L[[2RIET(N Application Server for z/0S, Version 6.0.1

Y

W

/TS
or Y

Using the administrative clients

SA23-2208-00

Note
FBefore using this information, be sure to read the general information under|“Notices” on page 711.|

Compilation date: March 14, 2005

© Copyright International Business Machines Corporation 2005. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents
How to send your comments vii

Chapter 1. Overview and new features

for administering applications and their
environments1
Contents of this section: Administering applications
and their environments. . . .1
Getting started with WebSphere Apphcatlon Server .2
Security considerations for WebSphere Application

Server for z/OS
Introduction: System admmlstratlon 4
Introduction: Administrative console8
Introduction: Administrative scripting (wsadmin) 12
Introduction: Administrative commands. . . . 13
Introduction: Administrative programs 14
Introduction: Administrative configuration data 14
Welcome to basic administrative architecture . . 14
Introduction: Servers16
Introduction: Application servers16
Introduction: Web servers17
Introduction: Clusters18
Introduction: Environment18
Introduction: Cell-wide settings.19
Introduction: Variables.19

Chapter 2. How do | administer
applications and their environments? . 21

Chapter 3. Using the administrative
clients.29

Chapter 4. Using the administrative

console 31
Starting and logging off the adm1n1strat1ve console 31
Login settings32
Save changes to the master Conflguratlon .. .34
Setting the session timeout for the administrative
console.3
Administrative console areas35
Taskbar.36
Navigationtree36
Workspace. . . B
Administrative console buttons36
Administrative console page features.40
Administrative console navigation tree actions. . 41
Administrative console taskbar actions 42
Specifying console preferences43
Preferences settings.43
Administrative console preference settmgs R
Administrative console scope settings . . . 45
Accessing help and product information from the
administrative console.46
Administrative console: Resources for learnmg .. 47

© Copyright IBM Corp. 2005

Chapter 5. Using the MVS console. . 49
Chapter 6. Using scripting (wsadmln) 51
Getting started with scripting . 52
Java Management Extensions (JMX) . 53
WebSphere Application Server configuration
model . e . 56
Jacl . . 56
Jython . . . 67
Scripting objects . . .73
Starting the wsadmin scr1pt1ng chent . 123
Scripting: Resources for learning . . 128
Deploying applications using scripting . .. 128
Installing applications with the wsadmin tool 128
Uninstalling applications with the wsadmin tool 130
Managing deployed applications using scripting 131
Starting applications with scripting . . 131
Updating installed applications with the
wsadmin tool . . 132
Stopping applications w1th scrlptmg . 136
Listing the modules in an installed application
with scripting . 137
Querying the apphcatlon state usmg scrlptmg 142
Configuring applications for session
management using scripting . 142
Configuring applications for session
management in Web modules using scripting . 145
Exporting applications using scripting . . 149
Configuring a shared library using scripting . . 150
Configuring a shared library for an application
using scripting . . 153
Setting background apphcatlons usmg scrlptmg 157
Configuring servers with scripting .. 158
Creating a server using scripting . . 159
Configuring the Java virtual machine usmg
scripting 159
Configuring enterprise bean contamers using
scripting . . 160
Configuring a Performance Manager
Infrastructure service using scripting . 164
Configuring an ORB service using scripting . . 166
Configuring processes using scripting . . 168
Configuring transaction properties for a server
using scripting . . 169
Setting port numbers kept in the
serverindex.xml file using scripting . . 171
Disabling components using scripting . . 175
Disabling services using scripting . 177
Dynamic caching with scripting . . 178
Configuring connections to Webservers with
scripting 178
Regenerating the node plug—m conflguratlon
using scripting . . 178
Creating new virtual hosts usmg templates w1th
scripting . . 179
iii

Managing servers with scripting 180 Configuring new JMS destinations using

Stopping a node using scripting 180 scripting215
Starting servers using scripting 180 Configuring new]MS connections using
Stopping servers using scripting 181 scripting 216
Querying server state using scripting 182 Configuring new WebSphere queue connection
Listing running applications on running servers factories using scripting 217
using scripting 183 Configuring new WebSphere top1c connection
Starting listener ports usmg scrlptlng18 factories using scripting 218
Managing generic servers using scripting . . . 186 Configuring new WebSphere queues using
Setting development mode for server objects scripting 2219
using scripting 187 Configuring new WebSphere toplcs usmg
Disabling parallel startup usmg scrlptmg .. 187 scripting 220
Removing multicast endpoints using scripting 188 Configuring new MQ queue connection
Obtaining server version information with factories using scripting 222
scripting 188 Configuring new MQ topic connection factorles
Clustering servers w1th scrlptmg o018 using scripting oo, 223
Creating clusters using scripting 190 Configuring new MQ queues us1ng scripting 224
Creating cluster members using scripting . . . 190 Configuring new MQ topics using scripting . . 225
Creating clusters without cluster members using Configuring mail, URLs, and resource environment
scripting R]| entries with scripting. . . . 226
Starting a cluster using scripting oo o192 Configuring new mail prov1ders usmg scripting 227
Querying cluster state using scripting 193 Configuring new mail sessions using scripting 228
Stopping clusters using scripting 193 Configuring new protocols using scripting . . 229
Configuring security with scripting 193 Configuring new custom properties using
Enabling and disabling global security usmg scripting230
scripting 194 Configuring new resource env1ronment
Enabling and dlsabhng]ava 2 securlty usmg providers using scripting231
scripting19 Configuring custom properties for resource
Configuring data access w1th scripting .o . 196 environment providers using scripting 232
Configuring a JDBC provider using scripting 196 Configuring new referenceables using scripting 233
Configuring new data sources using scripting 197 Configuring new resource environment entries
Configuring new connection pools using using scripting 234
scripting 198 Configuring custom properties for resource
Configuring new data source custom properties environment entries using scripting 235
using scripting 199 Configuring new URL providers using scripting 236
Configuring new]2CAuthentication data entrles Configuring custom properties for URL
using scripting200 providers using scripting237
Configuring new WAS4O data sources us1ng Configuring new URLs using scripting. . . . 238
scripting 201 Configuring custom properties for URLs using
Configuring new WAS4O connection pools using scripting . . oo ... 239
scripting 202 Troubleshooting w1th scripting . .. 240
Configuring new WAS4O custorn properties Tracing operations with the wsadrnln tool .. 240
using scripting 203 Configuring traces using scripting 241
Configuring new J2C resource adapters us1ng Turning traces on and off in servers processes
scripting 204 using scripting242
Configuring custom propertles for]ZC resource Dumping threads in server processes using
adapters using scripting. . . . 205 scripting243
Configuring new J2C connection factories us1ng Setting up profile scripts to make trac1ng easier
scripting 206 using scripting 243
Configuring new]2C authentlcatlon data entries Enabling the Runtime Performance Adv1sor tool
using scripting 208 using scripting . . . oo 244
Configuring new J2C activation specs using Scripting reference material L. L 246
scripting 209 Wsadmin tool 246
Configuring new]2C admlnlstratlve ob]ects Commands for the Help ob]ect20
using scripting 210 Commands for the AdminConfig object . . . 265
Testing data source connections us1ng scripting 212 Commands for the AdminControl object . . . 292
Configuring messaging with scripting 213 Commands for the AdminApp object 317
Configuring the message listener service using Commands for the AdminTask object 412
scripting 213 Administrative command invocation syntax . . 599
Configuring new]MS prov1ders usmg scripting 214 Properties used by scripted administration . . 601

iv IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

Chapter 7. Using Ant to automate

tasks . . 603
ws_ant command . .o . . 603
Ant tasks for deployment and server operation .. 604
Ant tasks for building application code. . 604
Chapter 8. Using administrative
programs (JMX) . . 605
Java Management Extensmns . . 606
Creating a custom Java administrative chent
program using WebSphere Application Server
administrative Java APIs . . 607
Developing an administrative client program 608
Extending the WebSphere Application Server
administrative system with custom MBeans . . 615
Best practices for standard, dynamic, and open
MBeans . . 617
Creating and registering standard dynarnic and
open custom MBeans. . 618
Java 2 security permissions. . 621
Java Management Extensions MBean
multiprocess model request flow for WebSphere
Application Server for z/OS . 621
Administrative Security . . . 630
Default MBean security policy. . . 631
Defining an explicit MBean security policy . 632
Developing administrative programs for multiple
Java 2 Platform, Enterprise Edition application
servers . . 634
Deploying and managlng a custorn]ava
administrative client program with multiple Java 2
Platform, Enterprise Edition application servers . . 637
Migrating Java Management Extensions V1.0 to
Java Management Extensions V1.2 . . 638
Java Management Extensions interoperability. . 639
Managed object metadata . 640
Managing applications through programmlng . 641
Installing an application through programming 642
Uninstalling an application through
programming . 646
Updating an apphcatlon through programming 648
Adding to, updating, or deleting part of an
application through programming . 651
Preparing a module and adding it to an existing
application through programming . 653
Preparing and updating a module through
programming . . 656
Deleting a module through programmlng . 659
Adding a file through programming. . 661
Updating a file through programming . . 663
Deleting a file through programming . 665
Chapter 9. Using command line tools 669
Example: Security and the command line tools . . 669
startServer command. . 670
stopServer command . . 671

startManager command672
stopManager command674
stopNode command N V)
START appserver_proc_name comrnand N V44
STOP appserver_proc_name command. 678
START dmgr_proc_name command 678
STOP dmgr_proc_name command 679
START nodeagent_proc_name command . . 680
STOP nodeagent_proc_name command . 680
addNode command . . . 681

Best practices for adding nodes us1ng comrnand

line tools . . . 684
serverStatus command685
removeNode command686
cleanupNode command687
syncNode command688
backupConfig command.69
restoreConfig command691
EARExpander command692
GenPluginCfg command693

Chapter 10. Using mvs command line
tools . e 1 1
Modify command 697
Example: Canceling apphcation clusters and
servers with the modify command 701

Example: Establishing a general level of trace 701

Example: Setting basic and detailed trace levels 702
Example: Setting specific trace points . 702
Example: Excluding specific trace points . 702
Example: Resetting to the initial trace settings 703
Example: Turning off tracing . . 703
Example: Sending the trace to sysprint . . 703
Example: Displaying servants 703
Example: Displaying trace settings and]ava
string trace settings . . 703
Example: Displaying JVM heap 1nfor1nation .. 704
Example: Displaying sessions 705
Example: Displaying status of a server 706
Example: Displaying status of clusters 706
Example: Getting help for the modify command 707
Example: Modifying the Java trace string . . . 708
Display command. 708
Example: Displaying active rephes708
Example: Displaying active address spaces . . 708

Example: Displaying the status of address

spaces registered for automatic restart

management 709
Example: Displaying units of work

(transactions) for the Information Management
System70

Notices . .71

Trademarks and service marks. . 713

Contents V

vi IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

How to send your comments

Your feedback is important in helping to provide the most accurate and highest
quality information.

To send comments on articles in the WebSphere Application Server Information
Center

1. Display the article in your Web browser and scroll to the end of the article.

2. Click on the Feedback link at the bottom of the article, and a separate
window containing an e-mail form appears.
3. Fill out the e-mail form as instructed, and click on Submit feedback .

To send comments on PDF books, you can e-mail your comments to:
wasdoc@us.ibm.com or fax them to 919-254-0206.

Be sure to include the document name and number, the WebSphere Application
Server version you are using, and, if applicable, the specific page, table, or figure
number on which you are commenting.

When you send information to IBM, you grant IBM a nonexclusive right to use or
distribute the information in any way it believes appropriate without incurring any
obligation to you.

© Copyright IBM Corp. 2005

vii

viii IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

Chapter 1. Overview and new features for administering
applications and their environments

What is new for administrators

This topic provides an overview of new and changed features of system
administration.

(“Introduction: System administration” on page 7

This topic describes the administration of WebSphere Application Server,
Version 6 products and the applications that run on them.

Presentations from [[BM Education Assistant]

The following presentations provide a quick overview:

i |System management architecture|

+ |Administrative security]

+ |Administrative clients overview|

- IStart, stop, and monitor processes|
- |Other commands]

— [Browser-based administrative console|

— [Scripting - wsadmin|

* Topologies and logical administrative domains

— |Resource scoping|

— [Cells, deployment managers, and node agents|
— [Build cells - Add and remove nodes

— Manage node groups|
* Applications and application resources

- [Application management overview]|

- [>Bg

— [Installing and uninstalling applications|

— Managed application resources - Enhanced EAR files|

— |Fine grained application updates|

e Servers

— [Manage Web server nodes|

* Configuration management

— [Configuration repositoryl

— [Configuration archives|

— [File synchronization|

Contents of this section: Administering applications and their
environments

Setting up the application serving environment
This section is for the administrator who is responsible for integrating
application serving capabilities into an existing network environment. It
looks at the product as part of a larger system, typically a production
environment or realistic test environment. This section reiterates some

© Copyright IBM Corp. 2005

http://www-306.ibm.com/software/info/education/assistant/noflash.shtml
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_Architecture/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_Admin_Security/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_AdminClient/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_StartStop_Monitor/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_Commands/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_AdminConsole/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_ScriptingAdmin/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_Res_Scopes/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_CellNode_Config/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_ND_BuildCell/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_NodeGroup/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_App_Admin_Overview/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_JDBC/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_App_Install/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/ApplicationManagement/LabInstructions/WASv6_EnhancedEARLab.pdf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/ApplicationManagement/LabInstructions/WASv6_AppUpdateLab.pdf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/WebServer_And_PlugIn/Presentations/WASv6_WebServer/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_ConfigRepository/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_Configuration_Archives/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_ND_FileSync/playershell.swf

installation and customization activities, including topology planning and
creating product configurations. It carries the focus into the administrative
realm, discussing port configuration and other network concerns. See also
Overview and new features for installing an application serving
environment.

This information expands the topology planning discussion by describing
how to set up and maintain logical administrative domains of cells and
nodes, and how to balance workload through clustering and high
availability configurations.

[Chapter 3, “Using the administrative clients,” on page 29|
This section describes the many options available for administering your
applications and the servers to which the applications are deployed.
Options include the graphical administrative console; scripting with the
wsadmin tool; programmatic administration using Java Management
Extensions (JMX) and MBeans; and a wide array of command-line tools,
including ANT.

Starting and stopping quick reference
This section summarizes what can be started and stopped, including
applications and the application servers on which these applications are
deployed.

Class loading
This section describes how to configure class loaders. It includes both
configuration that is performed during application assembly (packaging)
and configuration performed at the server. The product run-time
environment uses class loaders to find and load new classes for an
application. Class loaders are part of the Java virtual machine (JVM) code
and are responsible for finding and loading class files.

Deploying and administering applications
This section describes how to deploy applications onto application servers,
and then how to administer the deployed applications. It includes
installing applications, starting applications, exporting application files,
updating applications, removing applications, and other common tasks.

Administer WebSphere applications
This section provides administrative instructions that are specific to the
various types of applications. For example, you can focus on administering
your Web applications in their Web container; or aspects of Web services
support; or the messaging or security subsystems.

Troubleshooting deployment
This section describes how to identify and handle a variety of problems
encountered during development, assembly, and deployment activities.

Troubleshooting administration
This section describes how to identify and handle a variety of problems
encountered during administrative activities.

Getting started with WebSphere Application Server

Note: If you prefer to browse PDF versions of this documentation using
Reader] see the Getting Started PDF files that are available from
www.ibm.com /software/webservers/appserv /infocenterhtml|

Installing

2 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

http://www.adobe.com/products/acrobat/readermain.html
http://www.adobe.com/products/acrobat/readermain.html
http://www.ibm.com/software/webservers/appserv/infocenter.html

See Task overview: installing for a description of installing the WebSphere
Application Server product and other installable components.

Configuring

See Configuring the product after installation for a description of what to do after

installing the product.

Migrating

See Migrating and coexisting for a description of how to migrate applications and
configuration data from a previous version of WebSphere Application Server.

Using the Samples Gallery

See Accessing the Samples (Samples Gallery) for a description of the set of Samples
that ship with each product. The Samples demonstrate common Web application

tasks.

Deploying applications

The information center describes how to deploy Web components, such as servlets

and JSP files.

Security considerations for WebSphere Application Server for z/0OS

Functions supported on WebSphere Application Server for z/OS

WebSphere Application Server for z/OS supports the following functions. You can
read about these applications in the Securing applications and their environment

manual.

Table 1. Functions supported on WebSphere Application Server for z/0S

Function

Additional information

RunAs EJB

For more information, see Delegations.

RunAs for Servlets

For more information, see Delegations.

SAF-based IIOP Protocols

For more information, see Common Secure
Interoperability Version 2 and Security
Authentication Service client configuration.

z/0OS connector facilities

For more information, see Resource Recovery
Services (RRS).

Global security enable or disable

For more information, see Enabling global
security and Disabling global security.

SAF keyrings

For more information, see Using System
Authorization Facility keyrings with Java Secure
Sockets Extension.

Authentication functions

Authentication function examples: Basic, SSL digital
certificates, form-based login, security constraints,
trust association interceptor

J2EE security resources

For more information, see Securing applications
and their environments.

Web authentication (LTPA)

For more information, see Steps for selecting
LTPA as the authentication mechanism.

Chapter 1. Overview and new features 3

4

Table 1. Functions supported on WebSphere Application Server for z/OS (continued)

Function

Additional information

IIOP using LTPA

For more information, see Lightweight Third
Party Authentication.

WebSphere application bindings

WebSphere application bindings can be used to
provide user to role mappings.

Synch to OS Thread

For more information, see Synchronizing a Java
thread identity and an operating system thread
identity.

J2EE role-based naming security

For more information, see Java 2 Platform,
Enterprise Edition (J2EE) specification.

J2EE role-based administrative security

For more information, see Java 2 Platform,
Enterprise Edition (J2EE) specification.

SAF registries

For more information, see User registries.

Identity assertion

For more information, see Identity assertion.

Authentication protocols

Example: z/SAS, CSIV2

For more information, see Supported
authentication protocols.

CSIv2 conformance level "0"

For more information, see Planning to secure
your environment.

J2EE 1.4 compliance

For more information, see Java 2 Platform,
Enterprise Edition (J2EE) specification.

JAAS programming model WebSphere
extensions

For more information, see Web authentication
using the Java Authentication and Authorization
Service programming model.

All basic WebSphere Application Server provide the following functions:

* Using RunAs: Use RunAs to change the identity of a caller, server, or role. This
designation is now part of the servlet specification.

* Support of SAF-based IIOP authentication protocols: Network Deployment
uses Secure Authentication Services (SAS) for IIOP authentication. z/OS has its
own version of SAS called z/OS Secure Authentication Services (z/SAS) (with
similar functions but different mechanisms), and it handles functions such as

local security, Secure Sockets Layer (SSL)-based authorization, digital certificates
with System Authorization Facility (SAF) mapping, and SAF identity assertion.
SAF-based authorization and RunAs capability: This allows you to use SAF
(EJBROLE) profiles for permission and delegation security information.

Support for z/OS connector facilities: Instead of using an alias where a user ID
and password is stored, the ability to propagate local OS identities is supported.
SAF keyring support for HTTP and IIOP: Use SystemSSL for HTTP, IIOP, and
SAF key ring support. You can also use JSSE.

Authentication functions: Web Authentication mechanisms such as basic, SSL
digital certificates, form-based login, security constraints, and trust association
interceptor offer the same functionality in Version 6.0.x as offered in Version 5.
Authorization for J2EE resources: Authorization for J2EE resources employs
roles similar to the ones used in Version 4, and these roles are used as
descriptors.

Security enablement: Security can be enabled or disabled globally. When the
server comes up there is some level of security on, but security is disabled until
the administrator sets it up.

IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

Web authentication using LTPA and SWAM: Single-signon using Lightweight
Third Party Authentication (LTPA) or Simple WebSphere Authentication
Mechanism (SWAM) is supported.

IIOP authentication using LTPA: IIOP authentication using LTPA is supported.
WebSphere Application Bindings for Authorization: WebSphere Application
Bindings for Authorization are now supported.

Synch to OS Thread: Application Synch to OS Thread is supported.

J2EE role-based naming security: J2EE roles are used to protect access to the
namespace. The new roles and tasks are cosNamingRead, cosNamingWrite,
cosNamingCreate, and cosNamingDelete.

Role-based administrative security: The roles delimiting security are:

— Monitor (least authorization and is read-only)

— Operator (can do runtime changes)

— Configurator (can monitor and configuration privileges)

— Administrator (most authorization)

Comparing WebSphere Application Server for z/OS with other WebSphere
Application Server platforms

A key similarity:

Pluggable security model: The pluggable security model can be authenticated in

IIOP (CSIv2), Web Trust Authentication, Java Management Extensions (JMX)

Connectors, or the Java Authentication and Authorization Service (JAAS)

programming model. You must:

1. Determine which registry is appropriate and what authentication (token)
mechanisms are needed

2. Determine whether or not the registry is local or remote, and what Web
authorizations should be used - Web authorizations include Simple
WebSphere authentication mechanism (SWAM) and Lightweight Third-Party
Authentication (LTPA)

Key differences include:

SAF registries: Local operating system registries provide premium functionality
on z/0S because z/OS spans a sysplex rather than a single server. z/OS
provides certificate to user mapping, authorization, and delegation functions.
Identity assertion: Use trusted servers or CBIND to get the authorization
required for the server doing the assertion. Distributed platform requires a
server to be placed in the trusted server list. z/OS requires a server ID to have a
specific CBIND authorization. The Assertion types are SAF user ID,
Distinguished Name (DN), and SSL client certificate.

zSAS and SAS authentication protocols for IIOP clients: z/SAS differs from
SAS because it supports RACF PassTickets. The SAS layer in WebSphere
Distributed uses CORBA portable interceptors to implement their Secure
Association Service, and z/OS does not.

CORBA features: z/OS does not support CORBA security interfaces including
the CORBA current, LoginHelper, Credentials, and ServerSideAuthenticator
models. CORBA functions have been migrated to JAAS.

Authentication protocols: CSIv2 is an Object Management Group (OMG)
specification for the z/OS Security Server and is automatically enabled when
WebSphere security is enabled. This is a three-layered approach involving a
transport layer (SSL/TLS) for message protection, supplemental client
authentication layer for user ID and password (GSSUP), and security attribute
layer used by middle servers (who must be specially authorized to the target
server) for identity assertion.

Chapter 1. Overview and new features 5

J2EE 1.3 compliance

Being J2EE-compliant involves:

* CSIv2 conformance level "0": This is an OMG (related to the z/OS Security
Server) specification, which is part of what used to be the CORBA support.
CSIv2 is automatically enabled when security is enabled.

* Use of Java 2 security: There is "security-enabled” and "Java 2 security-enabled”,
and the default for Java2 is "on”. This provides a fine-grained access control that
is code-based as opposed to subject-based authorization. Each class belongs to
one particular domain. Permissions protected by Java 2 security include file
access, network access, sockets, exiting Java virtual machine (JVM),
administration of properties, and threads. The "security manager” is what Java 2
uses as a mechanism for managing security and enforcing the required
protections. Extensions to Java 2 security include use of dynamic policy
(permissions resource type-based rather than code-based), use of specific default
permissions defined for resources in template profiles, and use of filter files to
disable policy.

* Use of JAAS programming: JAAS programming includes a standard set of APIs
for authentication. JAAS is the strategic authorization and authentication
mechanism. IBM Developer Kit for Java Technology Edition Version 1.4.2
WebSphere Application Server shipped with WebSphere Version 6.0.x (but some
extensions are supplied).

* Use of the servlet RunAs function: WebSphere Application Server on the
distributed platforms (not the z/OS platform) refers to this function as
"Delegation Policy”. You can change identity to run as a system, caller, or role
(user). This function is now part of the servlet specification. Authentication
involves using a user ID and password and then mapping the alias to the
appropriate XML file to find the user ID of the RunAs role.

Compliance with WebSphere Network Deployment at the API/SPI level

Compliance with WebSphere Network Deployment at the API/SPI level makes

deploying applications from Network Deployment on z/OS easier. Features

enhanced or deprecated by Network Deployment are enhanced or deprecated by

z/0S. However, this does not mean there is no migration for z/OS customers.

Compliance with WebSphere Network Deployment at the API/SPI level includes:

* WebSphere Application Server extensions to the JAAS programming model:
The authorization model is an extension of the Java 2 security model for JAAS
programming (so it works with the J2EE model). Subject-based authorization is
performed on authenticated user IDs. Instead of merely logging in with a user
ID and password, there is now a login process that includes creating a login
context, passing callback handlers that prompt for user ID and password, and
logging in. WebSphere Application Server for z/OS supplies the login module,
the callback handler to retrieve the necessary data, the callbacks, the WSSubject
choice, getCallerSubject, and getRunAsSubject .

* Use of the WebSphere Application Server security APIs: z/OS supports
WebSphere Application Server security APIs.

* Use of secure JMX connectors: JMX connectors can be used with user ID and
password credentials. The two connector types are RMI and SOAP/HTTPS (and
are for administration). The SOAP connector uses the JSSE SSL repertoires. The
RMI connector is subject to the same advantages and restrictions as IIOP
mechanisms (such as CSIv2).

6 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

Introduction: System administration

Note: Q If you would prefer to browse PDF versions of this documentation
using your see the System Administration PDF files
available from
[www.ibm.com /software /webservers /appserv /infocenter.html|

A variety of tools are provided for administering the WebSphere Application
Server product:
* Console

The administrative console is a graphical interface that provides many features

to guide you through deployment and systems administration tasks. Use it to
explore available management options.

For more information, refer to|“Introduction: Administrative console” on page 8|

Administrative agents

Servers, nodes and node agents, cells and the deployment manager are
fundamental concepts in the administrative universe of the product. It is also
important to understand the various processes in the administrative topology
and the operating environment in which they apply.

or more information, refer to elcome to basic administrative architecture” on
F f tion, refer to [“Wel to b d trat hitecture” on|

* Scripting

The WebSphere administrative (wsadmin) scripting program is a powerful,
non-graphical command interpreter environment enabling you to run
administrative operations in a scripting language. You can also submit scripting
language programs to run. The wsadmin tool is intended for production
environments and unattended operations.

For more information, refer to [“Introduction: Administrative scripting]
[(wsadmin)” on page 12]
e Commands

Command-line tools are simple programs that you run from an operating system
command-line prompt to perform specific tasks, as opposed to general purpose
administration. Using the tools, you can start and stop application servers, check
server status, add or remove nodes, and complete similar tasks.

For more information, refer to [“Introduction: Administrative commands” on|

e Programming

The product supports a Java programming interface for developing
administrative programs. All of the administrative tools supplied with the
product are written according to the API, which is based on the industry
standard Java Management Extensions (JMX) specification.

For more information, refer to [“Introduction: Administrative programs” on page|

* Data

Product configuration data resides in XML files that are manipulated by the
previously-mentioned administrative tools.

For more information, refer to[“Introduction: Administrative configuration data’|

Chapter 1. Overview and new features 7

http://www.adobe.com/products/acrobat/readermain.html
http://www.ibm.com/software/webservers/appserv/infocenter.html

Introduction: Administrative console

The pdministrative console|is a graphical interface for performing deployment and
system administration tasks. It runs in your Web browser. Your actions in the
console modify a set of XML configuration files.

You can use the console to perform tasks such as:

e Add, delete, start, and stop application servers

* Deploy new applications to a server

* Start and stop existing applications, and modify certain configurations

e Add and delete Java 2 Platform, Enterprise Edition (J2EE) resource providers for
applications that require data access, mail, URLs, and so on

* Manage variables, shared libraries, and other configurations that can span
multiple application servers

* Configure product security, including access to the administrative console
* Collect data for performance and troubleshooting purposes

* Find the product version information. It is located on the front page of the
console.

[“Starting and logging off the administrative console” on page 31 helps you begin
using the console so that you can explore the available options. See also the
Reference > Administrator > Settings section of the information center navigation.
It lists the settings or properties you can configure.

Use both the [MVS console and the |[Application Server administrative console| to

administer the Application Server. For example:

* Use MVS commands that are issued from the MVS console to start the base
application server controller region, and the node agent and deployment
manager.

* In an application server configuration, you must start the first server with an
MVS operator command. After the first server is started, you can use the
administrative console, if it has this application, to start other application servers
in the node. After the deployment manager and node agent are active (in an ND
configuration), you can use the administrative console to start and stop
application servers.

* Workload management starts all servant regions using Address Space Create
(ASCRE) with the administrative console, you can display and modify
Application Server applications and the environments in which they run.

Identifying where to perform WebSphere Application Server
operations

Administering WebSphere Application Server involves the use of both the MVS
console and the WebSphere Application Server administrative console. For
example:

* Use MVS commands issued from the MVS console to start the base Application
Server control region, the network deployment node agent, and the deployment
manager.

* In a base Application Server configuration, you must start the first server with
an MVS operator command. Once the first server starts, you can then use the
administrative console, if it has this application, to start other Application
Servers in the node. Once the deployment manager and node agent are active
(in a network deployment configuration), you can use the administrative console
to start and stop application servers.

8§ BM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

* Workload management starts all servant regions using Address Space Create
(ASCRE).

The following table lists the main Application Server operations tasks and directs
you to information that helps you to perform these tasks. The Application Server
activities and operations can be performed from:

* A z/OS or OS5/390 MVS console (most operations)

¢ The Application Server administrative console (some operations)

¢ TSO or resource recovery services (RRS) panels (some operations).

Some information is split on multiple lines for printing purposes.

Table 2. Application Server operations tasks

Task MVS Application TSO Reference to associated procedure
console Server panel
administrative
console

Start operations

Starting the Yes No No See Starting servers in the Setting up the
Application application serving environment PDF.
Server

environment

and location

service

daemon

Starting a Yes Application No See Starting clusters and Starting servers in
cluster or server only the Setting up the application serving
application environment PDF. SedUsing the]

server [administrative console}

Stop operations

Stopping the Yes No No See Steps for stopping or canceling the
location location service daemon from the MVS
service console in the Setting up the application
daemon serving environment PDF.

Stopping a Yes Yes No See Stopping clusters in the Setting up the
cluster application serving environment PDEF.
Stopping an Yes Yes No See Stopping servers in the Setting up the
application application serving environment PDEF.
server

Cancel operations

Canceling the Yes No No See Steps for stopping or canceling the
location location service daemon from the MVS
service console in the Setting up the application
daemon serving environment PDE.

Cancelinga Yes Yes No See Stopping clusters in the Setting up the
cluster application serving environment PDF.
Canceling an Yes Yes No See Stopping servers in the Setting up the
application application serving environment PDF.
server

Display operations

Chapter 1. Overview and new features

Table 2. Application Server operations tasks (continued)

Task MVS Application TSO Reference to associated procedure
console Server panel
administrative
console
Displaying Yes No No See Displaying the status of ARM-registered
the status of address spaces including WebSphere
ARM- Application Server for z/OS and server
registered instances in the Setting up the application
address serving environment PDF.
spaces
including
clusters and
servants
Displaying Yes No No See DB2 Universal Database for OS/390 and
units of work z/OS Command Reference at
(threads) for http://www.elink.ibmlink.ibm.com
DB2 public/applications/publications
cgibin/pbi.cgil
Displaying Yes No No See DB2 Universal Database for OS5/390 and
indoubt units z/OS Command Reference at
of work http://www.elink.ibmlink.ibm.com
(threads) for public/applications/publications
DB2 cgibin/pbi.cgif
Displaying No No Yes See z/OS MVS Programming: Resource
units of work Recovery at
for RRS http://www.elink.ibmlink.ibm.com/
ublic/applications/publications
|cg1'b n/pbi. cgil
Displaying Yes No Yes See CICS Operations and Utilities Guide at
units of work http://www.elink.ibmlink.ibm.com
for CICS ublic/applications/publications
cgibin/pbi.cgi
Displaying Yes No No See IMS/ESA Summary of Operator Commands
units of work at
(transactions) hhttp://www.elink.ibmlink.ibm.com/|
for IMS ublic/applications/publications
cgibin/pbi.cgi
Displaying Yes Yes No See [Example: Displaying status of clusters|.
the status of a
cluster
Displaying Yes Yes No See [Example: Displaying status of a server].
the status of a
server
Displaying Yes No No See [Example: Displaying active address
active address |sEacesl
spaces

IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi

Table 2. Application Server operations tasks (continued)

Task MVS Application TSO Reference to associated procedure
console Server panel

administrative

console
Displaying Yes No No See [Example: Displaying active replies|
active replies
Modify operations
Getting help Yes No No See [Example: Getting help for the modify|
for the [command]
modify
command
Canceling Yes No No See [Example: Canceling application clusters
application [and servers with the modify command|
clusters and
servers
Modifying the Yes No No See IExample: Modifying the Java trace|
Java trace |stringl
string
Displaying Yes No No See Modify command}

status

Other Application Server operations

ARM and Yes No No See Automatic restart management in the
restart Installing your application serving environment
PDF.
Setting up No You can No See Setting up the error log in the
error log associate a Troubleshooting and support PDE.
streams for log stream
different with a
clusters and cluster
servants from the
administrative
console
Setting up Yes Enable it No See Collecting job-related information with
System from here, Systems Management Facility (SMF) in the
Management but initiate Troubleshooting and support PDE.
Facilities it from the
recording MVS
console.
Shutting Yes Application No See Stopping clusters, Stopping servers, and
down the server only Steps for stopping or canceling the location
WebSphere service daemon from the MVS console in
Application the Setting up the application serving
Server for environment PDE.
z/0S
environment

Chapter 1. Overview and new features 11

Table 2. Application Server operations tasks (continued)

Task MVS Application TSO
console Server panel
administrative

console

Reference to associated procedure

Taking a Yes
WebSphere
Application

Server for

z/0S system
cluster out of
service

Application No
server only;
You cannot
take a
WebSphere
Application
Server for
z/0S

system

cluster out

of service
from the
administrative
console

Workload Management

Displaying Yes No No See Handling workload management and
the status of a server failures in the Installing your

WLM application serving environment PDEF.
application

environment

Handling Yes No No See Handling workload management and
workload server failures in the Installing your
management application serving environment PDF.

and server

failures

Getting out of Yes No No See Handling workload management and

the stopped
state and back
to the
available state
for an
application
environment

server failures in the Installing your
application serving environment PDEF.

Checking and Yes No No
managing the

workload

management

application

environment

(display,

stop/quiesce,

restart/resume)

See Handling workload management and
server failures in the Installing your
application serving environment PDF and
WLM dynamic application environment
operator commands in the Setting up the
application serving environment PDF.

Introduction: Administrative scripting (wsadmin)

The WebSphere administrative (wsadmin) scripting program is a powerful,
non-graphical command interpreter environment enabling you to run
administrative operations in a scripting language. The wsadmin tool is intended
for production environments and unattended operations. You can use the wsadmin
tool to perform the same tasks that you can perform using the administrative
console.

12 1BM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

The following list highlights the topics and tasks available with scripting:

* [Getting started with scripting] Provides an introduction to WebSphere
Application Server scripting and information about using the wsadmin tool.
Topics include information about the scripting languages and the scripting
objects, and instructions for starting the wsadmin tool.

+ |Deploying applications| Provides instructions for deploying and uninstalling
applications. For example, stand-alone Java archive files and Web archive files,
the administrative console, remote enterprise archive (EAR) files, file transfer
applications, and so on.

» [Managing deployed applications|Includes tasks that you perform after the
application is deployed. For example, starting and stopping applications,
checking status, modifying listener address ports, querying application state,
configuring a shared library, and so on.

» |Configuring servers| Provides instructions for configuring servers, such as
creating a server, modifying and restarting the server, configuring the Java
virtual machine, disabling a component, disabling a service, and so on.

« |Configuring connections to Web servers| Includes topics such as regenerating the
plug-in, creating new virtual host templates, modifying virtual hosts, and so on.

+ [Managing servers| Includes tasks that you use to manage servers. For example,
stopping nodes, starting and stopping servers, querying a server state, starting a
listener port, and so on.

* |Clustering servers|Includes topics about clusters, such as creating clusters,
creating cluster members, querying a cluster state, removing clusters, and so on.

+ |Configuring security| Includes security tasks, for example, enabling and disabling
global security, enabling and disabling Java 2 security, and so on.

+ |Configuring data access| Includes topics such as configuring a Java DataBase
Connectivity (JDBC) provider, defining a data source, configuring connection
pools, and so on.

* |[Configuring messaging| Includes topics about messaging, such as Java Message
Service (JMS) connection, JMS provider, WebSphere queue connection factory,
MQ topics, and so on.

* [Configuring mail, URLSs, and resource environment entries| Includes topics such
as mail providers, mail sessions, protocols, resource environment providers,
referenceables, URL providers, URLs, and so on.

* [Dynamic caching| Includes caching topics, for example, creating, viewing and
modifying a cache instance.

[Troubleshooting Provides information about how to troubleshoot using scripting.
For example, tracing, thread dumps, profiles, and so on.

* [Obtaining product information| Includes tasks such as querying the product
identification.

* |Scripting reference material| Includes all of the reference material related to
scripting. Topics include the syntax for the wsadmin tool and for the
administrative command framework, explanations and examples for all of the
scripting object commands, the scripting properties, and so on.

Introduction: Administrative commands

Command-line tools|are simple programs that you run from an operating system
command-line prompt to perform specific tasks, as opposed to general purpose
administration. Using the tools, you can start and stop application servers, check
server status, add or remove nodes, and complete similar tasks.

Chapter 1. Overview and new features 13

See Reference > Commands in the information center navigation for the names
and syntax of all the commands that are available with the product. A subset of
these commands are particular to system administration purposes.

Introduction: Administrative programs

The product supports a Java programming interface for developing administrative|
All of the administrative tools supplied with the product are written

according to the API, which is based on the industry standard Java Management
Extensions (JMX) specification. You can write a Java program that performs any of
the administrative features of the WebSphere Application Server administrative
tools. You can also extend the basic WebSphere Application Server administrative
system to include your own managed resources.

Introduction: Administrative configuration data

Administrative tasks typically involve defining new configurations of the product
or performing operations on managed resources within the environment. IBM
WebSphere Application Server configuration data is kept in files. Because all
product configuration involves changing the content of those files, it is useful to
know the structure and content of the configuration files.

The WebSphere Application Server product includes an implementation of the Java
Management Extension (JMX) specification. All operations on managed resources
in the product go through JMX functions. This setup means a more standard
framework underlying your administrative operations as well as the ability to tap
into the systems management infrastructure programmatically.

Welcome to basic administrative architecture

This article discusses basic concepts in the administrative architecture to help you
understand system administration in a WebSphere Application Server environment.
The fundamental concepts for WebSphere Application Server administration
include software processes called servers, topological units referenced as nodes and
cells, and the configuration repository used for storing configuration information.

Servers perform the actual running of the code. Several types of servers exist
depending on the configuration. Each server runs in its own Java virtual machine
(JVM). The application server is the primary run-time component in all WebSphere
Application Server configurations. All WebSphere Application Server
configurations can have one or more application servers. In some configurations,
each application server functions as a separate entity. No workload distribution or
common administration among application servers exists. In other configurations,
workload can be distributed between servers and administration can be done from
a central point.

A node is a logical group of WebSphere Application Server-managed server
processes that share a common configuration repository. A node is associated with
a single WebSphere Application Server profile. A WebSphere Application Server
node does not necessarily have a one-to-one association with a system. One
computer can host arbitrarily many nodes, but a node cannot span multiple
computer systems. A node can contain zero or more application servers.

The configuration repository holds copies of the individual component

configuration documents that define the configuration of a WebSphere Application
Server environment. All configuration information is stored in .xml files.

14 1BM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

A cell is a grouping of nodes into a single administrative domain. A cell can
consist of multiple nodes, all administered from a deployment manager server.
When a node becomes part of a cell (a federated node), a node agent server is
installed on the node to work with the deployment manager server to manage the
WebSphere Application Server environment on that node.

When a node is a standalone node, not part of a cell, the configuration repository
is fully contained on the node. When a node is part of a cell, the configuration and
application files for all nodes in the cell are centralized into a cell master
configuration repository. This centralized repository is managed by the deployment
manager server and synchronized to local copies that are held on each node. The
local copy of the repository that is given to each node contains just the
configuration information needed by that node, not the full configuration that is
maintained by the deployment manager.

WebSphere Application Server types

This section discusses the three server types that interact to perform system
administration.

Application Server: A WebSphere Application Server provides the functions that
are required to support and host user applications. An application server runs on
only one node, but one node can support many application servers.

Node agent: When a node is federated, a node agent is created and installed on
that node. The node agent works with the deployment manager to perform
administrative activities on the node.

Deployment manager: With the deployment manager, you can administer multiple
application servers from one centralized manager. The deployment manager works
with the node agent on each node to manage all the servers in a distributed

topology.

The following diagram depicts the concepts that are discussed in this article.
IBM WebSphere Application Server Network Deployment package

Node

Cell

Deployment
manager

Adding a node to a cell

<

/ = Network Deployment package is installed

@ = Application servers

Chapter 1. Overview and new features 15

The concepts that are discussed in this article form the basis of WebSphere
Application Server administration. More detailed descriptions can be found in
other sections.

Introduction: Servers

Application servers

Application servers provide the core functionality of the WebSphere Application
Server product family. They extend the ability of a Web server to handle Web
application requests, and much more. An application server enables a server to
generate a dynamic, customized response to a client request.

For additional overview, refer to [“Introduction: Application servers.”|

Clusters

Workload management optimizes the distribution of client processing tasks. Incoming
work requests are distributed to the application servers that can most effectively
process the requests. Workload management also provides failover when servers
are not available, improving application availability.

Clusters are sets of application servers that are managed together and participate in
workload management. The servers that are members of a cluster can be on
different host machines, as opposed to the servers that are part of the same node
and must be located on the same host machine.

For additional overview, refer to [“Introduction: Clusters” on page 18.|

Introduction: Application servers

Overview

An application server is a Java Virtual Machine (JVM) that is running user
applications. The application server collaborates with the Web server to return a
dynamic, customized response to a client request. Application code, including
servlets, JavaServer Pages (JSP) files, enterprise beans and their supporting classes,
runs in an application server. Conforming to the Java 2 platform, Enterprise
Edition (J2EE) component architecture, servlets and JSP files run in a Web
container, and enterprise beans run in an Enterprise JavaBeans (E]JB) container.

To begin creating and managing an application server, see Administering
application servers.

You can define multiple application servers, each running its own JVM. Enhance

the operation of an application server by using the following options:

* Configure transport chains to provide networking services to such functions as
the service integration bus component of IBM service integration technologies,
WebSphere Secure Caching Proxy, and the high availability manager core group
bridge service. See Configuring transport chains for more information.

* Plug into an application server to define a hook point that runs when the server
starts and shuts down. See Custom services for more information.

* Define command-line information that passes to a server when it starts or
initializes. See |startServer command” on page 670 for more information.

* Tuning application servers

16 1BM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

* Enhance the performance of the application server JVM. See Using the JVM for
more information.

¢ Use an Object Request Broker (ORB) for RMI/IIOP communication. See
Managing Object Request Brokers for more information.

Asynchronous messaging

The product supports asynchronous messaging based on the Java Message Service
(JMS) of a JMS provider that conforms to the JMS specification version 1.1.

The JMS functions of the default message service in WebSphere Application Server
are served by one or more messaging engines (in a service integration bus) that
runs within application servers.

In a deployment manager cell, there can be WebSphere Application Server version
5 nodes. If a version 5 node is configured to use V5 default messaging (the version
5 embedded messaging), there can be at most one JMS server on that node.

Generic Servers

A generic server is a server that is managed in the WebSphere administrative
domain, although it is not a server that is supplied by the WebSphere Application
Server product. The generic server can be any server or process that is necessary to
support the Application Server environment.

Introduction: Web servers

The application server and Web server communicate using Web server plug-ins.
Communicating with Web servers describes how to set up your Web server and
Web server plug-in environment and how to create a Web server definition. The
Web server definition associates a Web server with a previously defined managed
or unmanaged node. After you define the Web server to a node, you can use the
administrative console to perform the following functions for that Web server.

If the Web server is defined to a managed node, you can:
* Check the status of the Web server
* Generate a plug-in configuration file for that Web server.

* Propagate the plug-in configuration file after it is generated.

If the Web server it is defined to an unmanaged node, you can:
* Check the status of the Web server

¢ Generate a plug-in configuration file for that Web server.

After you set up your Web server and Web server plug-in, whenever you deploy a
Web application, you must specify a Web server as the deployment target that
serves as a router for requests to the Web application. The configuration settings in
the plug-in configuration file (plugin-cfg.xml) for each Web server are based on the
applications that are routed through that Web server. If the Web server plug-in
configuration service is enabled, a Web server plug-in’s configuration file is
automatically regenerated whenever a new application is associated with that Web
server.

Note: Before starting the Web server, make sure you are authorized to run any

Application Response Measurement (ARM) agent associated with that Web
server.

Chapter 1. Overview and new features 17

Refer to your Web server documentation for information on how to administer that
Web server. For tips on tuning your Web server plug-in, see Web server plug-in
tuning tips.

Introduction: Clusters

Clusters are groups of servers that are managed together and participate in
workload management. A cluster can contain nodes or individual application
servers. A node is usually a physical computer system with a distinct host IP
address that is running one or more application servers. Clusters can be grouped
under the configuration of a cell, which logically associates many servers and
clusters with different configurations and applications with one another depending
on the discretion of the administrator and what makes sense in their organizational
environments.

Clusters are responsible for balancing workload among servers. Servers that are a
part of a cluster are called cluster members. When you install an application on a
cluster, the application is automatically installed on each cluster member.

Node groups bound clusters. All cluster members of a given cluster must be
members of the same node group. For more information about clusters and node
groups, see Clusters and node groups.

To learn more about clusters, see Clusters and workload management and
Balancing workloads with clusters for more information.

Core groups

A group of clusters can be defined as a core group. All of the application servers
defined as a member of one of the clusters included in a core group are
automatically members of that core group. Individual application servers that are
not members of a cluster can also be defined as a member of a core group. The use
of core groups enables WebSphere Application Server to provide high availability
for applications that must always be available to end users. You can also configure
core groups to communicate with each other using the core group bridge. The core
groups can communicate within the same cell or across cells.

To learn more about core groups, see Setting up a high availability environment.

Introduction: Environment

The environment of the product applies to the configuring of Web server plug-ins,
variables, and objects that you want consistent throughout a cell.

Cell-wide settings

Cell-wide settings are sets of configuration data that are stored in files in the cell
directory. These configuration files are replicated to every node in the cell. Several
different configuration settings apply to the entire cell. These settings include the
definition of virtual hosts, shared libraries, and any variables that must be
consistent throughout the entire cell.

For more information, refer to|“Introduction: Cell-wide settings” on page 19)

18 1BM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

Variables

A variable is a configuration property that can be used to provide a parameter for
any value in the system. A variable has a name and a value to use in place of that
name wherever the variable name is located within the system.

For more information, refer to Web server plug-in tuning tips.

Introduction: Cell-wide settings

The configuration data for WebSphere Application Server is stored in XML files.
The XML files exist in one of several directories in the configuration repository
tree.

The directory in which a configuration file exists determines its scope, or how
broadly or narrowly that data applies. Files in an individual server directory apply
to that specific server only. Files in a node-level directory apply to every server on
that node. Files in the cell directory apply to every server on every node within the
entire cell.

Cell-wide settings are configuration files in the cell directory. The files are replicated
to every node in the cell. Several different configuration settings apply to the entire
cell. These settings include the definition of virtual hosts, shared libraries, and any
variables that you want consistent throughout the entire cell.

Introduction: Variables

Variables in the WebSphere environment come in many varieties. Variables are
used to control settings and properties relating to the server environment. Three
main variable options that are important for a WebSphere Application Server user
to know and understand are custom properties, environment variables, and
WebSphere-specific variables.

Environment variables

Environment variables, also called native environment variables, are not specific to
the WebSphere Application Server and are defined by other elements, such as
UNIX, Language Environment (LE), or third-party vendors, among others. Some of
the UNIX-specific native variables are LIBPATH and STEPLIB. These variables tend
to be operating system-specific.

Environment variables are specified in the administrative console. Click
Application Server >server_name> Process Definition > Servant Process >
Environment Entries.

This path is also used to set environment variables that control the collection of
application server and Web container information in z/OS System Management
Facility (SMF) records.

WebSphere variables

WebSphere variables are used for three purposes:

* Configuring WebSphere Application Server path names, such as JAVA_HOME,
and APP_INSTALL_ROOT.

* Configuring certain cell-wide customization values.
* Configuring the WebSphere Application Server for z/OS location service.

Chapter 1. Overview and new features 19

20

WebSphere variables are specified in the administrative console by clicking
Environment > Manage WebSphere variables. How the WebSphere variable is set
determines its scope. A variable can apply to a cell, a node, or a server. If the
variable is set:

* At the server level, it applies to the entire server.

* At the node level, it applies to all servers in the node, unless you set the same
variable at the server level. In that case, for that server, the setting that is
specified at the server level overrides the setting that is specified at the node
level.

* At the cell level, it applies to all nodes in that cell, unless you set the same
variable at the node or server level.

— If you set the same variable at the server level, for that server, the setting that
is specified at the server level overrides the setting that is specified at the cell
level.

— If you set the same variable at the node level, for all servers in that node, the
setting that is specified at the node level overrides the setting that is specified
at the cell level.

Custom properties

Custom properties are property settings meant for a specific functional component.
Any configuration element can have a custom property. Common configuration
elements are cell, node, server, Web container, and transaction service. A limited
number of supported custom properties are available and these properties can be
set in the administrative console using the custom properties link that is associated
with the functional component.

For example, to set HTTP transport custom properties, follow one of the following
paths:

* Servers > Application Servers > server_name > Web Container > HTTP
Transport > Additional Properties > Custom Properties

* Servers > Application Servers > server_name > Web Container > Additional
Properties > Custom Properties

Custom properties set from the Web container custom properties page apply to all
transports that are associated with that Web container; custom properties set from
the HTTP transport custom properties page apply only to that specific transport. If
the same properties are set on both pages, the settings on the transport page
override the settings that are defined on the Web container page for that specific
transport.

IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

Chapter 2. How do | administer applications and their
environments?

Establish the application serving environment|

* Secure the application serving environment - see Security

* [Set up resources for applications to use|

* Configure class loaders - see development and deployment

» |Deploy and administer applications|

¢ |Use the administrative clients

* [Troubleshoot deployment and administration|

Legend for "How do I?...” links

Documentation | Show me Tell me Guide me Teach me

Refer to the Watch a brief View the Be led through | Perform the

detailed steps multimedia presentation for |the console tutorial with

and reference demonstration |an overview pages sample code

Approximate Approximate Approximate Approximate Approximate

time: Varies time: 3 to 5 time: 10 time: 1/2 hour+ |time: 1 hour+
minutes minutes+

Establish the application serving environment
The following tasks involve establishing application serving capability in your
network environment, whether you use single or clustered application servers.

Servers can be grouped into administrative domains known as nodes and cells.

See also the overview:

« |Version 6 topology and terminology]

Administer nodes

A node is a grouping of managed servers. Use this task to view
information about and manage nodes.

Tell me:

¢ [Add and
remove node

¢ Manage nod

Documentation [Show me|

© Copyright IBM Corp. 2005

ftp://ftp.software.ibm.com/software/eod/WAS_6-0/BigPicture/Presentations/WASv6_Topology_Terminology/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Simulations/WASv6_Node_Admin.viewlet/WASv6_Node_Admin_viewlet_swf.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_ND_BuildCell/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_ND_BuildCell/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_NodeGroup/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_NodeGroup/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_CellNode_Config/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_CellNode_Config/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_CellNode_Config/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_CellNode_Config/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_CellNode_Config/playershell.swf

Administer node agents

Node agents are administrative agents that represent a node to your
system and manage the servers on that node. Node agents monitor
application servers on a host system and route administrative requests to
servers. A node agent is created automatically when a node is added to a
cell.

Documentation [Show me|

Administer cells

When you installed the WebSphere Application Server Network
Deployment product, a cell was created. A cell provides a way to group
one or more nodes of your Network Deployment product. You probably
will not need to reconfigure the cell. Use this task to view information
about and manage a cell.

Documentation [Show me|

Administer configurations

Application server configuration files define the available application
servers, their configurations, and their contents. You should periodically
save changes to your administrative configuration. You can change the
default locations of configuration files, as needed.

Documentation Tell me:

* [Repository]

* [Archives

Configure remote file services

Configuration data for the WebSphere Application Server product resides
in files. Two services help you reconfigure and otherwise manage these
files: the file transfer service and file synchronization service. By default,
the file transfer service is always configured and enabled at a node agent,
so you do not need to take additional steps to configure this service.
However, you might need to configure the file synchronization service.

Documentation

Administer application servers

Create, configure, and operate application server processes. An application
server configuration provides settings that control how an application
server provides services for running enterprise applications and their
components.

22 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Simulations/WASv6_NodeAgent_Admin.viewlet/WASv6_NodeAgent_Admin_viewlet_swf.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_CellNode_Config/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Simulations/WASv6_Cell_Admin.viewlet/WASv6_Cell_Admin_viewlet_swf.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_ND_BuildCell/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_ConfigRepository/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_Configuration_Archives/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_ND_FileSync/playershell.swf

Documentation: [Show me
* Console

e |Scriptin
configur

e |Scriptin
administe

Administer other server types

One step in the process of creating an application server is to specify a
template. A server template is used to define the configuration settings of
the new server. You have the option of specifying the default server
template or choosing a template that is based on a server that already
exists. The default template will be used if you do not specify a different
template when you create the server.

You can create other types of servers, to represent Web servers in your
topology, or for other purposes. There are two types of generic servers: (1)
Non-Java applications or processes, or (2) Java applications or processes. A
custom service provides the ability to plug into a WebSphere application
server to define a hook point that runs when the server starts and shuts

down.
Documentation: Tell me: Guide me (Web
* Generic o [Generi servers)
servers server:
* Custom
services

Balance workloads by clustering application servers

To monitor application servers and manage the workloads of servers, use
server clusters and cluster members provided by the Network Deployment

product.
Documentation: [Show me| Tell me:
* Console . LM details|
. .

Establishing high availability (HA) for failover

Planning ahead for high availability support is important in order to avoid
the risk of a failure without failover coverage. The application server
runtime of the infrastructure managed by a high availability manager
includes such entities as cells and clusters. These components relate closely
to core groups, high availability groups, and the policy that defines the
high availability infrastructure. In a properly configured high availability
environment, a high availability manager can reassess the environment it is
managing and accept new components as they are added to the
environment.

Chapter 2. How do I administer applications and their environments? 23

ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Simulations/WASv6_AppServer_Admin.viewlet/WASv6_AppServer_Admin_viewlet_swf.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_StartStop_Monitor/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_GenericServer/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_GenericServer/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Simulations/WASv6_Clusters.viewlet/WASv6_Clusters_viewlet_swf.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/WLM-HA/Presentations/WASv6_WLM/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/WLM-HA/Presentations/WASv6_DRS/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/WLM-HA/Presentations/WASv6_DRS/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/WLM-HA/Presentations/WASv6_DRS/playershell.swf

Documentation Tell me:

* Overvie

e [Details, cor
roups

Administer the UDDI registry

The UDDI Registry is supplied as a J2EE application file, uddi.ear. Change
its configuration properties using the assembly tools. You can use either
the WebSphere Application Server administrative console or the Java
Management Extensions (JMX) management interface to manage UDDI
Registries.

Documentation:
* Configure

¢ Administer

Set up Web access for applications

These tasks involve enabling HTTP requests for applications on the application
server.

Administer communication with Web servers (plug-ins)

The product provides plug-ins for supported Web servers, to enable the
Web servers to pass requests to the application server, for applications
running on the application server. See also the Web server related tasks in
How do I install an application serving environment?.

Documentation: Guide me

* Console

.

Administer HTTP sessions

Configure the service that the product provides for managing HTTP
sessions: Session Manager.

Documentation: [Show me

* Console

* |Scripting]

Administer IBM HTTP Server Version 6.x

The product provides a complementary Web server with its own
documentation that can be installed into the information center.

24 1BM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

ftp://ftp.software.ibm.com/software/eod/WAS_6-0/WLM-HA/Presentations/WASv6_HA_Overview/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/WLM-HA/Presentations/WASv6_HA_Details/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/WLM-HA/Presentations/WASv6_HA_Details/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/WebServices/Presentations/WASv6_UDDIV3/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/WebServer_And_PlugIn/Simulations/WASv6_IHS_Definition_and_AppMapping.viewlet/WASv6_IHS_Definition_and_AppMapping_viewlet_swf.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/WebServer_And_PlugIn/Presentations/WASv6_WebServer/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Simulations/WASv6_SM_HTTP_Sessions.viewlet/WASv6_SM_HTTP_Sessions_viewlet_swf.html

Set up resources for applications to use

Make a variety of resources available to your applications that are deployed on the
application server.

Provide access to naming and directory resources (JNDI)

Configure naming. Naming is used by clients of WebSphere Application
Server applications to obtain references to objects related to those
applications, such as Enterprise JavaBeans (EJB) homes. These objects are
bound into a mostly hierarchical structure, referred to as a name space. The
name space structure consists of a set of name bindings, each consisting of
a name relative to a specific context and the object bound with that name.

Documentation: Tell me:
* Name server ¢ [[Introduction|
* Bindings * [Basic concepts

¢ |Advanced
concept:

¢ [Example

Troubleshooting]

Provide access to relational databases (JDBC resources)

Configure data sources that applications use to access the data from
databases.

Documentation: ~ Show me: Guide me
* Console .
 Scripting .

:

Provide access to messaging resources (default messaging provider)

Use one of various ways to implement a messaging provider for use with
WebSphere Application Server. A messaging provider enables use of the
Java Messaging Service (JMS) and other message resources in the product.

Documentation: [Show me|

* Console

* [Scripting]

Use IBM service integration technologies

Tell me:

.

.
.

Chapter 2. How do I administer applications and their environments? 25

ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Runtime/Presentations/WASv6_NamingIntro/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Runtime/Presentations/WASv6_NamingBasics/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Runtime/Presentations/WASv6_NamingAdvanced/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Runtime/Presentations/WASv6_NamingAdvanced/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Runtime/Presentations/WASv6_NamingExamples/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Runtime/Presentations/WASv6_NamingDebug/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Simulations/WASv6_New_CS_jdbc.viewlet/WASv6_New_CS_jdbc_viewlet_swf.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Simulations/WASv6_New_DB2_jdbc.viewlet/WASv6_New_DB2_jdbc_viewlet_swf.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Simulations/WASv6_New_Oracle_jdbc.viewlet/WASv6_New_Oracle_jdbc_viewlet_swf.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_JDBC/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/WPM/Simulations/WASv6_WPM_JMSResourceResourceResource.viewlet/WASv6_WPM_JMSResourceResourceResource_viewlet_swf.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/WPM/Presentations/WASv6_WPM_JMSResourceResource/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/WPM/Presentations/WASv6_WPM_Overview/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/WPM/Presentations/WASv6_WPM_Architecture/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/WPM/Presentations/WASv6_WPM_Mediation/playershell.swf

Establish workload balancing and high availability (HA) of messaging engines

Access Service Integration (SI) bus resources

Show me

Deploy and administer applications

These tasks involve deploying applications onto the application server, then
administering the applications.

Install applications

Installable modules include enterprise archive (EAR), enterprise bean (E]B),
Web archive (WAR), resource adapter (connector or RAR), and application
client files.

Documentation

* Console

* |Scripting]

Start and stop applications

You can start an application that is not running (has a status of Stopped) or
stop an application that is running (has a status of Started).

Documentation:

* Console

.

Update applications

Update deployed applications or modules using the administrative console
or wsadmin scripting. Learn which changes are candidates for hot
deployment and dynamic reloading, in which you can make various
changes to applications and their modules without having to stop the
server and start it again.

26 1BM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

ftp://ftp.software.ibm.com/software/eod/WAS_6-0/WPM/Presentations/WASv6_WPM_HA/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/WPM/Simulations/WASv6_WPM_Define_SIBus_Resource.viewlet/WASv6_WPM_Define_SIBus_Resource_viewlet_swf.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/WPM/Presentations/WASv6_WPM_SIBResource/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/WPM/Presentations/WASv6_WPM_SIBResource/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/WPM/Presentations/WASv6_WPM_SIBResource/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/WPM/Presentations/WASv6_WPM_JMSResourceResourceResource/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/WPM/Presentations/WASv6_WPM_JMSResourceResourceResource/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/WPM/Presentations/WASv6_WPM_JMSResourceResourceResource/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Simulations/WASv6_Install_WebSphereBank.viewlet/WASv6_Install_WebSphereBank_viewlet_swf.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_App_Install/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Simulations/WASv6_SM_ApplMgmt.viewlet/WASv6_SM_ApplMgmt_viewlet_swf.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_App_Admin_Overview/playershell.swf

Documentation:

* Console

* [Scripting

Deploy applications rapidly (WebSphere Rapid Deployment)

Take advantage of new rapid deployment capabilities. WebSphere rapid
deployment offers the following advantages: You do not need to assemble
your J2EE application files prior to deployment. You do not need to use
other installation tools mentioned in this table to deploy the files. Refer to
the Rapid deployment tools documentation in the information center.

Enhanced EAR files

Deploy and administer Web services applications

To deploy Web services that are based on the Web Services for Java 2
platform, Enterprise Edition (J2EE) specification, you need an enterprise
application, also known as an enterprise archive (EAR) file that has been
configured and enabled for Web services. You can use either the
administrative console or the wsadmin scripting interface to deploy an

EAR file.
Documentation| Show me Tell mej

Use the administrative clients

A variety of tools are provided for administering the product.

Choose an administrative client

Learn about and decide among the available administrative clients,
including a graphical console, scripting (wsadmin), command line tools,
and Java Management Extensions (JMX) programs.

Documentation

Use the administrative console

The administrative console is a Web-based tool that you use to administer
the product. The administrative console supports a full range of product
administrative activities.

Documentation [Show me|

Chapter 2. How do I administer applications and their environments? 27

ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_App_Update/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/ApplicationManagement/LabInstructions/WASv6_AppUpdateLab.pdf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_Managed_App_Resources/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/LabInstructions/WASv6_EnhancedEARLab.pdf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/WebServices/Simulations/WASv6_DeployingWebServiceWithAdminConsole.viewlet/WASv6_DeployingWebServiceWithAdminConsole_viewlet_swf.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/WebServices/Presentations/WASv6_WebServices/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_AdminClient/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Simulations/WASv6_SM_AdminConsole.viewlet/WASv6_SM_AdminConsole_viewlet_swf.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_AdminConsole/playershell.swf

Use scripting (wsadmin)

Scripting is a non-graphical alternative that you can use to configure and
manage WebSphere Application Server. The WebSphere Application Server
wsadmin tool provides the ability to run scripts. The tool supports a full
range of product administrative activities.

Documentation

See also:

+ [Start, stop, monitor processes

+ |Other administrative commands|

Troubleshoot deployment and administration

Troubleshoot problems that occur when you are deploying applications onto the
application server, or when you are administering an established application
serving environment.

Troubleshoot administration

Review some possible causes, based on the error you are seeing.

Documentation

28 1BM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_ScriptingAdmin/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_StartStop_Monitor/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_Commands/playershell.swf

Chapter 3. Using the administrative clients

The product provides a variety of administrative clients for deploying and
administering your applications and application serving environment, including
configurations and logical administrative domains.

Chapter 4, “Using the administrative console,” on page 31|

The administrative console is a graphical, browser-based tool.
[Chapter 5, “Using the MVS console,” on page 49

Use the MVS console on z/OS systems to operate application servers and
clusters, display and modify operations, and manage workload. See also:
“Identifying where to perform WebSphere Application Server operations” on|
page 8.|

* |“Getting started with scripting” on page 52|

Scripting is a non-graphical alternative that you can use to configure and
administer your applications and application serving environment. The
WebSphere Application Server wsadmin tool provides the ability to run scripts.
The wsadmin tool supports a full range of product administrative activities.

[Chapter 7, “Using Ant to automate tasks,” on page 603|

To support using Apache Ant with Java 2 Platform, Enterprise Edition (J2EE)
applications running on IBM WebSphere Application Server, the product
provides a copy of the Ant tool and a set of Ant tasks that extend the
capabilities of Ant to include product-specific functions.

[Chapter 8, “Using administrative programs (JMX),” on page 605|

The product supports access to the administrative functions through a set of
Java classes and methods, under the Java Management Extensions (JMX)
specification. You can write a Java program that performs any of the
administrative features of the other administrative clients. You also can extend
the basic product administrative system to include your own managed
resources.

[Chapter 9, “Using command line tools,” on page 669

Several command-line tools are available that you can use to start, stop, and
monitor WebSphere server processes and nodes. These tools work on local
servers and nodes only. They cannot operate on a remote server or node.

[Chapter 10, “Using mvs command line tools,” on page 697

These commands are for use on z/OS systems.

© Copyright IBM Corp. 2005 29

30 1BM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

Chapter 4. Using the administrative console

The administrative console is a Web-based tool that you use to manage the IBM
WebSphere Application Server product as well as the Network Deployment
product. The administrative console supports a full range of product
administrative activities.

1.

oo kw0

z/0S platform: [Start the server for the administrative console Jfor the Network
Deployment product, the administrative console belongs to the deployment
manager (dmgr) process, which you start with the [startmanager command|

Access the administrative console}

[Change the session timeout for the administrative console] (Optional)

Browse the administrative console.|

Specify console preferences)

Starting and logging off the administrative console

This topic describes how to set up the administrative console environment, to
access the administrative console, and to log out of the administrative console.

The administrative console application is installed during the initial installation
process.

To access the administrative console, you must start it and then log in. After you
finish working in the console, save your work and log out.

1.

© Copyright IBM Corp. 2005

Start the administrative console.

a. z/0S platform: [Verify that the application server for the administrative]
[console is running] Verify that the administrative console runs on the
deployment manager application server for the Network Deployment
product. Issue the [startManager command] at the MVS console to start the
deployment manager.

b. Enable cookies in the Web browser that you use to access the administrative
console for the administrative console to work correctly.

c. z/0S platform: In the same Web browser, type
http://your fully qualified server _name:9060/ibm/console, where
your_fully_qualified_server_name is the fully qualified host name for the
machine that contains the administrative server. If security is enabled, your
request is redirected to
https://your fully qualified server name:9043/ibm/console, where
your_fully_qualified_server_name is the fully qualified host name for the
machine that contains the administrative server.

For a listing of supported Web browsers, see IWebSphere Application Server|
Isystern requirements| at

http://www.ibm.com/software/webservers/
appserv/doc/latest/prereq.html

The Web address appears on two lines for printing purposes. Enter the Web
address on one line in your browser.

d. Wait for the console to load into the browser. A is displayed
after the console starts.

31

http://www.ibm.com/software/webservers/appserv/doc/latest/prereq.html
http://www.ibm.com/software/webservers/appserv/doc/latest/prereq.html

If you cannot start the administrative console because the console port conflicts
with an application that is already running on the machine, do one of the
following actions:

* Change the port number and propagate the number to the appropriate files:

a. Change all the occurrences of port 9060 (or the port that is selected
during profile creation for WebSphere Application Server) to the port for
the console. Make the port changes in the installation
root/profiles/profile
name/config/cells/cell_name/nodes/node_name/servers/server_name/server.xml
file and the installation root/profiles/profile
name/config/cells/cell _name/virtualhosts.xml files.

b. Run the ./wsc2n.sh script from the installation
root/WebSphere/AppServer/bin directory. The ./wsc2n.sh script generates
the was.env file, the control.jvm.options file, the servant.jvm.options
file, and the adjunct.jvm.options file for each server and the was.env file
for the location service daemon. These generated files will contain the
updated administrative console port number.

¢ Shut down the other application that uses the conflicting port before starting
the WebSphere Application Server product.

2. Log into the console.
a. Enter your user name or user ID.

The user ID lasts only for the duration of the session for which it was used
to log in.

Changes made to server configurations are saved to the user ID. Server
configurations also are saved to the user ID if a session timeout occurs.

If you enter an ID that is already in use (and in session), you are prompted

to do one of the following actions:

* Force the existing user ID out of session. The configuration file that is
used by the existing user ID is saved in the temporary area.

* Wait for the existing user ID to log out or time out of the session.

* Specify a different user ID.

b. If the console is secure, you must also enter a password for the user name.
The console is secure if someone has taken the following actions for the
console:

* Specified security user IDs and passwords
¢ Enabled global security

c. Click OK.
3. Log off the administrative console. Click System administration > Save

changes to Master Repository > Save to save work. Then click Logout to exit
the console.

If you close the browser before saving your work, when you next log in under
the same user ID, you can recover any unsaved changes.

Login settings
Use this page to specify the user for the WebSphere Application Server

administrative console. If you are using global security, then you must also specify
a password.

When you specify a user, you can resume work done previously with the product.

After you type in a user ID, and password if you are using global security, click
OK to proceed to the next page and access the administrative console.

32 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

To view this page, start the administrative console.

Logging into the administrative console

When you log into the administrative console, you can optionally specify a user 1D
if the console is not secure. If the administrative console is secure, you must
specify a user ID and password.

User ID

Specifies a string that identifies the user. The user ID must be unique to the
administrative server. Concurrent administrative console sessions must use unique
user IDs.

Work that you do with the product and then save before exiting the product is
saved to a configuration that is identified by the user ID that you enter. To later
access work done under that user ID, specify the same user ID in the Login page.

Data type String

Password

If you use global security, specify a password.

Resolving conflicts during login
Conflicts can result if you log into the administrative console with a user ID that is
already in use.

Another user is currently logged in with the same user name

Specifies whether to log out the user and to continue work with the user ID that is
specified, or to return to the Login page and specify a different user ID, or wait for
the user to log out.

This field is displayed if:
* The user closed a Web browser while browsing the administrative console and

did not first log out, then opened a new browser and tried to access the
administrative console with the same user ID.

* The user opened a Web browser to access the administrative console while
accessing the administrative console in another open Web browser with the same
user ID.

¢ The user opens a Web browser and attempts to log into the console with the
same user ID that is already in use by another user who logged into the console
from another Web browser on another computer.

Recovering prior changes

You can either recover changes that you made to the configuration from a prior
session or use the master configuration. The default is to recover changes from a
prior session.

Recover changes made in a prior session

When enabled, this setting specifies that you want to use the same administrative
configuration used for the last user’s session. This option recovers changes made
by the user since the last saving of the administrative configuration for the user’s

session.

Chapter 4. Using the administrative console 33

This field is displayed only if the user changed the administrative configuration
and then logged out without saving the changes.

Work with the master configuration

When enabled, this setting specifies to use the default administrative configuration
instead of the configuration that was last used for the user’s session. Changes that
are made to the user’s session since the last saving of the administrative
configuration are lost.

This field is displayed only if the user changed the administrative configuration
and then logged out without saving the changes.

Resolving login failures
When the administrative console is enabled with global security, you must type in
a valid user ID and password. If the user ID, password, or both are not valid, you
receive the following message:

Unable to process login. Please check User ID and password and try again.

Resolve the problem by entering a valid user ID and password as defined in the
WebSphere Application Server security documentation.

Save changes to the master configuration

Use this page to update the master repository with your administrative console
changes, to discard your administrative console changes and continue working
with the master repository, or to continue working with your administrative
console changes that are not saved to the master repository.

Until you save changes to the master repository, the administrative console uses a
local workspace to track your changes.

Total changed documents

Specifies the total number of documents that you changed for your session, but
that are not saved to the master repository. By clicking the +/- toggle key, you can
see additional information about the changed documents:

* Changed items

When you change your local configuration, each path and configuration file that
you can apply the update to in the master repository is displayed in the list.

 Status
Can contain the following options:

— Added: If you save your changes to the master repository, a new
configuration file is created on the indicated path.

— Updated: If you save your changes to the master repository, an existing
configuration file is updated on the indicated path.

— Deleted: If you save your changes to the master repository, an existing
configuration file is deleted on the indicated path.

Synchronize changes with nodes

Specifies whether you want to force node synchronization at the time that you
save your changes to the master repository rather than when node synchronization
normally occurs.

34 1BM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

Setting the session timeout for the administrative console

This topic describes how to change the session timeout from the default value for
the administrative console.

Ensure that you have the proper permissions to change the
${WAS_HOME}/systemApps/adminconsole.ear/deployment.xml file.

Determine whether the default session timeout value of 30 minutes is acceptable.
Some reasons that you might change the default value are:

* Users in secure environments might need shorter session timeout periods to
ensure security, encase they leave their machine and forget to log off the console.

¢ Users might need longer session timeout periods if they respond slower than
typical users for accessibility reasons.

» Users in secure environments might not want the administrative console timeout
value to conflict with Lightweight Third-Party Authentication (LTPA) cookie
timeouts

Do the following actions to change the timeout value:

1. Edit the ${WAS_HOME}/systemApps/adminconsole.ear/deployment.xml file in a
text editor.

2. Locate the xml statement <tuningParams xmi:id="TuningParams_1088453565469"
maxInMemorySessionCount="1000" allowOverflow="true"
writeFrequency="TIME BASED WRITE" writelnterval="10"
writeContents="ONLY_UPDATED ATTRIBUTES" invalidationTimeout="30">

3. Change the invalidationTimeout value to the desired session timeout. The
default is 30.

4. Save the ${WAS_HOME}/systemApps/adminconsole.ear/deployment.xml file.
5. Restart the console.

Once you restart the console, the change takes effect.

Manage WebSphere Application Server through the administrative console.

Administrative console areas

Use the administrative console to create and manage objects in the WebSphere
Application Server configuration such as resources, applications, and servers.
Additionally, use the administrative console to view product messages. This topic
describes the main areas that display on the administrative console.

To view the administrative console, ensure that the application server for the
administrative console is running. Point a Web browser at the Web address for the
administrative console, enter your user ID and, if needed, a password on the Login

page.
You can resize the width of the navigation tree and workspace simultaneously by
dragging the border between them to the left or the right. The change in width

does not persist between administrative console user sessions.

The console has the following main areas.

Chapter 4. Using the administrative console 35

36

Taskbar

The taskbar offers options for logging out of the console, accessing product
information, and accessing support.

Navigation tree

The navigation tree on the left side of the console offers links to console pages that
you use to create and manage components in a WebSphere Application Server
administrative cell.

Click a plus sign (+) beside a tree folder or item to expand the tree for the folder
or item. Click a minus sign (-) to collapse the tree for the folder or item. Click an
item in the tree view to toggle its state between expanded and collapsed.

Workspace

The workspace on the right side of the console contains pages that you use to
create and manage configuration objects such as servers and resources. Click links
in the navigation tree to view the different types of configured objects. Within the
workspace, click configured objects to view their configurations, run-time status,
and options. Click Welcome in the navigation tree to display the workspace Home
page, which contains links to information on using the WebSphere Application
Server product.

Administrative console buttons

This page describes the button choices that are available on various pages of the

administrative console, depending on which product features you enable.

e Check all. Selects each resource that is listed on the administrative console
panel, in preparation for performing an action against the selected resources.

* Uncheck all. Removes all the listed resources from each selection so that no
action is performed against any of the resources.

* Filter the view. Produces a dialog box for specifying the resources to view in
the table on this administrative console page.

Hide the filter view. Hides the dialog box for specifying the resources to view
in the table on this administrative console page.

When you produce the dialog box, select the column to filter and enter the filter

criteria.

Column to filter
Select the column to filter from the drop-down list. When you apply the
filter, only those items in the selected column that meet the filter criteria
are displayed.

For example, select Names to enter criteria by which to filter application
server names.

Filter criteria
Enter a string that must be found in the name of a collection entry to
qualify the entry to display in the collection table. The string can contain
percent sign (%), asterisk (*), or question mark (?) symbols as wildcard
characters. For example, enter *Appx to find any application server
whose name contains the string App.

Prefix each of the following characters () ~* % { } \ + § with a
backslash (\) so that the regular expression engine performing the search
correctly matches the search criteria. For example, to search for all Java
DataBase Connectivity (JDBC) providers containing (XA) in the provider
name, specify the following string:

IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

*\ (XA\)

Clear filter criteria. Clears your filter changes and restores the most recently
saved values.
Abort. Stops a transaction that is not yet in the prepared state. All operations
that the transaction completed are undone.
Activate. Activates a group member.
Add. Adds the selected or typed item to a list, or produces a dialog for adding
an item to a list.
Add Node. Displays the Add Node page, in which you specify the host name
and SOAP connector port for a node that you want added to a cell.
Apply. Saves your changes to a page without exiting the page.
Back. Displays the previous page or item in a sequence. The administrative
console does not support using the Back and Forward options of a browser,
which can cause intermittent problems. Use Back or Cancel on the
administrative console panels instead.
Balance. Balances active members in high availability groups across servers that
host the high availability groups. The administrator must first determine which
groups have active members and select those groups before selecting Balance.
Browse. Opens a dialog that enables you to look for a file on your system.
Calculate groups. Calculates the number of high availability groups that are
returned based on the match set.
Cancel. Exits the current page or dialog, discarding unsaved changes. The
administrative console does not support using the Back and Forward options of
a browser, which can cause intermittent problems. Use Cancel on the
administrative console panels instead.
Change. In the context of security, you can search the user registry for a user ID
for an application to run under. In the context of container properties, you can
change the data source that the container is using.
Clear. Clears your changes and restores the most recently saved values.
Clear selections. Clears any selected cells in the tables on this tabbed page.
Close. Exits the dialog.
Commit. Releases all locks that are held by a prepared transaction and forces the
transaction to commit.
Copy. Creates copies of the selected application servers.
Create. Saves your changes to all the tabbed pages in a dialog and exits the
dialog.
Create tables. Develops scheduler database tables.
Deactivate. Deactivates a group member. The group member must be in the
active state to be deactivated. The deactivate option causes the group member to
move to the idle state. The group policy overrides which members are activated
and deactivated for a group. The policy is enforced for every member state
change. If the deactivate option conflicts with the group policy, the policy resets
who is the active member of the group.
Delete. Removes the selected instance.
Details. Shows the details about a transaction.
Disable. Disables a group or group member. When you disable a group or
group member, the active group or group member is first deactivated. If the
deactivate option is successful, the group or group member moves to the disable
state. A disabled group or group member cannot be activated.
Done. Saves your changes to all the tabbed pages in a dialog and exits the
dialog.
Down. Moves through a list.
Drop tables. Removes scheduler database tables.
Dump. Activates a dump of a traced application server.
Edit. Lets you edit the selected item in a list, or produces a dialog box for
editing the item.

Chapter 4. Using the administrative console 37

* Enable. Enables a group or a group member.

* Export. Accesses a page for exporting enterprise archive (EAR) files for an
enterprise application.

* Export DDL. Accesses a page for exporting data definition language (DDL) files
for an enterprise application.

* Export Keys. Exports Lightweight Third-Party Authentication (LTPA) keys to
other domains.

* Export route table. Exports the route table information for a selected cluster to a
binary file in the configuration.

* Filter. Produces a dialog box for specifying the resources to view in the tables on
this tabbed page.

* Finish. Forces a transaction to finish, regardless of whether its outcome has been
reported to all participating applications.

* First. Displays the first record in a series of records.

* Full resynchronize. Synchronizes the user’s configuration immediately. Click full
resynchronize on the Nodes page if automatic configuration synchronization is
disabled, or if the synchronization interval is set to a long time, and a
configuration change is made to the cell repository that needs to be replicated to
that node. Clicking this option clears all synchronization optimization settings
and performs configuration synchronization again, so no mismatches occur
between node and cell configuration after this operation is performed. This
operation can take awhile to perform.

* Force delete. Forces the removal of a node that is not removed properly from
the cell in the master repository. The Remove node action is preferred over the
Force delete action to delete a node from the configuration. If you click Force
delete, but the node still exists in the configuration, uninstall the node or run
the removeNode command by using the -force parameter on that node. Force
delete action is equivalent to running the cleanupNode command at the
deployment manager.

* Generate keys. Generates new LTPA keys. When security is turned on for the
first time with LTPA as the authentication mechanism, LTPA keys are
automatically generated with the password entered in the panel. To generated
new keys, use this option after the server is up with security turned on. Clicking
this option generates the keys and propagates them to all active servers (cell,
node, and application servers). The new keys can be used to encrypt and
decrypt the LTPA tokens. Click Save on the console taskbar to save the new keys
and the password in the repository.

¢ Immediate stop. Stops the server, but bypasses the normal server quiesce
process that supports in-flight requests to complete before shutting down the
entire server process. This shutdown mode is faster than the normal server stop
processing, but some application clients can receive exceptions.

* Import keys. Imports new LTPA keys from other domains. To support single
signon (SSO) in WebSphere Application Server across multiple WebSphere
domains (cells), share LTPA keys and a password among the domains. After
exporting the keys from one of the cells into a file, click this option to import the
keys into all the active servers (cell, node, and application servers). The new
keys can be used to encrypt and decrypt the LTPA token. Click Save on the
console taskbar to save the new keys and the password in the repository.

* Install. Displays the Preparing for application installation page, which you use
to deploy an application, an enterprise bean, or a Web component onto an
application server.

* Install RAR. Opens a dialog that is used to install a Java 2 Platform, Enterprise
Edition Connector Architecture (JCA) connector and to create a resource adapter.

* Manage transactions. Displays a list of active transactions running on a server.
You can forcibly finish any transaction that has stopped processing because a
transactional resource is not available.

38 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

Modify. Opens a dialog that is used to change a specification.

Move. Moves the selected application servers to a different location in the
administrative cell. When prompted, specify the target location.

Move down. Moves downward through a list.

Move up. Moves upward through a list.

New. Displays a page that you use to define a new instance. For example,
clicking New on the Application Servers page displays a page on which you can
configure a new application server.

Next. Displays the next page, frame, or item in a sequence.

OK. Saves your changes and exits the page.

Ping. Attempts to contact selected application servers.

Previous. Displays the previous page, frame, or item in a sequence.

Quit. Exits a dialog box and discards any unsaved changes.

Refresh. Refreshes the view of data for instances that are currently listed on this
tabbed page.

Regenerate encryption key. Regenerates a key for global data replication. If you
are using the DES or TRIPLE_DES encryption type, regenerate a key at regular
intervals (for example, monthly) to enhance security.

Remove. Deletes the selected item.

Remove file. Removes the specified file from the selected application or module.
Remove node. Deletes the selected node.

Reset. Clears your changes on the tab or page and restores the most recently
saved values.

Restart all servers on node. Stops all application servers on the node and starts
them again.

Retrieve new. Retrieves a new record.

Rollout update. Sequentially updates an application that is installed on multiple
cluster members across a cluster. After you update application files or a
configuration, click Rollout update to install the configuration or the updated
files for an application on all the cluster members of a cluster on which the
application is installed. The Rollout update option applies the following steps to
each cluster member in sequence:

1. Saves an updated configuration.

2. Stops the cluster member.

3. Updates the application on the node by synchronizing the configuration.

4. Restarts the cluster member.

This action enables you to update an application on multiple cluster members
while providing continuous availability of the application.

Save. Saves the changes in your local configuration to the master configuration.
Select. For resource analysis, lets you select a scope in which to monitor
resources.

Set. Saves your changes to settings in a dialog.

Settings. Displays a dialog for editing servlet-related resource settings.

Settings in use. Displays a dialog showing the settings in use.

Show groups. Displays a collection of high availability groups, based on the
match set.

Show servers. Displays a collection of servers that are contained in the high
availability groups that match the match set.

Start. In the context of application servers, starts selected application servers. In
the context of data collection, starts collecting data for the tables on this tabbed
page.

Stop. In the context of server components such as application servers, stops the
selected server components. In the context of a data collection, stops collecting

Chapter 4. Using the administrative console 39

data for the tables on a tabbed page. In the context of nodes, stops servers on
the selected nodes. In the context of deployment managers, stops the
deployment manager server.

* Synchronize. Synchronizes the user’s configuration immediately. Click
Synchronize on the Nodes page if automatic configuration synchronization is
disabled, or if the synchronization interval is set to a long time, and a
configuration change is made to the cell repository that needs replicating to that
node. A node synchronization operation is performed using the normal
synchronization optimization algorithm. This operation is fast, but might not fix
problems from manual file edits that occur on the node. It is possible for the
node and cell configuration to be out of synchronization after this operation is
performed. If problems persist, use Full Resynchronize.

* Terminate. Deletes the Application Server process or another process that cannot
be stopped by the Stop or Immediate Stop commands. Some application clients
can receive exceptions. Always attempt an immediate stop before using this
option.

* Test connection After you define and save a data source, you can select this
option to ensure that the parameters in the data source definition are correct. On
the Collection panel, you can select multiple data sources and test them
simultaneously.

* Uninstall. Deletes a deployed application from the WebSphere Application
Server configuration repository. Also deletes application binary files from the file
system.

* Update. Replaces an application that is deployed on a server with an updated
application. As part of the updating, you might need to complete steps on the
Preparing for application installation and Update application pages.

* Update resource list. Updates the data on a table. Discovers and adds new
instances to the table.

* Use cell CSI. Enables Object Management Group (OMG) Common Secure
Interoperability (CSI) protocol.

» Use cell SAS. Enables IBM Secure Authentication Service (SAS).

* Use cell Security. Enables cell security.

* Verify tables. Validates the mapping between the table names, scheduler
resource, and data sources.

* View. Opens a dialog on a file.

Administrative console page features

This topic provides information about the basic elements of an administrative
console page, such as the various tabs.

Administrative console pages are arranged in a few basic patterns. Understanding
their layout and behavior will help you use them more easily.

Collection pages

Use collection pages to manage a collection of existing administrative objects. A

collection page typically contains one or more of the following elements:

Scope and Preferences
These are described in [‘’Administrative console scope settings” on page 45
and ["Administrative console preference settings” on page 44/

Table of existing objects
The table displays existing administrative objects of the type specified by
the collection page. The table columns summarize the values of the key
settings for these objects. If no objects exist yet, an empty table is
displayed. Use the available buttons to create a new object.

40 1BM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

Buttons for performing actions
The available buttons are described on the Administrative console buttons
help panel. In most cases, you need to select one or more of the objects in
the table, then click a button. The action will be applied to the selected
objects.

Sort toggle buttons
Following column headings in the table are icons for sort ascending (")
and sort descending (v). By default, items such as names are sorted in
descending order (alphabetically). To enable another sorting order, click on
the icons for the column whose items you want sorted.

Detail pages

Use detail pages to configure specific administrative objects, such as an application

server. A detail page typically contains one or more of the following elements:

Configuration tabbed page
This tabbed page is for modifying the configuration of an administrative
object. Each configuration page has a set of general properties specific to
the administrative object. Other sets of properties display on the page, but
vary depending on the administrative object.

Runtime tabbed page
This tabbed page displays the configuration that is currently in use for the
administrative object. It is read-only in most cases. Some detail pages do
not have runtime tabs.

Local Topology tabbed page
This tabbed page displays the topology that is currently in use for the
administrative object. View the topology by expanding and collapsing the
different levels of the topology. Some detail pages do not have local
topology tabs.

Buttons for performing actions
Buttons to perform specific actions display on the configuration tabbed
page and the runtime tabbed page. The displayed buttons vary based on
the administrative object. The available buttons are described on the
Administrative console buttons help panel.

Wizard pages

Use wizard pages to complete a configuration process comprised of several steps.
Be aware that wizards show or hide certain steps depending on the characteristics
of the specific object you are configuring.

Administrative console navigation tree actions

Use the navigation tree of the administrative console to access pages for creating
and managing servers, applications, resources, and other components.

To view the navigation tree, go to the WebSphere Application Server administrative
console and look at the tree on the left side of the console. The tree provides
navigation to configuration tasks and run-time information. The main topics
available on the navigation tree are detailed in the following section. To use the
tree, expand a main topic and select an item from the expanded list to display a
page on which you can perform the administrative task.

Servers
Configure application servers, clusters, generic servers, Web servers, and core
groups.

Chapter 4. Using the administrative console 41

Applications
Install applications onto servers and manage the installed applications.

Resources
Configure resources and to view information on resources that exist in the
administrative cell.

Security
Access the Security Center, which you use to secure applications and servers.

Environment
Configure hosts, WebSphere Application Server variables, and other components.

System Administration
Configure console settings, and manage components and users of a Network
Deployment product.

Troubleshooting
Check for configuration errors and problems, view log files, and enable and disable
tracing on a distributed platform.

Monitoring and Tuning
Monitor and tune your Application Server performance and analyze performance
data.

Service Integration
Iimplement message-oriented and service-oriented applications.

UDDI

Publish and discover information about Web services.

Administrative console taskbar actions

Use the taskbar of the administrative console to log out of the administrative
console and to access the console help.

To view the taskbar, go to the WebSphere Application Server administrative
console and look at the horizontal bar near the top of the console. The taskbar
provides the following actions.

Logout

Logs you out of the administrative console session and displays the Login page. If
you made changes to the administrative configuration since last saving the
configuration to the master repository, the Save page is displayed before returning
to the Login page.

* Click Save to save the changes to the master repository.

* Click Discard to exit the session without saving changes.

¢ Click Logout to exit the session without saving changes but with the
opportunity to recover your changes when you return to the console.

Help
Opens a new Web browser to online help for the WebSphere Application Server
product.

42 1BM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

Support

Displays support links that vary based on the products that extend the WebSphere
Application Server. Use the support page to access product information such as
Frequently Asked Questions (FAQs), technical notes (Technotes), hints and tips,
and news. You can additionally install the Support Advisor Search application so
that when you click on the support link, a new Web browser that contains the
Support Advisor Search application opens. The Support Advisor Search application
displays the support links on the support page, but additionally provides federated
search capabilities into IBM knowledge databases.

Specifying console preferences

Use this topic to customize how much data displays on an administrative console
panel.

Throughout the administrative console are pages that have Preferences fields,
Scope fields, and Filter radio buttons. By selecting these fields and radio buttons
you can customize how much data is shown.

For example, examine the Preferences field for the Enterprise Applications page:

1. Go to the navigation tree of the administrative console and click Applications >
Enterprise Applications.

2. Expand Preferences.

3. For the Maximum rows field, specify the maximum number of rows to display
when the collection is large. The default is 20. Rows that exceed the maximum
number display on subsequent pages.

4. Select Retain filter criteria if you want to retain the last filter criteria that is
entered in the filter function. When you return to the Applications page, the
page initially uses the retained filter criteria to display the collection of
applications in the table following the preferences. Otherwise, clear Retain
filter criteria and the last filter criteria is not retained.

5. Click Apply to apply your selections or click Reset to return to the default
values. The default is not to enable (not have a check mark beside) Retain filter
criteria.

Other pages have similar fields and radio buttons that you can use to specify
console preferences. While Preferences fields, Scope fields, and Filter buttons
control how much data is shown in the console, the Preferences option controls
general behavior of the console. Click System administration > Console settings >
Preferences to view the [Preferences page}

Preferences settings

Use the Preferences page to specify whether you want the administrative console
workspace to refresh automatically after changes, the default scope to be the
administrative console node, confirmation dialogs to display, and the workspace
banner and descriptions to display.

To view this administrative console page, click System administration > Console
settings > Preferences.

Turn on workSpace auto-refresh
Specifies whether you want the administrative console workspace to redraw
automatically after the administrative configuration changes.

Chapter 4. Using the administrative console 43

The default is for the workspace to redraw automatically. If you direct the console
to create a new instance of, for example, an application server, the Application
Servers page refreshes automatically and shows the new server name in the
collection of servers.

Specifying that the workspace not redraw automatically means that you must
access a page again by clicking the console navigation tree or links on collection
pages to see the changes that are made to the administrative configuration.

Default true (selected)

No confirmation on workspace discard
Specifies whether the confirmation dialog is displayed after a request is receive to
discard the workspace. The default is to display confirmation dialogs.

Default false (cleared)

Use default scope (administrative console node)
Specifies whether the default scope is the administrative console node. The default
scope not is not the console node.

Default false (cleared)

Show banner
Specifies whether the WebSphere Application Server banner along the top of the
administrative console is displayed. The default is for the banner to display.

Default true (selected)

Show Descriptions
Specifies whether information on the right of the console is shown. The default is
to show the information.

Data type Boolean
Default true

Administrative console preference settings

Use the preference settings to specify how you want information displayed on an
administrative console page.

Maximum rows
Indicates the maximum number of rows to display per page when the collection is
large.

Filter history
Indicates whether to use the same filter criteria to display this page the next time
you visit it.

Select the Retain filter criteria check box to retain the last filter criteria entered.

When you return to the page, retained filter criteria control the application
collection that is displayed n the table.

44 1BM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

Show confirmation for stop command
Select the check box if you want a confirmation that the stop command is
successful.

Show confirmation for immediate stop command
Select the check box if you want a confirmation that the immediate stop command
is successful.

Show confirmation for terminate command
Select the check box if you want a confirmation that the terminate command is
successful.

Administrative console scope settings

Use this page to specify the level at which a resource is visible on the
administrative console panel. A resource can be visible in the administrative
console collection table at the cell, node, cluster, or server scope. By changing the
value for Scope you can see other variables that apply to a resource and might
change the contents of the collection table.

Click Browse next to a field to see choices for limiting the scope of the field. If a
field is read-only, you cannot change the scope. For example, if only one server
exists, you cannot switch the scope to a different server.

You always create resources at the current scope that is selected in the
administrative console panel, even though the resources might be visible at more
than one scope.

Resources such as JDBC providers, namespace bindings, or shared libraries can be
defined at multiple scopes. Resources that are defined at more specific scopes
override duplicate resources that are defined at more general scopes.

* The application scope has precedence over all the scopes.

* The server scope has precedence over the node, cell, and cluster scopes.
* The cluster scope has precedence over the node and cell scopes.

* The node scope has precedence over the cell scope.

Despite the scope of a defined resource, the resource properties only apply at an
individual server level. For example, if you define the scope of a data source at the
cell level, all the users in that cell can look up and use that data source, which is
unique within that cell. However, resource property settings are local to each
server in the cell. For example, if you define the maximum connections as 10, then
each server in that cell can have 10 connections.

The cell scope is the most general scope and does not override any other scope.
The recommendation is that you generally specify a more specific scope than the
cell scope. When you define a resource at a more specific scope, you provide
greater isolation for the resource. When you define a resource at a more general
scope, you provide less isolation. Greater exposure to cross-application conflicts
occur for a resource that you define at a more general scope.
Cell Limits the visibility to all servers on the named cell. The resource factories
within the cell scope are:
* Defined for all servers within this cell
* Overridden by any resource factories that are defined within application,
server, cluster and node scopes that are in this cell and have the same
Java Naming and Directory Interface (JNDI) name

Chapter 4. Using the administrative console 45

The resource providers that are required by the resource factories must be
installed on every node within the cell before applications can bind or use
them.

Cluster
Limits the visibility to all the servers on the named cluster. All cluster
members must at least be at Version 6 to use cluster scope for the cluster.
The resource factories that are defined within the cluster scope:
* Are available for all the members of this cluster to use
¢ Opverride any resource factories that have the same JNDI name that is

defined within the cell scope

The resource factories that are defined within the cell scope are available
for this cluster to use, in addition to the resource factories, that are defined
within this cluster scope.

Node Limits the visibility to all the servers on the named node. The node scope
is the default scope for most resource types. The resource factories that are
defined within the node scope:

* Are available for servers on this node to use
* Opverride any resource factories that have the same JNDI name defined
within the cell scope

The resource factories that are defined within the cell scope are available
for servers on this node to use, in addition to the resource factories that are
defined within this node scope.

Server Limits the visibility to the named server. The server scope is the most
specific scope for defining resources. The resource factories that are defined
within the server scope:

* Are available for applications that are deployed on this server
¢ Opverride any resource factories that have the same JNDI name defined
within the node and cell scopes

The resource factories that are defined within the node and cell scopes are
available for this server to use, in addition to the resource factories that are
defined within this server scope.

Application
Limits the visibility to the named application. Application scope resources
cannot be configured from the console. Use the WebSphere Application
Server Toolkit (AST) or the wsadmin tool to view or modify the
application scope resource configuration. The resource factories that are
defined within the application scope are available for this application to
use only. The application scope overrides all other scopes.

You can configure resources and WebSphere Application Server variables under all
five scopes. You can configure namespace bindings and shared libraries only under
cell, node, and server scopes.

Accessing help and product information from the administrative
console

This topic describes how to use administrative console help and how to link to
product documentation from the administrative console.

You must have a connection to the Internet to access information about WebSphere
Application Server from the Welcome page of the administrative console.

All of the helps panels that you can access from the administrative console, you
can access from the WebSphere Application Server Information Center. This article

46 1BM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

describes how to access the help panels, the information center, and other product
documentation from the administrative console.

* Click Welcome on the administrative console navigation tree. In the workspace
to the right of the navigation tree, select the appropriate links to access the
WebSphere Application Server Information Center, the WebSphere Application
Server product information, and the WebSphere Application Server technical
information on developerWorks.

¢ Access help in the following ways:

— Click Help on the administrative console task bar to open a new Web browser
for online help.

- Click on the Help index tab and select from the list of help panels to view
administrative console help information.

- Click on the Search tab, provide search terms, and then click Search. Under
Results, select a help panel that contains the search information.

— Click the ? icon on the task bar for the particular administrative console panel
to open a new Web browser and view the help panel for the corresponding
administrative console panel. The help panel is displayed in the Help index
for the administrative console.

— In the help portal that is on the right side of the administrative console panel,
do one or all of the following tasks:

- Click a field label or a list marker in the administrative console panel for
the help to display under Field help. Alternatively, place the cursor over
the field label or the list marker for the corresponding help to display at
the cursor.

- Click the link under Page help to access the help panel for the
administrative console panel. The help panel is the same help panel that
displays when you click the ? icon.

- Expand the task help to view related tasks.

You can continue to access help information from the administrative console.
Alternatively, you can access the help information from the WebSphere Application
Server Information Center.

You can continue to access the WebSphere Application Server Information Center,
the WebSphere Application Server product information, and the WebSphere
Application Server technical information on developerWorks from the
administrative console. Alternatively you can access the information from the

Administrative console: Resources for learning

Use the following links to find relevant supplemental information about the IBM
WebSphere Application Server administrative console. The information resides on
IBM and non-IBM Internet sites, whose sponsors control the technical accuracy of
the information.

These links are provided for convenience. Often, the information is not specific to
the IBM WebSphere Application Server product, but is useful all or in part for
understanding the product. When possible, links are provided to technical papers
and Redbooks that supplement the broad coverage of the release documentation
with in-depth examinations of particular product areas.

View links to additional information:

Chapter 4. Using the administrative console 47

http://www.ibm.com/
http://www.ibm.com/

48

Administration
« |IBM WebSphere Application Server Redbooks|

This site contains a listing of all WebSphere Application Server Redbooks.
+ |IBM developerWorks WebSphere|

This site is the home of technical information for developers working with
WebSphere products. You can download WebSphere software, take a fast path to
developerWorks zones, such as VisualAge Java or WebSphere Application Server,
learn about WebSphere products through a newcomers page, tutorials,
technology previews, training, and Redbooks, get answers to questions about
WebSphere products, and join the WebSphere community, where you can keep
up with the latest developments and technical papers.

+ [WebSphere Application Server Support page

Take advantage of the Web-based Support and Service resources from IBM to
quickly find answers to your technical questions. You can easily access this
extensive Web-based support through the IBM Software Support portal at URL
http://www-3.ibm.com/software/support/ and search by product category, or by
product name. For example, if you are experiencing problems specific to
WebSphere Application Server, click WebSphere Application Server in the
product list. The WebSphere Application Server Support page appears.

IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

http://publib-b.boulder.ibm.com/Redbooks.nsf/Portals/WebSphere
http://www7b.software.ibm.com/wsdd/
http://www-3.ibm.com/software/webservers/appserv/support.html

Chapter 5. Using the MVS console

Use the MVS console to manage the IBM WebSphere Application Server product as
well as the Network Deployment product.

1.

© Copyright IBM Corp. 2005

See the z/OS MVS System commands manual at
[http:/ /www.ehone.ibm.com /public/applications /publications /cgibin /pbi.cgi
for information on how to use MVS operator commands.

Optionally use standard console automation products to automate WebSphere
Application Server for z/OS operations. All automations for the WebSphere
Application Server for z/OS environment are done using interfaces from the
MVS console. Products such as Netview are presented copies of messages that
are to be displayed on the MVS console. These automation products can also
enter commands into the system using a "virtual” MVS console as a source.

49

http://www.ehone.ibm.com/public/applications/publications/cgibin/pbi.cgi

50 1BM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

Chapter 6. Using scripting (wsadmin)

The WebSphere administrative (wsadmin) scripting program is a powerful,
non-graphical command interpreter environment enabling you to run
administrative operations in a scripting language. The wsadmin tool is intended
for production environments and unattended operations. You can use the wsadmin
tool to perform the same tasks that you can perform using the administrative
console.

The following list highlights the topics and tasks available with scripting:

* |Getting started with scripting Provides an introduction to WebSphere
Application Server scripting and information about using the wsadmin tool.
Topics include information about the scripting languages and the scripting
objects, and instructions for starting the wsadmin tool.

+ |Deploying applications| Provides instructions for deploying and uninstalling
applications. For example, stand-alone Java archive files and Web archive files,
the administrative console, remote Enterprise Archive (EAR) files, file transfer
applications, and so on.

+ [Managing deployed applications|Includes tasks that you perform after the
application is deployed. For example, starting and stopping applications,
checking status, modifying listener address ports, querying application state,
configuring a shared library, and so on.

* [Configuring servers| Provides instructions for configuring servers, such as
creating a server, modifying and restarting the server, configuring the Java
virtual machine, disabling a component, disabling a service, and so on.

* |[Configuring connections to Web servers| Includes topics such as regenerating the
plug-in, creating new virtual host templates, modifying virtual hosts, and so on.

* [Managing serverg Includes tasks that you use to manage servers. For example,
stopping nodes, starting and stopping servers, querying a server state, starting a
listener port, and so on.

* |Clustering servers|Includes topics about clusters, such as creating clusters,
creating cluster members, querying a cluster state, removing clusters, and so on.

* [Configuring security| Includes security tasks, for example, enabling and disabling
global security, enabling and disabling Java 2 security, and so on.

* [Configuring data access|Includes topics such as configuring a Java DataBase
Connectivity (JDBC) provider, defining a data source, configuring connection
pools, and so on.

+ |Configuring messaging| Includes topics about messaging, such as Java Message
Service (JMS) connection, JMS provider, WebSphere queue connection factory,
MQ topics, and so on.

» |Configuring mail, URLs, and resource environment entries| Includes topics such
as mail providers, mail sessions, protocols, resource environment providers,
referenceables, URL providers, URLs, and so on.

[Troubleshooting| Provides information about how to troubleshoot using scripting.
For example, tracing, thread dumps, profiles, and so on.

* [Scripting reference material|Includes all of the reference material related to
scripting. Topics include the syntax for the wsadmin tool and for the
administrative command framework, explanations and examples for all of the
scripting object commands, the scripting properties, and so on.

© Copyright IBM Corp. 2005 51

Getting started with scripting

Scripting is a non-graphical alternative that you can use to configure and manage
WebSphere Application Server. The WebSphere Application Server wsadmin tool
provides the ability to run scripts. The wsadmin tool supports a full range of
product administrative activities.

The following figure illustrates the major components involved in a wsadmin
scripting solution:

Java virtual machine

External tools <__>.<—>®
and programs Server

Figure 1: A WebSphere Application Server scripting solution

Resources

The wsadmin tool supports two scripting languages: Jacl and Jython. Five objects

are available when you use scripts:

¢ AdminControl: Use to run operational commands.

* AdminConfig: Use to run configurational commands to create or modify
WebSphere Application Server configurational elements.

* AdminApp: Use to administer applications.

* AdminTask: Use to run administrative commands.

* Help: Use to obtain general help.

The scripts use these objects to communicate with MBeans that run in WebSphere
Application Server processes. MBeans are Java objects that represent Java
Management Extensions (JMX) resources. JMX is an optional package addition to
Java 2 Platform Standard Edition (J2SE). JMX is a technology that provides a
simple and standard way to manage Java objects.

To perform a task using scripting, you must first perform the following steps:

1. Choose a scripting language. The wsadmin tool only supports and
scripting languages. Jacl is the language specified by default. If you want to use

the Jython scripting language, use the -lang option or specify it in the
wsadmin.properties file.

2. [Start the wsadmin scripting client interactively, as an individual command, in a
script, or in a profile.

Before you perform any task using scripting, make sure that you are familiar with
the following concepts:

* [Java Management Extensions (]MX)|

» [WebSphere Application Server configuration modell

+ [wsadmin tooll

* [Jacl syntax or [[ython syntax]

* |Scripting objects
pung obj

Optionally, you can customize your scripting environment. For more information,
see [Scripting environment properties|

52 1BM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

After you become familiar with the scripting concepts, choose a scripting language,
and start the scripting client, you are ready to perform tasks using scripting.

Java Management Extensions (JMX)

Java Management Extensions (JMX) is a framework that provides a standard way
of exposing Java resources, for example, application servers, to a system
management infrastructure. Using the J]MX framework, a provider can implement
functions, such as listing the configuration settings, and editing the settings. This
framework also includes a notification layer that management applications can use
to monitor events such as the startup of an application server.

JMX key features

The key features of the WebSphere Application Server Version 6 implementation of
JMX include:

* All processes that run the JMX agent.
+ All run-time administration that is performed through JMX operations.

* Connectors that are used to connect a JMX agent to a remote JMX-enabled
management application. The following connectors are supported:

— SOAP JMX Connector

— Remote Method Invocation over the Internet Inter-ORB Protocol (RMI-IIOP)
JMX Connector

* Protocol adapters that provide a management view of the JMX agent through a
given protocol. Management applications that connect to a protocol adapter are
usually specific to a given protocol.

* The ability to query and update the configuration settings of a run-time object.

* The ability to load, initialize, change, and monitor application components and
resources during run-time.

JMX architecture

The JMX architecture is structured into three layers:

* Instrumentation layer - Dictates how resources can be wrapped within special
Java beans, called managed beans (MBeans).

* Agent layer - Consists of the MBean server and agents, which provide a
management infrastructure. The services that are implemented include:

— Monitoring
— Event notification
— Timers

* Management layer - Defines how external management applications can interact
with the underlying layers in terms of protocols, APIs, and so on. This layer
uses an implementation of the distributed services specification (JSR-077), which
is not yet part of the Java 2 platform, Enterprise Edition (J2EE) specification.

The layered architecture of JMX is summarized in the following figure:

Chapter 6. Using scripting (wsadmin) 53

54

[mwomeriromienion |

| Connector |

| Adapter |

A

¥ Agent Layer

MBean

MBean

MBean Server
A1 A1
Agent Agent Agent Services
services services | (as MBeans)
v Java virtual machine v Instrumentation Layer
Resource 1 Resource 2

Manages

Re%ource 1 Resou

Manages

rce 2

Managed Resources

Figure 1: JMX architecture

JMX distributed administration

The following figure shows how the JMX architecture fits into the overall
distributed administration topology of a Network Deployment environment:

Deployment Manager

management, & other EMS
/ (Tivoli, BMC)

Clients, Multi-cell,

Node Agent

MBean
Server

To Other
Application Servers

N

Application Server

e

MBean
Server

\

To other|
Nodes Master
files
Configuration

Configuration
Repository Service

Distribution Service

Configuration
files

7

Figure 2: WebSphere Application Server distributed administration of JMX

The key points of this distributed administration architecture include:

IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

* Internal MBeans that are local to the Java virtual machine (JVM) register with
the local MBean server.

* External MBeans have a local proxy to their MBean server. The proxy registers
with the local MBean server. Using the MBean proxy the local MBean server can
pass the message to an external MBean server that is located on:

— Anode agent that has an MBean proxy for all the servers within its node. The
MBean proxies for other nodes are not used.

— The deployment manager has MBean proxies for all the node agents in the
cell.

JMX Mbeans

WebSphere Application Server provides a number of MBeans, each of which has
different functions and operations available. For example, an application server
MBean can expose operations such as start and stop. An application MBean can
expose operations such as install and uninstall. Some JMX usage scenarios that you
can encounter include:

* External programs that are written to control the Network Deployment run time
and its WebSphere resources by programmatically accessing the JMX APL

¢ Third-party applications that include custom JMX MBeans as part of the
deployed code, supporting the J]MX API management of application components
and resources.

The following example illustrates how to obtain an MBean:

Using Jacl:
set am [$AdminControl queryNames type=ApplicationManager,process=serverl,x]

Using Jython:
am = AdminControl.queryNames('type=ApplicationManager,process=serverl,*"')

Each WebSphere Application Server runtime MBean can have attributes,
operations, and notifications. The complete documentation for each MBean that is
supplied with WebSphere Application Server is available in an HTML table that is
installed in each copy of the WebSphere Application Server product. Under the
main installation directory for the product, there is the web directory. Under the web
directory there is another directory called mbeanDocs. In the mbeanDocs directory
there are several HTML files; one HTML file for each MBean supplied with
WebSphere Application Server. There is also an index.html file that ties all the
individual MBean files together in a top-level navigation tree. Each MBean
provides a summary of its attributes, operations, and notifications.

JMX benefits

The use of JMX for management functions in WebSphere Application Server
provides the following benefits:

* Enables the management of Java applications without significant investment.
* Relies on a core-managed object server that acts as a management agent.

* Java applications can embed a managed object server and make some of its
functionality available as one or several MBeans that are registered with the
object server.

* Provides a scalable management architecture.

Chapter 6. Using scripting (wsadmin) 55

* Every JMX agent service is an independent module that can be plugged into the
management agent.

* The API is extensible, allowing new WebSphere Application Server and custom
application features to be easily added and exposed through this management
interface.

* Integrates existing management solutions.

e JMX smart agents are capable of being managed through HTML browsers or by
various management protocols such as Web services, Java Message Service
(JMS), and Simple Network Management Protocol (SNMP).

* Each process is self-sufficient when it comes to the management of its resources.
No central point of control exists. In principle, a JMX-enabled management client
can be connected to any managed process and interact with the MBeans that are
hosted by that process.

* JMX provides a single, flat, domain-wide approach to system management.
Separate processes interact through MBean proxies that support a single
management client to seamlessly navigate through a network of managed
processes.

* Defines the interfaces that are necessary for management only.

* Provides a standard API for exposing application and administrative resources
to management tools.

WebSphere Application Server configuration model

Configuration data is stored in several different XML files which the server run
time reads when it starts and responds to the component settings stored there. The
configuration data includes the settings for the run time, such as, Java virtual
machine (JVM) options, thread pool sizes, container settings, and port numbers the
server will use. Other configuration files define Java 2 Platform, Enterprise Edition
(J2EE) resources to which the server connects in order to obtain data that is needed
by the application logic. Security settings are stored in a separate document from
the server and resource configuration. Application-specific configuration, such as,
deployment target lists, session configuration, and cache settings, are stored in files
under the root directory of each application. When viewing the XML data in the
configuration files, you can discern relationship between the configuration objects.
Understanding the relationship between the different configuration objects is
essential when creating wsadmin scripts that perform configuration function

For more information on the WebSphere Application Server configuration objects
view the HTML tables in the installroot/web/configDocs directory. There are
several subdirectories, one for each configuration package in the model. The
index.html file ties all of the individual configuration packages together in a
top-level navigation tree. Each configuration package lists the supported
configuration classes and the configuration class lists all of the supported
properties. The properties with names that end with the at (@) character imply that
property is a reference to a different configuration object within the configuration
data. The properties with names that end with an asterisk () character imply that
the property is a list of other configuration objects.

Jacl

Jacl is an alternate implementation of TCL, and is written entirely in Java code.

The wsadmin tool uses Jacl V1.3.1. The following information is a basic summary
of the Jacl syntax:

56 1BM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

Basic syntax:

The basic syntax for a Jacl command is the following:

Command argl arg2 arg3 ...

The command is either the name of a built-in command or a Jacl procedure. For
example:

puts stdout {Hello, world!}
=> Hello, world!

In this example, the command is puts which takes two arguments, an I/O stream
identifier and a string. The puts command writes the string to the I/O stream
along with a trailing new line character. The arguments are interpreted by the
command. In the example, stdout is used to identify the standard output stream.
The use of stdout as a name is a convention employed by the puts command and
the other I/O commands. stderr identifies the standard error output, and stdin
identifies the standard input.

Variables

The set command assigns a value to a variable. This command takes two
arguments: the name of the variable and the value. Variable names can be any
length and are case sensitive. You do not have to declare Jacl variables before you
use them. The interpreter will create the variable when it is first assigned a value.
For example:

set a 5

=> 5

set b $a
=> §h

The second example assigns the value of variable a to variable b. The use of dollar
sign ($) is indicates variable substitution. You can delete a variable with the unset
command, for example:

unset varNamel varName2 ...

You can pass any number of variables to the unset command. The unset command
will give error if a variable is not already defined. You can delete an entire array or
just a single array element with the unset command. Using the unset command on
an array is a easy way to clear out a big data structure. The existence of a variable
can be tested with the info exists command. You may have to test for the existence
of the variable because the incr parameter requires that a variable exist first, for
example:

if I[info exists foobar] {set foobar 0} else {incr foobar}
Command substitution:

The second form of substitution is command substitution. A nested command is
delimited by square brackets, []. The Jacl interpreter evaluates everything
between the brackets and evaluates it as a command. For example:

set len [string length foobar]
=> 6

In this example, the nested command is the following: string Tength foobar. The
string command performs various operations on strings. In this case, the command

Chapter 6. Using scripting (wsadmin) 57

asks for the length of the string foobar. If there are several cases of command
substitution within a single command, the interpreter processes them from left
bracket to right bracket. For example:

set number "1 2 3 4"

=>1234

set one [lindex $number 0]

= 1

set end [lindex $number end]

= 4

set another {123 456 789}

=> 123 456 789

set stringlen [string length [lindex $another 1]]

=> 3

set listlLen [11ength [lindex $another 1]

=> 1
Math expressions:

The Jacl interpreter does not evaluate math expressions. Use the expr command to
evaluate math expressions. The implementation of the expr command takes all
arguments, concatenates them into a single string, and parses the string as a math
expression. After the expr command computes the answer, it his formatted into a
string and returned. For example:

expr 7.2 / 3
=> 2.4

Backslash substitution:

The final type of substitution done by the Jacl interpreter is backslash substitution.
Use this to quote characters that have special meaning to the interpreter. For
example, you can specify a literal dollar sign, brace, or bracket by quoting it with a
backslash. If you are using lots of backslashes, instead you can group things with
curly braces to turn off all interpretation of special characters. There are cases
where backslashes are required. For example:

set dollar "This is a string \$contain dollar char"
=> This is a string $contain dollar char

set x $dollar
=> This is a string $contain dollar char

set group {$ {} [0 { [} 1}
=${0{[}]

You can also use backslashes to continue long commands on multiple lines. A new
line without the backslash terminates a command. A backslashes that are the last
character on a line convert into a space. For example:

set totallLength [expr [string Tlength "first string"] + \

[string Tlength "second string"]]
=> 25

Grouping with braces and double quotes:
Use double quotes and curly braces to group words together. Quotes allow

substitutions to occur in the group and curly braces prevent substitution. This rule
applies to command, variable, and backslash substitutions. For example:

58 1BM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

set s Hello
=> Hello

puts stdout "The length of $s is [string Tength $s]."
=> The Tength of Hello is 5.

puts stdout {The length of $s is [string Tength $s].}
=> The length of $s is [string length $s].

In the second example, the Jacl interpreter performs variable and command
substitution on the second argument from the puts command. In the third
command, substitutions are prevented so the string is printed as it is.

Procedures and scope:

Jacl uses the proc command to define procedures. The basic syntax to define a
procedure is the following:

proc name arglist body

The first argument is the name of the procedure being defined. The name is case
sensitive, and in fact it can contain any characters. Procedure names and variable
names do not conflict with each other. The second argument is a list of parameters
to the procedures. The third argument is a command, or more typically a group of
commands that form the procedure body. Once defined, a Jacl procedure is used
just like any of the built-in commands. For example:

proc divide {x y} {

set result [expr x/y]

puts $result
}

Inside the script, this is how to call devide procedure:
divide 20 5

And it will give the result like below:
4

It is not really necessary to use the variable c in this example. The procedure body
could also written as:

return [expr sqrt($a * $a + $b * $b)]

The return command is optional in this example because the Jacl interpreter
returns the value of the last command in the body as the value of the procedure.
So, the procedure body could be reduced to:

expr sqrt($a * $a + $b = $b)

The result of the procedure is the result returned by the last command in the body.
The return command can be used to return a specific value.

There is a single, global scope for procedure names. You can define a procedure
inside another procedure, but it is visible everywhere. There is a different name
space for variables and procedures therefore you may have a procedure and a
variable with the same name without a conflict. Each procedure has a local scope
for variables. Variables introduced in the procedures only exist for the duration of
the procedure call. After the procedure returns, those variables are undefined. If
the same variable name exists in an outer scope, it is unaffected by the use of that
variable name inside a procedure. Variables defined outside the procedure are not
visible to a procedure, unless the global scope commands are used.

Chapter 6. Using scripting (wsadmin) 59

 global command - Global scope is the top level scope. This scope is outside of
any procedure. You must make variables defined at the global scope accessible
to the commands inside procedure by using the global command. The syntax for
the global command is the following:

60

global varNamel varName2 ...

Comments

Use the pound character (#) to make comments.

Command line arguments

The Jacl shells pass the command line arguments to the script as the value of the
argv variable. The number of command line arguments is given by argc variable.
The name of the program, or script, is not part of argv nor is it counted by argc.
Instead, it is put into the argv0 variable. The argv variable is a list. Use the lindex
command to extract items from the argument list, for example:

set first [lindex $argv 0]

set second [lindex $argv

1]

Strings and pattern matching

String are the basic data item in the Jacl language. There are multiple commands
that you can use to manipulate strings. The general syntax of the string command

is the following:

string operation stringvalue otherargs

The operation argument determines the action of the string. The second argument
is a string value. There may be additional arguments depending on the operation.

The following table includes a summary of the string command:

Command

Description

string compare strl str2

Compares strings lexicographically. Returns
0 if equal, -1 if strl sorts before str2, elsel.

string first strl str2

Returns the index in str2 of the first
occurrence of strl, or -1 if strl is not found.

string index string index

Returns the character at the specified index.

string last strl str2

Returns the index in str2 of the last
occurrence of strl, or -1 if strl is not found.

string length string

Returns the number of character in string.

string match pattern str

Returns 1 if str matches the pattern, else 0.

string range str i j

Returns the range of characters in str from i
toj

string tolower string

Returns string in lower case.

string toupper string

Returns string in upper case.

string trim string ?chars?

Trims the characters in chars from both ends
of string. chars defaults to white space.

string trimleft string ?chars?

Trims the characters in chars from the
beginning of string. chars defaults to white
space.

IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

string trimright string ?chars? Trims the characters in chars from the end of
string. chars defaults to white space.

string wordend str ix Returns the index in str of the character after
the word containing the character at index
ix.

string wordstart str ix Returns the index in str of the first character
in the word containing the character at
index ix.

The append command

The first argument of the append command is a variable name. It concatenates the
remaining arguments onto the current value of the named variable. For example:

set foo z
=> 7

append foo a b c
=> zabc

The regexp command

The regexp command provides direct access to the regular expression matcher. The
syntax is the following;:

regexp ?flags? pattern string ?match subl sub2 ...?

The return value is 1 if some part of the string matches the pattern. Otherwise, the
return value will be 0. The pattern does not have to match the whole string. If you
need more control than this, you can anchor the pattern to the beginning of the
string by starting the pattern with », or to the end of the string by ending the
pattern with dollar sign, $. You can force the pattern to match the whole string by
using both characters. For example:

set textl "This is the first string"
=> This is the first string

regexp "first string" $textl
= 1

regexp "second string" $textl
=> 0

Jacl data structures

The basic data structure in the Jacl language is a string. There are two higher level
data structures: lists and arrays. Lists are implemented as strings and the structure
is defined by the syntax of the string. The syntax rules are the same as for
commands. Commands are a particular instance of lists. Arrays are variables that
have an index. The index is a string value so you can think of arrays as maps from
one string (the index) to another string (the value of the array element).

Jacl lists
The lists of the Jacl language are strings with a special interpretation. In the Jacl
language, a list has the same structure as a command. A list is a string with list

elements separated by white space. You can use braces or quotes to group together
words with white space into a single list element.

Chapter 6. Using scripting (wsadmin) 61

The following table includes commands that are related to lists:

Command

Description

list argl arg?2

Creates a list out of all its arguments.

lindex list i

Returns the i’th element from list.

llength list

Returns the number of elements in list.

Irange list i j

Returns the i'th through j’th elements from
list.

lappend listVar arg arg ...

Appends elements to the value of listVar

linsert list index arg arg ...

Inserts elements into list before the element
at position index. Returns a new list.

Ireplace list i j arg arg ...

Replaces elements i through j of list with the
args. Return a new list.

Isearch mode list value

Returns the index of the element in list that
matches the value according to the mode,
which is -exact, -glob, or -regexp, -glob is
the default. Return -1 if not found.

Isort switches list

Sorts elements of the list according to the
switches: -ascii, -integer, -real, -increasing,
-decreasing, -command command. Return a
new list.

concat arg arg arg ...

Joins multiple lists together into one list.

join list joinString

Merges the elements of a list together by
separating them with joinString.

split string splitChars

Splits a string up into list elements, using
the characters in splitChars as boundaries
between list elements.

Arrays

Arrays are the other primary data structure in the Jacl language. An array is a
variable with a string-valued index, so you can think of an array as a mapping
from strings to strings. Internally an array is implemented with a hash table. The
cost of accessing each element is about the same. The index of an array is
delimited by parentheses. The index can have any string value, and it can be the
result of variable or command substitution. Array elements are defined with the

set command, for example:

set arr(index) value

Substitute the dollar sign ($) to obtain the value of an array element, for example:

set foo $arr(index)

For example:

set fruit(best) kiwi
= kiwi

set fruit(worst) peach
=> peach

set fruit(ok) banana
=> banana

array get fruit

IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

=> ok banana worst peach best kiwi

array exists fruit
=> 1

The following table includes array commands:

Command

Description

array exists arr

Returns 1 if arr is an array variable.

array get arr

Returns a list that alternates between an
index and the corresponding array value.

array names arr ?pattern?

Return the list of all indices defined for arr,
or those that match the string match pattern.

array set arr list

Initializes the array arr from list, which
should have the same form as the list
returned by get.

array size arr

Returns the number of indices defined for
arr.

array startsearch arr

Returns a search token for a search through
arr.

array nextelement arr id

Returns the value of the next element in
array in the search identified by the token
id. Returns an empty string if no more
elements remain in the search.

array anymore arr id

Returns 1 if more elements remain in the
search.

array donesearch arr id

Ends the search identified by id.

Control flow commands

The following looping commands exist:
e while

 foreach

s for

The following are conditional commands:
o if
* switch

The following is an error handling command:

e catch

The following commands fine-tune control flow:

* break

e continue
* return
* error

If Then Else

Chapter 6. Using scripting (wsadmin) 63

The if command is the basic conditional command. It says that if an expression is
true, then run the second line of code, otherwise run a different line of code. The
second command body (the else clause) is optional. The syntax of the command is
the following:

if boolean then bodyl else body2

The then and else keywords are optional. For example:

if {$x == 0} {
puts stderr "Divide by zero!"
} else {

set slope [expr $y/$x]
}

Switch

Use the switch command to branch to one of many commands depending on the
value of an expression. You can choose based on pattern matching as well as
simple comparisons. Any number of pattern-body pairs can be specified. If
multiple patterns match, only the code body of the first matching pattern is
evaluated. The general form of the command is the following:

switch flags value patl bodyl pat2 body2

You can also group all the pattern-body pairs into one argument:
switch flags value {patl bodyl pat2 body2 ...}

There are four possible flags that determines how value is matched.

* -exact Matches the value exactly to one of the patterns.

e -glob Uses glob-style pattern matching.

* -regexp Uses regular expression pattern matching.

* -- No flag (or end of flags). Useful when value can begin with a dash (-).

For example:

switch -exact -- $value {
foo {doFoo; incr count(foo)}
bar {doBar; return $count(foo)}
default {incr count(other)}

}

If the pattern that is associated with the last body is default, then the command
body is started if no other patterns match. The default keyword only works on the
last pattern-body pair. If you use the default pattern on an earlier body, it will be
treated as a pattern to match the literal string default.

Foreach

The foreach command loops over a command body and assigns a loop variable to
each of the values in a list. The syntax is the following:

foreach ToopVar valuelList commandBody

The first argument is the name of a variable. The command body runs one time for
each element in the loop with the loop variable having successive values in the list.
For example:

set numbers {1 3 5 7 11 13}

foreach num $numbers {

puts $num

}

64 1BM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

The result from the previous example will be the following output, assuming that
only one server exists in the environment. If there is more than one server, the
information for all servers returns:

1

3

5

7

11

13

While

The while command takes two arguments; a test and a command body, for
example:

while booleanExpr body

The while command repeatedly tests the boolean expression and runs the body if
the expression is true (non-zero). For example:

set i 0

while {$i < 5} {
puts "i is $i"
incr i}

The result from the previous example will be like the following output, assuming
that there is only one server. If there is more then one servers, it will print all of
the servers:

is 0

is
is
is
is

e e e
B W N

For

The for command is similar to the C language for statement. It takes four
arguments, for example:

for initial test final body

The first argument is a command to initialize the loop. The second argument is a
boolean expression which determines if the loop body will run. The third
argument is a command that runs after the loop body: For example:

set numbers {1 3 5 7 11 13}

for {set i 0} {$§i < [11ength $numbers]} {incr i 1} {

puts "i is §i"

}

The result from previous example will be like the following output, assuming that
there is only one server in the environment. If there is more then one server, it will
print all of the server names:

is 1

is 3

is b

is 7

is 11

is 13

D P U O P

Break and continue

Chapter 6. Using scripting (wsadmin) 65

You can control loop execution with the break and continue commands. The break
command causes an immediate exit from a loop. The continue command causes
the loop to continue with the next iteration.

Catch

An error will occur if you call a command with the wrong number of arguments
or if the command detects some error condition particular to its implementation.
An uncaught error prevents a script from running. Use the catch command trap
such errors. The catch command takes two arguments, for example:

catch command ?resultVar?

The first argument is a command body. The second argument is the name of a
variable that will contain the result of the command or an error message if the
command raises an error. The catch command returns a value of zero if no error
was caught or a value of one if the command catches an error. For example:

catch {expr 20 / 5} result

puts $result
==> syntax error in expression "text / 5"

Return

Use the return command to return a value before the end of the procedure body or
if a contrast value needs to be returned.

Namespaces

Jacl keeps track of named entities such as variables, in namespaces. The wsadmin
tool also adds entries to the global namespace for the scripting objects, such as, the
AdminApp object

When you run a proc command, a local namespace is created and initialized with
the names and the values of the parameters in the proc command. Variables are
held in the local namespace while you run the proc command. When you stop the
proc command, the local namespace is erased. The local namespace of the proc
command implements the semantics of the automatic variables in languages such
as C and Java.

While variables in the global namespace are visible to the top level code, they are
not visible by default from within a proc command. To make them visible, declare
the variables globally using the global command. For the variable names that you
provide, the global command creates entries in the local namespace that point to
the global namespace entries that actually define the variables.

If you use a scripting object provided by the wsadmin tool in a proc, you must
declare it globally before you can use it, for example:
proc { ... } {
global AdminConfig
... [$AdminConfig ...]
}

For more information about Jacl, see the [Scripting: Resources for Learning]article.

66 1BM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

Jython

Jython is an alternate implementation of Python, and is written entirely in Java.

The wsadmin tool uses Jython V2.1. The following information is a basic summary
of the Jython syntax:

Basic function

The function is either the name of a built-in function or a Jython function. For
example:

print "Hello, World!"
=> Hello, World!

import sys
sys.stdout.write("Hello World!\n")
=> Hello World!

In the example, print identifies the standard output stream. You can use the
built-in module by running import statements such as the previous example. The
statement import runs the code in a module as part of the importing and returns
the module object. sys is a built-in module of the Python language. In the Python
language, modules are name spaces which are places where names are created.
Names that reside in modules are called attributes. Modules correspond to files
and the Python language creates a module object to contain all the names defined
in the file. In other words, modules are name spaces.

Variable

To assign objects to names, the target of an assignment should be on the left side
of an equal sign (=) and the object that you are assigning on the right side. The
target on the left side can be a name or object component, and the object on the
right side can be an arbitrary expression that computes an object. The following
rules exist for assigning objects to names:

* Assignments create object references.
* Names are created when you assign them.

* You must assign a name before referencing it.

Variable name rules are similar to the rules for the C language, for example:

* An underscore character (_) or a letter plus any number of letters, digits or
underscores

The following reserved words can not be used for variable names:

and assert break class continue
def del elif else except
exec inally for from global
if importin is lambda

not or pass print raise
return try while

For example:

a =5
print a
=> 5

b= a
print b
=> 5

Chapter 6. Using scripting (wsadmin) 67

textl, text2, text3, textd = 'good', 'bad', 'pretty', 'ugly'
print text3
=> pretty

The second example assigns the value of variable a to variable b.
Types and operators

The following list contains a few of the built-in object types:
* Numbers. For example:

8, 3.133, 999L, 3+4j

numl = int(10)

print numl
=> 10

* Strings. For example:
|name|’ IlnameISII’ [
print str(12345)
=> '12345'

* Lists. For example:

x = [1, [2, 'free'], 5]
y=1[0,1,2, 3]
y.append(5)

print y

= [0, 1, 2, 3, 5]

y.reverse()
print y
=> [5, 3, 2, 1, 0]

y.sort()
print y
=> [03]-s 23 3: 5]

print 1ist("apple")

= ['a', 'p', 'pt, M1, e']
print Tist((1,2,3,4,5))

=> [1, 2, 3, 49 5]

test = "This is a test"
test.index("test")
=> 10

test.index('s"')
=> 3

The following list contains a few of the operators:
* xory
y is evaluated only if x is false. For example:

print 0 or 1
= 1

* xand y
y is evaluated only if x is true. For example:

print 0 and 1
= 0

* X+y,X-y

68 1BM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

Addition and concatenation, subtraction. For example:

print 6 + 7

=> 13

textl = 'Something'
text2 = ' else'

print textl + text?2
=> Something else

listl = [0, 1, 2, 3]
1ist2 = [4, 5, 6, 7]
print Tistl + list2
= [0, 1, 2, 3, 4, 5, 6, 7]

print 10 - 5
=> §h
* X*y,Xx/y X%y
Multiplication and repetition, division, remainder and format. For example:
print 5 * 6
=> 30

print 'test' * 3
=> test test test

print 30 / 6
=> 5§

print 32 % 6
= 2
o x[i], x[ijl, x(...)
Indexing, slicing, function calls. For example:

test = "This is a test"
print test[3]
=> g

print test[3:10]
=> s is a

print test[5:]
=> is a test

print x[:-4]
=> This is a print len(test)
=> 14

° <L, <=, >, >=, ==, <>, =, is is not
Comparison operators, identity tests. For example:
11=1[1, ("a', 3)]
12=1[1, (a', 2)]
11 <12, 11 ==12, 11 > 12, 11 <> 12, 11 =12, 11 is 12, 11 is not 12
=> (0, 0, 1, 1, 1, 0, 1)

Backslash substitution

If a statement needs to span multiple lines, you can also add a black slash (\) at
the end of the previous line to indicate you are continuing on the next line. For
example:

text = "This is a tests of a long lines" \
" continuing lines here."
print text

=> This is a tests of a Tong lines continuing lines here.

Chapter 6. Using scripting (wsadmin) 69

Functions and scope

Jython uses the def statement to define functions. Functions related statements
include:

e def, return

The def statement creates a function object and assigns it to a name. Thereturn
statement sends a result object back to the caller. This is optional, and if it is not
present, a function exits so that control flow falls off the end of the function
body.

* global

The global statement declares module-level variables that are to be assigned. By
default, all names assigned in a function are local to that function and exist only
while the function runs. To assign a name in the enclosing module, list functions
in a global statement.

The basic syntax to define a function is the following:

def name (argl, arg2, ... ArgN):
statements
return value

where name is the name of the function being defined. It is followed by an open
parenthesis, a close parenthesis and a colon. The arguments inside parenthesis
include a list of parameters to the procedures. The next line after the colon is the
body of the function. A group of commands that form the body of the function.
After you define a Jython function, it is used just like any of the built-in functions.
For example:
def intersect(seql, seq2):
try:
res = []
for x in seql:
if x in seq2:
res.append(x)
return res
except:

To call the function above, use the following command:

sl = "SPAM"
s2 = "SCAM"
intersect(sl, s2)
=> [S, A, M]

intersect([1,2,3], (1.4))
- [1]

Comments

Make comments in the Jython language with the pound character (#).

Command line arguments

The Jython shells pass the command line arguments to the script as the value of
the sys.argv. The name of the program, or script, is not part of sys.argv. sys.argv

is an array, so you use the index command to extract items from the argument list,
for example:

70 1BM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

import sys

first = sys.argv[0]
second = sys.argv[1]
arglen = len(sys.argv)

Basic statements

There are two looping statements: while and for. The conditional statement is if.
The error handling statement is try. Finally, there are some statements to fine-tune
control flow: break, continue and pass. The following is a list of syntax rules in
Python:

+ Statements run one after another until you say otherwise. Statements normally
end at the end of the line they appear on. When statements are too long to fit on
a single line you can also add a back sash (\) at the end of the prior line to
indicate you are continuing on the next line.

* Block and statement boundaries are detected automatically. There are no braces,
or begin or end delimiter, around blocks of code. Instead, the Python language
uses the indentation of statements under a header in order to group the
statements in a nested block. Block boundaries are detected by line indentation.
All statements indented the same distance to the right belong to the same block
of code until that block is ended by a line less indented.

¢ Compound statements = header; "/, indented statements. All compound
statements in the Python language follow the same pattern: a header line
terminated with a colon, followed by one or more nested statements indented
under the header. The indented statements are called a block.

¢ Spaces and comments are usually ignored. Spaces inside statements and
expressions are almost always ignored (except in string constants and
indentation), so are comments.

If

The if statement selects actions to perform. The if statement may contain other
statements, including other if statements. The if statement can be followed by one
or more optional elif statements and ends with an optional else block.

The general format of an if looks like the following:

if testl
statementsl
elif test2
statements2
else test3
statements3

For example:

weather = 'sunny'

if weather == 'sunny':

print "Nice weather"

elif weather == 'raining':

print "Bad weather"

else:

print "Uncertain, don't plan anything"

While
The while statement consists of a header line with a test expression, a body of one
or more indented statements, and an optional else statement that runs if control

exits the loop without running into a break statement. The while statement

Chapter 6. Using scripting (wsadmin) 71

repeatedly executes a block of indented statements as long as a test at the top
keeps evaluating a true value. The general format of an while looks like the
following:
while testl

statementsl

else
statements2

For example:

a=0; b=10
while a < b:
print a
a=a+t+1l

For

The for statement begins with a header line that specifies an assignment target or
targets, along with an object you want to step through. The header is followed by
a block of indented statements which you want to repeat.

The general format of a for statement looks like the following:

for target in object:
statements

else:

statements

It assigns items in the sequence object to the target, one by one, and runs the loop
body for each. The loop body typically uses the assignment target to refer to the
current item in the sequence as if it were a cursor stepping through the sequence.
For example:
sum = 0
for x in [1, 2, 3, 4]:

sum = sum + x

Break, continue, and pass

You can control loops with the break, continue and pass statements. The break
statement jumps out of the closest enclosing loop (past the entire loop statement).
The continue statements jumps to the top of the closest enclosing loop (to the
header line of the loop), and the pass statement is an empty statement placeholder.

Try

A statement will raise an error if it is called with the wrong number of arguments,
or if it detects some error condition particular to its implementation. An uncaught
error aborts execution of a script. The try statement is used to trap such errors.
Python try statements come in two flavors, one that handles exceptions and one
that executes finalization code whether exceptions occur or not. The try, except,
else statement starts with a try header line followed by a block of indented
statements, then one or more optional except clauses that name exceptions to be
caught, and an optional else clause at the end. The try, finally statements starts
with a try header line followed by a block of indented statements, then finally
clause that always runs on the way out whether an exception occurred while the
try block was running or not.

The general format of the try, except, else function looks like the following:

72 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

try:

statements

except name:
statements

except name, data:
Statements

else

statements

For example:

try:
myfunction()
except:
import sys
print 'uncaught exception', sys.exc_type, sys.exc_value

try:
myfilereader()
except EOFError:
break
else:
process next line here

The general format of a try and finally looks like the following:

try:
Statements

finally:
statements

For example:

def divide(x, y):
return x / y

def tester(y):
try:
print divide(8, y)
finally:
print 'on the way out...'

For more information about the Jython language, see the [Scripting: Resources for|

article.
Scripting objects

The wsadmin tool operates on configurations and running objects through the
following set of management objects: AdminConfig, AdminControl, AdminApp,
AdminTask, and Help. Each of these objects has commands that you can use to
perform administrative tasks. To use the scripting objects, specify the scripting
object, a command, and command parameters. For example:

Using Jacl:
$AdminConfig attributes ApplicationServer

Using Jython:
print AdminConfig.attributes('ApplicationServer')

where AdminConfig is the scripting object, attributes is the command, and
ApplicationServer is the command parameter.

Chapter 6. Using scripting (wsadmin) 73

To find out more specific information about each of the scripting objects, including
command and command parameter information, see|AdminConfig}|AdminApp),
[AdminControl} [AdminTask, or [Help}

WebSphere Application Server system management separates administrative
functions into two categories: functions that work with the configuration of
WebSphere Application Server installations, and functions that work with the
currently running objects in WebSphere Application Server installations.

Scripts work with both categories of objects. For example, an application server is
divided into two distinct entities. One entity represents the configuration of the
server that resides persistently in a repository on permanent storage. You can
create, query, change, or remove this configuration without starting an application
server process. The AdminConfig object, the AdminTask object, and the
AdminApp object handle configuration functionality. You can invoke configuration
functions with or without being connected to a server.

The second entity represents the running instance of an application server by a Java
Management Extensions (JMX) MBean. This instance can have attributes that you can
interrogate and change, and operations that you can invoke. These operational
actions taken against a running application server do not have an effect on the
persistent configuration of the server. The attributes that support manipulation
from an MBean differ from the attributes that the corresponding configuration
supports. The configuration can include many attributes that you cannot query or
set from the running object. The WebSphere Application Server scripting support
provides functions to locate configuration objects, and running objects. Objects in
the configuration do not always represent objects that are currently running. The
AdminControl object manages running objects.

You can use the Help object to obtain information about the AdminConfig,
AdminApp, AdminControl, and AdminTask objects, to obtain interface information
about running MBeans, and to obtain help for warnings and error messages.

Help object for scripted administration
The Help object provides general help, online information about running MBeans,
and help on messages.

Use the Help object to obtain general help for the other objects supplied by the
wsadmin tool for scripting: the AdminApp, AdminConfig, AdminTask, and
AdminControl objects. For example, using Jacl, $Help AdminApp or using Jython,
Help.Adminapp(), provides information about the AdminApp object and the
available commands.

The Help object also to provides interface information about MBeans running in
the system. The commands that you use to get online information about the
running MBeans include: all, attributes, classname, constructors, description,
notification, operations.

You can also use the Help object to obtain information about messages using the
message command. The message command provides aid to understand the cause
of a warning or error message and find a solution for the problem. For example,
you receive a WASX7115E error when running the AdminApp install command to
install an application, use the following example:

Using Jacl:
$Help message WASX7115E

74 1BM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

Using Jython:
print Help.message('WASX7115E")

Example output:

Explanation: wsadmin failed to read an ear file when

preparing to copy it to a temporary Tocation for AdminApp

processing. User action: Examine the wsadmin.traceout

log file to determine the problem; there may be file permission problems.

The user action specifies the recommended action to correct the problem. It is
important to understand that in some cases the user action may not be able to
provide corrective actions to cover all the possible causes of an error. It is an aid to
provide you with information to troubleshoot a problem.

To see a list of all available commands for the Help object, see the

he Help object|article or you can also use the Help command, for example:

Using Jacl:
$Help help

Using Jython:
print Help.help()

AdminApp object for scripted administration

Use the AdminApp object to manage applications. This object communicates with
the run time application management object in WebSphere Application Server to
make application inquires and changes, for example:

¢ Installing and uninstalling applications
* Listing applications
* Editing applications or modules

Because applications are part of configuration data, any changes that you make to
an application are kept in the configuration session, similar to other configuration
data. Be sure to save your application changes so that the data transfers from the

configuration session to the master repository.

With the application already installed, the AdminApp object can update
application metadata, map virtual hosts to Web modules, and map servers to
modules. You must perform any other changes, such as specifying a library for the
application to use or setting session management configuration properties, using
the AdminConfig object.

You can run the commands for the AdminApp object in local mode. If a server is
running, it is not recommended that you run the scripting client in local mode
because any configuration changes that are made in local mode will not be
reflected in the running server configuration and vice versa. If you save a
conflicting configuration, you could corrupt the configuration. In a deployment
manager environment, configuration updates are available only if a scripting client
is connected to a deployment manager. When connected to a node agent or a
managed application server, you will not be able to update the configuration
because the configuration for these server processes are copies of the master
configuration which resides in the deployment manager. The copies are created on
a node machine when a configuration synchronization occurs between the
deployment manager and the node agent. Make configuration changes to the
server processes by connecting a scripting client to a deployment manager. For this

Chapter 6. Using scripting (wsadmin) 75

reason, to change a configuration, do not run a scripting client in local mode on a
node machine. It is not a supported configuration.

To see a list of all available commands for the AdminApp object, see the
[Commands for the AdminApp object article or you can also use the Help
command, for example:

Using Jacl:
$AdminApp help

Using Jython:
print AdminApp.help()

Listing applications with the wsadmin tool:

Before starting this task, the wsadmin tool must be running. See the [“Starting the

fwsadmin scripting client” on page 123| article for more information.

Query the configuration and create a list of installed applications, for example:
* Using Jacl:

$AdminApp list
* Using Jython:

AdminApp.Tist()

where:

$ is a Jacl operator for substituting a variable
name with its value

AdminApp is an object that supports application object
management

Tist is an AdminApp command

Example output:

DefaultApplication
SampTeApp
applserv2

Editing application configurations with the wsadmin tool:

Before starting this task, the wsadmin tool must be running. See the [“Starting the
wsadmin scripting client” on page 123|article for more information.

1. Edit the entire application or a single application module. Use one of the
following commands:

* The following command uses the installed application and the command
option information to edit the application:

- Using Jacl:
$AdminApp edit appname {options}

— Using Jython list:
AdminApp.edit('appname', ['options'])

— Using Jython string:
AdminApp.edit('appname', '[options]')

76 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

where:

$ is a Jacl operator for substituting a variable
name with its value

AdminApp is an object that supports application object
management

edit is an AdminApp command

appname is the name of application or application

module to edit. For the application module
name, use the module name returned from
listModules command as the value.

{options} is a list of edit options and tasks similar to
the ones for the install command

¢ The following command changes the application information by prompting
you through a series of editing tasks:

— Using Jacl:
$AdminApp editInteractive appname
— Using Jython:
AdminApp.editInteractive('appname")
where:
$ is a Jacl operator for substituting a variable
name with its value
AdminApp is an object that supports application object
management
editInteractive is an AdminApp command
appname is the name of application or application
module to edit. For the application module
name, use the module name returned from
listModules command as the value.

2. Save the configuration changes. See the|“Saving configuration changes with thel
[wsadmin tool” on page 102 article for more information.

3. In a network deployment environment only, synchronize the node. See the
[“Synchronizing nodes with the wsadmin tool” on page 86| article for more
information.

AdminControl object for scripted administration

The AdminControl scripting object is used for operational control. It communicates
with MBeans that represent live objects running a WebSphere server process. It
includes commands to query existing running objects and their attributes and
invoke operation on the running objects. In addition to the operational commands,
the AdminControl object supports commands to query information on the
connected server, convenient commands for client tracing, reconnecting to a server,
and start and stop server for network deployment environment.

Many of the operational commands have two sets of signatures so that they can
either invoke using string based parameters or using Java Management Extension
(JMX) objects as parameters. Depending on the server process to which a scripting
client is connected, the number and type of MBeans available varies. If a scripting
client is connected to a deployment manager, then all MBeans in all server
processes are visible. If a scripting client is connected to a node agent, all MBeans

Chapter 6. Using scripting (wsadmin) 77

in all server processes on that node are accessible. When connected to an
application server, only MBeans running in that application server are visible.

The following steps provide a general method to manage the cycle of an
application:

* Install the application.

* Edit the application.

* Update the application.

* Uninstall the application.

To see a list of all available commands for the AdminControl object, see the
ICommands for the AdminControl object| article or you can also use the Help
command, for example:

Using Jacl:
$AdminControl help

Using Jython:
print AdminControl.help()

ObjectName, Attribute, and AttributeList classes:

WebSphere Application Server scripting commands use the underlying Java
Management Extensions (JMX) classes, ObjectName, Attribute, and AttributeList, to
manipulate object names, attributes and attribute lists respectively.

The WebSphere Application Server ObjectName class uniquely identifies running
objects. The ObjectName class consists of the following elements:
* The domain name WebSphere.
» Several key properties, for example:
— type - Indicates the type of object that is accessible through the MBean, for
example, ApplicationServer, and EJBContainer.
— name - Represents the display name of the particular object, for example,
MyServer.
— node - Represents the name of the node on which the object runs.
— process - Represents the name of the server process in which the object runs.
— mbeanldentifier - Correlates the MBean instance with corresponding
configuration data.

When ObjectName classes are represented by strings, they have the following
pattern:

[domainName] : property=value[,property=value] *

For example, you can specify WebSphere:name="My
Server”,type=ApplicationServer,node=nl,* to specify an application server named
My Server on node nl. (The asterisk (*) is a wildcard character, used so that you do
not have to specify the entire set of key properties.) The AdminControl commands
that take strings as parameters expect strings that look like this example when
specifying running objects (MBeans). You can obtain the object name for a running
object with the getObjectName command.

Attributes of these objects consist of a name and a value. You can extract the name

and value with the getName and the getValue methods that are available in the
javax.management.Attribute class. You can also extract a list of attributes.

78 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

Example: Collecting arguments for the AdminControl object: Verify that the
arguments parameter is a single string. Each individual argument in the string can
contain spaces. Collect each argument that contains spaces in some way.

* An example of how to obtain an MBean follows:

Using Jacl:

set am [$AdminControl queryNames type=ApplicationManager,process=serverl,=]
Using Jython:

am = AdminControl.queryNames('type=ApplicationManager,process=serverl,x"')

* Multiple ways exist to collect arguments that contain spaces. Choose one of the
following alternatives:

Using Jacl:

— $AdminControl invoke $am startApplication {"JavaMail Sample”}

— $AdminControl invoke $am startApplication {{JavaMail Sample}}

— $AdminControl invoke $am startApplication ”"\"JavaMail Sample\””

Using Jython:
— AdminControl.invoke(am, ’startApplication’, ’[JavaMail Sample]’)
— AdminControl.invoke(am, ’startApplication’, ’\"JavaMail Sample\”’)

Example: Identifying running objects: In the WebSphere Application Server,
MBeans represent running objects. You can interrogate the MBean server to see the
objects it contains. Use the AdminControl object to interact with running MBeans.
* Use the queryNames command to see running MBean objects. For example:

Using Jacl:

$AdminControl queryNames =

Using Jython:

print AdminControl.queryNames('*")

This command returns a list of all MBean types. Depending on the server to
which your scripting client attaches, this list can contain MBeans that run on
different servers:

— If the client attaches to a stand-alone WebSphere Application Server, the list
contains MBeans that run on that server.

— If the client attaches to a node agent, the list contains MBeans that run in the
node agent and MBeans that run on all application servers on that node.

— If the client attaches to a deployment manager, the list contains MBeans that
run in the deployment manager, all of the node agents communicating with
that deployment manager, and all application servers on the nodes served by
those node agents.

* The list that the queryNames command returns is a string representation of JMX

ObjectName objects. For example:

WebSphere:cel1=MyCell,name=TraceService,mbeanIdentifier=TraceService,
type=TraceService,node=MyNode,process=serverl

This example represents a TraceServer object that runs in serverl on MyNode.

* The single queryNames argument represents the ObjectName object for which
you are searching. The asterisk ("*") in the example means return all objects, but
it is possible to be more specific. As shown in the example, ObjectName has two
parts: a domain, and a list of key properties. For MBeans created by the
WebSphere Application Server, the domain is WebSphere. If you do not specify a
domain when you invoke queryNames, the scripting client assumes the domain
is WebSphere. This means that the first example query above is equivalent to:

Using Jacl:
$AdminControl queryNames WebSphere:x

Chapter 6. Using scripting (wsadmin) 79

Using Jython:

AdminControl.queryNames ('WebSphere:*")

* WebSphere Application Server includes the following key properties for the
ObjectName object:
— name

- type

— cell

— node

— process

— mbeanldentifier

These key properties are common. There are other key properties that exist. You
can use any of these key properties to narrow the scope of the queryNames
command. For example:

Using Jacl:
$AdminControl queryNames WebSphere:type=Server,node=myNode,*
Using Jython:

AdminControl.queryNames ('WebSphere:type=Server,node=myNode,*")

This example returns a list of all MBeans that represent server objects running
the node myNode. The, * at the end of the ObjectName object is a J]MX wildcard
designation. For example, if you enter the following:

Using Jacl:

$AdminControl queryNames WebSphere:type=Server,node=myNode

Using Jython:

print AdminControl.queryNames ('WebSphere:type=Server,node=myNode")

you get an empty list back because the argument to queryNames is not a
wildcard. There is no Server MBean running that has exactly these key
properties and no others.

 If you want to see all the MBeans representing applications running on a
particular node, invoke the following example:

Using Jacl:

$AdminControl queryNames WebSphere:type=Application,node=myNode,*

Using Jython:

print AdminControl.queryNames ('WebSphere:type=Application,node=myNode,*")

Specifying running objects using the wsadmin tool:

Before starting this task, the wsadmin tool must be running. See the [“Starting the
wsadmin scripting client” on page 123 article for more information.

Perform the following steps to specify running objects:

1. Obtain the configuration ID with one of the following ways:
* Obtain the object name with the completeObjectName command, for

example:
- Using Jacl:
set var [$AdminControl completeObjectName template]
— Using Jython:
var = AdminControl.completeObjectName(template)
where:
set is a Jacl command

80 1BM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

var

is a variable name

is a Jacl operator for substituting a variable
name with its value

AdminControl

is an object that enables the manipulation of
MBeans running in a WebSphere server
process

completeObjectName

is an AdminControl command

template

is a string containing a segment of the object
name to be matched. The template has the
same format as an object name with the
following pattern:

[domainName] :property=value[,property=val
See[Object name, Attribute, Attribute list| for
more information.

If there are several MBeans that match the template, the
completeObjectName command only retuns the first match. The matching
MBean object name is then assigned to a variable.

To look for serverl MBean in mynode, use the following example:

— Using Jacl:

ue] *.

set serverl [$AdminControl completeObjectName node=mynode,type=Server,name=serverl,=]

— Using Jython:

serverl = AdminControl.completeObjectName ('node=mynode,type=Server,name=serverl,x"')
* Obtain the object name with the queryNames command, for example:

— Using Jacl:
set var [$AdminControl queryNames template]
- Using Jython:
var = AdminControl.queryNames (template)
where:
set is a Jacl command
var is a variable name
$ is a Jacl operator for substituting a variable
name with its value
AdminControl is an object that enables the manipulation of
MBeans running in a WebSphere Application
server process.
queryNames is an AdminControl command
template is a string containing a segment of the object

name to be matched. The template has the
same format as an object name with the
following pattern:

[domainName] : property=value[,property=val

el *

2. If there are more than one running objects returned from the queryNames
command, the objects are returned in a list syntax. One simple way to retrieve
a single element from the list is to use the lindex command in Jacl and split
command in Jython. The following example retrieves the first running object

from the server list:
* Using Jacl:

set allServers [$AdminControl queryNames type=Server,x]

set aServer [Tindex $allServers 0]

Chapter 6. Using scripting (wsadmin) 81

82

* Using Jython:

allServers = AdminControl.queryNames('type=Server,x"')

get Tine separator
import java

TineSeparator = java.lang.System.getProperty('line.separator')

aServer = allServers.split(lineSeparator)[0]
For other ways to manipulate the list and then perform pattern matching to
look for a specified configuration object, refer to the

You can now use the running object in with other AdminControl commands that

require an object name as a parameter.

Identifying attributes and operations for running objects with the wsadmin

tool:

Before starting this task, the wsadmin tool must be running. See the [“Starting the

fwsadmin scripting client” on page 123|article for more information.

Use the attributes or operations commands of the Help object to find information

on a running MBean in the server.

1. [Specify a running object.|

2. Use the attributes command to display the attributes of the running object:

* Using Jacl:

$Help attributes MBeanObjectName
* Using Jython:

Help.attributes (MBeanObjectName)

where:
$ is a Jacl operator for substituting a variable
name with its value
Help is the object that provides general help and

information for running MBeans in the
connected server process

attributes

is a Help command

MBeanObjectName

is the string representation of the MBean
object name that is obtained in step 2

3. Use the operations command to find out the operations that are supported by

the MBean:

* Using Jacl:
$Help operations MBeanObjectname
or

$Help operations MBeanObjectname operationName

* Using Jython:
Help.operations (MBeanObjectname)
or

Help.operations(MBeanObjectname, operationName)

IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

where:

$ is a Jacl operator for substituting a variable
name with its value
Help is the object that provides general help and

information for running MBeans in the
connected server process

operations

is a Help command

MBeanObjectname is the string representation of the MBean
object name that is obtained in step number
2

operationName (optional) is the specified operation from

which you want to obtain detailed
information

If you do not provide the operationName value, all the operations that are
supported by the MBean return with the signature for each operation. If you
specify the operationName value, only the operation that you specify returns
and it contains details which include the input parameters and the return
value. To display the operations for the server MBean, use the following

example:

* Using Jacl:

set server [$AdminControl completeObjectName type=Server,name=serverl,x]

$Help operations $server
* Using Jython:

server = AdminControl.completeObjectName('type=Server,name=serverl,*")

print Help.operations(server)

To display detailed information about the stop operation, use the following

example:

+ Using Jacl:
$Help operations $server stop
* Using Jython:

print Help.operations(server, 'stop')

Performing operations on running objects using the wsadmin tool:

Before starting this task, the wsadmin tool must be running. See the [“Starting the|

fwsadmin scripting client” on page 123|article for more information.

Perform the following steps to perform operations on running objects:

1. Obtain the object name of the running object. For example:

* Using Jacl:

$AdminControl completeObjectName name

* Using Jython:

AdminControl.completeObjectName (name)

where:
$ is a Jacl operator for substituting a variable
name with its value
AdminControl is an object that enables the manipulation of

MBeans running in a WebSphere Application
Server process

Chapter 6. Using scripting (wsadmin) 83

completeObjectName

is an AdminControl command

name

is a fragment of the object name. It is used
to find the matching object name. For
example: type=Server,name=servl,*. It can
be any valid combination of domain and key
properties. For example, type, name, cell,
node, process, etc.

2. Set the sl variable to the running object, for example:

* Using Jacl:

set s1 [$AdminControl completeObjectName type=Server,name=serverl,x*]

* Using Jython:

sl = AdminControl.completeObjectName('type=Server,name=serverl,*")

where:

set

is a Jacl command

sl

is a variable name

$

is a Jacl operator for substituting a variable
name with its value

AdminControl

is an object that enables the manipulation of
MBeans running in a WebSphere Application
Server process

completeObjectName

is an AdminControl command

type

is the object name property key

Server

is the name of the object

name

is the object name property key

serverl

is the name of the server where the
operation is invoked

3. Invoke the operation. For example:

* Using Jacl:

$AdminControl invoke $s1 stop

* Using Jython:

AdminControl.invoke(sl, 'stop')

where:

is a Jacl operator for substituting a variable
name with its value

AdminControl

is an object that enables the manipulation of
MBeans running in a WebSphere Application
Server process

invoke

is an AdminControl command

sl

is the ID of the server that is specified in
step number 3

stop

is an operation to invoke on the server

The following example is for operations that require parameters:

* Using Jacl:

84 1BM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

set traceServ [$AdminControl completeObjectName type=TraceService,process=serverl,*]
$AdminControl invoke $traceServ appendTraceString "com.ibm.ws.management.*=all=enabled"

* Using Jython:

traceServ = AdminControl.completeObjectName('type=TraceService,process=serverl,')
AdminControl.invoke(traceServ, 'appendTraceString', "com.ibm.ws.management.*=all=enabled")

Modifying attributes on running objects with the wsadmin tool:

Before starting this task, the wsadmin tool must be running. See the [“Starting the|

fwsadmin scripting client” on page 123|article for more information.

Perform the following steps to modify attributes on running objects:
1. Obtain the name of the running object, for example:
¢ Using Jacl:
$AdminControl completeObjectName name
* Using Jython:

AdminControl.completeObjectName (name)

where:

$ is a Jacl operator for substituting a variable
name with its value

AdminControl is an object that enables the manipulation of
MBeans that run in a WebSphere
Application Server process

completeObjectName is an AdminControl command

name is a fragment of the object name that is used
to find the matching object name. For
example: type=TraceService,node=mynode, *.
This value can be any valid combination of
domain and key properties, for example,
type, name, cell, node, process, and so on.

2. Set the tsl variable to the running object, for example:
* Using Jacl:
set tsl [$AdminControl completeObjectName name]
* Using Jython:
tsl = AdminControl.completeObjectName (name)

where:

set is a Jacl command

tsl is a variable name

$ is a Jacl operator for substituting a variable
name with its value

AdminControl is an object that enables the manipulation of
MBeans running in a WebSphere Application
Server process

completeObjectName is an AdminControl command

Chapter 6. Using scripting (wsadmin) 85

name is a fragment of the object name. It is used
to find the matching object name. For
example: type=TraceService,node=mynode, *.
It can be any valid combination of domain
and key properties, for example, type, name,
cell, node, process, and so on.

3. Modify the running object, for example:
* Using Jacl:
$AdminControl setAttribute $tsl ringBufferSize 10
* Using Jython:
AdminControl.setAttribute(tsl, 'ringBufferSize', 10)

where:

$ is a Jacl operator for substituting a variable
name with its value

AdminControl is an object that enables the manipulation of
MBeans running in a WebSphere Application
Server process

setAttribute is an AdminControl command

tsl evaluates to the ID of the server specified in
step number 3

ringBufferSize is an attribute of modify objects

10 is the value of the ringBufferSize attribute

You can also modify multiple attribute name and value pairs, for example:
* Using Jacl:

set tsl [$AdminControl completeObjectName type=TraceService,process=serverl,x]
$AdminControl setAttributes $tsl {{ringBufferSize 10} {traceSpecification
com. ibm.*=all=disabled}}

* Using Jython list:

tsl = AdminControl.completeObjectName('type=TraceService,process=serverl,*")
AdminControl.setAttributes(tsl, [['ringBufferSize', 10], ['traceSpecification',
"com.ibm.*=all=disabled']])

* Using Jython string:

tsl =AdminControl.completeObjectName('type=TraceService,process=serverl,*")
AdminControl.setAttributes(tsl, '[[ringBufferSize 10] [traceSpecification
com.ibm.*=all=disabled]]")

The new attribute values are returned to the command line.
Synchronizing nodes with the wsadmin tool:

This article applies to network deployment installations only. A node
synchronization is necessary in order to propagate configuration changes to the
affected node or nodes. By default, this situation occurs periodically, as long as the
node can communicate with the deployment manager. You can propagate changes
explicitly by performing the following steps:

1. Set the variable for node synchronization.
* Using Jacl:
set Syncl [$AdminControl completeObjectName type=NodeSync,node=myNodeName ,*]
* Using Jython:
Syncl = AdminControl.completeObjectName('type=NodeSync,node=myNodeName ,*")

86 1BM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

where:

set is a Jacl command

Syncl is a variable name

$ is a Jacl operator for substituting a variable
name with its value

AdminControl is an object that enables the manipulation of
MBeans running in a WebSphere Application
Server process

completeObjectName is an AdminControl command

type=NodeSync,node=myNodeName

is a fragment of the object name. The
complete name is returned by this
command. This fragment is used to find the
matching object name which is the
SyncNode object for the myNodeName node,
where myNodeName is the name of the node
that you use to synchronize configuration
changes. For example: type=Server,
name=servl. It can be any valid combination
of domain and key properties. For example,
type, name, cell, node, process, and so on.

Example output:

WebSphere:platform=common,cell=myNetwork,version=5.0,name=node
Sync,mbeanIdentifier=nodeSync,type=NodeSync,node=myBaseNode,

process=nodeagent

2. Synchronize the node by issuing the following command:

* Using Jacl:
$AdminControl invoke $Syncl sync
* Using Jython:
AdminControl.invoke(Syncl, 'sync')

where:

$ is a Jacl operator for substituting a variable
name with its value

AdminControl is an object that enables the manipulation of
MBeans that run in a WebSphere
Application Server process

invoke is an AdminControl command

Syncl evaluates the ID of the server that is
specified in step number 1

sync is an attribute of modify command

Example output:
true

You receive an output value of true, if the synchronization completes.

When the synchronization is complete, the files created in the
/WebSphere/DeploymentManager/config directory now exists on the mynode node in
the /WebSphere/AppServer/config directory.

Chapter 6. Using scripting (wsadmin) 87

AdminConfig object for scripted administration

Use the AdminConfig object to manage the configuration information that is stored
in the repository. This object communicates with the WebSphere Application Server
configuration service component to make configuration inquires and changes. You
can use it to query existing configuration objects, create configuration objects,
modify existing objects, remove configuration objects, and obtain help.

Updates to the configuration through a scripting client are kept in a private
temporary area called a workspace and are not copied to the master configuration
repository until you run a save command. The workspace is a temporary
repository of configuration information that administrative clients including the
administrative console use. The workspace is kept in the wstemp subdirectory of
your WebSphere Application Server installation. The use of the workspace allows
multiple clients to access the master configuration. If the same update is made by
more than one client, it is possible that updates made by a scripting client will not
save because there is a conflict. If this occurs, the updates will not be saved in the
configuration unless you change the default save policy with the setSaveMode
command.

The AdminConfig commands are available in both connected and local modes. If a
server is currently running, it is not recommended that you run the scripting client
in local mode because the configuration changes made in the local mode is not
reflected in the running server configuration and vice versa. In connnected mode,
the availability of the AdminConfig commands depend on the type of server to
which a scripting client is connected in a Network Deployment installation.

The AdminConfig commands are available only if a scripting client is connected to
a deployment manager. When connected to a node agent or an application server,
the AdminConfig commands will not be available because the configuration for
these server processes are copies of the master configuration that resides in the
deployment manager. The copies are created in a node machine when
configuration synchronization occurs between the deployment manager and the
node agent. You should make configuration changes to the server processes by
connecting a scripting client to a deployment manager. For this reason, to change a
configuration, do not run a scripting client in local mode on a node machine. It is
not a supported configuration.

The following steps provide a general method to update a configuration object:
* Identify the configuration type and the corresponding attributes.

* Query an existing configuration object to obtain a configuration ID to use.

* Modify the existing configuration object or create a one.

* Save the configuration.

To see a list of all available commands for the AdminConfig object, see the
Commands for the AdminConfig object|article or you can also use the Help
command, for example:

Using Jacl:
$AdminConfig help

Using Jython:
print AdminConfig.help()

Creating configuration objects using the wsadmin tool:

88 1BM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

Before starting this task, the wsadmin tool must be running. See the [“Starting the|

fwsadmin scripting client” on page 123|article for more information.

Perform this task if you want to create an object. To create new objects from the
default template, use the create command. Alternatively, you can create objects
using an existing object as a template with the createUsingTemplate command.

1. Use the AdminConfig object listTemplates command to list available templates:
 Using Jacl:
$AdminConfig 1istTemplates JDBCProvider
* Using Jython:
AdminConfig.listTemplates('JDBCProvider')

where:
$ is a Jacl operator for substituting a variable
name with its value
AdminConfig is an object that represents the WebSphere
Application Server configuration
TistTemplates is an AdminConfig command
JDBCProvider is an object type

2. Assign the ID string that identifies the existing object to which the new object
is added. You can add the new object under any valid object type. The
following example uses a node as the valid object type:

* Using Jacl:

set nl [$AdminConfig getid /Node:mynode/]
* Using Jython:

nl = AdminConfig.getid('/Node:mynode/")

where:

set is a Jacl command

$ is a Jacl operator for substituting a variable
name with its value

nl is a variable name

AdminConfig is an object that represents the WebSphere
Application Server configuration

getid is an AdminConfig command

Node is an object type

mynode is the host name of the node where the new
object is added

3. Specify the template that you want to use:
+ Using Jacl:
set t1 [$AdminConfig listTemplates JDBCProvider "DB2 Universal JDBC Driver Provider (XA)"]
* Using Jython:
tl = AdminConfig.listTemplates('JDBCProvider', 'DB2 Universal JDBC Driver Provider (XA)')

where:

set is a Jacl command |

Chapter 6. Using scripting (wsadmin) 89

$ is a Jacl operator for substituting a variable
name with its value

t1 is a variable name

AdminConfig is an object that represents the WebSphere
Application Server configuration

TistTemplates is an AdminConfig command

JDBCProvider is an object type

DB2 JDBC Provider (XA) is the name of the template to use for the
new object

If you supply a string after the name of a type, you get back a list of templates
with display names that contain the string you supplied. In this example, the
AdminConfig listTemplates command returns the JDBCProvider template
whose name matches DB2 [DBC Provider (XA). This example assumes that the
variable that you specify here only holds one template configuration ID. If the
environment contains multiple templates with the same string, for example,
DB2 JDBC Provider (XA), the variable will hold the configuration IDs of all of
the templates. Be sure to identify the specific template that you want to use
before you perform the next step, creating an object using a template.

4. Create the object with the following command:
¢ Using Jacl:
$AdminConfig createUsingTemplate JDBCProvider $nl {{name newdriver}} $tl
* Using Jython:
AdminConfig.createUsingTemplate('JDBCProvider', nl, [['name', 'newdriver']], tl1)

where:

$ is a Jacl operator for substituting a variable
name with its value

AdminConfig is an object that represents the WebSphere
Application Server configuration

createUsingTemplate is an AdminConfig command

JDBCProvider is an object type

nl evaluates the ID of the host node that is
specified in step number 3

name is an attribute of JDBCProvider objects

newdriver is the value of the name attribute

tl evaluates the ID of the template that is
specified in step number 4

All create commands use a template unless there are no templates to use. If a
default template exists, the command creates the object.

5. Save the configuration changes. See the [“Saving configuration changes with the|
[wsadmin tool” on page 102 article for more information.

6. In a network deployment environment only, synchronize the node. See the
[“Synchronizing nodes with the wsadmin tool” on page 86| article for more
information.

Interpreting the output of the AdminConfig attributes command using
scripting:

90 1BM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

Before starting this task, the wsadmin tool must be running. See the [“Starting the|

fwsadmin scripting client” on page 123|article for more information.

The attributes command is a wsadmin tool on-line help feature. When you issue
the attributes command, the information that displays does not represent a
particular configuration object. It represents information about configuration object
types, or object metadata. This article discusses how to interpret the attribute type
display.
* Simple attributes
Using Jacl:
$AdminConfig attributes ExampleTypel
"attrl String"
Types do not display as fully qualified names. For example, String is used for
java.lang.String. There are no ambiguous type names in the model. For
example, x.y.ztype and a.b.ztype. Using only the final portion of the name is
possible, and it makes the output easier to read.

* Multiple attributes
Using Jacl:

$AdminConfig attributes ExampleType?2
"attrl String" "attr2 Boolean" "attr3 Integer"

All input and output for the scripting client takes place with strings, but attr2
Boolean indicates that true or false are appropriate values. The attr3 Integer
indicates that string representations of integers ("42") are needed. Some
attributes have string values that can take only one of a small number of
predefined values. The wsadmin tool distinguishes these values in the output by
the special type name ENUM, for example:

Using Jacl:

$AdminConfig attributes ExampleType3
"attr4 ENUM(ALL, SOME, NONE)"

where: attr4 is an ENUM type. When you query or set the attribute, one of the
values is ALL, SOME, or NONE. The value A_FEW results in an error.

* Nested attributes
Using Jacl:

$AdminConfig attributes ExampleType4
"attr5 String" "ex5 ExampleType5"

The ExampleType4 object has two attributes: a string, and an ExampleType5 object.
If you do not know what is contained in the ExampleType5 object, you can use
another attributes command to find out. The attributes command displays only
the attributes that the type contains directly. It does not recursively display the
attributes of nested types.

* Attributes that represent lists
The values of these attributes are object lists of different types. The * character
distinguishes these attributes, for example:
Using Jacl:

$AdminConfig attributes ExampleTypebh
"ex6 ExampleType6*"

In this example, objects of the ExampleType5 type contain a single attribute, ex6.
The value of this attribute is a list of ExampleTypeb6 type objects.

e Reference attributes

Chapter 6. Using scripting (wsadmin) 91

An attribute value that references another object. You cannot change these
references using modify commands, but these references display because they
are part of the complete representation of the type. Distinguish reference
attributes using the @ sign, for example:

Using Jacl:

$AdminConfig attributes ExampleType6

"attr7 Boolean" "ex7 ExampleType7@"

ExampleType6 objects contain references to ExampleType7 type objects.
* Generic attributes

These attributes have generic types. The values of these attributes are not
necessarily this generic type. These attributes can take values of several different
specific types. When you use the AdminConfig attributes command to display
the attributes of this object, the various possibilities for specific types are shown
in parentheses, for example:

Using Jacl:

$AdminConfig attributes ExampleType8

"name String" "beast AnimalType(HorseType, FishType, ButterflyType)"

In this example, the beast attribute represents an object of the generic
AnimalType. This generic type is associated with three specific subtypes. The
wsadmin tool gives these subtypes in parentheses after the name of the base
type. In any particular instance of ExampleType8, the beast attribute can have a
value of HorseType, FishType, or ButterflyType. When you specify an attribute
in this way, using a modify or create command, specify the type of AnimalType.
If you do not specify the AnimalType, a generic AnimalType object is assumed
(specifying the generic type is possible and legitimate). This is done by
specifying beast:HorseType instead of beast.

Specifying configuration objects using the wsadmin tool:

Before starting this task, the wsadmin tool must be running. See the [“Starting the
fwsadmin scripting client” on page 123|article for more information.

To manage an existing configuration object, identify the configuration object and
obtain a configuration ID of the object to use for subsequent manipulation.

1. Obtain the configuration ID in one of the following ways:
* Obtain the ID of the configuration object with the getid command, for

example:
— Using Jacl:
set var [$AdminConfig getid /type:name/]
— Using Jython:
var = AdminConfig.getid('/type:name/")
where:
set is a Jacl command
var is a variable name
$ is a Jacl operator for substituting a variable
name with its value
AdminConfig is an object representing the WebSphere
Application Server configuration
getid is an AdminConfig command
/type:name/ is the hierarchical containment path of the
configuration object

92 1BM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

type

is the object type. The name of the object
type that you input here is the one that is
based on the XML configuration files and
does not have to be the same name that is
displayed in the administrative console.

name

is the optional name of the object

You can specify multiple /type:name/ value pairs in the string, for example,
/type:name/type:name/type:name/. If you specify the type in the containment
path without the name, include the colon, for example, /type:/. The
containment path must be a path that contains the correct hierarchical order.
For example, if you specify /Server:serverl/Node:node/ as the containment
path, you do not receive a valid configuration ID because Node is a parent of
Server and comes before Server in the hierarchy.

This command returns all the configuration IDs that match the representation
of the containment and assigns them to a variable.

To look for all the server configuration IDs that reside in the mynode node,
use the code in the following example:
— Using Jacl:
set nodeServers [$AdminConfig getid /Node:mynode/Server:/]
— Using Jython:
nodeServers = AdminConfig.getid('/Node:mynode/Server:/")

To look for the serverl configuration ID that resides in mynode, use the code
in the following example:
— Using Jacl:
set serverl [$§AdminConfig getid /Node:mynode/Server:serverl/]
— Using Jython:
serverl = AdminConfig.getid('/Node:mynode/Server:serverl/")

To look for all the server configuration IDs, use the code in the following
example:
— Using Jacl:
set servers [$§AdminConfig getid /Server:/]
— Using Jython:

servers = AdminConfig.getid('/Server:/")
Obtain the ID of the configuration object with the list command, for
example:
— Using Jacl:

set var [$AdminConfig list type]

or

set var [$AdminConfig list type scopeld]
— Using Jython:

var = AdminConfig.list('type')
or
var = AdminConfig.list('type', 'scopeld')

where:
set is a Jacl command
var is a variable name
$ is a Jacl operator for substituting a variable

name with its value

Chapter 6. Using scripting (wsadmin) 93

AdminConfig is an object that represents the WebSphere
Application Server configuration

list is an AdminConfig command

type is the object type. The name of the object
type that you input here is the one that is
based on the XML configuration files and
does not have to be the same name that is
displayed in the administrative console.

scopeld is the configuration ID of a cell, a node, or a
server object

This command returns a list of configuration object IDs of a given type. If
you specify the scopeld value, the list of objects is returned within the
specified scope. The returned list is assigned to a variable.

To look for all the server configuration IDs, use the following example:
— Using Jacl:

set servers [$§AdminConfig Tist Server]
— Using Jython:

servers = AdminConfig.list('Server')

To look for all the server configuration IDs in the mynode node, use the code
in the following example:
— Using Jacl:

set scopeid [$AdminConfig getid /Node:mynode/]
set nodeServers [$AdminConfig 1list Server $scopeid]

— Using Jython:

scopeid = AdminConfig.getid('/Node:mynode/")
nodeServers = AdminConfig.list('Server', scopeid)

2. If more than one configuration ID is returned from the getid or the list
command, the IDs are returned in a list syntax. One way to retrieve a single
element from the list is to use the lindex command. The following example
retrieves the first configuration ID from the server object list:

* Using Jacl:

set allServers [$AdminConfig getid /Server:/]
set aServer [lindex $allServers 0]

* Using Jython:
allServers = AdminConfig.getid('/Server:/")
get line separator
import java
lineSeparator = java.lang.System.getProperty('Tine.separator')

arrayAllServers = allServers.split(lineSeparator)
aServer = arrayAllServers[0]

For other ways to manipulate the list and perform pattern matching to look for
a specified configuration object, refer to the
You can now use the configuration ID in any subsequent AdminConfig commands
that require a configuration ID as a parameter.

Listing attributes of configuration objects using the wsadmin tool:

Before starting this task, the wsadmin tool must be running. See the [“Starting the

fwsadmin scripting client” on page 123|article for more information.

Perform the following steps to create a list of attributes of configuration objects:

94 1BM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

1. List the attributes of a given configuration object type, using the attributes
command, for example:

¢ Using Jacl:
$AdminConfig attributes type
* Using Jython:
AdminConfig.attributes('type')

where:
$ is a Jacl operator for substituting a variable
name with its value
AdminConfig is an object that represents the WebSphere
Application Server configuration
attributes is an AdminConfig command
type is an object type

This command returns a list of attributes and its data type.

To get a list of attributes for the JDBCProvider type, use the following example
command:

¢ Using Jacl:
$AdminConfig attributes JDBCProvider
* Using Jython:
AdminConfig.attributes('JDBCProvider")

2. List the required attributes of a given configuration object type, using the
required command, for example:

* Using Jacl:
$AdminConfig required type
 Using Jython:
AdminConfig.required('type')

where:
$ is a Jacl operator for substituting a variable
name with its value
AdminConfig is an object that represents the WebSphere
Application Server configuration
required is an AdminConfig command
type is an object type

This command returns a list of required attributes.

To get a list of required attributes for the JDBCProvider type, use the following
example command:

* Using Jacl:
$AdminConfig required JDBCProvider
 Using Jython:
AdminConfig.required('JDBCProvider')

3. List attributes with defaults of a given configuration object type, using the
defaults command, for example:

* Using Jacl:
$AdminConfig defaults type
* Using Jython:

Chapter 6. Using scripting (wsadmin) 95

AdminConfig.defaults('type')

where:
$ is a Jacl operator for substituting a variable
name with its value
AdminConfig is an object that represents the WebSphere
Application Server configuration
defaults is an AdminConfig command
type is an object type

This command returns a list of all the attributes, types, and defaults.

To get a list of attributes with the defaults displayed for the JDBCProvider type,
use the following example command:

* Using Jacl:
$AdminConfig defaults JDBCProvider
* Using Jython:
AdminConfig.defaults('JDBCProvider')

Modifying configuration objects with the wsadmin tool:

Before starting this task, the wsadmin tool must be running. See the [“Starting the

fwsadmin scripting client” on page 123|article for more information.

Perform the following steps to modify a configuration object:

1. Retrieve the configuration ID of the objects that you want to modify, for
example:

* Using Jacl:

set jdbcProviderl [$AdminConfig getid /JDBCProvider:myJdbcProvider/]
* Using Jython:

jdbcProviderl = AdminConfig.getid('/JDBCProvider:myJdbcProvider/")

where:

set is a Jacl command

jdbcProviderl is a variable name

$ is a Jacl operator for substituting a variable
name with its value

AdminConfig is an object that represents the WebSphere
Application Server configuration

getid is an AdminConfig command

/JDBCProvider:myJdbcProvider/ is the hierarchical containment path of the
configuration object

JDBCProvider is the object type

myddbcProvider is the optional name of the object

2. Show the current attribute values of the configuration object with the show
command, for example:

* Using Jacl:
$AdminConfig show $jdbcProviderl
* Using Jython:
AdminConfig.show(jdbcProviderl)

96 1BM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

where:

$ is a Jacl operator for substituting a variable
name with its value

AdminConfig is an object that represents the WebSphere
Application Server configuration

show is an AdminConfig command

jdbcProviderl evaluates to the ID of the host node that is

specified in step number 1

3. Modify the attributes of the configuration object, for example:
* Using Jacl:
$AdminConfig modify $jdbcProviderl {{description "This is my new description"}}
* Using Jython list:
AdminConfig.modify(jdbcProviderl, [['description', "This is my new description"]])
* Using Jython string:
AdminConfig.modify(jdbcProviderl, '[[description "This is my new description"]]")

where:

$ is a Jacl operator for substituting a variable
name with its value

AdminConfig is an object that represents the WebSphere
Application Server configuration

modi fy is an AdminConfig command

jdbcProviderl evaluates to the ID of the host node that is
specified in step number 1

description is an attribute of server objects

This is my new description is the value of the description attribute

You can also modify several attributes at the same time. For example:
* Using Jacl:
{{namel vall} {name2 val2} {name3 val3}}
* Using Jython list:
[['name1', 'vall']l, ['name2', 'val2'l, ['name3', 'val3']l]
* Using Jython string:
"[[namel vall]l [name2 val2] [name3 val3]]'

4. Save the configuration changes. See the|’Saving configuration changes with the|
[wsadmin tool” on page 102 article for more information.

5. In a network deployment environment only, synchronize the node. See the
[“Synchronizing nodes with the wsadmin tool” on page 86| article for more
information.

Removing configuration objects with the wsadmin tool:

Before starting this task, the wsadmin tool must be running. See the [“Starting the
fwsadmin scripting client” on page 123|article for more information.

Use this task to delete a configuration object from the configuration repository.
This action only affects the configuration. If a running instance of a configuration
object exists when you remove the configuration, the change has no effect on the
running instance.

Chapter 6. Using scripting (wsadmin) 97

1. Assign the ID string that identifies the server that you want to remove:

Using Jacl:
set s1 [$AdminConfig getid /Node:mynode/Server:myserver/]
Using Jython:
sl = AdminConfig.getid('/Node:mynode/Server:myserver/"')
where:
set is a Jacl command
sl is a variable name
$ is a Jacl operator for substituting a variable
name with its value
AdminConfig is an object that represents the WebSphere
Application Server configuration
getid is an AdminConfig command
Node is an object type
mynode is the host name of the node from which the
server is removed
Server is an object type
myserver is the name of the server to remove

2. Remove the configuration object. For example:
* Using Jacl:
$AdminConfig remove $sl
* Using Jython:
AdminConfig.remove(sl)

where:

$ is a Jacl operator for substituting a variable
name with its value

AdminConfig is an object that represents the WebSphere
Application Server configuration

remove is an AdminConfig command

sl evaluates the ID of the server that is
specified in step number 2

3. Save the configuration changes. See the [“Saving configuration changes with thel
[wsadmin tool” on page 102 article for more information.

4. In a network deployment environment only, synchronize the node. See the
[“Synchronizing nodes with the wsadmin tool” on page 86| article for more
information.

The WebSphere Application Server configuration no longer contains a specific
server object. Running servers are not affected.

Changing the WebSphere Application Server configuration using the wsadmin
tool:

98 1BM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

Before starting this task, the wsadmin tool must be running. See the
fwsadmin scripting client” on page 123|article for more information. For this task,
the wsadmin scripting client must be connected to the deployment manager server
in a network deployment environment.

You can use the wsadmin AdminConfig and AdminApp objects to make changes
to the WebSphere Application Server configuration. The purpose of this article is to
illustrate the relationship between the commands that are used to change the
configuration and the files that are used to hold configuration data. This discussion
assumes that you have a network deployment installation, but the concepts are
very similar for a WebSphere Application Server installation.

1. Set a variable for creating a server:
* Using Jacl:
set nl1 [$AdminConfig getid /Node:mynode/]
 Using Jython:
nl = AdminConfig.getid('/Node:mynode/")

where:

set is a Jacl command

nl is a variable name

$ is a Jacl operator for substituting a variable
name with its value

AdminConfig is an object that represents the WebSphere
Application Server configuration

getid is an AdminConfig command

Node is the object type

mynode is the name of the object to modify

2. Create a server with the following command:
 Using Jacl:
set servl [$AdminConfig create Server $nl {{name myserv}}]
* Using Jython list:
servl = AdminConfig.create('Server', nl, [['name', 'myserv']])
* Using Jython string:
servl = AdminConfig.create('Server', nl, '[[name myserv]]"')

where:

set is a Jacl command

servl is a variable name

$ is a Jacl operator for substituting a variable
name with its value

AdminConfig is an object that represents the WebSphere
Application Server configuration

create is an AdminConfig command

Server is an AdminConfig object

nl evaluates to the ID of the host node that is
specified in step number 1

name is an attribute

Chapter 6. Using scripting (wsadmin) 99

myserv is the value of the name attribute

After this command completes, some new files can be seen in a workspace
used by the deployment manager server on behalf of this scripting client. A
workspace is a temporary repository of configuration information that
administrative clients use. Any changes made to the configuration by an
administrative client are first made to this temporary workspace. For scripting,
when a save command is invoked on the AdminConfig object, these changes
are transferred to the real configuration repository. Workspaces are kept in the
wstemp subdirectory of a WebSphere Application Server installation.

3. Make a configuration change to the server with the following command:
* Using Jacl:
$AdminConfig modify $servl {{stateManagement {{initialState STOP}}}}
¢ Using Jython list:
AdminConfig.modify(servl, [['stateManagement', [['initialState', 'STOP']]1]])
* Using Jython string:
AdminConfig.modify(servl, '[[stateManagement [[initialState STOP]]]]')

where:

$ is a Jacl operator for substituting a variable
name with its value

AdminConfig is an object that represents the WebSphere
Application Server configuration

modify is an AdminConfig command

servl evaluates to the ID of the host node that is
specified in step number 2

stateManagement is an attribute

initialState is a nested attribute within the
stateManagement attribute

STOP is the value of the initialState attribute

This command changes the initial state of the new server. After this command
completes, one of the files in the workspace is changed.

4. |Install an application on the server,|

5. Save the configuration changes. See the|“Saving configuration changes with thel
[wsadmin tool” on page 102 article for more information.

6. In a network deployment environment only, synchronize the node. See the
[“Synchronizing nodes with the wsadmin tool” on page 86| article for more
information.

Modifying nested attributes with the wsadmin tool:

The attributes for a WebSphere Application Server configuration object are often
deeply nested. For example, a JDBCProvider object has an attribute factory, which
is a list of the J2EEResourceFactory type objects. These objects can be DataSource
objects that contain a connectionPool attribute with a ConnectionPool type that
contains a variety of primitive attributes.

1. |Invoke the AdminConfig object commands interactively, in a script, or use the|
wsadmin -c commands from an operating system command prompt|

2. Obtain the configuration ID of the object, for example:
Using Jacl:
set t1 [$AdminConfig getid /DataSource:TechSamp/]

100 1BM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

Using Jython:
t1=AdminConfig.getid('/DataSource:TechSamp/")

where:

set is a Jacl command

tl is a variable name

$ is a Jacl operator for substituting a variable
name with its value

AdminConfig is an object representing the WebSphere
Application Server configuration

getid is an AdminConfig command

DataSource is the object type

TechSamp is the name of the object that will be
modified

3. Modify one of the object parents and specify the location of the nested attribute
within the parent, for example:

Using Jacl:

$AdminConfig modify $t1 {{connectionPool {{reapTime 2003}}}}
Using Jython list:

AdminConfig.modify(tl, [["connectionPool", [["reapTime", 2003]111])
Using Jython string:

AdminConfig.modify(tl, '[[connectionPool [[reapTime 2003]111]")

where:

$ is a Jacl operator for substituting a variable
name with its value

AdminConfig is an object representing the WebSphere
Application Server configuration

modify is an AdminConfig command

t1 evaluates to the configuration ID of the
datasource in step number 2

connectionPool is an attribute

reapTime is a nested attribute within the
connectionPool attribute

2003 is the value of the reapTime attribute

4. Save the configuration by issuing an AdminConfig save command. For
example:

Using Jacl:
$AdminConfig save
Using Jython:
AdminConfig.save()

Use the reset command of the AdminConfig object to undo changes that you
made to your workspace since your last save.

Chapter 6. Using scripting (wsadmin) 101

An alternative way to modify nested attributes is to modify the nested attribute
directly, for example:

Using Jacl:

set techsamp [$AdminConfig getid /DataSource:TechSamp/]
set pool [$AdminConfig showAttribute $techsamp connectionPool]
$AdminConfig modify $pool {{reapTime 2003}}

Using Jython list:

techsamp=AdminConfig.getid('/DataSource:TechSamp/")
pool=AdminConfig.showAttribute(techsamp,'connectionPool")
AdminConfig.modify(pool,[['reapTime',2003]])

Using Jython string:

techsamp=AdminConfig.getid('/DataSource:TechSamp/")
pool=AdminConfig.showAttribute(techsamp,'connectionPool")
AdminConfig.modify(pool,"'[[reapTime 2003]]1")

In this example, the first command gets the configuration id of the DataSource,
and the second command gets the connectionPool attribute. The third command
sets the reapTime attribute on the ConnectionPool object directly.

Saving configuration changes with the wsadmin tool:

The wsadmin tool uses the workspace to hold configuration changes. You must
save your changes to transfer the updates to the master configuration repository. If
a scripting process ends and you have not saved your changes, the changes are
discarded. Use the following commands to save the configuration changes:

* Using Jacl:
$AdminConfig save

* Using Jython:
AdminConfig.save()

where:

$ is a Jacl operator for substituting a variable
name with its value

AdminConfig is an object representing the WebSphere
Application Server configuration

save is an AdminConfig command

If you are using interactive mode with the wsadmin tool, you will be prompted to
save your changes before they are discarded. If you are using the -c option with
the wsadmin tool, changes are automatically saved.

You can use the reset command of the AdminConfig object to undo changes that
you made to your configuration since your last save.

AdminTask object for scripted administration

Use the AdminTask object to access a set of administrative commands that provide
an alternative way to access the configuration commands and the running object
management commands. The administrative commands run simple and complex
commands. They provide more user friendly and task-oriented commands. The
administrative commands are discovered dynamically when you start a scripting
client. The set of available administrative commands depends on the edition of

102 1BM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

WebSphere Application Server that you installed. You can use the AdminTask
object commands to access these commands.

Administrative commands are grouped based on their function. You can use
administrative command groups to find related commands. For example, the
administrative commands that are related to server management are grouped into
a server management command group. The administrative commands that are
related to the security management are grouped into a security management
command group. An administrative command can be associated with multiple
command groups because it can be useful for multiple areas of system
management. Both administrative commands and administrative command groups
are uniquely identified by their name.

Two run modes are always available for each administrative command, namely the
batch and interactive mode. When you use an administrative command in interactive
mode, you go through a series of steps to collect your input interactively. This
process provides users a text-based wizard and a similar user experience to the
wizard in the administrative console. You can also use the help command to obtain
help for any administrative command and the AdminTask object.

The administrative commands do not replace any existing configuration commands
or running object management commands but provide a way to access these
commands and organize the inputs. The administrative commands can be available
in connected or local mode. The set of available administrative commands is
determined when you start a scripting client in connected or local mode. If a
server is running, it is not recommended that you run the scripting client in local
mode because any configuration changes made in local mode are not reflected in
the running server configuration and vice versa. If you save a conflicting
configuration, you could corrupt the configuration. In a deployment manager
environment, configuration updates are available only if a scripting client is
connected to a deployment manager. When connected to a node agent or a
managed application server, you will not be able to update the configuration
because the configuration for these server processes are copies of the master
configuration which resides in the deployment manager. The copies are created on
a node machine when a configuration synchronization occurs between the
deployment manager and the node agent. Make configuration changes to the
server processes by connecting a scripting client to a deployment manager. For this
reason, to change a configuration, do not run a scripting client in local mode on a
node machine. It is not a supported configuration.

Obtaining online help using scripting;:

Three levels of online help are available with the administrative commands. The
top-level help provides general information for the AdminTask object and
associated commands. The second-level help provides information about all of the
available administrative commands and command groups. The third-level help
provides specific help on a command group, a command, or a step. Command
group-specific help provides descriptions for the command group that you specify
and the commands that belong to the associated group. Command-specific help
provides description for the specified command, and associated parameters and
steps. Step-specific help provides a description for the specified step and the
associated parameters. For command and step-specific help, required parameters
are marked with an asterisk (*) in the help output.

* To obtain general help, use the code in the following examples:
Using Jacl:

Chapter 6. Using scripting (wsadmin) 103

$AdminTask help
Using Jython:

print AdminTask.help()
Example output:

WASX8001I: The AdminTask object enables the execution of available
admin commands. AdminTask commands operate in two modes:
the default mode is one which AdminTask communicates with the
WebSphere server to accomplish its task. A lTocal mode is also
available in which no server communication takes place. The local
mode of operation is invoked by bringing up the scripting client
using the command 1ine "-conntype NONE" option or setting the
"com.ibm.ws.scripting.connectiontype=NONE" property in
wsadmin.properties file.

The number of admin commands varies and depends on your WebSphere install.
Use the following help commands to obtain a Tlist of supported commands
and their parameters:

help -commands
list all the admin commands
help -commandGroups
1ist all the admin command groups
help commandName
display detailed information for
the specified command
help commandName stepName
display detailed information for
the specified step belonging to
the specified command
help commandGroupName
display detailed information for
the specified command group

There are various flavors to invoke an admin command:

commandName
invokes an admin command that does not require any argument.

commandName targetObject
invokes an admin command with the specified target object
string, for example, the configuration object name of a
resource adapter. The expected target object varies with
the admin command invoked. Use help command to get
information on the target object of an admin command.

commandName options
invokes an admin command with the specified option
strings. This invocation syntax is used to invoke an
admin command that does not require a target object. It
is also used to enter interactive mode if "-interactive"
mode is included in the options string.

commandName targetObject options
invokes an admin command with the specified target
object and options strings. If "-interactive" is
included in the options string, then interactive mode
is entered. The target object and options strings vary
depending on the admin command invoked. Use help
command to get information on the target
object and options.

* To list the available command groups, use the code in the following examples:
Using Jacl:
$AdminTask help -commandGroups

104 1BM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

Using Jython:

print AdminTask.help('-commandGroups')
Example output:

WASX8005I: Available admin command groups:

ClusterConfigCommands - Commands for configuring application
server clusters and cluster members.

JCAManagement - A group of admin commands that helps to configure
Java2 Connector Architecture(J2C) related resources.

To list the available commands, use the code in the following examples:
Using Jacl:

$AdminTask help -commands

Using Jython:

print AdminTask.help('-commands')

Example output:

WASX8004I: Available administrative commands:

copyResourceAdapter - copy the specified J2C resource adapter to the specified scope
createCluster - Creates a new application server cluster.

createClusterMember - Creates a new member of an application server cluster.
createJ2CConnectionFactory - Create a J2C connection factory

deleteCluster - Delete the configuration of an application server cluster.
deleteClusterMember - Deletes a member from an application server cluster.
listConnectionFactoryInterfaces - Tist all of the

defined connection factory interfaces on the

specified J2C resource adapter.

listJ2CConnectionFactories - List J2C connection factories that have a specified
connection factory interface defined in the specified J2C resouce adapter
createJ2CAdminObject - Create a J2C administrative object.
listAdminObjectInterfaces - List all the defined administrative object interfaces
on the specified J2C resource adapter.

interface on the specified J2C resource adapter.

1istJ2CAdminObjects - List the J2C administrative objects that have a specified
administrative object interface defined in the specified J2C resource adapter.
createJ2CActivationSpec - Create a J2C activation specification.
listMessageListenerTypes - 1ist all of the defined messagelListener

type on the specified J2C resource adapter.

TistJ2CActivationSpecs - List the J2C activation specifications that have a
specified message Tistener type defined in the specified J2C resource adapter.

To obtain help about a command group, use the code in the following examples:
Using Jacl:

$AdminTask help JCAManagement

Using Jython:

print AdminTask.help('JCAManagement')

Example output:

WASX8007I: Detailed help for command group: JCAManagement

Description: A group of administrative commands that help to
configure Java 2 Connector Architecture (J2C)-related resources.

Commands:

created2CConnectionFactory - Create a J2C connection factory
listConnectionFactoryInterfaces - 1ist all of the defined connection
factory interfaces on the specified J2C resource adapter.
listJ2CConnectionFactories - List J2C connection factories that have
a specified connection factory interface defined in the

specified J2C resouce adapter.

createJ2CAdminObject - Create a J2C administrative object.
listAdminObjectInterfaces - List all the defined administrative

Chapter 6. Using scripting (wsadmin) 105

object interfaces on the specified J2C resource adapter.
1istJ2CAdminObjects - List the J2C administrative objects that have a
specified adminstrative object interface defined in the

specified J2C resource adapter.

createJ2CActivationSpec - Create a J2C activation specification.
listMessagelListenerTypes - list all of the defined

message Tistener types on the specified J2C resource adapter.
listJ2CActivationSpecs - List the J2C activation specifications that
have a specified message Tistener type defined in the

specified J2C resource adapter.

copyResourceAdapter - copy the specified J2C resource

adapter to the specified scope.

* To obtain help about an administrative command:
Using Jacl:
$AdminTask help createJ2CConnectionFactory
Using Jython:
print AdminTask.help('created2CConnectionFactory"')
Example output:
WASX8006I: Detailed help for command: created2CConnectionFactory

Description: Create a J2C connection factory
*Target object: The parent J2C resource adapter of the created J2C connection factory.

Arguments:

xconnectionFactoryInterface - A connection factory interface that is defined in the
deployment description of the parent J2C resource adapter.

*name - The name of the J2C connection factory.

*jndiName - The JNDI name of the created J2C connection factory.

description - The description for the created J2C connection factory.

authDataAlias - the authentication data alias of the created J2C connection factory.

Steps:

None

In the command-specific help output that is previously listed, an administrative
command is divided into three input areas: target object, arguments, and steps.
Each area can require input depending on the administrative command. If an
area requires input, each input is described by its name and a description; except
for the target object area, which contains the description of the target object only.
When you use an administrative command in batch mode, you can use any
input name that resides in the argument area as the argument name. If an input
is required, an asterisk (*) is located before the name. If an area does not require
an input, it is marked None. The following example uses the help output for the
createJ2CConnectionFactory command:

— The target object area requires the configuration object name of a
J2CResourceAdapter.

— In the arguments area, there are five inputs with three being required inputs.
The argument names are connectionFactoryInterface, name, jndiName,
description, and authDataAlias. These names are used as the parameter
names in the option string to run an administrative command in batch mode,
for example:

-connectionFactoryInterface javax.resource.cci.ConnectionFactory
-name newConnectionFactory -jndiName CF/newConnectionFactory

See [“Administrative command invocation syntax” on page 599|for more
information about specifying argument options.

— No step is associated with this administrative command.
* To obtain help on a command step, use the step-specific help.

106 1BM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

Step-specific help provides the following data:
— A description for the command step.

— Information indicating whether this step supports collection. A collection
includes objects of the same type. In a command step, a collection contains
objects that have the same set of parameters.

— Information regarding each step parameter with its name and description. If a
step parameter is required, an asterisk (*) is located in front of the name.

The following example obtains help on a command step:
Using Jacl:

$AdminTask help createCluster clusterConfig

Using Jython:

print AdminTask.help('createCluster', 'clusterConfig"')
Example output:

WASX8013I: Detailed help for step: clusterConfig

Description: Specifies the configuration of the new server cluster.
Collection: No

Arguments:
xclusterName - Name of server cluster.
preferLocal - Enables node-scoped routing optimization for the cluster.

This example indicates the following information about the clusterConfig step:

— This step does not support collection. Only one set of parameter values for
the clusterName and perferLocal parameters is supported.

— This step contains two input arguments with one argument that is indicated
as required. The required arguments is clusterName and the non-required
parameter is preferLocal. The syntax to provide step parameter values is
different from the command argument values. You have to provide all
argument values of a step and provide them in the exact order as displayed
in the step specific help. For any optional argument that you do not want to
specify a value, put double quotes ("”) in place of a value. If a command step
is a collection type, for example, it can contain multiple objects where each
object has the same set of arguments, you can specify multiple objects with
each object enclosed by its own pair of braces. To run an administrative
command in batch mode and to include this step in the option string, use the
following syntax:

Using Jacl:

-clusterConfig {{newCluster false}}
Using Jython:

-clusterConfig [[newCluster false]]

See [“Administrative command invocation syntax” on page 599|for more
information about specifying parameter options.

Invoking an administrative command in batch mode:

Perform the following steps to invoke an administrative command in batch mode.
To invoke an administrative command in interactive mode, see |”Invol<ing agl
ladministrative command in interactive mode” on page 113

1. [[nvoke the AdminTask object commands interactively, in a script, or use theI
wsadmin -c command from an operating system command prompt,

2. Issue one of the following commands:

Chapter 6. Using scripting (wsadmin) 107

 If an administrative command does not have a target object and an
argument, use the following command:

Using Jacl:
$AdminTask commandName
Using Jython:
AdminTask.commandName ()
where:
$ is a Jacl operator for substituting a variable
name with its value
AdminTask is an object allowing administrative
command management
commandName is the name of the administrative command
to invoke

 If an administrative command includes a target object but does not include
any arguments or steps, use the following command:

Using Jacl:
$AdminTask commandName targetObject
Using Jython:
AdminTask.commandName (targetObject)
where:
$ is a Jacl operator for substituting a variable
name with its value
AdminTask is an object that supports administrative
command management
commandName is the name of the administrative command
to invoke
targetObject is the target object string for the invoked

administrative command. The expect target
object varies with each administrative
command. View the online help for the
invoked administrative command to learn
more about what you should specify as the
target object.

 If an administrative command includes an argument or a step but does not
include a target object, use the following command:

Using Jacl:
$AdminTask commandName options
Using Jython:
AdminTask.commandName (options)
where:
$ is a Jacl operator for substituting a variable
name with its value
AdminTask is an object that supports administrative
command management
commandName is the name of the administrative command
to invoke

108 1BM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

options

is the option string for the invoked
administrative command. Depending on
which administrative command you are
invoking, the administrative command can
have required or optional option values. The
options string is different for each
administrative command. View the online
help for the invoked administrative
command to obtain more information about
which options are available. Arguments and
steps listed on the online administrative
command help are specified as options in
the option string.

Each option consists of a dash followed
immediately by an option name, and then
followed by an option value if the option
requires a value. If the invoked
administrative command includes target
objects, arguments, or steps, then the
—interactive option is available to enter
interactive mode. For example, using the
output of the following online help for the
listDataSource command:

WASX8006I: Detailed help for command:
exportServer

Description: export the configuration
of a server to a config archive.

Target object: None

Arguments:

*serverName - the name of a server
*nodeName - the name of a node. This
parameter becomes optional if the
specified server name is unique
across the cell.

*archive - the fully qualified file
path of a config archive.

Steps:
None

Option names are specified with a dash
before the names. Three options are required
for this administrative command. The
required options are -serverName,
-nodename, and -archive. In addition, the
-interactive option is available. Options are
specified in the option string, which is
enclosed by a pair of braces ({}) in Jacl and a
pair of brackets ([]) in Jython.

¢ If an administrative command includes a target object, and arguments or

steps:
Using Jacl:

$AdminTask commandName targetObject options

Using Jython:

AdminTask.commandName (targetObject, options)

Chapter 6. Using scripting (wsadmin) 109

where:

$ is a Jacl operator for substituting a variable
name with its value

AdminTask is an object that supports administrative
command management

commandName is the name of the administrative command
to invoke

targetObject is the target object string for the invoked

administrative command. The expected
target object varies with each administrative
command. View the online help for the
invoked administrative command to obtain
information about what to specify as a target
object. For example, using the output of the
following online help for
create]2CConnectionFactory:

WASX8006I: Detailed help for command:
createJ2CConnectionFactory

Description: Create a J2C connection
factory

*Target object: The parent J2C resource
adapter of the created J2C connection
factory.

Arguments:

xconnectionFactoryInterface - A
connection factory interface that is
defined in the deployment description
of the parent J2C resource adapter.
*name - The name of the J2C connection
factory.

*jndiName - The JNDI name of the
created J2C connection factory.
description - The description for the
created J2C connection factory.
authDataAlias - the authentication data
alias of the created J2C connection
factory.

Steps:
None

The target object is a configuration object
name of a J2C resource adapter.

110 1BM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

options

is the option string for the invoked
administrative command. Depending on
which administrative command you are
invoking, the administrative command can
have required or optional option values. The
options string is different for each
administrative command. View the online
help for the invoked administrative
command to obtain more information about
which options are available. Arguments and
steps that are listed on the online
administrative command help are specified
as options in the option string. Each option
consists of a dash followed immediately by
an option name, and then followed by an
option value if the option requires a value. If
the invoked administrative command
includes target objects, arguments, or steps,
then the —interactive option is available to
enter interactive mode. For example, using
the output of the following online help for
listDataSource:

WASX8006I: Detailed help for command:
createJ2CConnectionFactory

Description: Create a J2C connection
factory

*Target object: The parent J2C resource
adapter of the created J2C connection
factory.

Arguments:

*connectionFactoryInterface - A
connection factory interface that is
defined in the deployment description
of the parent J2C resource adapter.
*name - The name of the J2C connection
factory.

*jndiName - The JNDI name of the created
J2C connection factory.

description - The description for the
created J2C connection factory.
authDataAlias - the authentication data
alias of the created J2C connection
factory.

Steps:
None

Option names are specified with a dash
before the names. The required options for
this administrative command include:
-connectionFactorylInterface, -name, and
-jndiName. The optional options include:
-description and -authDataAlias. In
addition, you can also use the -interactive
option. Options are specified in the option
string, which is enclosed by a pair of braces
({})) in Jacl and a pair of brackets ([]) in
Jython.

Chapter 6. Using scripting (wsadmin) 111

* The following example invokes an administrative command with no target
object, argument, or step:
Using Jacl:
$AdminTask TistNodes
Using Jython:
print AdminTask.listNodes()
Example output:
myNode
* The following example invokes an administrative command with a target object
string:
Using Jacl:

set sl [$AdminConfig getid /Server:serverl/]
$AdminTask showServerInfo $sl

Using Jython:

sl = AdminConfig.getid('/Server:serverl/")
print AdminTask.showServerInfo(sl)

Example output:

{cell myCell}

{serverType APPLICATION_SERVER}
{com.ibm.websphere.baseProductVersion 6.0.0.0}
{node myNode}

{server serverl}

* The following example invokes an administrative command with an option
string:
Using Jacl:
$AdminTask getNodeMajorVersion {-nodeName myNode}
Using Jython:
print AdminTask.getNodeMajorVersion('[-nodeName myNode]")
Example output:
6
* The following example invokes an administrative command with a target object
and non-step option strings:
Using Jacl:

set ra [$AdminConfig getid /J2CResourceAdapter:myResourceAdapter/]
$AdminTask createJ2CConnectionFactory $ra {-name myJ2CCF -jndiName j2c/cf
-connectionFactoryInterface javax.resource.cci.ConnectionFactory}

Using Jython:

ra = AdminConfig.getid('/J2CResourceAdapter:myResourceAdapter/")
AdminTask.createJ2CConnectionFactory(ra, '[-name myJ2CCF -jndiName j2c/cf
-connectionFactoryInterface javax.resource.cci.ConnectionFactory]")

Example output:
myJ2CCF (cel1s/myCel1/nodes/myNode | resources.xml#J2CConnectionFactory 1069690568269)

* The following example invokes an administrative command with a target object
and a step option:

Using Jacl:

set serverCluster [$AdminConfig getid /ServerCluster:myCluster/]
$AdminTask createClusterMember $serverCluster {-memberConfig {{myNode
myClusterMember "" "" false false}}}

Using Jython:

112 1BM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

serverCluster = AdminConfig.getid('/ServerCluster:myCluster/")
AdminTask.createClusterMember(serverCluster, '[-memberConfig [[myNode
myClusterMember "" "" false falsel]]')

Example output:
myClusterMember(cells/myCel1/nodes/myNode|cluster.xml#ClusterMember 3673839301876)

Invoking an administrative command in interactive mode:
Perform the following steps to invoke an administrative command in interactive

mode. To invoke an administrative command in batch mode, see
ladministrative command in batch mode” on page 107.|

1. [Invoke the AdminTask object commands interactively, in a script, or use theI
wsadmin -c command from an operating system command prompt|

2. Invoke an administrative command in interactive mode by issuing one of the
following commands:

* Use the following command invocation to enter interactive mode without
providing another input in the command invocation:

Using Jacl:
$AdminTask commandName {-interactive}
Using Jython:
AdminTask.commandName (' [-interactive] ")
where:
$ is a Jacl operator for substituting a variable
name with its value
AdminTask is an object that supports administrative
command management
commandName is the name of the administrative command
to invoke
-interactive is the interactive option

* Use the following command invocation to enter interactive mode using an
administrative command that takes a target object. You do not have to
provide a target object to enter interactive mode. Target objects provided in
the command invocation will be applied to the command and displayed as
the current target object value during interactive prompting.

Using Jacl:
$AdminTask commandName targetObject {-interactive}
Using Jython:
AdminTask.commandName (targetObject, '[-interactive]')
where:
$ is a Jacl operator for substituting a variable
name with its value
AdminTask is an object that supports administrative
command management
commandName is the name of the administrative command
to invoke

Chapter 6. Using scripting (wsadmin) 113

targetObject is the target object string for the invoked
administrative command. The target object is
different for each administrative command.
View the online help for the invoked
administrative command to learn more
about what to specify as a target object.

-interactive is the interactive option

* Use the following command invocation to enter interactive mode for an
administrative command that takes options. You do not have to provide
other options to enter interactive mode. Options provided in the command
invocation are applied to the command and the option values will be
displayed as the current values during interactive prompting.

Using Jacl:
$AdminTask commandName {-interactive commandOptions}
Using Jython:
AdminTask.commandName (' [-interactive commandOptions]"')
where:
$ is a Jacl operator for substituting a variable
name with its value
AdminTask is an object that supports administrative
command management
commandName is the name of the administrative command
to invoke
-interactive is the interactive option

114 1BM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

commandOptions

is the command option that is available for
the associated administrative command.
Available command options are different for
each administrative command. View the
online help for the invoked administrative
command to obtain more information about
which options are available. Arguments and
steps that are listed on the online
administrative command help are specified
as command options. Each option consists of
a dash followed immediately by an option
name, and then followed by an option value
if the option requires a value. For example,
using the output of the following online
help for the create]2CConnectionFactory
command:

WASX8006I: Detailed help for command:
created2CConnectionFactory

Description: Create a J2C connection
factory

*Target object: The parent J2C
resource adapter of the created
J2C connection factory.

Arguments:

*connectionFactoryInterface - A
connection factory interface that is
defined in the deployment description
of the parent J2C resource adapter.
*name - The name of the J2C connection
factory.

*jndiName - The JNDI name of the created
J2C connection factory.

description - The description for the
created J2C connection factory.
authDataAlias - the authentication data
alias of the created J2C connection
factory.

Steps:
None

In this example, five options are available:
* -connectionFactoryInterface

* -name

* -jindiName

* -description

* -authDataAlias

Each option requires a value. Three of the

options are required and are denoted with a
star (*).

* Use the following command invocation to enter interactive mode for an
administrative command that has a target object and options. You do not
have to specify a target object to enter interactive mode. The values specified
are applied to the command before the command data is displayed. As a
result, the values specified will be displayed as the current values during

interactive prompting.

Chapter 6. Using scripting (wsadmin) 115

116

Using Jacl:

$AdminTask commandName targetObject {-interactive commandOptions}

Using Jython:
AdminTask.commandName (targetObject, '[-interactive commandOptions]")
where:
$ is a Jacl operator for substituting a variable
name with its value
AdminTask is an object that supports administrative
command management
commandName is the name of the administrative command
to invoke
targetObject is the target object string for the invoked

administrative command. The expect target
object varies with each admin command.
Consult the online help on the invoked
administrative command to learn more
about what to specify as target object.

-interactive

is the interactive option

IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

commandOptions is the command option that is available for
the associated administrative command.
Available command options are different for
each administrative command. View the
online help for the invoked administrative
command to obtain more information about
which options are available. Arguments and
steps that are listed on the online
administrative command help are specified
as command options. Each option consists of
a dash followed immediately by an option
name, and then followed by an option value
if the option requires a value. For example,
using the output of the following online
help for the create]2CConnectionFactory
command:

WASX8006I: Detailed help for command:
created2CConnectionFactory

Description: Create a J2C connection
factory

*Target object: The parent J2C resource
adapter of the created J2C connection
factory.

Arguments:

*connectionFactoryInterface - A
connection factory interface that is
defined in the deployment description
of the parent J2C resource adapter.
*name - The name of the J2C connection
factory.

*jndiName - The JNDI name of the created
J2C connection factory.

description - The description for the
created J2C connection factory.
authDataAlias - the authentication data
alias of the created J2C connection
factory.

Steps:
None

In this example, five options are available:
* -connectionFactoryInterface

* -name

* -jindiName

* -description

* -authDataAlias

Each option requires a value. Three of the

options are required and are denoted with a
star (*).

* The following example invokes an administrative command in interactive mode
by specifying the -interactive option:
Using Jacl:
$AdminTask createJ2CConnectionFactory {-interactive}
Using Jython:

Chapter 6. Using scripting (wsadmin) 117

AdminTask.createJ2CConnectionFactory('[-interactive]')
Example output:
Create a J2C connection factory

*The J2C resource adapter: "WebSphere Relational ResourceAdapter
(ce]1s/myCe]1/nodes/myNode|resources.xm]#bui]tin_rr‘a)"

A connection factory

interface (connectionFactoryInterface):javax.resource.cci.ConnectionFactory
*Name (name): myJ2CCF

*The JNDI name (jndiName): j2c/cf

Description (description):

authentication data alias (authDataAlias):

create J2C connection factory

F (Finish)
C (Cancel)

Select [F, C]: [F]

myJ2CCF (cel1s/myCel1/nodes/myNode | resources.xml#J2CConnectionFactory 1069690568269)

* The following example invokes an administrative command using the
—interactive option with a target object that is specified in the command
invocation:

Using Jacl:

set ra [$AdminConfig getid /J2CResourceAdapter:myResourceAdapter/]
$AdminTask created2CConnectionFactory $ra {-interactive}

Using Jython:

ra = AdminConfig.getid('/J2CResourceAdapter:myResourceAdapter/")
AdminTask.createJ2CConnectionFactory(ra, '[-interactive]')

Example output:
Create a J2C connection factory

*The J2C resource adapter: ["WebSphere Relational ResourceAdapter
(cel1s/myCel1/nodes/myNode|resources.xml#builtin_rra)"]

A connection factory interface (connectionFactorylInterface):
javax.resource.cci.ConnectionFactory

*Name (name): myJ2CCF

*The JNDI name (jndiName): j2c/cf

Description (description):

authentication data alias (authDataAlias):

create J2C Connection Factory

F (Finish)
C (Cancel)

Select [F, C]: [F]

myJ2CCF (cel1s/myCel1/nodes/myNode | resources.xml#J2CConnectionFactory_1069690568269)

* The following example invokes an administrative command using the
—interactive option where both the target object and the additional command
options are specified in the command invocation:

Using Jacl:

set ra [$AdminConfig getid /J2CResourceAdapter:myResourceAdapter/]
$AdminTask created2CConnectionFactory $ra {-name myNewCF -interactive}

Using Jython:

118 1BM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

ra = AdminConfig.getid('/J2CResourceAdapter:myResourceAdapter/")
AdminTask.createJ2CConnectionFactory(ra, '[-name myNewCF -interactive]')

Example output:
Create a J2C connection factory

*The J2C resource adapter: ["WebSphere Relational ResourceAdapter
(cells/myCel1/nodes/myNode|resources.xml#builtin_rra)"]

A connection factory interface (connectionFactoryInterface):javax.
resource.cci.ConnectionFactory

*Name (name): [myNewCF]

*The JNDI name (jndiName): j2c/cf

Description (description):

authentication data alias (authDataAlias):

create J2C Connection Factory

F (Finish)
C (Cancel)

Select [F, C]: [F]
myNewCF (cel1s/myCel1/nodes/myNode | resources.xml#J2CConnectionFactory 3839439380269)

Administrative command interactive mode environment: An administrative command
can be run in interactive mode by providing the -interactive option in the options
string when invoking the command. You can still provide other options, even
when using the interactive option. The options values that are specified are applied
to the command before the command data is displayed. Whether or not other
options are specified, the wsadmin tool steps the user through the command to
collect command information.

The general interactive flow sequence is:
1. Collect user inputs for target object and parameters

2. 1If the command does not include a step, the command execution menu
displays to run or cancel the command.

3. If the command includes a step, the menu to select the step displays. When all
the required inputs are entered, the menu includes command execution.

4. When a step is selected, if the step supports collection, then the menu to select
an object in the collection displays and you can exit the step. If you exit the
step, repeat steps 3-5.

5. Collect user inputs for the selected step or for an object in the collection
6. Repeat steps 4 and 5 if from the collection step menu

7. Repeat steps 3-5 if from step selection menu

Depending on what input area is enabled by an administrative command, you can
go through part or all of the interactive flow sequence. If an administrative
command is run in interactive mode, the syntax to run the command except for the
deletion of collection object in batch mode is generated and logged as a
WASX72781 message in both the interactive session and in the wsadmin trace file.

Collect user inputs for target object and parameters

The following interactive prompt is used to collect inputs for the Target object and
Arguments input areas that are displayed in the command-specific help:

Chapter 6. Using scripting (wsadmin) 119

Command title
Command Description

xtarget object title [current or default value]:
xparaml title (paraml name) [choicel, choice2, ...]: [current/default value]
param2 title (param2 name) [choicel, choice2, ...]: [current/default value]

This screen is usually the first interactive screen that is displayed when an
administrative command is invoked interactively unless the invoked command
does not contain any target object and non-step command parameters. If a
command does not have a target object, then the prompt for the target object is
skipped. The number of parameters depends on the number of arguments in the
Argument area of the command-specific help. If an input is required, then an
asterisk (*) is placed in front of the title. The parameter name is displayed for
information and is the name that is used to set this parameter in batch mode. If a
parameter value is restricted to a set of values, then the valid choices are
displayed. If current or default value is available, it is displayed. You can accept
the existing value by pressing the Enter key. To add or change an existing value,
enter a new value and click Enter.

Display command execution menu

If an administrative command does not contain a step, you are presented with the
following menu after collecting values for target object and parameters:

Command title

F (Finish)
C (Cancel)

Select [F, C]: F

The Finish option runs the command and the Cancel option cancels the command.
The default selection is F (Finish). This menu is the last menu that is displayed for
a non-step command to exit interactive mode by either canceling or running the
command.

Display command step selection and execution menu

If an administrative command contains a step, the following menu is displayed
after collecting values for target object and parameters:

Command title

Command description

-> %1, stepl title (stepl name)
2. step2 title (step2 name)
*3. step3 title (step3 name)
(4. stepd title (step4 name))

n. stepn title (stepn name)

(Select)
(Next)
(Previous)
(Finish)
(Cancel)
(Help)

T O mMmou=Zwm

Select [S, N, P, F, C, H]: S

120 1BM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

The number of steps that is displayed in the menu depends on the administrative
command. The step name is displayed for information and is the name that is used
to set data in this step in batch mode. The following notations are used to describe
a step:

e A “->” before the step indicates the current step position.
* A before the step indicates a required step.

* A () enclosing the entire step indicates a disabled step. You cannot navigate to
this step by using the Next or Previous options.

Using the menu, you can navigate through steps sequentially by selecting Previous
or Next. Select selects the current step, Finish runs the command, Cancel cancels
the command, and Help provides online help for the command. Not all menu
choices are available. Previous is not available if the current step is the first step.
Next is not available if the current step is the last step. Finish is not available if
still steps are still missing required inputs. The default selection is S (Select) if the
current step is a valid step and steps are missing required inputs. Default selection
is F (Finish) if all the required input is provided for the steps.

For commands with steps, you can exit interactive mode on this menu by either
canceling or running the command.

Display collection step menu

A step might or might not support collection. A collection refers to objects of the
same type. In an administrative command, a collection contains objects that have
the same set of parameters. If a step that supports collection is selected, the
wsadmin tool displays the following menu to add and select an object in the
collection:

Step title (step name)

| key paraml title (key paraml name), key param? title (key param?2 name), ...
-> objectl key paraml value, key param2 value, ...

*| object2 key paraml value, key param2 value, ...

key paraml title, key param2 title, ... must be provided to specify a row in batch row.

(Select Row)

(Next)

(Previous)

(Add Row or Add Row Before)
(Delete Row)

(Finish)

(Help)

Select [S, N, P, A, D, F, H]: F

T MO >X>»TUT=2Wwm\

The number of objects that display in the menu depends on the command step.
Key parameters are identified by the step to use to uniquely identify an object in a
collection. Key parameter values are displayed to identify an object to select. As
with the command step selection menu, an arrow (->) is used to indicate the
current object position, and a asterisk (*) is used to indicate that required input is
missing in the object.

Use the menu to navigate through objects sequentially by selecting Previous or
Next. Select Row selects the current object, Add Row adds a new object, Add Row
Before adds a new object before the current object, Delete Row deletes the current
object, Finish returns control back to the step selection and execution menu, and
Help provides on-line help for the step. Not all menu choices are available.

Chapter 6. Using scripting (wsadmin) 121

Previous is not available if there is no object in the collection or the first object is
the current object. Next is not available if there is no object in the collection or the
last object is the current object. Select Row is available only if there is a current
object. Add Row is provided only if there is no object in the collection and the step
supports new object to be added. Add Row Before is provided if the step supports
new object to be added and there are existing objects in the collection. Delete Row
is provided only if there is a current object and the step supports an object to be
deleted. Finish is not available if there are still objects missing required inputs.
Default selection is A (Add Row) when there is no object in the collection and the
step supports objects to be added. Default selection is S (Select Row) if there is a
current object and there are still objects missing required inputs. Default selection
is F (Finish) if there is no required input missing in any object.

Collect user inputs for parameters of a collection object

After a collection object is selected, the parameter value for each parameter is
prompted sequentially as shown in the following example:

*paraml title (paraml name) [choicel, choice2, ...]: [current/default value]
param2 title (param2 name) [choicel, choice2, ...]: [current/default value]

The number of parameters depends on the number of arguments in the Argument
area of the command step-specific help. The same asterisk (*) notation is used to
denote a required parameter. If a parameter value is restricted to a set of values,
then the valid choices are displayed. If the current or default value is available, it
is displayed. For each writable parameter, you can accept the existing value by
pressing Enter. To add or change an existing value, enter a new value and press
Enter. For a read-only parameter, the parameter and its value are displayed. You
will not be given the prompt to modify its value. After you go through all of the
parameters, the wsadmin tool returns to the collection step menu.

Collect user inputs for non-collection step

This step has two parts. The first part displays the current or default parameter
values for the selected step, as shown in the following example:

Step title (step name)

xparaml title (paraml name) [choicel, choice2, ...]: [current/default value]
param2 title (param2 name) [choicel, choice2, ...]: [current/default value]

Select [C (Cancel), E (Edit)]: [E]

No prompting is included in this part. Instead, this part is more like a help
function providing parameter information on the selected step. The number of
parameters depends on the number of arguments in the argument area of the
command step specific help. The asterisk (*) notation denotes a required parameter.
If a parameter value is restricted to a set of values, then the valid choices will be
displayed. If the current or default value is available, it is displayed. You can
choose to cancel the step or continue to the next part to provide parameter inputs.
The default selection is Edit. Because it is possible that you are seeing default
values assigned to a new piece of data that is not yet set in the step, you can
accept the default selection to continue to the next part. Otherwise, if no data exists
in the selected step, selecting Cancel does not result in creating the data.

If you accept the default Edit selection, collect user inputs for parameters
sequentially just like Collect user inputs for parameters of a collection object.

122 1BM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

*paraml title (paraml name) [choicel, choice2, ...]: [current/default value]
param2 title (param2 name) [choicel, choice2, ...]: [current/default value]

For each writable parameter, you can accept the existing value by pressing Enter.
To add or change an existing value, enter a new value and then press Enter. For a
read-only parameter, the parameter and its value are displayed. You will not be
given the prompt to modify the value of the parameter. As soon as you step
through all the parameters, the wsadmin tool will lead you back to the command
step selection and execution menu.

Starting the wsadmin scripting client

The WebSphere Application Server wsadmin tool provides the ability to run
scripts. You can use the wsadmin tool to manage a WebSphere Application Server
V6.0 installation, as well as configuration, application deployment, and server
run-time operations. The WebSphere Application Server only supports the Jacl and
Jython scripting languages.

You must start the wsadmin scripting client before you perform any other task
using scripting.
1. Locate the command that starts the wsadmin scripting client.

The command for invoking a scripting process is located in the
/WebSphere/AppServer/bin directory or the /WebSphere/DeploymentManager/bin
directory. Use the wsadmin.sh file.

2. Start the wsadmin scripting client. You can start the wsadmin scripting client in
several different ways. To specify the method for running scripts, perform one
of the following wsadmin tool options:

Option for starting the Explanation: Examples:
wsadmin scripting
client:

Chapter 6. Using scripting (wsadmin) 123

124

Run scripting
commands interactively

Run wsadmin with an
option other than -f or -c
or without an option.

An interactive shell is
displayed with a wsadmin
prompt. From the wsadmin
prompt, enter any Jacl or
Jython command. You can
also invoke commands
using the AdminControl,
AdminApp, AdminConfig,
AdminTask, or Help
wsadmin objects.

To leave an interactive
scripting session, use the
quit or exit commands.
These commands do not
take any arguments.

Using Jacl on Windows systems:
wsadmin.bat

Using Jacl on Unix systems:
wsadmin.sh

If security is enabled:

wsadmin.sh -user wsadmin
-password wsadmin

Using Jython on Windows systems:

wsadmin.bat -lang jython

Using Jython on Unix systems:
wsadmin.sh -Tang jython

By default security is enabled:

wsadmin.sh -lang jython
-user wsadmin -password
wsadmin

Example output:

WASX72091: Connected to
process serverl on node
myhost using SOAP

connector; The type of
process is:
UnManagedProcess

WASX70291: For help,
enter: "$Help help"
wsadmin>$AdminApp Tlist
adminconsole
DefaultApplication
ivtApp

wsadmin>exit

IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

Run scripting
commands as
individual commands

Run the wsadmin tool with
the -c option.

Using Jacl on Windows systems:
wsadmin -c "$AdminApp Tist"

Using Jacl on Unix systems:
wsadmin.sh -c "\$AdminApp list"

or

wsadmin.sh -c '$AdminApp list'

Using Jython on Windows systems:

wsadmin -lang jython -c
"AdminApp.Tist()"

Using Jython on Linux or Unix
systems:

wsadmin.sh -lang jython -c
"AdminApp.Tist()"

Example output:

WASX72091: Connected to process
"serverl" on node myhost using
SOAP connector; The type of
process is: UnManagedProcess
adminconsole

DefaultApplication

ivtApp

Chapter 6. Using scripting (wsadmin) 125

126

Run scripting
commands in a script

Run the wsadmin tool with
the -f option, and place the
commands that you want to
run into the file.

WebSphere Application
Server for z/OS supports
multiple encoding for the
Jacl and Jython command
files. The default encoding
for the command files is
ASCIL To run an EBCDIC
encoded file, add the
following Java virtual
machine (JVM) argument to
the wsadmin.sh file through
the javaoption flag:
-Dscript.encoding=Cpl047

For example:

wsadmin.sh -javaoption
-Dprofile.encoding=Cpl047

You can alternatively have
two versions of the
wsadmin.sh file, one that
references the ASCII version
of the file and another that
references the EBCDIC
version of the file. For
example, copy the
wsadmin.sh file to the
wsadminE.sh file. Then add
-Dscript.encoding=Cpl047
to the wsadminE.sh file

Using Jacl on Windows systems:
wsadmin -f al.jacl

Using Jacl on Unix systems:

wsadmin.sh -f al.jacl

where the al.jacl file contains the
following commands:

set apps [$AdminApp list]
puts $apps

Using Jython on Windows systems:

wsadmin -lang jython -f al.py

Using Jython on Unix systems:

wsadmin.sh -lang jython -f al.py

where the al.py file contains the
following commands:

apps = AdminApp.Tist()
print apps

Example output:

WASX72091: Connected to process
"serverl" on node myhost
using SOAP connector; The
type of process is:
UnManagedProcess
adminconsole
DefaultApplication
ivtApp

IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

Run scripting
commands in a profile
script

A profile script is a script
that runs before the main
script, or before entering
interactive mode. You can
use profile scripts to set up
a scripting environment that
is customized for the user
or the installation.

WebSphere Application
Server for z/OS supports
multiple encoding for Jacl
and Jython profile scripts.
The default encoding for the
profile file is ASCIL To run
an EBCDIC encoded profile
script file, add the following
Java virtual machine (JVM)
argument to the wsadmin.sh
file:

-Dprofile.encoding=Cpl047

For example:

wsadmin.sh -javaoption
-Dprofile.encoding=Cpl047

You can alternatively have
two versions of the
wsadmin.sh file, one that
references the ASCII version
of the file and another that
references the EBCDIC
version of the file. For
example, copy the
wsadmin.sh file to the
wsadminE.sh file. Then add
-Dprofile.encoding=Cpl047
to the wsadminE.sh file.

By default, the following
profile script files might be
configured for the
com.ibm.ws.scripting.profil
profiles property in the

install_root/properties/wsadmin

properties file:

install_root/bin/
securityProcs.jacl
install_root/bin/
LTPA_LDAPSecurityProcs.jac]

By default, these files are in
ASCIL If you use the
profile.encoding option to
run EBCDIC encoded
profile script files, change
the encoding of the files to
EBCDIC.

Using Jacl on Windows systems:
wsadmin.bat -profile alprof.jacl

Using Jacl on Linux or Unix
systems:

wsadmin.sh -profile alprof.jacl

where the alprof.jacl file contains
the following commands:

set apps [$AdminApp list]
puts "Applications currently
installed:\n$apps"

Example output:

WASX72091: Connected to process
"serverl" on node myhost

using SOAP connector; The type
of process is: UnManagedProcess
Applications currently installed:
adminconsole
DefaultApplication

ivtApp

WASX70291: For help, enter:
"$Help help"

wsadmin>

Using Jython on Windows systems:

wsadmin.bat -lang jython
-profile alprof.py

Using Jython on Linux or Unix
systems:

wsadmin.sh -Tang jython
-profile alprof.py

where the alprof.py file contains
the following commands:

apps = AdminApp.list()
print "Applications currently
installed:\n " + apps

Example output:

WASX72091: Connected to process
"serverl" on node myhost
isjng SOAP connector; The
ype’ of process is:
UnManagedProcess
Applications currently installed:
adminconsole
DefaultApplication
ivtApp
WASX70291: For help, enter:
"Help.help()"
wsadmin>

Chapter 6. Using scripting (wsadmin)

127

To run scripting commands
in a profile script, run the
wsadmin tool with the
-profile option, and include
the commands that you
want to run into the profile
script.

To customize the script
environment, specify one or
more profile scripts to run.

Scripting: Resources for learning

Use the following links to find relevant supplemental information about the Jacl
and Jython scripting languages, and about using scripting with WebSphere
Application Server. The information resides on IBM and non-IBM Internet sites,
whose sponsors control the technical accuracy of the information.

These links are provided for convenience. Often, the information is not specific to
the IBM WebSphere Application Server product, but is useful all or in part for
understanding the product. When possible, links are provided to technical papers
and Redbooks that supplement the broad coverage of the release documentation
with in-depth examinations of particular product areas.

Programming instructions and examples

* [Java command language

* [Jacl: A Tcl implementation in Javal

+ |Charming Jython|

+ [Jython|

* |Sample scripts for WebSphere Application Server]

Deploying applications using scripting

This topic contains the following tasks:

+ |Installing applications|

¢ |Uninstalling applicationg

Installing applications with the wsadmin tool

Before starting this task, the wsadmin tool must be running. See the [“Starting the

|wsadmin scripting client” on page 123| article for more information.

On a single server installation, the server must be running before you install an
application. See the|“Starting servers using scripting” on page 180|article for more
information. On a network deployment installation, the deployment manager must

be running before you install an application. See the [‘startManager command” on|
rticle for more information.

You can install the application in batch mode, using the install command, or you
can install the application in interactive mode using the installinteractive
command. Interactive mode prompts you through a series of tasks to provide
information. Both the install command and the installinteractive command
support a set of options. See the [“Options for the AdminApp obiject install |
linstallnteractive, edit, editInteractive, update, and updatelnteractive commands”|
on page 345

128 1BM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

http://utenti.lycos.it/yanorel6/2/ch55.htm
http://www.usenix.org/publications/library/proceedings/tcl97/full_papers/lam/lam.pdf
http://www-106.ibm.com/developerworks/java/library/j-jython.html
http://www.jython.org
http://www-106.ibm.com/developerworks/websphere/library/samples/SampleScripts.html

article for a list of valid options for the install and installinteractive
commands. You can also obtain a list of supported options for an Enterprise
Archive (EAR) file using the options command, for example:

Using Jacl:
$AdminApp options

Using Jython:
AdminApp.options()

For more information for the options, install, or installinteractive commands, see
the [“Commands for the AdminApp object” on page 317|article.

The application that you install must be an enterprise archive file (EAR), a Web
archive (WAR) file, or a Java archive (JAR) file. The archive file must end in .ear,
.jar or .war for the wsadmin tool to be able to install it. The wsadmin tool uses
these extensions to figure out the archive type. If the file is a WAR or JAR file, it
will be automatically wrapped as an EAR file.

If you are installing an application that has the AdminApp
useMetaDataFromBinary option specified, then you can only install this application
on a WebSphere Application Server V6.x deployment target. This also applies to
editing the application, using the AdminApp edit command, after you install it. If
you use the V5.x wsadmin tool to install or edit an application on a WebSphere
Application Server V6.x cell, only the steps available for the V5.x wsadmin tool
will be shown.

Perform the following steps to install an application into the run time:
1. Install the application.
* Using batch mode:

— For a single server installation only, the following example uses the EAR
file and the command option information to install the application:

- Using Jacl:

$AdminApp install MyStuff/applicationl.ear {-server serv2}
- Using Jython list:

AdminApp.install('MyStuff/applicationl.ear', ['-server', 'serv2'])
- Using Jython string:

AdminApp.install('MyStuff/applicationl.ear', '[-server serv2]')

where:

$ is a Jacl operator for substituting a variable
name with its value

AdminApp is an object supporting application object
management

install is an AdminApp command

MyStuff/application].ear is the name of the application to install

server is an installation option

serv2 is the value of the server option

— For a network deployment installation only, the following command uses
the EAR file and the command option information to install the
application on a cluster:

Chapter 6. Using scripting (wsadmin) 129

- Using Jacl:

$AdminApp install MyStuff/applicationl.ear {-cluster clusterl}
- Using Jython list:

AdminApp.install('MyStuff/applicationl.ear', ['-cluster', 'clusterl'])
- Using Jython string:

AdminApp.install('MyStuff/applicationl.ear', '[-cluster clusterl]')

where:

$ is a Jacl operator for substituting a variable
name with its value

AdminApp is an object allowing application objects to
be managed

install is an AdminApp command

MyStuff/application].ear is the name of the application to install

cluster is an installation option

clusterl the value of the cluster option which will be
cluster name

* Using interactive mode, the following command changes the application
information by prompting you through a series of installation tasks:

— Using Jacl:
$AdminApp installlnteractive MyStuff/applicationl.ear
— Using Jython:
AdminApp.installInteractive('MyStuff/applicationl.ear")
where:
$ is a Jacl operator for substituting a variable
name with its value
AdminApp is an object allowing application objects to
be managed
installInteractive is an AdminApp command
MyStuff/application].ear is the name of the application to install

2. Save the configuration changes. See the[“Saving configuration changes with the]
[wsadmin tool” on page 102 article for more information.

3. In a network deployment environment only, synchronize the node. See the
[“Synchronizing nodes with the wsadmin tool” on page 86| article for more
information.

Uninstalling applications with the wsadmin tool
Before starting this task, the wsadmin tool must be running. See

wsadmin scripting client” on page 123 for more information.

Steps to uninstall an application follow:
1. Uninstall the application:

Specify the name of the application you want to uninstall, not the name of the
Enterprise ARchive (EAR) file.

* Using Jacl:
$AdminApp uninstall applicationl

130 1BM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

* Using Jython:
AdminApp.uninstall('applicationl')

where:
$ is a Jacl operator for substituting a variable
name with its value
AdminApp is an object supporting application objects
management
uninstall is an AdminApp command
applicationl is the name of the application to uninstall

2. Save the configuration changes. See the [“Saving configuration changes with the|
[wsadmin tool” on page 102 article for more information.

3. In a network deployment environment only, synchronize the node. See the
[“Synchronizing nodes with the wsadmin tool” on page 86| article for more
information.

Uninstalling an application removes it from the WebSphere Application Server
configuration and from all the servers that the application was installed on. The
application binaries (EAR file contents) are deleted from the installation directory.
This occurs when the configuration is saved for single server WebSphere
Application Server editions or when the configuration changes are synchronized
from deployment manager to the individual nodes for network deployment
configurations.

Managing deployed applications using scripting

This topic contains the following tasks:

+ |“Starting applications with scripting”]

* |"Updating installed applications with the wsadmin tool” on page 132|

« |“Stopping applications with scripting” on page 136|

« |"Listing the modules in an installed application with scripting” on page 137

* [“Querying the application state using scripting” on page 142

« |"Configuring applications for session management using scripting” on page 142|

+ |"Configuring applications for session management in Web modules using|
scripting” on page 145)|

* |“Exporting applications using scripting” on page 149

« |"Configuring a shared library using scripting” on page 150)

« |[“Configuring a shared library for an application using scripting” on page 153|

* |“Setting background applications using scripting” on page 15

Starting applications with scripting

Before starting this task, the wsadmin tool must be running. See the [“Starting the|
wsadmin scripting client” on page 123 article for more information.

You must install the application before starting it. See the [‘Installing applicationg]
fwith the wsadmin tool” on page 128§ article for more information.

Perform the following steps to start an application:

Chapter 6. Using scripting (wsadmin) 131

1. Identify the application manager MBean for the server where the application
resides and assign it the appManager variable. The following example returns
the name of the application manager MBean.

+ Using Jacl:
set appManager [$AdminControl queryNames cell=mycell,node=mynode,type=
ApplicationManager ,process=serverl,*]
* Using Jython:
appManager = AdminControl.queryNames('cell=mycell,node=mynode,type=

ApplicationManager ,process=serverl,*"')
print appManager

where:

set is a Jacl command

appManager is a variable name

$ is a Jacl operator for substituting a variable
name with its value

AdminControl is an object that enables the manipulation of
MBeans running in a WebSphere Application
Server process

queryNames is an AdminControl command

cell=mycell,node=mynode,type= is the hierarchical containment path of the

ApplicationManager,process=serverl configuration object

print is a Jython command

Example output:

WebSphere:cell=mycell,name=ApplicationManager,mbeanldentifier=ApplicationManager,
type=ApplicationManager,node=mynode,process=serverl

2. Start the application. The following example invokes the startApplication
operation on the MBean, providing the application name that you want to start.

* Using Jacl:
$AdminControl invoke $appManager startApplication myApplication
* Using Jython:
AdminControl.invoke(appManager, 'startApplication', 'myApplication')

where:

$ is a Jacl operator for substituting a variable
name with its value

AdminControl is an object that enables the manipulation of
MBeans running in a WebSphere Application
Server process

invoke is an AdminControl command

appManager evaluates to the ID of the server that is
specified in step number 1

startApplication is an attribute of the modify command

myApplication is the value of the startApplication attribute

Updating installed applications with the wsadmin tool

Before starting this task, the wsadmin tool must be running. See the [“Starting the
fwsadmin scripting client” on page 123| article for more information.

132 1BM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

Before starting an application, it must be installed. See the [“Installing applications

fwith the wsadmin tool” on page 128 article for more information.

Both the update command and the updateinteractive command support a set of

options. See the [‘Options for the AdminApp obiject install, installInteractive, edit)

editInteractive, update, and updatelnteractive commands” on page 345 article for a

list of valid options for the update and updateinteractive commands. You can also
obtain a list of supported options for an Enterprise Archive (EAR) file using the

options command, for example:

Using Jacl:
$AdminApp options

Using Jython:
print AdminApp.options()

For more information for the options, update, or updateinteractive commands, see

the [“Commands for the AdminApp object” on page 317|article. Perform the

following steps to update an application:

1. Update the installed application using one of the following options:

* The following command updates a single file in a deployed application:

— Using Jacl:

$AdminApp update appl file {-operation update -contents
/apps/appl/my.xml -contenturi appl.jar/my.xml}

- Using Jython string:

AdminApp.update('appl', 'file', '[-operation update -contents
/apps/appl/my.xml -contenturi appl.jar/my.xml]")

— Using Jython list:

AdminApp.update('appl', 'file', ['-operation', 'update', '-contents',
'/apps/appl/my.xml', '-contenturi', 'appl.jar/my.xml1'])

where:

$ is a Jacl operator for substituting a variable
name with its value

AdminApp is an object that supports application objects
management

update is an AdminApp command

appl is the name of the application to update

file is the content type value

operation is an option of the update command

update is the value of the operation option

contents is an option of the update command

/apps/appl/my.xml is the value of the contents option

contenturi is an option of the update command

appl.jar/my.xml is the value of the contenturi option

* The following command adds a module to the deployed application, if the
module does not exist. Otherwise, the existing module is updated.

- Using Jacl:

Chapter 6. Using scripting (wsadmin) 133

$AdminApp update appl modulefile {-operation addupdate -contents
/apps/appl/Increment.jar -contenturi Increment.jar -nodeployejb
-BindJndiForEJBNonMessageBinding {{"Increment Enterprise Java Bean"
Increment Increment.jar,META-INF/ejb-jar.xml Inc}}}

— Using Jython string:

AdminApp.update('appl', 'modulefile', '[-operation addupdate -contents
/apps/appl/Increment.jar -contenturi Increment.jar -nodeployejb
-BindJndiForEJBNonMessageBinding [["Increment Enterprise Java Bean

" Increment Increment.jar,META-INF/ejb-jar.xml Inc]]]"')

— Using Jython list:
bindJndiForEJBValue = [["Increment Enterprise Java Bean",
"Increment", " Increment.jar,META-INF/ejb-jar.xm1", "Inc"]]

AdminApp.update('appl', 'modulefile', ['-operation', 'addupdate', '-contents',
'/apps/appl/Increment.jar', '-contenturi','Increment.jar' '-nodeployejb',
“-BindJndiForEJBNonMessageBinding', bindJndiForEJBValue])

where:

$ is a Jacl operator for substituting a variable
name with its value

AdminApp is an object that supports application objects
management

update is an AdminApp command

appl is the name of the application to update

modulefile is the content type value

operation is an option of the update command

addupdate is the value of the operation option

contents is an option of the update command

/apps/appl/Increment.jar is the value of the contents option

contenturi is an option of the update command

Increment.jar is the value of the contenturi option

nodeployejb is an option of the update command

BindJndiForEJBNonMessageBinding is an option of the update command

"Increment Enterprise Java Bean” is the value of the

Increment Increment.jar,META-INF/ejb- Bind]ndiForEJBNonMessageBinding option

jar.xml Inc

bindJndiForEJBValue is a Jython variable that contains the value
of the BindJndiForEJBNonMessageBinding
option

* The following command uses a partial application to update a deployed
application:
— Using Jacl:
$AdminApp update appl partialapp {-contents /apps/appl/applPartial.zip}
- Using Jython string:
AdminApp.update('appl', 'partialapp', '[-contents /apps/appl/applPartial.zip]')
- Using Jython list:
AdminApp.update('appl', 'partialapp', ['-contents', '/apps/appl/applPartial.zip'])

134 1BM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

where:

$ is a Jacl operator for substituting a variable
name with its value

AdminApp is an object that supports application objects
management

update is an AdminApp command

appl is the name of the application to update

partialapp is the content type value

contents is an option of the update command

/apps/appl/applPartial.zip is the value of the contents option

* The following command updates the entire deployed application:
- Using Jacl:

$AdminApp update appl app {-operation update -contents /apps/appl/newAppl.jar
-usedefaultbindings -nodeployejb -BindJndiForEJBNonMessageBinding
{{"Increment Enterprise Java Bean" Increment Increment.jar,META-INF/ejb-jar.xml Inc}}}

— Using Jython string:

AdminApp.update('appl', 'app', '[-operation update -contents /apps/appl/newAppl.ear
-usedefaultbindings -nodeployejb -BindJndiForEJBNonMessageBinding
[["Increment Enterprise Java Bean" Increment Increment.jar,META-INF/ejb-jar.xml Inc]]]"')

- Using Jython list:
bindJndiForEJBValue = [["Increment Enterprise Java Bean", "Increment",
" Increment.jar,META-INF/ejb-jar.xm1", "Inc"]]

AdminApp.update('appl', 'app', ['-operation', 'update', '-contents',
'/apps/appl/NewAppl.ear', '-usedefaultbindings', '-nodeployejb',
“-BindJIndiForEJBNonMessageBinding', bindJndiForEJBValue])

where:

$ is a Jacl operator for substituting a variable
name with its value

AdminApp is an object that supports application objects
management

update is an AdminApp command

appl is the name of the application to update

app is the content type value

operation is an option of the update command

update is the value of the operation option

contents is an option of the update command

/apps/appl/newAppl.ear is the value of the contents option

usedefaultbindings is an option of the update command

nodeployejb is an option of the update command

BindJndiForEJBNonMessageBinding is an option of the update command

"Increment Enterprise Java Bean” is the value of the

Increment Increment.jar,META-INF/ejb- BindJndiForEJBNonMessageBinding option

jar.xml Inc

bindJndiForEJBValue is a Jython variable containing the value of
the BindJndiForEJBNonMessageBinding
option

Chapter 6. Using scripting (wsadmin) 135

2. Save the configuration changes. See the|“Saving configuration changes with thel
[wsadmin tool” on page 102 article for more information.

3. In a Network Deployment environment only, synchronize the node. See the
[“Synchronizing nodes with the wsadmin tool” on page 86| article for more
information.

Stopping applications with scripting

Before starting this task, the wsadmin tool must be running. See the [“Starting the

[wsadmin scripting client” on page 123|article for more information.

The following example stops all running applications on a server:

1. Identify the application manager MBean for the server where the application
resides, and assign it to the appManager variable.

* Using Jacl:
set appManager [$AdminControl queryNames cell=mycell,node=mynode,type=
ApplicationManager ,process=serverl,*]

* Using Jython:

appManager = AdminControl.queryNames('cell=mycell,node=mynode,type=
ApplicationManager ,process=serverl,*")
print appManager

where:

set is a Jacl command

appManager is a variable name

$ is a Jacl operator for substituting a variable
name with its value

AdminControl is an object that enables the manipulation of
MBeans running in a WebSphere server
process

queryNames is an AdminControl command

cell=mycell,node=mynode,type= is the hierarchical containment path of the

ApplicationManager,process=serverl configuration object

print is a Jython command

This command returns the application manager MBean.
Example output:

WebSphere:cell=mycell,name=ApplicationManager,mbeanldentifier=ApplicationManager,
type=ApplicationManager,node=mynode,process=serverl

2. Query the running applications belonging to this server and assign the result to
the apps variable.

* Using Jacl:
set apps [$AdminControl queryNames cell=mycell,node=mynode,type=Application,
process=serverl,x*]

* Using Jython:

get Tine separator
import java.lang.System as sys
TineSeparator = sys.getProperty('line.separator')

apps = AdminControl.queryNames('cell=mycell,node=mynode,type=Application,
process=serverl,*').split(1ineSeparator)
print apps

136 1BM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

where:

set is a Jacl command

apps is a variable name

$ is a Jacl operator for substituting a variable
name with its value

AdminControl is an object that enables the manipulation of
MBeans running in a WebSphere server
process

queryNames is an AdminControl command

cell=mycell,node=mynode,type= is the hierarchical containment path of the

ApplicationManager,process=serverl configuration object

print is a Jython command

This command returns a list of application MBeans.

Example output:

WebSphere:cell=mycell,name=adminconsole,mbeanldentifier=deployment.xml
#ApplicationDeployment_1,type=Application,node=mynode,Server=serverl,

process=serverl,J2EEName=adminconsole

WebSphere:cell=mycell,name=filetransfer,mbeanldentifier=deployment.xml
#ApplicationDeployment_1,type=Application,node=mynode,Server=serverl,

process=serverl,J2EEName=filetransfer
3. Stop all the running applications.
* Using Jacl:
foreach app $apps {

set appName [$AdminControl getAttribute $app name]
$AdminControl invoke $appManager stopApplication $appName}

¢ Using Jython:
for app in apps:

appName = AdminControl.getAttribute(app, 'name')

AdminControl.invoke(appManager,

"stopApplication', appName)

This command stops all the running applications by invoking the
stopApplication operation on the MBean, passing in the application name to

stop.

Once you complete the steps for this task, all running applications on the server

are stopped.
Related concepts

[’ AdminControl object for scripted administration” on page 77|

Related tasks

[Starting applications with scripting” on page 131

Related reference

[“Commands for the AdminControl object” on page 292|

Listing the modules in an installed application with scripting

Before starting this task, the wsadmin tool must be running. See the [“Starting the

wsadmin scripting client” on page 123|article for more information.

Use the AdminApp object listModules command to list the modules in an

installed application. For example:
* Using Jacl:

Chapter 6. Using scripting (wsadmin) 137

$AdminApp listModules DefaultApplication -server
 Using Jython:
print AdminApp.listModules('DefaultApplication', '-server')

where:

$ is a Jacl operator for substituting a variable
name with its value

print is a Jython command

AdminApp is an object that supports application object
management

listmodules is an AdminApp command

DefaultApplication is the name of the application

-server is an optional option specified

Example output:

DefaultApplication#IncCMP11.jar+META-INF/ejb-jar.xml#WebSphere:cell=mycell,node=
mynode,server=myserver
DefaultApplication#DefaultWebApplication.war+WEB-INF/web.xml#WebSphere:cell=
mycell,node=mynode,server=myserver

Example: Listing the modules in an application server

The following example lists all modules on all enterprise applications installed on
serverl in nodel:

Note: * means that the module is installed on serverl node nodel and other node
and/or server.

+ means that the module is installed on serverl node nodel only means that
the module is not installed on serverl node nodel.

I et T et

2 # setting up variables to keep server name and node name
I e P Enn e L e PP e
4 set serverName serverl
5 set nodeName nodel
B A e
7 # setting up 2 global lists to keep the modules
8 e -
9 set ejbList {}
10 set webList {}

11

12 frmmm e m e e

13 # gets all deployment objects and assigned it to deployments variable

J e et

15 set deployments [$AdminConfig getid /Deployment:/]

16

17 fmmm e m e e e

18 # lines 22 thru 148 Iterates through all the deployment objects to get the modules
19 # and perform filtering to list application that has at Teast one module installed
20 # in serverl in node myNode

73
22 foreach deployment $deployments {

23

24 B mmm s
25 # reset the lists that hold modules for each application

26 B

27 set webList {}
28 set ejbList {}

138 1BM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

e e
get the application name

e o e

set appName [Tindex [split $deployment (] 0]

o e e

get the deployedObjects
e

set depObject [$AdminConfig showAttribute $deployment deployedObject]
B

get all modules in the application

o e

initialize lists to save all the modules in the appropriate list to
where they belong

set modServerMatch {}
set modServerMoreMatch {}
set modServerNotMatch {}

o o o e
lines 55 to 112 jterate through all modules to get the targetMappings

o o el
foreach module $modules {

setting up some flag to do some filtering and get modules for
serverl on nodel

set sameNodeSameServer "false"
set diffNodeSameServer "false"
set sameNodeDiffServer "false"
set diffNodeDiffServer "false"

¥ get the targetiapings
(et targetiaps [1index [Shdminontia shovAttribute Smodule targethappings]
o o
lines 72 to 111 iterate through all targetMappings to get the target
Torench targethap Stargetiaps (T
Voot the traet
i;E-E;;é;E-Ei&&%;;éga;;é-;;;&AEtribute $targetMap target]
o ccccmmccee-
i do filtering to skip ClusteredTargets

set targetName [lindex [split $target #] 1]
if {[regexp "ClusteredTarget" $targetName] != 1} {
set sName [$AdminConfig showAttribute $target name]
set nName [$AdminConfig showAttribute $target nodeName]

if {§sName == §serverName}
if {$nName == $nodeName} {
set sameNodeSameServer "true"
} else {
set diffNodeSameServer "true"

Chapter 6. Using scripting (wsadmin) 139

95 } else {
96 Fmm
97 # do the node name match
98 e
99 if {$nName == $nodeName} {
100 set sameNodeDiffServer "true"
101 } else {
102 set diffNodeDiffServer "true"
103 }
104 }
105
106 if {$sameNodeSameServer == "true"} {
107 if {$sameNodeDiffServer == "true" || $diffNodeDiffServer
== "true" || $diffNodeSameServer == "true"} {
108 break
109 }
110 }
111 }
112 }
113
114 [e
115 # put it in the appropriate list
116 Fmmm e -
117 if {$sameNodeSameServer == "true"} {
118 if {$diffNodeDiffServer == "true" || $diffNodeSameServer == "true"
|| $sameNodeDiffServer == "true"} {
119 set modServerMoreMatch [Tinsert $modServerMoreMatch end
[$AdminConfig showAttribute $module uri]]
120 } else {
121 set modServerMatch [linsert $modServerMatch end
[$AdminConfig showAttribute $module uri]]
122 }
123 } else {
124 set modServerNotMatch [linsert $modServerNotMatch end
[$AdminConfig showAttribute $module uri]]
125 }
126 }
127
128
129 #mmm e e
130 # print the output with some notation as a mark
131 fmmmmm -
132 if {$modServerMatch != {} || $modServerMoreMatch != {}} {
133 puts stdout "\tApplication name: $appName"
134}
135
136 #mmmmmm o -
137 # do grouping to appropriate module and print
138 o mmmm e
139 if {$modServerMatch != {}} {
140 filterAndPrint $modServerMatch "+"
141 }
142 if {$modServerMoreMatch != {}} {
143 filterAndPrint $modServerMoreMatch "="
144

1
145 if {($modServerMatch != {} || $modServerMoreMatch !=
{}) "" $modServerNotMatch != {}} {
146 filterAndPrint $modServerNotMatch ""
147 '}
148}
149
150
151 proc filterAndPrint {lists flag} {
152 global webList
153 global ejbList
154 set webExists "false"

140 1BM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

155 set ejbExists "false"

156

157 et it
158 # If 1list already exists, flag it so as not to print

the title more then once

159 # and reset the 1ist

160 e it
161 if {$webList != {}} {

162 set webExists "true"

163 set webList {}

164 }

165 if {$ejbList !'= {}} {

166 set ejbExists "true"

167 set ejbList {}

168 }

169

170 [e i
171 # do some filtering for web modules and ejb modules

172 Fmm e -
173 foreach list $Tists {

174 set temp [lindex [split $list .] 1]

175 if {$temp == "war"} {

176 set webList [Tinsert $webList end §$1ist]

177 } elseif {$temp == "jar"} {

178 set ejbList [Tinsert $ejbList end §$1ist]

179 }

180 }

181

182 fmmmm e e

183 # sort the 1ist before printing

184 e

185 set webList [1sort -dictionary $webList]

186 set ejbList [1sort -dictionary $ejbList]

187

188 e L L L
189 # print out all the web modules installed in serverl

190 o m e e
191 if {$webList !'= {}} {

192 if {$webExists == "false"} {

193 puts stdout "\t\tWeb Modules:"

194 }

195 foreach web $webList {

196 puts stdout "\t\t\t$web $flag"

197 }

198 }

199

200 o m e
201 # print out all the ejb modules installed in serverl

202 e
203 if {$ejbList != {}} {

204 if {$ejbExists == "false"} {

205 puts stdout "\t\tEJB Modules:"

206 }

207 foreach ejb $ejbList {

208 puts stdout "\t\t\t$ejb $flag"

209 }

210 }

211}

Example output for serverl on node nodel:
Application name: TEST1
EJB Modules:
depTmtest.jar +
Web Modules:
mtcomps.war *
Application name: TEST2
Web Modules:

Chapter 6. Using scripting (wsadmin)

141

mtcomps.war +
EJB Modules:
depimtest.jar +
Application name: TEST3
Web Modules:
mtcomps.war *
EJB Modules:
depimtest.jar =
Application name: TEST4
EJB Modules:
depimtest.jar =
Web Modules:
mtcomps.war

Querying the application state using scripting

Before starting this task, the wsadmin tool must be running. See the [“Starting the

fwsadmin scripting client” on page 123 article for more information.

The following example queries the presence of the Application MBean to find out
whether the application is running.

Using Jacl:

$AdminControl completeObjectName type=Application,name=myApplication,x

Using Jython:

print AdminControl.completeObjectName('type=Application,name=myApplication,*")

where:

$ is a Jacl operator for substituting a variable
name with its value

AdminControl is an object that enables the manipulation of
MBeans running in a WebSphere Application
Server process

completeObjectName is an AdminControl command

type=Application,name=myApplication is the hierarchical containment path of the
configuration object

print is a Jython command

If myApplication is running, then an MBean is created. Otherwise, the command
returns nothing. If myApplication is running, the output would resemble the
following:

WebSphere:cell=mycell,name=myApplication,mbeanIdentifier=cells/mycell/applications/
myApplication.ear/deployments/myApplication/deployment.xml#ApplicationDeployment 1,
type=Application,node=mynode,Server=dmgr,process=dmgr,J2EEName=myAppTication

Configuring applications for session management using
scripting

Before starting this task, the wsadmin tool must be running. See the [“Starting the

fwsadmin scripting client” on page 123|article for more information.

142 1BM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

You can use the AdminApp object to set configurations in an application. Some
configuration settings are not available through the AdminApp object. The
following task provides an example that uses the AdminConfig object to configure
a session manager for the application.

1. Identify the deployment configuration object for the application and assign it to
the deployment variable. For example:

¢ Using Jacl:
set deployments [$AdminConfig getid /Deployment:myApp/]
* Using Jython:

deployments = AdminConfig.getid('/Deployment:myApp/")
print deployments

where:

set is a Jacl command

deployments is a variable name

$ is a Jacl operator for substituting a variable
name with its value

AdminConfig is an object representing the WebSphere
Application Server configuration

getid is an AdminConfig command

Deployment is an attribute

myApp is the value of the attribute

Example output:
myApp (cells/mycell/applications/myApp.ear/deployments/myApp|deployment.xml#Deployment 1)

2. Retrieve the application deployment object and assign it to the appDeploy
variable. For example:

* Using Jacl:
set appDeploy [$AdminConfig showAttribute $deployments deployedObject]
* Using Jython:

appDeploy = AdminConfig.showAttribute(deployments, 'deployedObject')
print appDeploy

where:

set is a Jacl command

appDepTloy is a variable name

$ is a Jacl operator for substituting a variable
name with its value

AdminConfig is an object that represents the WebSphere
Application Server configuration

showAttribute is an AdminConfig command

deployments evaluates the ID of the deployment object
that is specified in step number 1

deployedObject is an attribute

Example output:
(cells/mycell/applications/myApp.ear/deployments/myApp|deployment.xml#ApplicationDeployment 1)

3. To obtain a list of attributes that you can set for a session manager, use the
attributes command. For example:

Chapter 6. Using scripting (wsadmin) 143

* Using Jacl:
$AdminConfig attributes SessionManager
* Using Jython:
print AdminConfig.attributes('SessionManager')

where:
$ is a Jacl operator for substituting a variable
name with its value
AdminConfig is an object that represents the WebSphere
Application Server configuration
attributes is an AdminConfig command
SessionManager is an attribute

Example output:

"accessSessionOnTimeout Boolean"
"allowSerializedSessionAccess Boolean"

"context ServiceContext@"

"defaultCookieSettings Cookie"

"enable Boolean"

"enableCookies Boolean"

"enableProtocolSwitchRewriting Boolean"
"enableSSLTracking Boolean"

"enableSecurityIntegration Boolean"

"enableUrl1Rewriting Boolean"

"maxWaitTime Integer"

"properties Property(TypedProperty)=*"
"sessionDRSPersistence DRSSettings"
"sessionDatabasePersistence SessionDatabasePersistence"
"sessionPersistenceMode ENUM(DATABASE, DATA REPLICATION, NONE)"
"tuningParams TuningParams"

4. Set up the attributes for the session manager. The following example sets three
top-level attributes in the session manager. You can modify the example to set
other attributes of the session manager, including the nested attributes in
Cookie, DRSSettings, SessionDataPersistence, and TuningParms object types. To
list the attributes for those object types, use the attributes command of the
AdminConfig object.

* Using Jacl:
set attrl [list enableSecurityIntegration true]
set attr2 [list maxWaitTime 30]
set attr3 [Tist sessionPersistenceMode NONE]

set attrs [list $attrl $attr2 $attr3]
set sessionMgr [Tist sessionManagement $attrs]

Example output using Jacl:
sessionManagement {{enableSecurityIntegration true} {maxWaitTime 30}
{sessionPersistenceMode NONE}}

* Using Jython:

attrl = ['enableSecurityIntegration', 'true']
attr2 = ['maxWaitTime', 30]

attr3 = ['sessionPersistenceMode', 'NONE']
attrs = [attrl, attr2, attr3]

sessionMgr = [['sessionManagement', attrs]]

Example output using Jython:

[[sessionManagement, [[enableSecurityIntegration, true], [maxWaitTime, 30],
[sessionPersistenceMode, NONE]]]

144 1BM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

where:

set is a Jacl command

attrl, attr2, attr3, attrs, sessionMgr are variable names

$ is a Jacl operator for substituting a variable
name with its value

enableSecurityIntegration is an attribute

true is a value of the enableSecurityIntegration
attribute

maxWaitTime is an attribute

30 is a value of the maxWaitTime attribute

sessionPersistenceMode is an attribute

NONE is a value of the sessionPersistenceMode
attribute

5. Create the session manager for the application. For example:
* Using Jacl:
$AdminConfig create ApplicationConfig $appDeploy [list $sessionMgr]
* Using Jython:
print AdminConfig.create('ApplicationConfig', appDeploy, sessionMgr)

where:

$ is a Jacl operator for substituting a variable
name with its value

AdminConfig is an object that represents the WebSphere
Application Server configuration

create is an AdminConfig command

ApplicationConfig is an attribute

appDeploy evaluates the ID of the deployed application
that is specified in step number 2

list is a Jacl command

sessionMgr evaluates the ID of the session manager that
is specified in step number 4

Example output:
(cells/mycell/applications/myApp.ear/deployments/myApp|deployment.xml#ApplicationConfig 1)

6. Save the configuration changes. See the [“Saving configuration changes with the|
[wsadmin tool” on page 102 article for more information.

7. In a Network Deployment environment only, synchronize the node. See the
[“Synchronizing nodes with the wsadmin tool” on page 86| article for more
information.

Configuring applications for session management in Web
modules using scripting

Before starting this task, the wsadmin tool must be running. See the [“Starting the|

fwsadmin scripting client” on page 123 article for more information.

Chapter 6. Using scripting (wsadmin) 145

146

You can use the AdminApp object to set configurations in an application. Some
configuration settings are not available through the AdminApp object. The
following task uses the AdminConfig object to configure a session manager for a
Web module in the application.

1. Identify the deployment configuration object for the application and assign it to
the deployment variable. For example:

¢ Using Jacl:
set deployments [$AdminConfig getid /Deployment:myApp/]
* Using Jython:

deployments = AdminConfig.getid('/Deployment:myApp/")
print deployments

where:

set is a Jacl command

deployments is a variable name

$ is a Jacl operator for substituting a variable
name with its value

AdminConfig is an object that represents the WebSphere
Application Server configuration

getid is an AdminConfig command

Deployment is an attribute

myApp is the value of the attribute

Example output:
myApp(cells/mycell/applications/myApp.ear/deployments/myApp|deployment.xml#Deployment 1)

2. Get all the modules in the application and assign them to the modules variable.
For example:

* Using Jacl:
set appDeploy [$AdminConfig showAttribute $deployments deployedObject]
set modl [$AdminConfig showAttribute $appDeploy modules]
Example output:

(cel1s/mycell/applications/myApp.ear/deployments/myApp:deployment.xml#WebModuleDeployment 1)
(cel1s/mycell/applications/myApp.ear/deployments/myApp:deployment.xml#EJBModuleDeployment 1)
(cells/mycell/applications/myApp.ear/deployments/myApp:deployment.xml#WebModuleDeployment 2)

* Using Jython:

appDeploy = AdminConfig.showAttribute(deployments, 'deployedObject')
modl = AdminConfig.showAttribute(appDeploy, 'modules')
print modl

Example output:

[(cells/mycell/applications/myApp.ear/deployments/myApp|deployment.xml#WebModuleDeployment 1)
(cells/mycell/applications/myApp.ear/deployments/myApp|deployment.xm]#EJBModuleDeployment 1)
(cel1s/mycell/applications/myApp.ear/deployments/myApp|deployment.xml#EJBModuleDeployment 2)]

where:

set is a Jacl command

appDeploy is a variable name

mod1 is a variable name

$ is a Jacl operator for substituting a variable
name with its value

AdminConfig is an object that represents the WebSphere
Application Server configuration

IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

showAttribute is an AdminConfig command

deployments evaluates the ID of the deployment object
that is specified in step number 1

deployedObject is an attribute

3. To obtain a list of attributes that you can set for a session manager, use the
attributes command. For example:

* Using Jacl:
$AdminConfig attributes SessionManager
* Using Jython:
print AdminConfig.attributes('SessionManager')

where:
$ is a Jacl operator for substituting a variable
name with its value
AdminConfig is an object that represents the WebSphere
Application Server configuration
attributes is an AdminConfig command
SessionManager is an attribute

Example output:

"accessSessionOnTimeout Boolean"
"allowSerializedSessionAccess Boolean"

"context ServiceContext@"

"defaultCookieSettings Cookie"

"enable Boolean"

"enableCookies Boolean"

"enableProtocolSwitchRewriting Boolean"
"enableSSLTracking Boolean"

"enableSecurityIntegration Boolean"

"enableUrTRewriting Boolean"

"maxWaitTime Integer"

"properties Property(TypedProperty)=*"
"sessionDRSPersistence DRSSettings"
"sessionDatabasePersistence SessionDatabasePersistence"
"sessionPersistenceMode ENUM(DATABASE, DATA REPLICATION, NONE)"
"tuningParams TuningParams"

4. Set up the attributes for session manager. The following example sets four
top-level attributes in the session manager. You can modify the example to set
other attributes in the session manager, including the nested attributes in
Cookie, DRSSettings, SessionDataPersistence, and TuningParms object types. To
list the attributes for those object types, use the attributes command of
AdminConfig object.

* Using Jacl:

set attr0O [list enable true]

set attrl [Tist enableSecurityIntegration true]

set attr2 [list maxWaitTime 30]

set attr3 [list sessionPersistenceMode NONE]

set attr4 [list enableCookies true]

set attr5 [Tist invalidationTimeout 45]

set tuningParmsDetaillist [list $attr5]

set tuningParamsList [list tuningParams $tuningParmsDetaillist]
set pwdList [Tist password 95ee608]

set userList [list userId Administrator]

set dsNameList [1ist datasourceJNDIName jdbc/session]

set dbPersistencelList [Tist $dsNameList $userList $pwdList]
set sessionDBPersistenceList [1ist $dbPersistencelist]

Chapter 6. Using scripting (wsadmin) 147

set sessionDBPersistenceList [1ist sessionDatabasePersistence $dbPersistencelist]
set kuki [1ist maximumAge 1000]

set cookie [1ist $kuki]

set cookieSettings [list defaultCookieSettings $cookie]

set sessionManagerDetaillList [list $attr0O $attrl $attr2 $attr3 $attrs
$cookieSettings $tuningParamsList $sessionDBPersistencelist]

set sessionMgr [Tist sessionManagement $sessionManagerDetaillList]

set id [$AdminConfig create ApplicationConfig $appDeploy [list $sessionMgr] configs]
set targetMappings [1index [$AdminConfig showAttribute $appDeploy targetMappings] 0]
set attrs [Tist config $id]

$AdminConfig modify $targetMappings [list $attrs]

Example output using Jacl:

sessionManagement {{enableSecurityIntegration true} {maxWaitTime 30}
{sessionPersistenceMode NONE} {enabled true}}

* Using Jython:

attr0 = ['enable', 'true']

attrl = ['enableSecurityIntegration', 'true']

attr2 = ['maxWaitTime', 30]

attr3 = ['sessionPersistenceMode', 'NONE']

attr4 = ['enableCookies', 'true']

attrs5 = ['invalidationTimeout', 45]

tuningParmsDetaillist = [attr5]

tuningParamsList = ['tuningParams', tuningParmsDetaillist]

pwdList = ['password', '95ee608']

userList = ['userId', 'Administrator']

dsNameList = ['datasourceJNDIName', 'jdbc/session']

dbPersistenceList = [dsNamelList, userList, pwdList]

sessionDBPersistencelList = [dbPersistencelist]

sessionDBPersistencelList = ['sessionDatabasePersistence', dbPersistencelList]
kuki = ['maximumAge', 1000]

cookie = [kuki]

cookieSettings = ['defaultCookieSettings', cookie]

sessionManagerDetaillList = [attr0®, attrl, attr2, attr3, attrd4, cookieSettings,
tuningParamsList, sessionDBPersistencelist]

sessionMgr = ['sessionManagement', sessionManagerDetaillist]

id = AdminConfig.create('ApplicationConfig', appDeploy,[sessionMgr], 'configs')
targetMappings = AdminConfig.showAttribute(appDeploy, 'targetMappings')
targetMappings = targetMappings[1l:len(targetMappings)-1]

print targetMappings

attrs = ['config', id]

AdminConfig.modify(targetMappings, [attrs])

Example output using Jython:

[sessionManagement, [[enableSecurityIntegration, true], [maxWaitTime, 30],
[sessionPersistenceMode, NONE]]

5. Set up the attributes for the Web module. For example:
* Using Jacl:

set nameAttr [list name myWebModuleConfig]
set descAttr [list description "Web Module config post create"]
set webAttrs [list $nameAttr $descAttr $sessionMgr]

Example output:

{name myWebModuleConfig} {description {Web Module config post create}}
{sessionManagement {{enableSecurityIntegration true} {maxWaitTime 30}
{sessionPersistenceMode NONE} {enabled true}}}

* Using Jython:

nameAttr = ['name', 'myWebModuleConfig']
descAttr = ['description', "Web Module config post create"]
webAttrs = [nameAttr, descAttr, sessionMgr]

Example output:

148 1BM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

[[name, myWebModuleConfig], [description, "Web Module config post create"],
[sessionManagement, [[enableSecurityIntegration, true], [maxWaitTime, 30],
[sessionPersistenceMode, NONE], [enabled, true]]l]l]

where:
set is a Jacl command
nameAttr, descAttr, webAttrs are variable names
$ is a Jacl operator for substituting a variable
name with its value
name is an attribute
myWebModuleConfig is a value of the name attribute
description is an attribute
Web Module config post create is a value of the description attribute

6. Create the session manager for each Web module in the application. You can

modify the following example to set other attributes of the session manager in
a Web module configuration.

* Using Jacl:

foreach module $modl {
if {[regexp WebModuleDeployment $module] == 1} {
$AdminConfig create WebModuleConfig $module $webAttrs
$AdminConfig save

}
}
* Using Jython:

arrayModules = mod1[1:1en(mod1)-1].split(" ")

for module in arrayModules:

if module.find('WebModuleDeployment') != -1:
AdminConfig.create('WebModuleConfig', module, webAttrs)
Adminconfig.save()

Example output:

myWebModuleConfig(cells/mycell/applications/myApp.ear/deployments/myApp|
deployment.xml#WebModuleConfiguration 1)

Save the configuration changes. See the [“Saving configuration changes with the|
[wsadmin tool” on page 102 article for more information.

8. In a Network Deployment environment only, synchronize the node. See the

[“Synchronizing nodes with the wsadmin tool” on page 86| article for more
information.

Exporting applications using scripting

You can export your applications before you update installed applications or before
you migrate to a different version of the WebSphere Application Server product.

Before starting this task, the wsadmin tool must be running. See the [“Starting the|

fwsadmin scripting client” on page 123|article for more information.

Exporting applications enables you to back them up and preserve their binding

information.

* Export an enterprise application to a location of your choice, for example:
- Using Jacl:

$AdminApp export appl /mystuff/exported.ear
— Using Jython:

Chapter 6. Using scripting (wsadmin) 149

AdminApp.export('appl', '/mystuff/exported.ear')

where:

$ is a Jacl operator for substituting a variable
name with its value

AdminApp is an object allowing application objects
management

export is an AdminApp command

appl is the name of the application that will be
exported

/mystuff/exported.ear is the name of the file where the exported
application will be stored

* Export Data Definition Language (DDL) files in the enterprise bean module of
an application to a destination directory, for example:

— Using Jacl:
$AdminApp exportDDL appl /mystuff
— Using Jython:
AdminApp.exportDDL('appl', '/mystuff"')
where:
$ is a Jacl operator for substituting a variable
name with its value
AdminApp is an object allowing application objects
management
exportDDL is an AdminApp command
appl is the name of the application whose DDL
files will be exported
/mystuff is the name of the directory where the DDL
files export from the application

Configuring a shared library using scripting

Before starting this task, the wsadmin tool must be running. See the [“Starting the

fwsadmin scripting client” on page 123|article for more information.

Perform the following steps to configure an application server to use a shared
library.
1. Identify the server and assign it to the server variable. For example:
* Using Jacl:
set serv [$AdminConfig getid /Cell:mycell/Node:mynode/Server:serverl/]
* Using Jython:
serv = AdminConfig.getid('/Cell:mycell/Node:mynode/Server:serverl/")

print serv
where:
set is a Jacl command
serv is a variable name
$ is a Jacl operator for substituting a variable
name with its value

150 1BM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

AdminConfig

is an object that represents the WebSphere
Application Server configuration

getid is an AdminConfig command
Cell is an attribute

mycell is the value of the attribute
Node is an attribute

mynode is the value of the attribute
Server is an attribute

serverl is the value of the attribute

Example output:

serverl(cells/mycell/nodes/mynode/servers/serverl | server.xml#Server_1)

2. Create the shared library in the server. For example:
+ Using Jacl:
$AdminConfig create Library $serv {{name mySharedLibrary}
{classPath /mySharedLibraryClasspath}}
* Using Jython:
print AdminConfig.create('Library', serv, [['name', 'mySharedLibrary'],
['classPath', '/mySharedLibraryClasspath']])
where:
$ is a Jacl operator for substituting a variable
name with its value
AdminConfig is an object that represents the WebSphere
Application Server configuration
create is an AdminConfig command
Library is an attribute
serv evaluates the ID of the server that is
specified in step number 1
name is an attribute
mySharedLibrary is a value of the name attribute
classPath is an attribute

/mySharedLibraryClasspath

is the value of the classpath attribute

print

is a Jython command

Example output:

MysharedLibrary(cells/mycell/nodes/mynode/servers/serverl|libraries.xml#Library 1)

3. Identify the application server from the server and assign it to the appServer
variable. For example:
 Using Jacl:
set appServer [$AdminConfig Tist ApplicationServer $serv]
* Using Jython:
appServer = AdminConfig.list('ApplicationServer', serv)
print appServer
where:
set is a Jacl command
appServer is a variable name

Chapter 6. Using scripting (wsadmin) 151

152

is a Jacl operator for substituting a variable
name with its value

AdminConfig is an object that represents the WebSphere
Application Server configuration
Tist is an AdminConfig command

ApplicationServer

is an attribute

serv evaluates the ID of the server that is
specified in step number 1
print is a Jython command

Example output:

serverl(cells/mycell/nodes/mynode/servers/serverl|server.xml#ApplicationServer 1

Identify the class loader in the application server and assign it to the

classLoader variable. For example:

* To use the existing class loader that is associated with the server, the
following commands use the first class loader:

Using Jacl:

set classLoad [$AdminConfig showAttribute $appServer classloaders]

set classLoaderl [lindex $classlLoad 0]

Using Jython:

classLoad = AdminConfig.showAttribute(appServer, 'classloaders')
cleanClassLoaders = classLoad[1:1en(classLoad)-1]
classLoaderl = cleanClassLoaders.split(' ')[0]

where:

set

is a Jacl command

classlLoad, classLoaderl

is a variable name

"PARENT_FIRST']])

$ is a Jacl operator for substituting a variable
name with its value
AdminConfig is an object that represents the WebSphere
Application Server configuration
showAttribute is an AdminConfig command
appServer evaluates the ID of the application server
that is specified in step number 3
classloaders is an attribute
print is a Jython command
* To create a new class loader, issue the following command:
— Using Jacl:
set classLoaderl [$AdminConfig create Classloader $appServer {{mode PARENT FIRST}}]
— Using Jython:
classLoaderl = AdminConfig.create('Classloader', appServer, [['mode’,
where:
set is a Jacl command
classLoaderl is a variable name
$ is a Jacl operator for substituting a variable

name with its value

IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

AdminConfig

is an object that represents the WebSphere
Application Server configuration

Create

is an AdminConfig command

Classloader

is an attribute

appServer evaluates the ID of the application server
that is specified in step number 3
mode is an attribute

PARENT_FIRST

is the value of the attribute

print

is a Jython command

Example output:

(cells/mycell/nodes/mynode/servers/serverl|server.xml#Classloader 1)

5. Associate the shared library that you created with the application server

through the class loader. For example:

+ Using Jacl:

$AdminConfig create LibraryRef $classLoaderl {{TibraryName
MyshareLibrary} {sharedClassloader true}}

* Using Jython:

print AdminConfig.create('LibraryRef', classLoaderl, [['TibraryName',

'"MysharelLibrary'],

['sharedClassloader', 'true'l])

where:
$ is a Jacl operator for substituting a variable
name with its value
AdminConfig is an object that represents the WebSphere
Application Server configuration
create is an AdminConfig command
LibraryRef is an attribute

classlLoaderl

evaluates the ID of the class loader that is
specified in step number 4

1ibraryName

is an attribute

Mysharelibrary

is the value of the attribute

sharedClassloader

is an attribute

true

is the value of the attribute

print

is a Jython command

Example output:

(cells/mycell/nodes/mynode/servers/serverl|server.xml#LibraryRef 1)

6. Save the configuration changes. See the [“Saving configuration changes with the|

[wsadmin tool” on page 102 article for more information.

7. In a Network Deployment environment only, synchronize the node. See the

[“Synchronizing nodes with the wsadmin tool” on page 86 article for more

information.

Configuring a shared library for an application using scripting

Before starting this task, the wsadmin tool must be running. See the [“Starting the|

fwsadmin scripting client” on page 123|article for more information.

Chapter 6. Using scripting (wsadmin) 153

You can use the AdminApp object to set certain configurations in the application.
This example uses the AdminConfig object to configure a shared library for an
application.

1. Identify the shared library and assign it to the library variable. You can either
use an existing shared library or create a new one, for example:
¢ To create a new shared library, perform the following steps:
a. Idenitfy the node and assign it to a variable, for example:

— Using Jacl:
set nl1 [$AdminConfig getid /Cell:mycell/Node:mynode/]
— Using Jython:
nl = AdminConfig.getid('/Cell:mycell/Node:mynode/")
print nl
where:
set is a Jacl command
nl is a variable name
$ is a Jacl operator for substituting a variable
name with its value
AdminConfig is an object representing the WebSphere
Application Server configuration
getid is an AdminConfig command
Cell is the object type
mycell is the name of the object that will be
modified
Node is the object type
mynode is the name of the object that will be
modified

Example output:

mynode (cel1s/mycell/nodes/mynode|node.xml#Node 1)

b. Create the shared library in the node. The following example creates a
new shared library in the node scope. You can modify it to use the cell or
server scope.

— Using Jacl:
set Tibrary [$§AdminConfig create Library $nl {{name mySharedLibrary}
{classPath /mySharedLibraryClasspath}}]

- Using Jython:
library = AdminConfig.create('Library', nl, [['name', 'mySharedLibrary'],

['classPath', '/mySharedLibraryClasspath']])
print library

where:

set is a Jacl command

library is a variable name

$ is a Jacl operator for substituting a variable
name with its value

AdminConfig is an object representing the WebSphere
Application Server configuration

create is an AdminConfig command

Library is an AdminConfig object

154 1BM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

nl evaluates to the ID of host node specified in
step number 1

name is an attribute

mySharedLibrary is the value of the name attribute

classPath is an attribute

/mySharedLibraryClasspath

is the value of the classPath attribute

Example output:

MySharedLibrary(cells/mycell/nodes/mynode|libraries.xml#Library 1)
* To use an existing shared library, issue the following command:

— Using Jacl:

set Tibrary [§AdminConfig getid /Library:mySharedLibrary/]

— Using Jython:

Tibrary = AdminConfig.getid('/Library:mySharedLibrary/")

print library

where:

set is a Jacl command

library is a variable name

$ is a Jacl operator for substituting a variable
name with its value

AdminConfig is an object representing the WebSphere
Application Server configuration

getid is an AdminConfig command

Library is an attribute

mySharedLibrary is the value of the Library attribute

Example output:

MySharedLibrary(cells/mycell/nodes/mynode|libraries.xml#Library 1)

2. Identify the deployment configuration object for the application and assign it to

the deployment variable. For example:

+ Using Jacl:

set deployment [$AdminConfig getid /Deployment:myApp/]

* Using Jython:

deployment = AdminConfig.getid('/Deployment:myApp/")

print deployment

where:

set is a Jacl command

deployment is a variable name

$ is a Jacl operator for substituting a variable
name