext for this server.
javax.naming.InitialContext ctx = new javax.naming.InitialContext();

Chapter 8. Developing secured applications

125

// Gets the local UserRegistry object.
com.ibm.websphere.security.UserRegistry reg = (com.ibm.websphere.security.
UserRegistry) ctx.lookup("UserRegistry");

// Gets the user registry uniqueID based on the uid specified in the
// NameCallback.

String uniqueid = reg.getUniqueUserId(uid);

uid = WSSecurityPropagationHelper.getUserFromUniqueID (uniquelD);

// Gets the display name from the user registry based on the uniquelD.
String securityName = reg.getUserSecurityName(uid);

// Gets the groups associated with this uniquelD.
java.util.List groupList = reg.getUniqueGroupIds(uid);

// Creates the java.util.Hashtable with the information you gathered from
// the UserRegistry.
java.util.Hashtable hashtable = new java.util.Hashtable();
hashtable.put(com.ibm.wsspi.security.token.AttributeNameConstants.
WSCREDENTIAL _UNIQUEID, uniqueid);
hashtable.put(com.ibm.wsspi.security.token.AttributeNameConstants.
WSCREDENTIAL_SECURITYNAME, securityName);
hashtable.put(com.ibm.wsspi.security.token.AttributeNameConstants.
WSCREDENTIAL_GROUPS, grouplList);

// Adds a cache key that is used as part of the lookup mechanism for
// the created Subject. The cache key can be an Object, but should
// implement the toString() method. Make sure the cacheKey contains
// enough information to scope it to the user and any additional
// attributes that you use. If you do not specify this property the
// Subject is scoped to the WSCREDENTIAL_UNIQUEID returned, by default.
hashtable.put(com.ibm.wsspi.security.token.AttributeNameConstants.
WSCREDENTIAL_CACHE_KEY,
"myCustomAttribute" + uniqueid);

// Adds the hashtable to the sharedState of the Subject.
_sharedState.put(com.ibm.wsspi.security.token.AttributeNameConstants.
WSCREDENTIAL_PROPERTIES KEY,hashtable);
}

// propagation login - process propagated tokens

else

{

// - Deserializes a custom authorization token. For more information, see
// |'Security attribute propagation" on page 373.|
// This can be done at any login module plug in point (first,
// middle, or last).

if (authzTokenList != null)

// Iterates through the Tist looking for your custom token
for (int i=0; i<authzTokenList.size(); i++)

{

TokenHolder tokenHolder = (TokenHolder)authzTokenList.get(i);

// Looks for the name and version of your custom AuthorizationToken
// implementation
if (tokenHolder.getName().equals("com.ibm.websphere.security.token.
CustomAuthorizationTokenImpl1") && tokenHolder.getVersion() == 1)
{

// Passes the bytes into your custom AuthorizationToken constructor
// to deserialize
customAuthzToken = new
com.ibm.websphere.security.token.
CustomAuthorizationTokenImpl (tokenHolder.getBytes());

126 1BM™ WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

// - Adds a new custom authorization token (For more information,
/] see|'Security attribute propagation" on page 373)
// This can be done at any Togin module plug in point (first, middle,
// or last).
else

{
// Gets the PRINCIPAL from the default AuthenticationToken. This must

// match all of the tokens.
defaultAuthToken = (com.ibm.wsspi.security.token.AuthenticationToken)
sharedState.get(com.ibm.wsspi.security.auth.callback.Constants.
WSAUTHTOKEN_KEY) 5
String principal = defaultAuthToken.getPrincipal();

// Adds a new custom authorization token. This is an initial Togin.
// Pass the principal into the constructor
customAuthzToken = new com.ibm.websphere.security.token.
CustomAuthorizationTokenImpl(principal);

// Adds any initial attributes
if (customAuthzToken != null)
{
customAuthzToken.addAttribute("keyl", "valuel");
customAuthzToken.addAttribute("keyl", "value2");
customAuthzToken.addAttribute("key2", "valuel");
customAuthzToken.addAttribute("key3", "something different");
1
}
}

// - Looks for a WSCredential and read attributes, if found.
// This is most useful when plugged in as the Tast login module.
if (credential != null)

{

try

{

// Reads some data from the credential

String securityName = credential.getSecurityName();

java.util.ArraylList = credential.getGroupIds();

}

catch (Exception e)

// Handles exceptions

throw new WSLoginFailedException (e.getMessage(), e);
}
}

// - Looks for a WSPrincipal and read attributes, if found.
// This is most useful when plugged as the last login module.
if (principal != null)
{
try

// Reads some data from the principal
String principalName = principal.getName();

}

catch (Exception e)

// Handles exceptions

throw new WSLoginFailedException (e.getMessage(), e);
}
}

// - Looks for a default AuthorizationToken and add attributes, if found.
// This is most useful when plugged in as the Tast login module.

if (defaultAuthzToken != null)

{

Chapter 8. Developing secured applications

127

try
{

// Reads some data from the defaultAuthzToken

String[] myCustomValue = defaultAuthzToken.getAttributes ("myKey");
// Adds some data if not present in the defaultAuthzToken

if (myCustomValue == null)

defaultAuthzToken.addAttribute ("myKey", "myCustomData");
1

catch (Exception e)

// Handles exceptions

throw new WSLoginFailedException (e.getMessage(), €);
1
}

// - Reads the header attributes from the HttpServletRequest, if found.

// This can be done at any login module plug in point (first, middle,
// or last).

if (request != null)

java.util.Enumeration headerEnum = request.getHeaders();
while (headerEnum.hasMoreElements())
{
System.out.printin ("Header element: " + (String)headerEnum.nextElement());
1
}

// - Adds an attribute to the HttpServletResponse, if found
// This can be done at any login module plug in point (first, middle,
// or last).

if (response != null)

{

response.addHeader ("myKey", "myValue");

}

// - Gets the web application name from the appContext, if found

// This can be done at any login module plug in point (first, middle,
// or last).

if (appContext != null)

{

String appName = (String) appContext.get(com.ibm.wsspi.security.auth.

callback.Constants.WEB_APP_NAME);
}

return succeeded;

}

public boolean commit() throws LoginException

{

boolean succeeded = true;

// Add any objects here that you have created and belong in the

// Subject. Make sure the objects are not already added. If you added

// any sharedState variables, remove them before you exit. If the abort()
// method gets called, make sure you cleanup anything added to the

// Subject here.

if (customAuthzToken != null)

// Sets the customAuthzToken token into the Subject
try

// Do this in a doPrivileged code block so that application code
// does not need to add additional permissions
java.security.AccessController.doPrivileged(new java.security.PrivilegedAction()
{
public Object run()

128 BM™ WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

{
try
{
// Adds the custom authorization token if it is not
// null and not already in the Subject
if ((customAuthzTokenPriv != null) &&
(!_subject.getPrivateCredentials().contains(customAuthzTokenPriv)))
{

_subject.getPrivateCredentials().add(customAuthzTokenPriv);

1
catch (Exception e)
{

throw new WSLoginFailedException (e.getMessage(), €);
1

return null;

}
1s
}

catch (Exception e)

throw new WSLoginFailedException (e.getMessage(), €);
}
}

return succeeded;

}

public boolean abort() throws LoginException

{

boolean succeeded = true;

// Makes sure to remove all objects that have already been added (both into the
// Subject and shared state).

if (customAuthzToken != null)

{

// remove the customAuthzToken token from the Subject
try

final AuthorizationToken customAuthzTokenPriv = customAuthzToken;
// Do this in a doPrivileged block so that application code does not need

// to add additional permissions
java.security.AccessController.doPrivileged(new java.security.PrivilegedAction()

public Object run()
{
try
{
// Removes the custom authorization token if it is not
// null and not already in the Subject
if ((customAuthzTokenPriv != null) &&
(_subject.getPrivateCredentials().
contains (customAuthzTokenPriv)))
{
_subject.getPrivateCredentials().
remove (customAuthzTokenPriv);

1
catch (Exception e)
{

throw new WSLoginFailedException (e.getMessage(), e);
1

return null;

}

Chapter 8. Developing secured applications

129

1)
}

catch (Exception e)

throw new WSLoginFailedException (e.getMessage(), €);

}
}

return succeeded;

}

public boolean Togout() throws LoginException

{

boolean succeeded = true;

// Makes sure to remove all objects that have already been added
// (both into the Subject and shared state).

if (customAuthzToken != null)

{

// Removes the customAuthzToken token from the Subject
try

final AuthorizationToken customAuthzTokenPriv = customAuthzToken;
// Do this in a doPrivileged code block so that application code does
// not need to add additional permissions
java.security.AccessController.doPrivileged(new java.security.
PrivilegedAction()
{

public Object run()

{
try

// Removes the custom authorization token if it is not null and not
// already in the Subject
if ((customAuthzTokenPriv != null) && (_subject.
getPrivateCredentials().
contains(customAuthzTokenPriv)))

{

_subject.getPrivateCredentials().remove(customAuthzTokenPriv);

}

catch (Exception e)

{

throw new WSLoginFailedException (e.getMessage(), e);

}

return null;

s

}
catch (Exception e)

{

throw new WSLoginFailedException (e.getMessage(), €);
}

}

return succeeded;

}

After developing your custom login module for a system login configuration, you can configure the system
login using either the administrative console or using the wsadmin utility. To configure the system login

130 BM™ WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

using the administrative console, click Security > Global security. Under Authentication, click JAAS
Configuration > System logins. For more information on using the wsadmin utility for system login
configuration, see[‘Example: Customizing a server-side Java Authentication and Authorization Service]
authentication and login configuration.”| Also refer to the [‘Example: Customizing a server-side Javal
Authentication and Authorization Service authentication and login configuration article for information on
system login modules and to determine whether to add additional login modules.

Related concepts

[‘Security attribute propagation” on page 373

Security attribute propagation enables WebSphere Application Server to transport security attributes

(authenticated Subject contents and security context information) from one server to another in your

configuration. WebSphere Application Server might obtain these security attributes from either an

enterprise user registry, which queries static attributes, or a custom login module, which can query

static or dynamic attributes. Dynamic security attributes, which are custom in nature, might include the

authentication strength used for the connection, the identity of the original caller, the location of the

original caller, the IP address of the original caller, and so on.

Related tasks

[Configuring inbound identity mapping” on page 359

[Configuring outbound mapping to a different target realm” on page 368|
Related reference

“System login configuration entry settings for Java Authentication and Authorization Service” on pagel
343

Use this page to specify a list of Java Authentication and Authorization Service (JAAS) system login
configurations.

“Example: Customizing a server-side Java Authentication and Authorization Service authentication and
login configuration’]

Example: Customizing a server-side Java Authentication and
Authorization Service authentication and login configuration

WebSphere Application Server supports plugging in a custom Java Authentication and Authorization
Service (JAAS) login module before or after the WebSphere Application Server system login module.
However, WebSphere Application Server does not support the replacement of the WebSphere Application
Server system login modules, which are used to create WSCredential and WSPrincipal in the Subject. By
using a custom login module, you can either make additional authentication decisions or add information to
the Subject to make additional, potentially finer-grained, authorization decisions inside a Java 2 Platform,
Enterprise Edition (J2EE) application.

WebSphere Application Server enables you to propagate information downstream that is added to the
Subject by a custom login module. For more information, see [‘Security attribute propagation” on page 373
To determine which login configuration to use for plugging in your custom login modules, see the
descriptions of the login configurations located in the |*System login configuration entry settings for Javal
IAuthentication and Authorization Service” on page 343[article.

WebSphere Application Server supports the modification of the system login configuration through the
administrative console and by using the wsadmin scripting utility. To configure the system login
configuration using the administrative console, click Security > Global security. Under Authentication,
click JAAS Configuration > System logins.

Refer to the following code sample to configure a system login configuration using the wsadmin tool. The

following sample JACL script adds a custom login module into the Lightweight Third-party Authentication
(LTPA) Web system login configuration:

Chapter 8. Developing secured applications 131

Attention: Lines 32, 33, and 34 in the following code sample were split onto two lines because of the
width of the printed page.

1. #H#######FFHHER AR A A AAAHH AR AR AR AR

2. #

3. # Open security.xml

4. #

5. ####HEHHEER A EAA AR AR A A A A

6.

7.

8. set sec [$AdminConfig getid /Cell:hillside/Security:/]
9.

10.

11. ###########HHERRRAAFAAAHER AR AAAAAARA AR

12. #

13. # Locate systemLoginConfig

14. #

15. ###### #4414 H 4 HEHH A H A A AR A A A AR

16.

17.

18. set slc [$AdminConfig showAttribute $sec systemLoginConfig]
19.

20. set entries [lindex [$AdminConfig showAttribute $slc entries] 0]
21.

22.

23. #EHFEHHERRA AR AR RS

24, #

25. # Append a new LoginModule to LTPA_WEB

26. #

27. ##########AHHAAAA A AR AR AR AR AR AR AR

28.

29. foreach entry $entries {

30. set alias [$AdminConfig showAttribute $entry alias]

31. if {$alias == "LTPA_WEB"} {

32. set newJAASLoginModuleId [$AdminConfig create JAASLoginModule
$entry {{moduleClassName
"com.ibm.ws.security.common.auth.module.proxy.WSLoginModuleProxy”}}]

33. set newPropertyld [$AdminConfig create Property
$newJAASLoginModuleld {{name delegate}{value
"com.ABC.security.auth.CustomLoginModule”}}]

34, $AdminConfig modify $newJAASLoginModuleld
{{authenticationStrategy REQUIRED}}

35. break

36. }

37. }

38.

39.

40. #########AARAAEAAAAARAARAAAAARA AR AR A RS

41. #

42. # save the change

43, #

iV s dddddadddaadddsadddaaddaadddiad

45,

46. $AdminConfig save

47.

132 1BM™ WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

Attention: The wsadmin scripting utility inserts a new object to the end of the list. To insert the custom
LoginModule before the AuthenLoginModule, delete the AuthenLoginModule and then recreate it after
inserting the custom LoginModule. Save the sample script into a file, sample.jacl, executing the sample
script using the following command:

Wsadmin -f sample.jacl

You can use the following sample JACL script to remove the current LTPA_WEB login configuration and all
the LoginModules:

A8. #H###H# AR FHRFHRAAR AR AR RAA R SRR AR A AR

49, #

50. # Open security.xml

51. #

52. #######HHHRFEAFAAFERRREAAAFAAARR AR
53.

54.

55. set sec [$AdminConfig getid /Cell:hillside/Security:/]
56.

57.

58. ########### A RAA A AR AR AR AR AR A AR
59. #

60. # Locate systemLoginConfig

61. #

62. #####FHEFHRFFAFAAFERRRAAAAFAFAE AR A
63.

64.

65. set slc [$AdminConfig showAttribute $sec systemLoginConfig]
66.

67. set entries [Tindex [$AdminConfig showAttribute §slc entries] 0]
68.

69.

70. ###F#FHERRRAEAAAARER AR AAAAAFARR AR
71. #

72. # Remove the LTPA_WEB Tlogin configuration
73. #

74. #########4#HAH A FHAF AR AR AR AR
75.

76. foreach entry $entries {

77. set alias [$AdminConfig showAttribute $entry alias]
78. if {$alias == "LTPA WEB"} {

79. $AdminConfig remove $entry

80. break

81. i

82. }

83.

84.

85. #######H###H#HAH A A RAF A A A AR A RA AR AR HA
86. #

87. # save the change

88. #

89. #########FFAFFHHHRRFAAFAAHAARRFAAFAAFEAHH
90.

91. $AdminConfig save
You can use the following sample JACL script to recover the original LTPA_WEB configuration:

Chapter 8. Developing secured applications 133

Attention: Lines 122, 124, and 126 in the following code sample were split onto two or more lines
because of the width of the printed page. The two lines of code for line 122 are normally one
continuous line. The three lines of code for line 124 are normally one continuous line. Also, the
three lines of code for line 126 are normally one continuous line.

92. ########HAHHAAHRAHEAARRAAARAH SRR AR RS

93. #

94. # Open security.xml

95. #

96. ######EFHEFHEAFHRFHRAAEAAERAFRARRAAEAAH RS

97.

98.

99. set sec [$AdminConfig getid /Cell:hillside/Security:/]

100.

101.

102. ##########E#HEAHHAAARAHRAARAARAAARAH RS

103. #

104. # Locate systemLoginConfig

105. #

106. ###########FHEFHEAAERAFRAHRAAEAAA AR RS

107.

108.

109. set slc [$AdminConfig showAttribute $sec systemLoginConfig]

110.

111. set entries [lindex [$AdminConfig showAttribute $slc entries] 0]

112.

113.

114.

115. ############HEFHEAAERAR AR R AR AAFRAH RS

116. #

117. # Recreate the LTPA_WEB Togin configuration

118. #

119. ##########E#HEAH A HRAHEAHRA AR AA AR AR

120.

121.

122. set newJAASConfigurationEntryId [$AdminConfig create JAASConfigurationEntry
$s1c {{alias LTPA_WEB}}]

123.

124. set newJAASLoginModuleld [$AdminConfig create JAASLoginModule
$newJAASConfigurationEntryld
{{moduleClassName
"com.ibm.ws.security.common.auth.module.proxy.WSLoginModuleProxy”}}]

125.

126. set newPropertyld [$AdminConfig create Property
$newJAASLoginModuleld {{name delegate}
{value "com.ibm.ws.security.web.AuthenLoginModule”}}]

127.

128. $AdminConfig modify $newJAASLoginModuleld {{authenticationStrategy REQUIRED}}

129.

130.

131. ##########E##EAHERAH AR A AR AR AR

132. #

133. # save the change

134. #

134 BM WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

135. ##########4#HA AR A AR A AR A A A S
136.
137. $AdminConfig save

The WebSphere Application Server Version ItpaLoginModule and AuthenLoginModule use the shared state
to save state information so that custom LoginModules can modify the information. The ltpaLoginModule
initializes the callback array in the login() method using the following code. The callback array is created
by ItpaLoginModule only if an array is not defined in the shared state area. In the following code sample,
the error handling code was removed to make the sample concise. If you insert a custom LoginModule
before the ItpaLoginModule, custom LoginModule might follow the same style to save the callback into the
shared state.

Attention: In the following code sample, several lines of code have been split onto two lines because of
the width of the printed page. Each of these split lines are one continuous line.

138. Callback callbacks[] = null;

139. if (!sharedState.containsKey(
com.ibm.wsspi.security.auth.callback.Constants.
CALLBACK_KEY)) {

140. callbacks = new Callback[3];

141. callbacks[0] = new NameCallback("Username: ");

142. callbacks[1] = new PasswordCallback(”Password: ", false);

143. callbacks[2] = new com.ibm.websphere.security.auth.callback.

WSCredTokenCallbackImpl("Credential Token: ");

144, try {

145, callbackHandler.handle(callbacks);

146. } catch (java.io.IOException e) {

147. e

148. } catch (UnsupportedCallbackException uce) {

149, e

150. }

151. sharedState.put (
com.ibm.wsspi.security.auth.callback.Constants.CALLBACK KEY,
callbacks);

152. } else {

153. callbacks = (Callback [])

sharedState.get(com.ibm.wsspi.security.auth.callback.
Constants.CALLBACK KEY);
154. 1

ltpaLoginModule and AuthenLoginModule generate both a WSPrincipal and a WSCredential object to
represent the authenticated user identity and security credentials. The WSPrincipal and WSCredential
objects also are saved in the shared state. A JAAS login uses a two-phase commit protocol. First, the login
methods in login modules, which are configured in the login configuration, are called. Then, their commit
methods are called. A custom LoginModule, which is inserted after the ItpaLoginModule and the
AuthenLoginModule, can modify the WSPrincipal and WSCredential objects before they are committed.
The WSCredential and WSPrincipal objects must exist in the Subject after the login is completed. Without
these objects in the Subject, WebSphere Application Server run-time code rejects the Subject when it is
used to make any security decisions.

AuthenLoginModule uses the following code to initialize the callback array:

Attention: In the following code sample, several lines of code have been split onto two lines because of
the width of the printed page. Each of these split lines are one continuous line.

Chapter 8. Developing secured applications 135

155. Callback callbacks[] = null;

156. if (!sharedState.containsKey(
com.ibm.wsspi.security.auth.callback.Constants.
CALLBACK KEY)) {

157. callbacks = new Callback[6];
158. callbacks[0] = new NameCallback("Username: ");
159. callbacks[1] = new PasswordCallback(”Password: ", false);

160. callbacks[2]
new com.ibm.websphere.security.auth.callback.WSCredTokenCallbackImpl(
"Credential Token: ");

161. callbacks[3] =
new com.ibm.wsspi.security.auth.callback.WSServietRequestCallback(
"HttpServietRequest: ");

162. callbacks[4] =
new com.ibm.wsspi.security.auth.callback.WSServletResponseCallback(
"HttpServietResponse: ");

163. callbacks[5] =
new com.ibm.wsspi.security.auth.callback.WSAppContextCallback(
"ApplicationContextCallback: ");

164. try {

165. callbackHandler.handle(callbacks);

166. } catch (java.io.IOException e) {

167. e

168. } catch (UnsupportedCallbackException uce {

169. e

170. }

171. sharedState.put(com.ibm.wsspi.security.auth.callback.
Constants.CALLBACK KEY, callbacks);

172. } else {

173. callbacks = (Callback []) sharedState.get(

com.ibm.wsspi.security.auth.callback.
Constants.CALLBACK KEY);
174. }

Three more objects, which contain callback information for the login, are passed from the Web container to
the AuthenLoginModule: a java.util.Map, a HttpServletRequest, and a HttpServletResponse object.
These objects represent the Web application context. The WebSphere Application Server Version 5.1
application context, java.util.Map object, contains the application name and the error page URL. You can
obtain the application context, java.util.Map object, by calling the getContext() method on the
WSAppContextCallback object. The java.util.Map object is created with the following deployment
descriptor information.

Attention: In the following code sample, several lines of code have been split onto two lines because of
the width of the printed page. Each of these split lines are one continuous line.

175. HashMap appContext = new HashMap(2);

176. appContext.put(
com.ibm.wsspi.security.auth.callback.Constants.WEB_APP_NAME,
web_application_name);

177. appContext.put (
com.ibm.wsspi.security.auth.callback.Constants.REDIRECT_URL,
errorPage);

136 1BM™ WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

The application name and the HttpServietRequest object might be read by the custom LoginModule to
perform mapping functions. The error page of the form-based login might be modified by a custom
LoginModule. In addition to the JAAS framework, WebSphere Application Server supports the Trust
Association Interface (TAl).

Other credential types and information can be added to the caller Subject during the authentication
process using a custom LoginModule. The third-party credentials in the caller Subject are managed by
WebSphere Application Server as part of the security context. The caller Subject is bound to the thread of
execution during the request processing. When a Web or EJB module is configured to use the caller
identity, the user identity is propagated to the downstream service in an EJB request. WSCredential and
any third-party credentials in the caller Subject are not propagated downstream. Instead, some of the
information can be regenerated at the target server based on the propagated identity. Add third-party
credentials to the caller Subject at the authentication stage. The caller Subject, which is returned from the
WSSubject.getCallerSubject() method, is read-only and thus cannot be modified. For more information on
the WSSubject, see ['Example: Getting the Caller Subject from the Thread.”|

Related concepts

[“Security attribute propagation” on page 373

Security attribute propagation enables WebSphere Application Server to transport security attributes

(authenticated Subject contents and security context information) from one server to another in your

configuration. WebSphere Application Server might obtain these security attributes from either an

enterprise user registry, which queries static attributes, or a custom login module, which can query

static or dynamic attributes. Dynamic security attributes, which are custom in nature, might include the

authentication strength used for the connection, the identity of the original caller, the location of the

original caller, the IP address of the original caller, and so on.

Related reference
[‘Example: Getting the Caller Subject from the Thread]

“System login configuration entry settings for Java Authentication and Authorization Service” on pagel
343

Use this page to specify a list of Java Authentication and Authorization Service (JAAS) system login
configurations.

Example: Getting the Caller Subject from the Thread

The Caller subject (or "received subject”) contains the user authentication information used in the call for
this request. This subject is returned after issuing the WSSubject.getCallerSubject() API to prevent
replacing existing objects. The subject is marked read-only. This API can be used to get access to the
WSCredential (documented in the Javadoc information) so that you can put or set data in the hashmap
within the credential.

Most data within the subject is not propagated downstream to another server. Only the credential token
within the WSCredential is propagated downstream (and a new caller subject generated).

try

{

javax.security.auth.Subject caller _subject;
com.ibm.websphere.security.cred.WSCredential caller_cred;

caller_subject = com.ibm.websphere.security.auth.WSSubject.getCallerSubject();

if (caller_subject != null)

{

caller_cred = caller_subject.getPublicCredentials
(com.ibm.websphere.security.cred.WSCredential.class).iterator().next();

String CALLERDATA = (String) caller _cred.get ("MYKEY");

System.out.printin("My data from the Caller credential is: " + CALLERDATA);

Chapter 8. Developing secured applications 137

}

}
catch (WSSecurityException e)

{

// log error

}

catch (Exception e)

{

// log error

}

Requirement: You need the following Java 2 Security permissions to execute this API: permission
javax.security.auth.AuthPermission "wssecurity.getCallerSubject;”.

Example: Getting the RunAs Subject from the Thread

The RunAs subject (or invocation subject) contains the user authentication information for the RunAs
mode set in the application deployment descriptor for this method.

The RunAs subject (or invocation subject) contains the user authentication information for the RunAs
mode set in the application deployment descriptor for this method. This subject is marked read-only when
returned from theWSSubject.getRunAsSubject() application programming interface (API) to prevent
replacing existing objects. You can use this API to get access to the WSCredential (documented in the
Javadoc information) so that you can put or set data in the hashmap within the credential.

Note: Most data within the Subject is not propagated downstream to another server. Only the credential
token within the WSCredential is propagated downstream and a new Caller subject is generated.

try
{

javax.security.auth.Subject runas_subject;
com.ibm.websphere.security.cred.WSCredential runas_cred,;

runas_subject = com.ibm.websphere.security.auth.WSSubject.getRunAsSubject();

if (runas_subject != null)

{

runas_cred = runas_subject.getPublicCredentials(
com.ibm.websphere.security.cred.WSCredential.class).iterator().next();

String RUNASDATA = (String) runas_cred.get ("MYKEY");

System.out.printin("My data from the RunAs credential is: " + RUNASDATA);

}
}
catch (WSSecurityException e)
{
/I log error
}
catch (Exception e)
{
/I log error
}

Requirements: You need the following Java 2 Security permissions to run this API: permission
javax.security.auth.AuthPermission "wssecurity.getRunAsSubject;”.

Related concepts

138 BM™ WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

[‘Programmatic login” on page 104
Programmatic login is a type of form login that supports application presentation site-specific login
forms for the purpose of authentication.

Example: Overriding the RunAs Subject on the Thread

To extend the function provided by the Java Authentication and Authorization Service (JAAS) application
programming interfaces (APIs), you can set the RunAs subject (or invocation subject) with a different valid
entry that is used for outbound requests on this execution thread.

Gives flexibility for associating the Subject with all remote calls on this thread whether using a
WSSubject.doAs () to associate the subject with the remote action or not. For example:

try
{

javax.security.auth.Subject runas_subject, caller_subject;

runas_subject = com.ibm.websphere.security.auth.WSSubject.getRunAsSubject();
caller_subject = com.ibm.websphere.security.auth.WSSubject.getCallerSubject();

// set a new RunAs subject for the thread, overriding the one declaratively set
com.ibm.websphere.security.auth.WSSubject.setRunAsSubject(caller_subject);

// do some remote calls

// restore back to the previous runAsSubject
com.ibm.websphere.security.auth.WSSubject.setRunAsSubject (runas_subject);

}
catch (WSSecurityException e)

{

// log error

}

catch (Exception e)

{

// log error

}

An application developer can use the WSSubject.doAs method to establish a JAAS subject authenticated
by a JAAS login module as the active security identity to be used by WebSphere runtime while performing
a specified action. WSSubject.doAs only synchronizes the thread identity when it is called within a
component that is configured for sync-to-thread. When used in conjunction with the application Synch to
OS Thread Allowed option, this identity is set on the operating system thread for the scope of that action.

You need the following Java 2 Security permissions to run these APIs:

permission javax.security.auth.AuthPermission "wssecurity.getRunAsSubject”;
permission javax.security.auth.AuthPermission "wssecurity.getCallerSubject”;
permission javax.security.auth.AuthPermission "wssecurity.setRunAsSubject”;

Related concepts

[‘Programmatic login” on page 104
Programmatic login is a type of form login that supports application presentation site-specific login
forms for the purpose of authentication.

|“Synchronizing a Java thread identity and an operating system thread identity” on page 194|
Related tasks
[‘Steps for selecting SAF Authorization” on page 265|

Chapter 8. Developing secured applications 139

Related reference
[‘Supported authentication protocols” on page 491|

Example: User revocation from a cache

In WebSphere Application Server, Version 5.0.2 and later, revocation of a user from the security cache
using an MBean interface is supported. The following Java Command Language (JACL) revokes a user
when given the realm and user ID, and cycles through all security administration MBean instances
returned for the entire cell when run from the Deployment Manager WSADMIN. The command also purges
the user from the cache during each process.

Note: This procedure can be called from another JACL script.
Attention: In some of the following lines of code, the lines have been split onto two or more lines.

proc revokeUser {realm userid} {
global AdminControl AdminConfig

if {[catch {$AdminControl queryNames WebSphere:type=SecurityAdmin,x*}
result]} {
puts stdout "\$AdminControl queryNames WebSphere:type=SecurityAdmin,=*
caught an exception $result\n”
return
} else {
if {$result !'= {}} {
foreach secBean $result {
if {$secBean != {} || $secBean != "null"} {
if {[catch {$AdminControl invoke $secBean
purgeUserFromAuthCache "$realm $userid”} result]} {
puts stdout "\$AdminControl invoke $secBean
purgeUserFromAuthCache $realm $userid caught an
exception $result\n”
return
} else {
puts stdout "\nUser $userid has been purged from the
cache of process $secBean\n”
}
} else {
puts stdout "unable to get securityAdmin Mbean, user
$userid not revoked”

}
}
} else {
puts stdout "Security Mbean was not found\n”
return

}
}

return true

}

proc clearAuthCache {realm userid} {
global AdminControl AdminConfig

if {[catch {$AdminControl queryNames WebSphere:type=SecurityAdmin,*} result]} {
puts stdout "\$AdminControl queryNames WebSphere:type=SecurityAdmin,* caught an exception $result\n”
return

140 BM™ WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

} else {
if {$result !'= {}} {
foreach secBean $result {
if {$secBean != {} || $secBean != "null"} {
if {[catch {§AdminControl invoke $secBean clearAuthCache} result]} {
puts stdout "\$AdminControl invoke $secBean clearAuthCache caught an exception $result\n
return
} else {
puts stdout "\ncache cleared for process $secBean\n”
}
} else {
puts stdout "unable to get securityAdmin Mbean, user $userid not revoked”

n

}
}
} else {
puts stdout "Security Mbean was not found\n”
return
}
}

Related concepts

[‘Programmatic login” on page 104

Programmatic login is a type of form login that supports application presentation site-specific login
forms for the purpose of authentication.

Developing your own J2C principal mapping module

You can develop your own J2EE Connector (J2C) mapping module if your application requires more
sophisticated mapping functions. The mapping LoginModule that you might have developed on
WebSphere Application Server Version 5.x is still supported in WebSphere Application Server Version
6.0.x. The Version 5.x LoginModules can be used in the connection factory mapping configuration (that is,
they can be defined on the resource). They also can also be used in the resource manager connection
factory reference mapping configuration. A Version 5.x mapping LoginModule is not able to take advantage
of the custom mapping properties.

If you want to develop a new mapping LoginModule in Version 6, use the programming interface described
in the following sections.

Migrate your Version 5.x mapping LoginModule to use the new programming model to take advantage of
the new custom properties as well as the mapping configuration isolation at application scope. Note that

mapping LoginModules developed using the WebSphere Application Server Release 6 cannot be used at
the deprecated resource connection factory mapping configuration.

Resource Reference Mapping LoginModule invocation

A com.ibm.wsspi.security.auth.callback. WSMappingCallbackHandler class, which implements the
javax.security.auth.callback.CallbackHandler interface, is a new WebSphere Application Service Provider
Programming Interface (SPI) in WebSphere Application Server Version 6.0.x.

Application code uses the com.ibm.wsspi.security.auth.callback.WSMappingCallbackHandlerFactory helper
class to retrieve a CallbackHandler object:

package com.ibm.wsspi.security.auth.callback;

public class WSMappingCallbackHandlerFactory {
private WSMappingCallbackHandlerFactory;

Chapter 8. Developing secured applications 141

public static CallbackHandler getMappingCallbackHandler(
ManagedConnectionFactory mcf,

HashMap mappingProperties);

}

The WSMappingCallbackHandler class implements the CallbackHandler interface:
package com.ibm.wsspi.security.auth.callback;

public class WSMappingCallbackHandler implements CallbackHandler {

public WSMappingCallbackHandler(ManagedConnectionFactory mcf,

HashMap mappingProperties);

public void handle(Callback[] callbacks) throws IOException,
UnsupportedCallbackException;

WSMappingCallbackHandler can handle two new callback types defined in Release 6:

com.ibm.wsspi.security.auth.callback.WSManagedConnectionFactoryCallback
com.ibm.wsspi.security.auth.callback.WSMappingPropertiesCallback

The two Callback types should be used by new LoginModules that are used at the resource manager
connection factory reference mapping configuration. The WSManagedConnectionFactoryCallback provides
a ManagedConnectionFactory instance that should be set in the PasswordCredential. It allows a
ManagedConnectionFactory instance to determine whether a PasswordCredential instance is used for
sign-on to the target EIS instance. The WSMappingPropertiesCallback provides a HashMap that contains
custom mapping properties. The property name "com.ibm.mapping.authDataAlias” is reserved for setting
the authentication data alias.

The WebSphere Application Server Release 6.0.x WSMappingCallbackHandle continues to support the
two WebSphere Application Server Version 5.x Callback types that can be used by older mapping
LoginModules. The two Callbacks defined below can only be used by LoginModules that are used by login
configuration at the connection factory. For backward compatibility, WebSphere Application Server Release
6.0.x passes the authentication data alias, if defined in the list of custom properties under the
“com.ibm.mapping.authDataAlias” property name using the WSAuthDataAliasCallback to Version 5.x
LoginModules:

com.ibm.ws.security.auth.j2c.WSManagedConnectionFactoryCallback
com.ibm.ws.security.auth.j2c.WSAuthDataAliasCallback

Connection Factory Mapping LoginModule Invocation

The WSPrincipalMappingCallbackHandler class handles two Callback types:
WSManagedConnectionFactoryCallback and WSMappingPropertiesCallback:

com.ibm.wsspi.security.auth.callback.WSManagedConnectionFactoryCallback
com.ibm.wsspi.security.auth.callback.WSMappingPropertiesCallback

The WSPrincipalMappingCallbackHandler and the two Callbacks are deprecated in WebSphere Application
Server Release 6 and should not be used by new development work.

Mapping LoginModule Resource Reference Mapping Properties

You can pass arbitrary custom properties to your mapping LoginModule. The following example shows
how the WebSphere Application Server default mapping LoginModule looks for the authentication data
alias property.
try {
wspm_callbackHandler.handle(callbacks);
String userID = null;
String password = null;
String alias = null;
wspm_properties = ((WSMappingPropertiesCallback)callbacks[1]).getProperties();

142 BM™ WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

if (wspm_properties != null) {
alias = (String) wspm_properties.get(com.ibm.wsspi.security.auth.callback.Constants.MAPPING ALIAS);
if (alias !'= null) {
alias = alias.trim();
1
}

} catch (UnsupportedCallbackException unsupportedcallbackexception) {
. . . // error handling

The WebSphere Application Server Version 6 default mapping LoginModule requires one mapping property
to define the authentication data alias. The property name, MAPPING_ALIAS, is defined in the
Constants.class in the com.ibm.wsspi.security.auth.callback package.

MAPPING_ALIAS = "com.ibm.mapping.authDataAlias”

When you specify the Use default method > Select authentication data entry authentication method
on the Map resource references to resources panel, the administrative console automatically creates a
MAPPING_ALIAS entry with the selected authentication data alias value in the mapping properties. If you
choose to create your own custom login configuration and then use the default mapping LoginModule,
you'll have to set this property manually on the mapping properties for the resource factory reference.

In a custom login module, you can use the WSSubject.getRunAsSubject() method to retrieve the subject
that represents the identity of the current running thread. The identity of the current running thread is
known as theRunAs identity. The RunAs subject typically contains a WSPrincipal in the principal set and a
WSCredential in the public credential set. The subject instance that is created by your mapping module
contains a Principal instance in the principals set and a PasswordCredential or an
org.ietf.jgss.GSSCredential instance in the set of private credentials.

The GenericCredential interface that was defined in Java Cryptography Architecture (JCA) Spec Version
1.0 has been removed in the JCA Version 1.5 spec. The GenericCredentail interface is supported by
WebSphere Application Server Version 6.0.x to support older resource adapters that might have been
programmed to the GenericCredential interface.

Related tasks

[‘Configuring application logins for Java Authentication and Authorization Service” on page 322|
Related reference

[‘Security: Resources for learning” on page 25|

Developing custom user registries

WebSphere Application Server security supports the use of custom registries in addition to Local OS and
Lightweight Directory Access Protocol (LDAP) registries for authentication and authorization purposes. A
custom implemented user registry uses the UserRegistry Java interface as provided by WebSphere
Application Server. A custom implemented user registry can support virtually any type or notion of an
accounts repository from a relational database, flat file, and so on. The custom user registry provides
considerable flexibility in adapting WebSphere Application Server security to various environments where
some notion of a user registry, other than LDAP or LocalOS, already exists in the operational environment.

Implementing a custom user registry is a software development effort. Use the methods defined in the
UserRegistry interface to make calls to the desired registry to obtain user and group information. The
interface defines a very general set of methods, for encapsulating a wide variety of registries. You can
configure a custom user registry as the active user registry when configuring WebSphere Application
Server global security.

Make sure that your implementation of the custom registry does not depend on any WebSphere
Application Server components such as data sources, EJBs, and JNDI. Do not have this dependency

Chapter 8. Developing secured applications 143

because security is initialized and enabled prior to most of the other WebSphere Application Server
components during startup. If your previous implementation used these components, make a change that
will eliminate the dependency. For example, if your previous implementation used data sources to connect
to a database, use DriverManager to connect to the database.

Note: The registry is used in controllers as well as servants. There is an increased risk of integrity
exposure in that configuration if the registry implementation is not secured.

Refer to the|“Migrating custom user registries” on page 76| for more information on migrating. If your
previous implementation uses data sources to connect to a database, change the implementation to use
JDBC connections. However, it is recommended that you use the new interface to implement your custom
registry.

1. _If not familiar with the custom user registry concept, refer to the article, [‘Custom user registries” on|

2. Implement all the methods in the interface except for the CreateCredential method, which is
implemented by WebSphere Application Server. |“FiIeRegistrySampIe.java file” on page 300| is provided
for reference.

3. Build your implementation. You need the %install root%/1ib/sas.jar and
%install_root%/1ib/wssec.jar files in your class path. For example: %install _root%\java\bin\javac
-classpath %install _root%\1ib\wssec.jar;%install _root%\1ib\sas.jar
yourImplementationFile.java.

4. Copy the class files generated in the previous step to the product class path. The preferred location is
the %install _root%/1ib/ext directory. This should be copied to all the product processes (cell, all
NodeAgents) class path.

5. Follow the steps in [‘Configuring custom user registries” on page 292|to configure your implementation
using the administrative console. This step is required to implement custom user registries in Version
6.

If you are enabling security, make sure you complete the remaining steps. Once this is done, make sure
you save and synchronize the configuration and restart all of the servers. Try accessing some J2EE
resources to verify that the custom registry implementation is correct.

Related concepts

[‘Custom user registries” on page 290)

A custom user registry is a customer-implemented user registry, that implements the UserRegistry Java
interface, as provided by the product. A custom-implemented user registry can support virtually any
type of an account repository from a relational database, flat file, and so on. The custom user registry
provides considerable flexibility in adapting product security to various environments where some form
of a user registry, other than Lightweight Directory Access Protocol (LDAP) or Local Operating System
(LocalOS), already exists in the operational environment.

Related tasks

[“Configuring custom user registries” on page 292|
Related reference

[‘UserRegistry.java files” on page 293|
[‘FileRegistrySample.java file” on page 300

“Custom user registry settings” on page 318|
Use this page to configure the custom user registry.

Using DB2 in a custom user registry

A custom user registry can use a DB2 database to the maintain the user and password information.
However to maintain this information, you must adhere to the following configuration requirements and
restrictions:

144 BM™ WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

* You must use the DB2 Universal Java database connectivity (JDBC) Driver to access the DB2 database
that is used by the custom user registry. Also, the driver must be a type 4 driver.

You cannot use the legacy DB2 for z/OS JDBC Driver or a type 2 DB2 Universal JDBC Driver because
both of these drivers use Resource Recovery Services (RRS). If you use these drivers, the custom user
registry DB2 server requests interfere with the user application processing under the same thread.

* Because you must use the DB2 Universal JDBC Driver, do not define any JDBC resources under the
server that require the legacy DB2 for z/OS JDBC Diriver.

For example, do not define a DB2 for z/OS JDBC Provider (RRS) because the legacy DB2 for z/OS
JDBC Driver cannot coexist with the DB2 Universal JDBC Driver.

* You must have an unmanaged DB2 data source or connection that is used by the custom user registry.

The data source or connection must not rely on any WebSphere Application Server resource
management. For example, the data source or connection cannot rely on Java Naming and Directory
Interface (JNDI) lookup, pooling, datastore helpers, XA resource or transaction processing, connection
management, and so on.

» To connect a custom user registry to a DB2 database, you can use one of the following approaches:
— Use the Java 2 Platform DriverManager to register an instance of the com.ibm.db2.jcc.DB2Driver

class, which is packaged in the DB2 Universal JDBC Driver. Then, invoke the DriverManager to get
a DB2 connection using a DB2 Type 4 URL that defines the target DB2 database.

— Use the com.ibm.db2.jcc.DB2DataSource class, which that is packaged in the DB2 Universal JDBC
Driver, to set up a data source. Set the data source properties to specify the target DB2 database
and other options. Then, get a connection from the data source.

Important: For more information on how to use these approaches, see [DB2 UDB for z/OS Version §
[Application Programming Guide and Reference for Javal

Complete the following steps to define the JDBC driver for WebSphere Application Server. You must set
up the following DB2 JDBC Universal Driver configuration before you define your custom user registry for
the WebSphere Application Server for z/OS security component.

1. Define the DB2 Universal JDBC Driver in the ext.dirs class path for the servant. To define the driver,
complete the following steps in the administrative console:

a. Click Servers > Application servers >server_name.

b. Under Server Infrastructure, click Java and Process Management > Process definition >
Servant.

c. Under Additional properties, click Java Virtual Machine.
Under Additional properties, click Custom properties .
Click New and define the driver. Create the new property using the following information:

Property name
ws.ext.dirs

Property value
db2jcc.jar_directory path/db2jcc.jar:license_jar _directory path/db2jcc_license cisuz.jar

2. Define the DB2 Universal JDBC Driver in the ext.dirs class path for the controller. To define the
driver, complete the following steps in the administrative console:

a. Click Servers > Application servers >server_name.

b. Under Server Infrastructure, click Java and Process Management > Process definition >
Controller.

c. Under Additional properties, click Java Virtual Machine.
Under Additional properties, click Custom properties .
Click New and define the driver. Create the new property using the following information:

Chapter 8. Developing secured applications 145

http://www-306.ibm.com/software/data/db2/zos/v8books.html
http://www-306.ibm.com/software/data/db2/zos/v8books.html

Property name
ws.ext.dirs

Property value
db2jcc.jar _directory path/db2jcc.jar:license jar directory path/db2jcc_license cisuz.jar

3. Recycle the server.

Example: Custom user registries

A custom user registry is a customer-implemented user registry that implements the UserRegistry Java
interface as provided by WebSphere Application Server. A custom-implemented user registry can support
virtually any type or form of an accounts repository from a relational database, flat file, and so on. The
custom user registry provides considerable flexibility in adapting WebSphere Application Server security to
various environments where some form of a user registry, other than Lightweight Directory Access Protocol
(LDAP) or Local OS, already exist in the operational environment.

Implementing a custom user registry is a software development effort. You must use the methods defined
in the UserRegistry interface to make calls to the desired registry for obtaining user and group information.
The interface defines a very general set of methods, so it can encapsulate a wide variety of registries. You
can configure a custom user registry as the active user registry when configuring the product global
security.

If you are using the WebSphere Application Server Version 4.x CustomRegistry interface, you can plug in
your registry without any changes. However, using the new interface to implement your custom registry is
recommended.

To view a sample custom registry, refer to the following files:
+ [“FileRegistrySample.java file” on page 300|
+ [‘users.props file” on page 319
+ [“groups.props file” on page 319
Related tasks
[‘Developing custom user registries” on page 143
Related reference
[‘FileRegistrySample.java file” on page 300
[‘users.props file” on page 319
[‘groups.props file” on page 319

UserRegistry interface methods

Implementing this interface enables WebSphere Application Server security to use custom registries. This
capability should extend the java.rmi file. With a remote registry, you can complete this process remotely.

Implementation of this interface must provide implementations for:
* initialize(java.util.Properties)

» checkPassword(String,String)

* mapCertificate(X509Certificate[])
» getRealm

» getUsers(String,int)

» getUserDisplayName(String)

» getUniqueUserld(String)

» getUserSecurityName(String)
 isValidUser(String)

» getGroups(String,int)

» getGroupDisplayName(String)
+ getUniqueGroupld(String)

» getUniqueGrouplds(String)

146 1BM WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

» getGroupSecurityName(String)
» isValidGroup(String)

» getGroupsForUser(String)

» getUsersForGroup(String,int)
 createCredential(String)

public void initialize(java.util.Properties props)
throws CustomRegistryException,
RemoteException;

This method is called to initialize the UserRegistry method. All the properties defined in the Custom User
Registry panel propagate to this method.

For the sample, the initialize method retrieves the names of the registry files containing the user and group
information.

This method is called during server bring up to initialize the registry. This method is also called when
validation is performed by the administrative console, when security is on. This method remains the same
as in version 4.x.

public String checkPassword(String userSecurityName, String password)
throws PasswordCheckFailedException,
CustomRegistryException,
RemoteException;

The checkPassword method is called to authenticate users when they log in using a name (or user ID) and
a password. This method returns a string which, in most cases, is the user being authenticated. Then, a
credential is created for the user for authorization purposes. This user name is also returned for the
enterprise bean call, getCallerPrincipal (), and the servlet calls, getUserPrincipal() and
getRemoteUser(). See the getUserDisplayName method for more information if you have display names in
your registry. In some situations, if you return a user other than the one who is logged in, verify that the
user is valid in the registry.

For the sample, the mapCertificate method gets the distinguished name (DN) from the certificate chain
and makes sure it is a valid user in the registry before returning the user. For the sample, the
checkPassword method checks the name and password combination in the registry and (if they match)
returns the user being authenticated.

This method is called for various scenarios. It is called by the administrative console to validate the user
information once the registry is initialized. It is also called when you access protected resources in the
product for authenticating the user and before proceeding with the authorization. This method is the same
as in version 4.x.

public String mapCertificate(X509Certificate[] cert)
throws CertificateMapNotSupportedException,
CertificateMapFailedException,
CustomRegistryException,
RemoteException;

The mapCertificate method is called to obtain a user name from an X.509 certificate chain supplied by
the browser. The complete certificate chain is passed to this method and the implementation can validate
the chain if needed and get the user information. A credential is created for this user for authorization
purposes. If browser certificates are not supported in your configuration, you can throw the exception,
CertificateMapNotSupportedException. The consequence of not supporting certificates is authentication
failure if the challenge type is certificates, even if valid certificates are in the browser.

Chapter 8. Developing secured applications 147

This method is called when certificates are provided for authentication. For Web applications, when the
authentication constraints are set to CLIENT-CERT in the web.xm1 file of the application, this method is
called to map a certificate to a valid user in the registry. For Java clients, this method is called to map the
client certificates in the transport layer, when using the transport layer authentication. Also, when the
Identity Assertion Token (when using the CSIv2 authentication protocol) is set to contain certificates, this
method is called to map the certificates to a valid user.

In WebSphere Application Server Version 4.x, the input parameter was the X509Certificate. In WebSphere
Application Server Version 5.x and later, this parameter changes to accept an array of X509Certificate
certificates (such as a certificate chain). In version 4.x, this parameter was called only for Web
applications, but in version 5.x and later you can call this method for both Web and Java clients.

public String getRealm()
throws CustomRegistryException,
RemoteException;

The getRealm method is called to get the name of the security realm. The name of the realm identifies the
security domain for which the registry authenticates users. If this method returns a null value, a default
name of customRealm is used.

For the sample, the getRealm method returns the string, customRealm. One of the calls to this method is
when the registry information is validated. This method is the same as in version 4.x.

public Result getUsers(String pattern, int Timit)
throws CustomRegistryException,
RemoteException;

The getUsers method returns the list of users from the registry. The names of users depend on the pattern
parameter. The number of users are limited by the limit parameter. In a registry that has many users,
getting all the users is not practical. So the limit parameter is introduced to limit the number of users
retrieved from the registry. A limit of 0 indicates to return all the users that match the pattern and might
cause problems for large registries. Use this limit with care.

The custom registry implementations are expected to support at least the wildcard search (*). For
example, a pattern of (*) returns all the users and a pattern of (b*) returns the users starting with b.

The return parameter is an object of type com.ibm.websphere.security.Result. This object contains two
attributes, a java.util.List and a java.lang.boolean. The list contains the users returned and the
Boolean flag indicates if there are more users available in the registry for the search pattern. This Boolean
flag is used to indicate to the client whether more users are available in the registry.

In the sample, the getUsers retrieves the required number of users from the registry and sets them as a
list in the result object. To find out if there are more users than requested, the sample gets one more user
than requested and if it finds the additional user, it sets the Boolean flag to true. For pattern matching, the
match method in the RegExpSample class is used, which supports wildcard characters such as the asterisk
(*) and question mark (?).

This method is called by the administrative console to add users to roles in the various map users to roles
panels. The administrative console uses the Boolean set in the result object to indicate that more entries
matching the pattern are available in the registry.

In WebSphere Application Server Version 4.x, this method specifies to take only the pattern parameter.
The return is a list. In WebSphere Application Server Version 5.x or later, this method is changed to take
one additional parameter, the limit. Ideally, your implementation should change to take the limit value and
limit the users returned. The return is changed to return a result object, which consists of the list (as in
version 4) and a flag indicating if more entries exist. So, when the list returns, use the

148 BM™ WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

Result.setlList(List) to set the List in the result object. If there are more entries than requested in the
limit parameter, set the Boolean attribute to true in the result object, using Result.setHasMore () method.
The default for the Boolean attribute in the result object is false.

public String getUserDisplayName(String userSecurityName)
throws EntryNotFoundException,
CustomRegistryException,
RemoteException;

The getUserDisplayName method returns a display name for a user, if one exists. The display name is an
optional string that describes the user that you can set in some registries. This is a descriptive name for
the user and does not have to be unique in the registry.

If you do not need display names in your registry, return null or an empty string for this method.

Note: In WebSphere Application Server Version 4.x, if display names existed for any user these names
were useful for the EJB method call getCallerPrincipal() and the servlet calls
getUserPrincipal () and getRemoteUser(). If the display names were not the same as the security
name for any user, the display names are returned for the previously mentioned enterprise beans
and servlet methods. Returning display names for these methods might become problematic is
some situations because the display names might not be unique in the registry. Avoid this problem
by changing the default behavior to return the user’s security name instead of the user’s display
name in this version of the product. However, if you want to have the same behavior as in Version
4, set the property WAS UseDisplayName to true in the Custom Registry Properties panel in the
administrative console. For more information on how to set properties for the custom registry, see
the section on Setting Properties for Custom Registries.

In the sample, this method returns the display name of the user whose name matches the user name
provided. If the display name does not exist this returns an empty string.

This method can be called by the product to present the display names in the administrative console, or
using the command line using the wsadmin tool. Use this method only for displaying. This method is the
same as in Version 4.0.

public String getUniqueUserId(String userSecurityName)
throws EntryNotFoundException,
CustomRegistryException,
RemoteException;

This method returns the unique ID of the user given the security name.

In the sample, this method returns the uniqueld of the user whose name matches the supplied name. This
method is called when forming a credential for a user and also when creating the authorization table for
the application.

public String getUserSecurityName(String uniqueUserId)
throws EntryNotFoundException,
CustomRegistryException,
RemoteException;

This method returns the security name of a user given the unique ID. In the sample, this method returns
the security name of the user whose unique ID matches the supplied ID.

This method is called to make sure a valid user exists for a given uniqueUserld. This method is called to
get the security name of the user when the uniqueUserld is obtained from a token.

Chapter 8. Developing secured applications 149

public boolean isValidUser(String userSecurityName)
throws CustomRegistryException,
RemoteException;

This method indicates whether the given user is a valid user in the registry.

In the Sample, this method returns true if the user is found in the registry, otherwise this method returns
false. This method is primarily called in situations where knowing if the user exists in the directory
prevents problems later. For example, in the mapCertificate call, once the name is obtained from the
certificate if the user is found to be an invalid user in the registry, you can avoid trying to create the
credential for the user.

public Result getGroups(String pattern, int Timit)
throws CustomRegistryException,
RemoteException;

The getGroups method returns the list of groups from the registry. The names of groups depend on the
pattern parameter. The number of groups is limited by the limit parameter. In a registry that has many
groups, getting all the groups is not practical. So, the limit parameter is introduced to limit the number of
groups retrieved from the registry. A limit of 0 implies to return all the groups that match the pattern and
can cause problems for large registries. Use this limit with care. The custom registry implementations are
expected to support at least the wildcard search (*). For example, a pattern of (*) returns all the users and
a pattern of (b*) returns the users starting with b.

The return parameter is an object of type com.ibm.websphere.security.Result. This object contains two
attributes, a java.util.List and a java.lang.boolean. The list contains the groups returned and the
Boolean flag indicates whether there are more groups available in the registry for the pattern searched.
This Boolean flag is used to indicate to the client if more groups are available in the registry.

In the sample, the getUsers retrieves the required number of groups from the registry and sets them as a
list in the result object. To find out if there are more groups than requested, the sample gets one more
user than requested and if it finds the additional user, it sets the Boolean flag to true. For pattern
matching, the match method in the RegExpSample class is used. It supports wildcards like *, 2.

This method is called by the administrative console to add groups to roles in the various map groups to
roles panels. The administrative console will use the boolean set in the Result object to indicate that more
entries matching the pattern are available in the registry.

In WebSphere Application Server Version 4, this method is used to take the pattern parameter only and
returns a list. In WebSphere Application Server Version 5.x or later, this method is changed to take one
additional parameter, the limit. Change to take the limit value and limit the users returned. The return is
changed to return a result object, which consists of the list (as in version 4) and a flag indicating whether
more entries exist. Use the Result.setList(List) to set the list in the result object. If there are more
entries than requested in the limit parameter, set the Boolean attribute to true in the result object using
Result.setHasMore(). The default for the Boolean attribute in the result object is false.

public String getGroupDisplayName(String groupSecurityName)
throws EntryNotFoundException,
CustomRegistryException,
RemoteException;

The getGroupDisplayName method returns a display name for a group if one exists. The display name is an
optional string describing the group that you can set in some registries. This name is a descriptive name
for the group and does not have to be unique in the registry. If you do not need to have display names for
groups in your registry, return null or an empty string for this method.

150 BM™ WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

In the sample, this method returns the display name of the group whose name matches the group name
provided. If the display name does not exist, this method returns an empty string.

The product can call this method to present the display names in the administrative console or through
command line using the wsadmin tool. This method is only used for displaying.

public String getUniqueGroupId(String groupSecurityName)
throws EntryNotFoundException,
CustomRegistryException,
RemoteException;

This method returns the unique ID of the group given the security name.

In the sample, this method returns the unique ID of the group whose name matches the supplied name.
This method is called when creating the authorization table for the application.

public List getUniqueGroupIds(String uniqueUserId)
throws EntryNotFoundException,
CustomRegistryException,
RemoteException;

This method returns the unique IDs of all the groups to which a user belongs.

In the sample, this method returns the unique ID of all the groups that contain this uniqueUserID. This
method is called when creating the credential for the user. As part of creating the credential, all the
groupUniquelds in which the user belongs are collected and put in the credential for authorization
purposes when groups are given access to a resource.

public String getGroupSecurityName(String uniqueGroupld)
throws EntryNotFoundException,
CustomRegistryException,
RemoteException;

This method returns the security name of a group given its unique ID.

In the sample, this method returns the security name of the group whose unique ID matches the supplied
ID. This method verifies that a valid group exists for a given uniqueGroupld.

public boolean isValidGroup(String groupSecurityName)
throws CustomRegistryException,
RemoteException;

This method indicates if the given group is a valid group in the registry.

In the sample, this method returns true if the group is found in the registry, otherwise the method returns
false. This method can be used in situations where knowing whether the group exists in the directory
might prevent problems later.

public List getGroupsForUser(String userSecurityName)
throws EntryNotFoundException,
CustomRegistryException,
RemoteException;

This method returns all the groups to which a user belongs whose name matches the supplied name. This
method is similar to the getUniqueGroupIds method with the exception that the security names are used
instead of the unique IDs.

Chapter 8. Developing secured applications 151

In the sample, this method returns all the group security names that contain the userSecurityName.

This method is called by the administrative console or the scripting tool to verify that the users entered for
the RunAs roles are already part of that role in the users and groups to role mapping. This check is
required to ensure that a user cannot be added to a RunAs role unless that user is assigned to the role in
the users and groups to role mapping either directly or indirectly (through a group that contains this user).
Since a group in which the user belongs can be part of the role in the users and groups to role mapping,
this method is called to check if any of the groups that this user belongs to mapped to that role.

public Result getUsersForGroup(String groupSecurityName, int 1imit)
throws NotImplementedException,
EntryNotFoundException,
CustomRegistryException,
RemoteException;

This method retrieves users from the specified group. The number of users returned is limited by the limit
parameter. A limit of 0 indicates to return all of the users in that group. This method is not directly called by
the WebSphere Application Server security component. However, this can be called by other components.
In rare situations, if you are working with a registry where getting all the users from any of your groups is
not practical (for example, if there are a large number of users), you can throw the
NotImplementedException exception for the particular groups. In this case, verify that if the process
choreographer is installed (or if it is installed later) the staff assignments are not modeled using these
particular groups. If there is no concern about returning the users from groups in the registry, it is
recommended that you do not throw the NotImpTemented exception when implementing this method.

The return parameter is an object of type com. ibm.websphere.security.Result. This object contains two
attributes, java.util.List and java.lang.boolean. The list contains the users returned and the Boolean
flag, which indicates whether there are more users available in the registry for the search pattern. This
Boolean flag indicates to the client whether users are available in the registry.

In the example, this method gets one user more than the requested number of users for a group if the limit
parameter is not set to 0. If it succeeds in getting one more user, it sets the Boolean flag to true.

In WebSphere Application Server Version 4, this getUsers method was mandatory for the product. For
WebSphere Application Server Version 5.x or later, this method can throw the exception
NotImplementedException exception in situations where it is not practical to get the requested set of users.
However, this exception should be thrown in rare situations, as other components can be affected. In
version 4, this method accepted only the pattern parameter and the returned a list. In version 5, this
method accepts one additional parameter, the limit. Change your implementation to take the limit value
and limit the users returned. The return changes to return a result object, which consists of the list (as in
version 4) and a flag indicating whether more entries exist. When the list is returned, use the
Result.setList(List) method to set the list in the Result object. If there are more entries than requested
in the limit parameter, set the Boolean attribute to true in the result object using Result.setHasMore().
The default for the Boolean attribute in the Result object is false.

Attention: The first two lines of the following code sample is one continuous line.

public com.ibm.websphere.security.cred.WSCredential
createCredential (String userSecurityName)
throws NotImplementedException,
EntryNotFoundException,
CustomRegistryException,
RemoteException;

In this release of the WebSphere Application Server, the createCredential method is not called. You can
return null. In the example, a null is returned.

152 1BM WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

Related tasks

[‘Developing custom user registries” on page 143
[‘Migrating custom user registries” on page 76|
Related reference

[‘Configuring custom user registries” on page 292|
[“FileRegistrySample.java file” on page 300

Trust association interceptor support for Subject creation

The new Trust Association Interceptor (TAl) interface,

com.ibm.wsspi.security.tai. TrustAssociationlnterceptor, supports several new features and is different from
the existing com.ibm.websphere.security. TrustAssociationInterceptor interface. Although the existing
interface is still supported, it is being deprecated in a future release.

The new TAl interface supports a multi-phase, negotiated authentication process. For example, some
systems require a challenge response protocol back to the client. The two key methods in this new
interface are:

Key method name
public boolean isTargetinterceptor (HttpServietRequest req)

The isTargetInterceptor method determines whether the request originated with the proxy server
associated with the interceptor. The implementation code must examine the incoming request
object and determine if the proxy server forwarding the request is a valid proxy server for this
interceptor. The result of this method determines whether the interceptor processes the request.

Method result
A true value tells WebSphere Application Server to have the TAl handle the request.
A false value, tells WebSphere Application Server to ignore the TAL.

The negotiateValidateandEstablishTrust method determines whether to trust the proxy server from
which the request originated. The implementation code must authenticate the proxy server. The
authentication mechanism is proxy-server specific. For example, in the product implementation for
the WebSEAL server, this method retrieves the basic authentication information from the HTTP
header and validates the information against the user registry used by WebSphere Application
Server. If the credentials are invalid, the code throws the WebTrustAssociationException, which
indicates that the proxy server is not trusted and the request is denied. If the credentials are valid,
the code returns a TAIResult, which indicates the status of the request processing along with the
client identity (Subject and principal name) to be used for authorizing the Web resource.

Key method name
public TAIResult negotiateValidateandEstablishTrust (HttpServietRequest req, HttpServietResponse
res)

Method result
Returns a TAIResult, which indicates the status of the request processing. The request object can
be queried and the response object can be modified.

The TAIResult class has three static methods for creating a TAIResult. The TAIResult create methods take
an int type as the first parameter. WebSphere Application Server expects the result to be a valid HTTP
request return code and is interpreted in one of the following ways:

 If the value is HttpServietResponse.SC_OK, this response tells WebSphere Application Server that the
TAI has completed its negotiation. The response also tells WebSphere Application Server use the
information in the TAIResult to create a user identity.

Chapter 8. Developing secured applications 153

» Other values tell WebSphere Application Server to return the TAI output, which is placed into the
HttpServietResponse, to the Web client. Typically, the Web client provides additional information and
then places another call to the TAL.

The created TAIResults have the following meanings:

TAIResult Explanation

public static TAIResult create(int Indicates a status to WebSphere Application Server. The status should not be

status); SC_OK because the identity information is provided.

public static TAIResult create(int Indicates a status to WebSphere Application Server and provides the user ID

status, String principal); or the unique ID for this user. WebSphere Application Server creates
credentials by querying the user registry.

public static TAIResult create(int Indicates a status to WebSphere Application Server, the user ID or the unique

status, String principal, Subject ID for the user, and a custom Subject. If the Subject contains a Hashtable, the

subject); principal is ignored. The contents of the Subject becomes part of the eventual

user Subject.

All of the following examples are within the negotiateValidateandEstablishTrust() method of a TAI.
The following code sample indicates that additional negotiation is required:

// Modify the HttpServletResponse object
// The response code is meaningful only on the client
return TAIResult.create(HttpServietResponse.SC_CONTINUE);

The following code sample indicates that the TAIl has determined the user identity. WebSphere Application
Server receives the user ID only and then it queries the user registry for additional information:

// modify the HttpServletResponse object
return TAIResult.create(HttpServietResponse.SC OK, userid);

The following code sample indicates that the TAl had determined the user identity. WebSphere Application
Server receives the complete user information that is contained in the Hashtable. For more information on
the Hashtable, see [‘Configuring inbound identity mapping” on page 359 In this code sample, the
Hashtable is placed in the public credential portion of the Subject:

// create Subject and place Hashtable in it

Subject subject = new Subject;
subject.getPublicCredentials().add(hashtable);

//the response code is meaningful only the client

return TAIResult.create(HttpServietResponse.SC_OK, "ignored”, subject);

The following code sample indicates that there is an authentication failure. WebSphere Application Server
fails the authentication request:

//10g error message
/]

throw new WebTrustAssociationFailedException("TAI failed for this reason”);

There are a few additional methods on the TrustAssociationlnterceptor interface that are discussed in the
Java documentation. These methods are used for initialization, shut down, and for identifying the TAIl to
WebSphere Application Server.

Related tasks
[‘Configuring inbound identity mapping” on page 359

154 BM WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

Chapter 9. Assembling secured applications

There are several assembly tools that are graphical user interfaces for assembling enterprise (J2EE)
applications. You can use these tools to assemble an application and secure EJB and Web modules in
that application. An EJB module consists of one or more beans. You can enforce security at the EJB
method level. A Web module consists of one or more Web resources (an HTML page, a JavaServer Pages
(JSP) file or a servlet). You can also enforce security for each Web resource. You can use an assembly
tool to secure an EJB module (Java archive (JAR) file) or a Web module (Web archive (WAR) file) or an
application (enterprise archive (EAR) file). You can create an application, an EJB module, or a Web
Module and secure them using an assembly tool or development tools like the IBM Rational Application
Developer.

1. Secure EJB applications using an assembly tool. For more information, see [“Securing enterprise bean|
[applications” on page 156

2. Secure Web applications using an assembly tool. For more information, see|“‘Securing Web
|app|ications using an assembly tool” on page 159.|

3. Add users and groups to roles while assembling secured application using an assembly tool. For more
information, see [‘Adding users and groups to roles using an assembly tool” on page 165.|

4, Map users to RunAs roles using an assembly tool. For more information, see |“Mapping users to|
[RunAs roles using an assembly tool” on page 166.|

5. [“Adding the was.policy file to applications” on page 562

6. Assemble the application components that you just secured using an assembly tool. For more
information, see |[Assembling applications]

After securing an application, the resulting .ear file contains security information in its deployment
descriptor. The EJB module security information is stored in the ejb-jar.xml file and the Web module
security information is stored in the web.xm1 file. The application.xml file of the application EAR file
contains all the roles used in the application. The user and group to roles mapping is stored in the
ibm-application-bnd.xmi file of the application EAR file.

The was.policy file of the application EAR contains the permissions granted for the application to access
system resources protected by Java 2 security.

This task is required to secure EJB modules and Web modules in an application. This task is also required
for applications to run properly when Java 2 security is enabled. If the was.policy file is not created and it
does not contain required permissions, the application might not be able to access system resources.

After securing an application, you can install an application using the administrative console. When you
install a secured application, refer to the [Chapter 10, “Deploying secured applications,” on page 169|article
to complete this task.

Related concepts

[‘Java 2 security policy files” on page 544

The Java 2 Platform, Enterprise Edition (J2EE) Version 1.3 specification has a well-defined
programming model of responsibilities between the container providers and the application code. Using
Java 2 security manager to help enforce this programming model is recommended. Certain operations
are not supported in the application code because such operations interfere with the behavior and
operation of the containers. The Java 2 security manager is used in the product to enforce
responsibilities of the container and the application code.

Related tasks
[Assembling applications|
Application assembly consists of creating Java 2 Platform, Enterprise Edition (J2EE) modules that can

be deployed onto application servers. The modules are created from code artifacts such as Web
application archives (WAR files), resource adapter archives (RAR files), enterprise bean (EJB) JAR

© Copyright IBM Corp. 2005 155

files, and application client archives (JAR files). This packaging and configuring of code artifacts into
enterprise application modules (EAR files) or standalone Web modules is necessary for deploying the
modules onto an application server.

[‘Adding the was.policy file to applications” on page 562|

Enterprise bean component security

An EJB module consists of one or more beans. You can use development tools such as Rational
Application Developer to develop an EJB module. You can also enforce security at the EJB method level.

You can assign a set of EJB methods to a set of one or more roles. When an EJB method is secured by
associating a set of roles, grant at least one role in that set so that you can access that method. To
exclude a set of EJB methods from being accessed by anyone mark them excluded. You can give
everyone access to a set of enterprise beans method by clearing those methods. You can run enterprise
beans as a different identity (runAs identity) before invoking other enterprise beans.

Related tasks
[‘Securing enterprise bean applications’|

Securing enterprise bean applications

You can protect enterprise bean methods by assigning security roles to them. Before you assign security
roles, you need to know which Enterprise JavaBeans (EJB) methods need protecting and how to protect
them.

1. In an assembly tool, import your EJB Java Archive (JAR) file or an application archive (EAR) file that
contains one or more Web modules. For more information, see the [[mporting EJB files| article or the
[[mporting enterprise applications|article.

2. In the Project Explorer , click the EJB Projects directory and click the name of your application.

3. Right-click the Deployment descriptor and select Open with > Deployment Descriptor Editor. If you
selected an EJB . jar file, an EJB deployment descriptor editor opens. If you selected an application
.ear file, an application deployment descriptor editor opens. To see online information about the editor,
press F1 and click the editor name.

4. Create security roles. You can create security roles at the application level or at the EJB module level.
If you create a security role at the EJB module level, the role displays in the application level. If a
security role is created at the application level, the role does not appear in all the EJB modules. You
can copy and paste one or more EJB module security roles that you create at application level:

* Create a role at an EJB module level. In an EJB deployment descriptor editor, select the Assembly
tab. Under Security Roles, click Add. In the Add Security Role wizard, name and describe the
security role; then click Finish.

« Create a role at the application level. In an application deployment descriptor editor, select the
Security tab. Under the list of security roles, click Add. In the Add Security Role wizard, name and
describe the security role; then click Finish.

5. Create method permissions. Method permissions map one or more methods to a set of roles. An
enterprise bean has four types of methods: Home methods, Remote methods, LocalHome methods
and Local methods. You can add permissions to enterprise beans on the method level. You cannot add
a method permission to an enterprise bean unless you already have one or more security roles
defined. For Version 2.0 EJB projects, there is an unchecked option that specifies that the selected
methods from the selected beans do not require authorization to execute. To add a method permission
to an enterprise bean:

a. On the Assembly tab of an EJB deployment descriptor editor, under Method Permissions, click
Add. The Add Method Permission wizard opens.

b. Select a security role from the list of roles found and click Next.

156 1BM™ WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

c. Select one or more enterprise beans from the list of beans found. You can click Select All or
Deselect All to select or deselect all of the enterprise beans in the list. Click Next.

d. Select the methods that you want to bind to your security role. The Method Elements page lists all
methods associated with the enterprise bean(s). You can click Apply to All or Deselect All to
quickly select or clear multiple methods. It selects only the * method for each bean. Creating a
method permission for the exact method signature overrides the default (x) method permission
setting. The * method represents all methods within the bean. There are * for each interface as
well. By not selecting all of the individual methods in the tree, you can set other permissions on the
remaining methods.

e. Click Finish.

After the method permission is created, you can see the new method permission in the tree. Expand
the tree to see the bean and methods defined in the method permission.

Exclude user access to methods. Users cannot access excluded methods. Any method in the
enterprise beans that is not assigned to a role or is not excluded, is deselected during the application
installation by the deployer.

a. On the Assembly tab of an EJB deployment descriptor editor, under Excludes List, click Add.
The Exclude List wizard opens.

b. Select one or more enterprise beans from the list of beans found and click Next.
c. Select one or more of the method elements for the security identity and click Finish.

Map the security-role-ref and role-name to the role-link. When developing enterprise beans, you can
create the security-role-ref element. The security-role-ref element contains only the role-name field.
The role-name field determines if the caller is in a specified role(isCallerInRole()) and contains the
name of the role that is referenced in the code. Since you create security roles during the assembly
stage, the developer uses a logical rolename in the role-name field and provides enough information
in the description field for the assembler to map the actual role (role-link). The security-role-ref
element is located at the EJB level. Enterprise beans can have zero or more security-role-ref elements.

a. On the Reference tab of an EJB deployment descriptor editor, under the list of references, click
Add. The Add Reference wizard opens.

Select Security role reference and click Next.

Name the security role reference, select a security role to link the reference to, describe the
security role reference, and click Finish.

d. Map every role-name used during development to the role (role-link) using the previous steps.

Specify the RunAs ldentity for enterprise beans components. The RunAs Identity of the enterprise
bean is used to invoke the next enterprise beans in the chain of EJB invocations. When the next
enterprise beans are invoked, the RunAsIdentity passes to the next enterprise beans for performing
an authorization check on the next enterprise bean. If the RunAs Identity is not specified, the client
identity is propagated to the next enterprise bean. The RunAs Identity can represent each of the
enterprise beans or can represent each method in the enterprise beans.

a. On the Access tab of an EJB deployment descriptor editor, next to the Security Identity (Bean
Level) field, click Add. The Add Security Identity wizard opens.

b. Select the appropriate run as mode, describe the security identity, and click Next. Select the Use
identity of caller mode to instruct the security service to not make changes to the credential
settings for the principal. Select the Use identity assigned to specific role (below) mode to use
a principal that has been assigned to the specified security role for running the bean methods. This
association is part of the application binding in which the role is associated with the user ID and
password of a user who is granted that role. If you select the Use identity assigned to specific
role (below) mode , you must specify a role name and role description.

c. Select one or more enterprise beans from the list of beans found and click Next. If Next is
unavailable, click Finish.

d. Optional: On the Method Elements page, select one or more of the method elements for the
security identity and click Finish.

Chapter 9. Assembling secured applications 157

9. Close the deployment descriptor editor and, when prompted, click Yes to save the changes.

After securing an EJB application, the resulting . jar file contains security information in its deployment
descriptor. The security information of the EJB modules is stored in the ejb-jar.xml file.

After securing an EJB application using an assembly tool, you can install the EJB application using the
administrative console. During the installation of a secured EJB application, follow the steps in the
|Chapter 10, “Deploying secured applications,” on page 169| article to complete the task of securing the
EJB application.

Related concepts

[‘Role-based authorization” on page 161|
Use authorization information to determine whether a caller has the necessary privileges to request a
service.

[‘Delegations” on page 173|

Delegation is a process security identity propagation from a caller to a called object. As per the J2EE
specification, a servlet and enterprise beans can propagate either the client (remote user) identity when
invoking enterprise beans or they can use another specified identity as indicated in the corresponding
deployment descriptor.

[‘Enterprise bean component security” on page 156|

An EJB module consists of one or more beans. You can use development tools such as Rational
Application Developer to develop an EJB module. You can also enforce security at the EJB method
level.

Related tasks

[Importing EJB files|
Importing an enterprise bean (EJB) Java archive (JAR) file migrates the EJB JAR file to an assembly
tool.

[Importing enterprise applications|
Importing an enterprise archive (EAR) file migrates the EAR file to the assembly tool and defines a
new enterprise application project using the tool.

[Assembling applications|

Application assembly consists of creating Java 2 Platform, Enterprise Edition (J2EE) modules that can
be deployed onto application servers. The modules are created from code artifacts such as Web
application archives (WAR files), resource adapter archives (RAR files), enterprise bean (EJB) JAR
files, and application client archives (JAR files). This packaging and configuring of code artifacts into
enterprise application modules (EAR files) or standalone Web modules is necessary for deploying the
modules onto an application server.

Related reference
[‘Security: Resources for learning” on page 25|

Web component security

A Web module consists of servlets, JavaServer Pages (JSP) files, server-side utility classes, static Web
content (HTML, images, sound files, cascading style sheets (CSS)), and client-side classes (applets). You
can use development tools such as Rational Application Developer to develop a Web module and enforce
security at the method level of each Web resource.

You can identify a Web resource by its URI pattern. A Web resource method can be any HTTP method
(GET, POST, DELETE, PUT, for example). You can group a set of URI patterns and a set of HTTP
methods together and assign this grouping a set of roles. When a Web resource method is secured by
associating a set of roles, grant a user at least one role in that set to access that method. You can exclude
anyone from accessing a set of Web resources by assigning an empty set of roles. A servlet or a JSP file
can run as different identities (RunAs identity) before invoking another enterprise bean component. All the

158 BM WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

secured Web resources require the user to log in by using a configured login mechanism. There are three
types of Web login authentication mechanisms: basic authentication, form-based authentication and client
certificate-based authentication.

For more detailed information on Web security see the [product architectural overview] article.
Related concepts
[Introduction: Security|

Securing Web applications using an assembly tool

There are three types of Web login authentication mechanisms that you can configure on a Web
application: basic authentication, form-based authentication and client certificate-based authentication.
Protect Web resources in a Web application by assigning security roles to those resources.

To secure Web applications, determine the Web resources that need protecting and determine how to
protect them.

Additional configuration might be needed for these authentication mechanisms (such as SSL or ICSF). The
following steps detail securing a Web application using the Assembly Toolkit:

1. In an assembly tool, import your Web archive (WAR) file or an application archive (EAR) file that
contains one or more Web modules. For more information, see the [[mporting WAR files| article or the
[Importing enterprise applications|

2. In the Project Explorer, locate your Web application.

3. Right-click the deployment descriptor and select Open With > Deployment Descriptor Editor. The
Deployment Descriptor window opens. To see online information about the editor, press F1 and click
the editor name. If you selected Web archive (WAR) file, a Web deployment descriptor editor opens. If
you selected an enterprise application (EAR) file, an application deployment descriptor editor opens.

4. Create security roles either at the application level or at Web module level. If a security role is created
at the Web module level, the role also displays in the application level. If a security role is created at
the application level, the role does not display in all the Web modules. You can copy and paste a
security role at the application level to one or more Web module security roles.

» Create a role at a Web-module level. In a Web deployment descriptor editor, select the Security
tab. Under Security Roles, click Add.. Enter the security role name, describe the security role, and
click Finish.

» Create a role at the application level. In an application deployment descriptor editor, select the
Security tab. Under the list of security roles, click Add. In the Add Security Role wizard, name and
describe the security role; then click Finish.

5. Create security constraints. Security constraints are a mapping of one or more Web resources to a set
of roles.

a. On the Security tab of a Web deployment descriptor editor, click Security Constraints. On the

Security Constraints tab that opens, you can do the following:

* Add or remove security constraints for specific security roles.

* Add or remove Web resources and their HTTP methods.

» Define which security roles are authorized to access the Web resources.

» Specify None, Integral, or Confidential constraints on user data. None means that the application
requires no transport guarantees. Integral means that data cannot be changes in transit between
client and server. And Confidential means that data content cannot be observed while it is in
transit. Integral and Confidential usually require the use of SSL.

Under Security Constraints, click Add.
Under Constraint name, specify a display name for the security constraint and click Next.
d. Type a name and description for the Web resource collection.

Chapter 9. Assembling secured applications 159

e. Select one or more HTTP methods. The HTTP method options are: GET, PUT, HEAD, TRACE,
POST, DELETE, and OPTIONS.

f. Beside the Patterns field, click Add.

g. Specify a URL Pattern. For example, type - /*, *.jsp, /hello. Consult the Servlet specification
Version 2.4 for instructions on mapping URL patterns to servlets. Security run time uses the exact
match first to map the incoming URL with URL patterns. If the exact match is not present, the
security run time uses the longest match. The wild card (*.,*.jsp) URL pattern matching is used
last.

h. Click Finish.
i. Repeat these steps to create multiple security constraints.

6. Map security-role-ref and role-name elements to the role-link element. During the development of a
Web application, you can create the security-role-ref element. The security-role-ref element contains
only the role-name field at this stage. The role-name field contains the name of the role that is
referenced in the servlet or JavaServer Pages (JSP) code to determine if the caller is in a specified
role (isUserlnRole()). Since security roles are created during the assembly stage, the developer uses a
logical role name in the role-name field and provides enough description in the description field for
the assembler to map the role actual (role-link). The Security-role-ref element is at the servlet level. A
servlet or JSP file can have zero or more security-role-ref elements.

a. Go to the References tab of a Web deployment descriptor editor. On the References tab, you can
add or remove the name of an enterprise bean reference to the deployment descriptor. There are 5
types of references you can define on this tab:

» EJB reference

» Service reference

» Resource reference

* Message destination reference

» Security role reference

* Resource environment reference

Under the list of EJB references, click Add.
Specify a name and a type for the reference in the Name and Ref Type fields.
Select either Enterprise Beans in the workplace or Enterprise Beans not in the workplace.

Optional: If you select Enterprise Beans not in the workplace, select the type of enterprise bean
in the Type field. You can specify either an entity bean or a session bean.

f. Optional: Click Browse to specify values for the local home and local interface in the Local home
and Local fields before you click Next.

g. Map every role-name used during development to the role (role-link) using the previous steps.
Every role name used during development maps to the actual role.

7. Specify the RunAs identity for servlets and JSP files. The RunAs identity of a servlet is used to invoke
enterprise beans from within the servlet code. When enterprise beans are invoked, the RunAs identity
is passed to the enterprise bean for performing an authorization check on the enterprise beans. If the
RunAs identity is not specified, the client identity is propagated to the enterprise beans. The RunAs
identity is assigned at the servlet level.

a. On the Servlets tab of a Web deployment descriptor editor, under Serviets and JSPs, click Add.
The Add Servlet or JSP wizard opens.

b. Specify the servlet or JSP settings including the name, initialization parameters, and URL mappings
and click Next.

c. Specify the class file destination.

d. Click Next to specify additional settings or click Finish.
e

f

© 2 0T

. Under Run As on the Servlets tab, select the security role and describe the role.
Specify a RunAs identity for each servlet and JSP file used by your Web application.

8. Configure the login mechanism for the Web module. This configured login mechanism applies to all the
servlets, JavaServer page (JSP) files and HTML resources in the Web module.

160 BM™ WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

a. On the Pages tab of a Web deployment descriptor editor, under Login, select the required
authentication method. Available method values include: Unspecified, Basic, Digest, Form, and
Client-Cert.[

Specify a realm name.

If you select the Form authentication method, select a login page and an error page URLs (for
example: /1ogin.jsp and /error.jsp). The specified login and error pages are present in the .war
file.

d. Install the client certificate on the browser (Web Client) and place the client certificate in the server
trust keyring file, if ClientCert is selected. The public certificate of the clients Certificate Authority
must be placed in the servers RACF keyring. If the registry is a local OS registry, use the
RACDCERT MAP (or equivalent SAF) command to enable an MVS identity creation using the
client’s certificate.”

9. Close the deployment descriptor editor and, when prompted, click Yes to save the changes.

After securing a Web application, the resulting WAR file contains security information in its deployment
descriptor. The Web module security information is stored in the web.xm1 file. When you work in the Web
deployment descriptor editor, you also can edit other deployment descriptors in the Web project, including
information on bindings and IBM extensions in the ibm-web-bnd.xmi and ibm-web-ext.xmi files.

After using an assembly tool to secure a Web application, you can install the Web application using the
administrative console. During the Web application installation, complete the steps in the|Chapter 10,

[‘Deploying secured applications,” on page 169 article to finish securing the Web application.

Role-based authorization

Use authorization information to determine whether a caller has the necessary privileges to request a
service.

The following figure illustrates the process used during authorization. Web resource access from a Web
client is handled by a Web collaborator. The Enterprise JavaBeans (EJB) resource access from a Java
client (can be enterprise beans or a servlet) is handled by an EJB Collaborator. The EJB collaborator and
the Web collaborator extract the client credentials from the object request broker (ORB) current object.
The client credentials are set during the authentication process as received credentials in the ORB
Current. The resource and the received credentials are presented to WSAccessManager to check whether
access is permitted to the client for accessing the requested resource.

The following figure illustrates the process during authorization. Web resource access from a Web client is
handled by a Web collaborator. The EJB resource access from a Java client (can be enterprise beans or a
servlet) is handled by an EJB Collaborator. The resource and the received credentials are presented to
WSAccessManager to check whether access is permitted to the client to access the requested resource.

The access manager module contains two main modules:

* Resource permission module helps determine the required roles for a given resource. It uses a resource
to roles mapping table that is built by the security run time during application startup. To build the
resource-to-role mapping table, the security run time reads the deployment descriptor of the enterprise
beans or the Web module (ejb-jar.xml or web.xml)

» Authorization table module consults a role to user or group table to determine whether a client is
granted one of the required roles. The role to user or group mapping table, also known as the
authorization table, is created by the security run time during application startup.

— To build the authorization table, the security run time reads the application binding file
(ibm-application-bnd.xmi file) or accesses the EJBROLE profiles using the Security Access Facility
(such as RACF).

Chapter 9. Assembling secured applications 161

Authentication

WebSphere Application Server

CSIV2/SAS, TCPI/IP, .
sl authorization resource | roles
Enterprise beans data (O IELECLT
EJB collaborator (2) module
resource access
1 (2) T (3)\4 resource resource
M received resource and (4)/7 ROIIISSON
credentials credentials /
ORB WebSphere Aﬁs
current object Access .
Manager \rolis, credentials
T resource and \
(2) credentials \
received (3) (5) authorization /
HTTP or HTTPS | Credentials / True/False table role ;rsoir;s
\
Web client |—— Web (2/
(1) collaborator authorization
B data
Web resource access

Use authorization information to determine whether a caller has the necessary privilege to request a
service. You can store authorization information many ways. For example, with each resource, you can
store an access-control list, which contains a list of users and user privileges. Another way to store the
information is to associate a list of resources and the corresponding privileges with each user. This list is
called a capability list.

WebSphere Application Server uses the Java 2 Enterprise Edition (J2EE) authorization model. In this

model, authorization information is organized as follows:

* During the assembly of an application, permission to invoke methods is granted to one or more roles. A
role is a set of permissions; for example, in a banking application, roles can include teller, supervisor,
clerk, and other industry-related positions. The teller role is associated with permissions to run methods
related to managing the money in an account, such as the withdraw and deposit methods. The teller
role is not granted permission to close accounts; this permission is given to the supervisor role. The
application assembler defines a list of method permissions for each role; this list is stored in the
deployment descriptor for the application.

There are two special subjects that are not defined by the J2EE model, but are worth understanding:
AllAuthenticatedUsers and Everyone.

Attention: These special subjects are not available if you choose System Authorization Facility (SAF) as
your authorization mechanism.

A special subject is a product-defined entity independent of the user registry. It is used to generically

represent a class of users or groups in the registry.

» AllAuthenticatedUsers is a special subject that permits all authenticated users to access protected
methods. As long as the user can authenticate successfully, the user is permitted access to the
protected resource.

» Everyone is a special subject that permits unrestricted access to a protected resource. Users do not
have to authenticate to get access; this special subject provides access to protected methods as if the
resources are unprotected.

162 1BM WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

However, there are restrictions, depending what environment you are working in. For example, when
utilizing SAF, checks are always against the SAF database. If authentication has not been done before
an access check against a given role, a default SAF identity is used for the check. Unless a valid
default user ID has been configured in the com.ibm.SAF.authorization property, access is not granted.

Note: When SAF is used, this function is simulated by the definition of the unauthenticated user ID in
RACF with RESTRICTED property. If an EJBROLE profile is created with Universal Access (UACC)
of READ, all authenticated users have access except the unauthenticated user ID.

During the deployment of an application, real users or groups of users are assigned to the roles. When a
user is assigned to a role, the user gets all the method permissions that are granted to that role.

The system deployer (or administrator) works with the roles, which represent semantic groupings of the
methods.

Users can be assigned to more than one role; the permissions granted to the user are the union of the
permissions granted to each role. Additionally, if the authentication mechanism supports the grouping of
users, these groups can be assigned to roles. Assigning a group to a role has the same effect as
assigning each individual user to the role.

A best practice during deployment is to assign groups, rather than individual users to roles. If you are
using bindings rather than SAF EJBROLES for authorization and you need to change the binding value,
you must restart the server to pick up new values. If you are using SAF EJBROLES, the application server
automatically detects the changes.

At run time, WebSphere Application Server authorizes incoming requests based on the user’s identification
information and the mapping of the user to roles. If the user belongs to any role that has permission to
execute a method, the request is authorized. If the user does not belong to any role that has permission,
the request is denied.

The J2EE approach represents a declarative approach to authorization, but it also recognizes that you
cannot deal with all situations declaratively. For these situations, methods are provided for determining
user and role information programmatically. For Enterprise JavaBeans, the following two methods are
supported by WebSphere Application Server:

« getCallerPrincipal: This method retrieves the user identification information.

» isCallerinRole: This method checks the user identification information against a specific role.

For servlets, the following methods are supported by WebSphere Application Server:
» getRemoteUser

» isUserlnRole

» getUserPrincipal

These methods correspond in purpose to the enterprise bean methods.

For more information on the J2EE security authorization model see the following Web site:
Ihttp://java.sun.com|

Naming roles

The Java 2 Platform, Enterprise Edition (J2EE) role-based authorization concept has been extended to
protect the WebSphere CosNaming service.

CosNaming security offers increased granularity of security control over CosNaming functions. CosNaming
functions are available on CosNaming servers such as the WebSphere Application Server. They affect the

Chapter 9. Assembling secured applications 163

http://java.sun.com

content of the WebSphere Name Space. There are generally two ways in which client programs will result
in CosNaming calls. The first is through the JNDI interfaces. The second is CORBA clients invoking
CosNaming methods directly.

Four security roles are introduced: CosNamingRead, CosNamingWrite, CosNamingCreate, and

CosNamingDelete. However, the roles now have authority level from low to high as follows:

+ CosNamingRead. Users who have been assigned the CosNamingRead role will be allowed to do
queries of the WebSphere Name Space, such as through the JNDI "lookup” method. The
special-subject Everyone is the default policy for this role.

» CosNamingWrite. Users who have been assigned the CosNamingWrite role will be allowed to do write
operations such as JNDI "bind”, "rebind”, or "unbind”, plus CosNamingRead operations. The
special-subject AllAuthenticated is the default policy for this role.

» CosNamingCreate. Users who have been assigned the CosNamingCreate role will be allowed to
create new objects in the Name Space through such operations as JNDI "createSubcontext”, plus
CosNamingWrite operations. The special-subject AllAuthenticated is the default policy for this role.

+ CosNamingDelete. And finally users who have been assigned CosNamingDelete role will be able to
destroy objects in the Name Space, for example using the JNDI "destroySubcontext” method, as well
as CosNamingCreate operations. The special-subject AllAuthenticated is the default policy for this role.

Users, groups, or the special subjects AllAuthenticated and Everyone can be added or removed to or from
the naming roles from the WebSphere Application Server administrative console at anytime. However, you
must restart the server for the changes to take effect. A best practice is to map groups or one of the
special-subjects, rather than specific users, to Naming roles because it is more flexible and easier to
administer in the long run. By mapping a group to an naming role, adding or removing users to or from the
group occurs outside of WebSphere Application Server and does not require a server restart for the
change to take effect.

If a user is assigned a particular naming role and that user is a member of a group that has been
assigned a different naming role, the user will be granted the most permissive access between the role he
was assigned and the role his group was assigned. For example, assume that user MyUser has been
assigned the CosNamingRead role. Also, assume that group MyGroup has been assigned the
CosNamingCreate role. If MyUser is a member of MyGroup, MyUser will be assigned the
CosNamingCreate role because he is a member of MyGroup. If MyUser were not a member of MyGroup,
he would be assigned the CosNamingRead role.

The CosNaming authorization policy is only enforced when global security is enabled. When global
security is enabled, attempts to do CosNaming operations without the proper role assignment will result in
a org.omg.CORBA.NO_PERMISSION exception from the CosNaming Server.

In WebSphere Application Server version 4.0.2, each CosNaming function is assigned to only one role.
Therefore, users who have been assigned CosNamingCreate role will not be able to query the Name
Space unless they have also been assigned CosNamingRead. In most cases a creator would need to be
assigned three roles: CosNamingRead, CosNamingWrite, and CosNamingCreate. This has been
changed in the release. The CosNamingRead and CosNamingWrite roles assignment for the creator
example in above have been included in CosNamingCreate role. In most of the cases, WebSphere
Application Server administrators do not have to change the roles assignment for every user or group
when they move to this release from previous one.

Although the ability exist to greatly restrict access to the Name space by changing the default policy, doing
so may result in unexpected org.omg.CORBA.NO_PERMISSION exceptions at run time. Typically, J2EE
applications access the Name space and the identity they use is that of the user that authenticated to
WebSphere Application Server when they access the J2EE application. Unless the J2EE application
provider clearly communicates the expected Naming roles, care should be taken when changing the
default naming authorization policy.

164 BM™m WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

Adding users and groups to roles using an assembly tool

Before you perform this task, you should have already completed the steps in [‘Securing Web applications|
[using an assembly tool” on page 159 and|“Securing enterprise bean applications” on page 156 where you
created new roles and assigned those roles to EJB and Web resources. Complete these steps during
application installation. This is because the environment (user registry) under which the application is
running is not known until deployment.

If you already know the environment in which the application is running and the user registry that is used,
then you can use an assembly tool to assign users and groups to roles. It is recommended that you use
the administrative console to assign users and groups to roles.

The following information applies to authorization using WebSphere Application Server bindings. If you
create WebSphere Application Server bindings but specify Service Access Facility (SAF) authorization, the
WebSphere Application Server bindings are ignored. If SAF authorization is to be used, you must create a
SAF EJBROLE profile for each Java 2 Platform, Enterprise Edition (J2EE) role in your application, and
permit users and groups to that role. Refer to [‘System Authorization Facility for role-based authorization]
_on page 57

for reference.

1. In the Project Explorer view of an assembly tool, right-click an enterprise application project (EAR file)
and click Open With > Deployment Descriptor Editor. An application deployment descriptor editor
opens on the EAR file. To access information about the editor, press F1 and click Application
deployment descriptor editor.

2. Click the Security tab and, under the main pane, click Add.

3. In the Add Security Role wizard, name and describe the security role. Then click Finish.

4. Under WebSphere Bindings, select the user or group extension properties for the security role.
Available values include: Everyone, All authenticated users, and Users/Groups.

5. If you selected Users/Groups, click Add beside the Users or Groups panes. In the wizard that opens,
specify a user or group name and click Finish. Repeat this step until you have added all users and
groups to which the security role applies.

6. Close the application deployment descriptor editor and, when prompted, click Yes to save the changes.

The ibm-application-bnd.xmi file in the application contains the users and groups to roles mapping table
(authorization table).

After securing an application, [install the application| using the administrative console.
Related concepts

[‘Web component security” on page 158|

A Web module consists of servlets, JavaServer Pages (JSP) files, server-side utility classes, static Web
content (HTML, images, sound files, cascading style sheets (CSS)), and client-side classes (applets).
You can use development tools such as Rational Application Developer to develop a Web module and
enforce security at the method level of each Web resource.

[‘Role-based authorization” on page 161|
Use authorization information to determine whether a caller has the necessary privileges to request a
service.

|“System Authorization Facility for role-based authorization” on page 57|
Related tasks

[Assembling applications|

Application assembly consists of creating Java 2 Platform, Enterprise Edition (J2EE) modules that can
be deployed onto application servers. The modules are created from code artifacts such as Web
application archives (WAR files), resource adapter archives (RAR files), enterprise bean (EJB) JAR

Chapter 9. Assembling secured applications 165

files, and application client archives (JAR files). This packaging and configuring of code artifacts into
enterprise application modules (EAR files) or standalone Web modules is necessary for deploying the
modules onto an application server.

Related reference

|“Security: Resources for learning” on page 25|

Mapping users to RunAs roles using an assembly tool

RunAs roles are used for delegation. A servlet or enterprise bean component uses the RunAs role to
invoke another enterprise bean by impersonating that role.

Before you perform this task:

» Secure the Web application and enterprise bean applications, including creating and assigning new
roles to enterprise bean and Web resources. For more information, see [‘Securing Web applications|
[using an assembly tool” on page 159|and [‘Securing enterprise bean applications” on page 156.]

» Assign users and groups to roles. For more information, see [‘Adding users and groups to roles using an|
[assembly tool” on page 165.] Complete this step during the installation of the application. The
environment or user registry under which the application is going to run is not known until deployment. If
you already know the environment in which the application is going to run and you know the user
registry, then you can use an assembly tool to assign users to RunAs roles.

You must define RunAs roles when a servlet or an enterprise bean in an application is configured with
RunAs settings.

1. In the Project Explorer view of an assembly tool, right-click an enterprise application project (EAR file)
and click Open With > Deployment Descriptor Editor. An application deployment descriptor editor
opens on the EAR file. To access information about the editor, press F1 and click Application
deployment descriptor editor.

On the Security tab, under Security Role Run As Bindings, click Add.

Click Add under RunAs Bindings.

In the Security Role wizard, select one or more roles and click Finish.

Repeat steps 3 through 5 for all the RunAs roles in the application.

Close the application deployment descriptor editor and, when prompted, click Yes to save the changes.

2B

The ibm-application-bnd.xmi file in the application contains the user to RunAs role mapping table.

After securing an application, you can |install the application| using the administrative console. You can

change the RunAs role mappings of an installed application. For more information, see [‘RunAs roles to

[users mapping” on page 177.|
Related concepts

[‘Enterprise bean component security” on page 156|

An EJB module consists of one or more beans. You can use development tools such as Rational
Application Developer to develop an EJB module. You can also enforce security at the EJB method
level.

|“Role—based authorization” on page 161|
Use authorization information to determine whether a caller has the necessary privileges to request a
service.

[‘Delegations” on page 173

Delegation is a process security identity propagation from a caller to a called object. As per the J2EE
specification, a servlet and enterprise beans can propagate either the client (remote user) identity when
invoking enterprise beans or they can use another specified identity as indicated in the corresponding
deployment descriptor.

Related reference

166 1BM™ WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

[‘RunAs roles to users mapping” on page 177|

Use this page to map RunAs roles to users. You can change the RunAs settings after an application
deploys.

[‘Security: Resources for learning” on page 25|

Chapter 9. Assembling secured applications 167

168 1BM WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

Chapter 10. Deploying secured applications

Before you perform this task, verify that you have already designed, developed and assembled an
application with all the relevant security configurations. For more information on these tasks refer to
Chapter 8, “Developing secured applications,” on page 87| and|Chapter 9, “Assembling secured|
applications,” on page 155. In this context, deploying and installing an application are considered the same
task.

Deploying applications that have security constraints (secured applications) is not much different than
deploying applications that don’t contain any security constraints. The only difference is that you might
need to assign users and groups to roles for a secured application, which requires that you have the
correct active registry. To deploy a newly secured application click Applications > Install New
Application in the navigation panel on the left and follow the prompts. If you are installing a secured
application, roles would have been defined in the application. If delegation was required in the application,
RunAs roles also are defined.

One of the steps required to deploy secured applications is to assign users and groups to roles defined in
the application. This task is completed as part of the step titled Map security roles to users and groups.
This assignment might have already been done through an assembly tool. In that case you can confirm
the mapping by going through this step. You can add new users and groups and modify existing
information during this step.

If the applications support delegation, then a RunAs role is already defined in the application. If the
delegation policy is set to Specified Identity (during assembly) the intermediary invokes a method using
an identity setup during deployment. Use the RunAs role to specify the identity under which the
downstream invocations are made. For example, if the RunAs role is assigned user "bob” and the client
"alice” is invoking a servlet, with delegation set, which in turn calls the enterprise beans, then the method
on the enterprise beans is invoked with "bob” as the identity. As part of the deployment process one of the
steps is to assign or modify users to the RunAs roles. This step is titled "Map RunAs roles to users”. Use
this step to assign new users or modify existing users to RunAs roles when the delegation policy is set to
Specified Identity.

These steps are common for both installing an application and modifying an existing application. If the
application contains roles, you see the "Map security roles to users and groups” link during application
installation and also during managing applications, as a link in the Additional properties section.

1. Click Applications > Install New Application. Complete the steps (non-security related) that are
required prior to the step entitled Map security roles to users and groups.

Note: Depending upon the configuration, System Authorization Facility (SAF) configuration will take
precedence.

2. Map users to RunAs roles if RunAs roles exist in the application. For more information, see
[users to RunAs roles” on page 175.|

3. Click Correct use of System Identity to specify RunAs roles if needed. Complete this action if the
application has delegation set to use System Identity (applicable to enterprise beans only). System
Identity uses the WebSphere Application Server security server ID to invoke downstream methods and
should be used with caution as this ID has more privileges than other identities in terms of accessing
WebSphere Application Server internal methods. This task is provided to make sure that the deployer
is aware that the methods listed in the panel have System Identity set up for delegation and to correct
them if necessary. If no changes are necessary, skip this task.

4. Complete the remaining (non-security related) steps to finish installing and deploying the application.

Once a secured application is deployed, verify that you can access the resources in the application with
the correct credentials. For example, if your application has a protected Web module, make sure only the
users that you assigned to the roles are able to use the application.

© Copyright IBM Corp. 2005 169

Related concepts

[‘Role-based authorization” on page 161|

Use authorization information to determine whether a caller has the necessary privileges to request a
service.

Related tasks

Chapter 9, “Assembling secured applications,” on page 155|

“Configuring global security” on page 184|

Related reference

|“Security role to user and group selections” on page 171|

Use this page to select users and groups for security roles.

Assigning users and groups to roles

This topic describes how to assign users and groups to roles if you are using WebSphere Application
Server authorization for Java 2 Platform, Enterprise Edition (J2EE) roles. If you are using System
Authorization Facility (SAF) authorization for J2EE roles, this is done independently of the application
deployment process. For more information, refer to [‘System Authorization Facility for role-based

lauthorization” on page 57

Before you perform this task:

» Secure the Web applications and EJB applications where new roles were created and assigned to Web
and Enterprise JavaBeans (EJB) resources.

* Create all the roles in your application.

= Verify that you have properly configured the user registry that contains the users that you want to
assign. It is preferable to have security turned on with the user registry of your choice before beginning
this process.

» Make sure that if you change anything in the security configuration (for example, enable security or
change the user registry) you save the configuration and restart the server before the changes become
effective.

Because the default active user registry is Local OS, it is not necessary, although it is recommended, that
you enable security if you want to use the Local OS user registry to assign users and groups to roles. You
can enable security once the users and groups are assigned in this case. The advantage of enabling
security with the appropriate registry before proceeding with this task is that you can validate the security
setup (which includes checking the user registry configuration) and avoid any problems using the registry.

These steps are common for both installing an application and modifying an existing application. If the
application contains roles, you see the Map security roles to users/groups link during application
installation and also during application management, as a link in the Additional properties section.

1.
2.
3.

170

Access the administrative console by typing http://localhost:9060/ibm/console in a Web browser.
Click Applications > Enterprise applications > application_name.

Under Additional properties, click Map security roles to users/groups. A list of all the roles that
belong to this application displays. If the roles already had users or special subjects (All
Authenticated, Everyone) assigned, they display here.

To assign the special subjects, select either the Everyone or the All Authenticated option for the
appropriate roles.

Click Apply to save any changes and then continue working with user or group roles.

To assign users or groups, select the role. You can select multiple roles at the same time, if the same
users or groups are assigned to all the roles.

Click Look up users or Look up groups.

Get the appropriate users and groups from the registry by completing the limit (number of items) and
the Search String fields and clicking Search. The limit field limits the number of users that are

IBM WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

obtained and displayed from the registry. The pattern is a searchable pattern matching one or more
users and groups. For example, userx lists users like user1, user2. A pattern of asterisk (*) indicates
all users or groups.

Use the limit and the search strings cautiously so as not to overwhelm the registry. When using large
registries (like Lightweight Directory Access Protocol (LDAP)) where information on thousands of
users and groups resides, a search for a large number of users or groups can make the system very
slow and can make it fail. When there are more entries than requests for entries, a message displays
on top of the panel. You can refine your search until you have the required list.

9. Select the users and groups to include as members of these roles from the Available field and click
>> to add them to the roles.

10. To remove existing users and groups, select them from the Selected field and click <<. When
removing existing users and groups from roles use caution if those same roles are used as RunAs
roles.

For example, if user1 is assigned to RunAs role, role1, and you try to remove user1 from role1, the
administrative console validation does not delete the user since a user can only be a part of a RunAs
role if the user is already in a role (User1 should be in role1 in this case) either directly or indirectly
through a group. For more information on the validation checks that are performed between RunAs
role mapping and user and group mapping to roles, see the[“Assigning users to RunAs roles” on|
section.

11. Click OK. If there are any validation problems between the role assignments and the RunAs role
assignments the changes are not committed and an error message indicating the problem displays at
the top of the panel. If there is a problem, make sure that the user in the RunAs role is also a
member of the regular role. If the regular role contains a group which contains the user in the RunAs
role, make sure that the group is assigned to the role using the administrative console. Follow steps 4
and 5. Avoid using the Application Server Toolkit or any other manual process where the complete
name of the group, host name, group name, or distinguished name (DN) is not used.

The user and group information is added to the binding file in the application. This information is used later
for authorization purposes.

This task is required to assign users and groups to roles, which enables the correct users and groups to
access a secured application. If you are installing an application, complete your installation. Once the
application is installed and running you can access your resources according to the user and group
mapping you did in this task. If you are managing applications and have modified the users and groups to
role mapping, make sure you save, stop and restart the application so that the changes become effective.
Try accessing the J2EE resources in the application to verify that the changes are effective.

Related tasks
[‘Configuring global security” on page 184

Security role to user and group selections
Use this page to select users and groups for security roles.

To view this administrative console page, click Application > Install New Application.

While using the Install New Application Wizard, prompts appear to help you map security roles to users.
You also can configure security roles to user mappings of deployed applications. Different roles can have
different security authorizations. Mapping users or groups to a role authorizes those users or groups to
access applications defined by the role. Users, groups and roles are defined when an application is
installed or configured.

You also can select role to user and group mappings while you are deploying applications. After

deployment in Additional Properties, click Map Security roles to users to change user and group
mappings to a role.

Chapter 10. Deploying secured applications 171

Related reference

[Administrative console buttons|
This page describes the button choices that are available on various pages of the administrative
console, depending on which product features you enable.

|Administrative console page features|
This topic provides information about the basic elements of an administrative console page, such as
the various tabs.

[Administrative console preference settings|

Use the preference settings to specify how you want information displayed on an administrative
console page.

[Administrative console scope settings]

Use this page to specify the level at which a resource is visible on the administrative console panel. A
resource can be visible in the administrative console collection table at the cell, node, cluster, or server
scope. By changing the value for Scope you can see other variables that apply to a resource and
might change the contents of the collection table.

[‘RunAs roles to users mapping” on page 177

Use this page to map RunAs roles to users. You can change the RunAs settings after an application
deploys.

Look up users
Specifies whether the server looks up selected users.

Choose the role by selecting the check box beside the role and clicking Lookup users. Complete the
Limit and the Pattern fields. The Limit field contains the number of entries that the search function
returns. The Pattern field contains the search pattern used for searching entries. For example, bob*
searches all users or groups starting with bob. A limit of zero returns all the entries that match the pattern.
Use this value only when a small number of users or groups match this pattern in the registry. If the
registry contains more entries that match the pattern than requested, a message appears in the console to
indicate that there are more entries in the registry. You can either increase the limit or refine the search
pattern to get all the entries.

Look up groups
Specifies whether the server looks up selected groups.

Choose the role by selecting the check box beside the role and clicking Lookup groups. Complete the
Limit and the Pattern fields. The Limit field contains the number of entries that the search function
returns. The Pattern field contains the search pattern used for searching entries. For example, bob*
searches all users or groups starting with bob. A limit of zero returns all the entries that match the pattern.
Use this value only when a small number of users or groups match this pattern in the registry. If the
registry contains more entries that match the pattern than requested, a message appears in the console to
indicate that there are more entries in the registry. You can either increase the limit or refine the search
pattern to get all the entries.

Role
Specifies user roles.

A number of administrative roles are defined to provide degrees of authority needed to perform certain
WebSphere administrative functions from either the Web-based administrative console or the system
management scripting interface. The authorization policy is only enforced when global security is enabled.
The following roles are valid:

Monitor
This role is the least privileged. A user can view the server configuration and its current state.

Configurator
This role has the monitor privilege plus the ability to change the server configuration.

172 BM WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

Operator
This role has the monitor privilege plus the ability to change the run-time state, such as starting or
stopping services

Administrator
This role has the operator privileges plus the configurator privileges.

Range Monitor, Configurator, Operator, Administrator

Everyone
Specifies to authenticate everyone.

Range Monitor, Configurator, Operator, Administrator

All authenticated

Range Monitor, Configurator, Operator, Administrator

Mapped users

Mapped groups

Delegations

Delegation is a process security identity propagation from a caller to a called object. As per the J2EE
specification, a servlet and enterprise beans can propagate either the client (remote user) identity when
invoking enterprise beans or they can use another specified identity as indicated in the corresponding
deployment descriptor.

The IBM extension supports Enterprise JavaBeans (EJB) to propagate to the server ID when invoking
other entity beans. There are three types of delegations:

» Delegate (RunAs) Client Identity

» Delegate (RunAs) Specified Identity

» Delegate (RunAs) System Identity

Delegate (RunAs) Client Identity

Delegate Client Identity

ID=user1 ID=user1

Other
enterprise beans

Enterprise beans
or Servlet

Enterprise beans
or Web Client

RunAs client ID

Delegate (RunAs) Specified Identity

Chapter 10. Deploying secured applications 173

Delegate Specified Identity

ID=user1 ID=user2

Other
enterprise beans

Enterprise beans
or Web client

Enterprise beans
or servlet

Run As specified role

mapped to user2

Delegate (RunAs) System Identity

Delegate System Identity
server1i

ID=user1 ID=user1

Other
enterprise beans

Enterprise beans
or Web servlet

Enterprise beans

RunAs system ID

The EJB specification only supports delegation (RunAs) at the EJB level. But an IBM extension allows EJB
method level RunAs specification. Method EJB method level runAs specification allows one to specify a

different RunAs role for different methods within the same enterprise beans.

The RunAs specification is detailed in the deployment descriptor (the ejb-jar.xml file in the EJB module
and the web.xm1 file in the Web module). The IBM extension to the RunAs specification is included in the

ibm-ejb-jar-ext.xmi file.

There is also an IBM specific binding file for each application that contains a mapping from the RunAs role

to the user. This file is specified in the ibm-application-bnd.xmi file.

These specifications are read by the run time during application startup. The following figure illustrates the

delegation mechanism as implemented in the WebSphere Application Server security model.

174 BM™m WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

Delegation

WebSphere Application Server

Run As
CSIV2/SAS, TCP/IP, . Resource rolos
Delegation pr

SSL ;
Enterlfr:)se bteans /
EJB coflaborator Resource
resource access to Run As role
—> Resource
1) (2)\ (3)/ Enterprise (7)
Resource %un As roles (6) beans
7

Delegate Invoke credentials ORB
module (5) —» current
~
Resource \ Run As rol (6) Servlet ——
(2)/ \ un As roles ™)
(4)
HTTP or HTTPS Credentials RUNAsroleto [Run As| users and

Web client |— Wtz credentials role | passwords
authenticator

@, BN

Web resource access

Delegation Process

There are two tables that help in the delegation process:
» Resource to RunAs role mapping table
* RunAs role to user ID and password mapping table

Use the Resource to RunAs role mapping table to get the role that is used by a servlet or by enterprise
beans to propagate to the next enterprise beans call.

Use the RunAsRole to User ID and Password mapping table to get the user ID that belongs to the RunAs
role and its password.

Delegation is performed after successful authentication and authorization. During this process, the
delegation module consults the Resource to RunAs role mapping table to get the RunAs role (3). The
delegation module consults the RunAs role to user ID and password mapping table to get the user that
belongs to the RunAs role (4). The user ID and password is used to create a new credential using the
authentication module, which is not shown in figure.

Assigning users to RunAs roles

Before you perform this task, complete the following tasks:

» Secure the Web applications and EJB applications where new RunAs roles were created and assigned
to Web and EJB resources.

» Create all the RunAs roles in your application. The user in the RunAs role can only be entered if that
user or a group to which that user belongs is already part of the regular role.

+ Assign users and groups to security roles. Refer to [‘Assigning users and groups to roles” on page 170
for more information.

= Verify that the user registry requirements are met. These requirements are the same as those discussed
in the same as in the case of [‘Assigning users and groups to roles” on page 170| task. For example, if
role1 is a role that is also used as a RunAs role, then the user, user1, can be added to the RunAs role.
The administrative console checks this logic when Apply or OK is clicked. If the check fails, the change
is not made and an error message displays at the top of the panel.

If the special subjects "Everyone” or "All Authenticated” are assigned to a role, then no check takes place
for that role.

Chapter 10. Deploying secured applications 175

The checking is done every time Apply in this panel is clicked or when OK is clicked in the Map security
roles to users/groups panel. The check verifies that all the users in all the RunAs roles do exist directly

or indirectly (through a group) in those roles in the Map security roles to users/groups panel. If a role is
assigned both a user and a group to which that user belongs, then either the user or the group (not both)
can be deleted from Map security roles to users/groups panel.

If the RunAs role user belongs to a group and if that group is assigned to that role, make sure that the
assignment of this group to the role is done through administrative console and not through an assembly
tool or any other method. When using the administrative console, the full name of the group is used (for
example, hostname\groupName in windows systems, and distinguished names (DN) in Lightweight Directory
Access Protocol (LDAP)). During the check, all the groups to which the RunAs role user belongs are
obtained from the registry. Since the list of groups obtained from the registry are the full names of the
groups, the check works correctly. If the short name of a group is entered using an assembly tool (for
example, groupl instead of CN=groupl, o=myCompany.com) then this check fails.

These steps are common to both installing an application and modifying an existing application. If the
application contains RunAs roles, you see the Map RunAs roles to users link during application
installation and also during managing applications as a link in the Additional properties section at the
bottom.

1. Click Applications > Enterprise Applications > application_name.

2. Under Additional properties, click Map RunAs roles to users. A list of all the RunAs roles that belong
to this application displays. If the roles already had users assigned, they display here.

3. To assign a user, select the role. You can select multiple roles at the same time if the same user is
assigned to all the roles.

4. Enter the user's name and password in the designated fields. The user name entered can be either
the short name (preferred) or the full name (as seen when getting users and groups from the registry).

5. Click Apply. The user is authenticated using the active user registry. If authentication is successful, a
check is made to verify that this user or group is mapped to the role in the Map security roles to
users and groups panel. If authentication fails, verify that the user and password are correct and that
the active registry configuration is correct.

6. To remove a user from a RunAs role, select the roles and click Remove.

The RunAs role user is added to the binding file in the application. This file is used for delegation
purposes when accessing J2EE resources. This step is required to assign users to RunAs roles so that
during delegation the appropriate user is used to invoke the EJB methods.

If you are installing the application, complete installation. Once the application is installed and running you
can access your resources according to the RunAS role mapping. Save the configuration.

If you are managing applications and have modified the RunAs roles to users mapping, make sure you
save, stop and restart the application so that the changes become effective. Try accessing your J2EE
resources to verify that the new changes are in effect.

Related tasks
[‘Assigning users and groups to roles” on page 170|

“‘Security role to user and group selections” on page 171|
Use this page to select users and groups for security roles.

EJB 2.1 method protection level settings

Use this page to verify that all unprotected EJB 2.1 methods have the correct level of protection before
you map users to roles.

176 1BM WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

To view this administrative console page, click Applications > Install New Application. While running the
Install New Application Wizard, prompts appear to help you determine that all unprotected EJB 2.1
methods have the correct level of protection.

EJB Module
Specifies the enterprise bean module name.

Data Type: String

Units: EJB module name
Module URI

Specifies the Java archive (JAR) file name.

Data Type: String

Units: JAR file name

Method protection
Specifies the level of protection assigned to the EJB module.

A selected box means to Deny All and that the method is completely protected.

Data Type: Check box
Default: Cleared
Range: Yes or No

RunAs roles to users mapping

Use this page to map RunAs roles to users. You can change the RunAs settings after an application
deploys.

To view this administrative console page, click Applications > Install New Application. While running the
application installation wizard, prompts appear to help you map RunAs roles to users. You can change the
RunAs roles to users mappings for deployed applications by completing the following steps:

1. Click Applications > Enterprise Applications > application_name.
2. Under Additional properties, click Map RunAs roles to users.

The enterprise beans you are installing contain predefined RunAs roles. RunAs roles are used by
enterprise beans that need to run as a particular role for recognition while interacting with another
enterprise bean.

Related reference

[Administrative console buttons|
This page describes the button choices that are available on various pages of the administrative
console, depending on which product features you enable.

|Administrative console page features|

This topic provides information about the basic elements of an administrative console page, such as
the various tabs.

[Administrative console preference settings|

Use the preference settings to specify how you want information displayed on an administrative
console page.

[Administrative console scope settings]
Use this page to specify the level at which a resource is visible on the administrative console panel. A

Chapter 10. Deploying secured applications 177

resource can be visible in the administrative console collection table at the cell, node, cluster, or server
scope. By changing the value for Scope you can see other variables that apply to a resource and
might change the contents of the collection table.

User name
Specifies a user name for the RunAs role user.

This user already maps to the role specified in the Mapping users and groups to roles panel. You can map
the user to its appropriate role by either mapping the user to that role directly or mapping a group that
contains the user to that role.

Data type: String

Password
Specifies the password for the RunAs user.

Data type: String

Confirm password
Specifies the confirmed password of the administrative user.

Data type String

Role
Specifies administrative user roles.

A number of administrative roles have been defined to provide degrees of authority needed to perform
certain WebSphere administrative functions from either the web based administrative console or the
system management scripting interface. The authorization policy is only enforced when global security is
enabled. The following roles are valid:

Monitor
This role is the least privileged. A user can view the server configuration and its current state.

Configurator
This role has the monitor privilege plus the ability to change the server configuration.

Operator
This role has the monitor privilege plus the ability to change the run-time state, such as starting or
stopping services

Administrator
This role has the operator privileges plus the configurator privileges.

Updating and redeploying secured applications

Before you perform this task, secure Web applications, secure EJB applications, and deploy them in
WebSphere Application Server. This section addresses the way to update existing applications.

1. Use the administrative console to modify the existing users and groups mapping to roles. For
information on the required steps, see |“Assigning users and groups to roles” on page 170.|

2. Use the administrative console to modify the users for the RunAs roles. For information on the required
steps, see |“Assigning users to RunAs roles” on page 175|.

3. Complete the changes and save them.
4. Stop and restart the application for the changes to become effective.
5. Use the an assembly tool. For more information, see|Assembling applications]

178 1BM WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

6. Use an assembly tool to modify roles, method permissions, auth-constraints, data-constraints and so
on. For more information, see|Assembling applications]

7. Save the Enterprise Archive (EAR) file, uninstall the old application, deploy the modified application
and start the application to make the changes effective.

The applications are modified and redeployed. This step is required to modify existing secured
applications.

If information about roles is modified make sure you update the user and group information using the
administrative console. Once the secured applications are modified and either restarted or redeployed,
make sure that the changes are effective by accessing the resources in the application.

Related tasks

“Assigning users and groups to roles” on page 170|
“Assigning users to RunAs roles” on page 175|
Related reference

[“Security: Resources for learning” on page 25|

Chapter 10. Deploying secured applications 179

180 BM™ WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

Chapter 11. Testing security

After configuring global security and restarting all of your servers in a secure mode, it is best to validate
that security is properly enabled.

There are basic tests that show that the fundamental security components are working properly. Complete

the following steps to validate your security configuration:

1. Test the Web-based form login by bringing up the administrative console:
http://hostname.domain:9060/ibm/console. A form-based login page appears. If a login page does not
appear, try accessing the administrative console by typing https://myhost.domain:9043/ibm/console.

2. Thoroughly test all of your applications in secure mode.

3. After enabling security, verify that your system comes up in secure mode.

4. If all tests pass, proceed with more rigorous testing of your secured applications. If you have any
problems, review the output logs in the WebSphere Application Server /1ogs/nodeagent or WebSphere
Application Server /1ogs/server_name directories, respectively. Then check the [security troubleshooting|
article to see if it references any common problems.

Note: Testing synchronizing of the node agent is a good test. To do so, make a small change to the
configuration and save and synchronize those changes. If there are no errors, proceed.

The results of these tests, if successful, indicate that security is fully enabled and working properly.
Related concepts

[‘Web component security” on page 158|

A Web module consists of servlets, JavaServer Pages (JSP) files, server-side utility classes, static Web
content (HTML, images, sound files, cascading style sheets (CSS)), and client-side classes (applets).
You can use development tools such as Rational Application Developer to develop a Web module and
enforce security at the method level of each Web resource.

[‘Enterprise bean component security” on page 156

An EJB module consists of one or more beans. You can use development tools such as Rational
Application Developer to develop an EJB module. You can also enforce security at the EJB method
level.

[‘Administrative console and naming service authorization” on page 213|

WebSphere Application Server extends the Java 2 Platform, Enterprise Edition (J2EE) security
role-based access control to protect the product administrative and naming subsystems.

Related reference

[‘Security: Resources for learning” on page 25|

© Copyright IBM Corp. 2005 181

182 1BM WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

Chapter 12. Administering security

Administering secure applications requires [access to the WebSphere Application Server administrative|

Log in with a valid user ID and password that have administrative access. To administer security,

complete these steps:

1.
2.

10.

11.

12.

13.

14.

15.

Configure global security. For more information, see|‘Configuring global security” on page 184
Assign users to administrator roles. For more information, see [‘Assigning users to administrator roles’|
Assign users to naming roles. For more information, see [‘Assigning users to naming roles” on page|
Configure authentication mechanisms. For more information, see [‘Configuring authentication|
[mechanisms” on page 226.|
Configure Lightweight Third Party Authentication. For more information, see |“Configuring Lightweight|
[Third Party Authentication” on page 228
Configure trust association interceptors. For more information, see |“Configuring trust associationl
interceptors” on page 238
Configure single signon. For more information, see r‘Configuring single signon” on page 240.|
Configure user registries. For more information, see |“Configuring user registries” on page 267.|
a. Configure local operating system user registries. For more information, see |“Configuring Iocal
|operating system user registries” on page 271 |
b. Configure Lightweight Directory Access Protocol user registries. For more information, see
r‘Configuring Lightweight Directory Access Protocol user registries” on page 274.|

c. Configure custom user registries. For more information, see [‘Configuring custom user registries’]
_n page 292.

(Optional) Configure z/OS Security Authorization Facility (SAF). For information, refer to:

 SAF authorization:|“Local operating system user registry settings” on page 272 and [‘z/OS System|
[Authorization Facility properties” on page 328|

 User identities: |“|dentity assertion” on page 488|

« System Login Configurations:|[“Updating System Login Configurations to perform a System|
[Authorization Facility identity user mapping” on page 327System Login Configurations
(csec_syslogconfsaf), point to creating

+ EJBROLE profiles: ['System Authorization Facility for role-based authorization” on page 57|

Configure Java Authentication and Authorization Service login. For more information, see [Configuring
[application logins for Java Authentication and Authorization Service” on page 322

Configure an authorization provider. For more information, see|‘Configuring a JACC provider’ on page|
[449] To configure the Tivoli Access Manager Java Authorization Contract for Containers (JACC)
provider, see either [‘Configuring the JACC provider for Tivoli Access Manager using the wsadmin|
utility” on page 460 or [‘Configuring the JACC provider for Tivoli Access Manager using the]
administrative console” on page 462

Configure the Common Secure Interoperability Version 2 and Security Authentication Service
authentication protocols. For more information, see [‘Configuring Common Secure Interoperability|
[Version 2 and Security Authentication Service authentication protocols” on page 491

Configure Secure Sockets Layer. For more information, see [‘Configuring Secure Sockets Layer” on|
page 517.
Configure Java 2 Security Manager. For more information, see [‘Configuring Java 2 security” on page|
541,

Optional: Configure security attribute propagation. For more information, see [‘Security attributel
[propagation” on page 373

Related tasks

© Copyright IBM Corp. 2005 183

[‘Configuring single signon” on page 240|

Configuring global security

It is helpful to understand security from an infrastructure standpoint so that you know the advantages of
different authentication mechanisms, user registries, authentication protocols, and so on. Picking the right
security components to meet your needs is a part of configuring global security. The following sections
help you make these decisions. Read the following articles before continuing with the security
configuration.

* [‘Global security and server security” on page 20

* |Introduction: Security

After you understand the security components, you can proceed to configure global security in WebSphere
Application Server.

Attention: There are some security customization tasks required to enable security on WebSphere
Application Server for z/OS that require updates to the security server (such as Resource Access Control
Facility (RACF)) running on your system. You might need to include your security administrator in this
process.

1. Start the WebSphere Application Server administrative console by typing
http://yourhost.domain:9060/ibm/console after the WebSphere Application Server deployment
manager has been started. If security is currently disabled, log in with any user ID. If security is
currently enabled, log in with a predefined administrative user ID and password.

2. Click Security on the navigation menu. Configure the authentication mechanism, user registry, and so
on. The configuration order is not important. However, select the Enable global security option in the
Global Security panel after you have completed all of these tasks. When you first click Apply or OK
and the Enable global security option is set, a verification occurs to see if the administrative user ID
and password can be authenticated to the configured user registry. If the user registry is not
configured, the validation fails.

3. Configure a user registry. For more information, see [‘Configuring user registries” on page 267.|
Configure a Local OS, Lightweight Directory Access Protocol (LDAP), or custom user registry and then
specify the details about that registry. One of these details common to all user registries is the user ID
used for the server. This ID is a member of the chosen user registry, but also has special privileges in
WebSphere Application Server. The privileges for this ID and the privileges associated with the
administrative role ID are the same. The user ID used for the server can access all protected
administrative methods. When you use the Local OS user registry on WebSphere Application Server
for z/OS, the user ID for the server is not set using the administrative console, but is set through the
STARTED class in z/OS.

4. Configure the authentication mechanism. You can choose either Lightweight Third Party Authentication
(LTPA), Integrated Cryptographic Services Facility (ICSF), or Simple WebSphere Authentication
Mechanism (SWAM). To get details about configuring LTPA, refer to [‘Configuring Lightweight Third|
Party Authentication” on page 228.|To get details about configuring ICSF, refer to [‘Steps for selecting
ICSF as the authentication mechanism” on page 226.| LTPA and ICSF credentials are forwardable to
other machines and, for security reasons, these credentials do expire. This expiration time is
configurable.

Refer to [‘Configuring single signon” on page 240 if you want single signon (SSO) support, which
provides the ability for browsers to visit different product servers without having to authenticate multiple
times. For form-based login, you must configure SSO when using LTPA or ICSF.

5. Configure the authentication protocol for special security requirements for Remote Method Invocation
over the Internet Inter-ORB Protocol (RMI/IIOP) method invocations from Java clients or from server to
server. Choose the Common Secure Interoperability Version 2 (CSIv2) or Secure Authentication
Service (SAS) protocol or the z/OS Secure Authentication Service (z/SAS) protocol on the z/OS
platform.

184 BM WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

The SAS and z/SAS protocols still provide backward compatibility to previous product releases. For
details on configuring CSIv2, SAS, or z/SAS protocols, refer to the [‘Configuring Common Secure]
[Interoperability Version 2 and Security Authentication Service authentication protocols” on page 491|
article.

Attention: In future releases, IBM will no longer ship or support the z/OS Secure Authentication
Service (z/SAS) IIOP security protocol. It is suggested that you use the Common Secure
Interoperability version 2 (CSIv2) protocols.

Verify the SSL repertoires to be used by WebSphere Application Server. The sample customization
jobs generated by the WebSphere Application Server for z/OS customization dialogs generate sample
jobs to create SSL key rings that are usable if RACF is your security server. These jobs create a
unique RACF certificate authority certificate for your installation with a set of server certificates signed
by this certificate authority. The Application Server controller’s started task ID has a SAF key ring that
includes these certificates. (Similarly in a Network Deployment environment, RACF key rings owned by
the deployment manager user ID and the node agent user IDs are created.)

Note: A RACF key ring is uniquely identified by both the key ring name in the repertoire and the MVS
user ID of the server controller process. If different WebSphere Application Server controller
processes have unique MVS user IDs, you must be sure that a RACF key ring and a private
key are generated even if they share the same repertoire.

There are two kinds of configurable SSL repertoires:

* The System SSL repertoire is used for HTTPS and IIOP communication, and are used by the native
transports. If you want to use the administrative console after security is enabled you must define a
System SSL type repertoire for HTTP and select it. You must define a System SSL repertoire and
select if IIOP security requires or supports SSL transport, or if a secure RMI connector is selected
for administrative requests.

* The Java Secure Socket Extension (JSSE) repertoire is for Java-based SSL communications.

Users must configure a System SSL repertoire to use HTTP or IIOP protocols and a JMX connector
must be configured to use SSL. If the SOAP HTTP connector (default) is chosen, a JSSE repertoire
must be selected for the administrative subsystem. In a Network Deployment environment, click
System Administration > Deployment Manager > Administration Services > JMX Connectors >
SOAP Connector > Custom Properties > sslConfig.

A set of SSL repertoires are set up by the z/OS installation dialogs. These dialogs are configured to
refer to SAF key rings and to files that are populated by the customization process when generating
RACF commands.

Repertoire name Type Default use

DefaultSSLSettings JSSE SOAP JMX connector, SOAP client
DefaultHTTPS SSSL Web container HTTP transport
DefaultllOPSSL SSSL z/SAS and CSIV2
RACFJSSESettings SSSL None

RACFJSSESettings JSSE None

No additional action is required if these settings are sufficient for your needs. If your want to create or
modify these settings, you must ensure that the keystores to which they refer are created.

If you do create a new alias for your new keystore and truststore files, change every location that
references the SSL configuration alias. The following list provides these locations:
» Security > Global security. Under Authentication, click Authentication protocol > CSIv2 inbound

transport.

» Security > Global security. Under Authentication, click Authentication protocol > CSlv2

outbound transport.

» Security > Global security. Under Authentication, click Authentication protocol > zSAS

authentication.

Chapter 12. Administering security 185

» Servers > Application servers > server_name. Under Web container settings, click Web
Container. Under Additional properties, click HTTP transports > host_name.

» Servers > Application servers > server_name. Under Security, click Server security. Under
Additional properties, click CSIv2 inbound transport.

« Servers > Application servers > server_name. Under Security, click Server security. Under
Additional properties, click CSIv2 outbound transport.

« Servers > Application servers > server_name. Under Security, click Server security. Under
Additional properties, click zZ/SAS authentication. Select the appropriate SSL configuration from the
SSL settings menu.

7. Click Security > Global security to configure the rest of the security settings and to enable security.

This panel performs a final validation of the security configuration. When you click OK or Apply from
this panel, the security validation routine is performed and any problems are reported at the top of the
page. When you complete all of the fields, click OK or Apply to accept the selected settings. Click
Save (at the top of the panel) to persist these settings out to a file. If you see any informational
messages in red text color, then a problem exists with the security validation. Typically, the message
indicates the problem. So, review your configuration to verify that the user registry settings are
accurate and that the correct user registry is selected. In some cases, the LTPA configuration might not
be fully specified. See the [‘Global security and server security” on page 205 article for detailed
information.

Enable global security
This option enables or disables global security. See the [‘Global security and server security’]
article to learn more about global security. When enabled, security for the entire
product domain is enabled. You can change some security attributes at a server-specific level.

Enforce Java 2 Security
This option enables or disables Java 2 security access control. See [‘Configuring Java 2
[security” on page 541|for details on Java 2 security in WebSphere Application Server.

Use Domain Qualified User IDs
This option determines if user IDs returned by the J2EE APIs such as getUserPrincipal() and
getCallerPrincipal() are qualified within the security domain in which they reside.

Cache Timeout
The field is the timeout value of the WebSphere Application Server authentication and
validation cache. This value is used to determine when to flush a credential from the cache.
Any time that the credential is reused, the cache timeout for that credential is reset to this
value. Currently, no way is available to flush the cache or purge specific users from the cache.

Issue Permission Warning
When you enable this option, a warning is issued during application installation if an
application requires a Java 2 security permission that normally is not granted to an application.
WebSphere Application Server provides support for policy file management. A number of policy
files exist in WebSphere Application Server; some of the policy files are static and some of
them are dynamic. Dynamic policy is a template of permissions for a particular type of
resource. No code base is defined and no related code base is used in the dynamic policy
template. The real code base is dynamically created from the configuration and run-time data.
The filter.policy file contains a list of permissions that an application should not have
according to the J2EE 1.3 specification. For more information on permissions, see the
[security policy files” on page 544| (Dynamic Policy) article.

Active Protocol
This selection is the active authentication protocol for the object request broker (ORB).
RMI/IIOP requests use this protocol to gather security information in a format that both client
and server understands. In step 5, you already might have configured one or both of these
authentication protocols. Select BOTH, if you need to communicate with versions of
WebSphere Application Server prior to Version 5. Select CSI, if you only need to communicate
with WebSphere Application Server Version 5 or Version 6 servers.

Active Authentication Mechanism
This selection determines which authentication mechanism WebSphere Application Server for
z/OS uses. WebSphere Application Server for z/OS Version 6 supports the following

186 1BM™ WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

authentication mechanisms: Simple WebSphere Authentication Mechanism (SWAM) or
Lightweight Third Party Authentication (LTPA), which is the preferred.

Active User Registry
This option indicates the user registry you that chose in step 3. The [‘Configuring user|
[registries” on page 267 article provides the necessary steps to configure the user registry.

Use the Federal Information Processing Standard (FIPS)

This option enables the FIPS-compliant Java cryptography engine.

8. Save the configuration for the deployment manager to use after the WebSphere Application Server is
restarted, if you have selected OK or Apply on the Security > Global security panel, and no
validation problems occurred.

[‘Enabling global security’| differs from a stand-alone base application server. In the Network

Deployment environment, the configuration is stored temporarily in the deployment manager until it is

synchronized with all of the node agents. To save the configuration, click Save in the menu bar at the

top of the panel.

Verify that all of the node agents are up and running in the domain. It is recommended that you stop

all application servers during this process. If any of the node agents are down, run a manual file

synchronization utility from the node agent machine to synchronize the security configuration from the
deployment manager. Otherwise, the malfunctioning node agent does not communicate with the
deployment manager after security is enabled on the deployment manager.

Related concepts

[Java 2 security policy files” on page 544

The Java 2 Platform, Enterprise Edition (J2EE) Version 1.3 specification has a well-defined
programming model of responsibilities between the container providers and the application code. Using
Java 2 security manager to help enforce this programming model is recommended. Certain operations
are not supported in the application code because such operations interfere with the behavior and
operation of the containers. The Java 2 security manager is used in the product to enforce
responsibilities of the container and the application code.

Related tasks

[‘Steps for selecting ICSF as the authentication mechanism” on page 226|

[‘Configuring user registries” on page 267|

[‘Configuring Lightweight Third Party Authentication” on page 228

Related reference

Java 2 security]

[‘Global security settings” on page 189

Use this page to configure security. When you enable security, you are enabling security settings on a
global level.

[‘Server security settings” on page 209|

Use this page to configure server security and override the global security settings. If you need to
revert to the global security defaults, deselect the appropriate check box in the administrative console.

[‘Server-level security settings” on page 210
Use this page to enable server level security and specify other server level security configurations.

Enabling global security

You can decide whether to enable IBM WebSphere Application Server security. You must enable global
security for all other security settings to function.

Note: WebSphere Application Server uses cryptography to protect sensitive data and ensure
confidentiality and integrity of communications between WebSphere Application Server and other
components in the network. Cryptography is also used by Web Services security when certain
security constraints have been configured for the Web Services application.

Chapter 12. Administering security 187

1.

WebSphere uses Java Secure Sockets Extension (JSSE) and Java Cryptography Extension (JCE)
libraries in the Software Development Kit (SDK) to perform this cryptography. The SDK provides
strong but limited jurisdiction policy files. Unrestricted policy files provide the ability to perform full
strength cryptography and improve performance.

WebSphere Application Server Version 6 provides a SDK that contains strong, but limited
jurisdiction policy files. You can download the unrestricted policy files for the Windows, Linux,
HP-UX, Solaris, and AIX platforms from the following Web site: [BM developer kit: Security|

. Complete the following steps to download and install the new policy files:
1. Click Java 1.4.2

2. Click IBM SDK Policy files.

The Unrestricted JCE Policy files for SDK 1.4 Web site is displayed.
3. Click Sign in and provide your IBM.com ID and password.
4. Select Unrestricted JCE Policy files for SDK 1.4.2 and click Continue.
5. View the license and click | Agree to continue.
6
7

Click Download Now.

Extract the unlimited jurisdiction policy files that are packaged in the ZIP file. The ZIP file
contains a US_export_policy.jar file and a Tocal policy.jar file.

8. In your WebSphere Application Server installation, go to the $JAVA_HOME/jre/1ib/security
directory and back up your US_export_policy.jar and Tocal policy.jar files.

9. Replace yourUS_export _policy.jar and Tocal_policy.jar files with the two files that you
downloaded from the IBM.com Web site.

Enable global security in WebSphere Application Server. For more information, see [‘Configuring globall
lsecurity” on page 1841t is important to click Security > Global security and select the Enable global
security option and to save the configuration has been saved to the repository. Verify that the
validation that occurs after you click OK in the Security > Global security panel is successful before
continuing. If the validation is not successful and you continue with these steps, you risk the server not
starting. Reconfigure the security settings until validation is successful.

Push a copy of the new configuration to all of the running node agents using the administrative
console. If a node agent fails to get the security-enabled configuration, communication with the
deployment manager fails due to a lack of access (the node agent will not be security enabled). To
force synchronize a specific node, complete the following steps from the administrative console:

a. Go to System administration > Nodes and select the option next to all the nodes (you do not
need to select the deployment manager node).

b. Click Full resynchronize to verify that the file synchronization has occurred. The message might
indicate that the nodes already are synchronized. This message is OK. When synchronization is
initiated, verify that the Synchronized status displays for all nodes.

Stop the deployment manager. Manually restart the deployment manager from the command line or

service. To stop the deployment manager, complete the following step:

a. Go to System administration > Deployment manager and click Stop. This action logs you out of
the administrative console and stops the deployment manager process.

Restart the deployment manager process. To restart the deployment manager process, locate the

install_root/bin directory and type the following code:

START dmgr_proc_name ,JOBNAME=server_short_name,
ENV=cell_short_name.node_short_name.server_short_name

Note: You must enter the previous command on a single line. It is split here for display purposes.

After the deployment manager initialization is complete, go back into the administrative console to
complete this task. Remember that security now is enabled in only the deployment manager. If you
enabled single signon (SSO), specify the fully qualified domain name of your Web address, for

188 BM™ WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

http://www.ibm.com/developerworks/java/jdk/security/index.html
http://www.ibm.com/developerworks/java/jdk/security/index.html

example, http://myhost.domain:9060/ibm/console. When you are prompted for a user ID and
password, type the one that you entered as the administrator ID in the configured user registry.

5. If the deployment manager does not start after enabling security, disable security using a script and
restart. Disable security by issuing the following command from the DeploymentManager/bin directory:
/wsadmin.sh -conntype NONE. At the prompt enter securityoff.

6. Restart all node agents to make them security enabled. You must have restarted the deployment
manager in a previous step before completing this step. If the node agent is security-enabled before
the deployment manager is security-enabled, then the deployment manager cannot query the node
agent for status or give the node agent commands. To stop all node agents, complete the following
steps:

a. Go to System administration > Node agents and select the option beside all node agents. Click
Restart. A message similar to the following example is displayed at the top of the panel: The node
agent on node NODE NAME was restarted successfully.

b. Alternatively, if you previously did not stop your application servers, restart all of the servers within
any given node by clicking System administration > Node agents and by clicking the node
agents where you want to restart all the servers. Then, click Restart all Servers on Node. This
action restarts the node agent and any started application servers.

7. If any node agent fails to restart, perform a manual resynchronization of the configuration. This step
consists of going to the physical node and running the client syncNode command. This client logs into
the deployment manager and copies all of the configuration files to the node agent. This action
ensures that the configuration is security-enabled. To resynchronize, complete the following steps:

a. If the node agent is started, but is not communicating with the deployment manager, stop the node
agent by issuing a stopServer

Related concepts

[‘Global security and server security” on page 205|

The term global security refers to the security configuration that is effective for the entire security

domain. A security domain consists of all the servers configured with the same user registry realm

name. On the z/OS platform, the term global security refers to the security configuration that is

effective for the WebSphere Application Server cell.

[‘Java 2 security policy files” on page 544

The Java 2 Platform, Enterprise Edition (J2EE) Version 1.3 specification has a well-defined

programming model of responsibilities between the container providers and the application code. Using

Java 2 security manager to help enforce this programming model is recommended. Certain operations

are not supported in the application code because such operations interfere with the behavior and

operation of the containers. The Java 2 security manager is used in the product to enforce

responsibilities of the container and the application code.

Related tasks

[‘Configuring user registries” on page 267|

[‘Configuring Lightweight Third Party Authentication” on page 228
Related reference

Global security settings
Use this page to configure security. When you enable security, you are enabling security settings on a
global level.

To view this administrative console page, click Security > Global security.

If you are configuring security for the first time, complete the steps in the "Configuring server security”
article in the documentation to avoid problems. When security is configured, validate any changes to the
registry or authentication mechanism panels. Click Apply to validate the user registry settings. An attempt
is made to authenticate the server ID to the configured user registry. Validating the user registry settings
after enabling global security can avoid problems when you restart the server for the first time.

Chapter 12. Administering security 189

Enable global security:
Specifies whether to enable global security for this WebSphere Application Server domain.

This flag is commonly referred to as the global security flag in WebSphere Application Server information.
When enabling security, set the authentication mechanism configuration and specify a valid user ID and
password in the selected user registry configuration.

If you have problems such as the server not starting after enabling security within the security domain,
then you should resynchronize all of the files from the cell to this node. To resynchronize files, run the
following command from the node: syncNode -username your userid -password your password. This
command connects to the deployment manager and resynchronize all of the files.

If your server does not restart after you enable global security, you can disable security. Go to your
$install_root/bin directory and run the wsadmin -conntype NONE command. At the wsadmin> prompt,
enter securityoff and then type exit to return to a command prompt. Restart the server with security
disabled to check any incorrect settings through the administrative console.

Local OS user registry users: When you select Local OS as the active local operating system user
registry, you do not need to supply a password in the user registry configuration.

Default: Disable

Enforce Java 2 Security:

Specifies whether to enable or disable Java 2 security permission checking. By default, Java 2 security is
disabled. However, enabling global security automatically enables Java 2 security. You can choose to
disable Java 2 security, even when global security is enabled.

When the Enforce Java 2 security option is enabled and if an application requires more Java 2 security
permissions than are granted in the default policy, then the application might fail to run properly until the
required permissions are granted in either the app.policy file or the was.policy file of the application.
AccessControl exceptions are generated by applications that do have all the required permissions. Consult
the WebSphere Application Server documentation and review the Java 2 Security and Dynamic Policy
sections if you are unfamiliar with Java 2 security.

Default: Disabled

Enforce fine-grained JCA security:

Enable this option to restrict application access to sensitive Java Connector Architecture (JCA) mapping
authentication data.

Consider enabling this option when both of the following conditions are true:
» Java 2 Security is enforced.

» The application code is granted the accessRuntimeClasses WebSphereRuntimePermission in the
was.policy file found within the application enterprise archive (EAR) file. For example, the application
code is granted the permission when the following line is found in your was.policy file:

permission com.ibm.websphere.security.WebSphereRuntimePermission "accessRuntimeClasses”;
The Enforce fine-grained JCA security option adds fine-grained Java 2 Security permission checking to

the default principal mapping of the WSPrincipalMappingLoginModule implementation. You must grant
explicit permission to Java 2 Platform, Enterprise Edition (J2EE) applications that use the

190 BM™ WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

WSPrincipalMappingLoginModule implementation directly in the Java Authentication and Authorization
Service (JAAS) login when Java 2 Security and the Enforce fine-grained JCA security option is enabled.

Default: Disabled

Use domain-qualified user IDs:
Specifies that user names returned by methods are qualified with the security domain in which they reside.

This field enables or disables qualifying user names with the security domain ID.

Default: Disabled

Cache timeout:
Specifies the timeout value in seconds for security cache. This value is a relative timeout.

If WebSphere Application Server security is enabled, the security cache timeout can influence
performance. The timeout setting specifies how often to refresh the security-related caches. When the
cache timeout expires, all cached information becomes invalid.

The default security cache timeout value is 10 minutes. If you have a small number of users, it should be
set higher than that, or if a large number of users, it should be set lower.

The LTPA timeout value should not be set lower than the security cache timeout. It is also recommended
that the LTPA timeout value should be set higher than the orb request timeout value. However, there is no
relation between the security cache timeout value and the orb request timeout value.

Data type: Integer

Units: Seconds

Default: 600

Range: Greater than 30 seconds

Issue permission warning:

Specifies that during application deployment and application start, the security run time issues a warning if
applications are granted any custom permissions. Custom permissions are permissions defined by the
user applications, not Java API permissions. Java API permissions are permissions in package java.* and
javax.=*.

WebSphere Application Server provides support for policy file management. A number of policy files are
available in this product, some of them are static and some of them are dynamic. Dynamic policy is a
template of permissions for a particular type of resource. There is no code base defined or relative code
base used in the dynamic policy template. The real code base is dynamically created from the
configuration and run-time data. The filter.policy file contains a list of permissions that an application
should not have according to the J2EE 1.3 specification. For more information on permissions, see the
"Java 2 security policy files” article in the documentation.

Default: Disabled

Active protocol:

Specifies the active authentication protocol for Remote Method Invocation over the Internet Inter-ORB
Protocol (RMI IIOP) requests when security is enabled.

Chapter 12. Administering security 191

Prior to version 5.x, the z/OS Security Authentication Service (z/SAS) protocol on z/OS was the only
available protocol.

An Object Management Group (OMG) protocol called Common Secure Interoperability Version 2 (CSIv2)
supports increased vendor interoperability and additional features. If all of the servers in your security
domain are Version 5.x and later servers, specify CSI as your protocol.

If some servers are version 4.x servers, specify CSI and zSAS.

Default: BOTH
Range:
Range: CSl and zSAS, CSI

Active authentication mechanism:
Specifies the active authentication mechanism when security is enabled.

In WebSphere Application Server Network Deployment, Version 6.0.x, the active authentication mechanism
is not configurable. Also, this version of the product only supports LTPA authentication.

WebSphere Application Server for z/OS, Version 5.x and later supports the following authentication
mechanisms: Simple WebSphere Authentication Mechanism (SWAM), Lightweight Third Party
Authentication (LTPA), and Integrated Cryptographic Services Facility (ICSF). Only ICSF and LTPA are
configurable on WebSphere Application Server for z/OS, Version 5.x and later. SWAM is not configurable.

Default:

Default: LTPA (WebSphere Application Server Network
Deployment)

Range:

Default: SWAM

Range: SWAM, LTPA, ICSF

Active User Registry:
Specifies the active user registry, when security is enabled.

You can configure settings for one of the following user registries:
* Local OS

Specify this setting if you want your configured Resource Access Control Facility (RACF) (or Security
Authorization Facility (SAF)-compliant) security server to be used as the WebSphere Application Server
user registry.

* LDAP user registry

The LDAP user registry settings are used when users and groups reside in an external LDAP directory.
When security is enabled and any of these properties change, go to the Global Security panel and click
Apply or OK to validate the changes.

» Custom user registry

Default: Local OS (single, stand-alone server or sysplex and root
administrator only)

Range: Local OS (single, stand-alone server or sysplex and root
administrator only), LDAP user registry, Custom user
registry

192 BM WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

Use the Federal Information Processing Standard (FIPS):

Enables the Federal Information Processing Standard (FIPS)-compliant Java cryptography engine.

» Does not affect the Secure Sockets Layer cryptography that is performed by WebSphere Application
Server for z/OS System Secure Sockets Layer (SSSL).

» Does not change the JSSE provider if this cell includes any Application Server versions before
WebSphere Application Server for z/OS Version 6.0.x.

When you select the Use the Federal Information Processing Standard (FIPS) option, the Lightweight
Third Party Authentication (LTPA) implementation uses IBMJCEFIPS. IBMJCEFIPS supports the Federal
Information Processing Standard (FIPS)-approved cryptographic algorithms for DES, Triple DES, and AES.
Although the LTPA keys are backwards compatible with prior releases of WebSphere Application Server,
the LTPA token is not compatible with prior releases.

WebSphere Application Server provides a FIPS-approved Java Secure Socket Extension (JSSE) provider
called IBMJSSEFIPS. A FIPS-approved JSSE requires the Transport Layer Security (TLS) protocol
because it is not compatible with the Secure Sockets Layer (SSL) protocol.

Default: Disabled

Custom Properties: For an existing configuration, there are a number of profiles that you must modify.
To modify the profiles, go into the administrative console and click Security > Global security. Under
Additional Properties, click Custom properties.

"security.z0S.domainName" value="TESTSYS"

You can modify the following global security custom properties:

* security.z0S.domainType specifies if there is a security domain used to qualify security definitions. In
WebSphere Application Server for z/OS, the values can be specified as none, which indicates that
Service Access Facility (SAF) security definitions are of the global sysplex scope or cellQualified. This
indicates that WebSphere Runtime uses the domain name specified in the property
security.z0S.domainName to qualify SAF security definitions. If the property is not defined, or a value is
not set, none is assumed. For example: "security.z0S.domainType” value="cellQualified".

* security.z0S.domainName is specified if "security.z0S.domainType” value="cellQualified”. The value
for security.z0S.domainName must be an upper case string from 1 to 8 characters in length, which is
used to qualify SAF profiles checked for authorization for the server. If a value is specified here and
cellQualified is selected, the name is also used to identify the application name used in the APPL and
Passticket profiles. If a value for security.z0S.domainName is not specified, the default value is CBS390.

The following profiles are affected by this definition are:
» EJBROLE (if SAF authorization)

+ CBIND

* APPL

* PASSTICKET

The customization dialog sets up appropriate SAF profiles during customization if the security domain is
defined there. Changing the value of the domainType of domainName requires the customer to make
appropriate changes in their SAF profile setup, otherwise runtime errors occur. Refer to
|contro|s” on page 52| for more information on the specific profile updates required for security domainName
related customization and the security domain customization panels.

Chapter 12. Administering security 193

Synchronizing a Java thread identity and an operating system thread
identity

Enterprise JavaBeans (EJBs) support a method-level RunAs role specification that associates a Java 2
Platform, Enterprise Edition (J2EE) role with an EJB method invocation. The EJB method executes using
the authority associated with the designated security role. The authority is mapped to the designated role
using a user identity. Normally, this identity is recognized by Web-based and J2EE run time and is
associated with the current dispatch thread. This identity governs access to only those resources and
those facilities subject to J2EE security. The actual OS thread identity is unaffected by the EJB RunAs role
selection and is typically the identity of the server.

Setting the OS identity thread synchronizes the J2EE role identity and OS thread (SyncToOSThread). This
means that the OS thread identity is associated with the J2EE role identity for the duration of the EJB
method invocation (application assemblers and deployers associate the RunAs identity with the operating
system thread by setting the thread identity to the RunAs identity for specific bean methods). This
association means that the caller or security role identity (rather than the server region identity) is used for
z/OS system service requests such as access to files and database management systems. Note that the
WebSphere Application Server for z/OS J2EE server can be configured to enable or disable this
association (or synchronization). The default setting disables the ability to modify the identity on the
operating system thread, regardless of the OS thread identity to RunAs identity setting in the deployment
descriptor for the installed application. If the application installer does not enable synchronization, any
method that sets the RunAs identity to the operating system thread fails with a no_permission error.

Using the administrative console, you can specify options for thread identity synchronization:

Sync to OS Thread Allowed
Specifies whether an application SynchToOSThread is permitted. When this global security option
is selected (meaning true is specified) the application-specified SyncToOSThread is honored and
subsequently carried out by the EJB and Web containers as indicated by EJB and Web application
SyncToOSThread specifications. The default is false or disabled.

Connection Manager Sync to OS Thread
Specifies whether the connection manager synchronizes the current J2EE principal to the OS
thread when a connection is obtained from a resource reference that specifies
res-auth=container. The default is false or disabled.

You can also select the SyncToOSThread support using a method-level extended deployment descriptor
(XDD) for Enterprise JavaBeans (EJBs). Enable this support using a distinguished environment entry
defined through the EJB or Web application standard deployment descriptor. During assembly or
deployment, bind a value to this variable by specifying:

» True, which specifies that the J2EE principal or identity should be synchronized to the OS thread for all
requests invoked on the EJB or Web application.

* False specifies the J2EE principal application or identity should not be synchronized to the OS thread
for all requests invoked on the EJB or Web application. This value is the default.

When processing a request, the Web container understands what roles, if any, are required to access the
component represented by the input URL. The container validates requestor authentication and that the
authenticated user has been granted permission to the required roles. The Web container makes use of
the same SAF-based user registry and EJB role profiles as the EJB container to perform this validation.
Therefore, you can use the same user registry and role profiles for administering Web applications as you
use for Enterprise Beans and J2EE Services. For setting thread identity, possible active user registries
include:

e Local OS
 LDAP
e Custom

194 BM WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

Application events that modify the thread identity value include:

Initial value when the first method is set
By default, invocations of servlet service methods and EJB business methods implicitly run as
caller (RunAsCaller) unless the Run as field of a policy’s implicitly run as caller (RunAsCaller)
unless the Run as field of a policy’s attribute specifies otherwise. EJB client applications always
run as server (RunAsServer). Note that for Web applications if no security constraints are specified
the application might run with an unauthenticated user ID.

Method delegation changes to the J2EE identity (RunAs Specified)
The connection manager synchronizes the current J2EE identity with the OS thread when
obtaining applications from resources references that have container-managed resource
authorization (res-auth=container). EJB methods marked with SynchToOSThread cause the J2EE
role identity to be synchronized to the OS thread.

WSSubject.doAs()
This setting offers flexibility when associating the Subject with remote calls on a thread without
having to do a WSSubject.doAs() to associate the subject with the remote action.

Thread identity is temporarily reset on the server in the following situations:

JavaServer Pages (JSP) Compilation
Web container JSP compilation modifies the identity of the server if SyncToOSThread is enabled
for the server (security EnableSyncToOSThread=1).

Access of Stateful Backing Store
EJB container stateful session activation changes the identity of the server if SyncToOSThread is
enabled. Always access the EJB stateful session backing store using theidentity of the server.

Web application Reloading
When the Web container reloads the Web application, it changes the server identity if
SyncToOSThread is enabled for Web applications.

Connection Manager Requests

When the resource reference specifies res-auth=application, the thread identity is temporarily set
to the identity of the server.

Note: When running with global security enabled it is recommended that you have Java 2 security
enabled. Exercise caution when enabling this support because it can cause general z/OS system
resources (such as files and sockets) to fall outside the control of the WebSphere Application
Server run time and these system resources management to be accessible to identities established
through J2EE applications.

Related concepts

[‘Security considerations for WebSphere Application Server for z/OS” on page 20

[Connection thread identity]

WebSphere Application Server for z/OS allows you to assign a thread identifier as an owner of a
connection, when you first obtain the connection. The thread identity function only applies to J2EE
Connector Architecture (JCA) resource adapters and Relational Resource Adapter (RRA) wrappered
Java Database Connectivity (JDBC) providers that support the use of thread identity for connection
ownership.

Related tasks

[Steps for selecting SAF Authorization” on page 265|

Related reference

[‘Example: Overriding the RunAs Subject on the Thread” on page 139

To extend the function provided by the Java Authentication and Authorization Service (JAAS)
application programming interfaces (APIs), you can set the RunAs subject (or invocation subject) with a
different valid entry that is used for outbound requests on this execution thread.

Chapter 12. Administering security 195

[‘Supported authentication protocols” on page 491|

[‘Java Authentication and Authorization Service authorization” on page 320
[Security states with thread identity support|

[Introduction: Data access resources|

Considerations for setting the Synch to OS Thread Allowed option
With the Synch to OS Thread Allowed support:

1. The application developer or assembler requests behavior by setting the special application
environment entry env-entry in the deployment descriptor:
com.ibm.websphere.security.SyncToOSThread = true | false.

2. The system administrator grants the request made by the application developer or assembler using an
application server configuration setting.

You can select the Synch to OS Thread Allowed option at development time or at assembly time:

» At development time, use Rational Application Developer to add an environment entry (environment
variable) to the Enterprise JavaBean (EJB) component or Web application module. Important:
Environment entries (environment variables) can be defined on individual EJB components but cannot
be set on individual Web components. A Java 2 Platform, Enterprise Edition (J2EE) standard
deployment descriptor can be defined for each EJB component and for each Web application module.
Note that a Web component is either a servlet or JavaServer Pages (JSP) files. For Web components,
environment entries (environment variables) can only be set on a Web application module. A Web
application module contains servlets and JSP files.

At assembly time, you can add or change environment entries (environment variables) using an
assembly tool. For more information, see[Starting an assembly tooll

Related concepts
[‘When to use application Synch to OS Thread Allowed” on page 201|
“Understanding Java 2 Platform, Enterprise Edition identity and an operating system thread identity” on|

page 202|
[‘Understanding application Synch to OS Thread Allowed” on page 199
[‘When to use Connection Manager RunAs Identity Enabled” on page 201|

“Understanding Connection Manager RunAs Identity Enabled and operating system security” on page|
200

Related tasks

[Starting an assembly tool|

The Application Server Toolkit (AST), Rational Web Developer and Rational Application Developer
(RAD) assembly tools provide a graphical interface for developing code artifacts, assembling the code

artifacts into various archives (modules) and configuring related Java 2 Platform, Enterprise Edition
(J2EE) deployment descriptors.

Related reference

[“‘WebSphere Application Server for z/OS global security options’]

Use this page to determine which global security options to specify for WebSphere Application Server
for z/OS.

WebSphere Application Server for z/OS global security options

Use this page to determine which global security options to specify for WebSphere Application Server for
z/OS.

To view this administrative console page, complete the following steps:
1. Click Security > Global security.

2. Under Additional properties, click Z/OS security options.

196 BM™ WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

You also can view this administrative console page, by completing the following steps:
1. Click Servers > Application servers >server_name.

2. Under Security, click Server security.

3. Under Additional properties, click z/OS security options.

If you are configuring security for the first time, complete the steps in the Configuring global security article

prior to making changes. After security is configured, validate any changes to the user registry or

authentication mechanism panels. Click Apply to validate the user registry settings. An attempt is made to

authenticate the server ID to the configured user registry. Validating the user registry settings after

enabling global security can reduce potential problems when you restart the server for the first time.
Related concepts

“Understanding Java 2 Platform, Enterprise Edition identity and an operating system thread identity” on|
page 202

“Understanding application Synch to OS Thread Allowed” on page 199|

“Understanding Connection Manager RunAs Identity Enabled and operating system security” on pagel
200

[‘When to use application Synch to OS Thread Allowed” on page 201|

[‘When to use Connection Manager RunAs Identity Enabled” on page 201

Related tasks

[Configuring Secure Sockets Layer for the Lightweight Directory Access Protocol client” on page 519
[‘Considerations for setting the Synch to OS Thread Allowed option” on page 196|

Related reference

[Administrative console buttons|

This page describes the button choices that are available on various pages of the administrative
console, depending on which product features you enable.

[Administrative console scope settings|

Use this page to specify the level at which a resource is visible on the administrative console panel. A
resource can be visible in the administrative console collection table at the cell, node, cluster, or server
scope. By changing the value for Scope you can see other variables that apply to a resource and
might change the contents of the collection table.

[Administrative console preference settings|
Use the preference settings to specify how you want information displayed on an administrative
console page.

[‘Global security settings” on page 189

Use this page to configure security. When you enable security, you are enabling security settings on a
global level.

Remote identity:

Specifies the System Authorization Facility (SAF) user ID that is assumed for the Internet Inter-ORB
Protocol (IIOP) unauthenticated clients that make requests of this server from another system.

Specifies whether an application remote identity is permitted.
Local identity:

Specifies the SAF user ID that is assumed for the Internet Inter-ORB Protocol (IIOP) unauthenticated
clients that make requests of this server from the same system.

Specifies whether an application local identity is permitted.

Support the synchronization of the OS thread:

Chapter 12. Administering security 197

Indicates if an operating system thread identity is enabled for synchronization with the Java 2 Platform,
Enterprise Edition (J2EE) identity that is used in the WebSphere Application Server run time if an
application is coded to request this function.

Synchronizing the operating system identity to the J2EE identity causes the operating system identity to
synchronize with the authenticated caller, or delegated RunAs identity in a servlet or Enterprise JavaBeans
(EJB) file. This synchronization or association means that the caller or security role identity, rather than the
server region identity, is used for z/OS system service requests such as access to files.

For this function to be active, the following conditions must all be true:
* The Sync to OS thread allowed value is true.

* A WebSphere application includes within its deployment descriptor an env-entry of
com.ibm.websphere.security.SyncToOSThread set to true.

* The configured registry is local OS.

When these conditions are true, the OS thread identity is initially set to the authenticated caller identity of
a Web or EJB request. The OS thread is modified each time the J2EE identity is modified. The J2EE
identity can be modified either by a RunAs specification on the deployment descriptor or a programmatic
WSSubject.doAs() request.

Note: When a servlet is deployed with no security constraints, the OS thread is set to the value of the
configured unauthenticated identity property in the Local OS registry definition
(com.ibm.security.SAF.unauthenticated).

If the Sync to OS thread allowed value is false, which is the default setting, the ability to modify the
identity on the operating system thread of the deployment descriptor setting in the deployment descriptor
of the installed application is disabled. If the server is not configured to accept enable synchronization, and
the application deployment descriptor, com.ibm.websphere.security.SyncToOSThread, is set to true, a
BBOJ0O080W warning stating that the EJB requests the SyncToOSThread option, but the server is not
enabled for the SyncToOSThread option is issued.

Any J2EE Connector architecture (J2CA) connector that uses the thread identity support must support
thread identity. Customer Information Control System (CICS), Information Management System (IMS), and
DB2 support thread identity. CICS and IMS support thread identity only if the target CICS or IMS is
configured on the same system as the WebSphere Application Server for z/OS. DB2 always supports
thread identity. If a connector does not support thread identity, the user identity that is associated with the
connection is based on the default user identity that is supported by the particular connector.

Data type Boolean
Default Disabled
Range Enabled or Disabled

Enable the connection manager RunAs thread identity.:

Specifies that the connection manager SyncToOSThread method is supported for applications that specify
this option.

When you enable this setting, the method can process a request that modifies the operating system
identity to reflect the Java 2 Platform, Enterprise Edition (J2EE) identity. This function is required to take
advantage of thread identity support. J2EE Connector architecture (J2CA) connectors that access local
resources on a z/OS system can use the thread identity support. A set of J2CA connectors that accesses
local z/OS resources defaults to the J2EE identity of the application if all of the following conditions are
true:

* Resource authorization is set to container-managed (res-auth=container).

* An alias entry is not coded when deploying the application.

198 BM™ WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

* The connection manager Sync to OS thread setting is set to enabled.

Any J2CA connector that uses the thread identity support must support thread identity. Customer
Information Control System (CICS), Information Management System (IMS), and DATABASE 2 (DB2)
support thread identity. CICS and IMS support thread identity only if the target CICS or IMS is configured
on the same system as WebSphere Application Server for z/OS. DB2 always supports thread identity. If a
connector does not support thread identity, the user identity that is associated with the connection is based
on the default user identity that is supported by the particular connector.

Data type Boolean
Default Disabled
Range Enabled or Disabled

Understanding application Synch to OS Thread Allowed

Use application Sync to OS Thread Allowed to synchronize a Java thread identity (or JAAS subject) with
the OS thread identity for the duration of the current Java 2 Platform, Enterprise Edition (J2EE) application
request. If you do not choose this option the OS thread identity value is the same as the servant identity
value. Refer to [‘Synchronizing a Java thread identity and an operating system thread identity” on page 194|
for more information.

Application Sync to OS Thread Allowed requires configuration in both the application and the application
server:

1. The WebSphere Application Server developer must configure the application to declare that it wants to
execute with application Sync to OS Thread

2. The WebSphere Application Server administrator must configure the application server to enable
application Sync to OS Thread Allowed

The J2EE application developer configures the application for individual Enterprise JavaBeans (EJB) or
Web applications by setting a special env-entry in the deployment descriptor
com.ibm.websphere.security.SyncToOSThread = true | false. The default case in which this deployment
descriptor is not specified is equivalent to defining it with a value of false.

When an EJB or Web application that requests Sync to OS Thread Allowed is dispatched, the application
server (at the request of the EJB Container or the Web Container) synchronizes the OS thread identity
associated with the current Java thread identity so the Java thread identity is current on the native thread.
This synchronization is effective as long as the EJB or Web application is running the current request.
When the EJB or Web completes processing, the native thread is restored to its former state.

If the application requests Sync to OS Thread Allowed but Sync to OS Thread Allowed is not enabled in
the application server, when the application attempts to run a no permission exception is issued. If the
application does not request Sync to OS Thread Allowed but Sync to OS Thread Allowed is enabled in the
application server, no synchronization occurs and the current OS thread identity remains the same as the
server identity.

Refer to |“Understanding Java 2 Platform, Enterprise Edition identity and an operating system thread
lidentity” on page 202|for more information about the identities discussed above.

Related concepts
“When to use application Synch to OS Thread Allowed” on page 201|

“Understanding Java 2 Platform, Enterprise Edition identity and an operating system thread identity” on|
page 202
“When to use Connection Manager RunAs Identity Enabled” on page 201|

“Understanding Connection Manager RunAs Identity Enabled and operating system security” on pagel
200

Chapter 12. Administering security 199

Understanding Connection Manager RunAs Identity Enabled and operating system
security

Operating system thread security: Under certain configurations of J2EE Connector Architecture (JCA),
Java Message Service (JMS), or Java database connectivity (JDBC) connectors on WebSphere
Application Server for z/OS, the OS thread identity is the identity used to create the enterprise information
systems (EIS) connection. Refer to|Connection thread identity| for more information on which configurations
support OS thread security.

WebSphere Application Server includes connector configurations that use operating system thread
security. By enabling Connection Manager Sync to OS Thread support, the J2EE identity (the RunAs
identity, for example) can be used to obtain the EIS connection for connector configurations that use
operating system thread security. The Connection Manager Sync to OS Thread support is enabled by
selecting the Enable the connection manager RunAs thread identity option, which is available by
clicking Security > Global security > z/OS security options. If the Support the synchronization of the
OS thread option is not enabled on the same administrative console panel, the connection to a resource
manager under a connector configuration that uses operating system thread security is obtained using the
server identity (which serves as a default in this case). Refer to[“WebSphere Application Server for z/OS|
lglobal security options” on page 196|for more information.

The WebSphere Connection Manager performs the operating system thread security-related functions. The
Connection Manager synchronizes the OS thread identity with the Java thread identity (this Java thread
identity corresponds to the J2EE identity) before obtaining the EIS connection. Refer to [‘Synchronizing al
lJava thread identity and an operating system thread identity” on page 194 for more information. After the
Connection Manager performs the synchronization, the OS thread identity is temporarily replaced with the
Java thread identity, and the Java thread identity is the identity used to obtain the EIS connection. This
means that Connection Manager Sync to OS Thread support provides a way to obtain an EIS connection
using the Java thread identity (the RunAs identity, for example). After obtaining the connection the
Connection Manager restores the previous OS thread identity.

Note:

* The application Sync to OS Thread Allowed setting is not pertinent to determining which identity
is used to create a connection under a connector configuration that supports operating system
thread security. [Using thread identity suppori explains which identity is used to create a
connection in which the configuration is unchanged by the application Sync to OS Thread
Allowed support. In particular, for connector configurations that use operating system thread
security (but in which Connection Manager Sync to OS Thread is disabled), the server identity is
used to create the connection regardless of the application Sync to OS Thread Allowed setting or
the current RunAs identity.

» Connection Manager Sync to OS Thread support is only pertinent to obtaining EIS Connections
managed by WebSphere Connection Management. For example Connection Manager Sync to
OS Thread support might be pertinent to Java database connectivity (JDBC) Connections
obtained from application requests on DataSource objects configured via WAS Admin and then
looked up in Java Naming and Directory Interface (JNDI). (This would depend on whether or not
a specific DataSource instance under a specific JDBC provider used OS thread security or not).
However, Connection Manager Sync to OS Thread support would not be pertinent for JDBC
Connections obtained using the unmanaged DriverManager.getConnection(...) API. Access to
such unmanaged resources for which the authorization is performed against the OS thread
identity might be affected by the application Sync to OS Thread Allowed support, however.

» Connection Manager Sync to OS Thread support is used (or not used) for connection requests
made by user-written code (such as JMS or JDBC calls from a stateless session bean),
connection requests made by certain components of the WebSphere Application Server (such as
the Message Driven Beans (MDB) Listener), or connection requests made by tooling-generated
code (such as container-managed persistence (CMP) beans).

« Some (but not all) connector configurations that use the J2EE identity also use OS Thread
Security. Connector configurations such as the Customer Information Control System (CICS)

200 BM WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

CTG Connector in local mode allow use of the J2EE identity using a different Connection
Manager mechanism to create the EIS connection. This configuration does not use operating
system thread security.

Refer to [Connection thread identity| for information for details of connector configurations that use
operating system thread security. You can also refer to|Using thread identity supportl

Refer to[‘Understanding Java 2 Platform, Enterprise Edition identity and an operating system thread
lidentity” on page 202[for more information about the identities discussed above.

Related concepts
[‘Understanding application Synch to OS Thread Allowed” on page 199

“Understanding Java 2 Platform, Enterprise Edition identity and an operating system thread identity” on|
page 202

“When to use Connection Manager RunAs Identity Enabled’1

[‘When to use application Synch to OS Thread Allowed’|

When to use application Synch to OS Thread Allowed

Specify application Synch to OS Thread Allowed to use the Java thread identity to access the
non-WebSphere-managed resources accessed by your application. As a result of exploiting the application
Synch to OS Thread Allowed support, access control privileges associated with the current Java thread
identity (not the access control privileges for the server identity) are applied when accessing these
resources. (An example of a non-WebSphere-managed resource is the file system.)

Use application Synch to OS Thread Allowed to control file system access based on the Java thread
identity. The default Java thread identity is the client identity, which is the user who invoked the application.
The Java 2 Platform, Enterprise Edition (J2EE) RunAS role deployment descriptor settings can override
this default to choose from other choices. These choices include the server identity or the specified role,
such as a user ID (chosen by the application server) configured to be in the specified role. By running with
the Java thread identity and specifying Synch to OS Thread Allowed, all file system access control
decisions are based on the access privileges of the Java thread identity. Refer to[Chapter 10, “Deploying|
lsecured applications,” on page 169 and [Chapter 8, “Developing secured applications,” on page 87| for
details on WebSphere role-based security.

Application Synch to OS Thread Allowed is not relevant to container managed persistence (CMP) entity
beans but Connection Management RunAs Identity Enabled might be relevant, depending on the JDBC
Provider. Refer to [‘Understanding Connection Manager RunAs Identity Enabled and operating system|
lsecurity” on page 200 for more information for CMP entity beans.

Refer to [‘Understanding Java 2 Platform, Enterprise Edition identity and an operating system thread|
lidentity” on page 202|for more information about the identities discussed above.

Related concepts
“Understanding application Synch to OS Thread Allowed” on page 199|

“Understanding Connection Manager RunAs Identity Enabled and operating system security” on pagel
200)|

“Understanding Java 2 Platform, Enterprise Edition identity and an operating system thread identity” on|
page 202
“When to use Connection Manager RunAs Identity Enabled’]

When to use Connection Manager RunAs Identity Enabled

Specifying Connection Manager RunAs Identity Enabled allows you to use the security policy of the
resource manager to govern access control decisions made when Java 2 Platform, Enterprise Edition
(J2EE) clients invoke a WebSphere application accessing the resource managed by that resource
manager.

Chapter 12. Administering security 201

For example, if you have a preexisting DB2 for z/OS security policy that controls which users have access
to which tables, you want to have that policy enforced when users access WebSphere applications that
also access DB2 for z/OS. The J2EE identity (the client identity by default) rather than the operating
system identity (server identity) is used to establish connections to DB2 for z/OS when Connection
Manager RunAs Identity Enabled is selected. DB2 for z/OS table access for the application is determined
using your preexisting DB2 for z/OS security policy based the application invocation.

Refer to |“Understanding Java 2 Platform, Enterprise Edition identity and an operating system thread

|identity”| for more information about the identities discussed above.
Related concepts

|“Understanding application Synch to OS Thread Allowed” on page 199|

“Understanding Connection Manager RunAs Identity Enabled and operating system security” on page|

200)

“When to use application Synch to OS Thread Allowed” on page 201|

|“Understanding Java 2 Platform, Enterprise Edition identity and an operating system thread identity”|

Understanding Java 2 Platform, Enterprise Edition identity and an operating
system thread identity

Understanding the different types of identities: A WebSphere Application Server user is identified using
an identity that must be authenticated by WebSphere Application Server in order to access a WebSphere
Application Server application in a secure environment. The WebSphere Application Server authenticates
the user identity and represents the user with a Java Authentication and Authorization Service (JAAS)
subject. A subject contains one or more principals (which are technology-dependent representations of the
authenticated user identity). More detail follows:

User identities
J2EE identity

The user identity authenticated by WebSphere and used for access control decisions
made by the WebSphere Application Server at Java 2 Platform, Enterprise Edition (J2EE)
runtime (such as the user identity associated with a J2EE application request and used in
EJB method permission access control decisions).

Operating system (OS) identity

The user identity authenticated by the underlying operating system and used for access
control decisions made by the OS and its subsystems (such as the user identity
associated with a WebSphere Application Server for z/OS servant by the SAF STARTED
class facility and used by the file system for access control decisions when the server
attempts to access files).

Thread identity

Java thread identity

The J2EE identity currently associated with a Java thread managed by the WebSphere
J2EE runtime (a Java thread is the Java Virtual Machine (JVM) representation of a
thread). The Java thread identity is associated with an operating system (OS) thread, but
the JVM manages the user identity on the Java representation of the thread - separate
from the user identity that the operating system manages on the operating system thread.
The J2EE identity is current on the Java thread for the life of the a given application
request

OS thread identity

The operating system identity currently associated with the operating system thread. The
OS thread identity is typically the user identity assigned to servant and is normally not the
same as the Java thread identity. Note that J2EE maintains a J2EE identity that
corresponds to the OS thread identity assigned to the servant. This J2EE identity can be
used as a RunAs identity.

202 1BM WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

RunAs identity
The J2EE identity chosen as the Java thread identity for a given J2EE application request (based
on the RunAs deployment descriptor policy on an Enterprise JavaBeans (EJB) invoked within the
J2EE application request). The J2EE identity is normally the identity of the authenticated user who
has made the J2EE application request. WebSphere Application Server RunAs policy allows three
choices in assigning the Java thread identity for the current request:

1. Assign the client (for example, user) J2EE identity - also referred to as selecting RunAs of
"Caller”

2. Assign the server’s J2EE identity
3. Assign the J2EE identity that is in the specified role

When security is enabled, each WebSphere Application Server for z/OS request that invokes a J2EE
component is authenticated to ensure that an authorized user is requesting access. A user is represented
by a J2EE identity (also called a JAAS subject). This J2EE identity contains one or more principals, and
each principal corresponds to a specific user identity. This association is managed by the WebSphere
Application Server. The J2EE identity and operating system OS thread identity are associated with each
other because they have the same name and represent the same user.

WebSphere Application Server for z/OS dispatches component requests in one of its available servant
processes. Within the servant process the component request is dispatched on a Java thread. A Java
thread is then mapped internally by the JVM to a z/OS thread control block (TCB). A TCB is an operating
system thread and is considered part of the native process infrastructure. A servant process has a OS
identity assigned to it when it starts. The z/OS security policy uses the SAF STARTED class facility to
assign the identity.

J2EE authorization decisions including role authorization and permission checking are determined using
the J2EE identity. Through a configuration setting, role authorization checking can be delegated to the
underlying operating system security manager (such as System Authorization Facility (SAF)), in which
case the associated operating system OS identity is used in the role authorization decision.

Some resource managers on z/OS use the OS thread identity to make authorization decisions. For
example, file system access control is determined entirely based on which OS thread identity is currently
on the TCB when the file is accessed. Similarly, local Java database connectivity (JDBC) connections to
DB2 for z/OS use the TCB OS thread identity as the authorization identity under certain configurations. For
resource managers that use the OS thread identity such as DB2 for z/OS (and unlike the file system) that
applications access through Java Message Service (JMS), JDBC, or J2EE Connector Architecture (JCA)
connectors managed by the WebSphere Application Server for z/OS connection management, we say that
the connectors to these z/OS resource managers "use operating system thread security”. For more
information, refer to:

« [“Synchronizing a Java thread identity and an operating system thread identity” on page 194

* |“Understanding Connection Manager RunAs Identity Enabled and operating system security” on pa
20

+ [“Understanding application Synch to OS Thread Allowed” on page 199
+ [Connection thread identity,
 |Using thread identity support|

Related concepts

“Understanding application Synch to OS Thread Allowed” on page 199

“Understanding Connection Manager RunAs Identity Enabled and operating system security” on pagel
200]

“When to use application Synch to OS Thread Allowed” on page 201|
“When to use Connection Manager RunAs Identity Enabled” on page 201|

Chapter 12. Administering security 203

Configuring global security

The enablement process is divided into two steps. Configuring and enabling global security in the Network

Deployment environment differs from a standalone base application server. In the Network Deployment

environment, the configuration is stored temporarily on the Deployment Manager until it gets synced up

with all of the Node Agents. Also, the Network Deployment environment uses LTPA as the authentication
mechanism so that credentials can be forwarded among processes securely. LTPA requires the following
additional configuration steps:

1. Configure security so that the right information is provided for global security, which will be propagated
to all of the nodes.

2. Enable security on all nodes. This includes ensuring that the files are synchronized and that the
processes all get restarted in the correct order. After security is enabled in a process, it cannot accept
some commands that have required access rights assigned. Therefore, the order of the processes that
get restarted is important.

Complete the following steps to configure global security in the WebSphere Application Server Version 6
environment.

1. Configure the User Registry.

a.

For LocalOS, enter the server’s user ID and password that will be used to authenticate other users
and is given administrative privileges for other WebSphere tasks. Make sure the user ID provided
has "Act as Part of Operating System” privileges in Windows and root privilege in UNIX
environments. Click Apply or OK to save the changes.

For Lightweight Directory Access Protocol (LDAP), enter the server’s user ID and password.
Ensure that this user ID is not the LDAP administrative user ID. Enter the LDAP type, host, port,
and base distinguished name (DN). These are the required fields. Configure any other LDAP
properties as necessary including the Advanced LDAP properties. Remember to click Apply or OK
at each panel to save the changes.

For Custom, enter the server’s user ID and password. Also, enter the class name of the

implementation of the custom user registry. This should implement the
com.ibm.websphere.security.UserRegistry interface. Click Apply or OK to save the changes.

2. Configure the LTPA authentication mechanism.

a.

Enter a password for generating LTPA keys. Re-enter the password for validation. Click Apply to
save the password. Next, press the Generate Keys button to generate a set of keys for use in
encrypting LTPA tokens.

Configure Single Signon (SSO). Click on the link below to go to the Single Signon panel. Make
sure it is enabled and enter the domain portion of the servers hostname. This is the
austin.ibm.com portion for a server host of machinel.austin.ibm.com. Click Apply or OK to save
the changes.

3. Configure the Global Security panel.

a.

Choose which Active User Registry you want to use based on the one you configured above.
Change any other attributes on this panel as desired. Click on the enable check box to turn ON
global security.

Select Apply to validate the changes you’ve made above. If there are any problems reported
above in the Messages section, try going back through the configuration to see if there is
something that was missed. Verify that the server ID used for the user registry is valid.

Do not shut down the Deployment Manager or Node Agents yet. Go to "Steps to enable global
security in ND” for the correct procedure for allowing this configuration to propagate to all of the
nodes in the right sequence.

4. Select Save to write the changes out to the repository.
Related concepts

[<J2EE Connector security” on page 353|

The J2EE connector architecture defines a standard architecture for connecting the Java 2 Platform,

204

IBM WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

Enterprise Edition (J2EE) to heterogeneous enterprise information systems (EIS). Examples of EIS
include Enterprise Resource Planning (ERP), mainframe transaction processing (TP) and database
systems.

[Introduction: Security|

Related tasks

[“Enabling global security” on page 187]
“‘Configuring Java 2 security” on page 541|

Global security and server security

The term global security refers to the security configuration that is effective for the entire security domain.
A security domain consists of all the servers configured with the same user registry realm name. On the
z/OS platform, the term global security refers to the security configuration that is effective for the
WebSphere Application Server cell.

For WebSphere Application Server for z/OS, a Local OS registry refers to the Resource Access Control

Facility (RACF) (or System Authorization Facility (SAF) compliant) user database configured for the

sysplex. Selecting the Local OS registry as the active registry in WebSphere Application Server for z/OS

enables you to take advantage of z/OS System Authorization Facility functions directly using the

WebSphere principals:

* Share identities with many other z/OS connector services

» Ability to use SAF authorization

» Use of SAF delegation, which minimizes the need to store user IDs and passwords in many locations in
the configuration

» Additional audit capabilities

Note that these functions are available using other registries, but require identity mapping to be done
through modifications to the WebSphere Application Server system login configuration and JAAS login
modules. Refer to [‘Updating System Login Configurations to perform a System Authorization Facility
lidentity user mapping” on page 327 for more information.

Configuration of global security for a security domain consists of configuring the common user registry, the
authentication mechanism, and other security information that defines the behavior of a security domain.
The other security information that is configured includes the following components:

» Java 2 Security Manager
» Java Authentication and Authorization Service (JAAS)
» Java 2 Connector authentication data entries

» Common Secure Interoperability Version 2 (CSIv2) / z/OS Secure Authentication Service (z/SAS)
authentication protocol (Remote Method Invocation over the Internet Inter-ORB Protocol (RMI/IIOP)
security)

* Other miscellaneous attributes.

In a Network Deployment environment, where multiple nodes and multiple servers within a node are
possible, you can configure certain attributes at a server level. The attributes that are configurable at a
server level include security enablement for the server, Java 2 Security Manager enablement, and
CSIv2/SAS (or CSIv2 / z/SAS on the z/OS platform) authentication protocol (RMI/IIOP security). You can
disable security on individual application servers while global security is enabled, however, you cannot
enable security on an individual application server while global security is disabled.

While application server security is disabled for user requests, administrative and naming security is still
enabled for that application server so that the administrative and naming infrastructure remains secure. If
cell security is enabled, but security for individual servers is disabled, J2EE applications are not
authenticated or authorized. However, naming and administrative security is still enforced. Consequently,
because Naming Services can be called from user applications you need to grant Everyone access to the

Chapter 12. Administering security 205

naming functions that are required so that these functions accept unauthenticated requests. User code
does not directly access administrative security except through the supported scripting tools.

Using System Authorization Facility keyrings with Java Secure
Sockets Extension

WebSphere Application Server for z/OS running at maintenance levels before W502000 stored digital
certificate information in two different places because of the following Software Development Kit (SDK)
restrictions:

» Java Secure Socket Extensions (JSSE) used digital certificates stored in hierarchical file system files

» Secure Sockets Layer (SSL) used digital certificate information stored in the System Authorization
Facility (SAF) database

Systems customized at W502000 or above use the single (SAF) digital certificate repository by default,
and do not need the modifications described below.

WebSphere Application Server for z/OS customers running server W50100x or later, with Java
Development Kit 1.3 level SR20 or later, can modify their WebSphere Application Server systems to use
SAF for JSSE as well as SSL (eliminating the need to maintain duplicate certificates in the HFS). The
instructions below describe how to enable this support.

Note: Systems customized at maintenance levels at or after W502000 use the single (SAF) digital
certificate repository by default, and do not need the modifications described below.

To use SAF certificates with JSSE:

1. Update the Java Management Extensions (JMX) connector settings to indicate the SAF keyring names
for the node.

a. Log in to the administrative console using an identity with administrator authority.
Click Servers > Application servers > server_name.

Under Server infrastructure, click Administration > Administration services.
Under Additional properties, click JMX connectors.

On the JMX Connectors panel, click SOAPConnector.

Under Additional Properties, click Custom Properties.

On the Custom properties page, click sslConfig.

On the sslConfig page, look at the Value field. Verify that this field says
node_name/DefaultSSLSettings, where nodename represents the node name where the application
server resides. Record the node name for a subsequent step.

i. Select node_name/RACFJSSESettings from the list next to the Value field, where node_name is
the same as the node name that you previously recorded.

j- Click OK. The Custom Properties page appears with a message indicating that changes are made
to your local configuration. Do not click Save because additional changes that are required.

2. Click Servers > Application servers and repeat the previous substeps for each of the other
application servers in the cell.

3. Update the Java Management Extensions (JMX) connector settings to indicate the SAF keyring names
for the deployment manager node.

a. Click System administration > Deployment manager.

Under Additional properties, click Administration services > JMX Connectors.
On the JMX Connectors panel, click SOAPConnector.

Under Additional properties, click Custom properties.

On the Custom properties page, click sslConfig.

Se 0 ao00C

© 2o 0T

206 1BM WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

f. On the sslConfig page, look at the Value field. This field displays dmnode/DefaultSSLSettings,
where dmnode represents the deployment manager node name. Record the node name for a
subsequent step.

g. Select dmnode/RACFJSSESettings from the list next to the Value field, where dmnode
represents the Deployment Manager node name.

h. Click OK. After a short time the Custom Properties page appears with a message at the top
indicating that changes have been made to your local configuration. Do not click Save at this point
because there are additional changes that are required.

4. Update the Java Management Extensions (JMX) connector settings to indicate the SAF keyring names
for the node agent.

a. Click System administration > Node agents >Node_name. Record the node agent name for the
next step.

Under Additional properties, click Administration services > JMX Connectors.
On the JMX Connectors panel, click SOAPConnector.

Under Additional properties, click Custom properties.

On the Custom properties page, click sslConfig.

On the ssIConfig page, look at the Value field. This field displays nodename/DefaultSSLSettings,
where nodename is the node name where the node agent resides. Record the node name for a
subsequent step.

g. Select nodename/RACFJSSESettings from the list next to the Value field, where nodename is
the node name that you previously recorded.

h. Click OK. The Custom Properties page is displayed with a message indicating that changes have
been made to the local configuration. Do not click Save at this point because additional changes
are required.

5. Click System administration > Node agents and repeat the previous substeps for each of the other
node agents servers in the cell.

6. Click Save when the "Changes have been made to your local configuration. Click Save to apply
changes to the master configuration” message is displayed.

7. On the Save page, select the Synchronize changes with Nodes option and click Save. After the
changes are saved, the administrative console returns to the home page.

8. Update the soap.client.props file to indicate the SAF keyring names that are appropriate for your
configuration. The soap.client.props file is used by the wsadmin.sh script and is located in the
application server or deployment manager (user.install.root)/properties file. The purpose of the
soap.client.props file is to specify the values used by Simple Object Access Protocol (SOAP) clients
such as wsadmin.sh. In a cell configured before WebSphere Application Server for zZOS maintenance
level W502000, the soap.client.props file indicates the names of the Java key stores used by JSSE.
Once your cell is using SAF keyrings for JSSE administration, verify that SAF keyrings are being used
for SOAP clients.

The soap.client.props file is used by the wsadmin.sh script.

Changes to wsadmin client SAF keyrings require updates to the soap.client.props file and the
creation of a keyring for administrators. Specify the following values:

~®oo0

com.ibm.ss1.protocol=SSL
com.ibm.ss1.keyStoreType=JCERACFKS
com.ibm.ss1.keyStore=safkeyring:///yourkeyringName
com.ibm.ssT.keyStorePassword=password
com.ibm.ss1.trustStoreType=JCERACFKS
com.ibm.ss1.trustStore=safkeyring:///yourKeyringName
com.ibm.ssT.trustStorePassword=password

The password value specified does not represent a real password because you can use any string.
Replace the string yourKeyringName with your administrative SAF keyring. The keyring name used by

Chapter 12. Administering security 207

all WebSphere administrators and the administrative started task user ID (default WSADMSH) must be the
same. Additionally, a keyring must be created for each user that uses the wsadmin.sh file with the
SOAP connector when using SAF keyrings and security is enabled. (A keyring is created by the
customization process for your initial administrative user ID, such as WSADMIN.)

A description of how to create keyrings for administrative users in SAF is described in
|considerations for WebSphere Application Server administratorsl

9. Recycle the cell.

Configuring server security

Note: User Registry properties include SAF properties such as com.ibm.security.SAF.authorization and
com.ibm.security.SAF.unauthenticated identities.

You can customize security to some extent at the application server level. You can disable user security on
an application server (administrative security remains enabled when global security is enabled). You can
also modify Java 2 Security Manager, CSIv2 or z/OS Secure Authentication Services (z/SAS), and some of
the other security attributes that are found on the global security (also called cell-level security) panel. You
cannot configure a different authentication mechanism or user registry on an individual server basis. This
feature is limited to cell-level configuration only. Also, when global security is disabled, you cannot enable
application server security.

By default, server security inherits all of the values that are configured for global security (cell-level
security). To override the security configuration at the server level, click Servers > Application Servers >
server_name. Under Security, click Server Security > Additional properties and click any of the following
panels:

* CSIv2 inbound authentication
* CSlv2 inbound transport

* CSlv2 outbound authentication
* CSIlv2 outbound transport

* z/SAS authentication

+ Server-level security

After modifying the configuration in any of these panels and clicking OK or Apply, the security
configuration for that panel or set of panels now overrides cell-level security. Other panels that are not
overridden continue to be inherited at the cell-level. However, you can always revert back to the cell-level
configuration at any time. On the Server Security panel, click to revert back to the global security
configuration on these panels:

* Use cell security
* Use cell CSI
e Use cell SAS

A number of additional z/SAS attributes that can be considered for security at a server level, such as:
» Local identity

* Remote identity

* Sync to thread allowed

For more information, see |“GIobaI security and server security” on page 205.|

1. Start the administrative console for the deployment manager. To get to the administrative console, go
to http://host.domain:9060/ibm/console. If security is disabled, you can enter any ID. If security is
enabled, you must enter a valid user ID and password, which is either the administrative ID (configured
for the user registry) or a user ID entered as an administrative user. To add a user ID as an
administrative user, click System Administration > Console settings > Console users.

208 1BM WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

2. Configure global security if you have not already done so. Go to the [“Configuring global security” on|
article for detailed steps. After global security is configured, configure server-level security.

3. To configure server-level security, click Servers > Application Servers > server name. Under Security,

click Server security. The status of the security level that is in use for this application server is
displayed.
By default, you can see that global security, CSl, and z/SAS have not been overridden at the server
level. CSI and z/SAS are authentication protocols for RMI/IIOP requests. The Server Level Security
panel lists attributes that are on the Global Security panel and can be overridden at the server level.
Not all of the attributes on the Global Security panel can be overridden at the server level, including
Active Authentication Mechanism and Active User Registry.

4. To disable security for this application server, go to the Server Level Security panel, clear the Enable
global security option and click OK or Apply. Click Save. By modifying the Server Level Security
panel, you can see that this flag overrides the cell-level security.

5. To configure CSI at the server level, you can change any panel that starts with CSI. By doing so, all
panels that start with CSI will override the CSI settings specified at the cell level. This change includes
all authentication and transport panels for CSI. See the[‘Configuring Common Secure Interoperability]
[Version 2 and Security Authentication Service authentication protocols” on page 491|article for more
detailed steps regarding configuring CSI authentication protocol.

Typically server-level security is used to disable user security for a specific application server. However,
this can also be used to disable (or enable) the Java 2 Security Manager, and configure the authentication
requirements for RMI/IIOP requests both incoming and outgoing from this application server.

After you modify the configuration for a particular application server, you must restart the application server
for the changes to become effective. To restart the application server, go to Servers > Application
servers and click the server name that you recently modified. Then, click the Stop button and then the
Start button.

If you disabled security for the application server, you can typically test a URL that is protected when
security is enabled.

Server security settings

Use this page to configure server security and override the global security settings. If you need to revert to
the global security defaults, deselect the appropriate check box in the administrative console.

To view this administrative console page, complete the following steps:
1. Click Servers > Application servers > server_name.
2. Under Security, click Server security.

You can disable security on individual application servers while global security is enabled. However, you
cannot enable security on an individual application server while global security is disabled. While
application server security is disabled for user requests, administrative and naming security is still enabled
for that application server so that the administrative and naming infrastructure remains secure. To avoid
problems, verify that the naming security has Everyone access to the naming function that you use within
your user code. You do not need to configure administrative security, because user code does not directly
access administrative functions. User code accesses administrative functions through the supported
scripting tools.

Related reference

[‘Java 2 security policy files” on page 544

The Java 2 Platform, Enterprise Edition (J2EE) Version 1.3 specification has a well-defined
programming model of responsibilities between the container providers and the application code. Using
Java 2 security manager to help enforce this programming model is recommended. Certain operations
are not supported in the application code because such operations interfere with the behavior and

Chapter 12. Administering security 209

operation of the containers. The Java 2 security manager is used in the product to enforce
responsibilities of the container and the application code.

Server-level security
Specifies whether the server overrides cell defaults for security.

To revert to the cell defaults for Server-level security, click Use cell security. Click Apply and then select
Save to validate the changes at the server level.

Default False

CSlI

Specifies whether the server overrides cell defaults for the CSI protocol.
Default False

SAS

Specifies whether the server overrides cell defaults for the Secure Authentication Service (SAS) or z/OS
Secure Authentication Service (z/SAS) protocol.

Default False

Server-level security settings
Use this page to enable server level security and specify other server level security configurations.

To view this administrative console page, complete the following steps:
1. Click Servers > Application Servers > server_name.
2. Under Security, click Server security.
3. Under Additional properties, click Server-level security.
Related tasks
[‘Configuring the was.policy file” on page 55§

Enable global security

Use this flag to disable or enable security again for this application server while global security is enabled.
Server security is enabled by default when global security is enabled. You cannot enable security on an
application server while global security is disabled. Administrative (administrative console and wsadmin)
and naming security remain enabled while global security is enabled, regardless of the status of this flag.

Default Disable

Enforce Java 2 security

Specifies that the server enforces Java 2 Security permission checking at the server level. When cleared,
the Java 2 server-level security manager is not installed and all of the Java 2 Security permission checking
is disabled at the server level.

If your application policy file is not set up correctly, see the documentation on configuring an application
policy in a was.policy file.

Default Disabled

210 BM WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

Enforce fine-grained JCA security
Enable this option to restrict application access to sensitive Java Connector Architecture (JCA) mapping
authentication data.

Default Disabled

Use domain qualified user IDs
Specifies whether user IDs returned by getUserPrincipal()-like calls are qualified with the server level
security domain within which they reside.

Default Disabled

Cache timeout
Specifies the timeout value for server level security cache in seconds.

Data type Integer

Units Seconds

Default 600

Range Greater than 30 seconds. Avoid setting cache timeout

value to 30 seconds or less.

Issue permission warning
Specifies whether a warning is issued during application installation when an application requires a Java 2
permission that is normally not granted to an application.

WebSphere Application Server provides support for policy file management. A number of policy files are
included in WebSphere Application Server. Some of these policy files are static and some of them are
dynamic. Dynamic policy is a template of permissions for a particular type of resource. In dynamic policy
files, the code bases are evaluated at run time using configuration data. You can add or remove
permissions, as needed, for each code base. However, do not add, remove, or modify the existing code
bases. The real code base is dynamically created from the configuration and run-time data. The
filter.policy file contains a list of permissions that an application does not have, according to the J2EE
1.3 Specification. For more information on permissions, see the documentation on the Java 2 security
policy files.

Default Enabled

Active protocol
Specifies the active server level security authentication protocol when server level security is enabled.

You can use an Object Management Group (OMG) protocol called Common Secure Interoperability
Version 2 (CSIv2) for more vendor interoperability and additional features. If all of the servers in your
entire security domain are Version 5.0 servers, it is best to specify CSI as your protocol.

Data type String
Default CSl and SAS
Range CSl, CSI and SAS

RACF server class profiles

The Resource Access Control Facility (RACF) server class profiles are used to control dynamic application
environments. Dynamic application environments are displayed and controlled separately from static
application environments.

Chapter 12. Administering security 211

The Resource Access Control Facility (RACF) server class profiles are used to:
1. Permit the unauthorized WebSphere Application Server servant access to controller services

2. Control dynamic application environments, which are displayed and controlled differently from static
application environments

You can choose between two SERVER class profiles. You need one of these profiles, and which profile
you need correlates to dynamic application environment (DAE) support.

When Dynamic Application Environments are supported, use: RDEFINE SERVER
CB.<server>.<cluster>.<cel1> UACC(NONE) PERMIT <SR userid> ACC(READ)

When Dynamic application environments are not supported (static application environments), use: RDEFINE
SERVER CB.<server>.<cluster> UACC(NONE) PERMIT < SR userid> ACC(READ)

Note: To use dynamic application environment commands you must be running z/OS Version 1 Release 2
or above with the WLM-DAE support PTF APAR OW54622 enabled.

To set up both the three-part or four-part RACF server class profiles for the application server or cluster for
your dynamic application environment, the user ID for the servant must be given read access to both of
the profiles.

Three-part profile
The existing three-part profile has the form:
<subsystem_type>.<subsystem_name>.<application_environment_name>

where:
* <subsystem_type>is CB
* <subsystem name> is the application server short name.

» <application_environment name> is the application server generic short name, as specified in the
WebSphere Application Server variables. If the server resides in a cluster, the name specified here must
match the cluster short name. If the server does not reside in a cluster, the name must match the name
specified on the ClusterTransitionName custom property for the server .

Four-part profile

The four-part profile adds the cell name to avoid ambiguities with existing profile names. The four-part
profile has the form:

<subystem type>.<subsystem_name>.<application_environment name>.<cell name>

where:
» <cell_name> is the short name of the cell containing this application server.

Examples of profile names

Three-part profile names:

* CB.T5SRV1.T5CL1 (the application server with the short name T5SRV1 and generic short name
T5CL1)

* CB.*.T5CL1 (all application servers in the generic short name of T5CL1)
« CB.*.* (any application server in the sysplex)

Four-part profile names:

212 BM WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

* CB.T5SRV1.T5CL1.T5CELL (the application server with the short name T5SRV1, and generic short
name T5CL1 that resides in the cell TSCELL)

* CB.*.T5CL1.T5CELL (all servers in the generic short name of T5CL1 in the T5CELL)
+ CB.*.*.T5CELL (any server in the cell named T5CELL)

If you do not want to discriminate between any of the application servers, you can eliminate all the
specified profiles and use a generic form to cover the three and four-part names for all the servers in the
sysplex:
+ CB.*.T5"
+ CB.*T5*.*

Related reference

|WLM dynamic application environment operator commands|

The dynamic application environments are displayed and controlled separately from static application
environments. In order to control the dynamic environments, you must set the [Resource Access Facility|
|(RACF) server class profiles| to give you the proper permission to issue the operator commands.

Administrative console and naming service authorization
WebSphere Application Server extends the Java 2 Platform, Enterprise Edition (J2EE) security role-based
access control to protect the product administrative and naming subsystems.

Administrative console

Four administrative roles are defined to provide degrees of authority needed to perform certain
WebSphere Application Server administrative functions from either the administrative console or the
system management scripting interface. The authorization policy is only enforced when global security is
enabled. The four administrative security roles are defined in the following table:

administrative roles

Role Description

monitor Least privileged where a user can view the WebSphere
Application Server configuration and current state.

configurator Monitor privilege plus the ability to change the
WebSphere Application Server configuration.

operator Monitor privilege plus the ability to change the run-time
state, such as starting or stopping services.

administrator Operator plus configuration privilege and the permission
required to access sensitive data including the server
password, LTPA password, LTPA, keys, and so on.

When global security is enabled, the administrative subsystem role-based access control is enforced. The
administrative subsystem includes security server, user registry, and all the Java Management Extensions
(JMX) MBeans. When security is enabled, both the administrative console and the administrative scripting
tool require users to provide the required authentication data. Moreover, the administrative console is
designed so the control functions that display on the pages are adjusted according to the security roles
that a user has. For example, a user who has only the monitor role can see only the non-sensitive
configuration data. A user with the operator role can change the system state.

WebSphere Application Server for z/OS security customization dialogs prime the administrative subsystem

to accept the MVS identities of all started WebSphere system tasks (controllers, servants, and so on) as
WebSphere administrators and to accept the configured WebSphere administrator identity.

Chapter 12. Administering security 213

If a Lightweight Directory Access Protocol (LDAP) or Custom registry is specified, you must ensure that
customization provided to facilitate using Local OS is removed. Once an LDAP or Custom registry is used,
the configured server identities are used for work executed by the system instead of by the started task
identities. You must delete pre-configured WebSphere Configuration Group and Administrator identity from
the console group and console users respectively.

SAF authorization for administrative roles

The value of the com.ibm.security.SAF.authorization setting controls whether SAF EJBROLE profiles or
the console settings are used to control access to administration profiles rather than the console users.
With System Authorization Facility (SAF) authorization any values in the console users and console groups
are ignored.

WebSphere authorization for administrative roles

If WebSphere authorization (rather than SAF authorization) is used to restrict access to Java 2 Platform,
Enterprise Edition (J2EE) roles, WebSphere Application Server for z/OS automatically maps the server
identity specified when enabling global security to the administrative role. Also, when global security is
enabled, WebSphere Application Servers on z/OS run under the server identity that is defined under the
active user registry configuration. Although it is not shown on the administrative console and in other tools,
a special Server subject is mapped to the administrator role. This is why the WebSphere Application
Server run-time code, which runs under the server identity, requires authorization to execute run-time
operations. If no other user is assigned administrative roles, you can log into the administrative console or
to the wsadmin scripting tool using the server identity to perform administrative operations and to assign
other users or groups to administrative roles. Because the server identity is assigned to the administrative
role by default, the administrative security policy requires the administrative role to perform the following
operations:

» Change server ID and server password

* Enable or disable WebSphere Application Server global security

» Enforce or disable Java 2 Security

* Change the LTPA password or generate keys

» Assign users and groups to administrative roles

A special configuration is not required to enable the server identity (as specified) when enabling global
security for administrative use because the server identity is automatically mapped to the administrator
role. You can add or remove users and groups to or from the administrative roles from the WebSphere
Application Server administrative console. However, a server restart is required for the changes to take
effect. A best practice is to map a group, rather than specific users, to administrative roles because it is
more flexible and easier to administer. By mapping a group to an administrative role, adding or removing
users to or from the group occurs outside of WebSphere Application Server and does not require a server
restart for the change to take effect.

Administrative roles

In addition to mapping users or groups, you can map a special-subject to the administrative roles. A
special-subject is a generalization of a particular class of users. The AllAuthenticated special subject
means that the access check of the administrative role ensures that the user making the request has at
least been authenticated. The Everyone special subject means that anyone, authenticated or not, can
perform the action, as if security is not enabled.

When enabling security, you can assign one or more users and groups to administrative roles. For more
information, see|Assigning users to naming rolesl However, before assigning users to naming roles,
configure the active user registry. User and group validation depends on the active user registry. For more
information, see [Configuring user registries}

214 BM WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

Naming service authorization

CosNaming security offers increased granularity of security control over CosNaming functions. CosNaming
functions are available on CosNaming servers such as the WebSphere Application Server. They affect the
content of the WebSphere Application Server name space. There are generally two ways in which client
programs result in CosNaming calls. The first is through the Java Naming and Directory Interface (JNDI)
call. The second is with common object request broker architecture (CORBA) clients invoking CosNaming
methods directly.

Four security roles are introduced :
+ CosNamingRead
* CosNamingWrite
» CosNamingCreate
» CosNamingDelete

The roles have authority levels from low to high:

CosNamingRead
Users can query of the WebSphere Application Server name space, using, for example, the JNDI
lookup method. The special-subject Everyone is the default policy for this role.

CosNamingWrite
Users can perform write operations such as JNDI bind, rebind, or unbind, and CosNamingRead
operations. The special-subject AllAuthenticated is the default policy for this role.

CosNamingCreate
Users can create new objects in the name space through such operations as JNDI
createSubcontext and CosNamingWrite operations. The special subject AllAuthenticated is the
default policy for this role.

CosNamingDelete
Users can destroy objects in the name space, for example using the JNDI destroySubcontext
method and CosNamingCreate operations. The special-subject AllAuthenticated is the default
policy for this role.

When you configure a local OS user registry to use with WebSphere Application Server for z/OS, there are
some additional considerations. Refer to|Configuring user registries| and [Steps for selecting a local OS|
for more information. If you specify an LDAP or a custom registry, you must remove local OS
customization by deleting the pre-configured WebSphere configuration group and administrator identity
from the console group. Then delete the console users.

Additionally, a Server special-subject is assigned to all the four CosNaming roles by default. The Server
special-subject provides a WebSphere Application Server server process, which runs under the server
identity, access to all the CosNaming operations. Note that the Server special-subject does not display and
cannot be modified through the administrative console or other administrative tools.

No special configuration is required to enable the server identity (as specified) when enabling global
security for administrative use because the server identity is automatically mapped to the administrator
role.

No special configuration is required to enable the server identity (as specified) when enabling global
security for administrative use because the server identity is automatically mapped to the administrator
role. Users, groups, or the special subjects AllAuthenticated and Everyone can be added or removed to or
from the naming roles from the WebSphere Application Server administrative console at any time.
However, a server restart is required for the changes to take effect. (Note that when SAF Authorization is
chosen, no server restart is needed to authorize additional users or groups.) A best practice is to map
groups or one of the special-subjects, rather than specific users, to naming roles because it is more
flexible and easier to administer in the long run. By mapping a group to a naming role, adding or removing
users to or from the group occurs outside of WebSphere Application Server and does not require a server

Chapter 12. Administering security 215

restart for the change to take effect. Note that when System Authorization Facility (SAF) authorization is
selected, you do not need to restart the server to authorize additional users or groups.

The CosNaming authorization policy is only enforced when global security is enabled. When global
security is enabled, attempts to do CosNaming operations without the proper role assignment result in an
org.omg.CORBA.NO_PERMISSION exception from the CosNaming Server.

Although the ability exists to greatly restrict access to the name space by changing the default policy,
unexpected org.omg.CORBA.NO_PERMISSION exceptions can occur at run time. Typically, J2EE applications
access the name space and the identity they use is that of the user that authenticated to WebSphere
Application Server when they access the J2EE application. Unless the J2EE application provider clearly
communicates the expected Naming roles, use caution when changing the default naming authorization

policy.
Related tasks
[‘Assigning users to naming roles” on page 220
[Configuring user registries” on page 267|
[“Controlling access to console users when using a Local OS Registry” on page 51|

Assigning users to administrator roles

Using System Authorization Facility (SAF) authorization to control access to administrative roles:
When com.ibm.security.SAF.authorization is set to true, SAF EJBROLE profiles are used to control
access to administrative roles.

If you selected Use SAF EJBROLE profiles to enforce Java 2 Platform, Enterprise Edition (J2EE)
roles during security domain setup in the Customization Dialog, then the following administrative roles
were defined by the customization jobs. (Note that the security domain name might or might not have
been specified during security domain setup, and configGroup represents the WebSphere configuration
group name that you chose.) Note that SAF role names are case sensitive.

RDEFINE EJBROLE (optionalSecurityDomainName.)administrator UACC(NONE)

RDEFINE EJBROLE (optionalSecurityDomainName.)monitor UACC (NONE)

RDEFINE EJBROLE (optionalSecurityDomainName.)configurator UACC(NONE)
RDEFINE EJBROLE (optionalSecurityDomainName.)operator UACC (NONE)

PERMIT (optionalSecurityDomainName.)administrator CLASS(EJBROLE) ID(configGroup) ACCESS(READ)
PERMIT (optionalSecurityDomainName.)monitor CLASS(EJBROLE) ID(configGroup) ACCESS(READ)
PERMIT (optionalSecurityDomainName.)configurator CLASS(EJBROLE) ID(configGroup) ACCESS(READ)
PERMIT (optionalSecurityDomainName.)operator CLASS(EJBROLE) ID(configGroup) ACCESS(READ)

If you decide at a future date to turn on SAF authorization, you must issue these Resource Access Control
Facility (RACF) commands to enable proper WebSphere Application Server operation. You can give a user
access to all administrative functions by connecting it to the configuration group:

CONNECT mvsid GROUP(configGroup)

You can also permit individual users to specific roles issuing the following RACF command:
PERMIT (optionalSecurityDomainName.)rolename CLASS(EJBROLE) ID(mvsid) ACCESS(READ)

You do not need to restart the server for SAF EJBROLE changes to take effect. However, after the SAF
changes have been made, you must issue the following RACF command (or equivalent for your security
system) to refresh the in-memory security tables:

SETROPTS RACLIST(EJBROLE) GENERIC

Using WebSphere Authorization to control access to administrative roles: When
com.ibm.security.SAF.authorization is set to false, WebSphere Authorization and the administrative
console are used to control access to administrative roles.

216 1BM WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

In the administrative console, click System Administration > Console settings. Click either Console
Users or Console Groups.

1. To add a user or a group, click Add on the Console users or Console groups panel.

2. To add a new administrator user, enter a user identity in the User field, highlight Administrator, and
click OK. If there is no validation error, the specified user is displayed with the assigned security role.

3. To add a new administrative group, either enter a group name in the Specify group field or select
EVERYONE or ALL AUTHENTICATED from the Select from special subject menu, and click OK. If no
validation error exists, the specified group or special subject displays with the assigned security role.

4. To remove a user or group assignment, click Remove on the Console Users or the Console Groups
panel. On the Console Users or the Console Groups panel, select the check box of the user or group
to remove and click OK.

5. To manage the set of users or groups to display, expand the filter folder on the right panel and modify
the filter. For example, setting the filter to user* only displays users with the user prefix.

6. After the modifications are complete, click Save to save the mappings.
7. Restart the server for changes to take effect.

The task of assigning users and groups to administrative roles is performed to identify users for performing
WebSphere Application Server administrative functions. Administrator roles are used to control access to
WebSphere Application Server administrative functions. There are four roles: administrator, configurator,
operator and monitor.

Administrator role
Users and groups assigned to the administrator role can perform all administrative operations and
can set up both Java 2 Platform, Enterprise Edition (J2EE) role-based and Java 2 security policy.

Configurator role

Users assigned to the configurator role can perform all of the day-to-day configuration tasks
including installing and uninstalling applications, assigning users and groups to role mapping for
applications, setting run-as configurations, setting up Java 2 security permissions for applications,
and customizing Common Secure Interoperability Version 2 (CSIv2), z/OS Security Authentication
Service (z/SAS), and Secure Sockets Layer (SSL) configurations.

Operator role
Users assigned to the operator role can view the WebSphere Application Server configuration and
its current state, but also can change the run-time state such as stopping and starting services.

Monitor role
Users assigned the monitor state can view the WebSphere Application server configuration and its
current state only.

Before you assign users to administrative roles (administrator, configurator, operator, and monitor), you
must set up your user registry, which can be Lightweight Directory Access Protocol (LDAP), local OS, or a
custom registry. You can set up your user registries without enabling security.

Related concepts

|“Role-based authorization” on page 161|
Use authorization information to determine whether a caller has the necessary privileges to request a
service.

[Access control exception|

The Java 2 security behavior is specified by its security policy. The security policy is an access-control
matrix that specifies which system resources certain code bases can access and who must sign them.
The Java 2 security policy is declarative and it is enforced by the
java.security.AccessController.checkPermission method.

|“Administrative console and naming service authorization” on page 213|
WebSphere Application Server extends the Java 2 Platform, Enterprise Edition (J2EE) security
role-based access control to protect the product administrative and naming subsystems.

Chapter 12. Administering security 217

Related tasks

[‘Assigning users and groups to roles” on page 170

[‘Assigning users to RunAs roles” on page 175|

[‘Controlling access to console users when using a Local OS Registry” on page 51|

Console groups and CORBA naming service groups

Use the Console Groups page to give groups specific authority to administer the WebSphere Application
Server using tools such as the administrative console or wsadmin scripting. The authority requirements are
only effective when global security is enabled. Use the common object request broker architecture
(CORBA) naming service groups page to manage CORBA Naming Service groups settings.

To view the Console Groups administrative console page, click System Administration > Console
Groups.

To view the CORBA naming service groups administrative console page, click Environment > Naming >
CORBA Naming Service Groups.

Related reference
[Administrative console buttons|

This page describes the button choices that are available on various pages of the administrative
console, depending on which product features you enable.

[Administrative console page features|

This topic provides information about the basic elements of an administrative console page, such as
the various tabs.

[Administrative console scope settings|

Use this page to specify the level at which a resource is visible on the administrative console panel. A
resource can be visible in the administrative console collection table at the cell, node, cluster, or server
scope. By changing the value for Scope you can see other variables that apply to a resource and
might change the contents of the collection table.

[Administrative console preference settings|

Use the preference settings to specify how you want information displayed on an administrative
console page.

Group (Console groups)
Specifies groups.

The ALL_AUTHENTICATED and the EVERYONE groups can have the following role privileges:
Administrator, Configurator, Operator, and Monitor.

Data type: String
Range: ALL_AUTHENTICATED, EVERYONE

Group (CORBA naming service groups)
Identifies CORBA naming service groups.

The ALL_AUTHENTICATED group has the following role privileges: CosNamingRead, CosNamingWrite,
CosNamingCreate, and CosNamingDelete. The EVERYONE group indicates that the users in this group
have CosNamingRead privileges only.

Data type: String
Range: ALL_AUTHENTICATED, EVERYONE

Role (Console group)
Specifies user roles.

218 BM WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

The following administrative roles provide different degrees of authority needed to perform certain

WebSphere Application Server administrative functions:

Administrator
The administrator role has operator permissions, configurator permissions, and the permission
required to access sensitive data including server password, Lightweight Third Party Authentication
(LTPA) password and keys, and so on.

Configurator
The configurator role has monitor permissions and can change the WebSphere Application Server
configuration.

Operator
The operator role has monitor permissions and can change the run-time state. For example, the
operator can start or stop services.

Monitor
The monitor role has the least permissions. This role primarily confines the user to viewing the
WebSphere Application Server configuration and current state.

Data type: String
Range: Administrator, Configurator, Operator, and Monitor

Role (CORBA naming service users)
Identifies naming service group roles.

A number of naming roles are defined to provide degrees of authority needed to perform certain
WebSphere naming service functions. The authorization policy is only enforced when global security is
enabled.

Four name space security roles are available: CosNamingRead, CosNamingWrite, CosNamingCreate, and
CosNamingDelete. The names of the four roles are the same with WebSphere Advanced Edition, Version
4.0.2. However, the roles now have authority levels from low to high:

Cos Naming Read
Users can query the WebSphere name space using, for example, the Java Naming and Directory
Interface (JNDI) lookup method. The special-subject EVERYONE is the default policy for this role.

Cos Naming Write
Users can perform write operations such as JNDI bind, rebind, or unbind, and CosNamingRead
operations. The special-subject ALL_AUTHENTICATED is the default policy for this role.

Cos Naming Create
Users can create new objects in the name space through operations such as JNDI
createSubcontext and CosNamingWrite operations. The special-subject ALL_AUTHENTICATED is
the default policy for this role.

Cos Naming Delete
Users can destroy objects in the name space, for example using the JNDI destroySubcontext
method and CosNamingCreate operations. The special-subject ALL_AUTHENTICATED is the
default policy for this role.

Data type: String

Range: CosNamingRead, CosNamingWrite, CosNamingCreate,
and CosNamingDelete

Chapter 12. Administering security 219

Assigning users to naming roles

The following steps are needed to assign users to naming roles. In the administrative console, expand
Environment > Naming, and click CORBA Naming Service Users or CORBA Naming Service Groups.

1.
2.

Click Add on the CORBA Naming Service Users or CORBA Naming Service Groups panel.

To add a new naming service user, enter a user identity in the User field, highlight one or more naming
roles, and click OK. If no validation errors occur, the specified user is displayed with the assigned
security role.

To add a new naming service group, either select Specify group and enter a group name or select
Select from special subject and then select either EVERYONE or ALL AUTHENTICATED. Click OK.
If no validation errors occur, the specified group or special subject is displayed with the assigned
security role.

To remove a user or group assignment, go to the CORBA Naming Service Users or CORBA Naming
Service Groups panel. Select the check box next to the user or group that you want to remove and
click Remove.

To manage the set of users or groups to display, expand the Filter folder on the right panel, and
modify the filter text box. For example, setting the filter to user=* displays only users with the user
prefix.

After modifications are complete, click Save to save the mappings. Restart the server for the changes
to take effect.

The default naming security policy is to grant all users read access to the CosNaming space and to grant
any valid user the privilege to modify the contents of the CosNaming space. You can perform the
previously mentioned steps to restrict user access to the CosNaming space. However, use caution when
changing the naming security policy. Unless a Java 2 Platform, Enterprise Edition (J2EE) application has
clearly specified its naming space access requirements, changing the default policy can result in
unexpected org.omg.CORBA.NO_PERMISSION exceptions at run time.

Related concepts

[‘Administrative console and naming service authorization” on page 213

WebSphere Application Server extends the Java 2 Platform, Enterprise Edition (J2EE) security
role-based access control to protect the product administrative and naming subsystems.

[‘Role-based authorization” on page 161|

Use authorization information to determine whether a caller has the necessary privileges to request a
service.

[Access control exception|

The Java 2 security behavior is specified by its security policy. The security policy is an access-control
matrix that specifies which system resources certain code bases can access and who must sign them.
The Java 2 security policy is declarative and it is enforced by the
java.security.AccessController.checkPermission method.

Related tasks

[‘Assigning users and groups to roles” on page 170|

“Assigning users to RunAs roles” on page 17—5|

Related reference

[‘Console groups and CORBA naming service groups” on page 21§

Use the Console Groups page to give groups specific authority to administer the WebSphere
Application Server using tools such as the administrative console or wsadmin scripting. The authority
requirements are only effective when global security is enabled. Use the common object request broker
architecture (CORBA) naming service groups page to manage CORBA Naming Service groups
settings.

220 1BM WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

Special considerations for controlling access to naming roles using
SAF authorization

Considerations for assigning users to naming roles: You can use either System Authorization Facility
(SAF) authorization (EJBROLE profiles) or WebSphere Authorization to control access to naming roles.
The user registry custom variable com.ibm.security.SAF.authorization determines when SAF
authorization or WebSphere Authorization is used. For a discussion of the CosNaming roles, see
Administrative console and naming service authorizatior|. You can also refer to|Assigning users to naming|

role§|.

Using SAF authorization to control access to naming roles: When com.ibm.security.SAF.authorization is set
to true, SAF EJBROLE profiles are used to control access to CosNaming functions. If you selected Use
SAF EJBROLE profiles to enforce J2EE roles during security domain setup in the Customization Dialog,
then the following CosNaming roles were defined by the customization jobs:

RDEFINE EJBROLE (optionalSecurityDomainName.)CosNamingRead UACC(READ)

PERMIT (optionalSecurityDomainName.)CosNamingRead CLASS(EJBROLE) ID(WSGUEST) ACCESS(READ)

RDEFINE EJBROLE (optionalSecurityDomainName.)CosNamingWrite UACC(READ)

RDEFINE EJBROLE (optionalSecurityDomainName.)CosNamingCreate UACC(READ)

RDEFINE EJBROLE (optionalSecurityDomainName.)CosNamingDelete UACC(READ)

If you decide at a future date to turn on SAF authorization, you must issue these RACF commands to
enable proper WebSphere Application Server operation. (Change the value WSGUEST is you have
chosen a different unauthenticated user ID.)

The default access granted by the customization dialog permits all authenticated users to update the name
space. This type of authorizations might be a broader level of authority than you want to provide.
Minimally, you must enable the WebSphere Configuration group (servers and administrators) to have
READ access to all profiles and permit all WebSphere Application Server for z/OS clients to have READ
access to the CosNamingRead profile.

If additional users require access to CosNaming roles, you can permit a user to any of the previous roles
as indicated by issuing the following RACF command: PERMIT (optionalSecurityDomainName.)rolename
CLASS(EJBROLE) ID(mvsid) ACCESS(READ)

Using WebSphere Authorization to control access to naming roles: When
com.ibm.security.SAF.authorization is set to false, WebSphere authorization and the administrative
console are used to control access to CosNaming functions.

For information on assigning users to naming roles, refer to[Assigning users to naming roles|
Related concepts

[‘Administrative console and naming service authorization” on page 213|
WebSphere Application Server extends the Java 2 Platform, Enterprise Edition (J2EE) security
role-based access control to protect the product administrative and naming subsystems.

Related reference

“Security customization dialog settings” on page 44|
“Summary of controls” on page 52|

Related information

[‘Global security settings” on page 189
Use this page to configure security. When you enable security, you are enabling security settings on a
global level.

Console users settings and CORBA naming service user settings

Use the Console users settings page to give users specific authority to administer WebSphere Application
Server using tools such as the administrative console or wsadmin scripting. The authority requirements are

Chapter 12. Administering security 221

only effective when global security is enabled. Use the common object request broker architecture
(CORBA) naming service users settings page to manage CORBA naming service users settings.

To view the Console users administrative console page, click System Administration > Console Users.

To view the CORBA naming service users administrative console page, click Environment > Naming >
CORBA Naming Service users.

Related reference

[Administrative console buttons|
This page describes the button choices that are available on various pages of the administrative
console, depending on which product features you enable.

[Administrative console page features|
This topic provides information about the basic elements of an administrative console page, such as
the various tabs.

[Administrative console scope settings]

Use this page to specify the level at which a resource is visible on the administrative console panel. A
resource can be visible in the administrative console collection table at the cell, node, cluster, or server
scope. By changing the value for Scope you can see other variables that apply to a resource and
might change the contents of the collection table.

[Administrative console preference settings
Use the preference settings to specify how you want information displayed on an administrative
console page.

User (Console users)
Specifies users.

The users entered must exist in the configured active user registry.

Data type: String

User (CORBA naming service users)
Specifies CORBA naming service users.

The users entered must exist in the configured active user registry.

Data type: String

Role (Console users)
Specifies user roles.

The following administrative roles provide different degrees of authority needed to perform certain

WebSphere Application Server administrative functions:

Administrator
The administrator role has operator permissions, configurator permissions, and the permission
required to access sensitive data including server password, Lightweight Third Party Authentication
(LTPA) password and keys, and so on.

Configurator
The configurator role has monitor permissions and can change the WebSphere Application Server
configuration.

Operator
The operator role has monitor permissions and can change the run-time state. For example, the
operator can start or stop services.

222 BM WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

Monitor
The monitor role has the least permissions. This role primarily confines the user to viewing the
WebSphere Application Server configuration and current state.

Data type: String
Range: Administrator, Configurator, Operator, and Monitor

Role (CORBA naming service users)
Specifies naming service user roles.

A number of naming roles are defined to provide degrees of authority needed to perform certain
WebSphere naming service functions. The authorization policy is only enforced when global security is
enabled. The following roles are valid: CosNamingRead, CosNamingWrite, CosNamingCreate, and
CosNamingDelete.

The names of the four roles are the same with WebSphere Application Server, Advanced Edition Version
4.0.2. However, the roles now have authority levels from low to high:

CosNamingRead
Users can query the WebSphere name space using, for example, the Java Naming and Directory
Interface (JNDI) lookup method. The special-subject EVERYONE is the default policy for this role.

CosNamingWrite
Users can perform write operations such as JNDI bind, rebind, or unbind, plus CosNamingRead
operations. The special-subject ALL AUTHENTICATED is the default policy for this role.

CosNamingCreate
Users can create new objects in the name space through operations such as JNDI
createSubcontext and CosNamingWrite operations. The special-subject ALL AUTHENTICATED is
the default policy for this role.

CosNamingDelete
Users can destroy objects in the name space, for example using the JNDI destroySubcontext
method and CosNamingCreate operations. The special-subject ALL AUTHENTICATED is the
default policy for this role.

Data type: String
Range: CosNamingRead, CosNamingWrite, CosNamingCreate
and CosNamingDelete

Authentication mechanisms

An authentication mechanism defines rules about security information (for example, whether a credential is
forwardable to another Java process), and the format of how security information is stored in both
credentials and tokens.

Authentication is the process of establishing whether a client is who or what it claims to be in a particular
context. A client can be either an end user, a machine, or an application.

An authentication mechanism in WebSphere Application Server typically collaborates closely with a user
registry. The user registry is the user and groups account repository that the authentication mechanism
consults with when performing authentication. The authentication mechanism is responsible for creating a
credential, which is an internal product representation of a successfully authenticated client user. Not all
credentials are created equally. The abilities of the credential are determined by the configured
authentication mechanism.

Chapter 12. Administering security 223

Although this product provides multiple authentication mechanisms, you can configure only a single active
authentication mechanism at a time. The active authentication mechanism is selected when configuring
WebSphere Application Server global security.

Authentication

WebSphere Application Server

CSIV2/SAS, TCP/IP, Authorization

SSL icati

Enterprise beans data Authentication

Basic or authenticator (2) module
token credentials

—> 6 \ SWAM
™ Rece(ivrli (5) module Local OS
; Credentials (4) user registry
credentials /
3)
OR® i LDAP
current Login :
module user registry
(6)* C;edentials \3)
Received ()/ (@) custom
HTTP or HTTPS Credentials

LTPA user registry
module
Web client |——— Web (2)

1) authenticator Authorization

e o data
Basic, token, or
certificate

Authentication Process

The figure demonstrates the authentication process. Basically, authentication is required for enterprise
bean clients and Web clients when they access protected resources. Enterprise bean clients (a servlet or
other enterprise beans or a pure client) send the authentication information to a Web application server
using one of the following protocols:

* Common Secure Interoperability Version 2 (CSIv2)
» z/OS Secure Authentication Service (z/SAS)

Web clients use the HTTP or HTTPS protocol to send the authentication information as shown in the
previous figure.

The authentication information can be BasicAuth (user ID and password), credential token (in case of
Lightweight Third Party Authentication (LTPA) on the z/OS platform), or client certificate. The Web
authentication is performed by the Web Authentication module and the enterprise bean authentication is
performed by the Enterprise JavaBean (EJB) authentication module, which resides in the CSIv2 and SAS
layer or z/SAS layer on the z/OS platform.The authentication module is implemented using the Java
Authentication and Authorization Service (JAAS) login module. The Web authenticator and the EJB
authenticator pass the authentication data to the login module (2), which can use any of the following
mechanisms to authenticate the data:

» Lightweight Third Party Authentication (LTPA). LTPA is the only authentication mechanism supported by
WebSphere Application Server Network Deployment.
« Simple WebSphere Authentication Mechanism (SWAM)

The authentication module uses the registry that is configured on the system to perform the authentication
(4). Three types of registries are supported: Local OS, Lightweight Directory Access Protocol (LDAP), and
custom registry. External registry implementation following the registry interface specified by IBM can
replace either the Local OS or the LDAP user registry.

224 BM WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

The login module creates a JAAS subject after authentication and stores the credential derived from the
authentication data in the public credentials list of the subject. The credential is returned to the Web
authenticator or enterprise beans authenticator (5).

The Web authenticator and the EJB authenticator store the received credentials for the authorization
service to use in performing further access control checks.

Steps for selecting an authentication mechanism

Information about users and groups reside in a user registry. In WebSphere Application Server, a user
registry authenticates a user and retrieves information about users and groups to perform security-related
functions, including authentication and authorization. Implementation is provided to support multiple
operating system or operating environment-based user registries such as z/OS System Authorization
Facility (SAF) registry and most of the major Lightweight Directory Access Protocol (LDAP)-based user
registries. You can use the custom LDAP feature to support any LDAP server by setting up the correct
configuration (user and group filters). However, support is not extended to these custom LDAP servers
since there are many possibilities that cannot be tested.

The next step in setting up security is to select an authentication mechanism. An authentication
mechanism defines rules about security information (for example, whether a credential is forwardable to
another Java process), and the format of how security information is stored in both credentials and tokens.
Authentication is the process of establishing whether a client is valid in a particular context. A client can be
either an end user, a machine, or an application.

An authentication mechanism in WebSphere Application Server typically collaborates closely with a User
Registry. The User Registry is the user and groups accounts repository that the authentication mechanism
consults with when performing authentication. The authentication mechanism is responsible for creating a
credential which is an internal product representation of successfully authenticated client user. Not all
credentials are created equal. The abilities of the credential are determined by the configured
authentication mechanism.

Although this product provides several authentication mechanisms, only a single active authentication
mechanism can be configured at once. The active authentication mechanism is selected when configuring
WebSphere global security. WebSphere Application Server for z/OS Version 6.0.x supports the following
authentication mechanisms:

« Simple WebSphere Authentication Mechanism (SWAM)

» Light-Weight Third Party Authentication (LTPA)

Note: In future releases, IBM intends to deprecate the ICSF authentication mechanism. It is
recommended that you migrate to LTPA. For more information on LTPA, see [Lightweight Third Party|

Authentication

Steps for selecting the SWAM authentication mechanism

If you are using Simple WebSphere Authentication Mechanism (SWAM), there is no setup needed as this
is the default mechanism.

Note: SWAM is only valid in a base installation. It is not supported in ND.

Steps for selecting LTPA as the authentication mechanism

You need to start the Administrative Console by specifying URL:
http://server_hostname:9060/ibm/console.

Chapter 12. Administering security 225

Perform the following steps to select Lightweight Third Party Authentication (LTPA) as the authentication
mechanism for this server.

1. Click Security > Global security. Under Authentication, click Authentication mechanisms > LTPA.

2. Enter the password and confirm it in the password fields. This password is used to encrypt and decrypt
the LTPA keys during export and import of the keys. Remember this password because you enter it
again when the keys from this cell are exported to another cell.

3. Enter a positive integer value in the Timeout field. This timeout value refers to how long an LTPA token
is valid in minutes. The token contains this expiration time so that any server that receives the token
can verify that the token is valid before proceeding further. When the token expires, the user is
prompted to log in. An optimal value for this field depends on your configuration; there is no
recommended time. The default value is 120 minutes.

4. Click Apply or OK. The LTPA configuration is now set.
5. Complete the information in the Global Security panel and press OK. When OK or Apply is clicked in

the Global Security panel the LTPA keys are generated automatically the first time, and therefore, you
should not generate the keys manually.

Steps for selecting ICSF as the authentication mechanism

Integrated Cryptographic Services Facility (ICSF) requires the Cryptographic Coprocessor features of the
zSeries processor to be enabled and active. You must have ICSF configured and running on your
processor before selecting ICSF as your authentication mechanism.

Note: In future releases, IBM intends to deprecate the ICSF authentication mechanism. It is
recommended that you migrate to LTPA. For more information on LTPA, see [‘Lightweight Third|
[Party Authentication” on page 227

You need to start the Administrative Console by specifying URL:
http://server_hostname:9060/1bm/console.

Perform the following steps to select ICSF as the authenication mechanism for this server.
1. Click Security > Global security. Under Authentication, click Authentication mechanisms > ICSF.

2. In the Encryption cryptographic key field, specify the label of the cryptographic key to use for single
signon (SSO) tokens for Web applications and administrative security when using the Simple Object
Access Protocol (SOAP) HTTP connector.

3. Enter a positive integer value in the Timeout field. Specifies the time period in which an ICSF token
expires. Verify that this time period is longer than the cache time-out that is configured in the Global
Security panel.

4. Click Apply or OK. The ICSF configuration is now set.

Configuring authentication mechanisms

Configure authentication mechanisms by clicking Authentication Mechanisms under Security > Global

security in the administrative console.

» If you are using Simple WebSphere Authentication Mechanism (SWAM), no setup is needed. Follow the
instructions in [‘Configuring Lightweight Third Party Authentication” on page 228| to set up Lightweight
Third Party Authentication (LTPA).

* For LTPA, follow the steps in |“Configuring single signon” on page 240| for most situations. If trust
association is required, follow the steps in[‘Configuring trust association interceptors” on page 238 .|

Related reference

|“Lightweight Third Party Authentication settings” on page 231|
Use this page to configure Lightweight Third Party Authentication (LTPA) settings.

226 1BM WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

Simple WebSphere authentication mechanism

The Simple WebSphere authentication mechanism (SWAM) is intended for simple, non-distributed, single
application server run-time environments. The single application server restriction is due to the fact that
SWAM does not support forwardable credentials. If a servlet or enterprise bean in application server
process 1, invokes a remote method on an enterprise bean living in another application server process 2,
the identity of the caller identity in process 1 is not transmitted to server process 2. What is transmitted is
an unauthenticated credential, which, depending on the security permissions configured on the EJB
methods, can cause authorization failures.

Because SWAM is intended for a single application server process, single signon (SSO) is not supported.

The SWAM authentication mechanism is suitable for simple environments, software development
environments, or other environments that do not require a distributed security solution.

Lightweight Third Party Authentication

Lightweight Third Party Authentication (LTPA) is intended for distributed, multiple application server and
machine environments. It supports forwardable credentials and single signon (SSO). LTPA can support
security in a distributed environment through cryptography. This support permits LTPA to encrypt, digitally
sign, and securely transmit authentication-related data, and later decrypt and verify the signature.

Application servers distributed in multiple nodes and cells can securely communicate using the LTPA
protocol. It also provides the single signon (SSO) feature wherein a user is required to authenticate only
once in a domain name system (DNS) domain and can access resources in other WebSphere Application
Server cells without getting prompted. The realm names on each system in the DNS domain are case
sensitive and must match identically.

For the Lightweight Directory Access Protocol (LDAP), the realm name is the host:port of the LDAP server.

The LTPA protocol uses cryptographic keys (LTPA keys) to encrypt and decrypt user data that passes
between the servers. These keys need to be shared between the different cells for the resources in one
cell to access resources in other cells (assuming that all the cells involved use the same LDAP or custom
registry).

When using LTPA, a token is created with the user information and an expiration time and is signed by the
keys. The LTPA token is time sensitive. All product servers participating in a protection domain must have
their time, date, and time zone synchronized. If not, LTPA tokens appear prematurely expired and cause
authentication or validation failures.

This token passes to other servers, in the same cell or in a different cell through cookies (for Web
resources when SSO is enabled).

If the receiving servers share the same keys as the originating server, the token can be decrypted to
obtain the user information, which then is validated to make sure it has not expired and the user
information in the token is valid in its registry. On successful validation, the resources in the receiving
servers are accessible after the authorization check.

All of the WebSphere Application Server processes in a cell (cell, nodes, application servers) share the
same set of keys. If key sharing is required between different cells, export them from one cell and import
them to the other. For security purposes, the exported keys are encrypted with a user-defined password.
This same password is heeded when importing the keys into another cell.

WebSphere Application Server, Network Deployment supports both the LTPA and the Integrated
Cryptographic Services Facility (ICSF) protocols.

Chapter 12. Administering security 227

When security is enabled for the first time with LTPA, configuring LTPA is normally the initial step
performed.

LTPA requires that the configured user registry be a centrally shared repository such as LDAP or a
Windows domain type registry so that users and groups are the same regardless of the machine.

The following table summarizes the authentication mechanism capabilities and user registries with which
LTPA can work.

Forwardable SSO LocalOS User LDAP User Custom User
Credentials Registry Registry Registry
LTPA Yes Yes Yes Yes Yes
ICSF Yes Yes Yes Yes Yes

Related concepts

[“Trust associations” on page 234

Trust association enables the integration of IBM WebSphere Application Server security and third-party
security servers. More specifically, a reverse proxy server can act as a front-end authentication server
while the product applies its own authorization policy onto the resulting credentials passed by the proxy
server.

With single signon (SSO) support, Web users can authenticate once when accessing both WebSphere
Application Server resources, such as HTML, JavaServer Pages (JSP) files, servlets, enterprise beans,
and Lotus Domino resources, such as documents in a Domino database, or accessing resources in
multiple WebSphere Application Server domains.

Related tasks

[‘Configuring Lightweight Third Party Authentication’]
Related reference

[‘Supported directory services” on page 286

[‘Lightweight Third Party Authentication settings” on page 231|
Use this page to configure Lightweight Third Party Authentication (LTPA) settings.

[‘Lightweight Directory Access Protocol settings” on page 276|
Use this page to configure Lightweight Directory Access Protocol (LDAP) settings when users and
groups reside in an external LDAP directory.

[‘Advanced Lightweight Directory Access Protocol user registry settings” on page 278|

Use this page to configure the advanced Lightweight Directory Access Protocol (LDAP) user registry
settings when users and groups reside in an external LDAP directory.

[‘Identity assertion” on page 488|

Identity assertion is the invocation credential that is asserted to the downstream server.

|“Security: Resources for learning” on page 25|

Configuring Lightweight Third Party Authentication

The following steps are needed to configure Lightweight Third Party Authentication (LTPA) when setting up
security for the first time:

1. Access the administrative console by typing http://localhost:port_number/ibm/console in a Web
browser. Port 9060 is the default port number for accessing the administrative console. During
installation, however, you might have specified a different port number. Use the appropriate port
number.

2. Click Security > Global security.
3. Under Authentication, click Authentication mechanisms > LTPA.

228 BM WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

Enter the password and confirm it in the password fields. This password is used to encrypt and decrypt
the LTPA keys during export and import of the keys. Remember this password because you enter it
again when the keys from this cell are exported to another cell.

Enter a positive integer value in the Timeout field. This timeout value refers to how long an LTPA
token is valid in minutes. The token contains this expiration time so that any server that receives the
token can verify that the token is valid before proceeding further.

When the token expires, the user is prompted to log in.

When the token expires, the request is rejected and the user must log in again.

An optimal value for this field depends on your configuration. The default value is 30 minutes.
Optional: In the Key file name field, specify the name of the file that is used when you import or
export keys. You can use this field in conjunction with the Import keys and Export keys buttons at the
top of the panel.

Click Apply or OK. The LTPA configuration is now set. Do not generate the LTPA keys in this step
because they are automatically generated later. Proceed with the rest of the steps required to enable
security, starting with single signon (SSO) (if SSO is required).

Complete the information in the Global Security panel and click OK. The LTPA keys are generated
automatically the first time. Do not generate the keys manually.

The previous steps configure LTPA by setting passwords that generate LTPA keys.

After configuring LTPA, complete the following steps to work with your key files:

1.

5.

2.
3.
4

Generate key files|
Export key files|
Import key files
If you are enabling security, make sure that you complete the remaining steps starting with enabling
SSO.

If you generated a new set of keys or imported a new set of keys, verify that the keys are saved by
clicking Save at the top of the panel. Because LTPA authentication uses time sensitive tokens, verify
that the time, date, and time zone are synchronized among all product servers that are participating in
the protection domain. If the clock skew is too high between servers, the LTPA token appears
prematurely expired and causes authentication or validation failures.

Related concepts

[‘User registries” on page 263

Information about users and groups reside in a user registry.

With single signon (SSO) support, Web users can authenticate once when accessing both WebSphere
Application Server resources, such as HTML, JavaServer Pages (JSP) files, servlets, enterprise beans,
and Lotus Domino resources, such as documents in a Domino database, or accessing resources in
multiple WebSphere Application Server domains.

[‘Trust associations” on page 234

Trust association enables the integration of IBM WebSphere Application Server security and third-party
security servers. More specifically, a reverse proxy server can act as a front-end authentication server
while the product applies its own authorization policy onto the resulting credentials passed by the proxy
server.

Related tasks

[‘Configuring global security” on page 184

Configuring Lightweight Third Party Authentication keys

Generating keys:

Lightweight Third Party Authentication (LTPA) keys are automatically generated when a password change
is detected. The first time that you set the LTPA password, as part of enabling security, the LTPA keys are

Chapter 12. Administering security 229

automatically generated after OK or Apply is clicked in the LTPA panel. You do not have to click Generate
Keys in this situation. Complete the following steps in the administrative console to generate a new set of
LTPA keys:

1. Access the administrative console by typing http://localhost:9060/ibm/console in a Web browser.

2. Verify that all the WebSphere Application Server processes are running (cell, nodes, and all of the
application servers). If any of the servers are down at the time of key generation and then brought
back up later, these servers might contain old keys. Copy the new set of keys to these servers to bring
them back up.

3. Click Security > Global security. Under Authentication, click Authentication mechanisms > LTPA.

4. Click Generate Keys if you want to use the existing password. This action generates a new set of
keys that are encrypted with the same password as the old set of keys. Regardless of the password
change, a new set of keys is generated when you click Generate Keys. This new set of keys is not
propagated to the run time unless saved; save the files immediately.

5. Enter the new password and confirm it, to use a new password to generate keys. Click OK or Apply.
A new set of keys is generated. A message indicating that a new set of keys is generated displays on
the console. Do not click Generate Keys. These new keys are propagated to the run time after you
save them.

6. Click Save to save the keys. After a new set of keys is generated and saved, the generated keys are
not used in the configuration until the WebSphere Application Server is restarted. In a Deployment
Manager environment the node agents and application servers must also be recycled to accept the
new keys. If any of the node agents are down, run a manual file synchronization utility from the node
agent machine to synchronize the security configuration from the deployment manager. The next
sections describe the process of exporting and importing the keys.

Exporting keys:

To support single signon (SSO) in WebSphere Application Server across multiple WebSphere Application
Server domains or cells, share the LTPA keys and the password among the domains. Make sure that the
time on the domains is similar to prevent the tokens from appearing as expired between the cells. You can
use Export Keys to export the LTPA keys to other domains or cells. Complete the following steps in the
administrative console to export key files for LTPA:

1. Access the administrative console by typing http://Tocalhost:9060/ibm/console in a Web browser.
2. Click Security > Global security. Under Authentication, click Authentication mechanisms > LTPA.

3. In the Key file name field, enter the full path of a file for key storage. This file needs write
permissions.

4. Click Export Keys. A file is created with the LTPA keys. Exporting keys fails if a new set of keys is
generated or imported and not saved prior to exporting. To avoid failure, make sure that you save the
new set of keys (if any) prior to exporting them.

5. Click Save to save the configuration.
Importing keys:

To support SSO in WebSphere Application Server across multiple WebSphere Application Server domains
or cells, share the LTPA keys and the password among the domains. You can use Import Keys to import
the LTPA keys from other domains. Verify that key files are exported from one of the cells involved, into a
file. Complete the following steps in the administrative console to import key files for LTPA.

After a new set of keys is generated and saved, the generated keys are not used in the configuration until
the WebSphere Application Server is restarted. In a Deployment Manager environment, the node agents
and application servers must also be recycled to accept the new keys. If any of the node agents are down,
run a manual file synchronization utility from the node agent machine to synchronize the security
configuration from the deployment manager.

1. Access the administrative console by typing http://localhost:9060/ibm/console in a Web browser.

230 1BM WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

2. Click Security > Global security. Under Authentication, click Authentication mechanisms > LTPA.

3. Change the password in the password fields to match the password in the cell from which you are
importing the keys.

4. Click Save to save the new set of keys in the repository. This step is important to complete before

importing the keys. If the password and the keys do not match, the servers fail. If the servers fail, turn
off security and redo these steps.

5. In the Key file name field, enter the full path of a file for key storage. This file needs read permissions.
6. Click Import Keys. The keys are now imported into the system.

7. Click Save to save the new set of keys in the repository. It is important to save the new set of keys to
match the new password so that no problems are encountered starting the servers later.

Lightweight Third Party Authentication settings
Use this page to configure Lightweight Third Party Authentication (LTPA) settings.

To view this administrative console page, complete the following steps:
1. Click Security > Global security.
2. Under Authentication, click Authentication mechanisms > LTPA.

If you are configuring security for the first time, only the password is required. After the password is
entered, click Apply. Under Additional Properties, click Single signon (SSO) and enter the domain name.
Make sure that SSO is enabled. Click Apply. In the Global security panel under Security > Global
security, click Custom Properties. A list of security properties is displayed. Click the
control_region_security_enable_trusted_applications property. On the new window, change the Value
field from false to true, and click Apply.

To complete the security setup, make sure that the appropriate registry is set up and click Apply from the
Global security panel. When security is enabled and any of these properties change, go to the Global
security panel under Security > Global security and click Apply to validate the changes.

Related tasks

[Administrative console buttons|
This page describes the button choices that are available on various pages of the administrative
console, depending on which product features you enable.

[Administrative console scope settings|

Use this page to specify the level at which a resource is visible on the administrative console panel. A
resource can be visible in the administrative console collection table at the cell, node, cluster, or server
scope. By changing the value for Scope you can see other variables that apply to a resource and
might change the contents of the collection table.

[Administrative console preference settings|
Use the preference settings to specify how you want information displayed on an administrative
console page.

Related reference

|Administrative console page features|
This topic provides information about the basic elements of an administrative console page, such as
the various tabs.

Generate Keys:
Specifies whether the server generates new Lightweight Third Party Authentication (LTPA) keys.
When security is turned on for the first time with LTPA as the authentication mechanism, the LTPA keys

are automatically generated with the password entered in the panel. If you need a new set of keys to
generate using the previously set password, click Generate Keys. If a new password is used, do not click

Chapter 12. Administering security 231

this option. After the new password is entered and OK or Apply is clicked, a new set of keys is generated.
A new set of generated keys is not used until you save them.

Import Keys:
Specifies whether the server imports new LTPA keys.

To support single signon (SSO) in the WebSphere product across multiple WebSphere domains (cells),
share the LTPA keys and the password among the domains. You can use the Import Keys option to
import the LTPA keys from other domains. The LTPA keys are exported from one of the cells to a file. To
import a new set of LTPA keys, enter the appropriate password, click OK and click Save. Then, enter the
directory location where the LTPA keys are located prior to clicking Import keys. Do not click OK or
Apply, but save the settings.

Export Keys:
Specifies whether the server exports LTPA keys.

To support single signon (SSO) in the WebSphere product across multiple WebSphere Application Server
domains (cells), share the LTPA keys and the password among the domains. Use the Export Keys option
to export the LTPA keys to other domains.

To export the LTPA keys, make sure that the system is running with security enabled and is using LTPA.
Enter the file name in the Key file name field and click Export Keys. The encrypted keys are stored in
the specified file.

Password:

Specifies the password to encrypt and decrypt the LTPA keys. Use this password when importing these
keys into other WebSphere Application Server administrative domain configurations (if any) and when
configuring SSO for a Lotus Domino server.

After the keys are generated or imported, they are used to encrypt and decrypt the LTPA token. Whenever

the password is changed, a new set of LTPA keys are automatically generated when you click OK or
Apply. The new set of keys is used after the configuration changes are saved.

Data type String

Confirm password:
Specifies the confirmed password used to encrypt and decrypt the LTPA keys.

Use this password when importing these keys into other WebSphere Application Server administrative
domain configurations (if any) and when configuring SSO for a Lotus Domino server.

Data type String

Timeout:

Specifies the time period in minutes at which an LTPA token expires. Verify that this time period is longer
than the cache timeout configured in the Global security panel.

Data type Integer
Units Minutes
Default 120

232 BM WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

Key file name:
Specifies the name of the file used when importing or exporting keys.

Enter a fully qualified key file name, and click Import Keys or Export Keys.

Data type String

Integrated Cryptographic Services Facility settings
Use this page to configure Integrated Cryptographic Services Facility (ICSF) settings.

To view this administrative console page, click Security > Global security. Under Authentication, click
Authentication mechanisms > ICSF.

Related tasks

[Administrative console buttons|

This page describes the button choices that are available on various pages of the administrative
console, depending on which product features you enable.

[Administrative console scope settings|

Use this page to specify the level at which a resource is visible on the administrative console panel. A
resource can be visible in the administrative console collection table at the cell, node, cluster, or server
scope. By changing the value for Scope you can see other variables that apply to a resource and
might change the contents of the collection table.

[Administrative console preference settings|

Use the preference settings to specify how you want information displayed on an administrative
console page.

Related reference

[Administrative console page features|

This topic provides information about the basic elements of an administrative console page, such as
the various tabs.

Timeout

Specifies the time period in which an ICSF token expires. Verify that this time period is longer than the
cache timeout that is configured in the Global Ssecurity panel.

Data type Integer
Units Minutes
Default 120

Encryption cryptographic key

Specifies the label of the cryptographic key to use for single signon tokens for Web applications and
administrative security when using the Simple Object Access Protocol (SOAP) HTTP connector.

You can create the cryptographic key in a Cryptographic Key Data Set (CKDS) accessible by ICSF. For
additional information, see the [z/0S Integrated Cryptographic Services Overview manual| or the [0S/390
|lntegrated Cryptographic Services Overview manualf

Data type String

Chapter 12. Administering security 233

http://www-1.ibm.com/servers/eserver/zseries/zos/bkserv/
http://www-1.ibm.com/servers/s390/os390/bkserv/
http://www-1.ibm.com/servers/s390/os390/bkserv/

Trust associations

Trust association enables the integration of IBM WebSphere Application Server security and third-party
security servers. More specifically, a reverse proxy server can act as a front-end authentication server
while the product applies its own authorization policy onto the resulting credentials passed by the proxy
server.

Demand for such an integrated configuration has become more compelling, especially when a single
product cannot meet all of the customer needs or when migration is not a viable solution. This article
provides a conceptual background behind the approach.

The demand is growing to provide customers with a trust association solution between IBM WebSphere
Application Server and other Web authentication servers that act as a reverse proxy security server (IBM
Tivoli Access Manager for e-business - WebSEAL, Caching Proxy) as an entry point to all service requests
(See the first figure). This implementation design intends to have the proxy server as the only exposed
entry point. The proxy server authenticates all requests that come in and provides coarse, granularity
junction point authorization.

In this setup, the WebSphere Application Server is used as a back-end server to further exploit its
fine-grained access control. The reverse proxy server passes the HTTP request to the WebSphere
Application Server that includes the credentials of the authenticated user. WebSphere Application Server
then uses these credentials to authorize the request.

Trust association model

The idea that WebSphere Application Server can support trust association implies that the product
application security recognizes and processes HTTP requests received from a reverse proxy server.
WebSphere Application Server and the proxy server engage in a contract in which the product gives its full
trust to the proxy server and the proxy server applies its authentication policies on every Web request that
is dispatched to WebSphere Application Server. This trust is validated by the interceptors that reside in the
product environment for every request received. The method of validation is agreed upon by the proxy
server and the interceptor.

Running in trust association mode does not prohibit WebSphere Application Server from accepting
requests that did not pass through the proxy server. In this case, no interceptor is needed for validating
trust. It is possible, however, to configure WebSphere Application Server to strictly require that all HTTP
requests go through a reverse proxy server. In this case, all requests that do not come from a proxy server
are immediately denied by WebSphere Application Server.

WebSphere Application Server supports the following trust association interceptor (TAl) interfaces:

com.ibm.ws.security.web.WebSealTrustAssociationinterceptor
This Tivoli TAI interceptor that implements WebSphere Application Serve TAl interface is provided
to support WebSEAL Version 4.1. If you plan to use WebSEAL 5.1, it is recommended that you
migrate to use the new com.ibm.ws.security.web. TAMTrustAssociationInterceptorPlus interceptor
which implements the new com.ibm.wsspi.security.tai. TrustAssociationInterceptor interface.

com.ibm.ws.security.web. TAMTrustAssociationinterceptorPlus
This TAI interceptor implementation that implements the new WebSphere Application Server
interface supports WebSphere Application Server Version 5.1.1 and later. The interface supports
WebSEAL Version 5.1, but does not support WebSEAL Version 4.1. For an explanation of security
attribute propagation, see |“Security attribute propagation” on page 373.|

234 BM WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

Trust association model

HTTP Request: Web application server
User ID and password in basic authentication data

Modified HTTP Request:
Trusted server ID and password in basic authentication data
and user ID in the HTTP request header

User
request

r

User ID

Modified A (4) Credentials
HTTP HTTP Web
request request authenticator

—_— Reverse —_—

(1) proxy (2)

— server —

Modified HTTP
R

w

@)

Trust

User ID
(6) (5) i
(using the old TAI interface) association
Requested Requested or Subject interceptor
resource resource (using the version 5.1.1

TAI++ interface)
if trust is valid

IBM WebSphere Application Server: WebSEAL Integration

The integration of WebSEAL and WebSphere Application Server security is achieved by placing the
WebSEAL server at the front-end as a reverse proxy server. See Figure 2. From a WebSEAL management
perspective, a junction is created with WebSEAL on one end, and the product Web server on the other
end. A junction is a logical connection created to establish a path from the WebSEAL server to another
server.

In this setup, a request for Web resources stored in a protected domain of the product is submitted to the
WebSEAL server where it is authenticated against the WebSEAL security realm. If the requesting user has
access to the junction, the request is transmitted to the WebSphere Application Server HTTP server
through the junction, and then to the application server.

Meanwhile, the WebSphere Application Server validates every request that comes through the junction to
ensure that the source is a trusted party. This process is referenced as validating the trust and it is
performed by a WebSEAL product-designated interceptor. If the validation is successful, the WebSphere
Application Server authorizes the request by checking whether the client user has the required
permissions to access the Web resource. If so, the Web resource is delivered to the WebSEAL server,
through the Web server, which then gives it to the client user.

WebSEAL server
The policy director delegates all of the Web requests to its Web component, the WebSEAL server. One of
the major functions of the server is to perform authentication of the requesting user. The WebSEAL server

consults a Lightweight Directory Access Protocol (LDAP) directory. It can also map the original user ID to
another user ID, such as when global single signon (GSO) is used.

Chapter 12. Administering security 235

Web server and
WebSphere Application Server

Web server

HTTP resource
HTTP request with
request credentials
> > Web server
WebSEAL Web server plug-in

— —

Requested Requested
resource resource

Security
application

Servlet engine KK
HitCount resources
servlet
Enterprise beans

container

HitCountBean

For successful authentication, the server plays the role of a client to WebSphere Application Server when
channeling the request. The server needs its own user ID and password to identify itself to WebSphere
Application Server. This identity must be valid in the security realm of WebSphere Application Server. The
WebSEAL server replaces the basic authentication information in the HTTP request with its own user ID
and password. In addition, WebSphere Application Server must determine the credentials of the requesting
client so that the application server has an identity to use as a basis for its authorization decisions. This
information is transmitted through the HTTP request by creating a header called iv-creds with the Tivoli
Access Manager user credentials as its value.

Authorization
and delegation

Trust
validation

Security
collaborator

HTTP server

The junction created in the WebSEAL server must get to the HTTP server that serves as the product front
end. However, the HTTP server is shielded from knowing that trust association is used. As far as it is
concerned, the WebSEAL product is just another HTTP client, and as part of its normal routines, it sends
the HTTP request to the product. The only requirement on the HTTP server is a Secure Sockets Layer
(SSL) configuration using server authentication only. This requirement protects the requests that flow
within the junction.

236 1BM WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

HTTP HTTP

request request
HTTP
> WebSEAL <
server
WebSphere Application Server
Servlet engine
i HTTP
H|tCqurt1t Web request Web
SENVE authenticator | collaborator
Enterprise beans
container
HTTP request
HitCountBean Authorization
WebSEAL policy
trust association
interceptor

Web collaborator

When trust association is enabled, the Web collaborator manages the interceptors that are configured in
the system. It loads and initializes these interceptors when you restart your servers. When a request is
passed to WebSphere Application Server by the Web server, the Web collaborator eventually receives the
request for a security check. Two actions must take place:

1. The request must be authenticated.

2. The request must be authorized.

The Web authenticator is called to authenticate the request by passing the HTTP request. If successful, a
good credential record is returned by the authenticator, which the Web collaborator uses to base its
authorization for the requested resource. If the authorization succeeds, the Web collaborator indicates to
WebSphere Application Server that the security check has succeeded and that the requested resource can
be served.

Web authenticator

The Web authenticator is asked by the Web collaborator to authenticate a given HTTP request. Knowing
that trust association is enabled, the task of the Web authenticator is to find the appropriate trust
association interceptor to direct the request for processing. The Web authenticator queries every available
interceptor. If no target interceptor is found, the Web authenticator processes the request as though trust
association is not enabled.

For an HTTP request sent by the WebSEAL server, the WebSEAL trust association interceptor replies with
a positive response to the Web authenticator. Subsequently, the interceptor is asked to validate its trust
association with the WebSEAL server and retrieve the Subject, using the new trust association interceptor
(TAI) interface, or user ID, using the old TAl interface, of the original user client.

Note: The new Trust Association Interceptor (TAl) interface,
com.ibm.wsspi.security.tai.TrustAssociationInterceptor, supports several new features and is

Chapter 12. Administering security 237

different from the existing com.ibm.websphere.security.TrustAssociationInterceptor interface.
Although the existing interface is still supported, it is being deprecated in a future release.

WebSphere Application Server Version 4 through WebSphere Application Server Version 5.x
support the com.ibm.websphere.security.TrustAssociationInterceptor.java interface.
WebSphere Application Server Version 6 supports the
com.ibm.wsspi.security.tai.TrustAssociationInterceptor interface

For more information, see |“Trust association interceptor support for Subject creation” on page 153.|

Trust association interceptor interface

The intent of the trust association interceptor interface is to have reverse proxy security servers (RPSS)
exist as the exposed entry points to perform authentication and coarse-grained authorization, while the

WebSphere Application Server enforces further fine-grained access control. Trust associations improve

security by reducing the scope and risk of exposure.

In a typical e-business infrastructure, the distributed environment of a company consists of Web
application servers, Web servers, legacy systems, and one or more RPSS, such as the Tivoli WebSEAL
product. Such reverse proxy servers, front-end security servers, or security plug-ins registered within Web
servers, guard the HTTP access requests to the Web servers and the Web application servers. While
protecting access to the Uniform Resource Identifiers (URIs), these RPSS perform authentication,
coarse-grained authorization, and request routing to the target application server.

Using the trust association interceptor feature

The following points further describe the benefits of the trust association interceptor (TAI) feature:

* RPSS can authenticate WebSphere Application Server users up front and send credential information
about the authenticated user to the product so that the product can trust the RPSS to perform
authentication and not prompt the end user for authentication data later. The strength of the trust
relationship between RPSS and the product is based on the criteria of trust association that is particular
to a RPSS and enforced through the TAI implementation. This level of trust might need relaxing based
on the environment. Be aware of the vulnerabilities in cases where the RPSS is not trusted, based on a
security technology.

* The end user credentials most likely are sent in a special format as part of the Hypertext Transfer
Protocol (HTTP) headers as in the case of RPSS authentication. The credentials can be a special
header or a cookie. The data that passes is implementation specific, and the TAI feature considers this
fact and accommodates the idea. The TAl implementation works with the credential data and returns a
Subject, using the new TAI interface, or a user ID, using the old TAI interface, that represents the end
user. WebSphere Application Server uses the information to enforce security policies.

Related tasks

[‘Configuring trust association interceptors’]

Related reference

|“Trust association interceptor support for Subject creation” on page 153|

Configuring trust association interceptors

These steps are required to use either a WebSEAL trust association interceptor or your own trust
association interceptor with a reverse proxy security server. WebSphere Application Server enables you to
use multiple trust association interceptors. The Application Server uses the first interceptor that can handle
the request.

238 BM WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

1. Access the administrative console by typing http://localhost:port_number/ibm/console in a Web
browser. Port 9060 is the default port number for accessing the administrative console. During
installation, however, you might have specified a different port number. Use the appropriate port
number.

Click Security > Global security.

Under Authentication, click Authentication mechanisms > LTPA.

Under Additional properties, click Trust association.

Select the Enable trust association option.

Under Additional properties, click Interceptors. The default value appears.

Verify that the appropriate trust association interceptors are listed. If you need to use a WebSEAL trust

association interceptor, see [‘Configuring single signon using the trust association interceptor” on page|

|251| or f‘Configuring single signon using trust association interceptor ++” on page 252/ If you are not

using WebSEAL and need to use a different interceptor, complete the following steps:

a. Select both the com.ibm.ws.security.web.WebSealTrustAssociationInterceptor and the
com.ibm.ws.security.web.TAMTrustAssociationInterceptorPlus class name and click Delete.

b. Click New and specify a trust association interceptor.

N o o koD

Enables trust association.
1. If you are enabling security, make sure that you complete the remaining steps for enabling security.
2. Save, stop and restart all of the product servers (deployment managers, nodes and Application
Servers) for the changes to take effect.
Related concepts

[‘Web component security” on page 158|

A Web module consists of servlets, JavaServer Pages (JSP) files, server-side utility classes, static Web
content (HTML, images, sound files, cascading style sheets (CSS)), and client-side classes (applets).
You can use development tools such as Rational Application Developer to develop a Web module and
enforce security at the method level of each Web resource.

[‘Trust associations” on page 234

Trust association enables the integration of IBM WebSphere Application Server security and third-party
security servers. More specifically, a reverse proxy server can act as a front-end authentication server
while the product applies its own authorization policy onto the resulting credentials passed by the proxy
server.

Related tasks

[‘Configuring global security” on page 184

[‘Configuring single signon using the trust association interceptor” on page 251|

[‘Configuring single signon using trust association interceptor ++” on page 252

Related reference

[‘Trust association interceptor support for Subject creation” on page 153|

Trust association settings

Trust association enables the integration of IBM WebSphere Application Server security and third-party
security servers. More specifically, a reverse proxy server can act as a front-end authentication server
while the product applies its own authorization policy onto the resulting credentials passed by the proxy
server. Use this page to configure trust association settings.

To view this administrative console page, complete the following steps:
1. Click Security > Global security.

2. Under Authentication, click Authentication mechanisms > LTPA.
3. Under Additional properties, click Trust association.

Chapter 12. Administering security 239

When security is enabled and any of these properties change, go to the Global security panel and click
Apply to validate the changes.

Enable trust association:

Specifies whether trust association is enabled.

Data type: Boolean
Default: Disable
Range: Enable or Disable

Trust association interceptor collection
Use this page to specify trust information for reverse security proxy servers.

To view this administrative console page, complete the following steps:
1. Click Security > Global security.

2. Under Authentication, click Authentication mechanisms > LTPA.
3. Under Additional Properties, click Trust association > Interceptors.

When security is enabled and any of these properties are changed, go to the Global security panel and
click Apply to validate the changes.

Related reference

[Administrative console buttons|

This page describes the button choices that are available on various pages of the administrative
console, depending on which product features you enable.

[Administrative console page features|

This topic provides information about the basic elements of an administrative console page, such as
the various tabs.

[Administrative console scope settings|

Use this page to specify the level at which a resource is visible on the administrative console panel. A
resource can be visible in the administrative console collection table at the cell, node, cluster, or server
scope. By changing the value for Scope you can see other variables that apply to a resource and
might change the contents of the collection table.

[Administrative console preference settings|

Use the preference settings to specify how you want information displayed on an administrative
console page.

Interceptor class name:

Specifies the trust association interceptor class name.

Data type
String

Default
com.ibm.ws.security.web.WebSealTrustAssociationInterceptor

Configuring single signon

With single signon (SSO) support, Web users can authenticate once when accessing Web resources
across multiple WebSphere Application Servers. Form login mechanisms for Web applications require that
SSO is enabled.

SSO is supported when Lightweight Third Party Authentication (LTPA) is the authentication mechanism.

240 BM WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

When SSO is enabled, a cookie is created containing the LTPA token and inserted into the HTTP
response. When the user accesses other Web resources in any other WebSphere Application Server
process in the same domain name service (DNS) domain, the cookie is sent in the request. The LTPA
token is then extracted from the cookie and validated. If the request is between different cells of
WebSphere Application Servers, you must share the LTPA keys and the user registry between the cells for
SSO to work. The realm names on each system in the SSO domain are case sensitive and must match

identically.

For the Lightweight Directory Access Protocol (LDAP) the realm name is the host:port realm name of the
LDAP server. The LTPA authentication mechanism requires that you enable SSO if any of the Web
applications have form login as the authentication method.

Because single signon is a subset of LTPA, it is recommended that you read [‘Lightweight Third Party|

IAuthentication” on page 227| for more information.

When you enable security attribute propagation, the following cookies are added to the response:

LtpaToken

The LtpaToken is used for interoperating with previous releases of WebSphere Application Server.
This token contains the authentication identity attribute only.

LtpaToken2

LtpaToken2 contains stronger encryption and enables you to add multiple attributes to the token.
This token contains the authentication identity and additional information such as the attributes
used for contacting the original login server and the unique cache key for looking up the Subject
when considering more than just the identity in determining uniqueness.

For more information, see [‘Security attribute propagation” on page 373

Token type

Purpose

How to specify

LtpaToken only

This token type is used for the same
SSO behavior existing in WebSphere
Application Server Version 5.1 and
previous releases. Also, this token
type is interoperable with those
previous releases.

Disable the Web inbound security
attribute propagation option located
in the SSO configuration panel in the
administrative console. To access this
panel, complete the following steps:

1. Click Security > Global security.

2. Under Authentication, click
Authentication mechanisms >
LTPA.

3. Under Additional properties, click
Single signon (SSO).

LtpaToken2 only

This token type is used for Web
inbound security attribute propagation
and uses the AES, CBC, PKCS5
padding encryption strength (128 bit
key size). However, this token type is
not interoperable with releases prior
to WebSphere Application Server
Version 5.1.1. The token type allows
for multiple attributes specified in the
token (mostly containing information
to contact the original login server).

Enable the Web inbound security
attribute propagation option in the
SSO configuration panel within the
administrative console. Disable the
Interoperability mode option in the
SSO configuration panel within the
administrative console. To access this
panel, complete the following steps:

1. Click Security > Global security.

2. Under Authentication, click
Authentication mechanisms >
LTPA.

3. Under Additional properties, click
Single signon (SSO).

Chapter 12. Administering security 241

Token type Purpose How to specify

LtpaToken and LtpaToken2 These tokens together support both Enable the Web inbound security
of the previous two options. The attribute propagation option in the
token types are interoperable with SSO configuration panel within the
releases prior to WebSphere administrative console. Enable the
Application Server Version 5.1.1 Interoperability mode option in the

because LtpaToken is present. The SSO configuration panel within the
security attribute propagation function |administrative console. To access this
is enabled because the LtpaToken2 is | panel, complete the following steps:

present. 1. Click Security > Global security.

2. Under Authentication, click
Authentication mechanisms >
LTPA.

3. Under Additional properties, click
Single signon (SS0).

The following steps are required to configure SSO for the first time.

1.

Access the administrative console by typing http://localhost:port _number/ibm/console in a Web
browser. Port 9060 is the default port number for accessing the administrative console. During
installation, however, you might have specified a different port number. Use the appropriate port
number.

2. Click Security > Global security .

3. Under Authentication, click Authentication mechanisms > LTPA.

4. Under Additional properties, click Single signon (SSO).

5. Click the Enabled option if SSO is disabled. After you click Enabled, make sure that you complete
the remaining steps to enable security.

6. Click the Requires SSL option if all of the requests are expected to use HTTPS.

7. Enter the fully-qualified domain names in the Domain name field where SSO is effective. The cookie
is sent for all of the servers that are contained within the domains that you specify in this field. If you
specify domain names, they must be fully qualified. If the domain name is not fully qualified,
WebSphere Application Server does not set a domain name value for the LtpaToken cookie and SSO
is valid only for the server that created the cookie.

You can configure the Domain name field using any of the following values:

Domain name value type Example

Blank

Single domain name austin.ibm.com

UseDomainFromURL UseDomainFromURL

Multiple domain names austin.ibm.com;raleigh.ibm.com

Multiple domain names and UseDomainFromURL « austin.ibm.com;raleigh.ibm.com

* UseDomainFromURL
If you specify the UseDomainFromURL, WebSphere Application Server sets the SSO domain name
value to the domain of the host that makes the request. For example, if an HTTP request comes from
serveri.raleigh.ibm.com, WebSphere Application Server sets the SSO domain name value to
raleigh.ibm.com.
Tip: The value, UseDomainFromURL, is case insensitive. You can type usedomainfromurl to use this
value.
When you specify multiple domains, you can use the following delimiters: a semicolon (;), a space (),
a comma (,), or a pipe (I). WebSphere Application Server searches the specified domains in order
242 BM WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

from left to right. Each domain is compared with the host name of the HTTP request until the first
match is located. For example, if you specify ibm.com; austin.ibm.com and a match is found in the
ibm.com domain first, WebSphere Application server does not continue to search for a match in the
austin.ibm.com domain. However, if a match is not found in either the ibm.com or austin.ibm.com
domains, then WebSphere Application Server does not set a domain for the LtpaToken cookie.

For more information, see |“Single signon settings” on page 244.|

8. Optional: Enable the Interoperability mode option if you want to allow SSO connections in
WebSphere Application Server version 5.1.1 or later to interoperate with previous versions of the
application server. This option sets the old-style LtpaToken into the response so it can be sent to
other servers that work only with this token type. However, this option applies only when the Web
inbound security attribute propagation option is enabled. In this case, both the LtpaToken and
LtpaToken2 are added to the response. Otherwise, only the LtpaToken2 is added to the response. If
the Web inbound security attribute propagation option is disabled, then only the LtpaToken is
added to the response.

9. Optional: Enable the Web inbound security attribute propagation option if you want information
added during the login at a specific front-end server to propagate to other front-end servers. The SSO
token does not contain any sensitive attributes, but does understand where the original login server
exists in cases where it needs to contact that server to retrieve serialized information. It also contains
the cache look up value for finding the serialized information in DynaCache, if both front-end servers
are configured in the same DRS replication domain. For more information, see [‘Security attribute]
[propagation” on page 373

Important: If the following statements are true, it is recommended that you disable the Web
inbound security attribute propagation option for performance reasons:

* You do not have any specific information added to the Subject during a login that
cannot be obtained at a different front-end server.

* You did not add custom attributes to the PropagationToken using WSSecurityHelper
application programming interfaces (APIs).

If you find you are missing custom information in the Subject, re-enable the Web
inbound security attribute propagation option to see if the information is propagated
successfully to other front-end application servers. If you disable SSO, but use a trust
association interceptor instead, you might still need to enable the Web inbound security
attribute propagation option if you want to retrieve the same Subject generated at
different front-end servers.

10. Click OK.

For the changes to take effect, save, stop, and restart all the product servers (deployment managers,
nodes and Application Servers).

Related concepts

[‘Web component security” on page 158|

A Web module consists of servlets, JavaServer Pages (JSP) files, server-side utility classes, static Web
content (HTML, images, sound files, cascading style sheets (CSS)), and client-side classes (applets).
You can use development tools such as Rational Application Developer to develop a Web module and
enforce security at the method level of each Web resource.

[“Lightweight Third Party Authentication” on page 227

Lightweight Third Party Authentication (LTPA) is intended for distributed, multiple application server and
machine environments. It supports forwardable credentials and single signon (SSO). LTPA can support
security in a distributed environment through cryptography. This support permits LTPA to encrypt,
digitally sign, and securely transmit authentication-related data, and later decrypt and verify the
signature.

[‘Security attribute propagation” on page 373

Security attribute propagation enables WebSphere Application Server to transport security attributes
(authenticated Subject contents and security context information) from one server to another in your

Chapter 12. Administering security 243

configuration. WebSphere Application Server might obtain these security attributes from either an
enterprise user registry, which queries static attributes, or a custom login module, which can query
static or dynamic attributes. Dynamic security attributes, which are custom in nature, might include the
authentication strength used for the connection, the identity of the original caller, the location of the
original caller, the IP address of the original caller, and so on.

Related tasks

[‘Configuring Lightweight Third Party Authentication” on page 22§

Related reference

[‘Security: Resources for learning” on page 25|

Single signon settings
Use this page to set the configuration values for single signon (SSO).

To view this administrative console page, complete the following steps:

1. Click Security > Global Security.

2. Under Authentication mechanisms, click LTPA.

3. Under Additional properties, click Single signon (SSO).
Related reference
[Administrative console buttons|
This page describes the button choices that are available on various pages of the administrative
console, depending on which product features you enable.
[Administrative console page features|
This topic provides information about the basic elements of an administrative console page, such as
the various tabs.
[Administrative console scope settings|
Use this page to specify the level at which a resource is visible on the administrative console panel. A
resource can be visible in the administrative console collection table at the cell, node, cluster, or server
scope. By changing the value for Scope you can see other variables that apply to a resource and
might change the contents of the collection table.
[Administrative console preference settings|
Use the preference settings to specify how you want information displayed on an administrative
console page.

Enabled:
Specifies that the single signon function is enabled.
Web applications that use J2EE FormLogin style login pages (such as the WebSphere Application Server

administrative console) require single signon (SSO) enablement. Only disable SSO for certain advanced
configurations where LTPA SSO-type cookies are not required.

Data type: Boolean
Default: Enabled
Range: Enabled or Disabled

Requires SSL:

Specifies that the single signon function is enabled only when requests are made over HTTPS Secure
Sockets Layer (SSL) connections.

Data type: Boolean
Default: Disable
Range: Enable or Disable

244 Bm WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

Domain name:
Specifies the domain name (.ibm.com, for example) for all single signon hosts.

WebSphere Application Server uses all the information after the first period, from left to right, for the
domain names. If this field is not defined, the Web browser defaults the domain name to the host name
where the Web application is running. Also, single signon is then restricted to the application server host
name and does not work with other application server host names in the domain.

You can specify multiple domains separated by a semicolon (;), a space (), a comma (,), or a pipe (I).
Each domain is compared with the host name of the HTTP request until the first match is located. For
example, if you specify ibm.com;austin.ibm.com and a match is found in the ibm.com domain first,
WebSphere Application server does not match the austin.ibm.com domain. However, if a match is not
found in either ibm.com or austin.ibm.com, then WebSphere Application Server does not set a domain for
the LtpaToken cookie.

If you specify UseDomainFromURL, WebSphere Application Server sets the SSO domain name value to the
domain of the host used in the URL. For example, if an HTTP request comes from
serverl.raleigh.ibm.com, WebSphere Application Server sets the SSO domain name value to
raleigh.ibm.com.

Tip: The UseDomainFromURL value is case insensitive. You can type usedomainfromurl to use this value.

Data type: String

Interoperability mode:
Specifies that an interoperable cookie is sent to the browser to support back-level servers.

In WebSphere Application Server, Version 6 and later, a new cookie format is needed by the security
attribute propagation functionality. When the interoperability mode flag is enabled, the server can send a
maximum of two single signon (SSO) cookies back to the browser. In some cases, the server just sends
the interoperable SSO cookie.

Web inbound security attribute propagation:

When Web inbound security attribution propagation is enabled, security attributes are propagated to
front-end application servers. When this option is disabled, the single signon (SSO) token is used to log in
and recreate the Subject from the user registry. If you disable this option, the Web inbound login module
functions the same as it did in previous releases.

If the application server is a member of a cluster and the cluster is configured with a distributed replication
service (DRS) domain, then propagation occurs. If DRS is not configured, then the SSO token contains the
originating server information. With this information the receiving server can contact the originating server
using an MBean call to get the original serialized security attributes.

Troubleshooting single signon configurations

This article describes common problems in configuring single signon (SSO) between a WebSphere
Application Server and a Domino server and suggests possible solutions.

* Failure to save the Domino Web SSO configuration document

The client must find Domino server documents for the participating SSO Domino servers. The Web
SSO configuration document is encrypted for the servers that you specify. The home server that is

Chapter 12. Administering security ~ 245

indicated by the client location record must point to a server in the Domino domain where the
participating servers reside. This pointer ensures that lookups can find the public keys of the servers.

If you receive a message stating that one or more of the participating Domino servers cannot be found,
then those servers cannot decrypt the Web SSO configuration document or perform SSO.

When the Web SSO configuration document is saved, the status bar indicates how many public keys
are used to encrypt the document by finding the listed servers, authors, and administrators in the
document.

» Failure of the Domino server console to load the Web SSO configuration document at Domino HTTP
server startup

During configuration of SSO, the server document is configured for Multi-Server in the Session
Authentication field. The Domino HTTP server tries to find and load a Web SSO configuration
document during startup. The Domino server console reports the following information if a valid
document is found and decrypted: HTTP: Successfully loaded Web SSO Configuration.

If a server cannot load the Web SSO configuration document, SSO does not work. In this case, a
server reports the following message: HTTP: Error Loading Web SSO configuration. Reverting to
single-server session authentication.

Verify that only one Web SSO Configuration document is in the Web Configurations view of the Domino
directory and in the $WebSSOConfigs hidden view. You cannot create more than one document, but
you can insert additional documents during replication.

If you can verify only one Web SSO Configuration document, consider another condition. When the
public key of the Server document does not match the public key in the ID file, this same error message
can display. In this case, attempts to decrypt the Web SSO configuration document fail and the error
message is generated.

This situation can occur when the ID file is created multiple times but the Server document is not
updated correctly. Usually, an error message is displayed on the Domino server console stating that the
public key does not match the server ID. If this situation occurs, then SSO does not work because the
document is encrypted with a public key for which the server does not possess the corresponding
private key.

To correct a key-mismatch problem:
1. Copy the public key from the server ID file and paste it into the Server document.
2. Create the Web SSO configuration document again.

» Authentication fails when accessing a protected resource.

If a Web user is repeatedly prompted for a user ID and password, SSO is not working because either
the Domino or the WebSphere Application Server security server cannot authenticate the user with the
Lightweight Directory Access Protocol (LDAP) server. Check the following possibilities:

— Verify that the LDAP server is accessible from the Domino server machine. Use the TCP/IP ping
utility to check TCP/IP connectivity and to verify that the host machine is running.

— Verify that the LDAP user is defined in the LDAP directory. Use the Idapsearch utility to confirm that
the user ID exists and that the password is correct. For example, you can run the following
command, entered as a single line:

% ldapsearch -D "cn=John Doe, ou=Rochester, o=IBM, c=US" -w mypassword

-h myhost.mycompany.com -p 389
-b "ou=Rochester, 0=IBM, c=US" (objectclass=x)

(The percent character (%) indicates the prompt and is not part of the command.) A list of directory

entries is expected. Possible error conditions and causes are contained in the following list:

- No such object: This error indicates that the directory entry referenced by either the user's
distinguished name (DN) value, which is specified after the -D option, or the base DN value, which
is specified after the -b option, does not exist.

- Invalid credentials: This error indicates that the password is invalid.

- Cannot contact the LDAP server: This error indicates that the host name or port specified for the
server is invalid or that the LDAP server is not running.

246 1BM WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

- An empty list means that the base directory specified by the -b option does not contain any
directory entries.

If you are using the user’s short name (or user ID) instead of the distinguished name, verify that the

directory entry is configured with the short name. For a Domino directory, verify the Short

name/UserlD field of the Person document. For other LDAP directories, verify the userid property of

the directory entry.

If Domino authentication fails when using an LDAP directory other than a Domino directory, verify the

configuration settings of the LDAP server in the Directory assistance document in the Directory

assistance database. Also verify that the Server document refers to the correct Directory assistance

document. The following LDAP values specified in the Directory Assistance document must match

the values specified for the user registry in the WebSphere administrative domain:

- Domain name

- LDAP host name

- LDAP port

- Base DN

Additionally, the rules defined in the Directory assistance document must refer to the base
distinguished name (DN) of the directory containing the directory entries of the users.

You can trace Domino server requests to the LDAP server by adding the following line to the server
notes.ini file:

webauth_verbose_trace=1

After restarting the Domino server, trace messages are displayed in the Domino server console as
Web users attempt to authenticate to the Domino server.

» Authorization failure when accessing a protected resource.

After authenticating successfully, if an authorization error message is displayed, security is not
configured correctly. Check the following possibilities:

For Domino databases, verify that the user is defined in the access-control settings for the database.

Refer to the Domino Administrative documentation for the correct way to specify the user’'s DN. For

example, for the DN cn=John Doe, ou=Rochester, 0=IBM, c=US, the value on the access-control list

must be set as John Doe/Rochester/IBM/US.

For resources protected by WebSphere Application Server, verify that the security permissions are

set correctly.

- If granting permissions to selected groups, make sure that the user attempting to access the
resource is a member of the group. For example, you can verify the members of the groups by
using the following Web site to display the directory contents:
Ldap://myhost.mycompany.com:389/ou=Rochester, 0=IBM, c=US??sub

- If you have changed the LDAP configuration information (host, port, and base DN) in a
WebSphere Application Server administrative domain since the permissions were set, the existing
permissions are probably invalid and need to be recreated.

» SSO failure when accessing protected resources.

If a Web user is prompted to authenticate with each resource, SSO is not configured correctly. Check
the following possibilities:

1.

Configure both the WebSphere Application Server and the Domino server to use the same LDAP
directory. The HTTP cookie used for SSO stores the full DN of the user, for example, cn=John Doe,
ou=Rochester, 0=IBM, c=US, and the domain name service (DNS) domain.

Define Web users by hierarchical names if the Domino Directory is used. For example, update the
User name field in the Person document to include names of this format as the first value: John
Doe/Rochester/IBM/US.

Specify the full DNS server name, not just the host name or TCP/IP address for Web sites issued to
Domino servers and WebSphere Application Servers configured for SSO. For browsers to send
cookies to a group of servers, the DNS domain must be included in the cookie, and the DNS
domain in the cookie must match the Web address. (This requirement is why you cannot use
cookies across TCP/IP domains.)

Chapter 12. Administering security ~ 247

4. Configure both Domino and the WebSphere Application Server to use the same DNS domain. Verify
that the DNS domain value is exactly the same, including capitalization. The DNS domain value is
found on the Configure Global Security Settings panel of the WebSphere Application Server
administrative console and in the Web SSO Configuration document of a Domino server. If you
make a change to the Domino Web SSO Configuration document, replicate the modified document
to all of the Domino servers participating in SSO.

5. Verify that the clustered Domino servers have the host name populated with the full DNS server
name in the Server document. By using the full DNS server name, Domino Internet Cluster Manager
(ICM) can redirect to cluster members using SSO. If this field is not populated, by default, ICM
redirects Web addresses to clustered Web servers by using the host name of the server only. It
cannot send the SSO cookie because the DNS domain is not included in the Web address. To
correct the problem:

a. Edit the Server document.
b. Click Internet Protocols > HTTP tab.
c. Enter the full DNS name of the server in the Host names field.

6. If a port value for an LDAP server was specified for a WebSphere Application Server administrative
domain, edit the Domino Web SSO configuration document and insert a backslash character (\) into
the value of the LDAP Realm field before the colon character (:). For example, replace
myhost.mycompany.com:389 with myhost.mycompany.com\:389.

Single signon using WebSEAL or the Tivoli Access Manager plug-in

for Web servers

Either Tivoli Access Manager WebSEAL or Tivoli Access Manager plug-in for Web servers can be used as
reverse proxy servers to provide access management and single signon (SSO) capability to WebSphere
Application Server resources. With such an architecture, either WebSEAL or the plug-in authenticates
users and forwards the collected credentials to WebSphere Application Server in the form of an IV Header.
Two types of single signon are available, the TAl interface and the new TAl interface, so named as both
use WebSphere Application Server trust association interceptors (TAls). With TAI, the end-user name is
extracted from the HTTP header and forwarded to embedded Tivoli Access Manager where it is used to
construct the client credential information and authorize the user. The difference with the new TAl interface
is that all user credential information is available in the HTTP header (not just user name). The new TAl is
the more efficient of the two solutions as an Lightweight Directory Access Protocol (LDAP) call is not
required as it is with TAI. TAI functionality is retained for backwards compatibility.

The following tasks need to be completed to enable single signon to WebSphere Application Server using
either WebSEAL or the plug-in for Web servers. These tasks assume that embedded Tivoli Access
Manager is configured for use.

1. [‘Creating a trusted user account in Tivoli Access Manager” on page 249

2. [Configuring WebSEAL for use with WebSphere Application Server’ on page 249 or [‘Configuring Tivoli
Access Manager plug-in for Web servers for use with WebSphere Application Server” on page 250

3. [Configuring single signon using the trust association interceptor” on page 251|or|[“Configuring single]
signon using trust association interceptor ++” on page 252

Related tasks

|“Creating a trusted user account in Tivoli Access Manager” on page 249|

[‘Configuring WebSEAL for use with WebSphere Application Server” on page 249

“Configuring Tivoli Access Manager plug-in for Web servers for use with WebSphere Application|
Server” on page 250]

“Configuring single signon using the trust association interceptor” on page 251|

“Configuring single signon using trust association interceptor ++” on page 252|

248 BM WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

Creating a trusted user account in Tivoli Access Manager

Tivoli Access Manager Trust Association Interceptors require the creation of a trusted user account in the
shared LDAP user registry. This is the ID and password that WebSEAL uses to identify itself to
WebSphere Application Server. To prevent potential vulnerabilities, do not use sec_master as the trusted
user account and ensure the password you use is unique and generated randomly. The trusted user
account should be used for the TAI or TAl++ only.

Use either the Tivoli Access Manager pdadmin command line utility or Web Portal Manager to create the
trusted user. For example, from the pdadmin command line:

pdadmin> user create webseal_userid webseal _userid DN firstname surname password
pdadmin> user modify webseal userid account-valid yes

“Configuring WebSEAL for use with WebSphere Application Server’| or[‘Configuring Tivoli Access Managed
plug-in for Web servers for use with WebSphere Application Server” on page 250|

Related concepts

[‘Single signon using WebSEAL or the Tivoli Access Manager plug-in for Web servers” on page 248
Either Tivoli Access Manager WebSEAL or Tivoli Access Manager plug-in for Web servers can be used
as reverse proxy servers to provide access management and single signon (SSO) capability to
WebSphere Application Server resources. With such an architecture, either WebSEAL or the plug-in
authenticates users and forwards the collected credentials to WebSphere Application Server in the form
of an IV Header. Two types of single signon are available, the TAl interface and the new TAl interface,
so named as both use WebSphere Application Server trust association interceptors (TAls). With TAI,
the end-user name is extracted from the HTTP header and forwarded to embedded Tivoli Access
Manager where it is used to construct the client credential information and authorize the user. The
difference with the new TAIl interface is that all user credential information is available in the HTTP
header (not just user name). The new TAl is the more efficient of the two solutions as an Lightweight
Directory Access Protocol (LDAP) call is not required as it is with TAIl. TAI functionality is retained for
backwards compatibility.

Configuring WebSEAL for use with WebSphere Application Server

A junction must be created between WebSEAL and WebSphere Application Server. This junction will carry
the iv-creds (for TAl++) or iv-user (for TAl) and the HTTP basic authentication headers with the request.
While WebSEAL can be configured to pass the end user identity in other ways, the iv-creds header is the
only one supported by the TAl++ and iv-user the only one supported by TAI.

We recommend that communications over the junction use SSL for increased security. Setting up SSL
across this junction requires that you configure the HTTP Server used by WebSphere Application Server,
and WebSphere Application Server itself, to accept inbound SSL traffic and route it correctly to WebSphere
Application Server. This requires importing the necessary signing certificates into the WebSEAL certificate
keystore, and possibly also the HTTP Server certificate keystore.

Create the junction between WebSEAL and the WebSphere Application Server using the -c iv-creds
option for TAl++ and -c iv-user for TAl. For example (commands are entered as one line):

TAl++

server task webseald-server create -t ssl -b supply -c iv-creds
-h host_name -p websphere _app_port _number junction_name

TAI

server task webseald-server create -t ssl -b supply -c iv-user
-h host_name -p websphere_app_port_number junction_name

Notes:

Chapter 12. Administering security 249

1. If warning messages are displayed about the incorrect setup of certificates and key databases,
delete the junction, correct problems with the key databases and re-create the junction.

2. The junction can be created as -t tcp or -t ss1 depending on your requirements.

For single signon to WebSphere Application Server the SSO password must be set in WebSEAL. To set

the password, complete the following steps:

1. Edit the WebSEAL configuration file, webseal install_directory/etc/webseald-default.conf and set
the following parameter, basicauth-dummy-passwd=webseal_userid_passwd. Where
webseal userid passwd is the SSO password for the trusted user account set in|“Creating a trusted|
luser account in Tivoli Access Manager” on page 249

2. Restart WebSEAL.

For more details and options about how to configure junctions between WebSEAL and WebSphere
Application Server, including other options for specifying the WebSEAL server identity, refer to the Tivoli
Access Manager WebSEAL Administration Guide as well as to the documentation for the HTTP Server
you are using with your WebSphere Application Server. Tivoli Access Manager documentation is available
at http://publib.boulder.ibm.com/tividd/td/tdprodlist.htmi|

Related concepts

[‘Single signon using WebSEAL or the Tivoli Access Manager plug-in for Web servers” on page 248
Either Tivoli Access Manager WebSEAL or Tivoli Access Manager plug-in for Web servers can be used
as reverse proxy servers to provide access management and single signon (SSO) capability to
WebSphere Application Server resources. With such an architecture, either WebSEAL or the plug-in
authenticates users and forwards the collected credentials to WebSphere Application Server in the form
of an IV Header. Two types of single signon are available, the TAl interface and the new TAl interface,
so named as both use WebSphere Application Server trust association interceptors (TAls). With TAI,
the end-user name is extracted from the HTTP header and forwarded to embedded Tivoli Access
Manager where it is used to construct the client credential information and authorize the user. The
difference with the new TAl interface is that all user credential information is available in the HTTP
header (not just user name). The new TAl is the more efficient of the two solutions as an Lightweight
Directory Access Protocol (LDAP) call is not required as it is with TAIL. TAI functionality is retained for
backwards compatibility.

Related tasks
[‘Creating a trusted user account in Tivoli Access Manager” on page 249

Configuring Tivoli Access Manager plug-in for Web servers for use
with WebSphere Application Server

Tivoli Access Manager plug-in for Web servers can be used as a security gateway for your protected
WebSphere Application resources. With such an arrangement the plug-in authorizes all user requests
before passing the credentials of the authorized user to WebSphere Application Server in the form of an
iv-creds header. Trust between the plug-in and WebSphere Application Server is established through use
of basic authentication headers containing the single signon (SSO) user password.

In the following example Tivoli Access Manager plug-in for Web Servers Version 5.1 configuration shows
IV headers configured for post-authorization processing and basic authentication configured as the
authentication mechanism and for post-authorization processing. After a request has been authorized the
basic authentication header is removed from the request (strip-hdr = always) and a new one added
(add-hdr = supply). Included in this new header is the password set when the SSO user was created in
|“Creating a trusted user account in Tivoli Access Manager” on page 249.| This password needs to be
specified in the supply-password parameter and is passed in the newly created header. This basic
authentication header enables trust between WebSphere Application Server and the plug-in.

250 BM WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

http://publib.boulder.ibm.com/tividd/td/tdprodlist.html

An iv-creds header is also added (generate = iv-creds) which contains the credential information of the
user passed onto WebSphere Application Server. Note also that session cookies are used to maintain
session state.

[common-modules]
authentication = BA
session = session-cookie
post-authzn = BA
post-authzn = iv-headers

[iv-headers]
accept = all
generate = iv-creds

[BA]

strip-hdr = always

add-hdr = supply

supply-password = sso_user_password

“Configuring single signon using the trust association interceptor’] or [‘Configuring single signon using trus{
association interceptor ++” on page 252|

Related concepts

[‘Single signon using WebSEAL or the Tivoli Access Manager plug-in for Web servers” on page 248
Either Tivoli Access Manager WebSEAL or Tivoli Access Manager plug-in for Web servers can be used
as reverse proxy servers to provide access management and single signon (SSO) capability to
WebSphere Application Server resources. With such an architecture, either WebSEAL or the plug-in
authenticates users and forwards the collected credentials to WebSphere Application Server in the form
of an IV Header. Two types of single signon are available, the TAl interface and the new TAI interface,
so named as both use WebSphere Application Server trust association interceptors (TAls). With TAI,
the end-user name is extracted from the HTTP header and forwarded to embedded Tivoli Access
Manager where it is used to construct the client credential information and authorize the user. The
difference with the new TAI interface is that all user credential information is available in the HTTP
header (not just user name). The new TAl is the more efficient of the two solutions as an Lightweight
Directory Access Protocol (LDAP) call is not required as it is with TAIL. TAI functionality is retained for
backwards compatibility.

Related tasks
[‘Creating a trusted user account in Tivoli Access Manager” on page 249

Configuring single signon using the trust association interceptor

The following steps are required when setting up security for the first time. Ensure that Lightweight Third
Party Authentication (LTPA) is the active authentication mechanism:

1. From the WebSphere Application Server console click Security > Global security.

2. Ensure that the Active authentication mechanism field is set to Lightweight Third Party
Authentication (LTPA). If not, set it and save your changes.

This task is performed to enable single signon using the trust association interceptor. The steps involve
setting up trust association and creating the interceptor properties.

1. From the WebSphere Application Server console, click Security > Global security.
Under Authentication mechanisms, click LTPA.

Under Additional properties, click Trust association.

Select the Enable trust association option.

Under Additional properties, click the Interceptors link.

ok

Chapter 12. Administering security 251

6. Click the com.ibm.ws.security.web.WebSealTrustAssociationlnterceptor link to use the WebSEAL
interceptor. This interceptor is the default.

7. Under Additional properties, click Custom Properties.
8. Click New to enter the property name and value pairs. Ensure the following parameters are set:

Table 9.

Option

Description

com.ibm.websphere.security.

trustassociation.types

Ensure that webseal is listed.

com.ibm.websphere.security.

webseal.loginId

The WebSEAL trusted user as created in [‘Creating a trusted user account in Tivolil
|Access Manager” on page 249| The format of the username is the short name
representation. This is a mandatory property. If it is not set in the WebSphere
Application Server then TAl initialization will fail.

com.ibm.websphere.security.

webseal.id

The iv-user header, which is com.ibm.websphere.security.webseal.id=iv-user

com.ibm.websphere.security.

webseal.hostnames

Do not set this property if using Tivoli Access Manager Plug-in for Web Servers.
The host names (case sensitive) that are trusted and expected in the request
header.

For example: com.ibm.websphere.security.webseal.hostnames=host1

This should also include the proxy host names (if any) unless the
com.ibm.websphere.security.webseal.ignoreProxy is set to true. A list of servers can
be obtained using the server list pdadmin command.

com. ibm.websphere.security.

webseal.ports

Do not set this property if using Tivoli Access Manager Plug-in for Web Servers.
The corresponding port number of the host names that are expected in the request
header. This should also include the proxy ports (if any) unless the
com.ibm.websphere.security.webseal.ignoreProxy is set to true. For example:
com.ibm.websphere.security.webseal.ports=80,443

com.ibm.websphere.security.

webseal.ignoreProxy

An optional property that if set to true or yes ignores the proxy host names and

ports in the IV header. By default this property is set to false.

9. Click OK.

10. Save configuration and logout.
11. Restart WebSphere Application Server.

Configuring single signon using trust association interceptor ++

The following steps are required when setting up security for the first time. Ensure that LTPA is the active

authentication mechanism:

1. From the WebSphere Application Server console, click Security > Global Security.

2. Ensure that the Active Authentication Mechanism field is set to Lightweight Third Party
Authentication (LTPA). Save your changes.

This task is performed to enable single signon using trust association interceptor ++. The steps involve
setting up trust association and creating the interceptor properties.

1. From the WebSphere Application Server console, click Security > Global security.

2B

Under Authentication, click Authentication mechanisms > LTPA

Under Additional properties, click Trust association.

Select the Enable Trust Association option.

Click the Interceptors link.

Click com.ibm.ws.security.web.TAMTrustAssociationinterceptorPlus to use the WebSEAL

interceptor. This interceptor is the default.

252

IBM WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

7. Click the Custom Properties link.
8. Click New to enter the property name and value pairs. Ensure the following parameters are set:

Table 10.

Option Description

com.ibm.websphere.security. | The TAl can be configured so that the via header can be ignored when validating trust
webseal.checkViaHeader for a request. Set this property to false if none of the hosts in the via header need to
be trusted. When set to false the trusted hostnames and host ports properties do
not need to be set. Therefore the only mandatory property when check via header is
false is com.ibm.websphere.security.webseal.loginld

The default value of the check via header property is false. When using Tivoli Access
Manager Plug-in for Web Servers this property should be set to false.

Note: The via header is part of the standard HTTP header that records the server
names the request has passed through.

com. ibm.websphere.security.| The WebSEAL trusted user as created in|[“Creating a trusted user account in Tivoli
webseal.loginld |[Access Manager” on page 249| The format of the username is the short name
representation. This is a mandatory property. If it is not set in WebSphere Application
Server, then the TAl initialization fails.

com.ibm.websphere.security. | A comma-separated list of headers that should exist in the request. If not all of the
webseal.id configured headers exist in the request then trust can not be established. The default
value for the id property is iv-creds. Any other values set in WebSphere Application
Server are added to the list along with iv-creds, separated by commas.

com. ibm.websphere.security. | Do not set this property if using Tivoli Access Manager Plug-in for Web Servers. The
webseal.hostnames property specifies the host names (case sensitive) that are trusted and expected in
the request header. Requests arriving from un-listed hosts might not be trusted. If the
checkViaHeader property is not set or is set to false then the trusted host names
property has no influence. If the checkViaHeader property is set to true and the
trusted host names property is not set then TAl initialization will fail.

com. ibm.websphere.security. | Do not set this property if using Tivoli Access Manager Plug-in for Web Servers. This
webseal.ports property is a comma-separated list of trusted host ports. Requests arriving from
unlisted ports might not be trusted. If the checkViaHeader property is not set or is set
to false then this property has no influence. If the checkViaHeader property is set to
true and the trusted host ports property is not set in WebSphere Application Server
then the TAl initialization fails.

Chapter 12. Administering security 253

Table 10. (continued)

Option

Description

com. ibm.websphere.security.
webseal.viaDepth

A positive integer specifying the number of source hosts in the via header to check for
trust. By default, every host in the via header is checked and if any are not trusted
then trust cannot be established. The via depth property is used when not all hosts in
the via header are required to be trusted. The setting indicates the number of hosts
that are required to be trusted.

As an example, consider the following header:
Via: HTTP/1.1 webseall:7002, 1.1 webseal2:7001

If the viaDepth property is not set, is set to 2 or is set to 0, and a request with the
previous via header is received then both webseal1:7002 and webseal2:7001 need to
be trusted. The following configuration applies:

com.ibm.websphere.security.webseal.hostnames = webseall,webseal2
com.ibm.websphere.security.webseal.ports = 7002,7001

If the via depth property is set to 1 and the previous request is received then only the
last host in the via header needs to be trusted. The following configuration applies:

com.ibm.websphere.security.webseal.hostnames =
webseal2 com.ibm.websphere.security.webseal.ports =7001

The viaDepth property is set to 0 by default which means all hosts in the via header
are checked for trust.

com.ibm.websphere.security.
webseal.ssoPwdExpiry

After trust is established for a request the single signon user password is cached
saving the need to have the TAI re-authenticate the single signon user with Tivoli
Access Manager for every request. The cache timeout period can be modified by
setting the single signon password expiry property to the required time in seconds. If
the password expiry property is set to 0, the cached password will never expire. The
default value for the password expiry property is 600.

com. ibm.websphere.security.
webseal.ignoreProxy

This property can be used to tell the TAI to ignore proxies as trusted hosts. If set to
true the comments field of the hosts entry in the via header is checked to determine if
a host is a proxy. It must be remembered that not all proxies insert comments in the
via header indicating that they are proxies. The default value of the ignoreProxy
property is false. If the checkViaHeader property is set to false then the ignoreProxy
property has no influence in establishing trust.

com. ibm.websphere.security.
webseal.configURL

For the TAI to be able to establish trust for a request it requires that SvrSsICfg has
been run for the WebSphere Java Virtual Machine resulting in a properties file being
created. If this properties file is not at the default URL
file://java.home/PdPerm.properties then the correct URL of the properties file must be
set in the config URL property. If this property is not set and the SvrSsICfg generated
properties file is not in the default location, the TAl initialization fails. The default value
for the config URL property is
file://${WAS_INSTALL_ROOT}/java/jre/PdPerm.properties

9. Click OK.

10. Save configuration and logout.
11. Restart WebSphere Application Server.

Global signon principal mapping

The Tivoli Access Manager Java Authorization Contract for Containers (JACC) provider can be used to
manage authentication to WebSphere Enterprise Information Systems (EIS) such as databases,
transaction processing systems and message queue systems, located within the WebSphere Application

254 BM WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

Server security domain. Such authentication is achieved using the Global single signon (GSO) Principal
Mapper JAAS login module for J2EE Connector Architecture (J2C) resources.

With GSO principal mapping, a special-purpose JAAS login module inserts a credential into the subject
header. This is used by the resource adapter to authenticate to the Enterprise Information System (EIS).
The JAAS login module used is configured on a per-connection factory basis. The default principal
mapping module retrieves the user name and password information from XML configuration files. The
Tivoli Access Manager JACC provider bypasses the credential stored in the XML configuration files and
instead uses the Tivoli Access Manager GSO database to provide the EIS security domain authentication
information.

WebSphere Application Server provides a default principal mapping module that associates user credential
information with EIS resources. The default mapping module is defined in the WebSphere Application
Server administration console on the application login panel. To access the panel, click Security > Global
security. Under JAAS configuration, click Application logins. The mapping module name is
DefaultPrincipalMapping.

The EIS security domain user ID and password are defined under each connection factory by an
authDataAlias attribute. The authDataAlias attribute does not contain the user name and password, it
contains an alias that refers to a user name and password pair defined elsewhere.

The Tivoli Access Manager Principal Mapping module uses the authDataAlias to determine the GSO
resource name and user name required to perform the lookup on the Tivoli Access Manager GSO
database. It is the Tivoli Access Manager Policy Server which retrieves the GSO data from the registry.

Tivoli Access Manager stores authentication information on the Tivoli Access Manager GSO database
against a resource/user name pair.

GSO principal mapping architecture

WebSphere Application Server
Java 2 Connector (J2C)
user name/
L Resource password Enterprise
P»| Application > adapter = Information
— System
User authDataAlias user name/

7 password

Tivoli Access
Manager Principal
Mapping Module

A

GSO resource user name/

name and password

user name
\4 -

LDAP
global single signon (GSO)
database

GSO

resource |—User—user name
name password

Chapter 12. Administering security 255

Tivoli Access
—>
Manager

Policy Server

Related tasks
[‘Configuring global signon principal mapping’|

Configuring global signon principal mapping

To create a new application login that uses the Tivoli Access Manager GSO database to store the login
credentials:

Select Security > Global security.

Under Authentication, click JAAS Configuration > Application logins

Click New to create a new JAAS login configuration.

Enter the alias name of the new application login. Click Apply.

Under Additional properties, click JAAS Login Modules link to define the JAAS Login Modules.
Click New and enter the following:

ook wn =

Module class name: com.tivoli.pd.as.gso.AMPrincipalMapper
Use Login Module Proxy: enable
Authentication strategy: REQUIRED

Click Apply

7. In the Additional Properties section, click Custom Properties to define Login Module-specific values
which are passed directly to the underlying Login Modules.

8. Click New.

The Tivoli Access Manager principal mapping module uses the configuration string, authDataAlias, to
retrieve the correct user name and password from the security configuration.

The authDataAlias passed to the module is configured for the J2C ConnectionFactory. Since the
authDataAlias is an arbitrary string entered at configuration time, the following scenarios are possible:

* The authDataAlias contains both the GSO Resource name and the user name. The format of this
string is "Resource/User”

* The authDataAlias contains only the GSO Resource name. The user name is determined using the
Subject of the current session.

Which scenario to use is determined by a JAAS configuration option. The details of these options are:
Name: com.tivoli.pd.as.gso.AliasContainsUserName

Value: True if the alias contains the user name, false if the user name should be retrieved from the
security context.

When entering authDataAliases through the WebSphere Application Server console, the node name is
automatically pre-pended to the alias. The JAAS configuration entry is to determine whether this node
name should be removed or included as part of the resource name.

Name: com.tivoli.pd.as.gso.AliasContainsNodeName
Value: True if the alias contains the node name.
Enter each new parameter using the following scenario information as a guide.

Note: If the PdPerm.properties configuration file is not located in the default location,
JAVA_HOME/PdPerm.properties, then you will also need to add the following property:

Name = com.tivoli.pd.as.gso.AMCfgURL
Value = file:///path to PdPerm.properties

Scenario 1
Auth Data Alias - BackendEIS/eisUser

256 1BM WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

Resource - BackEndEIS
User - eisUser
Principal Mapping Parameters

Name Value

delegate com.tivoli.pdwas.gso.AMPrincipalMapper
com.tivoli.pd.as.gso.AliasContainsUserName true
com.tivoli.pd.as.gso.AliasContainsNodeName false

com.tivoli.pd.as.gso.AMLoggingURL

file:///jlog_props_path

debug false

Scenario 2

Auth Data Alias - BackendEIS

Resource - BackEndEIS

User - Currently authenticated WAS user

Principal Mapping Parameters
Name Value
delegate com.tivoli.pdwas.gso.AMPrincipalMapper
com.tivoli.pd.as.gso.AliasContainsUserName false
com.tivoli.pd.as.gso.AliasContainsNodeName false

com.tivoli.pd.as.gso.AMLoggingURL

file:///jlog_props_path

debug

false

Scenario 3

Auth Data Alias - nodename/BackendEIS/eisUser

Resource - BackEndEIS
User - eisUser
Principal Mapping Parameters

Name Value

delegate com.tivoli.pdwas.gso.AMPrincipalMapper
com.tivoli.pd.as.gso.AliasContainsUserName true
com.tivoli.pd.as.gso.AliasContainsNodeName true

com.tivoli.pd.as.gso.AMLoggingURL

file:///jlog_props_path

debug

false

Scenario 4

Auth Data Alias - nodename/BackendEIS/eisUser
Resource - nodename/BackEndEIS (notice that node name was not removed)

User - eisUser
Principal Mapping Parameters

Name Value

delegate com.tivoli.pdwas.gso.AMPrincipalMapper
com.tivoli.pd.as.gso.AliasContainsUserName true
com.tivoli.pd.as.gso.AliasContainsNodeName false

Chapter 12. Administering security

257

com.tivoli.pd.as.gso.AMLoggingURL file:///jlog_props_path

debug false

Scenario 5

Auth Data Alias - BackendEIS/eisUser
Resource - BackEndEIS

User - eisUser

Principal Mapping Parameters

Name Value
delegate com.tivoli.pdwas.gso.AMPrincipalMapper
com.tivoli.pd.as.gso.AliasContainsUserName false
com.tivoli.pd.as.gso.AliasContainsNodeName true
com.tivoli.pd.as.gso.AMLoggingURL file:///jlog_props_path
debug false

Scenario 6

Auth Data Alias - nodename/BackendEIS/eisUser

Resource - nodename/BackendEIS/eisUser (notice that the Resource is the same as Auth Data Alias).
User - Currently authenticated WAS user

Principal Mapping Parameters

Name Value

delegate com.tivoli.pdwas.gso.AMPrincipalMapper
com.tivoli.pd.as.gso.AliasContainsUserName false
com.tivoli.pd.as.gso.AliasContainsNodeName false
com.tivoli.pd.as.gso.AMLoggingURL file:///jlog_props_path

debug false

You now need to create the J2C authentication aliases. The user name and password assigned to
these alias entries is irrelevant as Tivoli Access Manager is responsible for providing user names and
passwords. However, the user name and password assigned to the J2C authentication aliases need to
exist so they can be selected for the J2C connection factory in the console.

To create the J2C authentication aliases, from the WebSphere Application Server administrative
console, click Security >Global security. Under JAAS Configuration > J2C Authentication Data
and click New for each entry. Refer to the table above for scenario inputs.

The connection factories for each resource adapter that needs to use the GSO database must be
configured to use the Tivoli Access Manager Principal Mapping module. To do this:

a. From the WebSphere Application Server console, select Applications > Enterprise Applications
> application_name.

Under Related items, click Connector Modules.
Click the .rar link.
d. Under Additional properties, click Resource Adapter .

Note: The resource adapter does not need to be packaged with the application. It can be
standalone. For such a scenario the resource adapter is configured from Resources >
Resource Adapters.

e. Under Additional properties, click the J2C Connection Factories link.
f. Click New and enter the connection factory properties.

258 BM WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

Note: Configuring custom mapping on connection factory is deprecated in WebSphere Application
Server Version 6. To configure the GSO credential mapping, it is recommended that you use the
Map Resource References to Resources panel on the administrative console. For more
information, refer to|“J2EE Connector security” on page 353.]

Related concepts

[‘Global signon principal mapping” on page 254

The Tivoli Access Manager Java Authorization Contract for Containers (JACC) provider can be used to

manage authentication to WebSphere Enterprise Information Systems (EIS) such as databases,

transaction processing systems and message queue systems, located within the WebSphere

Application Server security domain. Such authentication is achieved using the Global single signon

(GSO) Principal Mapper JAAS login module for J2EE Connector Architecture (J2C) resources.

The Tivoli Access Manager com.tivoli.pd.jcfg.PDJrteCfg utility

Purpose

Configures and reconfigures the Access Manager Java Runtime Environment component. The Access
Manager Java Runtime Environment component enables Java applications to manage and use Tivoli
Access Manager security.

Syntax

java com.tivoli.pd.jcfg.PDJrteCfg -action {config | unconfig} -cfgfiles_path
configuration_file_path -host policy server_host -was [-java_home jre_path]
Parameters

-action {configlunconfig}
Specifies the action to be performed. Actions include:

config Use to configure the Access Manager Java Runtime Environment component.

unconfig
Use to reconfigure the Access Manager Java Runtime Environment component.

-host policy_server_host
Specifies the policy server host name.

Valid values for host_name include any valid IP host name.
Examples include:

libra
libra.dalTlas.ibm.com

host
host

-java_home jre_path
Specifies the fully-qualified path to the JDK to be configured or reconfigured. If -java_home is not
specified, the current (default) JDK is used.

For example: -java_home /usr/Tpp/java/Jl.3

-was
Specifies to configure in a WebSphere Application Server environment (as opposed to a Tivoli Access
Manager environment).

The following examples demonstrate correct syntax. Node1 is the name by which the node that contains
the administrative server is administered.

Import operation
XMLConfig -adminNodeName Nodel -import import.xml

Chapter 12. Administering security 259

Full export operation
XMLConfig -adminNodeName Nodel -export export.xml

Partial export operation
XMLConfig -adminNodeName Nodel -export export.xml -partial imput.xm]l

Comments

This command copies Tivoli Access Manager Java libraries to a library extensions directory that exists for
a Java runtime that has already been installed on the system.

Using this command does not overwrite JAR files that already exist in the jre_home\1ib\ext directory,
except the PD. jar file, which is overwritten if the file exists.

You can install more than one JRE on a given machine. The pdjrtecfg command can be used to
configure the Access Manager Java Runtime Environment component independently to each of the JREs.

${JAVA_HOME}/bin/java
-Dfile.encoding=1508859-1 \
-Dws.output.encoding=CP1047 \
-Xnoargsconversion \
-Dpd.home=${WAS_HOME}/java/jre/PolicyDirector \
-cp ${WAS_HOME}/java/jre/lib/ext/PD.jar \
com.tivoli.pd.jcfg.PDJrteCfg \
-action config \
-cfgfiles_path ${WAS_HOME}/java/jre \
-host gary.us.ibm.com \
-was

The Tivoli Access Manager com.tivoli.pd.jcfg.SvrSsICfg utility

Purpose

Configures and reconfigures configuration information associated with a Tivoli Access Manager Java
application server.

Syntax

java com.tivoli.pd.jcfg.SvrSsiCfg

-action {config | unconfig} -admin_id admin_user ID
-admin_pwd admin_password -appsvr_id application_server_name
-appsvr_pwd application_server_password -mode{]oca1|remote}
-host host_name_of application_server

-policysvr policy server name:port:rank [,...]

-authzsvr authorization _server _name:port:rank [,...]

-cfg file fully qualified name of configuration file
-domain Tivoli Acccess Manager domain

-key file fully qualified name of keystore file

-cfg_action {create|replace}

Parameters

-action {config | unconfig}
Configures or reconfigures an application server. Options are as follows:

260 1BM WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

-action config
Configuring a server creates user and server information in the user registry and creates local
configuration and key store files on the application server. Use the -action unconfig option to
reverse this operation.

-action unconfig
Reconfigures an application server to remove the user and server information from the user
registry, delete the local key store file, and remove information for this application from the
configuration file (without deleting the configuration file). The reconfiguration operation fails
only if the caller is unauthorized or the policy server cannot be contacted.

This action can succeed when there is no configuration file. When the configuration file does
not exist, it is created and used as a temporary file to hold configuration information during the
operation, and then the file is deleted completely.

-admin_id admin_user_ID
Specifies the Tivoli Access Manager administrator name. If this option is not specified, sec_master is
the default.

A valid administrative ID is an alphanumeric, case-sensitive string. String values are expected to be
characters that are part of the local code set. You cannot use a space in the administrative ID.

For example, for U.S. English the valid characters are the letters a-Z, the numbers 0-9, a period (.),
an underscore (_), a plus sign (+), a hyphen (-), an at sign (@), an ampersand (&), and an asterisk (*).
The minimum and maximum lengths of the administrative ID, if there are limits, are imposed by the
underlying registry.

-admin_password admin_password

Specifies the name of the Tivoli Access Manager administrator user. The default administrative user is
sec_master.

-appsvr_id application_server_name
Specifies the name of the application server. The name is combined with the host name to create
unique names for Tivoli Access Manager objects created for your application. The following names are
reserved for Tivoli Access Manager applications: ivacld, secmgrd, ivnet, and ivweb.

-appsvr_pwd application_server_password
Specifies the password of the application server. This option is required. A password is created by the
system and the configuration file is updated with the password created by the system.

If this option is not specified, the server password will be read from standard input.

-authzsvr authorization_server_name
Specifies the name of the authorization server.

-cfg_action {create | replace}
Options are as follows:

create Specifies to create the configuration and key store files during server configuration.
Configuration fails if either of these files already exists.

replace
Specifies to replace the configuration and key store files during server configuration.
Configuration deletes any existing files and replaces them with new ones.

-cfg_file fully_qualified_name_of_configuration_file
Specifies the configuration file path and name.

A file name should be an absolute file name (fully qualified file name) to be valid.

-domain Tivoli_Access_Manager_domain
Specifies the domain name for the domain to which this server is configured. This domain must exist
and an the administrator ID and password must be valid for this domain.

Chapter 12. Administering security 261

If not specified, the local domain that was specified during Tivoli Access Manager runtime configuration
will be used. The local domain value will be retrieved from the configuration file.

A valid domain name is an alphanumeric, case-sensitive string. String values are expected to be
characters that are part of the local code set. You cannot use a space in the domain name.

For example, for U.S. English the valid characters for domain names are the letters a-Z, the numbers
0-9, a period (.), an underscore (_), a plus sign (+), a hyphen (-), an at sign (@), an ampersand (&),
and an asterisk (*). The minimum and maximum lengths of the domain name, if there are limits, are
imposed by the underlying registry.

-host host_name_of_application_server
Specifies the TCP host name used by the Tivoli Access Manager policy server to contact this server.
This name is saved in the configuration file using the azn-app-host key.

The default is the local host name returned by the operating system. Valid values for host_name
include any valid IP host name.

Examples:
host = Tibra
host = Tibra.dallas.ibm.com

-key_file fully_qualified_name_of_keystore_file
Specifies the directory that is to contain the key files for the server. A valid directory name is
determined by the operating system. Do not use relative directory names.

Make sure that server user (for example, ivmgr) or all users have permission to access the .kdb file
and the folder that contains the .kdb file.

-mode server_mode
Specifies the mode in which the application operates. This value must be either Tocal or remote.

-policysvr policy_server_name
Specifies the name of the policy server.

Comments

After the successful configuration of a Tivoli Access Manager Java application server, SvrSs1Cfg creates a
user account and server entries representing the Java application server in the Tivoli Access Manager user
registry. In addition, SvrSs1Cfg creates a configuration file and a Java key store file, which securely stores
a client certificate, locally on the application server. This client certificate permits callers to make
authenticated use of Tivoli Access Manager services. Conversely, reconfiguration removes the user and
server entries from the user registry and cleans up the local configuration and keystore files.

The contents of an existing configuration file can be modified by using the SvrSs1Cfg utility. The
configuration file and the key store file must already exist when calling SvrSs1Cfg with all options other

than -action config or -action unconfig.

The following options are parsed and processed into the configuration file, but are otherwise ignored in this
version of Tivoli Access Manager:

The host name is used to build a uniqgue name (identity) for the application. The pdadmin user list
command displays the application identity name in the following format:

server_name/host_name
Note that the pdadmin server list command displays the server name in a slightly different format:

server_name-host_name

262 1BM WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

CLASSPATH=${WAS_HOME}/java/jre/1ib/ext/PD.jar:${WAS_CLASSPATH}

java \

-cp ${CLASSPATH} \

-Dpd.cfg.home= ${WAS HOME}/java/jre \
-Dfile.encoding=1508859-1 \
-Dws.output.encoding=CP1047 \
-Xnoargsconversion \
com.tivoli.pd.jcfg.SvrSs1Cfg \
-action config \

-admin_id sec_master \

-admin_pwd $TAM_PASSWORD \

-appsvr_id $APPSVR_ID \

-policysvr ${TAM HOST}:7135:1 \

-port 7135 \

-authzsvr ${TAM HOST}:7136:1 \

-mode remote \

-cfg_file ${CFG_FILE} \

-key_file ${KEY_FILE} \

-cfg_action create

User registries

Information about users and groups reside in a user registry.

With WebSphere Application Server, a user registry is used for:
» Authenticating a user (using basic authentication, identity assertion, or client certificates)

* Retrieving information about users and groups to perform security-related administrative functions such
as mapping users and groups to security roles

The users and groups and security role mapping information is used by the configured authorization
engine to perform access control decisions.

WebSphere Application Server provides several implementations to support multiple types of operating
system base user registries. You can use the custom Lightweight Directory Access Protocol (LDAP)
feature to support any LDAP server by setting up the correct configuration (user and group filters).
However, support is not extended to these custom LDAP servers because many configuration possibilities
exist.

If you are configuring an LDAP registry as the active registry, you can configure one of the following
authorization mechanisms:

» System Authorization Facility (SAF) authorization using EJBROLE or GEJBROLE profiles. SAF
overrides any other authorization mechanism.

» Tivoli Access Manager as a Java Contract for Containers (JACC) provider. For more information, see
|“Tivo|i Access Manager integration as the JACC provider” on page 454.|

» User-to-role bindings, which are created by the application assembler or the WebSphere Application
Server security administrator.

SAF authorization (the use of SAF EJBROLE profiles to assign SAF users and groups to roles) can be
used as an authorization mechanism for all user registries. If SAF authorization is selected on the
administrative console:

It overrides any other authorization choice (such as Tivoli Access Manager or SAF authorization).

Chapter 12. Administering security 263

* You must configure and install a Java Authentication and Authorization Service (JAAS) login mapping
module that maps LDAP or custom registry identity to a SAF user ID. For more information, see
“Installing and configuring a custom System Authorization Facility mapping module for WebSphere|
Application Server” on page 340.|

You must provide a mapping from a user registry identity to a SAF user ID unless Local OS is selected as
the user registry. For more information, see [‘Writing a custom System Authorization Facility mapping|
|modu|e for WebSphere Application Server” on page 330.|

Note: These authorization mechanism choices are valid for all user registries, with the exception of Tivoli
Access Manager, which is supported for LDAP only.

In addition to Local operating system (OS) and LDAP registries, WebSphere Application Server also
provides a plug-in that supports any user registry by using the custom registry feature (also referred to as
a custom user registry). The custom registry feature supports any user registry that is not implemented by
WebSphere Application Server. You can use any registry used in the product environment by implementing
the UserRegistry interface interface.

The UserRegistry interface is very helpful in situations where the current user and group information exists
in some other format (for example, a database) and cannot move to Local OS or LDAP. In such a case,
implement the UserRegistry interface so that WebSphere Application Server can use the existing registry
for all of the security-related operations. Building a custom registry is a software implementation effort; it is
expected that the implementation does not depend on other WebSphere Application Server resources, for
example, data sources, for its operation.

Although WebSphere Application Server supports different types of user registries, only one user registry
can be active. This active registry is shared by all of the product server processes.

Related concepts
[Tivoli Access Manager integration as the JACC provider” on page 454
Related reference

[‘Custom user registries” on page 290|

A custom user registry is a customer-implemented user registry, that implements the UserRegistry Java
interface, as provided by the product. A custom-implemented user registry can support virtually any
type of an account repository from a relational database, flat file, and so on. The custom user registry
provides considerable flexibility in adapting product security to various environments where some form
of a user registry, other than Lightweight Directory Access Protocol (LDAP) or Local Operating System
(LocalOS), already exists in the operational environment.

Steps for selecting a user registry

Information about users and groups reside in a user registry. In WebSphere Application Server, a user
registry authenticates a user and retrieves information about users and groups to perform security-related
functions, including authentication and authorization.

Before you begin: Before configuring the user registry you need to know the user name (ID) and
password to be used, and you must decide which registry to use (Custom, LDAP, or local OS such as
SAF-based).

What you need to know: You need to start the Administrative Console by specifying:
http://server_hostname:9060/ibm/console

Though different types of registries are supported, only a single active user registry can be configured at

once. All the processes in WebSphere Application Server can use one active registry. Configuring the
correct registry is a prerequisite to assigning users and groups to roles for applications.

264 BM WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

By default, when no registry is configured the Local OS SAF-based registry is used (PQ81586). So if your
choice of registry is not Local OS you need to first configure the registry, which is normally done as part of
enabling global security, restart the servers, and then assign users and groups to roles for all your
applications.

Steps for selecting SAF Authorization

Before configuring SAF authorization you need to know the user name (ID) and password that are used
here. This user can be any valid user in the registry. This user is referred to as either a product security
server ID, a server ID or a server user ID in the documentation. Having a server ID means that a user has
special privileges when calling protected internal methods.

You need to start the Administrative Console by specifying URL:
http://server_hostname:9060/1bm/console

1. Click Security > Global security.
2. Under User registries, click Local OS.

3. Under General properties, enter the server user ID and server user password. This ID is the security
server ID, which is only used for WebSphere Application Server security and is not associated with the
system process that runs the server. The server calls the Local OS user registry to authenticate and
obtain privilege information about users by calling the native application programming interfaces (APIs)
in that particular user registry.

4. Click OK.

Steps for selecting an LDAP user registry

To use Lightweight Directory Access Protocol (LDAP) as the user registry, you need to know a valid user
name (ID), the user password, the server host and port, the base distinguished name (DN) and if
necessary the bind DN and the bind password. You can choose any valid user in the registry that is
searchable. In some LDAP servers, the administrative users are not searchable and cannot be used (for
example, cn=root in SecureWay). This user is referred to as WebSphere Application Server security server
ID, server ID, or server user ID in the documentation. Being a server ID means a user has special
privileges when calling some protected internal methods. Normally, this ID and password is used to log
into the administrative console once security is turned on. You can use other users to log in if those users
are part of the administrative roles.

Perform the following steps to select LDAP as the user registry.

You need to start the administrative console by specifying URL:
http://server_hostname:9060/ibm/console

1. Click Security > Global security . Under User registries, click LDAP.

2. On the LDAP user registry panel in the General Properties section of the Configuration tab, enter the
Server user ID and password. This ID is the security server ID, which is only used for WebSphere
Application Server security and is not associated with the system process that runs the server. The
server calls the Local OS registry to authenticate and obtain privilege information about users by
calling the native application programming interfaces (API) in that particular registry.

3. In the type menu, select the type of LDAP server to which you connect. The type is used to preload
default LDAP properties. IBM Tivoli Directory Server users can choose either IBM Tivoli Directory
Server or SecureWay as the directory type. Use the IBM Tivoli Directory Server directory type for
bﬁtter performance. For a list of supported LDAP servers, see |“Supported directory services” on page|
286.

4. In the Host box, enter the host ID (IP address or domain name system (DNS) name) of the LDAP
server.

Chapter 12. Administering security 265

10.

11.

12.

13.

14.

266

In the Port box, enter host port of the LDAP server. The default value is 389. If multiple WebSphere
Application Servers are installed and configured to run in the same single signon domain, or if the
WebSphere Application Server interoperates with a previous version of the WebSphere Application
Server, then it is important that the port number match all configurations. For example, if the LDAP
port is explicitly specified as 389 in a Version 5.x configuration, and a WebSphere Application Server
at Version 6.0.x is going to interoperate with the Version 5.x server, then verify that port 389 is
specified explicitly for the Version 6.0.x server.

In the Base Distinguished Name field, enter the base distinguished name of the directory service,
indicating the starting point for LDAP searches of the directory service. For example, for a user with a
distinguished name (DN) of cn=John Doe, ou=Rochester, 0=IBM, c=US, you can specify the base DN
as (assuming a suffix of c=us): ou=Rochester,0=IBM,c=us or 0=IBM, c=us,c=us. For authorization
purposes, this field is case sensitive. This implies that if a token is received (for example, from
another cell or Domino) the base DN in the server must match exactly the base DN from the other
cell or Domino. If case sensitivity is not a consideration for authorization, enable the Ignore Case
field.

In WebSphere Application Server, the distinguished name is normalized according to the Lightweight
Directory Access Protocol (LDAP) specification. Normalization consists of removing spaces in the
base distinguished name before or after commas and equal symbols. An example of a
non-normalized base distinguished name is o = ibm, ¢ = us or o=ibm, c=us. An example of a
normalized base distinguished name is o=ibm,c=us. To interoperate between WebSphere Application
Server Version 5 and later versions, you must enter a normalized base distinguished name in the
Base Distinguished Name field. In WebSphere Application Server, Version 5.0.1 or later, the
normalization occurs automatically during run time.

This field is required for all LDAP directories except for the Domino Directory, where it is optional.

In the Bind Distinguished Name field, enter the distinguished name for the application server to use
when binding to the directory service. If no name is specified, the application server binds
anonymously. See the Base Distinguished Name field description for examples of distinguished
names.

In the Bind Password field, enter the password for the application server to use when binding to the
directory service.

In the Search Timeout field, enter the timeout value in seconds for an LDAP server to respond before
aborting a request. The default value is 300.

Ensure that the Reuse Connection option is checked. Enabled (or checked) is the default and
specifies that the server should reuse the LDAP connection. Clear this option only in rare situations
where a router is used to spray requests to multiple LDAP servers and when the router does not
support affinity.

The Ignore Case option allows you to enable or disable case insensitive authorization check. This
field is required when IBM Directory Server is selected as the LDAP directory server. Otherwise, this
field is optional and can be enabled when a case sensitive authorization check is required. For
example, when you use certificates and the certificate contents do not match the case of the entry in
the LDAP server. You c an also enable the Ignore Case field when using single signon (SSO)
between the product and Domino. The default is Disabled.

The SSL Enabled option allows you to enable or disable secure socket communication to the LDAP
server. When enabled, the LDAP Secure Sockets Layer (SSL) settings are used, if specified.

In the SSL Configuration menu, select the Secure Sockets Layer configuration to use for the LDAP
connection. This configuration is used only when SSL is enabled for LDAP. The default is
DefaultSSLSettings.

Click OK.

Related reference

[‘Supported directory services” on page 286

IBM WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

Steps for selecting a custom user registry

Before you begin this task, implement and build the UserRegistry interface. For more information on
developing custom user registries refer to [‘Selecting a user registry” on page 48|

Perform the following steps to select a custom user registry.
1. Click Security > Global security.
2. Under User registries, click Custom.

3. Enter the Server user ID and password in the Server user ID and Server user password fields. This ID
is the security server ID, which is only used for WebSphere Application Server security and is not
associated with the system process that runs the server. The server calls the Local OS registry to
authenticate and obtain privilege information about users by calling the native APIs in that particular
registry.

4. Enter a dot-separated class name that implements the com. ibm.websphere.security.UserRegistry
interface in the Custom registry class name field. Although the custom registry implements the
com.ibm.websphere.security.UserRegistry interface for backward compatibility, a user registry can
alternately implement the com.ibm.websphere.security.CustomRegistry interface. The default is
com.ibm.websphere.security.FileRegistrySample.

5. Add your custom registry class name to the class path. It is recommended that you add the Java
Archive (JAR) file that contains your custom user registry implementation to the
%install_root%/classes directory.

6. Optional: Select the Ignore case for authorization option, which enables WebSphere Application
Server to perform a case insensitive authorization check. The default value is enabled.

7. Use the Custom Properties link to add any additional properties required to initialize the custom
registry. Set the WAS_UseDisplayName property, which is predefined by WebSphere Application Server,
only when it is required. When the property is set to true, the methods getCallerPrincipal(),
getUserPrincipal(), getRemoteUser() methods return the display name. By default, the securityName of
the user is returned. This property is primarily introduced to support backward compatibility with the
Version 5 custom user registry.

8. Click OK.

Configuring user registries

Before configuring the user registry, decide which registry to use. Though different types of registries are
supported, all of the processes in WebSphere Application Server can use one active registry. Configuring
the correct registry is a prerequisite to assigning users and groups to roles for applications. When a user
registry is not configured, the Local OS user registry is used by default. So, if your choice of registry is not
Local OS you need to first configure the registry, which is normally done as part of enabling security,
restart the servers, and then assign users and groups to roles for all your applications.

After the applications are assigned users and groups, and you need to change the registries (for example
from Lightweight Directory Access Protocol (LDAP) to Custom), delete all the users and groups (including
any RunAs role) from the applications, and reassign them after changing the registry through the
administrative console or by using wsadmin scripting.

Note: If you are switching registries and want to go directly from one user registry to another:
1. Disable security
2. Enable security using the new registry

The following wsadmin command, which uses Jacl, removes all of the users and groups (including the
RunAs role) from any application:

Chapter 12. Administering security 267

$AdminApp deleteUserAndGroupEntries yourAppName

where yourAppName is the name of the application. Backing up the old application is advised before

performing this operation. However, if both of the following conditions are true, you might be able to switch

the registries without having to delete the users and groups information:

» All of the user and group names (including the password for the RunAs role users) in all of the
applications match in both registries.

» The application bindings file does not contain the accessIDs, which are unique for each registry even for
the same user or group name.

By default, an application does not contain accessIDs in the bindings file (these IDs are generated when
the applications start). However, if you migrated an existing application from an earlier release, or if you
used the wsadmin script to add accessIDs for the applications to improve performance you have to
remove the existing user and group information and add the information after configuring the new registry.

For more information on updating accessIDs, see updateAccessIDs in the|AdminApp object for soripted|

administration| article.

Complete one of the following steps to configure your user registry:

+ [“Configuring local operating system user registries” on page 271|

+ [“Configuring Lightweight Directory Access Protocol user registries” on page 274
« [“Configuring custom user registries” on page 292

This step is required as part of enabling security in WebSphere Application Server.

1. If you are enabling security, make sure that you complete the remaining steps. Verify that the Active
User Registry field in the Global Security panel is set to the appropriate registry. As the final step,
validate the user ID and the password by clicking OK or Apply in the Global Security panel. Save,
stop and start all WebSphere Application Servers.

2. For any changes in user registry panels to be effective, you must validate the changes by clicking OK
or Apply in the Global Security panel. After validation, save the configuration, stop and start all
WebSphere Application Servers (cells, nodes and all the application servers). To avoid inconsistencies
between the WebSphere Application Server processes, make sure that any changes to the registry are
done when all of the processes are running. If any of the processes are down, force synchronization to
make sure that the process can start later.

If the server or servers start without any problems, the setup is correct.

3. If System Authorization Facility (SAF) is selected in the new registry, the values in the bindings file are
ignored (with the exception of the user ID and password for RunAs role users). Refer to |“Updating|
System Login Configurations to perform a System Authorization Facility identity user mapping” on page|

@for more information.

Related concepts

[‘User registries” on page 263]
Information about users and groups reside in a user registry.

Related tasks

[‘Configuring global security” on page 184
Related reference

[Commands for the AdminApp object]

Local operating system user registries

With the local operating system, or Local OS, user registry implementation, the WebSphere Application
Server authentication mechanism can use the user accounts database of the local operating system.

268 1BM WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

WebSphere Application Server for z/OS uses the System Authorization Facility (SAF) interfaces. SAF
interfaces are defined by MVS to enable applications to use system authorization services or user
registries to control access to resources such as data sets and MVS commands. SAF either processes
security authorization requests directly or works with RACF, or other security products, to process the
requests.

A Local OS user registry is a centralized registry within a sysplex.

Web client certificate authentication is supported when using the local operating system user registry.
Digital certificates can be mapped to MVS identities by both Web and Java clients when you select Local
OS. A certificate name filter can be used to simplify the mapping. If you are using RACF as the security
server, the RACDCERT MAP command creates a resource profile that maps multiple user identities to a
digital certificate to simplify administration of certificates, conserve storage space in the RACF database,
maintain accountability, or maintain access control granularity.

Using both the domain registry and the local registry

When the machine that hosts the WebSphere Application Server process is a member of a domain, both
the local and the domain registries are used by default. The following section describes more on this topic
and recommends some best practices to avoid unfavorable consequences.

* Best practices

In general, if the local and the domain registries do not contain common users or groups, it is simpler to
administer and it eliminates unfavorable side effects. If possible, give users and groups access to
unique security roles, including the server ID and administrative roles). In this situation, select the users
and groups from either the local registry or the domain registry to map to the roles.

In cases where the same users or groups exist in both the local registry and the domain registry, it is
recommended that at least the server ID and the users and groups that are mapped to the
administrative roles be unique in the registries and exist only in the domain.

If a common set of users exists, set a different password to make sure that the appropriate user is
authenticated.
* How it works

When a machine is part of a domain, the domain user registry takes precedence over the local user
registry. For example, when a user logs into the system, the domain registry tries to authenticate the
user first. If the authentication fails the local registry is used. When a user or a group is mapped to a
role, the user and group information is first obtained from the domain registry. In case of failure, the
local registry is tried. However, when a fully qualified user or a group name (one with an attached
domain or host name) is mapped to a role, then only that registry is used to get the information. Use the
administrative console or scripts to get the fully qualified user and group names, which is the
recommended way to map users and groups to roles.

Note: A user Bob on one machine (the local registry, for example) is not the same as the user Bob on
another machine (say the domain registry) because the uniquelID of Bob (the security identifier
[SID], in this case) is different in different registries.
* Examples

The machine MyMachine is part of the domain MyDomain. MyMachine contains the following users and
groups:

— MyMachine\user2

— MyMachine\user3

— MyMachine\group2

MyDomain contains the following users and groups:

MyDomain\user1

MyDomain\user2

MyDomain\group1

MyDomain\group2

Chapter 12. Administering security 269

Here are some scenarios that assume the previous set of users and groups.

1. When user? logs into the system, the domain registry is used for authentication. If the authentication
fails (the password is different) the local registry is used.

2. If the user MyMachine\user2 is mapped to a role, only the user2 in MyMachine has access. So if the
user?2 password is the same on both the local and the domain registries, user2 cannot access the
resource, because user? is always authenticated using the domain registry. Hence, if both registries
have common users, it is recommended that the password be different.

3. If the group2 is mapped to a role, only the users who are members of the MyDomain\group2 can
access the resource because group2 information is first obtained from the domain registry.

4. If the group MyMachine\group2 is mapped to a role, only the users who are members of the
MyMachine\group2 can access the resource. A specific group is mapped to the role
(MyMachine\group?2 instead of just group?2).

5. Use either user3 or MyMachine\user3 to map to a role, because user3 is unique; it exists in one
registry only.

Authorizing with the domain user registry first can cause problems if a user exists in both the domain

and local user registries with the same password. Role-based authorization can fail in this situation

because the user is first authenticated within the domain user registry. This authentication produces a

unique domain security ID that is used in WebSphere Application Server during the authorization check.

However, the local user registry is used for role assignment. The domain security ID does not match the

unique security ID that is associated with the role. To avoid this problem, map security roles to domain

users instead of local users.

Note: In a Network Deployment environment, only a centralized repository can be used if more than
one node is involved. This usage implies that only the domain registry can be used because the
user and group uniquelDs (SIDs) differ on various nodes, as previously mentioned.

Using either the local or the domain registry. If you want to access users and groups from either the
local registry or the domain registry, instead of both, set the com.ibm.websphere.registry.UseRegistry
property. This property can be set to either Tocalor domain. When this property is set to Tocal(case
insensitive) only the local registry is used. When this property is set to domain, (case insensitive) only the
domain registry is used. Set this property by clicking Custom Properties in the Security > User
Registries > Local OS panel in the administrative console or by using scripts. When the property is set,
the privilege requirement for the user who is running the product process does not change. For example, if
this property is set to Tocal, the user that is running the process requires the same privilege, as if the
property was not set.

Remote registries

By default, the registry is local to all of the product processes. The performance is higher, (no need for
remote calls) and the registry also increases availability. Any process failing does not effect other
processes.

When using LocalOS as the registry, every product process must run with privilege access.

If this process is not practical in some situations, you can use a remote registry from the node (or in very
rare situations from the cell). Using a remote registry affects performance and creates a single point of
failure. Use remote registries only in rare situations.

The node and the cell processes are meant for manipulating configuration information and for hosting the
registry for all the application servers that create traffic and cause problems.

Using a node agent (instead of the cell) to host the remote registry is preferable because the cell process
is not designed to be highly available. Also, using a node to host the remote registry indicates that only the
application servers in that node are using it. Because the node agent does not contain any application
code, giving it the access required privilege is not a concern.

270 1BM WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

You can set up a remote registry by setting the WAS_UseRemoteRegistry property in the Global Security
panel using the Custom Properties link at the bottom of the administrative console panel. Use either
theCell or the Node(case insensitive) value. If the value is Cell, the cell registry is used by all of the
product processes including the node agent and all of the application servers. If the cell process is down
for any reason, restart all of the processes after the cell is restarted. If the node agent registry is used for
the remote registry, set the WAS_UseRemoteRegistry value to node. In this case, all the application server
processes use the node agent registry. In this case, if the node agent fails and does not start
automatically, you might need to restart all the application servers after the node agent is started.

Related reference

[‘Custom user registries” on page 290

A custom user registry is a customer-implemented user registry, that implements the UserRegistry Java
interface, as provided by the product. A custom-implemented user registry can support virtually any
type of an account repository from a relational database, flat file, and so on. The custom user registry
provides considerable flexibility in adapting product security to various environments where some form
of a user registry, other than Lightweight Directory Access Protocol (LDAP) or Local Operating System
(LocalOS), already exists in the operational environment.

Configuring local operating system user registries

When a Local OS Registry is chosen for z/OS, the started task identity is chosen as the server identity.
Thus, a user ID and password is not required to configure the server.

Important: Each started task, (for example, controller, servant, or node agent) might have a different
identity. However, note that if you are using the z/OS Customization Dialog the node agent
uses the Controller’s identity as the for the server identity.

For all servers in a given cell to have the authority needed by the administrative subsystem, they must be
part of a common configuration group. This customization is generally provided by the configuration
dialogs when WebSphere Application Server for z/OS is initially customized.

The following steps are needed to perform this task initially when setting up security for the first time.

Click Security > Global security. Under User registries, click Local OS. Under Additional properties, click
z/OS SAF properties. Select the Authorization option.

com.ibm.security.SAF.unauthenticated
This property indicates the MVS user ID that is used to represent unprotected servlet requests and
is used for the following functions:
» Authorization if an unprotected servlet invokes an entity bean.

+ |dentification of an unprotected servlet for invoking a z/OS connector (Customer Information
Control System (CICS), Information Management System (IMS)) that uses a current identity
when res-auth=container.

com.ibm.security.SAF.authorization
This property can be set to true or false. When this property is set to true, SAF EJBROLE
profiles are used for user to role authorization for both J2EE applications and the Role-based
authorization requests (naming and administration) associated with the WebSphere Application
Server run time.

com.ibm.security.SAF.delegation
This property specifies that SAF EJBROLE definitions are to assign which MVS user ID becomes
the active identity when you select the RunAs specified role.

com.ibm.security.SAF.EJBROLE.Audit.Messages.Suppress
This property is accessible through the administrative console by completing the following steps:

Chapter 12. Administering security 271

1. Click Security > Global security. Under User Registry, click Local OS. Under Additional
properties, click Custom properties >
com.ibm.security.SAF.EJBROLE.Audit.Messages.Suppress.

The property allows you to turn ICH408] messages on or off. The default value for this property is
false, which does not suppress messages. You can set this value to true to suppress the ICH408lI
messages.

SMF records access violations no matter what value is specified for this new property. This

property affects access violation message generation for both application-defined roles and for
WebSphere runtime-defined roles for the naming and administrative subsystems. EJBROLE profile
checks are done for both declarative (deployment descriptors) and programmatic checks:

» Declarative checks are coded as SecurityConstraints in Web applications, and Deployment
Descriptors are coded as SecurityConstraints in EJB files. This property is not used to control
messages in this case. Instead, there are a set of roles permitted, and if an access violation
occurs an ICH408I access violation message indicates a failure for one of the roles. SMF then
logs a single access violation (for that role).

* Program logic checks (or access checks) are performed using the programmatic
isCallerinRole(x) for EJB or isUserInRole(x) for Web applications. The
com.ibm.security. SAF.EJBROLE.Audit.Messages.Suppress property controls the messages
generated by this call.

For more information on SAF authorization, refer td“Controlling access to console users when|
lusing a Local OS Registry” on page 51Local OS Registry. For more information on administrative

roles, refer to|Admin rolesl

The Local OS user registry has been configured.

1. If you are enabling security, complete the remaining steps. As the final step, ensure that you validate
the user and password by clicking OK or Apply in the Global Security panel. Save, stop, and start all
the product servers.

2. For any changes in this panel to be effective, you need to save, stop and start all the product servers
(deployment managers, nodes and Application Servers).

3. If the server comes up without any problems the setup is correct.

Related concepts

[‘Lightweight Directory Access Protocol” on page 273
Lightweight Directory Access Protocol (LDAP) is a user registry in which authentication is performed
using an LDAP binding.

Related tasks

[‘Configuring global security” on page 184|

[‘Controlling access to console users when using a Local OS Registry” on page 51|
Related reference

[“Custom user registries” on page 290
A custom user registry is a customer-implemented user registry, that implements the UserRegistry Java
interface, as provided by the product. A custom-implemented user registry can support virtually any
type of an account repository from a relational database, flat file, and so on. The custom user registry
provides considerable flexibility in adapting product security to various environments where some form
of a user registry, other than Lightweight Directory Access Protocol (LDAP) or Local Operating System
(LocalOS), already exists in the operational environment.

Local operating system user registry settings
Use this page to configure local operating system user registry settings.

To view this administrative console page, click Security > Global Security. Under User registries, click
Local OS.

272 BM WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

Custom properties

Under the Custom properties link, you can add a value for the

com.ibm.security. SAF.EJBROLE.Audit.Messages.Suppress property. Set this property to turn ICH408I
messages on or off. The default value for this property is false, which does not suppress messages. You
can set this value to true to suppress the ICH408] messages.

This property affects access violation message generation for both application-defined roles and for
WebSphere Application Server Runtime roles for the naming and administrative subsystems. System
Management Facility (SMF) records are unaffected by this property. EJBROLE profile checks are done for
both declarative (deployment descriptors) and programmatic checks:

» Declarative checks are coded as security constraints in Web applications, and deployment descriptors
are coded as security constraints in enterprise beans. This property is not used to control messages in
this case. Instead, a set of roles is permitted, and if an access violation occurs an ICH408| access
violation message indicates a failure for one of the roles. SMF then logs a single access violation (for
that role).

* Program logic checks (or access checks) are performed using the programmatic isCallerinRole(x) for
enterprise bean or isUserlnRole(x) for Web applications. The
com.ibm.security.SAF.EJBROLE.Audit.Messages.Suppress property controls the messages that are
generated by this call.

Related reference

[Administrative console buttons|
This page describes the button choices that are available on various pages of the administrative
console, depending on which product features you enable.

[Administrative console page features|

This topic provides information about the basic elements of an administrative console page, such as
the various tabs.

[Administrative console scope settings|

Use this page to specify the level at which a resource is visible on the administrative console panel. A
resource can be visible in the administrative console collection table at the cell, node, cluster, or server
scope. By changing the value for Scope you can see other variables that apply to a resource and
might change the contents of the collection table.

[Administrative console preference settings|

Use the preference settings to specify how you want information displayed on an administrative
console page.

Ignore case for authorization:
When this option is set to true, a case insensitive authorization check is performed.

SAF user IDs are usually in uppercase letters. Enabling this option is necessary only when your registry is
case insensitive and does not provide a consistent case when queried for users and groups.

Lightweight Directory Access Protocol

Lightweight Directory Access Protocol (LDAP) is a user registry in which authentication is performed using
an LDAP binding.

WebSphere Application Server security provides and supports implementation of most major LDAP
directory servers, which can act as the repository for user and group information. These LDAP servers are
called by the product processes (servers) for authenticating a user and other security-related tasks (for
example, getting user or group information). This support is provided by using different user and group
filters to obtain the user and group information. These filters have default values that you can modify to fit
your needs. The custom LDAP feature enables you to use any other LDAP server (which is not in the
product supported list of LDAP servers) for its user registry by using the appropriate filters.

Chapter 12. Administering security 273

To use LDAP as the user registry, you need to know a valid user name (ID), the user password, the server
host and port, the base distinguished name (DN) and if necessary the bind DN and the bind password.
You can choose any valid user in the registry that is searchable. In some LDAP servers, the administrative
users are not searchable and cannot be used (for example, cn=root in SecureWay). This user is referred
to as WebSphere Application Server security server ID, server ID, or server user ID in the documentation.
Being a server ID means a user has special privileges when calling some protected internal methods.
Normally, this ID and password are used to log into the administrative console after security is turned on.
You can use other users to log in if those users are part of the administrative roles.

When security is enabled in the product, this server ID and password are authenticated with the registry
during the product startup. If authentication fails, the server does not start. Choosing an ID and password
that do not expire or change often is important. If the product server user ID or password need to change
in the registry, make sure that the changes are performed when all the product servers are up and
running.

When the changes are done in the registry, use the steps described in|Configuring LDAP user registries|.
Change the ID, password, and other configuration information, save, stop, and restart all the servers so
that the new ID or password is used by the product. If any problems occur starting the product when
security is enabled, disable security before the server can start up (to avoid these problems, make sure
that any changes in this panel are validated in the Global Security panel). When the server is up, you can
change the ID, password and other configuration information and then enable security.

Related concepts

[‘Dynamic groups and nested group support” on page 288

Related tasks

[‘Using specific directory servers as the LDAP server’ on page 283|
[‘Configuring Lightweight Directory Access Protocol user registries’]
Related reference

[‘Supported directory services” on page 286

[‘Lightweight Directory Access Protocol settings” on page 276|
Use this page to configure Lightweight Directory Access Protocol (LDAP) settings when users and
groups reside in an external LDAP directory.

[‘Security: Resources for learning” on page 25|

Configuring Lightweight Directory Access Protocol user registries

Review the article on [Lightweight Directory Access Protocol| (LDAP) before beginning this task.

1. In the administrative console, click Security > Global security.

2. Under User registries, click LDAP.

3. Enter a valid user name in the Server user ID field. You can either enter the complete distinguished
name (DN) of the user or the short name of the user as defined by the User Filter in the Advanced
LDAP settings panel. For example, enter the user ID for Netscape.

4. Enter the password of the user in the Server user password field.

5. Select the type of LDAP server that is used from the Type list. The type of LDAP server determines
the default filters that are used by the WebSphere Application Server. These default filters change the
Type field to Custom, which indicates that custom filters are used. This action occurs after you click
OK or Apply in the Advanced LDAP settings panel. Choose the Custom type from the list and
modify the user and group filters to use other LDAP servers, if required. If either the IBM Directory
Server or the iPlanet Directory Server is selected, also select the Ignore Case field.

6. Enter the fully qualified host name of the LDAP server in the Host field.

274 BM WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

10.
11.

12.

13.

14.

15.

16.

Enter the LDAP server port number in the Port field. The host name and the port number represent
the realm for this LDAP server in the WebSphere Application Server cell. So, if servers in different
cells are communicating with each other using Lightweight Third Party Authentication (LTPA) tokens,
these realms must match exactly in all the cells.

Enter the Base distinguished name (DN) in the Base distinguished name field. The Base DN indicates
the starting point for searches in this LDAP directory server. For example, for a user with a DN of
cn=John Doe, ou=Rochester, 0=IBM, c=US, specify the Base DN as any of the following options
(assuming a suffix of c=us): ou=Rochester, 0=IBM, c=us or 0=IBM c=us or c=us. This field can be
case sensitive. Match the case in your directory server. This field is required for all LDAP directories
except the Domino Directory. The Base DN field is optional for the Domino server.

Enter the Bind DN name in the Bind distinguished name field, if necessary. The Bind DN is required if
anonymous binds are not possible on the LDAP server to obtain user and group information. If the
LDAP server is set up to use anonymous binds, leave this field blank.

Enter the password corresponding to the Bind DN in the Bind password field, if necessary.

Modify the Search time out value if required. This timeout value is the maximum amount of time that
the LDAP server waits to send a response to the product client before aborting the request. The
default is 120 seconds.

Deselect the Reuse connection option only if you use routers to send requests to multiple LDAP
servers, and if the routers do not support affinity. Leave this field enabled for all other situations.

Select the Ignore case for authorization option, if required. When this flag is enabled, the
authorization check is case insensitive. Normally, an authorization check involves checking the
complete DN of a user, which is unique in the LDAP server and is case sensitive. However, when
using either the IBM Directory Server or the iPlanet Directory Server LDAP servers, this flag needs
enabling because the group information obtained from the LDAP servers is not consistent in case.
This inconsistency only effects the authorization check.

Enable Secure Sockets Layer (SSL) if the communication to the LDAP server is through SSL. For
more information on setting up LDAP for SSL, refer to [Configuring SSL for LDAP clients,.

Select the SSL enabled option if you want to use secure sockets layer communications with the
LDAP server. If you select the SSL enabled option, select the appropriate SSL alias configuration
from the list in the SSL configuration field.

Click OK. The validation of the user, password, and the setup do not take place in this panel.
Validation is only done when you click OK or Apply in the Global Security panel. If you are enabling
security for the first time, complete the remaining steps and go to the Global Security panel. Select
LDAP as the active user registry. If security is already enabled, but information on this panel
changes, go to the Global Security panel and click OK or Apply to validate your changes. If your
changes are not validated, the server might not come up.

Sets the LDAP registry configuration. This step is required to set up the LDAP registry. This step is
required as part of enabling security in the WebSphere Application Server.

1.

2.

3.

If you are enabling security, complete the remaining steps. As the final step, validate this setup by
clicking OK or Apply in the Global Security panel.

Save, stop, and restart all the product servers (deployment managers, nodes and Application Servers)
for changes in this panel to take effect.

If the server comes up without any problems the setup is correct.

Related concepts

|“Local operating system user registries” on page 268|
With the local operating system, or Local OS, user registry implementation, the WebSphere Application
Server authentication mechanism can use the user accounts database of the local operating system.

Related tasks

[‘Configuring Lightweight Directory Access Protocol search filters” on page 281|

“‘Configuring Secure Sockets Layer for the Lightweight Directory Access Protocol client” on page 519
[Configuring global security” on page 184

Chapter 12. Administering security 275

Related reference

[‘Custom user registries” on page 290|

A custom user registry is a customer-implemented user registry, that implements the UserRegistry Java
interface, as provided by the product. A custom-implemented user registry can support virtually any
type of an account repository from a relational database, flat file, and so on. The custom user registry
provides considerable flexibility in adapting product security to various environments where some form
of a user registry, other than Lightweight Directory Access Protocol (LDAP) or Local Operating System
(LocalOS), already exists in the operational environment.

Lightweight Directory Access Protocol settings
Use this page to configure Lightweight Directory Access Protocol (LDAP) settings when users and groups
reside in an external LDAP directory.

To view this administrative console page, click Security > Global security. Under User registries, click
LDAP.

When security is enabled and any of these properties change, go to the Global security panel and click
Apply to validate the changes.

Related tasks

[Using specific directory servers as the LDAP server” on page 283|
Related reference

[‘Supported directory services” on page 286

Server user ID:
Specifies the user ID that is used to run the WebSphere Application Server for security purposes.

Although this ID is not the LDAP administrator user ID, specify a valid entry in the LDAP directory located
under the Base Distinguished Name.

Server user password:

Specifies the password corresponding to the security server ID.

Type:

Specifies the type of LDAP server to which you connect.

IBM SecureWay Directory Server is supported by WebSphere Application Server for z/OS

For a list of supported LDAP servers, see "Supported directory services.” in the documentation.

Host:

Specifies the host ID (IP address or domain name service (DNS) name) of the LDAP server.

Port:

Specifies the host port of the LDAP server.

If multiple WebSphere Application Servers are installed and configured to run in the same single signon
domain, or if the WebSphere Application Server interoperates with a previous version of the WebSphere
Application Server, then it is important that the port number match all configurations. For example, if the

LDAP port is explicitly specified as 389 in a Version 4.0.x configuration, and a WebSphere Application
Server at Version 5 is going to interoperate with the Version 4.0.x server, then verify that port 389 is

276 1BM WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

specified explicitly for the Version 5 server.

Default: 389

Base distinguished name (DN):

Specifies the base distinguished name of the directory service, indicating the starting point for LDAP
searches of the directory service.

For example, for a user with a distinguished name (DN) of cn=John Doe, ou=Rochester, 0=IBM, c=US, you
can specify the base DN as (assuming a suffix of c=us): ou=Rochester, 0=IBM, c=us. For authorization
purposes, this field is case sensitive. This specification implies that if a token is received (for example,
from another cell or Domino) the base DN in the server must match the base DN from the other cell or
Domino server exactly. If case sensitivity is not a consideration for authorization, enable the Ignore case
field. This field is required for all Lightweight Directory Access Protocol (LDAP) directories except for the
Domino Directory, where this field is optional.

If you need to interoperate between WebSphere Application Server Version 5 and a Version 5.0.1 or later
server, you must enter a normalized base distinguished name. A normalized base distinguished name
does not contain spaces before or after commas and equal symbols. An example of a non-normalized
base distinguished name is o = ibm, ¢ = us or o=ibm, c=us. An example of a normalized base
distinguished name is o=ibm,c=us. In WebSphere Application Server, Version 5.0.1 or later, the
normalization occurs automatically during run time

Bind distinguished name (DN):

Specifies the distinguished name for the application server to use when binding to the directory service.

If no name is specified, the application server binds anonymously. See the Base Distinguished Name field
description for examples of distinguished names.

Bind password:
Specifies the password for the application server to use when binding to the directory service.
Search timeout:

Specifies the timeout value in seconds for an Lightweight Directory Access Protocol (LDAP) server to
respond before aborting a request.

Default: 120

Reuse connection:
Specifies whether the server reuses the Lightweight Directory Access Protocol (LDAP) connection. Clear

this option only in rare situations where a router is used to spray requests to multiple LDAP servers and
when the router does not support affinity.

Default: Enabled
Range: Enabled or Disabled

Ignore case for authorization:

Specifies that a case insensitive authorization check is performed when using the default authorization.

Chapter 12. Administering security 277

This field is required when IBM Tivoli Directory Server is selected as the LDAP directory server.

This field is required when Sun ONE Directory Server is selected as the LDAP directory server. For more
information, see "Using specific directory servers as the LDAP server” in the documentation.

Otherwise, this field is optional and can be enabled when a case-sensitive authorization check is required.
For example, use this field when the certificates and the certificate contents do not match the case used
for the entry in the LDAP server. You can enable the Ignore case field when using single signon (SSO)
between WebSphere Application Server and Lotus Domino.

Default: Enabled
Range: Enabled or Disabled

SSL enabled:

Specifies whether secure socket communication is enabled to the Lightweight Directory Access Protocol
(LDAP) server. When enabled, the LDAP Secure Sockets Layer (SSL) settings are used, if specified.

SSL configuration:

Specifies the Secure Sockets Layer configuration to use for the Lightweight Directory Access Protocol
(LDAP) connection. This configuration is used only when SSL is enabled for LDAP.

Default: DefaultSSLSettings

Advanced Lightweight Directory Access Protocol user registry settings
Use this page to configure the advanced Lightweight Directory Access Protocol (LDAP) user registry
settings when users and groups reside in an external LDAP directory.

To view this administrative page, complete the following steps:
1. Click Security > Global security.
2. Under User registries, click LDAP.

3. Under Additional properties, click Advanced Lightweight Directory Access Protocol (LDAP) user
registry settings.

Default values for all the user and group related filters are already completed in the appropriate fields. You
can change these values depending on your requirements. These default values are based on the type of
LDAP server selected in the LDAP settings panel. If this type changes (for example from Netscape to
Secureway) the default filters automatically change. When the default filter values change, the LDAP
server type changes to Custom to indicate that custom filters are used. When security is enabled and any
of these properties change, go to the Global security panel and click Apply or OK to validate the
changes.

Related reference
“Supported directory services” on page 286|

“Lightweight Directory Access Protocol settings” on page 276|
Use this page to configure Lightweight Directory Access Protocol (LDAP) settings when users and
groups reside in an external LDAP directory.

User filter:
Specifies the LDAP user filter that searches the user registry for users.

This option is typically used for security role to user assignments. It specifies the property by which to look
up users in the directory service. For example, to look up users based on their user IDs, specify

278 1BM WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

(%(uid=%v) (objectclass=inetOrgPerson)). For more information about this syntax, see the LDAP directory
service documentation.

Data type: String

Group filter:
Specifies the LDAP group filter that searches the user registry for groups

This option is typically used for security role to group assignments. It specifies the property by which to
look up groups in the directory service. For more information about this syntax, see the LDAP directory
service documentation.

Data type: String

User ID map:
Specifies the LDAP filter that maps the short name of a user to an LDAP entry.

Specifies the piece of information that represents users when users appear. For example, to display
entries of the type object class = inetOrgPerson by their IDs, specify inetOrgPerson:uid. This field takes
multiple objectclass:property pairs delimited by a semicolon (;).

Data type: String

Group ID Map:
Specifies the LDAP filter that maps the short name of a group to an LDAP entry.

Specifies the piece of information that represents groups when groups appear. For example, to display
groups by their names, specify *:cn. The asterisk (*) is a wildcard character that searches on any object
class in this case. This field takes multiple objectclass:property pairs delimited by a semicolon (;).

Data type: String

Group member ID map:
Specifies the LDAP filter that identifies user to group relationships.

For directory types SecureWay, and Domino, this field takes multiple objectclass:property pairs, delimited
by a semicolon (;). In an objectclass:property pair, the objectclass value is the same objectclass that is
defined in the Group Filter, and the property is the member attribute. If the objectclass value does not
match the objectclass in Group Filter, authorization might fail if groups are mapped to security roles. For
more information about this syntax, see your LDAP directory service documentation.

For IBM Directory Server, Sun ONE, and Active Directory, this field takes multiple (group
attribute:member attribute) pairs delimited by a semicolon (;). They are used to find the group
memberships of a user by enumerating all the group attributes possessed by a given user. For example,
attribute pair (memberof:member) is used by Active Directory, and (ibm-allGroup:member) is used by IBM
Directory Server . This field also specifies which property of an objectclass stores the list of members
belonging to the group represented by the objectclass. For supported LDAP directory servers, see
"Supported directory services”.

Data type: String

Chapter 12. Administering security 279

Perform a nested group search:
Specifies a recursive nested group search.

Select this option if the Lightweight Directory Access Protocol (LDAP) server does not support recursive
server-side group member searches (and if recursive group member search is required). It is not
recommended that you select this option to locate recursive group memberships for LDAP servers.
WebSphere security leverages the LDAP server’s recursive search functionality to search a user's group
memberships, including recursive group memberships. For example:

« IBM Directory Server is pre-configured by WebSphere Application Server security to recursively
calculate a user's group memberships using the ibm-allGroup attribute

« SunONE directory server is pre-configured to calculate nested group memberships using the nsRole
attribute

Data type: String

Certificate map mode:

Specifies whether to map X.509 certificates into an LDAP directory by EXACT_DN or
CERTIFICATE_FILTER. Specify CERTIFICATE_FILTER to use the specified certificate filter for the

mapping.
Data type: String

Certificate filter:

Specifies the filter certificate mapping property for the LDAP filter. The filter is used to map attributes in the
client certificate to entries in the LDAP registry.

If more than one LDAP entry matches the filter specification at run time, then authentication fails because
it results in an ambiguous match. The syntax or structure of this filter is: LDAP attribute=${Client
certificate attribute} (for example, uid=${SubjectCN}). The left side of the filter specification is an
LDAP attribute that depends on the schema that your LDAP server is configured to use. The right side of
the filter specification is one of the public attributes in your client certificate. The right side must begin with
a dollar sign ($) and open bracket ({) and end with a close bracket (}). You can use the following certificate
attribute values on the right side of the filter specification. The case of the strings is important:

o ${UniqueKey}

e ${PublicKey}
{PubTicKey}
{Issuer}
{NotAfter}
{NotBefore}
{SerialNumber}
{SigAlgName}
{SigA1g01ID}
{SigAlgParams}
{SubjectCN}

e ${Version}

$
$
$
$
- $
$
$
$
$

Data type: String

280 BM WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

Configuring Lightweight Directory Access Protocol search filters

WebSphere Application Server uses Lightweight Directory Access Protocol (LDAP) filters to search and
obtain information about users and groups from an LDAP directory server. A default set of filters is
provided for each LDAP server that the product supports. You can modify these filters to fit your LDAP
configuration. After the filters are modified (and you click OK or Apply) the directory type in the LDAP
Registry panel changes to custom, which indicates that custom filters are used. Also, you can develop
filters to support any additional type of LDAP server. The effort to support additional LDAP directories is
optional and other LDAP directory types are not supported.

1.
2.
3.

In the administrative console, click Security > Global security.
Under User registries, click LDAP.

Under Additional properties, click Advanced Lightweight Directory Access Protocol (LDAP) user
registry settings.

Modify the User filter, if necessary. The user filter is used for searching the registry for users and is
typically used for the security role to user assignment. Also, the filter is used to authenticate a user
using the attribute that is specified in the filter. The filter specifies the property that is used to look up
users in the directory service.

In the following example, the property that is assigned to %v, which is the short name of the user,
must be a unique key. Two LDAP entries with the same object class cannot have the same short
name. To look up users based on their user IDs (uid) and to use the inetOrgPerson object class,
specify the following syntax:

(&(uid=%v) (objectclass=inetOrgPerson)
For more information about this syntax, see the [LDAP directory service] documentation.

Modify the Group filter, if necessary. The group filter is used in searching the registry for groups and
is typically used for the security role to group assignment. Also, the filter is used to specify the
property by which to look up groups in the directory service.

In the following example, the property that is assigned to %v, which is the short name of the group,
must be a unique key. Two LDAP entries with the same object class cannot have the same short
name. To look up groups based on their common names (CN) and to use either the groupOfNames
or the groupOfUniqgueNames object class, specify the following syntax:

(&(cn=%v) (| (objectclass=groupOfNames) (objectclass=group0fUniqueNames)))

For more information about this syntax, see the [‘Supported directory services” on page 286
documentation.

Modify the User ID map, if necessary. This filter maps the short name of a user to an LDAP entry. It
specifies the piece of information that represents users when these users are displayed with their
short names. For example, to display entries of the type object class = inetOrgPerson by their IDs,
specify inetOrgPerson:uid. This field takes multiple objectclass:property pairs delimited by a
semicolon (;). To provide a consistent value for methods like the getCallerPrincipal() method and the
getUserPrincipal() method, the short name that is obtained by using this filter is used. For example,
the user CN=Bob Smith, ou=austin.ibm.com, 0=IBM, c=US can log in using any attributes that are
defined (for example, e-mail address, social security number, and so on) but when these methods are
called, the user ID bob is returned no matter how the user logs in.

Modify the Group ID map filter, if necessary. This filter maps the short name of a group to an LDAP
entry. It specifies the piece of information that represents groups when groups display. For example,
to display groups by their names, specify *:cn. The asterisk (*) is a wildcard character that searches
on any object class in this case. This field takes multiple objectclass:property pairs delimited by a
semicolon (;).

Modify the Group Member ID Map filter, if necessary. This filter identifies user to group memberships.
For SecureWay, and Domino directory types, this field is used to query all the groups that match the

specified object classes to see if the user is contained in the specified attribute. For example, to get

all the users belonging to groups with the groupOfNames object class and the users that are

Chapter 12. Administering security 281

contained in the member attributes, specify groupOfNames:member. This syntax, which is a property of
an objecitclass, stores the list of members that belong to the group that is represented by the
objectclass. This field takes multiple objectclass:property pairs that are delimited by a semicolon (;).
For more information about this syntax, see the [‘Supported directory services” on page 286 |

For the IBM Tivoli Directory Server, Sun ONE, and Active Directory, this field is used to query all
users in a group by using the information that is stored in the user object (instead of querying all the
groups individually to find if the user exists in that group). For example, the memberof:member filter
(for Active Directory) is used to get the memberof attribute of the user object to obtain all the groups
to which the user belongs. The member attribute is used to get all the users in a group that use the
group object. Using the user object to obtain the group information improves performance.

9. Select the Perform a nested group search option if your LDAP server does not support recursive
server-side searches.

10. Modify the Certificate map mode, if necessary. You can use the X.590 certificates for user
authentication when LDAP is selected as the user registry. This field is used to indicate whether to
map the X.509 certificates into an LDAP directory user by EXACT_DN or CERTIFICATE_FILTER. If
EXACT_DN is selected, the DN in the certificate must exactly match the user entry in the LDAP
server (including case and spaces).

Select the Ignore case for authorization field on the LDAP settings to make the authorization case
insensitive. To access the LDAP setting panel, complete the following steps:

a. Click Security > Global security.
b. Under User registries, click LDAP.

11. If you select CERTIFICATE_FILTER, specify the LDAP filter for mapping attributes in the client
certificate to entries in LDAP. If more than one LDAP entry matches the filter specification at run time,
authentication fails because an ambiguous match results. The syntax or structure of this filter is: LDAP
attribute=${Client certificate attribute} (for example, uid=${SubjectCN}).

The left side of the filter specification is an LDAP attribute that depends on the schema that your
LDAP server is configured to use. The right side of the filter specification is one of the public
attributes in your client certificate. Note that the right side must begin with a dollar sign ($), open
bracket ({), and end with a close bracket (}). Use the following certificate attribute values on the right
side of the filter specification. The case of the strings is important.

* ${UniqueKey}

* ${PublicKey}

o ${lssuer}

* ${NotAfter}

* ${NotBefore}

* ${SerialNumber}

» ${SigAlgName}

» ${SigAlgOID}

+ ${SigAlgParams}

* ${SubjectDN}

» ${Version}

To enable this field, select CERTIFICATE_FILTER for the certificate mapping.
12. Click Apply.

When any LDAP user or group filter is modified in the Advanced LDAP Settings panel click Apply.
Clicking OK navigates you to the LDAP User Registry panel, which contains the previous LDAP
directory type, rather than the custom LDAP directory type. Clicking OK or Apply in the LDAP User
Registry panel saves the back-level LDAP directory type and the default filters of that directory. This
action overwrites any changes to the filters that you made. To avoid overwriting changes, you can
take either of the following actions:
» Click Apply in the Advanced Lightweight Directory Access Protocol (LDAP) user registry settings
panel. To proceed to another panel, use the left navigation. Using the navigation to access the
LDAP User Registry panel changes the directory type to Custom.

282 BM WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

* Choose Custom type from the LDAP User Registry panel. Click Apply and then change the filters
by clicking the Advanced Lightweight Directory Access Protocol (LDAP) user registry settings
panel. After you complete your changes, click Apply or OK.

The validation of the changes (if any) does not take place in this panel. Validation is done when you
click OK or Apply in the Global Security panel. If you are in the process of enabling security for the
first time, complete the remaining steps and go to the Global Security panel. Select LDAP as the
Active User Registry. If security is already enabled and any information on this panel changes, go to
the Global Security panel and click OK or Apply to validate your changes. If your changes are not
validated, the server might not start.

Setting the LDAP search filters. This step is required to modify existing user and group filters for a
particular LDAP directory type. It is also used to set up certificate filters to map certificates to entries in the
LDAP server.
1. If you are enabling security, complete the remaining steps. As the final step make sure that you
validate this setup by clicking OK or Apply in the Global Security panel.
2. Save, stop, and start all the product servers (cell, nodes and all the application servers) for any
changes in this panel to become effective.
3. After the server starts, go through all the security-related tasks (getting users, getting groups, and so
on) to verify that the changes to the filters function.
Related concepts
[‘Lightweight Directory Access Protocol” on page 273
Lightweight Directory Access Protocol (LDAP) is a user registry in which authentication is performed
using an LDAP binding.
[‘Local operating system user registries” on page 268|

With the local operating system, or Local OS, user registry implementation, the WebSphere Application
Server authentication mechanism can use the user accounts database of the local operating system.

Related tasks
[‘Configuring global security” on page 184
Related reference

[‘Custom user registries” on page 290|

A custom user registry is a customer-implemented user registry, that implements the UserRegistry Java
interface, as provided by the product. A custom-implemented user registry can support virtually any
type of an account repository from a relational database, flat file, and so on. The custom user registry
provides considerable flexibility in adapting product security to various environments where some form
of a user registry, other than Lightweight Directory Access Protocol (LDAP) or Local Operating System
(LocalOS), already exists in the operational environment.

Using specific directory servers as the LDAP server

For Using MS Active Directory server as the LDAP server below, note that to use Microsoft Active
Directory as the LDAP server for authentication with WebSphere Application Server you must take specific
steps. By default, Microsoft Active Directory does not permit anonymous LDAP queries. To create LDAP
queries or to browse the directory, an LDAP client must bind to the LDAP server using the distinguished
name (DN) of an account that belongs to the administrator group of the Windows system. A group
membership search in the Active Directory is done by enumerating the memberof attribute possessed by a
given user entry, rather than browsing through the member list in each group. If you change this default
behavior to browse each group, you can change the Group Member ID Map field from memberof:member
to group:member.

Using IBM Tivoli Directory Server as the LDAP server

You can choose the directory type of either IBM Tivoli Directory Server or SecureWay for the IBM
Directory Server.

Chapter 12. Administering security 283

For supported directory servers, refer to the article, [Supported directory services| The difference between
these two types is group membership lookup. It is recommended that you choose the IBM Tivoli Directory
Server for optimum performance during run time. In the IBM Tivoli Directory Server, the group membership
is an operational attribute. With this attribute, a group membership lookup is done by enumerating the
ibm-allGroups attribute for the entry, All group memberships, including the static groups, dynamic groups,
and nested groups, can be returned with the ibm-al1Groups attribute. WebSphere Application Server
supports dynamic groups, nested groups, and static groups in IBM Tivoli Directory Server using the
ibm-allGroups attribute. To utilize this attribute in a security authorization application, use a
case-insensitive match so that attribute values returned by the ibm-allGroups attribute are all in uppercase.

Important: It is recommended that you do not install IBM Tivoli Directory Server Version 5.2 on the same
machine that you install WebSphere Application Server Version 6.0.x. IBM Tivoli Directory
Server Version 5.2 includes WebSphere Application Server Express Version 6.0.x, which the
directory server uses for its administrative console. Install the Web Administration tool Version
5.2 and WebSphere Application Server Express Version 6.0.x, which are both bundled with
IBM Tivoli Directory Server Version 5.2, on a different machine from WebSphere Application
Server Version 6.0.x. You cannot use WebSphere Application Server Version 6.0.x as the
administrative console for IBM Tivoli Directory Server. If IBM Tivoli Directory Server Version
5.2 and WebSphere Application Server Version 6.0.x are installed on the same machine, you
might encounter port conflicts.

If you must install IBM Tivoli Directory Server Version 5.2 and WebSphere Application Server
Version 6.0.x on the same machine, consider the following information:

» During the IBM Tivoli Directory Server installation process, you must select both the Web
Administration tool and WebSphere Application Server Express Version 6.0.x.

 Install WebSphere Application Server, Version 6.0.x.

* When you install WebSphere Application Server Version 6.0.x, change the port number for
the application server.

* You might need to adjust the WebSphere Application Server environment variables on
WebSphere Application Server Version 6 for WAS_HOME and WAS_INSTALL_ROOT. To
change the variables using the administrative console, click Environment > WebSphere
Variables.

Using a Lotus Domino Enterprise Server as the LDAP server

If you choose the Lotus Domino Enterprise Server Version 6.0.3 or Version 6.5.1 and the attribute short

name is not defined in the schema, you can take either of the following actions:

» Change the schema to add the short name attribute.

* Change the user ID map filter to replace the short name with any other defined attribute (preferably to
UID). For example, change person:shortname to person:uid.

The userlD map filter has been changed to use the uid attribute instead of the shortname attribute as the
current version of Lotus Domino does not create the shortname attribute by default. If you want to use the
shortname attribute, define the attribute in the schema and change the userlD map filter to the following:

User ID Map : person:shortname
Using Sun ONE Directory Server as the LDAP server

You can choose Sun ONE Directory Server for your Sun ONE Directory Server system. For supported
directory servers, refer to the article, ISupported directory servicesl In Sun ONE Directory Server, the
default object class is group0fUniqueName when you create a group. For better performance, WebSphere
Application Server uses the user object to locate the user group membership from the nsRole attribute.
Thus, create the group from the role. If you want to use group0fUniqueName to search groups, specify your
own filter setting. Roles unify entries. Roles are designed to be more efficient and easier to use for

284 BM WebSphere Application Server for z/OS, Version 6.0.1: Securing applications and their environment

applications. For example, an application can locate the role of an entry by enumerating all the roles
possessed by a given entry, rather than selecting a group and browsing through the members list. When
using roles, you can create a group could be created using a:

Managed role
Filtered role
Nested rol