
WebSphere® Application Server for z/OS, Version 6.0.1

Using the administrative clients

SA23-2208-00

���

Note

Before using this information, be sure to read the general information under “Notices” on page 711.

Compilation date: March 14, 2005

© Copyright International Business Machines Corporation 2005. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

How to send your comments vii

Chapter 1. Overview and new features

for administering applications and their

environments 1

Contents of this section: Administering applications

and their environments 1

Getting started with WebSphere Application Server . 2

Security considerations for WebSphere Application

Server for z/OS 3

Introduction: System administration 7

Introduction: Administrative console 8

Introduction: Administrative scripting (wsadmin) 12

Introduction: Administrative commands 13

Introduction: Administrative programs 14

Introduction: Administrative configuration data 14

Welcome to basic administrative architecture . . 14

Introduction: Servers 16

Introduction: Application servers 16

Introduction: Web servers 17

Introduction: Clusters 18

Introduction: Environment 18

Introduction: Cell-wide settings 19

Introduction: Variables 19

Chapter 2. How do I administer

applications and their environments? . 21

Chapter 3. Using the administrative

clients 29

Chapter 4. Using the administrative

console 31

Starting and logging off the administrative console 31

Login settings 32

Save changes to the master configuration . . . 34

Setting the session timeout for the administrative

console 35

Administrative console areas 35

Taskbar 36

Navigation tree 36

Workspace 36

Administrative console buttons 36

Administrative console page features 40

Administrative console navigation tree actions . . 41

Administrative console taskbar actions 42

Specifying console preferences 43

Preferences settings 43

Administrative console preference settings . . . 44

Administrative console scope settings 45

Accessing help and product information from the

administrative console 46

Administrative console: Resources for learning . . 47

Chapter 5. Using the MVS console . . . 49

Chapter 6. Using scripting (wsadmin) 51

Getting started with scripting 52

Java Management Extensions (JMX) 53

WebSphere Application Server configuration

model 56

Jacl 56

Jython 67

Scripting objects 73

Starting the wsadmin scripting client 123

Scripting: Resources for learning 128

Deploying applications using scripting 128

Installing applications with the wsadmin tool 128

Uninstalling applications with the wsadmin tool 130

Managing deployed applications using scripting 131

Starting applications with scripting 131

Updating installed applications with the

wsadmin tool 132

Stopping applications with scripting 136

Listing the modules in an installed application

with scripting 137

Querying the application state using scripting 142

Configuring applications for session

management using scripting 142

Configuring applications for session

management in Web modules using scripting . 145

Exporting applications using scripting 149

Configuring a shared library using scripting . . 150

Configuring a shared library for an application

using scripting 153

Setting background applications using scripting 157

Configuring servers with scripting 158

Creating a server using scripting 159

Configuring the Java virtual machine using

scripting 159

Configuring enterprise bean containers using

scripting 160

Configuring a Performance Manager

Infrastructure service using scripting 164

Configuring an ORB service using scripting . . 166

Configuring processes using scripting 168

Configuring transaction properties for a server

using scripting 169

Setting port numbers kept in the

serverindex.xml file using scripting 171

Disabling components using scripting 175

Disabling services using scripting 177

Dynamic caching with scripting 178

Configuring connections to Webservers with

scripting 178

Regenerating the node plug-in configuration

using scripting 178

Creating new virtual hosts using templates with

scripting 179

© Copyright IBM Corp. 2005 iii

Managing servers with scripting 180

Stopping a node using scripting 180

Starting servers using scripting 180

Stopping servers using scripting 181

Querying server state using scripting 182

Listing running applications on running servers

using scripting 183

Starting listener ports using scripting 185

Managing generic servers using scripting . . . 186

Setting development mode for server objects

using scripting 187

Disabling parallel startup using scripting . . . 187

Removing multicast endpoints using scripting 188

Obtaining server version information with

scripting 188

Clustering servers with scripting 189

Creating clusters using scripting 190

Creating cluster members using scripting . . . 190

Creating clusters without cluster members using

scripting 191

Starting a cluster using scripting 192

Querying cluster state using scripting 193

Stopping clusters using scripting 193

Configuring security with scripting 193

Enabling and disabling global security using

scripting 194

Enabling and disabling Java 2 security using

scripting 195

Configuring data access with scripting 196

Configuring a JDBC provider using scripting 196

Configuring new data sources using scripting 197

Configuring new connection pools using

scripting 198

Configuring new data source custom properties

using scripting 199

Configuring new J2CAuthentication data entries

using scripting 200

Configuring new WAS40 data sources using

scripting 201

Configuring new WAS40 connection pools using

scripting 202

Configuring new WAS40 custom properties

using scripting 203

Configuring new J2C resource adapters using

scripting 204

Configuring custom properties for J2C resource

adapters using scripting 205

Configuring new J2C connection factories using

scripting 206

Configuring new J2C authentication data entries

using scripting 208

Configuring new J2C activation specs using

scripting 209

Configuring new J2C administrative objects

using scripting 210

Testing data source connections using scripting 212

Configuring messaging with scripting 213

Configuring the message listener service using

scripting 213

Configuring new JMS providers using scripting 214

Configuring new JMS destinations using

scripting 215

Configuring new JMS connections using

scripting 216

Configuring new WebSphere queue connection

factories using scripting 217

Configuring new WebSphere topic connection

factories using scripting 218

Configuring new WebSphere queues using

scripting 219

Configuring new WebSphere topics using

scripting 220

Configuring new MQ queue connection

factories using scripting 222

Configuring new MQ topic connection factories

using scripting 223

Configuring new MQ queues using scripting 224

Configuring new MQ topics using scripting . . 225

Configuring mail, URLs, and resource environment

entries with scripting 226

Configuring new mail providers using scripting 227

Configuring new mail sessions using scripting 228

Configuring new protocols using scripting . . 229

Configuring new custom properties using

scripting 230

Configuring new resource environment

providers using scripting 231

Configuring custom properties for resource

environment providers using scripting 232

Configuring new referenceables using scripting 233

Configuring new resource environment entries

using scripting 234

Configuring custom properties for resource

environment entries using scripting 235

Configuring new URL providers using scripting 236

Configuring custom properties for URL

providers using scripting 237

Configuring new URLs using scripting 238

Configuring custom properties for URLs using

scripting 239

Troubleshooting with scripting 240

Tracing operations with the wsadmin tool . . . 240

Configuring traces using scripting 241

Turning traces on and off in servers processes

using scripting 242

Dumping threads in server processes using

scripting 243

Setting up profile scripts to make tracing easier

using scripting 243

Enabling the Runtime Performance Advisor tool

using scripting 244

Scripting reference material 246

Wsadmin tool 246

Commands for the Help object 250

Commands for the AdminConfig object . . . 265

Commands for the AdminControl object . . . 292

Commands for the AdminApp object 317

Commands for the AdminTask object 412

Administrative command invocation syntax . . 599

Properties used by scripted administration . . 601

iv IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

Chapter 7. Using Ant to automate

tasks 603

ws_ant command 603

Ant tasks for deployment and server operation . . 604

Ant tasks for building application code 604

Chapter 8. Using administrative

programs (JMX) 605

Java Management Extensions 606

Creating a custom Java administrative client

program using WebSphere Application Server

administrative Java APIs 607

Developing an administrative client program 608

Extending the WebSphere Application Server

administrative system with custom MBeans . . . 615

Best practices for standard, dynamic, and open

MBeans 617

Creating and registering standard, dynamic, and

open custom MBeans 618

Java 2 security permissions 621

Java Management Extensions MBean

multiprocess model request flow for WebSphere

Application Server for z/OS 621

Administrative Security 630

Default MBean security policy 631

Defining an explicit MBean security policy . . 632

Developing administrative programs for multiple

Java 2 Platform, Enterprise Edition application

servers 634

Deploying and managing a custom Java

administrative client program with multiple Java 2

Platform, Enterprise Edition application servers . . 637

Migrating Java Management Extensions V1.0 to

Java Management Extensions V1.2 638

Java Management Extensions interoperability . . . 639

Managed object metadata 640

Managing applications through programming . . 641

Installing an application through programming 642

Uninstalling an application through

programming 646

Updating an application through programming 648

Adding to, updating, or deleting part of an

application through programming 651

Preparing a module and adding it to an existing

application through programming 653

Preparing and updating a module through

programming 656

Deleting a module through programming . . . 659

Adding a file through programming 661

Updating a file through programming 663

Deleting a file through programming 665

Chapter 9. Using command line tools 669

Example: Security and the command line tools . . 669

startServer command 670

stopServer command 671

startManager command 672

stopManager command 674

stopNode command 675

START appserver_proc_name command 677

STOP appserver_proc_name command 678

START dmgr_proc_name command 678

STOP dmgr_proc_name command 679

START nodeagent_proc_name command 680

STOP nodeagent_proc_name command 680

addNode command 681

Best practices for adding nodes using command

line tools 684

serverStatus command 685

removeNode command 686

cleanupNode command 687

syncNode command 688

backupConfig command 690

restoreConfig command 691

EARExpander command 692

GenPluginCfg command 693

Chapter 10. Using mvs command line

tools 697

Modify command 697

Example: Canceling application clusters and

servers with the modify command 701

Example: Establishing a general level of trace 701

Example: Setting basic and detailed trace levels 702

Example: Setting specific trace points 702

Example: Excluding specific trace points . . . 702

Example: Resetting to the initial trace settings 703

Example: Turning off tracing 703

Example: Sending the trace to sysprint 703

Example: Displaying servants 703

Example: Displaying trace settings and Java

string trace settings 703

Example: Displaying JVM heap information . . 704

Example: Displaying sessions 705

Example: Displaying status of a server 706

Example: Displaying status of clusters 706

Example: Getting help for the modify command 707

Example: Modifying the Java trace string . . . 708

Display command 708

Example: Displaying active replies 708

Example: Displaying active address spaces . . 708

Example: Displaying the status of address

spaces registered for automatic restart

management 709

Example: Displaying units of work

(transactions) for the Information Management

System 709

Notices 711

Trademarks and service marks 713

Contents v

vi IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

How to send your comments

Your feedback is important in helping to provide the most accurate and highest

quality information.

v To send comments on articles in the WebSphere Application Server Information

Center

1. Display the article in your Web browser and scroll to the end of the article.

2. Click on the Feedback link at the bottom of the article, and a separate

window containing an e-mail form appears.

3. Fill out the e-mail form as instructed, and click on Submit feedback .
v To send comments on PDF books, you can e-mail your comments to:

wasdoc@us.ibm.com or fax them to 919-254-0206.

Be sure to include the document name and number, the WebSphere Application

Server version you are using, and, if applicable, the specific page, table, or figure

number on which you are commenting.

When you send information to IBM, you grant IBM a nonexclusive right to use or

distribute the information in any way it believes appropriate without incurring any

obligation to you.

© Copyright IBM Corp. 2005 vii

viii IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

Chapter 1. Overview and new features for administering

applications and their environments

What is new for administrators

 This topic provides an overview of new and changed features of system

administration.

“Introduction: System administration” on page 7

 This topic describes the administration of WebSphere Application Server,

Version 6 products and the applications that run on them.

Presentations from IBM Education Assistant

 The following presentations provide a quick overview:

v System management architecture

v Administrative security

v Administrative clients overview

– Start, stop, and monitor processes

– Other commands

– Browser-based administrative console

– Scripting - wsadmin
v Topologies and logical administrative domains

– Resource scoping

– Cells, deployment managers, and node agents

– Build cells - Add and remove nodes

– Manage node groups
v Applications and application resources

– Application management overview

– JDBC

– Installing and uninstalling applications

– Managed application resources - Enhanced EAR files

– Fine grained application updates
v Servers

– Manage Web server nodes
v Configuration management

– Configuration repository

– Configuration archives

– File synchronization

Contents of this section: Administering applications and their

environments

Setting up the application serving environment

This section is for the administrator who is responsible for integrating

application serving capabilities into an existing network environment. It

looks at the product as part of a larger system, typically a production

environment or realistic test environment. This section reiterates some

© Copyright IBM Corp. 2005 1

http://www-306.ibm.com/software/info/education/assistant/noflash.shtml
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_Architecture/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_Admin_Security/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_AdminClient/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_StartStop_Monitor/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_Commands/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_AdminConsole/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_ScriptingAdmin/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_Res_Scopes/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_CellNode_Config/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_ND_BuildCell/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_NodeGroup/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_App_Admin_Overview/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_JDBC/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_App_Install/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/ApplicationManagement/LabInstructions/WASv6_EnhancedEARLab.pdf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/ApplicationManagement/LabInstructions/WASv6_AppUpdateLab.pdf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/WebServer_And_PlugIn/Presentations/WASv6_WebServer/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_ConfigRepository/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_Configuration_Archives/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_ND_FileSync/playershell.swf

installation and customization activities, including topology planning and

creating product configurations. It carries the focus into the administrative

realm, discussing port configuration and other network concerns. See also

Overview and new features for installing an application serving

environment.

 This information expands the topology planning discussion by describing

how to set up and maintain logical administrative domains of cells and

nodes, and how to balance workload through clustering and high

availability configurations.

Chapter 3, “Using the administrative clients,” on page 29

This section describes the many options available for administering your

applications and the servers to which the applications are deployed.

Options include the graphical administrative console; scripting with the

wsadmin tool; programmatic administration using Java Management

Extensions (JMX) and MBeans; and a wide array of command-line tools,

including ANT.

Starting and stopping quick reference

This section summarizes what can be started and stopped, including

applications and the application servers on which these applications are

deployed.

Class loading

This section describes how to configure class loaders. It includes both

configuration that is performed during application assembly (packaging)

and configuration performed at the server. The product run-time

environment uses class loaders to find and load new classes for an

application. Class loaders are part of the Java virtual machine (JVM) code

and are responsible for finding and loading class files.

Deploying and administering applications

This section describes how to deploy applications onto application servers,

and then how to administer the deployed applications. It includes

installing applications, starting applications, exporting application files,

updating applications, removing applications, and other common tasks.

Administer WebSphere applications

This section provides administrative instructions that are specific to the

various types of applications. For example, you can focus on administering

your Web applications in their Web container; or aspects of Web services

support; or the messaging or security subsystems.

Troubleshooting deployment

This section describes how to identify and handle a variety of problems

encountered during development, assembly, and deployment activities.

Troubleshooting administration

This section describes how to identify and handle a variety of problems

encountered during administrative activities.

Getting started with WebSphere Application Server

Note: If you prefer to browse PDF versions of this documentation using Adobe

Reader, see the Getting Started PDF files that are available from

www.ibm.com/software/webservers/appserv/infocenter.html.

Installing

2 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

http://www.adobe.com/products/acrobat/readermain.html
http://www.adobe.com/products/acrobat/readermain.html
http://www.ibm.com/software/webservers/appserv/infocenter.html

See Task overview: installing for a description of installing the WebSphere

Application Server product and other installable components.

Configuring

See Configuring the product after installation for a description of what to do after

installing the product.

Migrating

See Migrating and coexisting for a description of how to migrate applications and

configuration data from a previous version of WebSphere Application Server.

Using the Samples Gallery

See Accessing the Samples (Samples Gallery) for a description of the set of Samples

that ship with each product. The Samples demonstrate common Web application

tasks.

Deploying applications

The information center describes how to deploy Web components, such as servlets

and JSP files.

Security considerations for WebSphere Application Server for z/OS

Functions supported on WebSphere Application Server for z/OS

WebSphere Application Server for z/OS supports the following functions. You can

read about these applications in the Securing applications and their environment

manual.

 Table 1. Functions supported on WebSphere Application Server for z/OS

Function Additional information

RunAs EJB For more information, see Delegations.

RunAs for Servlets For more information, see Delegations.

SAF-based IIOP Protocols For more information, see Common Secure

Interoperability Version 2 and Security

Authentication Service client configuration.

z/OS connector facilities For more information, see Resource Recovery

Services (RRS).

Global security enable or disable For more information, see Enabling global

security and Disabling global security.

SAF keyrings For more information, see Using System

Authorization Facility keyrings with Java Secure

Sockets Extension.

Authentication functions Authentication function examples: Basic, SSL digital

certificates, form-based login, security constraints,

trust association interceptor

J2EE security resources For more information, see Securing applications

and their environments.

Web authentication (LTPA) For more information, see Steps for selecting

LTPA as the authentication mechanism.

Chapter 1. Overview and new features 3

Table 1. Functions supported on WebSphere Application Server for z/OS (continued)

Function Additional information

IIOP using LTPA For more information, see Lightweight Third

Party Authentication.

WebSphere application bindings WebSphere application bindings can be used to

provide user to role mappings.

Synch to OS Thread For more information, see Synchronizing a Java

thread identity and an operating system thread

identity.

J2EE role-based naming security For more information, see Java 2 Platform,

Enterprise Edition (J2EE) specification.

J2EE role-based administrative security For more information, see Java 2 Platform,

Enterprise Edition (J2EE) specification.

SAF registries For more information, see User registries.

Identity assertion For more information, see Identity assertion.

Authentication protocols Example: z/SAS, CSIV2

For more information, see Supported

authentication protocols.

CSIv2 conformance level ″0″ For more information, see Planning to secure

your environment.

J2EE 1.4 compliance For more information, see Java 2 Platform,

Enterprise Edition (J2EE) specification.

JAAS programming model WebSphere

extensions

For more information, see Web authentication

using the Java Authentication and Authorization

Service programming model.

All basic WebSphere Application Server provide the following functions:

v Using RunAs: Use RunAs to change the identity of a caller, server, or role. This

designation is now part of the servlet specification.

v Support of SAF-based IIOP authentication protocols: Network Deployment

uses Secure Authentication Services (SAS) for IIOP authentication. z/OS has its

own version of SAS called z/OS Secure Authentication Services (z/SAS) (with

similar functions but different mechanisms), and it handles functions such as

local security, Secure Sockets Layer (SSL)-based authorization, digital certificates

with System Authorization Facility (SAF) mapping, and SAF identity assertion.

v SAF-based authorization and RunAs capability: This allows you to use SAF

(EJBROLE) profiles for permission and delegation security information.

v Support for z/OS connector facilities: Instead of using an alias where a user ID

and password is stored, the ability to propagate local OS identities is supported.

v SAF keyring support for HTTP and IIOP: Use SystemSSL for HTTP, IIOP, and

SAF key ring support. You can also use JSSE.

v Authentication functions: Web Authentication mechanisms such as basic, SSL

digital certificates, form-based login, security constraints, and trust association

interceptor offer the same functionality in Version 6.0.x as offered in Version 5.

v Authorization for J2EE resources: Authorization for J2EE resources employs

roles similar to the ones used in Version 4, and these roles are used as

descriptors.
v Security enablement: Security can be enabled or disabled globally. When the

server comes up there is some level of security on, but security is disabled until

the administrator sets it up.

4 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

v Web authentication using LTPA and SWAM: Single-signon using Lightweight

Third Party Authentication (LTPA) or Simple WebSphere Authentication

Mechanism (SWAM) is supported.

v IIOP authentication using LTPA: IIOP authentication using LTPA is supported.

v WebSphere Application Bindings for Authorization: WebSphere Application

Bindings for Authorization are now supported.

v Synch to OS Thread: Application Synch to OS Thread is supported.

v J2EE role-based naming security: J2EE roles are used to protect access to the

namespace. The new roles and tasks are cosNamingRead, cosNamingWrite,

cosNamingCreate, and cosNamingDelete.

v Role-based administrative security: The roles delimiting security are:

– Monitor (least authorization and is read-only)

– Operator (can do runtime changes)

– Configurator (can monitor and configuration privileges)

– Administrator (most authorization)

Comparing WebSphere Application Server for z/OS with other WebSphere

Application Server platforms

A key similarity:

v Pluggable security model: The pluggable security model can be authenticated in

IIOP (CSIv2), Web Trust Authentication, Java Management Extensions (JMX)

Connectors, or the Java Authentication and Authorization Service (JAAS)

programming model. You must:

1. Determine which registry is appropriate and what authentication (token)

mechanisms are needed

2. Determine whether or not the registry is local or remote, and what Web

authorizations should be used - Web authorizations include Simple

WebSphere authentication mechanism (SWAM) and Lightweight Third-Party

Authentication (LTPA)

Key differences include:

v SAF registries: Local operating system registries provide premium functionality

on z/OS because z/OS spans a sysplex rather than a single server. z/OS

provides certificate to user mapping, authorization, and delegation functions.

v Identity assertion: Use trusted servers or CBIND to get the authorization

required for the server doing the assertion. Distributed platform requires a

server to be placed in the trusted server list. z/OS requires a server ID to have a

specific CBIND authorization. The Assertion types are SAF user ID,

Distinguished Name (DN), and SSL client certificate.

v zSAS and SAS authentication protocols for IIOP clients: z/SAS differs from

SAS because it supports RACF PassTickets. The SAS layer in WebSphere

Distributed uses CORBA portable interceptors to implement their Secure

Association Service, and z/OS does not.

v CORBA features: z/OS does not support CORBA security interfaces including

the CORBA current, LoginHelper, Credentials, and ServerSideAuthenticator

models. CORBA functions have been migrated to JAAS.

v Authentication protocols: CSIv2 is an Object Management Group (OMG)

specification for the z/OS Security Server and is automatically enabled when

WebSphere security is enabled. This is a three-layered approach involving a

transport layer (SSL/TLS) for message protection, supplemental client

authentication layer for user ID and password (GSSUP), and security attribute

layer used by middle servers (who must be specially authorized to the target

server) for identity assertion.

Chapter 1. Overview and new features 5

J2EE 1.3 compliance

Being J2EE-compliant involves:

v CSIv2 conformance level ″0″: This is an OMG (related to the z/OS Security

Server) specification, which is part of what used to be the CORBA support.

CSIv2 is automatically enabled when security is enabled.

v Use of Java 2 security: There is ″security-enabled″ and ″Java 2 security-enabled″,

and the default for Java2 is ″on″. This provides a fine-grained access control that

is code-based as opposed to subject-based authorization. Each class belongs to

one particular domain. Permissions protected by Java 2 security include file

access, network access, sockets, exiting Java virtual machine (JVM),

administration of properties, and threads. The ″security manager″ is what Java 2

uses as a mechanism for managing security and enforcing the required

protections. Extensions to Java 2 security include use of dynamic policy

(permissions resource type-based rather than code-based), use of specific default

permissions defined for resources in template profiles, and use of filter files to

disable policy.

v Use of JAAS programming: JAAS programming includes a standard set of APIs

for authentication. JAAS is the strategic authorization and authentication

mechanism. IBM Developer Kit for Java Technology Edition Version 1.4.2

WebSphere Application Server shipped with WebSphere Version 6.0.x (but some

extensions are supplied).

v Use of the servlet RunAs function: WebSphere Application Server on the

distributed platforms (not the z/OS platform) refers to this function as

″Delegation Policy″. You can change identity to run as a system, caller, or role

(user). This function is now part of the servlet specification. Authentication

involves using a user ID and password and then mapping the alias to the

appropriate XML file to find the user ID of the RunAs role.

Compliance with WebSphere Network Deployment at the API/SPI level

Compliance with WebSphere Network Deployment at the API/SPI level makes

deploying applications from Network Deployment on z/OS easier. Features

enhanced or deprecated by Network Deployment are enhanced or deprecated by

z/OS. However, this does not mean there is no migration for z/OS customers.

Compliance with WebSphere Network Deployment at the API/SPI level includes:

v WebSphere Application Server extensions to the JAAS programming model:

The authorization model is an extension of the Java 2 security model for JAAS

programming (so it works with the J2EE model). Subject-based authorization is

performed on authenticated user IDs. Instead of merely logging in with a user

ID and password, there is now a login process that includes creating a login

context, passing callback handlers that prompt for user ID and password, and

logging in. WebSphere Application Server for z/OS supplies the login module,

the callback handler to retrieve the necessary data, the callbacks, the WSSubject

choice, getCallerSubject, and getRunAsSubject .

v Use of the WebSphere Application Server security APIs: z/OS supports

WebSphere Application Server security APIs.

v Use of secure JMX connectors: JMX connectors can be used with user ID and

password credentials. The two connector types are RMI and SOAP/HTTPS (and

are for administration). The SOAP connector uses the JSSE SSL repertoires. The

RMI connector is subject to the same advantages and restrictions as IIOP

mechanisms (such as CSIv2).

6 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

Introduction: System administration

Note:

If you would prefer to browse PDF versions of this documentation

using your Adobe Reader, see the System Administration PDF files

available from

www.ibm.com/software/webservers/appserv/infocenter.html.

A variety of tools are provided for administering the WebSphere Application

Server product:

v Console

The administrative console is a graphical interface that provides many features

to guide you through deployment and systems administration tasks. Use it to

explore available management options.

For more information, refer to “Introduction: Administrative console” on page 8.

v

Administrative agents

Servers, nodes and node agents, cells and the deployment manager are

fundamental concepts in the administrative universe of the product. It is also

important to understand the various processes in the administrative topology

and the operating environment in which they apply.

For more information, refer to “Welcome to basic administrative architecture” on

page 14.

v Scripting

The WebSphere administrative (wsadmin) scripting program is a powerful,

non-graphical command interpreter environment enabling you to run

administrative operations in a scripting language. You can also submit scripting

language programs to run. The wsadmin tool is intended for production

environments and unattended operations.

For more information, refer to “Introduction: Administrative scripting

(wsadmin)” on page 12.

v Commands

Command-line tools are simple programs that you run from an operating system

command-line prompt to perform specific tasks, as opposed to general purpose

administration. Using the tools, you can start and stop application servers, check

server status, add or remove nodes, and complete similar tasks.

For more information, refer to “Introduction: Administrative commands” on

page 13.

v Programming

The product supports a Java programming interface for developing

administrative programs. All of the administrative tools supplied with the

product are written according to the API, which is based on the industry

standard Java Management Extensions (JMX) specification.

For more information, refer to “Introduction: Administrative programs” on page

14.

v Data

Product configuration data resides in XML files that are manipulated by the

previously-mentioned administrative tools.

For more information, refer to “Introduction: Administrative configuration data”

on page 14.

Chapter 1. Overview and new features 7

http://www.adobe.com/products/acrobat/readermain.html
http://www.ibm.com/software/webservers/appserv/infocenter.html

Introduction: Administrative console

The administrative console is a graphical interface for performing deployment and

system administration tasks. It runs in your Web browser. Your actions in the

console modify a set of XML configuration files.

You can use the console to perform tasks such as:

v Add, delete, start, and stop application servers

v Deploy new applications to a server

v Start and stop existing applications, and modify certain configurations

v Add and delete Java 2 Platform, Enterprise Edition (J2EE) resource providers for

applications that require data access, mail, URLs, and so on

v Manage variables, shared libraries, and other configurations that can span

multiple application servers

v Configure product security, including access to the administrative console

v Collect data for performance and troubleshooting purposes

v Find the product version information. It is located on the front page of the

console.

“Starting and logging off the administrative console” on page 31 helps you begin

using the console so that you can explore the available options. See also the

Reference > Administrator > Settings section of the information center navigation.

It lists the settings or properties you can configure.

Use both the MVS console and the Application Server administrative console to

administer the Application Server. For example:

v Use MVS commands that are issued from the MVS console to start the base

application server controller region, and the node agent and deployment

manager.

v In an application server configuration, you must start the first server with an

MVS operator command. After the first server is started, you can use the

administrative console, if it has this application, to start other application servers

in the node. After the deployment manager and node agent are active (in an ND

configuration), you can use the administrative console to start and stop

application servers.

v Workload management starts all servant regions using Address Space Create

(ASCRE) with the administrative console, you can display and modify

Application Server applications and the environments in which they run.

Identifying where to perform WebSphere Application Server

operations

Administering WebSphere Application Server involves the use of both the MVS

console and the WebSphere Application Server administrative console. For

example:

v Use MVS commands issued from the MVS console to start the base Application

Server control region, the network deployment node agent, and the deployment

manager.

v In a base Application Server configuration, you must start the first server with

an MVS operator command. Once the first server starts, you can then use the

administrative console, if it has this application, to start other Application

Servers in the node. Once the deployment manager and node agent are active

(in a network deployment configuration), you can use the administrative console

to start and stop application servers.

8 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

v Workload management starts all servant regions using Address Space Create

(ASCRE).

The following table lists the main Application Server operations tasks and directs

you to information that helps you to perform these tasks. The Application Server

activities and operations can be performed from:

v A z/OS or OS/390 MVS console (most operations)

v The Application Server administrative console (some operations)

v TSO or resource recovery services (RRS) panels (some operations).

Some information is split on multiple lines for printing purposes.

 Table 2. Application Server operations tasks

Task MVS

console

Application

Server

administrative

console

TSO

panel

Reference to associated procedure

Start operations

Starting the

Application

Server

environment

and location

service

daemon

Yes No No See Starting servers in the Setting up the

application serving environment PDF.

Starting a

cluster or

application

server

Yes Application

server only

No See Starting clusters and Starting servers in

the Setting up the application serving

environment PDF. SeeUsing the

administrative console.

Stop operations

Stopping the

location

service

daemon

Yes No No See Steps for stopping or canceling the

location service daemon from the MVS

console in the Setting up the application

serving environment PDF.

Stopping a

cluster

Yes Yes No See Stopping clusters in the Setting up the

application serving environment PDF.

Stopping an

application

server

Yes Yes No See Stopping servers in the Setting up the

application serving environment PDF.

Cancel operations

Canceling the

location

service

daemon

Yes No No See Steps for stopping or canceling the

location service daemon from the MVS

console in the Setting up the application

serving environment PDF.

Canceling a

cluster

Yes Yes No See Stopping clusters in the Setting up the

application serving environment PDF.

Canceling an

application

server

Yes Yes No See Stopping servers in the Setting up the

application serving environment PDF.

Display operations

Chapter 1. Overview and new features 9

Table 2. Application Server operations tasks (continued)

Task MVS

console

Application

Server

administrative

console

TSO

panel

Reference to associated procedure

Displaying

the status of

ARM-
registered

address

spaces

including

clusters and

servants

Yes No No See Displaying the status of ARM-registered

address spaces including WebSphere

Application Server for z/OS and server

instances in the Setting up the application

serving environment PDF.

Displaying

units of work

(threads) for

DB2

Yes No No See DB2 Universal Database for OS/390 and

z/OS Command Reference at

http://www.elink.ibmlink.ibm.com/

public/applications/publications/

cgibin/pbi.cgi

.

Displaying

indoubt units

of work

(threads) for

DB2

Yes No No See DB2 Universal Database for OS/390 and

z/OS Command Reference at

http://www.elink.ibmlink.ibm.com/

public/applications/publications/

cgibin/pbi.cgi

.

Displaying

units of work

for RRS

No No Yes See z/OS MVS Programming: Resource

Recovery at

http://www.elink.ibmlink.ibm.com/

public/applications/publications/

cgibin/pbi.cgi

.

Displaying

units of work

for CICS

Yes No Yes See CICS Operations and Utilities Guide at

http://www.elink.ibmlink.ibm.com/

public/applications/publications/

cgibin/pbi.cgi

Displaying

units of work

(transactions)

for IMS

Yes No No See IMS/ESA Summary of Operator Commands

at

hhttp://www.elink.ibmlink.ibm.com/

public/applications/publications/

cgibin/pbi.cgi

.

Displaying

the status of a

cluster

Yes Yes No See Example: Displaying status of clusters .

Displaying

the status of a

server

Yes Yes No See Example: Displaying status of a server .

Displaying

active address

spaces

Yes No No See Example: Displaying active address

spaces.

10 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi

Table 2. Application Server operations tasks (continued)

Task MVS

console

Application

Server

administrative

console

TSO

panel

Reference to associated procedure

Displaying

active replies

Yes No No See Example: Displaying active replies.

Modify operations

Getting help

for the

modify

command

Yes No No See Example: Getting help for the modify

command.

Canceling

application

clusters and

servers

Yes No No See Example: Canceling application clusters

and servers with the modify command.

Modifying the

Java trace

string

Yes No No See Example: Modifying the Java trace

string.

Displaying

status

Yes No No See Modify command.

Other Application Server operations

ARM and

restart

Yes No No See Automatic restart management in the

Installing your application serving environment

PDF.

Setting up

error log

streams for

different

clusters and

servants

No You can

associate a

log stream

with a

cluster

from the

administrative

console

No See Setting up the error log in the

Troubleshooting and support PDF.

Setting up

System

Management

Facilities

recording

Yes Enable it

from here,

but initiate

it from the

MVS

console.

No See Collecting job-related information with

Systems Management Facility (SMF) in the

Troubleshooting and support PDF.

Shutting

down the

WebSphere

Application

Server for

z/OS

environment

Yes Application

server only

No See Stopping clusters, Stopping servers, and

Steps for stopping or canceling the location

service daemon from the MVS console in

the Setting up the application serving

environment PDF.

Chapter 1. Overview and new features 11

Table 2. Application Server operations tasks (continued)

Task MVS

console

Application

Server

administrative

console

TSO

panel

Reference to associated procedure

Taking a

WebSphere

Application

Server for

z/OS system

cluster out of

service

Yes Application

server only;

You cannot

take a

WebSphere

Application

Server for

z/OS

system

cluster out

of service

from the

administrative

console

No

Workload Management

Displaying

the status of a

WLM

application

environment

Yes No No See Handling workload management and

server failures in the Installing your

application serving environment PDF.

Handling

workload

management

and server

failures

Yes No No See Handling workload management and

server failures in the Installing your

application serving environment PDF.

Getting out of

the stopped

state and back

to the

available state

for an

application

environment

Yes No No See Handling workload management and

server failures in the Installing your

application serving environment PDF.

Checking and

managing the

workload

management

application

environment

(display,

stop/quiesce,

restart/resume)

Yes No No See Handling workload management and

server failures in the Installing your

application serving environment PDF and

WLM dynamic application environment

operator commands in the Setting up the

application serving environment PDF.

Introduction: Administrative scripting (wsadmin)

The WebSphere administrative (wsadmin) scripting program is a powerful,

non-graphical command interpreter environment enabling you to run

administrative operations in a scripting language. The wsadmin tool is intended

for production environments and unattended operations. You can use the wsadmin

tool to perform the same tasks that you can perform using the administrative

console.

12 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

The following list highlights the topics and tasks available with scripting:

v Getting started with scripting Provides an introduction to WebSphere

Application Server scripting and information about using the wsadmin tool.

Topics include information about the scripting languages and the scripting

objects, and instructions for starting the wsadmin tool.

v Deploying applications Provides instructions for deploying and uninstalling

applications. For example, stand-alone Java archive files and Web archive files,

the administrative console, remote enterprise archive (EAR) files, file transfer

applications, and so on.

v Managing deployed applications Includes tasks that you perform after the

application is deployed. For example, starting and stopping applications,

checking status, modifying listener address ports, querying application state,

configuring a shared library, and so on.

v Configuring servers Provides instructions for configuring servers, such as

creating a server, modifying and restarting the server, configuring the Java

virtual machine, disabling a component, disabling a service, and so on.

v Configuring connections to Web servers Includes topics such as regenerating the

plug-in, creating new virtual host templates, modifying virtual hosts, and so on.

v Managing servers Includes tasks that you use to manage servers. For example,

stopping nodes, starting and stopping servers, querying a server state, starting a

listener port, and so on.

v Clustering servers Includes topics about clusters, such as creating clusters,

creating cluster members, querying a cluster state, removing clusters, and so on.

v Configuring security Includes security tasks, for example, enabling and disabling

global security, enabling and disabling Java 2 security, and so on.

v Configuring data access Includes topics such as configuring a Java DataBase

Connectivity (JDBC) provider, defining a data source, configuring connection

pools, and so on.

v Configuring messaging Includes topics about messaging, such as Java Message

Service (JMS) connection, JMS provider, WebSphere queue connection factory,

MQ topics, and so on.

v Configuring mail, URLs, and resource environment entries Includes topics such

as mail providers, mail sessions, protocols, resource environment providers,

referenceables, URL providers, URLs, and so on.

v Dynamic caching Includes caching topics, for example, creating, viewing and

modifying a cache instance.

v Troubleshooting Provides information about how to troubleshoot using scripting.

For example, tracing, thread dumps, profiles, and so on.

v Obtaining product information Includes tasks such as querying the product

identification.

v Scripting reference material Includes all of the reference material related to

scripting. Topics include the syntax for the wsadmin tool and for the

administrative command framework, explanations and examples for all of the

scripting object commands, the scripting properties, and so on.

Introduction: Administrative commands

Command-line tools are simple programs that you run from an operating system

command-line prompt to perform specific tasks, as opposed to general purpose

administration. Using the tools, you can start and stop application servers, check

server status, add or remove nodes, and complete similar tasks.

Chapter 1. Overview and new features 13

See Reference > Commands in the information center navigation for the names

and syntax of all the commands that are available with the product. A subset of

these commands are particular to system administration purposes.

Introduction: Administrative programs

The product supports a Java programming interface for developing administrative

programs. All of the administrative tools supplied with the product are written

according to the API, which is based on the industry standard Java Management

Extensions (JMX) specification. You can write a Java program that performs any of

the administrative features of the WebSphere Application Server administrative

tools. You can also extend the basic WebSphere Application Server administrative

system to include your own managed resources.

Introduction: Administrative configuration data

Administrative tasks typically involve defining new configurations of the product

or performing operations on managed resources within the environment. IBM

WebSphere Application Server configuration data is kept in files. Because all

product configuration involves changing the content of those files, it is useful to

know the structure and content of the configuration files.

The WebSphere Application Server product includes an implementation of the Java

Management Extension (JMX) specification. All operations on managed resources

in the product go through JMX functions. This setup means a more standard

framework underlying your administrative operations as well as the ability to tap

into the systems management infrastructure programmatically.

Welcome to basic administrative architecture

This article discusses basic concepts in the administrative architecture to help you

understand system administration in a WebSphere Application Server environment.

The fundamental concepts for WebSphere Application Server administration

include software processes called servers, topological units referenced as nodes and

cells, and the configuration repository used for storing configuration information.

Servers perform the actual running of the code. Several types of servers exist

depending on the configuration. Each server runs in its own Java virtual machine

(JVM). The application server is the primary run-time component in all WebSphere

Application Server configurations. All WebSphere Application Server

configurations can have one or more application servers. In some configurations,

each application server functions as a separate entity. No workload distribution or

common administration among application servers exists. In other configurations,

workload can be distributed between servers and administration can be done from

a central point.

A node is a logical group of WebSphere Application Server-managed server

processes that share a common configuration repository. A node is associated with

a single WebSphere Application Server profile. A WebSphere Application Server

node does not necessarily have a one-to-one association with a system. One

computer can host arbitrarily many nodes, but a node cannot span multiple

computer systems. A node can contain zero or more application servers.

The configuration repository holds copies of the individual component

configuration documents that define the configuration of a WebSphere Application

Server environment. All configuration information is stored in .xml files.

14 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

A cell is a grouping of nodes into a single administrative domain. A cell can

consist of multiple nodes, all administered from a deployment manager server.

When a node becomes part of a cell (a federated node), a node agent server is

installed on the node to work with the deployment manager server to manage the

WebSphere Application Server environment on that node.

When a node is a standalone node, not part of a cell, the configuration repository

is fully contained on the node. When a node is part of a cell, the configuration and

application files for all nodes in the cell are centralized into a cell master

configuration repository. This centralized repository is managed by the deployment

manager server and synchronized to local copies that are held on each node. The

local copy of the repository that is given to each node contains just the

configuration information needed by that node, not the full configuration that is

maintained by the deployment manager.

WebSphere Application Server types

This section discusses the three server types that interact to perform system

administration.

Application Server: A WebSphere Application Server provides the functions that

are required to support and host user applications. An application server runs on

only one node, but one node can support many application servers.

Node agent: When a node is federated, a node agent is created and installed on

that node. The node agent works with the deployment manager to perform

administrative activities on the node.

Deployment manager: With the deployment manager, you can administer multiple

application servers from one centralized manager. The deployment manager works

with the node agent on each node to manage all the servers in a distributed

topology.

The following diagram depicts the concepts that are discussed in this article.

Adding a node to a cell

Cell

Node
agent

Node

WebSphere Application Server
Enterprise Edition

Application Server slkdjflkdj;lakjdf;lkjaslkdfgfgfdgfdgfdgfdg

sdlkfj;slkajflskjdf;lskdflkjfj;alkjfd ;lkjfd sd;jfdfgfdgf

jsafjs df;lskjfd ;lskjf sfksdf kjsdf ;slkdfg

as;dlfkj lkdsjf ;sjd;fk ja;lkjd f;lk

Application Server

lkdsjfkenroierithtrj

a;lkjdfoidicnvcnv

aodsfiidididid

a;osidjfpapoidjuff

Node
agent

Deployment
manager

Node
agent

Node

Node

Node

WebSphere Application Server
Enterprise Edition

Application Server slkdjflkdj;lakjdf;lkjaslkdfgfgfdgfdgfdgfdg

sdlkfj;slkajflskjdf;lskdflkjfj;alkjfd ;lkjfd sd;jfdfgfdgf

jsafjs df;lskjfd ;lskjf sfksdf kjsdf ;slkdfg

as;dlfkj lkdsjf ;sjd;fk ja;lkjd f;lk

Application Server

lkdsjfkenroierithtrj

a;lkjdfoidicnvcnv

aodsfiidididid

a;osidjfpapoidjuff

WebSphere Application Server
Enterprise Edition

Application Server slkdjflkdj;lakjdf;lkjaslkdfgfgfdgfdgfdgfdg

sdlkfj;slkajflskjdf;lskdflkjfj;alkjfd ;lkjfd sd;jfdfgfdgf

jsafjs df;lskjfd ;lskjf sfksdf kjsdf ;slkdfg

as;dlfkj lkdsjf ;sjd;fk ja;lkjd f;lk

Application Server

lkdsjfkenroierithtrj

a;lkjdfoidicnvcnv

aodsfiidididid

a;osidjfpapoidjuff

WebSphere Application Server
Enterprise Edition

Application Server slkdjflkdj;lakjdf;lkjaslkdfgfgfdgfdgfdgfdg

sdlkfj;slkajflskjdf;lskdflkjfj;alkjfd ;lkjfd sd;jfdfgfdgf

jsafjs df;lskjfd ;lskjf sfksdf kjsdf ;slkdfg

as;dlfkj lkdsjf ;sjd;fk ja;lkjd f;lk

Application Server

lkdsjfkenroierithtrj

a;lkjdfoidicnvcnv

aodsfiidididid

a;osidjfpapoidjuff

WebSphere Application Server
Enterprise Edition

Application Server slkdjflkdj;lakjdf;lkjaslkdfgfgfdgfdgfdgfdg

sdlkfj;slkajflskjdf;lskdflkjfj;alkjfd ;lkjfd sd;jfdfgfdgf

jsafjs df;lskjfd ;lskjf sfksdf kjsdf ;slkdfg

as;dlfkj lkdsjf ;sjd;fk ja;lkjd f;lk

Application Server

lkdsjfkenroierithtrj

a;lkjdfoidicnvcnv

aodsfiidididid

a;osidjfpapoidjuff

= Network Deployment package is installed

= Application servers

IBM WebSphere Application Server Network Deployment package

Chapter 1. Overview and new features 15

The concepts that are discussed in this article form the basis of WebSphere

Application Server administration. More detailed descriptions can be found in

other sections.

Introduction: Servers

Application servers

Application servers provide the core functionality of the WebSphere Application

Server product family. They extend the ability of a Web server to handle Web

application requests, and much more. An application server enables a server to

generate a dynamic, customized response to a client request.

For additional overview, refer to “Introduction: Application servers.”

Clusters

Workload management optimizes the distribution of client processing tasks. Incoming

work requests are distributed to the application servers that can most effectively

process the requests. Workload management also provides failover when servers

are not available, improving application availability.

Clusters are sets of application servers that are managed together and participate in

workload management. The servers that are members of a cluster can be on

different host machines, as opposed to the servers that are part of the same node

and must be located on the same host machine.

For additional overview, refer to “Introduction: Clusters” on page 18.

Introduction: Application servers

Overview

An application server is a Java Virtual Machine (JVM) that is running user

applications. The application server collaborates with the Web server to return a

dynamic, customized response to a client request. Application code, including

servlets, JavaServer Pages (JSP) files, enterprise beans and their supporting classes,

runs in an application server. Conforming to the Java 2 platform, Enterprise

Edition (J2EE) component architecture, servlets and JSP files run in a Web

container, and enterprise beans run in an Enterprise JavaBeans (EJB) container.

To begin creating and managing an application server, see Administering

application servers.

You can define multiple application servers, each running its own JVM. Enhance

the operation of an application server by using the following options:

v Configure transport chains to provide networking services to such functions as

the service integration bus component of IBM service integration technologies,

WebSphere Secure Caching Proxy, and the high availability manager core group

bridge service. See Configuring transport chains for more information.

v Plug into an application server to define a hook point that runs when the server

starts and shuts down. See Custom services for more information.

v Define command-line information that passes to a server when it starts or

initializes. See “startServer command” on page 670 for more information.

v Tuning application servers

16 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

v Enhance the performance of the application server JVM. See Using the JVM for

more information.

v Use an Object Request Broker (ORB) for RMI/IIOP communication. See

Managing Object Request Brokers for more information.

Asynchronous messaging

The product supports asynchronous messaging based on the Java Message Service

(JMS) of a JMS provider that conforms to the JMS specification version 1.1.

The JMS functions of the default message service in WebSphere Application Server

are served by one or more messaging engines (in a service integration bus) that

runs within application servers.

In a deployment manager cell, there can be WebSphere Application Server version

5 nodes. If a version 5 node is configured to use V5 default messaging (the version

5 embedded messaging), there can be at most one JMS server on that node.

Generic Servers

A generic server is a server that is managed in the WebSphere administrative

domain, although it is not a server that is supplied by the WebSphere Application

Server product. The generic server can be any server or process that is necessary to

support the Application Server environment.

Introduction: Web servers

The application server and Web server communicate using Web server plug-ins.

Communicating with Web servers describes how to set up your Web server and

Web server plug-in environment and how to create a Web server definition. The

Web server definition associates a Web server with a previously defined managed

or unmanaged node. After you define the Web server to a node, you can use the

administrative console to perform the following functions for that Web server.

If the Web server is defined to a managed node, you can:

v Check the status of the Web server

v Generate a plug-in configuration file for that Web server.

v Propagate the plug-in configuration file after it is generated.

If the Web server it is defined to an unmanaged node, you can:

v Check the status of the Web server

v Generate a plug-in configuration file for that Web server.

After you set up your Web server and Web server plug-in, whenever you deploy a

Web application, you must specify a Web server as the deployment target that

serves as a router for requests to the Web application. The configuration settings in

the plug-in configuration file (plugin-cfg.xml) for each Web server are based on the

applications that are routed through that Web server. If the Web server plug-in

configuration service is enabled, a Web server plug-in’s configuration file is

automatically regenerated whenever a new application is associated with that Web

server.

Note: Before starting the Web server, make sure you are authorized to run any

Application Response Measurement (ARM) agent associated with that Web

server.

Chapter 1. Overview and new features 17

Refer to your Web server documentation for information on how to administer that

Web server. For tips on tuning your Web server plug-in, see Web server plug-in

tuning tips.

Introduction: Clusters

Clusters are groups of servers that are managed together and participate in

workload management. A cluster can contain nodes or individual application

servers. A node is usually a physical computer system with a distinct host IP

address that is running one or more application servers. Clusters can be grouped

under the configuration of a cell, which logically associates many servers and

clusters with different configurations and applications with one another depending

on the discretion of the administrator and what makes sense in their organizational

environments.

Clusters are responsible for balancing workload among servers. Servers that are a

part of a cluster are called cluster members. When you install an application on a

cluster, the application is automatically installed on each cluster member.

Node groups bound clusters. All cluster members of a given cluster must be

members of the same node group. For more information about clusters and node

groups, see Clusters and node groups.

To learn more about clusters, see Clusters and workload management and

Balancing workloads with clusters for more information.

Core groups

A group of clusters can be defined as a core group. All of the application servers

defined as a member of one of the clusters included in a core group are

automatically members of that core group. Individual application servers that are

not members of a cluster can also be defined as a member of a core group. The use

of core groups enables WebSphere Application Server to provide high availability

for applications that must always be available to end users. You can also configure

core groups to communicate with each other using the core group bridge. The core

groups can communicate within the same cell or across cells.

To learn more about core groups, see Setting up a high availability environment.

Introduction: Environment

The environment of the product applies to the configuring of Web server plug-ins,

variables, and objects that you want consistent throughout a cell.

Cell-wide settings

Cell-wide settings are sets of configuration data that are stored in files in the cell

directory. These configuration files are replicated to every node in the cell. Several

different configuration settings apply to the entire cell. These settings include the

definition of virtual hosts, shared libraries, and any variables that must be

consistent throughout the entire cell.

For more information, refer to “Introduction: Cell-wide settings” on page 19.

18 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

Variables

A variable is a configuration property that can be used to provide a parameter for

any value in the system. A variable has a name and a value to use in place of that

name wherever the variable name is located within the system.

For more information, refer to Web server plug-in tuning tips.

Introduction: Cell-wide settings

The configuration data for WebSphere Application Server is stored in XML files.

The XML files exist in one of several directories in the configuration repository

tree.

The directory in which a configuration file exists determines its scope, or how

broadly or narrowly that data applies. Files in an individual server directory apply

to that specific server only. Files in a node-level directory apply to every server on

that node. Files in the cell directory apply to every server on every node within the

entire cell.

Cell-wide settings are configuration files in the cell directory. The files are replicated

to every node in the cell. Several different configuration settings apply to the entire

cell. These settings include the definition of virtual hosts, shared libraries, and any

variables that you want consistent throughout the entire cell.

Introduction: Variables

Variables in the WebSphere environment come in many varieties. Variables are

used to control settings and properties relating to the server environment. Three

main variable options that are important for a WebSphere Application Server user

to know and understand are custom properties, environment variables, and

WebSphere-specific variables.

Environment variables

Environment variables, also called native environment variables, are not specific to

the WebSphere Application Server and are defined by other elements, such as

UNIX, Language Environment (LE), or third-party vendors, among others. Some of

the UNIX-specific native variables are LIBPATH and STEPLIB. These variables tend

to be operating system-specific.

Environment variables are specified in the administrative console. Click

Application Server >server_name> Process Definition > Servant Process >

Environment Entries.

This path is also used to set environment variables that control the collection of

application server and Web container information in z/OS System Management

Facility (SMF) records.

WebSphere variables

WebSphere variables are used for three purposes:

v Configuring WebSphere Application Server path names, such as JAVA_HOME,

and APP_INSTALL_ROOT.

v Configuring certain cell-wide customization values.

v Configuring the WebSphere Application Server for z/OS location service.

Chapter 1. Overview and new features 19

WebSphere variables are specified in the administrative console by clicking

Environment > Manage WebSphere variables. How the WebSphere variable is set

determines its scope. A variable can apply to a cell, a node, or a server. If the

variable is set:

v At the server level, it applies to the entire server.

v At the node level, it applies to all servers in the node, unless you set the same

variable at the server level. In that case, for that server, the setting that is

specified at the server level overrides the setting that is specified at the node

level.

v At the cell level, it applies to all nodes in that cell, unless you set the same

variable at the node or server level.

– If you set the same variable at the server level, for that server, the setting that

is specified at the server level overrides the setting that is specified at the cell

level.

– If you set the same variable at the node level, for all servers in that node, the

setting that is specified at the node level overrides the setting that is specified

at the cell level.

Custom properties

Custom properties are property settings meant for a specific functional component.

Any configuration element can have a custom property. Common configuration

elements are cell, node, server, Web container, and transaction service. A limited

number of supported custom properties are available and these properties can be

set in the administrative console using the custom properties link that is associated

with the functional component.

For example, to set HTTP transport custom properties, follow one of the following

paths:

v Servers > Application Servers > server_name > Web Container > HTTP

Transport > Additional Properties > Custom Properties

v Servers > Application Servers > server_name > Web Container > Additional

Properties > Custom Properties

Custom properties set from the Web container custom properties page apply to all

transports that are associated with that Web container; custom properties set from

the HTTP transport custom properties page apply only to that specific transport. If

the same properties are set on both pages, the settings on the transport page

override the settings that are defined on the Web container page for that specific

transport.

20 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

Chapter 2. How do I administer applications and their

environments?

v Establish the application serving environment

v Secure the application serving environment - see Security

v Set up resources for applications to use

v Configure class loaders - see development and deployment

v Deploy and administer applications

v Use the administrative clients

v Troubleshoot deployment and administration

Legend for ″How do I?...″ links

 Documentation Show me Tell me Guide me Teach me

Refer to the

detailed steps

and reference

Watch a brief

multimedia

demonstration

View the

presentation for

an overview

Be led through

the console

pages

Perform the

tutorial with

sample code

Approximate

time: Varies

Approximate

time: 3 to 5

minutes

Approximate

time: 10

minutes+

Approximate

time: 1/2 hour+

Approximate

time: 1 hour+

Establish the application serving environment

The following tasks involve establishing application serving capability in your

network environment, whether you use single or clustered application servers.

Servers can be grouped into administrative domains known as nodes and cells.

See also the overview:

v Version 6 topology and terminology

--

Administer nodes

 A node is a grouping of managed servers. Use this task to view

information about and manage nodes.

 Documentation Show me Tell me:

v Add and

remove nodes

v Manage node

groups

v Cell,

deployment

managers,

nodes, and

node agents

© Copyright IBM Corp. 2005 21

ftp://ftp.software.ibm.com/software/eod/WAS_6-0/BigPicture/Presentations/WASv6_Topology_Terminology/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Simulations/WASv6_Node_Admin.viewlet/WASv6_Node_Admin_viewlet_swf.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_ND_BuildCell/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_ND_BuildCell/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_NodeGroup/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_NodeGroup/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_CellNode_Config/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_CellNode_Config/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_CellNode_Config/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_CellNode_Config/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_CellNode_Config/playershell.swf

--

Administer node agents

 Node agents are administrative agents that represent a node to your

system and manage the servers on that node. Node agents monitor

application servers on a host system and route administrative requests to

servers. A node agent is created automatically when a node is added to a

cell.

 Documentation Show me Tell me

--

Administer cells

 When you installed the WebSphere Application Server Network

Deployment product, a cell was created. A cell provides a way to group

one or more nodes of your Network Deployment product. You probably

will not need to reconfigure the cell. Use this task to view information

about and manage a cell.

 Documentation Show me Tell me

--

Administer configurations

 Application server configuration files define the available application

servers, their configurations, and their contents. You should periodically

save changes to your administrative configuration. You can change the

default locations of configuration files, as needed.

 Documentation Tell me:

v Repository

v Archives

--

Configure remote file services

 Configuration data for the WebSphere Application Server product resides

in files. Two services help you reconfigure and otherwise manage these

files: the file transfer service and file synchronization service. By default,

the file transfer service is always configured and enabled at a node agent,

so you do not need to take additional steps to configure this service.

However, you might need to configure the file synchronization service.

 Documentation Tell me

--

Administer application servers

 Create, configure, and operate application server processes. An application

server configuration provides settings that control how an application

server provides services for running enterprise applications and their

components.

22 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Simulations/WASv6_NodeAgent_Admin.viewlet/WASv6_NodeAgent_Admin_viewlet_swf.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_CellNode_Config/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Simulations/WASv6_Cell_Admin.viewlet/WASv6_Cell_Admin_viewlet_swf.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_ND_BuildCell/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_ConfigRepository/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_Configuration_Archives/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_ND_FileSync/playershell.swf

Documentation:

v Console

v Scripting -

configure

v Scripting -

administer

Show me Tell me

--

Administer other server types

 One step in the process of creating an application server is to specify a

template. A server template is used to define the configuration settings of

the new server. You have the option of specifying the default server

template or choosing a template that is based on a server that already

exists. The default template will be used if you do not specify a different

template when you create the server.

 You can create other types of servers, to represent Web servers in your

topology, or for other purposes. There are two types of generic servers: (1)

Non-Java applications or processes, or (2) Java applications or processes. A

custom service provides the ability to plug into a WebSphere application

server to define a hook point that runs when the server starts and shuts

down.

 Documentation:

v Generic

servers

v Custom

services

 Tell me:

v Generic

servers

Guide me (Web

servers)

--

Balance workloads by clustering application servers

 To monitor application servers and manage the workloads of servers, use

server clusters and cluster members provided by the Network Deployment

product.

 Documentation:

v Console

v Scripting

Show me Tell me:

v WLM details

v Data

replication

service

--

Establishing high availability (HA) for failover

 Planning ahead for high availability support is important in order to avoid

the risk of a failure without failover coverage. The application server

runtime of the infrastructure managed by a high availability manager

includes such entities as cells and clusters. These components relate closely

to core groups, high availability groups, and the policy that defines the

high availability infrastructure. In a properly configured high availability

environment, a high availability manager can reassess the environment it is

managing and accept new components as they are added to the

environment.

Chapter 2. How do I administer applications and their environments? 23

ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Simulations/WASv6_AppServer_Admin.viewlet/WASv6_AppServer_Admin_viewlet_swf.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_StartStop_Monitor/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_GenericServer/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_GenericServer/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Simulations/WASv6_Clusters.viewlet/WASv6_Clusters_viewlet_swf.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/WLM-HA/Presentations/WASv6_WLM/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/WLM-HA/Presentations/WASv6_DRS/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/WLM-HA/Presentations/WASv6_DRS/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/WLM-HA/Presentations/WASv6_DRS/playershell.swf

Documentation Tell me:

v Overview

v Details, core

groups

--

Administer the UDDI registry

 The UDDI Registry is supplied as a J2EE application file, uddi.ear. Change

its configuration properties using the assembly tools. You can use either

the WebSphere Application Server administrative console or the Java

Management Extensions (JMX) management interface to manage UDDI

Registries.

 Documentation:

v Configure

v Administer

 Tell me

--

Set up Web access for applications

These tasks involve enabling HTTP requests for applications on the application

server.

--

Administer communication with Web servers (plug-ins)

 The product provides plug-ins for supported Web servers, to enable the

Web servers to pass requests to the application server, for applications

running on the application server. See also the Web server related tasks in

How do I install an application serving environment?.

 Documentation:

v Console

v Scripting

Show me Tell me Guide me

--

Administer HTTP sessions

 Configure the service that the product provides for managing HTTP

sessions: Session Manager.

 Documentation:

v Console

v Scripting

Show me

--

Administer IBM HTTP Server Version 6.x

 The product provides a complementary Web server with its own

documentation that can be installed into the information center.

 --

24 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

ftp://ftp.software.ibm.com/software/eod/WAS_6-0/WLM-HA/Presentations/WASv6_HA_Overview/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/WLM-HA/Presentations/WASv6_HA_Details/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/WLM-HA/Presentations/WASv6_HA_Details/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/WebServices/Presentations/WASv6_UDDIV3/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/WebServer_And_PlugIn/Simulations/WASv6_IHS_Definition_and_AppMapping.viewlet/WASv6_IHS_Definition_and_AppMapping_viewlet_swf.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/WebServer_And_PlugIn/Presentations/WASv6_WebServer/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Simulations/WASv6_SM_HTTP_Sessions.viewlet/WASv6_SM_HTTP_Sessions_viewlet_swf.html

Set up resources for applications to use

Make a variety of resources available to your applications that are deployed on the

application server.

--

Provide access to naming and directory resources (JNDI)

 Configure naming. Naming is used by clients of WebSphere Application

Server applications to obtain references to objects related to those

applications, such as Enterprise JavaBeans (EJB) homes. These objects are

bound into a mostly hierarchical structure, referred to as a name space. The

name space structure consists of a set of name bindings, each consisting of

a name relative to a specific context and the object bound with that name.

 Documentation:

v Name server

v Bindings

 Tell me:

v Introduction

v Basic concepts

v Advanced

concepts

v Examples

v

 Troubleshooting

--

Provide access to relational databases (JDBC resources)

 Configure data sources that applications use to access the data from

databases.

 Documentation:

v Console

v Scripting

Show me:

v Cloudscape

v DB2

v Oracle

Tell me Guide me

--

Provide access to messaging resources (default messaging provider)

 Use one of various ways to implement a messaging provider for use with

WebSphere Application Server. A messaging provider enables use of the

Java Messaging Service (JMS) and other message resources in the product.

 Documentation:

v Console

v Scripting

Show me Tell me

--

Use IBM service integration technologies

 Tell me:

v Overview

v Architecture

v Mediation

Chapter 2. How do I administer applications and their environments? 25

ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Runtime/Presentations/WASv6_NamingIntro/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Runtime/Presentations/WASv6_NamingBasics/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Runtime/Presentations/WASv6_NamingAdvanced/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Runtime/Presentations/WASv6_NamingAdvanced/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Runtime/Presentations/WASv6_NamingExamples/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/Runtime/Presentations/WASv6_NamingDebug/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Simulations/WASv6_New_CS_jdbc.viewlet/WASv6_New_CS_jdbc_viewlet_swf.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Simulations/WASv6_New_DB2_jdbc.viewlet/WASv6_New_DB2_jdbc_viewlet_swf.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Simulations/WASv6_New_Oracle_jdbc.viewlet/WASv6_New_Oracle_jdbc_viewlet_swf.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_JDBC/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/WPM/Simulations/WASv6_WPM_JMSResourceResourceResource.viewlet/WASv6_WPM_JMSResourceResourceResource_viewlet_swf.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/WPM/Presentations/WASv6_WPM_JMSResourceResource/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/WPM/Presentations/WASv6_WPM_Overview/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/WPM/Presentations/WASv6_WPM_Architecture/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/WPM/Presentations/WASv6_WPM_Mediation/playershell.swf

--

Establish workload balancing and high availability (HA) of messaging engines

 Tell me

--

Access Service Integration (SI) bus resources

 Show me Tell me:

v Service

integration bus

resources

v JMS resources

for service

integration bus

--

Deploy and administer applications

These tasks involve deploying applications onto the application server, then

administering the applications.

--

Install applications

 Installable modules include enterprise archive (EAR), enterprise bean (EJB),

Web archive (WAR), resource adapter (connector or RAR), and application

client files.

 Documentation

v Console

v Scripting

Show me Tell me

--

Start and stop applications

 You can start an application that is not running (has a status of Stopped) or

stop an application that is running (has a status of Started).

 Documentation:

v Console

v Scripting

Show me Tell me

--

Update applications

 Update deployed applications or modules using the administrative console

or wsadmin scripting. Learn which changes are candidates for hot

deployment and dynamic reloading, in which you can make various

changes to applications and their modules without having to stop the

server and start it again.

26 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

ftp://ftp.software.ibm.com/software/eod/WAS_6-0/WPM/Presentations/WASv6_WPM_HA/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/WPM/Simulations/WASv6_WPM_Define_SIBus_Resource.viewlet/WASv6_WPM_Define_SIBus_Resource_viewlet_swf.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/WPM/Presentations/WASv6_WPM_SIBResource/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/WPM/Presentations/WASv6_WPM_SIBResource/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/WPM/Presentations/WASv6_WPM_SIBResource/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/WPM/Presentations/WASv6_WPM_JMSResourceResourceResource/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/WPM/Presentations/WASv6_WPM_JMSResourceResourceResource/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/WPM/Presentations/WASv6_WPM_JMSResourceResourceResource/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Simulations/WASv6_Install_WebSphereBank.viewlet/WASv6_Install_WebSphereBank_viewlet_swf.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_App_Install/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Simulations/WASv6_SM_ApplMgmt.viewlet/WASv6_SM_ApplMgmt_viewlet_swf.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_App_Admin_Overview/playershell.swf

Documentation:

v Console

v Scripting

 Tell me Teach me

--

Deploy applications rapidly (WebSphere Rapid Deployment)

 Take advantage of new rapid deployment capabilities. WebSphere rapid

deployment offers the following advantages: You do not need to assemble

your J2EE application files prior to deployment. You do not need to use

other installation tools mentioned in this table to deploy the files. Refer to

the Rapid deployment tools documentation in the information center.

 --

Enhanced EAR files

 Tell me Teach me

--

Deploy and administer Web services applications

 To deploy Web services that are based on the Web Services for Java 2

platform, Enterprise Edition (J2EE) specification, you need an enterprise

application, also known as an enterprise archive (EAR) file that has been

configured and enabled for Web services. You can use either the

administrative console or the wsadmin scripting interface to deploy an

EAR file.

 Documentation Show me Tell me

--

Use the administrative clients

A variety of tools are provided for administering the product.

--

Choose an administrative client

 Learn about and decide among the available administrative clients,

including a graphical console, scripting (wsadmin), command line tools,

and Java Management Extensions (JMX) programs.

 Documentation Tell me

--

Use the administrative console

 The administrative console is a Web-based tool that you use to administer

the product. The administrative console supports a full range of product

administrative activities.

 Documentation Show me Tell me

--

Chapter 2. How do I administer applications and their environments? 27

ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_App_Update/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/ApplicationManagement/LabInstructions/WASv6_AppUpdateLab.pdf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_Managed_App_Resources/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/LabInstructions/WASv6_EnhancedEARLab.pdf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/WebServices/Simulations/WASv6_DeployingWebServiceWithAdminConsole.viewlet/WASv6_DeployingWebServiceWithAdminConsole_viewlet_swf.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/WebServices/Presentations/WASv6_WebServices/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_AdminClient/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Simulations/WASv6_SM_AdminConsole.viewlet/WASv6_SM_AdminConsole_viewlet_swf.html
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_AdminConsole/playershell.swf

Use scripting (wsadmin)

 Scripting is a non-graphical alternative that you can use to configure and

manage WebSphere Application Server. The WebSphere Application Server

wsadmin tool provides the ability to run scripts. The tool supports a full

range of product administrative activities.

 Documentation Tell me

--

See also:

v Start, stop, monitor processes

v Other administrative commands

Troubleshoot deployment and administration

Troubleshoot problems that occur when you are deploying applications onto the

application server, or when you are administering an established application

serving environment.

--

Troubleshoot administration

 Review some possible causes, based on the error you are seeing.

 Documentation

--

28 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_ScriptingAdmin/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_StartStop_Monitor/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_Commands/playershell.swf

Chapter 3. Using the administrative clients

The product provides a variety of administrative clients for deploying and

administering your applications and application serving environment, including

configurations and logical administrative domains.

v Chapter 4, “Using the administrative console,” on page 31

The administrative console is a graphical, browser-based tool.

v Chapter 5, “Using the MVS console,” on page 49

Use the MVS console on z/OS systems to operate application servers and

clusters, display and modify operations, and manage workload. See also:

“Identifying where to perform WebSphere Application Server operations” on

page 8.

v “Getting started with scripting” on page 52

Scripting is a non-graphical alternative that you can use to configure and

administer your applications and application serving environment. The

WebSphere Application Server wsadmin tool provides the ability to run scripts.

The wsadmin tool supports a full range of product administrative activities.

v Chapter 7, “Using Ant to automate tasks,” on page 603

To support using Apache Ant with Java 2 Platform, Enterprise Edition (J2EE)

applications running on IBM WebSphere Application Server, the product

provides a copy of the Ant tool and a set of Ant tasks that extend the

capabilities of Ant to include product-specific functions.

v Chapter 8, “Using administrative programs (JMX),” on page 605

The product supports access to the administrative functions through a set of

Java classes and methods, under the Java Management Extensions (JMX)

specification. You can write a Java program that performs any of the

administrative features of the other administrative clients. You also can extend

the basic product administrative system to include your own managed

resources.

v Chapter 9, “Using command line tools,” on page 669

Several command-line tools are available that you can use to start, stop, and

monitor WebSphere server processes and nodes. These tools work on local

servers and nodes only. They cannot operate on a remote server or node.

v Chapter 10, “Using mvs command line tools,” on page 697

These commands are for use on z/OS systems.

© Copyright IBM Corp. 2005 29

30 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

Chapter 4. Using the administrative console

The administrative console is a Web-based tool that you use to manage the IBM

WebSphere Application Server product as well as the Network Deployment

product. The administrative console supports a full range of product

administrative activities.

1. z/OS platform: Start the server for the administrative console.For the Network

Deployment product, the administrative console belongs to the deployment

manager (dmgr) process, which you start with the startmanager command.

2. Access the administrative console.

3. Change the session timeout for the administrative console. (Optional)

4. Browse the administrative console.

5. Specify console preferences.

6. Access help.

Starting and logging off the administrative console

This topic describes how to set up the administrative console environment, to

access the administrative console, and to log out of the administrative console.

The administrative console application is installed during the initial installation

process.

To access the administrative console, you must start it and then log in. After you

finish working in the console, save your work and log out.

1. Start the administrative console.

a. z/OS platform: Verify that the application server for the administrative

console is running. Verify that the administrative console runs on the

deployment manager application server for the Network Deployment

product. Issue the startManager command at the MVS console to start the

deployment manager.

b. Enable cookies in the Web browser that you use to access the administrative

console for the administrative console to work correctly.

c. z/OS platform: In the same Web browser, type

http://your_fully_qualified_server_name:9060/ibm/console, where

your_fully_qualified_server_name is the fully qualified host name for the

machine that contains the administrative server. If security is enabled, your

request is redirected to

https://your_fully_qualified_server_name:9043/ibm/console, where

your_fully_qualified_server_name is the fully qualified host name for the

machine that contains the administrative server.

For a listing of supported Web browsers, see WebSphere Application Server

system requirements at

http://www.ibm.com/software/webservers/

appserv/doc/latest/prereq.html

The Web address appears on two lines for printing purposes. Enter the Web

address on one line in your browser.

d. Wait for the console to load into the browser. A Login page is displayed

after the console starts.

© Copyright IBM Corp. 2005 31

http://www.ibm.com/software/webservers/appserv/doc/latest/prereq.html
http://www.ibm.com/software/webservers/appserv/doc/latest/prereq.html

If you cannot start the administrative console because the console port conflicts

with an application that is already running on the machine, do one of the

following actions:

v Change the port number and propagate the number to the appropriate files:

a. Change all the occurrences of port 9060 (or the port that is selected

during profile creation for WebSphere Application Server) to the port for

the console. Make the port changes in the installation

root/profiles/profile

name/config/cells/cell_name/nodes/node_name/servers/server_name/server.xml

file and the installation root/profiles/profile

name/config/cells/cell_name/virtualhosts.xml files.

b. Run the ./wsc2n.sh script from the installation

root/WebSphere/AppServer/bin directory. The ./wsc2n.sh script generates

the was.env file, the control.jvm.options file, the servant.jvm.options

file, and the adjunct.jvm.options file for each server and the was.env file

for the location service daemon. These generated files will contain the

updated administrative console port number.
v Shut down the other application that uses the conflicting port before starting

the WebSphere Application Server product.
2. Log into the console.

a. Enter your user name or user ID.

The user ID lasts only for the duration of the session for which it was used

to log in.

Changes made to server configurations are saved to the user ID. Server

configurations also are saved to the user ID if a session timeout occurs.

If you enter an ID that is already in use (and in session), you are prompted

to do one of the following actions:

v Force the existing user ID out of session. The configuration file that is

used by the existing user ID is saved in the temporary area.

v Wait for the existing user ID to log out or time out of the session.

v Specify a different user ID.
b. If the console is secure, you must also enter a password for the user name.

The console is secure if someone has taken the following actions for the

console:

v Specified security user IDs and passwords

v Enabled global security
c. Click OK.

3. Log off the administrative console. Click System administration > Save

changes to Master Repository > Save to save work. Then click Logout to exit

the console.

If you close the browser before saving your work, when you next log in under

the same user ID, you can recover any unsaved changes.

Login settings

Use this page to specify the user for the WebSphere Application Server

administrative console. If you are using global security, then you must also specify

a password.

When you specify a user, you can resume work done previously with the product.

After you type in a user ID, and password if you are using global security, click

OK to proceed to the next page and access the administrative console.

32 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

To view this page, start the administrative console.

Logging into the administrative console

When you log into the administrative console, you can optionally specify a user ID

if the console is not secure. If the administrative console is secure, you must

specify a user ID and password.

User ID

Specifies a string that identifies the user. The user ID must be unique to the

administrative server. Concurrent administrative console sessions must use unique

user IDs.

Work that you do with the product and then save before exiting the product is

saved to a configuration that is identified by the user ID that you enter. To later

access work done under that user ID, specify the same user ID in the Login page.

 Data type String

Password

If you use global security, specify a password.

Resolving conflicts during login

Conflicts can result if you log into the administrative console with a user ID that is

already in use.

Another user is currently logged in with the same user name

Specifies whether to log out the user and to continue work with the user ID that is

specified, or to return to the Login page and specify a different user ID, or wait for

the user to log out.

This field is displayed if:

v The user closed a Web browser while browsing the administrative console and

did not first log out, then opened a new browser and tried to access the

administrative console with the same user ID.

v The user opened a Web browser to access the administrative console while

accessing the administrative console in another open Web browser with the same

user ID.

v The user opens a Web browser and attempts to log into the console with the

same user ID that is already in use by another user who logged into the console

from another Web browser on another computer.

Recovering prior changes

You can either recover changes that you made to the configuration from a prior

session or use the master configuration. The default is to recover changes from a

prior session.

Recover changes made in a prior session

When enabled, this setting specifies that you want to use the same administrative

configuration used for the last user’s session. This option recovers changes made

by the user since the last saving of the administrative configuration for the user’s

session.

Chapter 4. Using the administrative console 33

This field is displayed only if the user changed the administrative configuration

and then logged out without saving the changes.

Work with the master configuration

When enabled, this setting specifies to use the default administrative configuration

instead of the configuration that was last used for the user’s session. Changes that

are made to the user’s session since the last saving of the administrative

configuration are lost.

This field is displayed only if the user changed the administrative configuration

and then logged out without saving the changes.

Resolving login failures

When the administrative console is enabled with global security, you must type in

a valid user ID and password. If the user ID, password, or both are not valid, you

receive the following message:

 Unable to process login. Please check User ID and password and try again.

Resolve the problem by entering a valid user ID and password as defined in the

WebSphere Application Server security documentation.

Save changes to the master configuration

Use this page to update the master repository with your administrative console

changes, to discard your administrative console changes and continue working

with the master repository, or to continue working with your administrative

console changes that are not saved to the master repository.

Until you save changes to the master repository, the administrative console uses a

local workspace to track your changes.

Total changed documents

Specifies the total number of documents that you changed for your session, but

that are not saved to the master repository. By clicking the +/- toggle key, you can

see additional information about the changed documents:

v Changed items

When you change your local configuration, each path and configuration file that

you can apply the update to in the master repository is displayed in the list.

v Status

Can contain the following options:

– Added: If you save your changes to the master repository, a new

configuration file is created on the indicated path.

– Updated: If you save your changes to the master repository, an existing

configuration file is updated on the indicated path.

– Deleted: If you save your changes to the master repository, an existing

configuration file is deleted on the indicated path.

Synchronize changes with nodes

Specifies whether you want to force node synchronization at the time that you

save your changes to the master repository rather than when node synchronization

normally occurs.

34 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

Setting the session timeout for the administrative console

This topic describes how to change the session timeout from the default value for

the administrative console.

Ensure that you have the proper permissions to change the

${WAS_HOME}/systemApps/adminconsole.ear/deployment.xml file.

Determine whether the default session timeout value of 30 minutes is acceptable.

Some reasons that you might change the default value are:

v Users in secure environments might need shorter session timeout periods to

ensure security, encase they leave their machine and forget to log off the console.

v Users might need longer session timeout periods if they respond slower than

typical users for accessibility reasons.

v Users in secure environments might not want the administrative console timeout

value to conflict with Lightweight Third-Party Authentication (LTPA) cookie

timeouts

Do the following actions to change the timeout value:

1. Edit the ${WAS_HOME}/systemApps/adminconsole.ear/deployment.xml file in a

text editor.

2. Locate the xml statement <tuningParams xmi:id="TuningParams_1088453565469"

maxInMemorySessionCount="1000" allowOverflow="true"

writeFrequency="TIME_BASED_WRITE" writeInterval="10"

writeContents="ONLY_UPDATED_ATTRIBUTES" invalidationTimeout="30">

3. Change the invalidationTimeout value to the desired session timeout. The

default is 30.

4. Save the ${WAS_HOME}/systemApps/adminconsole.ear/deployment.xml file.

5. Restart the console.

Once you restart the console, the change takes effect.

Manage WebSphere Application Server through the administrative console.

Administrative console areas

Use the administrative console to create and manage objects in the WebSphere

Application Server configuration such as resources, applications, and servers.

Additionally, use the administrative console to view product messages. This topic

describes the main areas that display on the administrative console.

To view the administrative console, ensure that the application server for the

administrative console is running. Point a Web browser at the Web address for the

administrative console, enter your user ID and, if needed, a password on the Login

page.

You can resize the width of the navigation tree and workspace simultaneously by

dragging the border between them to the left or the right. The change in width

does not persist between administrative console user sessions.

The console has the following main areas.

Chapter 4. Using the administrative console 35

Taskbar

The taskbar offers options for logging out of the console, accessing product

information, and accessing support.

Navigation tree

The navigation tree on the left side of the console offers links to console pages that

you use to create and manage components in a WebSphere Application Server

administrative cell.

Click a plus sign (+) beside a tree folder or item to expand the tree for the folder

or item. Click a minus sign (-) to collapse the tree for the folder or item. Click an

item in the tree view to toggle its state between expanded and collapsed.

Workspace

The workspace on the right side of the console contains pages that you use to

create and manage configuration objects such as servers and resources. Click links

in the navigation tree to view the different types of configured objects. Within the

workspace, click configured objects to view their configurations, run-time status,

and options. Click Welcome in the navigation tree to display the workspace Home

page, which contains links to information on using the WebSphere Application

Server product.

Administrative console buttons

This page describes the button choices that are available on various pages of the

administrative console, depending on which product features you enable.

v Check all. Selects each resource that is listed on the administrative console

panel, in preparation for performing an action against the selected resources.

v Uncheck all. Removes all the listed resources from each selection so that no

action is performed against any of the resources.

v Filter the view. Produces a dialog box for specifying the resources to view in

the table on this administrative console page.

 Hide the filter view. Hides the dialog box for specifying the resources to view

in the table on this administrative console page.

When you produce the dialog box, select the column to filter and enter the filter

criteria.

Column to filter

Select the column to filter from the drop-down list. When you apply the

filter, only those items in the selected column that meet the filter criteria

are displayed.

 For example, select Names to enter criteria by which to filter application

server names.

Filter criteria

Enter a string that must be found in the name of a collection entry to

qualify the entry to display in the collection table. The string can contain

percent sign (%), asterisk (*), or question mark (?) symbols as wildcard

characters. For example, enter *App* to find any application server

whose name contains the string App.

 Prefix each of the following characters () ^ * % { } \ + $ with a

backslash (\) so that the regular expression engine performing the search

correctly matches the search criteria. For example, to search for all Java

DataBase Connectivity (JDBC) providers containing (XA) in the provider

name, specify the following string:

36 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

*\(XA\)

v Clear filter criteria. Clears your filter changes and restores the most recently

saved values.

v Abort. Stops a transaction that is not yet in the prepared state. All operations

that the transaction completed are undone.

v Activate. Activates a group member.

v Add. Adds the selected or typed item to a list, or produces a dialog for adding

an item to a list.

v Add Node. Displays the Add Node page, in which you specify the host name

and SOAP connector port for a node that you want added to a cell.

v Apply. Saves your changes to a page without exiting the page.

v Back. Displays the previous page or item in a sequence. The administrative

console does not support using the Back and Forward options of a browser,

which can cause intermittent problems. Use Back or Cancel on the

administrative console panels instead.

v Balance. Balances active members in high availability groups across servers that

host the high availability groups. The administrator must first determine which

groups have active members and select those groups before selecting Balance.

v Browse. Opens a dialog that enables you to look for a file on your system.

v Calculate groups. Calculates the number of high availability groups that are

returned based on the match set.

v Cancel. Exits the current page or dialog, discarding unsaved changes. The

administrative console does not support using the Back and Forward options of

a browser, which can cause intermittent problems. Use Cancel on the

administrative console panels instead.

v Change. In the context of security, you can search the user registry for a user ID

for an application to run under. In the context of container properties, you can

change the data source that the container is using.

v Clear. Clears your changes and restores the most recently saved values.

v Clear selections. Clears any selected cells in the tables on this tabbed page.

v Close. Exits the dialog.

v Commit. Releases all locks that are held by a prepared transaction and forces the

transaction to commit.

v Copy. Creates copies of the selected application servers.

v Create. Saves your changes to all the tabbed pages in a dialog and exits the

dialog.

v Create tables. Develops scheduler database tables.

v Deactivate. Deactivates a group member. The group member must be in the

active state to be deactivated. The deactivate option causes the group member to

move to the idle state. The group policy overrides which members are activated

and deactivated for a group. The policy is enforced for every member state

change. If the deactivate option conflicts with the group policy, the policy resets

who is the active member of the group.

v Delete. Removes the selected instance.

v Details. Shows the details about a transaction.

v Disable. Disables a group or group member. When you disable a group or

group member, the active group or group member is first deactivated. If the

deactivate option is successful, the group or group member moves to the disable

state. A disabled group or group member cannot be activated.

v Done. Saves your changes to all the tabbed pages in a dialog and exits the

dialog.

v Down. Moves through a list.

v Drop tables. Removes scheduler database tables.

v Dump. Activates a dump of a traced application server.

v Edit. Lets you edit the selected item in a list, or produces a dialog box for

editing the item.

Chapter 4. Using the administrative console 37

v Enable. Enables a group or a group member.

v Export. Accesses a page for exporting enterprise archive (EAR) files for an

enterprise application.

v Export DDL. Accesses a page for exporting data definition language (DDL) files

for an enterprise application.

v Export Keys. Exports Lightweight Third-Party Authentication (LTPA) keys to

other domains.

v Export route table. Exports the route table information for a selected cluster to a

binary file in the configuration.

v Filter. Produces a dialog box for specifying the resources to view in the tables on

this tabbed page.

v Finish. Forces a transaction to finish, regardless of whether its outcome has been

reported to all participating applications.

v First. Displays the first record in a series of records.

v Full resynchronize. Synchronizes the user’s configuration immediately. Click full

resynchronize on the Nodes page if automatic configuration synchronization is

disabled, or if the synchronization interval is set to a long time, and a

configuration change is made to the cell repository that needs to be replicated to

that node. Clicking this option clears all synchronization optimization settings

and performs configuration synchronization again, so no mismatches occur

between node and cell configuration after this operation is performed. This

operation can take awhile to perform.

v Force delete. Forces the removal of a node that is not removed properly from

the cell in the master repository. The Remove node action is preferred over the

Force delete action to delete a node from the configuration. If you click Force

delete, but the node still exists in the configuration, uninstall the node or run

the removeNode command by using the -force parameter on that node. Force

delete action is equivalent to running the cleanupNode command at the

deployment manager.

v Generate keys. Generates new LTPA keys. When security is turned on for the

first time with LTPA as the authentication mechanism, LTPA keys are

automatically generated with the password entered in the panel. To generated

new keys, use this option after the server is up with security turned on. Clicking

this option generates the keys and propagates them to all active servers (cell,

node, and application servers). The new keys can be used to encrypt and

decrypt the LTPA tokens. Click Save on the console taskbar to save the new keys

and the password in the repository.

v Immediate stop. Stops the server, but bypasses the normal server quiesce

process that supports in-flight requests to complete before shutting down the

entire server process. This shutdown mode is faster than the normal server stop

processing, but some application clients can receive exceptions.

v Import keys. Imports new LTPA keys from other domains. To support single

signon (SSO) in WebSphere Application Server across multiple WebSphere

domains (cells), share LTPA keys and a password among the domains. After

exporting the keys from one of the cells into a file, click this option to import the

keys into all the active servers (cell, node, and application servers). The new

keys can be used to encrypt and decrypt the LTPA token. Click Save on the

console taskbar to save the new keys and the password in the repository.

v Install. Displays the Preparing for application installation page, which you use

to deploy an application, an enterprise bean, or a Web component onto an

application server.

v Install RAR. Opens a dialog that is used to install a Java 2 Platform, Enterprise

Edition Connector Architecture (JCA) connector and to create a resource adapter.

v Manage transactions. Displays a list of active transactions running on a server.

You can forcibly finish any transaction that has stopped processing because a

transactional resource is not available.

38 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

v Modify. Opens a dialog that is used to change a specification.

v Move. Moves the selected application servers to a different location in the

administrative cell. When prompted, specify the target location.

v Move down. Moves downward through a list.

v Move up. Moves upward through a list.

v New. Displays a page that you use to define a new instance. For example,

clicking New on the Application Servers page displays a page on which you can

configure a new application server.

v Next. Displays the next page, frame, or item in a sequence.

v OK. Saves your changes and exits the page.

v Ping. Attempts to contact selected application servers.

v Previous. Displays the previous page, frame, or item in a sequence.

v Quit. Exits a dialog box and discards any unsaved changes.

v Refresh. Refreshes the view of data for instances that are currently listed on this

tabbed page.

v Regenerate encryption key. Regenerates a key for global data replication. If you

are using the DES or TRIPLE_DES encryption type, regenerate a key at regular

intervals (for example, monthly) to enhance security.

v Remove. Deletes the selected item.

v Remove file. Removes the specified file from the selected application or module.

v Remove node. Deletes the selected node.

v Reset. Clears your changes on the tab or page and restores the most recently

saved values.

v Restart all servers on node. Stops all application servers on the node and starts

them again.

v Retrieve new. Retrieves a new record.

v Rollout update. Sequentially updates an application that is installed on multiple

cluster members across a cluster. After you update application files or a

configuration, click Rollout update to install the configuration or the updated

files for an application on all the cluster members of a cluster on which the

application is installed. The Rollout update option applies the following steps to

each cluster member in sequence:

1. Saves an updated configuration.

2. Stops the cluster member.

3. Updates the application on the node by synchronizing the configuration.

4. Restarts the cluster member.

This action enables you to update an application on multiple cluster members

while providing continuous availability of the application.

v Save. Saves the changes in your local configuration to the master configuration.

v Select. For resource analysis, lets you select a scope in which to monitor

resources.

v Set. Saves your changes to settings in a dialog.

v Settings. Displays a dialog for editing servlet-related resource settings.

v Settings in use. Displays a dialog showing the settings in use.

v Show groups. Displays a collection of high availability groups, based on the

match set.

v Show servers. Displays a collection of servers that are contained in the high

availability groups that match the match set.

v Start. In the context of application servers, starts selected application servers. In

the context of data collection, starts collecting data for the tables on this tabbed

page.

v Stop. In the context of server components such as application servers, stops the

selected server components. In the context of a data collection, stops collecting

Chapter 4. Using the administrative console 39

data for the tables on a tabbed page. In the context of nodes, stops servers on

the selected nodes. In the context of deployment managers, stops the

deployment manager server.

v Synchronize. Synchronizes the user’s configuration immediately. Click

Synchronize on the Nodes page if automatic configuration synchronization is

disabled, or if the synchronization interval is set to a long time, and a

configuration change is made to the cell repository that needs replicating to that

node. A node synchronization operation is performed using the normal

synchronization optimization algorithm. This operation is fast, but might not fix

problems from manual file edits that occur on the node. It is possible for the

node and cell configuration to be out of synchronization after this operation is

performed. If problems persist, use Full Resynchronize.

v Terminate. Deletes the Application Server process or another process that cannot

be stopped by the Stop or Immediate Stop commands. Some application clients

can receive exceptions. Always attempt an immediate stop before using this

option.

v Test connection After you define and save a data source, you can select this

option to ensure that the parameters in the data source definition are correct. On

the Collection panel, you can select multiple data sources and test them

simultaneously.

v Uninstall. Deletes a deployed application from the WebSphere Application

Server configuration repository. Also deletes application binary files from the file

system.

v Update. Replaces an application that is deployed on a server with an updated

application. As part of the updating, you might need to complete steps on the

Preparing for application installation and Update application pages.

v Update resource list. Updates the data on a table. Discovers and adds new

instances to the table.

v Use cell CSI. Enables Object Management Group (OMG) Common Secure

Interoperability (CSI) protocol.

v Use cell SAS. Enables IBM Secure Authentication Service (SAS).

v Use cell Security. Enables cell security.

v Verify tables. Validates the mapping between the table names, scheduler

resource, and data sources.

v View. Opens a dialog on a file.

Administrative console page features

This topic provides information about the basic elements of an administrative

console page, such as the various tabs.

Administrative console pages are arranged in a few basic patterns. Understanding

their layout and behavior will help you use them more easily.

Collection pages

Use collection pages to manage a collection of existing administrative objects. A

collection page typically contains one or more of the following elements:

Scope and Preferences

These are described in “Administrative console scope settings” on page 45

and “Administrative console preference settings” on page 44.

Table of existing objects

The table displays existing administrative objects of the type specified by

the collection page. The table columns summarize the values of the key

settings for these objects. If no objects exist yet, an empty table is

displayed. Use the available buttons to create a new object.

40 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

Buttons for performing actions

The available buttons are described on the Administrative console buttons

help panel. In most cases, you need to select one or more of the objects in

the table, then click a button. The action will be applied to the selected

objects.

Sort toggle buttons

Following column headings in the table are icons for sort ascending (^)

and sort descending (v). By default, items such as names are sorted in

descending order (alphabetically). To enable another sorting order, click on

the icons for the column whose items you want sorted.

 Detail pages

Use detail pages to configure specific administrative objects, such as an application

server. A detail page typically contains one or more of the following elements:

Configuration tabbed page

This tabbed page is for modifying the configuration of an administrative

object. Each configuration page has a set of general properties specific to

the administrative object. Other sets of properties display on the page, but

vary depending on the administrative object.

Runtime tabbed page

This tabbed page displays the configuration that is currently in use for the

administrative object. It is read-only in most cases. Some detail pages do

not have runtime tabs.

Local Topology tabbed page

This tabbed page displays the topology that is currently in use for the

administrative object. View the topology by expanding and collapsing the

different levels of the topology. Some detail pages do not have local

topology tabs.

Buttons for performing actions

Buttons to perform specific actions display on the configuration tabbed

page and the runtime tabbed page. The displayed buttons vary based on

the administrative object. The available buttons are described on the

Administrative console buttons help panel.

 Wizard pages

Use wizard pages to complete a configuration process comprised of several steps.

Be aware that wizards show or hide certain steps depending on the characteristics

of the specific object you are configuring.

Administrative console navigation tree actions

Use the navigation tree of the administrative console to access pages for creating

and managing servers, applications, resources, and other components.

To view the navigation tree, go to the WebSphere Application Server administrative

console and look at the tree on the left side of the console. The tree provides

navigation to configuration tasks and run-time information. The main topics

available on the navigation tree are detailed in the following section. To use the

tree, expand a main topic and select an item from the expanded list to display a

page on which you can perform the administrative task.

Servers

Configure application servers, clusters, generic servers, Web servers, and core

groups.

Chapter 4. Using the administrative console 41

Applications

Install applications onto servers and manage the installed applications.

Resources

Configure resources and to view information on resources that exist in the

administrative cell.

Security

Access the Security Center, which you use to secure applications and servers.

Environment

Configure hosts, WebSphere Application Server variables, and other components.

System Administration

Configure console settings, and manage components and users of a Network

Deployment product.

Troubleshooting

Check for configuration errors and problems, view log files, and enable and disable

tracing on a distributed platform.

Monitoring and Tuning

Monitor and tune your Application Server performance and analyze performance

data.

Service Integration

Iimplement message-oriented and service-oriented applications.

UDDI

Publish and discover information about Web services.

Administrative console taskbar actions

Use the taskbar of the administrative console to log out of the administrative

console and to access the console help.

To view the taskbar, go to the WebSphere Application Server administrative

console and look at the horizontal bar near the top of the console. The taskbar

provides the following actions.

Logout

Logs you out of the administrative console session and displays the Login page. If

you made changes to the administrative configuration since last saving the

configuration to the master repository, the Save page is displayed before returning

to the Login page.

v Click Save to save the changes to the master repository.

v Click Discard to exit the session without saving changes.

v Click Logout to exit the session without saving changes but with the

opportunity to recover your changes when you return to the console.

Help

Opens a new Web browser to online help for the WebSphere Application Server

product.

42 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

Support

Displays support links that vary based on the products that extend the WebSphere

Application Server. Use the support page to access product information such as

Frequently Asked Questions (FAQs), technical notes (Technotes), hints and tips,

and news. You can additionally install the Support Advisor Search application so

that when you click on the support link, a new Web browser that contains the

Support Advisor Search application opens. The Support Advisor Search application

displays the support links on the support page, but additionally provides federated

search capabilities into IBM knowledge databases.

Specifying console preferences

Use this topic to customize how much data displays on an administrative console

panel.

Throughout the administrative console are pages that have Preferences fields,

Scope fields, and Filter radio buttons. By selecting these fields and radio buttons

you can customize how much data is shown.

For example, examine the Preferences field for the Enterprise Applications page:

1. Go to the navigation tree of the administrative console and click Applications >

Enterprise Applications.

2. Expand Preferences.

3. For the Maximum rows field, specify the maximum number of rows to display

when the collection is large. The default is 20. Rows that exceed the maximum

number display on subsequent pages.

4. Select Retain filter criteria if you want to retain the last filter criteria that is

entered in the filter function. When you return to the Applications page, the

page initially uses the retained filter criteria to display the collection of

applications in the table following the preferences. Otherwise, clear Retain

filter criteria and the last filter criteria is not retained.

5. Click Apply to apply your selections or click Reset to return to the default

values. The default is not to enable (not have a check mark beside) Retain filter

criteria.

Other pages have similar fields and radio buttons that you can use to specify

console preferences. While Preferences fields, Scope fields, and Filter buttons

control how much data is shown in the console, the Preferences option controls

general behavior of the console. Click System administration > Console settings >

Preferences to view the Preferences page.

Preferences settings

Use the Preferences page to specify whether you want the administrative console

workspace to refresh automatically after changes, the default scope to be the

administrative console node, confirmation dialogs to display, and the workspace

banner and descriptions to display.

To view this administrative console page, click System administration > Console

settings > Preferences.

Turn on workSpace auto-refresh

Specifies whether you want the administrative console workspace to redraw

automatically after the administrative configuration changes.

Chapter 4. Using the administrative console 43

The default is for the workspace to redraw automatically. If you direct the console

to create a new instance of, for example, an application server, the Application

Servers page refreshes automatically and shows the new server name in the

collection of servers.

Specifying that the workspace not redraw automatically means that you must

access a page again by clicking the console navigation tree or links on collection

pages to see the changes that are made to the administrative configuration.

 Default true (selected)

No confirmation on workspace discard

Specifies whether the confirmation dialog is displayed after a request is receive to

discard the workspace. The default is to display confirmation dialogs.

 Default false (cleared)

Use default scope (administrative console node)

Specifies whether the default scope is the administrative console node. The default

scope not is not the console node.

 Default false (cleared)

Show banner

Specifies whether the WebSphere Application Server banner along the top of the

administrative console is displayed. The default is for the banner to display.

 Default true (selected)

Show Descriptions

Specifies whether information on the right of the console is shown. The default is

to show the information.

 Data type Boolean

Default true

Administrative console preference settings

Use the preference settings to specify how you want information displayed on an

administrative console page.

Maximum rows

Indicates the maximum number of rows to display per page when the collection is

large.

Filter history

Indicates whether to use the same filter criteria to display this page the next time

you visit it.

Select the Retain filter criteria check box to retain the last filter criteria entered.

When you return to the page, retained filter criteria control the application

collection that is displayed n the table.

44 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

Show confirmation for stop command

Select the check box if you want a confirmation that the stop command is

successful.

Show confirmation for immediate stop command

Select the check box if you want a confirmation that the immediate stop command

is successful.

Show confirmation for terminate command

Select the check box if you want a confirmation that the terminate command is

successful.

Administrative console scope settings

Use this page to specify the level at which a resource is visible on the

administrative console panel. A resource can be visible in the administrative

console collection table at the cell, node, cluster, or server scope. By changing the

value for Scope you can see other variables that apply to a resource and might

change the contents of the collection table.

Click Browse next to a field to see choices for limiting the scope of the field. If a

field is read-only, you cannot change the scope. For example, if only one server

exists, you cannot switch the scope to a different server.

You always create resources at the current scope that is selected in the

administrative console panel, even though the resources might be visible at more

than one scope.

Resources such as JDBC providers, namespace bindings, or shared libraries can be

defined at multiple scopes. Resources that are defined at more specific scopes

override duplicate resources that are defined at more general scopes.

v The application scope has precedence over all the scopes.

v The server scope has precedence over the node, cell, and cluster scopes.

v The cluster scope has precedence over the node and cell scopes.

v The node scope has precedence over the cell scope.

Despite the scope of a defined resource, the resource properties only apply at an

individual server level. For example, if you define the scope of a data source at the

cell level, all the users in that cell can look up and use that data source, which is

unique within that cell. However, resource property settings are local to each

server in the cell. For example, if you define the maximum connections as 10, then

each server in that cell can have 10 connections.

The cell scope is the most general scope and does not override any other scope.

The recommendation is that you generally specify a more specific scope than the

cell scope. When you define a resource at a more specific scope, you provide

greater isolation for the resource. When you define a resource at a more general

scope, you provide less isolation. Greater exposure to cross-application conflicts

occur for a resource that you define at a more general scope.

Cell Limits the visibility to all servers on the named cell. The resource factories

within the cell scope are:

v Defined for all servers within this cell

v Overridden by any resource factories that are defined within application,

server, cluster and node scopes that are in this cell and have the same

Java Naming and Directory Interface (JNDI) name

Chapter 4. Using the administrative console 45

The resource providers that are required by the resource factories must be

installed on every node within the cell before applications can bind or use

them.

Cluster

Limits the visibility to all the servers on the named cluster. All cluster

members must at least be at Version 6 to use cluster scope for the cluster.

The resource factories that are defined within the cluster scope:

v Are available for all the members of this cluster to use

v Override any resource factories that have the same JNDI name that is

defined within the cell scope

The resource factories that are defined within the cell scope are available

for this cluster to use, in addition to the resource factories, that are defined

within this cluster scope.

Node Limits the visibility to all the servers on the named node. The node scope

is the default scope for most resource types. The resource factories that are

defined within the node scope:

v Are available for servers on this node to use

v Override any resource factories that have the same JNDI name defined

within the cell scope

The resource factories that are defined within the cell scope are available

for servers on this node to use, in addition to the resource factories that are

defined within this node scope.

Server Limits the visibility to the named server. The server scope is the most

specific scope for defining resources. The resource factories that are defined

within the server scope:

v Are available for applications that are deployed on this server

v Override any resource factories that have the same JNDI name defined

within the node and cell scopes

The resource factories that are defined within the node and cell scopes are

available for this server to use, in addition to the resource factories that are

defined within this server scope.

Application

Limits the visibility to the named application. Application scope resources

cannot be configured from the console. Use the WebSphere Application

Server Toolkit (AST) or the wsadmin tool to view or modify the

application scope resource configuration. The resource factories that are

defined within the application scope are available for this application to

use only. The application scope overrides all other scopes.

 You can configure resources and WebSphere Application Server variables under all

five scopes. You can configure namespace bindings and shared libraries only under

cell, node, and server scopes.

Accessing help and product information from the administrative

console

This topic describes how to use administrative console help and how to link to

product documentation from the administrative console.

You must have a connection to the Internet to access information about WebSphere

Application Server from the Welcome page of the administrative console.

All of the helps panels that you can access from the administrative console, you

can access from the WebSphere Application Server Information Center. This article

46 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

describes how to access the help panels, the information center, and other product

documentation from the administrative console.

v Click Welcome on the administrative console navigation tree. In the workspace

to the right of the navigation tree, select the appropriate links to access the

WebSphere Application Server Information Center, the WebSphere Application

Server product information, and the WebSphere Application Server technical

information on developerWorks.

v Access help in the following ways:

– Click Help on the administrative console task bar to open a new Web browser

for online help.

- Click on the Help index tab and select from the list of help panels to view

administrative console help information.

- Click on the Search tab, provide search terms, and then click Search. Under

Results, select a help panel that contains the search information.
– Click the ? icon on the task bar for the particular administrative console panel

to open a new Web browser and view the help panel for the corresponding

administrative console panel. The help panel is displayed in the Help index

for the administrative console.

– In the help portal that is on the right side of the administrative console panel,

do one or all of the following tasks:

- Click a field label or a list marker in the administrative console panel for

the help to display under Field help. Alternatively, place the cursor over

the field label or the list marker for the corresponding help to display at

the cursor.

- Click the link under Page help to access the help panel for the

administrative console panel. The help panel is the same help panel that

displays when you click the ? icon.

- Expand the task help to view related tasks.

You can continue to access help information from the administrative console.

Alternatively, you can access the help information from the WebSphere Application

Server Information Center.

You can continue to access the WebSphere Application Server Information Center,

the WebSphere Application Server product information, and the WebSphere

Application Server technical information on developerWorks from the

administrative console. Alternatively you can access the information from the IBM

Web site.

Administrative console: Resources for learning

Use the following links to find relevant supplemental information about the IBM

WebSphere Application Server administrative console. The information resides on

IBM and non-IBM Internet sites, whose sponsors control the technical accuracy of

the information.

These links are provided for convenience. Often, the information is not specific to

the IBM WebSphere Application Server product, but is useful all or in part for

understanding the product. When possible, links are provided to technical papers

and Redbooks that supplement the broad coverage of the release documentation

with in-depth examinations of particular product areas.

View links to additional information:

Chapter 4. Using the administrative console 47

http://www.ibm.com/
http://www.ibm.com/

Administration

v IBM WebSphere Application Server Redbooks

This site contains a listing of all WebSphere Application Server Redbooks.

v IBM developerWorks WebSphere

This site is the home of technical information for developers working with

WebSphere products. You can download WebSphere software, take a fast path to

developerWorks zones, such as VisualAge Java or WebSphere Application Server,

learn about WebSphere products through a newcomers page, tutorials,

technology previews, training, and Redbooks, get answers to questions about

WebSphere products, and join the WebSphere community, where you can keep

up with the latest developments and technical papers.

v WebSphere Application Server Support page

Take advantage of the Web-based Support and Service resources from IBM to

quickly find answers to your technical questions. You can easily access this

extensive Web-based support through the IBM Software Support portal at URL

http://www-3.ibm.com/software/support/ and search by product category, or by

product name. For example, if you are experiencing problems specific to

WebSphere Application Server, click WebSphere Application Server in the

product list. The WebSphere Application Server Support page appears.

48 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

http://publib-b.boulder.ibm.com/Redbooks.nsf/Portals/WebSphere
http://www7b.software.ibm.com/wsdd/
http://www-3.ibm.com/software/webservers/appserv/support.html

Chapter 5. Using the MVS console

Use the MVS console to manage the IBM WebSphere Application Server product as

well as the Network Deployment product.

1. See the z/OS MVS System commands manual at

http://www.ehone.ibm.com/public/applications/publications/cgibin/pbi.cgi

for information on how to use MVS operator commands.

2. Optionally use standard console automation products to automate WebSphere

Application Server for z/OS operations. All automations for the WebSphere

Application Server for z/OS environment are done using interfaces from the

MVS console. Products such as Netview are presented copies of messages that

are to be displayed on the MVS console. These automation products can also

enter commands into the system using a ″virtual″ MVS console as a source.

© Copyright IBM Corp. 2005 49

http://www.ehone.ibm.com/public/applications/publications/cgibin/pbi.cgi

50 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

Chapter 6. Using scripting (wsadmin)

The WebSphere administrative (wsadmin) scripting program is a powerful,

non-graphical command interpreter environment enabling you to run

administrative operations in a scripting language. The wsadmin tool is intended

for production environments and unattended operations. You can use the wsadmin

tool to perform the same tasks that you can perform using the administrative

console.

The following list highlights the topics and tasks available with scripting:

v Getting started with scripting Provides an introduction to WebSphere

Application Server scripting and information about using the wsadmin tool.

Topics include information about the scripting languages and the scripting

objects, and instructions for starting the wsadmin tool.

v Deploying applications Provides instructions for deploying and uninstalling

applications. For example, stand-alone Java archive files and Web archive files,

the administrative console, remote Enterprise Archive (EAR) files, file transfer

applications, and so on.

v Managing deployed applications Includes tasks that you perform after the

application is deployed. For example, starting and stopping applications,

checking status, modifying listener address ports, querying application state,

configuring a shared library, and so on.

v Configuring servers Provides instructions for configuring servers, such as

creating a server, modifying and restarting the server, configuring the Java

virtual machine, disabling a component, disabling a service, and so on.

v Configuring connections to Web servers Includes topics such as regenerating the

plug-in, creating new virtual host templates, modifying virtual hosts, and so on.

v Managing servers Includes tasks that you use to manage servers. For example,

stopping nodes, starting and stopping servers, querying a server state, starting a

listener port, and so on.

v Clustering servers Includes topics about clusters, such as creating clusters,

creating cluster members, querying a cluster state, removing clusters, and so on.

v Configuring security Includes security tasks, for example, enabling and disabling

global security, enabling and disabling Java 2 security, and so on.

v Configuring data access Includes topics such as configuring a Java DataBase

Connectivity (JDBC) provider, defining a data source, configuring connection

pools, and so on.

v Configuring messaging Includes topics about messaging, such as Java Message

Service (JMS) connection, JMS provider, WebSphere queue connection factory,

MQ topics, and so on.

v Configuring mail, URLs, and resource environment entries Includes topics such

as mail providers, mail sessions, protocols, resource environment providers,

referenceables, URL providers, URLs, and so on.

v Troubleshooting Provides information about how to troubleshoot using scripting.

For example, tracing, thread dumps, profiles, and so on.

v Scripting reference material Includes all of the reference material related to

scripting. Topics include the syntax for the wsadmin tool and for the

administrative command framework, explanations and examples for all of the

scripting object commands, the scripting properties, and so on.

© Copyright IBM Corp. 2005 51

Getting started with scripting

Scripting is a non-graphical alternative that you can use to configure and manage

WebSphere Application Server. The WebSphere Application Server wsadmin tool

provides the ability to run scripts. The wsadmin tool supports a full range of

product administrative activities.

The following figure illustrates the major components involved in a wsadmin

scripting solution:

M Bean

Server

M Beans

M Beans

Connector

Resources

Java virtual machine

External tools

and programs

Figure 1: A WebSphere Application Server scripting solution

The wsadmin tool supports two scripting languages: Jacl and Jython. Five objects

are available when you use scripts:

v AdminControl: Use to run operational commands.

v AdminConfig: Use to run configurational commands to create or modify

WebSphere Application Server configurational elements.

v AdminApp: Use to administer applications.

v AdminTask: Use to run administrative commands.

v Help: Use to obtain general help.

The scripts use these objects to communicate with MBeans that run in WebSphere

Application Server processes. MBeans are Java objects that represent Java

Management Extensions (JMX) resources. JMX is an optional package addition to

Java 2 Platform Standard Edition (J2SE). JMX is a technology that provides a

simple and standard way to manage Java objects.

To perform a task using scripting, you must first perform the following steps:

1. Choose a scripting language. The wsadmin tool only supports Jacl and Jython

scripting languages. Jacl is the language specified by default. If you want to use

the Jython scripting language, use the -lang option or specify it in the

wsadmin.properties file.

2. Start the wsadmin scripting client interactively, as an individual command, in a

script, or in a profile.

Before you perform any task using scripting, make sure that you are familiar with

the following concepts:

v Java Management Extensions (JMX)

v WebSphere Application Server configuration model

v wsadmin tool

v Jacl syntax or Jython syntax

v Scripting objects

Optionally, you can customize your scripting environment. For more information,

see Scripting environment properties.

52 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

After you become familiar with the scripting concepts, choose a scripting language,

and start the scripting client, you are ready to perform tasks using scripting.

Java Management Extensions (JMX)

Java Management Extensions (JMX) is a framework that provides a standard way

of exposing Java resources, for example, application servers, to a system

management infrastructure. Using the JMX framework, a provider can implement

functions, such as listing the configuration settings, and editing the settings. This

framework also includes a notification layer that management applications can use

to monitor events such as the startup of an application server.

JMX key features

The key features of the WebSphere Application Server Version 6 implementation of

JMX include:

v All processes that run the JMX agent.

v All run-time administration that is performed through JMX operations.

v Connectors that are used to connect a JMX agent to a remote JMX-enabled

management application. The following connectors are supported:

– SOAP JMX Connector

– Remote Method Invocation over the Internet Inter-ORB Protocol (RMI-IIOP)

JMX Connector
v Protocol adapters that provide a management view of the JMX agent through a

given protocol. Management applications that connect to a protocol adapter are

usually specific to a given protocol.

v The ability to query and update the configuration settings of a run-time object.

v The ability to load, initialize, change, and monitor application components and

resources during run-time.

JMX architecture

The JMX architecture is structured into three layers:

v Instrumentation layer - Dictates how resources can be wrapped within special

Java beans, called managed beans (MBeans).

v Agent layer - Consists of the MBean server and agents, which provide a

management infrastructure. The services that are implemented include:

– Monitoring

– Event notification

– Timers
v Management layer - Defines how external management applications can interact

with the underlying layers in terms of protocols, APIs, and so on. This layer

uses an implementation of the distributed services specification (JSR-077), which

is not yet part of the Java 2 platform, Enterprise Edition (J2EE) specification.

The layered architecture of JMX is summarized in the following figure:

Chapter 6. Using scripting (wsadmin) 53

Management Application

Connector

MBean Server

Agent Layer

Agent

services

Agent

services

Resource 1

MBean

Resource 2

MBean

Resource 1 Resource 2

Manages Manages

Instrumentation Layer

Agent Services

(as MBeans)

Managed Resources

Java virtual machine

Adapter

Figure 1: JMX architecture

JMX distributed administration

The following figure shows how the JMX architecture fits into the overall

distributed administration topology of a Network Deployment environment:

JMX

ConnectorMBean

Server

MBean

Proxy

MBean

Proxy

Application Server

Node Agent

MBeans

MBeans

JMX

ConnectorMBean

Server

MBean

Proxy

MBean

Proxy

MBeans

MBeans

Clients, Multi-cell,
management, & other EMS

(Tivoli, BMC)

To other

Nodes

To Other

Application Servers

Configuration

Repository Service

Configuration

Distribution ServiceJMX

ConnectorMBean

Server

MBeans

MBeans

Master

files

EAR

files

Configuration

files

Deployment Manager

Figure 2: WebSphere Application Server distributed administration of JMX

The key points of this distributed administration architecture include:

54 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

v Internal MBeans that are local to the Java virtual machine (JVM) register with

the local MBean server.

v External MBeans have a local proxy to their MBean server. The proxy registers

with the local MBean server. Using the MBean proxy the local MBean server can

pass the message to an external MBean server that is located on:

– A node agent that has an MBean proxy for all the servers within its node. The

MBean proxies for other nodes are not used.

– The deployment manager has MBean proxies for all the node agents in the

cell.

JMX Mbeans

WebSphere Application Server provides a number of MBeans, each of which has

different functions and operations available. For example, an application server

MBean can expose operations such as start and stop. An application MBean can

expose operations such as install and uninstall. Some JMX usage scenarios that you

can encounter include:

v External programs that are written to control the Network Deployment run time

and its WebSphere resources by programmatically accessing the JMX API.

v Third-party applications that include custom JMX MBeans as part of the

deployed code, supporting the JMX API management of application components

and resources.

The following example illustrates how to obtain an MBean:

Using Jacl:

set am [$AdminControl queryNames type=ApplicationManager,process=server1,*]

Using Jython:

am = AdminControl.queryNames(’type=ApplicationManager,process=server1,*’)

Each WebSphere Application Server runtime MBean can have attributes,

operations, and notifications. The complete documentation for each MBean that is

supplied with WebSphere Application Server is available in an HTML table that is

installed in each copy of the WebSphere Application Server product. Under the

main installation directory for the product, there is the web directory. Under the web

directory there is another directory called mbeanDocs. In the mbeanDocs directory

there are several HTML files; one HTML file for each MBean supplied with

WebSphere Application Server. There is also an index.html file that ties all the

individual MBean files together in a top-level navigation tree. Each MBean

provides a summary of its attributes, operations, and notifications.

JMX benefits

The use of JMX for management functions in WebSphere Application Server

provides the following benefits:

v Enables the management of Java applications without significant investment.

v Relies on a core-managed object server that acts as a management agent.

v Java applications can embed a managed object server and make some of its

functionality available as one or several MBeans that are registered with the

object server.

v Provides a scalable management architecture.

Chapter 6. Using scripting (wsadmin) 55

v Every JMX agent service is an independent module that can be plugged into the

management agent.

v The API is extensible, allowing new WebSphere Application Server and custom

application features to be easily added and exposed through this management

interface.

v Integrates existing management solutions.

v JMX smart agents are capable of being managed through HTML browsers or by

various management protocols such as Web services, Java Message Service

(JMS), and Simple Network Management Protocol (SNMP).

v Each process is self-sufficient when it comes to the management of its resources.

No central point of control exists. In principle, a JMX-enabled management client

can be connected to any managed process and interact with the MBeans that are

hosted by that process.

v JMX provides a single, flat, domain-wide approach to system management.

Separate processes interact through MBean proxies that support a single

management client to seamlessly navigate through a network of managed

processes.

v Defines the interfaces that are necessary for management only.

v Provides a standard API for exposing application and administrative resources

to management tools.

WebSphere Application Server configuration model

Configuration data is stored in several different XML files which the server run

time reads when it starts and responds to the component settings stored there. The

configuration data includes the settings for the run time, such as, Java virtual

machine (JVM) options, thread pool sizes, container settings, and port numbers the

server will use. Other configuration files define Java 2 Platform, Enterprise Edition

(J2EE) resources to which the server connects in order to obtain data that is needed

by the application logic. Security settings are stored in a separate document from

the server and resource configuration. Application-specific configuration, such as,

deployment target lists, session configuration, and cache settings, are stored in files

under the root directory of each application. When viewing the XML data in the

configuration files, you can discern relationship between the configuration objects.

Understanding the relationship between the different configuration objects is

essential when creating wsadmin scripts that perform configuration function

For more information on the WebSphere Application Server configuration objects

view the HTML tables in the installroot/web/configDocs directory. There are

several subdirectories, one for each configuration package in the model. The

index.html file ties all of the individual configuration packages together in a

top-level navigation tree. Each configuration package lists the supported

configuration classes and the configuration class lists all of the supported

properties. The properties with names that end with the at (@) character imply that

property is a reference to a different configuration object within the configuration

data. The properties with names that end with an asterisk (*) character imply that

the property is a list of other configuration objects.

Jacl

Jacl is an alternate implementation of TCL, and is written entirely in Java code.

The wsadmin tool uses Jacl V1.3.1. The following information is a basic summary

of the Jacl syntax:

56 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

Basic syntax:

The basic syntax for a Jacl command is the following:

Command arg1 arg2 arg3 ...

The command is either the name of a built-in command or a Jacl procedure. For

example:

puts stdout {Hello, world!}

=> Hello, world!

In this example, the command is puts which takes two arguments, an I/O stream

identifier and a string. The puts command writes the string to the I/O stream

along with a trailing new line character. The arguments are interpreted by the

command. In the example, stdout is used to identify the standard output stream.

The use of stdout as a name is a convention employed by the puts command and

the other I/O commands. stderr identifies the standard error output, and stdin

identifies the standard input.

Variables

The set command assigns a value to a variable. This command takes two

arguments: the name of the variable and the value. Variable names can be any

length and are case sensitive. You do not have to declare Jacl variables before you

use them. The interpreter will create the variable when it is first assigned a value.

For example:

set a 5

=> 5

set b $a

=> 5

The second example assigns the value of variable a to variable b. The use of dollar

sign ($) is indicates variable substitution. You can delete a variable with the unset

command, for example:

unset varName1 varName2 ...

You can pass any number of variables to the unset command. The unset command

will give error if a variable is not already defined. You can delete an entire array or

just a single array element with the unset command. Using the unset command on

an array is a easy way to clear out a big data structure. The existence of a variable

can be tested with the info exists command. You may have to test for the existence

of the variable because the incr parameter requires that a variable exist first, for

example:

if ![info exists foobar] {set foobar 0} else {incr foobar}

Command substitution:

The second form of substitution is command substitution. A nested command is

delimited by square brackets, []. The Jacl interpreter evaluates everything

between the brackets and evaluates it as a command. For example:

set len [string length foobar]

=> 6

In this example, the nested command is the following: string length foobar. The

string command performs various operations on strings. In this case, the command

Chapter 6. Using scripting (wsadmin) 57

asks for the length of the string foobar. If there are several cases of command

substitution within a single command, the interpreter processes them from left

bracket to right bracket. For example:

set number "1 2 3 4"

=> 1 2 3 4

set one [lindex $number 0]

=> 1

set end [lindex $number end]

=> 4

set another {123 456 789}

=> 123 456 789

set stringLen [string length [lindex $another 1]]

=> 3

set listLen [llength [lindex $another 1]

=> 1

Math expressions:

The Jacl interpreter does not evaluate math expressions. Use the expr command to

evaluate math expressions. The implementation of the expr command takes all

arguments, concatenates them into a single string, and parses the string as a math

expression. After the expr command computes the answer, it his formatted into a

string and returned. For example:

expr 7.2 / 3

=> 2.4

Backslash substitution:

The final type of substitution done by the Jacl interpreter is backslash substitution.

Use this to quote characters that have special meaning to the interpreter. For

example, you can specify a literal dollar sign, brace, or bracket by quoting it with a

backslash. If you are using lots of backslashes, instead you can group things with

curly braces to turn off all interpretation of special characters. There are cases

where backslashes are required. For example:

set dollar "This is a string \$contain dollar char"

=> This is a string $contain dollar char

set x $dollar

=> This is a string $contain dollar char

set group {$ {} [] { [}]}

=> $ {} [] { [}]

You can also use backslashes to continue long commands on multiple lines. A new

line without the backslash terminates a command. A backslashes that are the last

character on a line convert into a space. For example:

set totalLength [expr [string length "first string"] + \

[string length "second string"]]

=> 25

Grouping with braces and double quotes:

Use double quotes and curly braces to group words together. Quotes allow

substitutions to occur in the group and curly braces prevent substitution. This rule

applies to command, variable, and backslash substitutions. For example:

58 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

set s Hello

=> Hello

puts stdout "The length of $s is [string length $s]."

=> The length of Hello is 5.

puts stdout {The length of $s is [string length $s].}

=> The length of $s is [string length $s].

In the second example, the Jacl interpreter performs variable and command

substitution on the second argument from the puts command. In the third

command, substitutions are prevented so the string is printed as it is.

Procedures and scope:

Jacl uses the proc command to define procedures. The basic syntax to define a

procedure is the following:

proc name arglist body

The first argument is the name of the procedure being defined. The name is case

sensitive, and in fact it can contain any characters. Procedure names and variable

names do not conflict with each other. The second argument is a list of parameters

to the procedures. The third argument is a command, or more typically a group of

commands that form the procedure body. Once defined, a Jacl procedure is used

just like any of the built-in commands. For example:

proc divide {x y} {

set result [expr x/y]

puts $result

}

Inside the script, this is how to call devide procedure:

divide 20 5

And it will give the result like below:

4

It is not really necessary to use the variable c in this example. The procedure body

could also written as:

return [expr sqrt($a * $a + $b * $b)]

The return command is optional in this example because the Jacl interpreter

returns the value of the last command in the body as the value of the procedure.

So, the procedure body could be reduced to:

expr sqrt($a * $a + $b * $b)

The result of the procedure is the result returned by the last command in the body.

The return command can be used to return a specific value.

There is a single, global scope for procedure names. You can define a procedure

inside another procedure, but it is visible everywhere. There is a different name

space for variables and procedures therefore you may have a procedure and a

variable with the same name without a conflict. Each procedure has a local scope

for variables. Variables introduced in the procedures only exist for the duration of

the procedure call. After the procedure returns, those variables are undefined. If

the same variable name exists in an outer scope, it is unaffected by the use of that

variable name inside a procedure. Variables defined outside the procedure are not

visible to a procedure, unless the global scope commands are used.

Chapter 6. Using scripting (wsadmin) 59

v global command - Global scope is the top level scope. This scope is outside of

any procedure. You must make variables defined at the global scope accessible

to the commands inside procedure by using the global command. The syntax for

the global command is the following:

global varName1 varName2 ...

Comments

Use the pound character (#) to make comments.

Command line arguments

The Jacl shells pass the command line arguments to the script as the value of the

argv variable. The number of command line arguments is given by argc variable.

The name of the program, or script, is not part of argv nor is it counted by argc.

Instead, it is put into the argv0 variable. The argv variable is a list. Use the lindex

command to extract items from the argument list, for example:

set first [lindex $argv 0]

set second [lindex $argv 1]

Strings and pattern matching

String are the basic data item in the Jacl language. There are multiple commands

that you can use to manipulate strings. The general syntax of the string command

is the following:

string operation stringvalue otherargs

The operation argument determines the action of the string. The second argument

is a string value. There may be additional arguments depending on the operation.

The following table includes a summary of the string command:

 Command Description

string compare str1 str2 Compares strings lexicographically. Returns

0 if equal, -1 if str1 sorts before str2, else1.

string first str1 str2 Returns the index in str2 of the first

occurrence of str1, or -1 if str1 is not found.

string index string index Returns the character at the specified index.

string last str1 str2 Returns the index in str2 of the last

occurrence of str1, or -1 if str1 is not found.

string length string Returns the number of character in string.

string match pattern str Returns 1 if str matches the pattern, else 0.

string range str i j Returns the range of characters in str from i

to j

string tolower string Returns string in lower case.

string toupper string Returns string in upper case.

string trim string ?chars? Trims the characters in chars from both ends

of string. chars defaults to white space.

string trimleft string ?chars? Trims the characters in chars from the

beginning of string. chars defaults to white

space.

60 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

string trimright string ?chars? Trims the characters in chars from the end of

string. chars defaults to white space.

string wordend str ix Returns the index in str of the character after

the word containing the character at index

ix.

string wordstart str ix Returns the index in str of the first character

in the word containing the character at

index ix.

The append command

The first argument of the append command is a variable name. It concatenates the

remaining arguments onto the current value of the named variable. For example:

set foo z

=> z

append foo a b c

=> zabc

The regexp command

The regexp command provides direct access to the regular expression matcher. The

syntax is the following:

regexp ?flags? pattern string ?match sub1 sub2 ...?

The return value is 1 if some part of the string matches the pattern. Otherwise, the

return value will be 0. The pattern does not have to match the whole string. If you

need more control than this, you can anchor the pattern to the beginning of the

string by starting the pattern with ^, or to the end of the string by ending the

pattern with dollar sign, $. You can force the pattern to match the whole string by

using both characters. For example:

set text1 "This is the first string"

=> This is the first string

regexp "first string" $text1

=> 1

regexp "second string" $text1

=> 0

Jacl data structures

The basic data structure in the Jacl language is a string. There are two higher level

data structures: lists and arrays. Lists are implemented as strings and the structure

is defined by the syntax of the string. The syntax rules are the same as for

commands. Commands are a particular instance of lists. Arrays are variables that

have an index. The index is a string value so you can think of arrays as maps from

one string (the index) to another string (the value of the array element).

Jacl lists

The lists of the Jacl language are strings with a special interpretation. In the Jacl

language, a list has the same structure as a command. A list is a string with list

elements separated by white space. You can use braces or quotes to group together

words with white space into a single list element.

Chapter 6. Using scripting (wsadmin) 61

The following table includes commands that are related to lists:

 Command Description

list arg1 arg2 Creates a list out of all its arguments.

lindex list i Returns the i’th element from list.

llength list Returns the number of elements in list.

lrange list i j Returns the i’th through j’th elements from

list.

lappend listVar arg arg ... Appends elements to the value of listVar

linsert list index arg arg ... Inserts elements into list before the element

at position index. Returns a new list.

lreplace list i j arg arg ... Replaces elements i through j of list with the

args. Return a new list.

lsearch mode list value Returns the index of the element in list that

matches the value according to the mode,

which is -exact, -glob, or -regexp, -glob is

the default. Return -1 if not found.

lsort switches list Sorts elements of the list according to the

switches: -ascii, -integer, -real, -increasing,

-decreasing, -command command. Return a

new list.

concat arg arg arg ... Joins multiple lists together into one list.

join list joinString Merges the elements of a list together by

separating them with joinString.

split string splitChars Splits a string up into list elements, using

the characters in splitChars as boundaries

between list elements.

Arrays

Arrays are the other primary data structure in the Jacl language. An array is a

variable with a string-valued index, so you can think of an array as a mapping

from strings to strings. Internally an array is implemented with a hash table. The

cost of accessing each element is about the same. The index of an array is

delimited by parentheses. The index can have any string value, and it can be the

result of variable or command substitution. Array elements are defined with the

set command, for example:

set arr(index) value

Substitute the dollar sign ($) to obtain the value of an array element, for example:

set foo $arr(index)

For example:

set fruit(best) kiwi

=> kiwi

set fruit(worst) peach

=> peach

set fruit(ok) banana

=> banana

array get fruit

62 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

=> ok banana worst peach best kiwi

array exists fruit

=> 1

The following table includes array commands:

 Command Description

array exists arr Returns 1 if arr is an array variable.

array get arr Returns a list that alternates between an

index and the corresponding array value.

array names arr ?pattern? Return the list of all indices defined for arr,

or those that match the string match pattern.

array set arr list Initializes the array arr from list, which

should have the same form as the list

returned by get.

array size arr Returns the number of indices defined for

arr.

array startsearch arr Returns a search token for a search through

arr.

array nextelement arr id Returns the value of the next element in

array in the search identified by the token

id. Returns an empty string if no more

elements remain in the search.

array anymore arr id Returns 1 if more elements remain in the

search.

array donesearch arr id Ends the search identified by id.

Control flow commands

The following looping commands exist:

v while

v foreach

v for

The following are conditional commands:

v if

v switch

The following is an error handling command:

v catch

The following commands fine-tune control flow:

v break

v continue

v return

v error

If Then Else

Chapter 6. Using scripting (wsadmin) 63

The if command is the basic conditional command. It says that if an expression is

true, then run the second line of code, otherwise run a different line of code. The

second command body (the else clause) is optional. The syntax of the command is

the following:

if boolean then body1 else body2

The then and else keywords are optional. For example:

if {$x == 0} {

 puts stderr "Divide by zero!"

} else {

 set slope [expr $y/$x]

}

Switch

Use the switch command to branch to one of many commands depending on the

value of an expression. You can choose based on pattern matching as well as

simple comparisons. Any number of pattern-body pairs can be specified. If

multiple patterns match, only the code body of the first matching pattern is

evaluated. The general form of the command is the following:

switch flags value pat1 body1 pat2 body2 ...

You can also group all the pattern-body pairs into one argument:

switch flags value {pat1 body1 pat2 body2 ...}

There are four possible flags that determines how value is matched.

v -exact Matches the value exactly to one of the patterns.

v -glob Uses glob-style pattern matching.

v -regexp Uses regular expression pattern matching.

v -- No flag (or end of flags). Useful when value can begin with a dash (-).

For example:

switch -exact -- $value {

 foo {doFoo; incr count(foo)}

 bar {doBar; return $count(foo)}

 default {incr count(other)}

}

If the pattern that is associated with the last body is default, then the command

body is started if no other patterns match. The default keyword only works on the

last pattern-body pair. If you use the default pattern on an earlier body, it will be

treated as a pattern to match the literal string default.

Foreach

The foreach command loops over a command body and assigns a loop variable to

each of the values in a list. The syntax is the following:

foreach loopVar valueList commandBody

The first argument is the name of a variable. The command body runs one time for

each element in the loop with the loop variable having successive values in the list.

For example:

set numbers {1 3 5 7 11 13}

foreach num $numbers {

puts $num

}

64 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

The result from the previous example will be the following output, assuming that

only one server exists in the environment. If there is more than one server, the

information for all servers returns:

1

3

5

7

11

13

While

The while command takes two arguments; a test and a command body, for

example:

while booleanExpr body

The while command repeatedly tests the boolean expression and runs the body if

the expression is true (non-zero). For example:

set i 0

while {$i < 5} {

puts "i is $i"

incr i}

The result from the previous example will be like the following output, assuming

that there is only one server. If there is more then one servers, it will print all of

the servers:

i is 0

i is 1

i is 2

i is 3

i is 4

For

The for command is similar to the C language for statement. It takes four

arguments, for example:

for initial test final body

The first argument is a command to initialize the loop. The second argument is a

boolean expression which determines if the loop body will run. The third

argument is a command that runs after the loop body: For example:

set numbers {1 3 5 7 11 13}

for {set i 0} {$i < [llength $numbers]} {incr i 1} {

puts "i is $i"

}

The result from previous example will be like the following output, assuming that

there is only one server in the environment. If there is more then one server, it will

print all of the server names:

i is 1

i is 3

i is 5

i is 7

i is 11

i is 13

Break and continue

Chapter 6. Using scripting (wsadmin) 65

You can control loop execution with the break and continue commands. The break

command causes an immediate exit from a loop. The continue command causes

the loop to continue with the next iteration.

Catch

An error will occur if you call a command with the wrong number of arguments

or if the command detects some error condition particular to its implementation.

An uncaught error prevents a script from running. Use the catch command trap

such errors. The catch command takes two arguments, for example:

catch command ?resultVar?

The first argument is a command body. The second argument is the name of a

variable that will contain the result of the command or an error message if the

command raises an error. The catch command returns a value of zero if no error

was caught or a value of one if the command catches an error. For example:

catch {expr 20 / 5} result

==> 0

puts $result

==> 4

catch {expr text / 5} result

==> 1

puts $result

==> syntax error in expression "text / 5"

Return

Use the return command to return a value before the end of the procedure body or

if a contrast value needs to be returned.

Namespaces

Jacl keeps track of named entities such as variables, in namespaces. The wsadmin

tool also adds entries to the global namespace for the scripting objects, such as, the

AdminApp object

When you run a proc command, a local namespace is created and initialized with

the names and the values of the parameters in the proc command. Variables are

held in the local namespace while you run the proc command. When you stop the

proc command, the local namespace is erased. The local namespace of the proc

command implements the semantics of the automatic variables in languages such

as C and Java.

While variables in the global namespace are visible to the top level code, they are

not visible by default from within a proc command. To make them visible, declare

the variables globally using the global command. For the variable names that you

provide, the global command creates entries in the local namespace that point to

the global namespace entries that actually define the variables.

If you use a scripting object provided by the wsadmin tool in a proc, you must

declare it globally before you can use it, for example:

proc { ... } {

 global AdminConfig

 ... [$AdminConfig ...]

}

For more information about Jacl, see the Scripting: Resources for Learning article.

66 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

Jython

Jython is an alternate implementation of Python, and is written entirely in Java.

The wsadmin tool uses Jython V2.1. The following information is a basic summary

of the Jython syntax:

Basic function

The function is either the name of a built-in function or a Jython function. For

example:

print "Hello, World!"

=> Hello, World!

import sys

sys.stdout.write("Hello World!\n")

=> Hello World!

In the example, print identifies the standard output stream. You can use the

built-in module by running import statements such as the previous example. The

statement import runs the code in a module as part of the importing and returns

the module object. sys is a built-in module of the Python language. In the Python

language, modules are name spaces which are places where names are created.

Names that reside in modules are called attributes. Modules correspond to files

and the Python language creates a module object to contain all the names defined

in the file. In other words, modules are name spaces.

Variable

To assign objects to names, the target of an assignment should be on the left side

of an equal sign (=) and the object that you are assigning on the right side. The

target on the left side can be a name or object component, and the object on the

right side can be an arbitrary expression that computes an object. The following

rules exist for assigning objects to names:

v Assignments create object references.

v Names are created when you assign them.

v You must assign a name before referencing it.

Variable name rules are similar to the rules for the C language, for example:

v An underscore character (_) or a letter plus any number of letters, digits or

underscores

The following reserved words can not be used for variable names:

and assert break class continue

def del elif else except

exec inally for from global

if importin is lambda

not or pass print raise

return try while

For example:

a = 5

print a

=> 5

b = a

print b

=> 5

Chapter 6. Using scripting (wsadmin) 67

text1, text2, text3, text4 = ’good’, ’bad’, ’pretty’, ’ugly’

print text3

=> pretty

The second example assigns the value of variable a to variable b.

Types and operators

The following list contains a few of the built-in object types:

v Numbers. For example:

8, 3.133, 999L, 3+4j

num1 = int(10)

print num1

=> 10

v Strings. For example:

’name’, "name’s", ’’

print str(12345)

=> ’12345’

v Lists. For example:

x = [1, [2, ’free’], 5]

y = [0, 1, 2, 3]

y.append(5)

print y

=> [0, 1, 2, 3, 5]

y.reverse()

print y

=> [5, 3, 2, 1, 0]

y.sort()

print y

=> [0, 1, 2, 3, 5]

print list("apple")

=> [’a’, ’p’, ’p’, ’l’, ’e’]

print list((1,2,3,4,5))

=> [1, 2, 3, 4, 5]

test = "This is a test"

test.index("test")

=> 10

test.index(’s’)

=> 3

The following list contains a few of the operators:

v x or y

y is evaluated only if x is false. For example:

print 0 or 1

=> 1

v x and y

y is evaluated only if x is true. For example:

print 0 and 1

=> 0

v x +y , x - y

68 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

Addition and concatenation, subtraction. For example:

print 6 + 7

=> 13

text1 = ’Something’

text2 = ’ else’

print text1 + text2

=> Something else

list1 = [0, 1, 2, 3]

list2 = [4, 5, 6, 7]

print list1 + list2

=> [0, 1, 2, 3, 4, 5, 6, 7]

print 10 - 5

=> 5

v x * y, x / y, x % y

Multiplication and repetition, division, remainder and format. For example:

print 5 * 6

=> 30

print ’test’ * 3

=> test test test

print 30 / 6

=> 5

print 32 % 6

=> 2

v x[i], x[i:j], x(...)

Indexing, slicing, function calls. For example:

test = "This is a test"

print test[3]

=> s

print test[3:10]

=> s is a

print test[5:]

=> is a test

print x[:-4]

=> This is a print len(test)

=> 14

v <, <=, >, >=, ==, <>, !=, is is not

Comparison operators, identity tests. For example:

l1 = [1, (’a’, 3)]

l2 = [1, (’a’, 2)]

l1 < l2, l1 == l2, l1 > l2, l1 <> l2, l1 != l2, l1 is l2, l1 is not l2

=> (0, 0, 1, 1, 1, 0, 1)

Backslash substitution

If a statement needs to span multiple lines, you can also add a black slash (\) at

the end of the previous line to indicate you are continuing on the next line. For

example:

text = "This is a tests of a long lines" \

" continuing lines here."

print text

=> This is a tests of a long lines continuing lines here.

Chapter 6. Using scripting (wsadmin) 69

Functions and scope

Jython uses the def statement to define functions. Functions related statements

include:

v def, return

The def statement creates a function object and assigns it to a name. Thereturn

statement sends a result object back to the caller. This is optional, and if it is not

present, a function exits so that control flow falls off the end of the function

body.

v global

The global statement declares module-level variables that are to be assigned. By

default, all names assigned in a function are local to that function and exist only

while the function runs. To assign a name in the enclosing module, list functions

in a global statement.

The basic syntax to define a function is the following:

def name (arg1, arg2, ... ArgN):

statements

return value

where name is the name of the function being defined. It is followed by an open

parenthesis, a close parenthesis and a colon. The arguments inside parenthesis

include a list of parameters to the procedures. The next line after the colon is the

body of the function. A group of commands that form the body of the function.

After you define a Jython function, it is used just like any of the built-in functions.

For example:

def intersect(seq1, seq2):

 try:

 res = []

 for x in seq1:

 if x in seq2:

 res.append(x)

 return res

 except:

To call the function above, use the following command:

s1 = "SPAM"

s2 = "SCAM"

intersect(s1, s2)

=> [S, A, M]

intersect([1,2,3], (1.4))

=> [1]

Comments

Make comments in the Jython language with the pound character (#).

Command line arguments

The Jython shells pass the command line arguments to the script as the value of

the sys.argv. The name of the program, or script, is not part of sys.argv. sys.argv

is an array, so you use the index command to extract items from the argument list,

for example:

70 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

import sys

first = sys.argv[0]

second = sys.argv[1]

arglen = len(sys.argv)

Basic statements

There are two looping statements: while and for. The conditional statement is if.

The error handling statement is try. Finally, there are some statements to fine-tune

control flow: break, continue and pass. The following is a list of syntax rules in

Python:

v Statements run one after another until you say otherwise. Statements normally

end at the end of the line they appear on. When statements are too long to fit on

a single line you can also add a back sash (\) at the end of the prior line to

indicate you are continuing on the next line.

v Block and statement boundaries are detected automatically. There are no braces,

or begin or end delimiter, around blocks of code. Instead, the Python language

uses the indentation of statements under a header in order to group the

statements in a nested block. Block boundaries are detected by line indentation.

All statements indented the same distance to the right belong to the same block

of code until that block is ended by a line less indented.

v Compound statements = header; ’:’, indented statements. All compound

statements in the Python language follow the same pattern: a header line

terminated with a colon, followed by one or more nested statements indented

under the header. The indented statements are called a block.

v Spaces and comments are usually ignored. Spaces inside statements and

expressions are almost always ignored (except in string constants and

indentation), so are comments.

If

The if statement selects actions to perform. The if statement may contain other

statements, including other if statements. The if statement can be followed by one

or more optional elif statements and ends with an optional else block.

The general format of an if looks like the following:

if test1

 statements1

elif test2

 statements2

else test3

 statements3

For example:

weather = ’sunny’

if weather == ’sunny’:

 print "Nice weather"

elif weather == ’raining’:

 print "Bad weather"

else:

 print "Uncertain, don’t plan anything"

While

The while statement consists of a header line with a test expression, a body of one

or more indented statements, and an optional else statement that runs if control

exits the loop without running into a break statement. The while statement

Chapter 6. Using scripting (wsadmin) 71

repeatedly executes a block of indented statements as long as a test at the top

keeps evaluating a true value. The general format of an while looks like the

following:

while test1

 statements1

else

 statements2

For example:

a = 0; b = 10

while a < b:

 print a

 a = a + 1

For

The for statement begins with a header line that specifies an assignment target or

targets, along with an object you want to step through. The header is followed by

a block of indented statements which you want to repeat.

The general format of a for statement looks like the following:

for target in object:

 statements

else:

 statements

It assigns items in the sequence object to the target, one by one, and runs the loop

body for each. The loop body typically uses the assignment target to refer to the

current item in the sequence as if it were a cursor stepping through the sequence.

For example:

sum = 0

for x in [1, 2, 3, 4]:

 sum = sum + x

Break, continue, and pass

You can control loops with the break, continue and pass statements. The break

statement jumps out of the closest enclosing loop (past the entire loop statement).

The continue statements jumps to the top of the closest enclosing loop (to the

header line of the loop), and the pass statement is an empty statement placeholder.

Try

A statement will raise an error if it is called with the wrong number of arguments,

or if it detects some error condition particular to its implementation. An uncaught

error aborts execution of a script. The try statement is used to trap such errors.

Python try statements come in two flavors, one that handles exceptions and one

that executes finalization code whether exceptions occur or not. The try, except,

else statement starts with a try header line followed by a block of indented

statements, then one or more optional except clauses that name exceptions to be

caught, and an optional else clause at the end. The try, finally statements starts

with a try header line followed by a block of indented statements, then finally

clause that always runs on the way out whether an exception occurred while the

try block was running or not.

The general format of the try, except, else function looks like the following:

72 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

try:

 statements

except name:

 statements

except name, data:

 statements

else

 statements

For example:

try:

 myfunction()

except:

 import sys

 print ’uncaught exception’, sys.exc_type, sys.exc_value

try:

 myfilereader()

except EOFError:

 break

else:

 process next line here

The general format of a try and finally looks like the following:

try:

 statements

finally:

 statements

For example:

def divide(x, y):

 return x / y

def tester(y):

 try:

 print divide(8, y)

 finally:

 print ’on the way out...’

For more information about the Jython language, see the Scripting: Resources for

Learning article.

Scripting objects

The wsadmin tool operates on configurations and running objects through the

following set of management objects: AdminConfig, AdminControl, AdminApp,

AdminTask, and Help. Each of these objects has commands that you can use to

perform administrative tasks. To use the scripting objects, specify the scripting

object, a command, and command parameters. For example:

Using Jacl:

$AdminConfig attributes ApplicationServer

Using Jython:

print AdminConfig.attributes(’ApplicationServer’)

where AdminConfig is the scripting object, attributes is the command, and

ApplicationServer is the command parameter.

Chapter 6. Using scripting (wsadmin) 73

To find out more specific information about each of the scripting objects, including

command and command parameter information, see AdminConfig, AdminApp,

AdminControl, AdminTask, or Help.

WebSphere Application Server system management separates administrative

functions into two categories: functions that work with the configuration of

WebSphere Application Server installations, and functions that work with the

currently running objects in WebSphere Application Server installations.

Scripts work with both categories of objects. For example, an application server is

divided into two distinct entities. One entity represents the configuration of the

server that resides persistently in a repository on permanent storage. You can

create, query, change, or remove this configuration without starting an application

server process. The AdminConfig object, the AdminTask object, and the

AdminApp object handle configuration functionality. You can invoke configuration

functions with or without being connected to a server.

The second entity represents the running instance of an application server by a Java

Management Extensions (JMX) MBean. This instance can have attributes that you can

interrogate and change, and operations that you can invoke. These operational

actions taken against a running application server do not have an effect on the

persistent configuration of the server. The attributes that support manipulation

from an MBean differ from the attributes that the corresponding configuration

supports. The configuration can include many attributes that you cannot query or

set from the running object. The WebSphere Application Server scripting support

provides functions to locate configuration objects, and running objects. Objects in

the configuration do not always represent objects that are currently running. The

AdminControl object manages running objects.

You can use the Help object to obtain information about the AdminConfig,

AdminApp, AdminControl, and AdminTask objects, to obtain interface information

about running MBeans, and to obtain help for warnings and error messages.

Help object for scripted administration

The Help object provides general help, online information about running MBeans,

and help on messages.

Use the Help object to obtain general help for the other objects supplied by the

wsadmin tool for scripting: the AdminApp, AdminConfig, AdminTask, and

AdminControl objects. For example, using Jacl, $Help AdminApp or using Jython,

Help.Adminapp(), provides information about the AdminApp object and the

available commands.

The Help object also to provides interface information about MBeans running in

the system. The commands that you use to get online information about the

running MBeans include: all, attributes, classname, constructors, description,

notification, operations.

You can also use the Help object to obtain information about messages using the

message command. The message command provides aid to understand the cause

of a warning or error message and find a solution for the problem. For example,

you receive a WASX7115E error when running the AdminApp install command to

install an application, use the following example:

Using Jacl:

$Help message WASX7115E

74 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

Using Jython:

print Help.message(’WASX7115E‘)

Example output:

Explanation: wsadmin failed to read an ear file when

preparing to copy it to a temporary location for AdminApp

processing. User action: Examine the wsadmin.traceout

log file to determine the problem; there may be file permission problems.

The user action specifies the recommended action to correct the problem. It is

important to understand that in some cases the user action may not be able to

provide corrective actions to cover all the possible causes of an error. It is an aid to

provide you with information to troubleshoot a problem.

To see a list of all available commands for the Help object, see the Commands for

the Help object article or you can also use the Help command, for example:

Using Jacl:

$Help help

Using Jython:

print Help.help()

AdminApp object for scripted administration

Use the AdminApp object to manage applications. This object communicates with

the run time application management object in WebSphere Application Server to

make application inquires and changes, for example:

v Installing and uninstalling applications

v Listing applications

v Editing applications or modules

Because applications are part of configuration data, any changes that you make to

an application are kept in the configuration session, similar to other configuration

data. Be sure to save your application changes so that the data transfers from the

configuration session to the master repository.

With the application already installed, the AdminApp object can update

application metadata, map virtual hosts to Web modules, and map servers to

modules. You must perform any other changes, such as specifying a library for the

application to use or setting session management configuration properties, using

the AdminConfig object.

You can run the commands for the AdminApp object in local mode. If a server is

running, it is not recommended that you run the scripting client in local mode

because any configuration changes that are made in local mode will not be

reflected in the running server configuration and vice versa. If you save a

conflicting configuration, you could corrupt the configuration. In a deployment

manager environment, configuration updates are available only if a scripting client

is connected to a deployment manager. When connected to a node agent or a

managed application server, you will not be able to update the configuration

because the configuration for these server processes are copies of the master

configuration which resides in the deployment manager. The copies are created on

a node machine when a configuration synchronization occurs between the

deployment manager and the node agent. Make configuration changes to the

server processes by connecting a scripting client to a deployment manager. For this

Chapter 6. Using scripting (wsadmin) 75

reason, to change a configuration, do not run a scripting client in local mode on a

node machine. It is not a supported configuration.

To see a list of all available commands for the AdminApp object, see the

Commands for the AdminApp object article or you can also use the Help

command, for example:

Using Jacl:

$AdminApp help

Using Jython:

print AdminApp.help()

Listing applications with the wsadmin tool:

Before starting this task, the wsadmin tool must be running. See the “Starting the

wsadmin scripting client” on page 123 article for more information.

Query the configuration and create a list of installed applications, for example:

v Using Jacl:

$AdminApp list

v Using Jython:

AdminApp.list()

where:

 $ is a Jacl operator for substituting a variable

name with its value

AdminApp is an object that supports application object

management

list is an AdminApp command

Example output:

DefaultApplication

SampleApp

app1serv2

Editing application configurations with the wsadmin tool:

Before starting this task, the wsadmin tool must be running. See the “Starting the

wsadmin scripting client” on page 123 article for more information.

1. Edit the entire application or a single application module. Use one of the

following commands:

v The following command uses the installed application and the command

option information to edit the application:

– Using Jacl:

$AdminApp edit appname {options}

– Using Jython list:

AdminApp.edit(’appname’, [’options’])

– Using Jython string:

AdminApp.edit(’appname’, ’[options]’)

76 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

where:

 $ is a Jacl operator for substituting a variable

name with its value

AdminApp is an object that supports application object

management

edit is an AdminApp command

appname is the name of application or application

module to edit. For the application module

name, use the module name returned from

listModules command as the value.

{options} is a list of edit options and tasks similar to

the ones for the install command

v The following command changes the application information by prompting

you through a series of editing tasks:

– Using Jacl:

$AdminApp editInteractive appname

– Using Jython:

AdminApp.editInteractive(’appname’)

where:

 $ is a Jacl operator for substituting a variable

name with its value

AdminApp is an object that supports application object

management

editInteractive is an AdminApp command

appname is the name of application or application

module to edit. For the application module

name, use the module name returned from

listModules command as the value.

2. Save the configuration changes. See the “Saving configuration changes with the

wsadmin tool” on page 102 article for more information.

3. In a network deployment environment only, synchronize the node. See the

“Synchronizing nodes with the wsadmin tool” on page 86 article for more

information.

AdminControl object for scripted administration

The AdminControl scripting object is used for operational control. It communicates

with MBeans that represent live objects running a WebSphere server process. It

includes commands to query existing running objects and their attributes and

invoke operation on the running objects. In addition to the operational commands,

the AdminControl object supports commands to query information on the

connected server, convenient commands for client tracing, reconnecting to a server,

and start and stop server for network deployment environment.

Many of the operational commands have two sets of signatures so that they can

either invoke using string based parameters or using Java Management Extension

(JMX) objects as parameters. Depending on the server process to which a scripting

client is connected, the number and type of MBeans available varies. If a scripting

client is connected to a deployment manager, then all MBeans in all server

processes are visible. If a scripting client is connected to a node agent, all MBeans

Chapter 6. Using scripting (wsadmin) 77

in all server processes on that node are accessible. When connected to an

application server, only MBeans running in that application server are visible.

The following steps provide a general method to manage the cycle of an

application:

v Install the application.

v Edit the application.

v Update the application.

v Uninstall the application.

To see a list of all available commands for the AdminControl object, see the

Commands for the AdminControl object article or you can also use the Help

command, for example:

Using Jacl:

$AdminControl help

Using Jython:

print AdminControl.help()

ObjectName, Attribute, and AttributeList classes:

WebSphere Application Server scripting commands use the underlying Java

Management Extensions (JMX) classes, ObjectName, Attribute, and AttributeList, to

manipulate object names, attributes and attribute lists respectively.

 The WebSphere Application Server ObjectName class uniquely identifies running

objects. The ObjectName class consists of the following elements:

v The domain name WebSphere.

v Several key properties, for example:

– type - Indicates the type of object that is accessible through the MBean, for

example, ApplicationServer, and EJBContainer.

– name - Represents the display name of the particular object, for example,

MyServer.

– node - Represents the name of the node on which the object runs.

– process - Represents the name of the server process in which the object runs.

– mbeanIdentifier - Correlates the MBean instance with corresponding

configuration data.

When ObjectName classes are represented by strings, they have the following

pattern:

[domainName]:property=value[,property=value]*

For example, you can specify WebSphere:name=″My

Server″,type=ApplicationServer,node=n1,* to specify an application server named

My Server on node n1. (The asterisk (*) is a wildcard character, used so that you do

not have to specify the entire set of key properties.) The AdminControl commands

that take strings as parameters expect strings that look like this example when

specifying running objects (MBeans). You can obtain the object name for a running

object with the getObjectName command.

Attributes of these objects consist of a name and a value. You can extract the name

and value with the getName and the getValue methods that are available in the

javax.management.Attribute class. You can also extract a list of attributes.

78 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

Example: Collecting arguments for the AdminControl object: Verify that the

arguments parameter is a single string. Each individual argument in the string can

contain spaces. Collect each argument that contains spaces in some way.

v An example of how to obtain an MBean follows:

Using Jacl:

set am [$AdminControl queryNames type=ApplicationManager,process=server1,*]

Using Jython:

am = AdminControl.queryNames(’type=ApplicationManager,process=server1,*’)

v Multiple ways exist to collect arguments that contain spaces. Choose one of the

following alternatives:

Using Jacl:

– $AdminControl invoke $am startApplication {″JavaMail Sample″}

– $AdminControl invoke $am startApplication {{JavaMail Sample}}

– $AdminControl invoke $am startApplication ″\″JavaMail Sample\″″

Using Jython:

– AdminControl.invoke(am, ’startApplication’, ’[JavaMail Sample]’)

– AdminControl.invoke(am, ’startApplication’, ’\″JavaMail Sample\″’)

Example: Identifying running objects: In the WebSphere Application Server,

MBeans represent running objects. You can interrogate the MBean server to see the

objects it contains. Use the AdminControl object to interact with running MBeans.

v Use the queryNames command to see running MBean objects. For example:

Using Jacl:

$AdminControl queryNames *

Using Jython:

print AdminControl.queryNames(’*’)

This command returns a list of all MBean types. Depending on the server to

which your scripting client attaches, this list can contain MBeans that run on

different servers:

– If the client attaches to a stand-alone WebSphere Application Server, the list

contains MBeans that run on that server.

– If the client attaches to a node agent, the list contains MBeans that run in the

node agent and MBeans that run on all application servers on that node.

– If the client attaches to a deployment manager, the list contains MBeans that

run in the deployment manager, all of the node agents communicating with

that deployment manager, and all application servers on the nodes served by

those node agents.
v The list that the queryNames command returns is a string representation of JMX

ObjectName objects. For example:

WebSphere:cell=MyCell,name=TraceService,mbeanIdentifier=TraceService,

type=TraceService,node=MyNode,process=server1

This example represents a TraceServer object that runs in server1 on MyNode.

v The single queryNames argument represents the ObjectName object for which

you are searching. The asterisk (″*″) in the example means return all objects, but

it is possible to be more specific. As shown in the example, ObjectName has two

parts: a domain, and a list of key properties. For MBeans created by the

WebSphere Application Server, the domain is WebSphere. If you do not specify a

domain when you invoke queryNames, the scripting client assumes the domain

is WebSphere. This means that the first example query above is equivalent to:

Using Jacl:

$AdminControl queryNames WebSphere:*

Chapter 6. Using scripting (wsadmin) 79

Using Jython:

AdminControl.queryNames(’WebSphere:*’)

v WebSphere Application Server includes the following key properties for the

ObjectName object:

– name

– type

– cell

– node

– process

– mbeanIdentifier

These key properties are common. There are other key properties that exist. You

can use any of these key properties to narrow the scope of the queryNames

command. For example:

Using Jacl:

$AdminControl queryNames WebSphere:type=Server,node=myNode,*

Using Jython:

AdminControl.queryNames(’WebSphere:type=Server,node=myNode,*’)

This example returns a list of all MBeans that represent server objects running

the node myNode. The, * at the end of the ObjectName object is a JMX wildcard

designation. For example, if you enter the following:

Using Jacl:

$AdminControl queryNames WebSphere:type=Server,node=myNode

Using Jython:

print AdminControl.queryNames(’WebSphere:type=Server,node=myNode’)

you get an empty list back because the argument to queryNames is not a

wildcard. There is no Server MBean running that has exactly these key

properties and no others.

v If you want to see all the MBeans representing applications running on a

particular node, invoke the following example:

Using Jacl:

$AdminControl queryNames WebSphere:type=Application,node=myNode,*

Using Jython:

print AdminControl.queryNames(’WebSphere:type=Application,node=myNode,*’)

Specifying running objects using the wsadmin tool:

Before starting this task, the wsadmin tool must be running. See the “Starting the

wsadmin scripting client” on page 123 article for more information.

Perform the following steps to specify running objects:

1. Obtain the configuration ID with one of the following ways:

v Obtain the object name with the completeObjectName command, for

example:

– Using Jacl:

set var [$AdminControl completeObjectName template]

– Using Jython:

var = AdminControl.completeObjectName(template)

where:

 set is a Jacl command

80 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

var is a variable name

$ is a Jacl operator for substituting a variable

name with its value

AdminControl is an object that enables the manipulation of

MBeans running in a WebSphere server

process

completeObjectName is an AdminControl command

template is a string containing a segment of the object

name to be matched. The template has the

same format as an object name with the

following pattern:

[domainName]:property=value[,property=value]*.

See Object name, Attribute, Attribute list for

more information.

If there are several MBeans that match the template, the

completeObjectName command only retuns the first match. The matching

MBean object name is then assigned to a variable.

To look for server1 MBean in mynode, use the following example:

– Using Jacl:

set server1 [$AdminControl completeObjectName node=mynode,type=Server,name=server1,*]

– Using Jython:

server1 = AdminControl.completeObjectName(’node=mynode,type=Server,name=server1,*’)

v Obtain the object name with the queryNames command, for example:

– Using Jacl:

set var [$AdminControl queryNames template]

– Using Jython:

var = AdminControl.queryNames(template)

where:

 set is a Jacl command

var is a variable name

$ is a Jacl operator for substituting a variable

name with its value

AdminControl is an object that enables the manipulation of

MBeans running in a WebSphere Application

server process.

queryNames is an AdminControl command

template is a string containing a segment of the object

name to be matched. The template has the

same format as an object name with the

following pattern:

[domainName]:property=value[,property=value]*

2. If there are more than one running objects returned from the queryNames

command, the objects are returned in a list syntax. One simple way to retrieve

a single element from the list is to use the lindex command in Jacl and split

command in Jython. The following example retrieves the first running object

from the server list:

v Using Jacl:

set allServers [$AdminControl queryNames type=Server,*]

set aServer [lindex $allServers 0]

Chapter 6. Using scripting (wsadmin) 81

v Using Jython:

allServers = AdminControl.queryNames(’type=Server,*’)

get line separator

import java

lineSeparator = java.lang.System.getProperty(’line.separator’)

aServer = allServers.split(lineSeparator)[0]

For other ways to manipulate the list and then perform pattern matching to

look for a specified configuration object, refer to the Jacl syntax.

You can now use the running object in with other AdminControl commands that

require an object name as a parameter.

Identifying attributes and operations for running objects with the wsadmin

tool:

Before starting this task, the wsadmin tool must be running. See the “Starting the

wsadmin scripting client” on page 123 article for more information.

Use the attributes or operations commands of the Help object to find information

on a running MBean in the server.

1. Specify a running object.

2. Use the attributes command to display the attributes of the running object:

v Using Jacl:

$Help attributes MBeanObjectName

v Using Jython:

Help.attributes(MBeanObjectName)

where:

 $ is a Jacl operator for substituting a variable

name with its value

Help is the object that provides general help and

information for running MBeans in the

connected server process

attributes is a Help command

MBeanObjectName is the string representation of the MBean

object name that is obtained in step 2

3. Use the operations command to find out the operations that are supported by

the MBean:

v Using Jacl:

$Help operations MBeanObjectname

or

$Help operations MBeanObjectname operationName

v Using Jython:

Help.operations(MBeanObjectname)

or

Help.operations(MBeanObjectname, operationName)

82 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

where:

 $ is a Jacl operator for substituting a variable

name with its value

Help is the object that provides general help and

information for running MBeans in the

connected server process

operations is a Help command

MBeanObjectname is the string representation of the MBean

object name that is obtained in step number

2

operationName (optional) is the specified operation from

which you want to obtain detailed

information

If you do not provide the operationName value, all the operations that are

supported by the MBean return with the signature for each operation. If you

specify the operationName value, only the operation that you specify returns

and it contains details which include the input parameters and the return

value. To display the operations for the server MBean, use the following

example:

v Using Jacl:

set server [$AdminControl completeObjectName type=Server,name=server1,*]

$Help operations $server

v Using Jython:

server = AdminControl.completeObjectName(’type=Server,name=server1,*’)

print Help.operations(server)

To display detailed information about the stop operation, use the following

example:

v Using Jacl:

$Help operations $server stop

v Using Jython:

print Help.operations(server, ’stop’)

Performing operations on running objects using the wsadmin tool:

Before starting this task, the wsadmin tool must be running. See the “Starting the

wsadmin scripting client” on page 123 article for more information.

Perform the following steps to perform operations on running objects:

1. Obtain the object name of the running object. For example:

v Using Jacl:

$AdminControl completeObjectName name

v Using Jython:

AdminControl.completeObjectName(name)

where:

 $ is a Jacl operator for substituting a variable

name with its value

AdminControl is an object that enables the manipulation of

MBeans running in a WebSphere Application

Server process

Chapter 6. Using scripting (wsadmin) 83

completeObjectName is an AdminControl command

name is a fragment of the object name. It is used

to find the matching object name. For

example: type=Server,name=serv1,*. It can

be any valid combination of domain and key

properties. For example, type, name, cell,

node, process, etc.

2. Set the s1 variable to the running object, for example:

v Using Jacl:

set s1 [$AdminControl completeObjectName type=Server,name=server1,*]

v Using Jython:

s1 = AdminControl.completeObjectName(’type=Server,name=server1,*’)

where:

 set is a Jacl command

s1 is a variable name

$ is a Jacl operator for substituting a variable

name with its value

AdminControl is an object that enables the manipulation of

MBeans running in a WebSphere Application

Server process

completeObjectName is an AdminControl command

type is the object name property key

Server is the name of the object

name is the object name property key

server1 is the name of the server where the

operation is invoked

3. Invoke the operation. For example:

v Using Jacl:

$AdminControl invoke $s1 stop

v Using Jython:

AdminControl.invoke(s1, ’stop’)

where:

 $ is a Jacl operator for substituting a variable

name with its value

AdminControl is an object that enables the manipulation of

MBeans running in a WebSphere Application

Server process

invoke is an AdminControl command

s1 is the ID of the server that is specified in

step number 3

stop is an operation to invoke on the server

The following example is for operations that require parameters:

v Using Jacl:

84 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

set traceServ [$AdminControl completeObjectName type=TraceService,process=server1,*]

$AdminControl invoke $traceServ appendTraceString "com.ibm.ws.management.*=all=enabled"

v Using Jython:

traceServ = AdminControl.completeObjectName(’type=TraceService,process=server1,*’)

AdminControl.invoke(traceServ, ’appendTraceString’, "com.ibm.ws.management.*=all=enabled")

Modifying attributes on running objects with the wsadmin tool:

Before starting this task, the wsadmin tool must be running. See the “Starting the

wsadmin scripting client” on page 123 article for more information.

Perform the following steps to modify attributes on running objects:

1. Obtain the name of the running object, for example:

v Using Jacl:

$AdminControl completeObjectName name

v Using Jython:

AdminControl.completeObjectName(name)

where:

 $ is a Jacl operator for substituting a variable

name with its value

AdminControl is an object that enables the manipulation of

MBeans that run in a WebSphere

Application Server process

completeObjectName is an AdminControl command

name is a fragment of the object name that is used

to find the matching object name. For

example: type=TraceService,node=mynode,*.

This value can be any valid combination of

domain and key properties, for example,

type, name, cell, node, process, and so on.

2. Set the ts1 variable to the running object, for example:

v Using Jacl:

set ts1 [$AdminControl completeObjectName name]

v Using Jython:

ts1 = AdminControl.completeObjectName(name)

where:

 set is a Jacl command

ts1 is a variable name

$ is a Jacl operator for substituting a variable

name with its value

AdminControl is an object that enables the manipulation of

MBeans running in a WebSphere Application

Server process

completeObjectName is an AdminControl command

Chapter 6. Using scripting (wsadmin) 85

name is a fragment of the object name. It is used

to find the matching object name. For

example: type=TraceService,node=mynode,*.

It can be any valid combination of domain

and key properties, for example, type, name,

cell, node, process, and so on.

3. Modify the running object, for example:

v Using Jacl:

$AdminControl setAttribute $ts1 ringBufferSize 10

v Using Jython:

AdminControl.setAttribute(ts1, ’ringBufferSize’, 10)

where:

 $ is a Jacl operator for substituting a variable

name with its value

AdminControl is an object that enables the manipulation of

MBeans running in a WebSphere Application

Server process

setAttribute is an AdminControl command

ts1 evaluates to the ID of the server specified in

step number 3

ringBufferSize is an attribute of modify objects

10 is the value of the ringBufferSize attribute

You can also modify multiple attribute name and value pairs, for example:

v Using Jacl:

set ts1 [$AdminControl completeObjectName type=TraceService,process=server1,*]

$AdminControl setAttributes $ts1 {{ringBufferSize 10} {traceSpecification

com.ibm.*=all=disabled}}

v Using Jython list:

ts1 = AdminControl.completeObjectName(’type=TraceService,process=server1,*’)

AdminControl.setAttributes(ts1, [[’ringBufferSize’, 10], [’traceSpecification’,

’com.ibm.*=all=disabled’]])

v Using Jython string:

ts1 =AdminControl.completeObjectName(’type=TraceService,process=server1,*’)

AdminControl.setAttributes(ts1, ’[[ringBufferSize 10] [traceSpecification

com.ibm.*=all=disabled]]’)

The new attribute values are returned to the command line.

Synchronizing nodes with the wsadmin tool:

This article applies to network deployment installations only. A node

synchronization is necessary in order to propagate configuration changes to the

affected node or nodes. By default, this situation occurs periodically, as long as the

node can communicate with the deployment manager. You can propagate changes

explicitly by performing the following steps:

1. Set the variable for node synchronization.

v Using Jacl:

set Sync1 [$AdminControl completeObjectName type=NodeSync,node=myNodeName,*]

v Using Jython:

Sync1 = AdminControl.completeObjectName(’type=NodeSync,node=myNodeName,*’)

86 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

where:

 set is a Jacl command

Sync1 is a variable name

$ is a Jacl operator for substituting a variable

name with its value

AdminControl is an object that enables the manipulation of

MBeans running in a WebSphere Application

Server process

completeObjectName is an AdminControl command

type=NodeSync,node=myNodeName is a fragment of the object name. The

complete name is returned by this

command. This fragment is used to find the

matching object name which is the

SyncNode object for the myNodeName node,

where myNodeName is the name of the node

that you use to synchronize configuration

changes. For example: type=Server,

name=serv1. It can be any valid combination

of domain and key properties. For example,

type, name, cell, node, process, and so on.

Example output:

WebSphere:platform=common,cell=myNetwork,version=5.0,name=node

Sync,mbeanIdentifier=nodeSync,type=NodeSync,node=myBaseNode,

process=nodeagent

2. Synchronize the node by issuing the following command:

v Using Jacl:

$AdminControl invoke $Sync1 sync

v Using Jython:

AdminControl.invoke(Sync1, ’sync’)

where:

 $ is a Jacl operator for substituting a variable

name with its value

AdminControl is an object that enables the manipulation of

MBeans that run in a WebSphere

Application Server process

invoke is an AdminControl command

Sync1 evaluates the ID of the server that is

specified in step number 1

sync is an attribute of modify command

Example output:

true

You receive an output value of true, if the synchronization completes.

When the synchronization is complete, the files created in the

/WebSphere/DeploymentManager/config directory now exists on the mynode node in

the /WebSphere/AppServer/config directory.

Chapter 6. Using scripting (wsadmin) 87

AdminConfig object for scripted administration

Use the AdminConfig object to manage the configuration information that is stored

in the repository. This object communicates with the WebSphere Application Server

configuration service component to make configuration inquires and changes. You

can use it to query existing configuration objects, create configuration objects,

modify existing objects, remove configuration objects, and obtain help.

Updates to the configuration through a scripting client are kept in a private

temporary area called a workspace and are not copied to the master configuration

repository until you run a save command. The workspace is a temporary

repository of configuration information that administrative clients including the

administrative console use. The workspace is kept in the wstemp subdirectory of

your WebSphere Application Server installation. The use of the workspace allows

multiple clients to access the master configuration. If the same update is made by

more than one client, it is possible that updates made by a scripting client will not

save because there is a conflict. If this occurs, the updates will not be saved in the

configuration unless you change the default save policy with the setSaveMode

command.

The AdminConfig commands are available in both connected and local modes. If a

server is currently running, it is not recommended that you run the scripting client

in local mode because the configuration changes made in the local mode is not

reflected in the running server configuration and vice versa. In connnected mode,

the availability of the AdminConfig commands depend on the type of server to

which a scripting client is connected in a Network Deployment installation.

The AdminConfig commands are available only if a scripting client is connected to

a deployment manager. When connected to a node agent or an application server,

the AdminConfig commands will not be available because the configuration for

these server processes are copies of the master configuration that resides in the

deployment manager. The copies are created in a node machine when

configuration synchronization occurs between the deployment manager and the

node agent. You should make configuration changes to the server processes by

connecting a scripting client to a deployment manager. For this reason, to change a

configuration, do not run a scripting client in local mode on a node machine. It is

not a supported configuration.

The following steps provide a general method to update a configuration object:

v Identify the configuration type and the corresponding attributes.

v Query an existing configuration object to obtain a configuration ID to use.

v Modify the existing configuration object or create a one.

v Save the configuration.

To see a list of all available commands for the AdminConfig object, see the

Commands for the AdminConfig object article or you can also use the Help

command, for example:

Using Jacl:

$AdminConfig help

Using Jython:

print AdminConfig.help()

Creating configuration objects using the wsadmin tool:

88 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

Before starting this task, the wsadmin tool must be running. See the “Starting the

wsadmin scripting client” on page 123 article for more information.

Perform this task if you want to create an object. To create new objects from the

default template, use the create command. Alternatively, you can create objects

using an existing object as a template with the createUsingTemplate command.

1. Use the AdminConfig object listTemplates command to list available templates:

v Using Jacl:

$AdminConfig listTemplates JDBCProvider

v Using Jython:

AdminConfig.listTemplates(’JDBCProvider’)

where:

 $ is a Jacl operator for substituting a variable

name with its value

AdminConfig is an object that represents the WebSphere

Application Server configuration

listTemplates is an AdminConfig command

JDBCProvider is an object type

2. Assign the ID string that identifies the existing object to which the new object

is added. You can add the new object under any valid object type. The

following example uses a node as the valid object type:

v Using Jacl:

set n1 [$AdminConfig getid /Node:mynode/]

v Using Jython:

n1 = AdminConfig.getid(’/Node:mynode/’)

where:

 set is a Jacl command

$ is a Jacl operator for substituting a variable

name with its value

n1 is a variable name

AdminConfig is an object that represents the WebSphere

Application Server configuration

getid is an AdminConfig command

Node is an object type

mynode is the host name of the node where the new

object is added

3. Specify the template that you want to use:

v Using Jacl:

set t1 [$AdminConfig listTemplates JDBCProvider "DB2 Universal JDBC Driver Provider (XA)"]

v Using Jython:

t1 = AdminConfig.listTemplates(’JDBCProvider’, ’DB2 Universal JDBC Driver Provider (XA)’)

where:

 set is a Jacl command

Chapter 6. Using scripting (wsadmin) 89

$ is a Jacl operator for substituting a variable

name with its value

t1 is a variable name

AdminConfig is an object that represents the WebSphere

Application Server configuration

listTemplates is an AdminConfig command

JDBCProvider is an object type

DB2 JDBC Provider (XA) is the name of the template to use for the

new object

If you supply a string after the name of a type, you get back a list of templates

with display names that contain the string you supplied. In this example, the

AdminConfig listTemplates command returns the JDBCProvider template

whose name matches DB2 JDBC Provider (XA). This example assumes that the

variable that you specify here only holds one template configuration ID. If the

environment contains multiple templates with the same string, for example,

DB2 JDBC Provider (XA), the variable will hold the configuration IDs of all of

the templates. Be sure to identify the specific template that you want to use

before you perform the next step, creating an object using a template.

4. Create the object with the following command:

v Using Jacl:

$AdminConfig createUsingTemplate JDBCProvider $n1 {{name newdriver}} $tl

v Using Jython:

AdminConfig.createUsingTemplate(’JDBCProvider’, n1, [[’name’, ’newdriver’]], t1)

where:

 $ is a Jacl operator for substituting a variable

name with its value

AdminConfig is an object that represents the WebSphere

Application Server configuration

createUsingTemplate is an AdminConfig command

JDBCProvider is an object type

n1 evaluates the ID of the host node that is

specified in step number 3

name is an attribute of JDBCProvider objects

newdriver is the value of the name attribute

t1 evaluates the ID of the template that is

specified in step number 4

All create commands use a template unless there are no templates to use. If a

default template exists, the command creates the object.

5. Save the configuration changes. See the “Saving configuration changes with the

wsadmin tool” on page 102 article for more information.

6. In a network deployment environment only, synchronize the node. See the

“Synchronizing nodes with the wsadmin tool” on page 86 article for more

information.

Interpreting the output of the AdminConfig attributes command using

scripting:

90 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

Before starting this task, the wsadmin tool must be running. See the “Starting the

wsadmin scripting client” on page 123 article for more information.

The attributes command is a wsadmin tool on-line help feature. When you issue

the attributes command, the information that displays does not represent a

particular configuration object. It represents information about configuration object

types, or object metadata. This article discusses how to interpret the attribute type

display.

v Simple attributes

Using Jacl:

$AdminConfig attributes ExampleType1

"attr1 String"

Types do not display as fully qualified names. For example, String is used for

java.lang.String. There are no ambiguous type names in the model. For

example, x.y.ztype and a.b.ztype. Using only the final portion of the name is

possible, and it makes the output easier to read.

v Multiple attributes

Using Jacl:

$AdminConfig attributes ExampleType2

"attr1 String" "attr2 Boolean" "attr3 Integer"

All input and output for the scripting client takes place with strings, but attr2

Boolean indicates that true or false are appropriate values. The attr3 Integer

indicates that string representations of integers (″42″) are needed. Some

attributes have string values that can take only one of a small number of

predefined values. The wsadmin tool distinguishes these values in the output by

the special type name ENUM, for example:

Using Jacl:

$AdminConfig attributes ExampleType3

"attr4 ENUM(ALL, SOME, NONE)"

where: attr4 is an ENUM type. When you query or set the attribute, one of the

values is ALL, SOME, or NONE. The value A_FEW results in an error.

v Nested attributes

Using Jacl:

$AdminConfig attributes ExampleType4

"attr5 String" "ex5 ExampleType5"

The ExampleType4 object has two attributes: a string, and an ExampleType5 object.

If you do not know what is contained in the ExampleType5 object, you can use

another attributes command to find out. The attributes command displays only

the attributes that the type contains directly. It does not recursively display the

attributes of nested types.

v Attributes that represent lists

The values of these attributes are object lists of different types. The * character

distinguishes these attributes, for example:

Using Jacl:

$AdminConfig attributes ExampleType5

"ex6 ExampleType6*"

In this example, objects of the ExampleType5 type contain a single attribute, ex6.

The value of this attribute is a list of ExampleType6 type objects.

v Reference attributes

Chapter 6. Using scripting (wsadmin) 91

An attribute value that references another object. You cannot change these

references using modify commands, but these references display because they

are part of the complete representation of the type. Distinguish reference

attributes using the @ sign, for example:

Using Jacl:

$AdminConfig attributes ExampleType6

"attr7 Boolean" "ex7 ExampleType7@"

ExampleType6 objects contain references to ExampleType7 type objects.

v Generic attributes

These attributes have generic types. The values of these attributes are not

necessarily this generic type. These attributes can take values of several different

specific types. When you use the AdminConfig attributes command to display

the attributes of this object, the various possibilities for specific types are shown

in parentheses, for example:

Using Jacl:

$AdminConfig attributes ExampleType8

"name String" "beast AnimalType(HorseType, FishType, ButterflyType)"

In this example, the beast attribute represents an object of the generic

AnimalType. This generic type is associated with three specific subtypes. The

wsadmin tool gives these subtypes in parentheses after the name of the base

type. In any particular instance of ExampleType8, the beast attribute can have a

value of HorseType, FishType, or ButterflyType. When you specify an attribute

in this way, using a modify or create command, specify the type of AnimalType.

If you do not specify the AnimalType, a generic AnimalType object is assumed

(specifying the generic type is possible and legitimate). This is done by

specifying beast:HorseType instead of beast.

Specifying configuration objects using the wsadmin tool:

Before starting this task, the wsadmin tool must be running. See the “Starting the

wsadmin scripting client” on page 123 article for more information.

To manage an existing configuration object, identify the configuration object and

obtain a configuration ID of the object to use for subsequent manipulation.

1. Obtain the configuration ID in one of the following ways:

v Obtain the ID of the configuration object with the getid command, for

example:

– Using Jacl:

set var [$AdminConfig getid /type:name/]

– Using Jython:

var = AdminConfig.getid(’/type:name/’)

where:

 set is a Jacl command

var is a variable name

$ is a Jacl operator for substituting a variable

name with its value

AdminConfig is an object representing the WebSphere

Application Server configuration

getid is an AdminConfig command

/type:name/ is the hierarchical containment path of the

configuration object

92 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

type is the object type. The name of the object

type that you input here is the one that is

based on the XML configuration files and

does not have to be the same name that is

displayed in the administrative console.

name is the optional name of the object

You can specify multiple /type:name/ value pairs in the string, for example,

/type:name/type:name/type:name/. If you specify the type in the containment

path without the name, include the colon, for example, /type:/. The

containment path must be a path that contains the correct hierarchical order.

For example, if you specify /Server:server1/Node:node/ as the containment

path, you do not receive a valid configuration ID because Node is a parent of

Server and comes before Server in the hierarchy.

This command returns all the configuration IDs that match the representation

of the containment and assigns them to a variable.

To look for all the server configuration IDs that reside in the mynode node,

use the code in the following example:

– Using Jacl:

set nodeServers [$AdminConfig getid /Node:mynode/Server:/]

– Using Jython:

nodeServers = AdminConfig.getid(’/Node:mynode/Server:/’)

To look for the server1 configuration ID that resides in mynode, use the code

in the following example:

– Using Jacl:

set server1 [$AdminConfig getid /Node:mynode/Server:server1/]

– Using Jython:

server1 = AdminConfig.getid(’/Node:mynode/Server:server1/’)

To look for all the server configuration IDs, use the code in the following

example:

– Using Jacl:

set servers [$AdminConfig getid /Server:/]

– Using Jython:

servers = AdminConfig.getid(’/Server:/’)

v Obtain the ID of the configuration object with the list command, for

example:

– Using Jacl:

set var [$AdminConfig list type]

or

set var [$AdminConfig list type scopeId]

– Using Jython:

var = AdminConfig.list(’type’)

or

var = AdminConfig.list(’type’, ’scopeId’)

where:

 set is a Jacl command

var is a variable name

$ is a Jacl operator for substituting a variable

name with its value

Chapter 6. Using scripting (wsadmin) 93

AdminConfig is an object that represents the WebSphere

Application Server configuration

list is an AdminConfig command

type is the object type. The name of the object

type that you input here is the one that is

based on the XML configuration files and

does not have to be the same name that is

displayed in the administrative console.

scopeId is the configuration ID of a cell, a node, or a

server object

This command returns a list of configuration object IDs of a given type. If

you specify the scopeId value, the list of objects is returned within the

specified scope. The returned list is assigned to a variable.

To look for all the server configuration IDs, use the following example:

– Using Jacl:

set servers [$AdminConfig list Server]

– Using Jython:

servers = AdminConfig.list(’Server’)

To look for all the server configuration IDs in the mynode node, use the code

in the following example:

– Using Jacl:

set scopeid [$AdminConfig getid /Node:mynode/]

set nodeServers [$AdminConfig list Server $scopeid]

– Using Jython:

scopeid = AdminConfig.getid(’/Node:mynode/’)

nodeServers = AdminConfig.list(’Server’, scopeid)

2. If more than one configuration ID is returned from the getid or the list

command, the IDs are returned in a list syntax. One way to retrieve a single

element from the list is to use the lindex command. The following example

retrieves the first configuration ID from the server object list:

v Using Jacl:

set allServers [$AdminConfig getid /Server:/]

set aServer [lindex $allServers 0]

v Using Jython:

allServers = AdminConfig.getid(’/Server:/’)

 # get line separator

 import java

 lineSeparator = java.lang.System.getProperty(’line.separator’)

 arrayAllServers = allServers.split(lineSeparator)

 aServer = arrayAllServers[0]

For other ways to manipulate the list and perform pattern matching to look for

a specified configuration object, refer to the Jacl syntax.

You can now use the configuration ID in any subsequent AdminConfig commands

that require a configuration ID as a parameter.

Listing attributes of configuration objects using the wsadmin tool:

Before starting this task, the wsadmin tool must be running. See the “Starting the

wsadmin scripting client” on page 123 article for more information.

Perform the following steps to create a list of attributes of configuration objects:

94 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

1. List the attributes of a given configuration object type, using the attributes

command, for example:

v Using Jacl:

$AdminConfig attributes type

v Using Jython:

AdminConfig.attributes(’type’)

where:

 $ is a Jacl operator for substituting a variable

name with its value

AdminConfig is an object that represents the WebSphere

Application Server configuration

attributes is an AdminConfig command

type is an object type

This command returns a list of attributes and its data type.

To get a list of attributes for the JDBCProvider type, use the following example

command:

v Using Jacl:

$AdminConfig attributes JDBCProvider

v Using Jython:

AdminConfig.attributes(’JDBCProvider’)

2. List the required attributes of a given configuration object type, using the

required command, for example:

v Using Jacl:

$AdminConfig required type

v Using Jython:

AdminConfig.required(’type’)

where:

 $ is a Jacl operator for substituting a variable

name with its value

AdminConfig is an object that represents the WebSphere

Application Server configuration

required is an AdminConfig command

type is an object type

This command returns a list of required attributes.

To get a list of required attributes for the JDBCProvider type, use the following

example command:

v Using Jacl:

$AdminConfig required JDBCProvider

v Using Jython:

AdminConfig.required(’JDBCProvider’)

3. List attributes with defaults of a given configuration object type, using the

defaults command, for example:

v Using Jacl:

$AdminConfig defaults type

v Using Jython:

Chapter 6. Using scripting (wsadmin) 95

AdminConfig.defaults(’type’)

where:

 $ is a Jacl operator for substituting a variable

name with its value

AdminConfig is an object that represents the WebSphere

Application Server configuration

defaults is an AdminConfig command

type is an object type

This command returns a list of all the attributes, types, and defaults.

To get a list of attributes with the defaults displayed for the JDBCProvider type,

use the following example command:

v Using Jacl:

$AdminConfig defaults JDBCProvider

v Using Jython:

AdminConfig.defaults(’JDBCProvider’)

Modifying configuration objects with the wsadmin tool:

Before starting this task, the wsadmin tool must be running. See the “Starting the

wsadmin scripting client” on page 123 article for more information.

Perform the following steps to modify a configuration object:

1. Retrieve the configuration ID of the objects that you want to modify, for

example:

v Using Jacl:

set jdbcProvider1 [$AdminConfig getid /JDBCProvider:myJdbcProvider/]

v Using Jython:

jdbcProvider1 = AdminConfig.getid(’/JDBCProvider:myJdbcProvider/’)

where:

 set is a Jacl command

jdbcProvider1 is a variable name

$ is a Jacl operator for substituting a variable

name with its value

AdminConfig is an object that represents the WebSphere

Application Server configuration

getid is an AdminConfig command

/JDBCProvider:myJdbcProvider/ is the hierarchical containment path of the

configuration object

JDBCProvider is the object type

myJdbcProvider is the optional name of the object

2. Show the current attribute values of the configuration object with the show

command, for example:

v Using Jacl:

$AdminConfig show $jdbcProvider1

v Using Jython:

AdminConfig.show(jdbcProvider1)

96 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

where:

 $ is a Jacl operator for substituting a variable

name with its value

AdminConfig is an object that represents the WebSphere

Application Server configuration

show is an AdminConfig command

jdbcProvider1 evaluates to the ID of the host node that is

specified in step number 1

3. Modify the attributes of the configuration object, for example:

v Using Jacl:

$AdminConfig modify $jdbcProvider1 {{description "This is my new description"}}

v Using Jython list:

AdminConfig.modify(jdbcProvider1, [[’description’, "This is my new description"]])

v Using Jython string:

AdminConfig.modify(jdbcProvider1, ’[[description "This is my new description"]]’)

where:

 $ is a Jacl operator for substituting a variable

name with its value

AdminConfig is an object that represents the WebSphere

Application Server configuration

modify is an AdminConfig command

jdbcProvider1 evaluates to the ID of the host node that is

specified in step number 1

description is an attribute of server objects

This is my new description is the value of the description attribute

You can also modify several attributes at the same time. For example:

v Using Jacl:

{{name1 val1} {name2 val2} {name3 val3}}

v Using Jython list:

[[’name1’, ’val1’], [’name2’, ’val2’], [’name3’, ’val3’]]

v Using Jython string:

’[[name1 val1] [name2 val2] [name3 val3]]’

4. Save the configuration changes. See the “Saving configuration changes with the

wsadmin tool” on page 102 article for more information.

5. In a network deployment environment only, synchronize the node. See the

“Synchronizing nodes with the wsadmin tool” on page 86 article for more

information.

Removing configuration objects with the wsadmin tool:

Before starting this task, the wsadmin tool must be running. See the “Starting the

wsadmin scripting client” on page 123 article for more information.

Use this task to delete a configuration object from the configuration repository.

This action only affects the configuration. If a running instance of a configuration

object exists when you remove the configuration, the change has no effect on the

running instance.

Chapter 6. Using scripting (wsadmin) 97

1. Assign the ID string that identifies the server that you want to remove:

Using Jacl:

set s1 [$AdminConfig getid /Node:mynode/Server:myserver/]

Using Jython:

s1 = AdminConfig.getid(’/Node:mynode/Server:myserver/’)

where:

 set is a Jacl command

s1 is a variable name

$ is a Jacl operator for substituting a variable

name with its value

AdminConfig is an object that represents the WebSphere

Application Server configuration

getid is an AdminConfig command

Node is an object type

mynode is the host name of the node from which the

server is removed

Server is an object type

myserver is the name of the server to remove

2. Remove the configuration object. For example:

v Using Jacl:

$AdminConfig remove $s1

v Using Jython:

AdminConfig.remove(s1)

where:

 $ is a Jacl operator for substituting a variable

name with its value

AdminConfig is an object that represents the WebSphere

Application Server configuration

remove is an AdminConfig command

s1 evaluates the ID of the server that is

specified in step number 2

3. Save the configuration changes. See the “Saving configuration changes with the

wsadmin tool” on page 102 article for more information.

4. In a network deployment environment only, synchronize the node. See the

“Synchronizing nodes with the wsadmin tool” on page 86 article for more

information.

The WebSphere Application Server configuration no longer contains a specific

server object. Running servers are not affected.

Changing the WebSphere Application Server configuration using the wsadmin

tool:

98 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

Before starting this task, the wsadmin tool must be running. See the “Starting the

wsadmin scripting client” on page 123 article for more information. For this task,

the wsadmin scripting client must be connected to the deployment manager server

in a network deployment environment.

You can use the wsadmin AdminConfig and AdminApp objects to make changes

to the WebSphere Application Server configuration. The purpose of this article is to

illustrate the relationship between the commands that are used to change the

configuration and the files that are used to hold configuration data. This discussion

assumes that you have a network deployment installation, but the concepts are

very similar for a WebSphere Application Server installation.

1. Set a variable for creating a server:

v Using Jacl:

set n1 [$AdminConfig getid /Node:mynode/]

v Using Jython:

n1 = AdminConfig.getid(’/Node:mynode/’)

where:

 set is a Jacl command

n1 is a variable name

$ is a Jacl operator for substituting a variable

name with its value

AdminConfig is an object that represents the WebSphere

Application Server configuration

getid is an AdminConfig command

Node is the object type

mynode is the name of the object to modify

2. Create a server with the following command:

v Using Jacl:

set serv1 [$AdminConfig create Server $n1 {{name myserv}}]

v Using Jython list:

serv1 = AdminConfig.create(’Server’, n1, [[’name’, ’myserv’]])

v Using Jython string:

serv1 = AdminConfig.create(’Server’, n1, ’[[name myserv]]’)

where:

 set is a Jacl command

serv1 is a variable name

$ is a Jacl operator for substituting a variable

name with its value

AdminConfig is an object that represents the WebSphere

Application Server configuration

create is an AdminConfig command

Server is an AdminConfig object

n1 evaluates to the ID of the host node that is

specified in step number 1

name is an attribute

Chapter 6. Using scripting (wsadmin) 99

myserv is the value of the name attribute

After this command completes, some new files can be seen in a workspace

used by the deployment manager server on behalf of this scripting client. A

workspace is a temporary repository of configuration information that

administrative clients use. Any changes made to the configuration by an

administrative client are first made to this temporary workspace. For scripting,

when a save command is invoked on the AdminConfig object, these changes

are transferred to the real configuration repository. Workspaces are kept in the

wstemp subdirectory of a WebSphere Application Server installation.

3. Make a configuration change to the server with the following command:

v Using Jacl:

$AdminConfig modify $serv1 {{stateManagement {{initialState STOP}}}}

v Using Jython list:

AdminConfig.modify(serv1, [[’stateManagement’, [[’initialState’, ’STOP’]]]])

v Using Jython string:

AdminConfig.modify(serv1, ’[[stateManagement [[initialState STOP]]]]’)

where:

 $ is a Jacl operator for substituting a variable

name with its value

AdminConfig is an object that represents the WebSphere

Application Server configuration

modify is an AdminConfig command

serv1 evaluates to the ID of the host node that is

specified in step number 2

stateManagement is an attribute

initialState is a nested attribute within the

stateManagement attribute

STOP is the value of the initialState attribute

This command changes the initial state of the new server. After this command

completes, one of the files in the workspace is changed.

4. Install an application on the server.

5. Save the configuration changes. See the “Saving configuration changes with the

wsadmin tool” on page 102 article for more information.

6. In a network deployment environment only, synchronize the node. See the

“Synchronizing nodes with the wsadmin tool” on page 86 article for more

information.

Modifying nested attributes with the wsadmin tool:

The attributes for a WebSphere Application Server configuration object are often

deeply nested. For example, a JDBCProvider object has an attribute factory, which

is a list of the J2EEResourceFactory type objects. These objects can be DataSource

objects that contain a connectionPool attribute with a ConnectionPool type that

contains a variety of primitive attributes.

1. Invoke the AdminConfig object commands interactively, in a script, or use the

wsadmin -c commands from an operating system command prompt.

2. Obtain the configuration ID of the object, for example:

Using Jacl:

set t1 [$AdminConfig getid /DataSource:TechSamp/]

100 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

Using Jython:

t1=AdminConfig.getid(’/DataSource:TechSamp/’)

where:

 set is a Jacl command

t1 is a variable name

$ is a Jacl operator for substituting a variable

name with its value

AdminConfig is an object representing the WebSphere

Application Server configuration

getid is an AdminConfig command

DataSource is the object type

TechSamp is the name of the object that will be

modified

3. Modify one of the object parents and specify the location of the nested attribute

within the parent, for example:

Using Jacl:

$AdminConfig modify $t1 {{connectionPool {{reapTime 2003}}}}

Using Jython list:

AdminConfig.modify(t1, [["connectionPool", [["reapTime", 2003]]]])

Using Jython string:

AdminConfig.modify(t1, ’[[connectionPool [[reapTime 2003]]]]’)

where:

 $ is a Jacl operator for substituting a variable

name with its value

AdminConfig is an object representing the WebSphere

Application Server configuration

modify is an AdminConfig command

t1 evaluates to the configuration ID of the

datasource in step number 2

connectionPool is an attribute

reapTime is a nested attribute within the

connectionPool attribute

2003 is the value of the reapTime attribute

4. Save the configuration by issuing an AdminConfig save command. For

example:

Using Jacl:

$AdminConfig save

Using Jython:

AdminConfig.save()

Use the reset command of the AdminConfig object to undo changes that you

made to your workspace since your last save.

Chapter 6. Using scripting (wsadmin) 101

An alternative way to modify nested attributes is to modify the nested attribute

directly, for example:

Using Jacl:

set techsamp [$AdminConfig getid /DataSource:TechSamp/]

set pool [$AdminConfig showAttribute $techsamp connectionPool]

$AdminConfig modify $pool {{reapTime 2003}}

Using Jython list:

techsamp=AdminConfig.getid(’/DataSource:TechSamp/’)

pool=AdminConfig.showAttribute(techsamp,’connectionPool’)

AdminConfig.modify(pool,[[’reapTime’,2003]])

Using Jython string:

techsamp=AdminConfig.getid(’/DataSource:TechSamp/’)

pool=AdminConfig.showAttribute(techsamp,’connectionPool’)

AdminConfig.modify(pool,’[[reapTime 2003]]’)

In this example, the first command gets the configuration id of the DataSource,

and the second command gets the connectionPool attribute. The third command

sets the reapTime attribute on the ConnectionPool object directly.

Saving configuration changes with the wsadmin tool:

The wsadmin tool uses the workspace to hold configuration changes. You must

save your changes to transfer the updates to the master configuration repository. If

a scripting process ends and you have not saved your changes, the changes are

discarded. Use the following commands to save the configuration changes:

v Using Jacl:

$AdminConfig save

v Using Jython:

AdminConfig.save()

where:

 $ is a Jacl operator for substituting a variable

name with its value

AdminConfig is an object representing the WebSphere

Application Server configuration

save is an AdminConfig command

If you are using interactive mode with the wsadmin tool, you will be prompted to

save your changes before they are discarded. If you are using the -c option with

the wsadmin tool, changes are automatically saved.

You can use the reset command of the AdminConfig object to undo changes that

you made to your configuration since your last save.

AdminTask object for scripted administration

Use the AdminTask object to access a set of administrative commands that provide

an alternative way to access the configuration commands and the running object

management commands. The administrative commands run simple and complex

commands. They provide more user friendly and task-oriented commands. The

administrative commands are discovered dynamically when you start a scripting

client. The set of available administrative commands depends on the edition of

102 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

WebSphere Application Server that you installed. You can use the AdminTask

object commands to access these commands.

Administrative commands are grouped based on their function. You can use

administrative command groups to find related commands. For example, the

administrative commands that are related to server management are grouped into

a server management command group. The administrative commands that are

related to the security management are grouped into a security management

command group. An administrative command can be associated with multiple

command groups because it can be useful for multiple areas of system

management. Both administrative commands and administrative command groups

are uniquely identified by their name.

Two run modes are always available for each administrative command, namely the

batch and interactive mode. When you use an administrative command in interactive

mode, you go through a series of steps to collect your input interactively. This

process provides users a text-based wizard and a similar user experience to the

wizard in the administrative console. You can also use the help command to obtain

help for any administrative command and the AdminTask object.

The administrative commands do not replace any existing configuration commands

or running object management commands but provide a way to access these

commands and organize the inputs. The administrative commands can be available

in connected or local mode. The set of available administrative commands is

determined when you start a scripting client in connected or local mode. If a

server is running, it is not recommended that you run the scripting client in local

mode because any configuration changes made in local mode are not reflected in

the running server configuration and vice versa. If you save a conflicting

configuration, you could corrupt the configuration. In a deployment manager

environment, configuration updates are available only if a scripting client is

connected to a deployment manager. When connected to a node agent or a

managed application server, you will not be able to update the configuration

because the configuration for these server processes are copies of the master

configuration which resides in the deployment manager. The copies are created on

a node machine when a configuration synchronization occurs between the

deployment manager and the node agent. Make configuration changes to the

server processes by connecting a scripting client to a deployment manager. For this

reason, to change a configuration, do not run a scripting client in local mode on a

node machine. It is not a supported configuration.

Obtaining online help using scripting:

Three levels of online help are available with the administrative commands. The

top-level help provides general information for the AdminTask object and

associated commands. The second-level help provides information about all of the

available administrative commands and command groups. The third-level help

provides specific help on a command group, a command, or a step. Command

group-specific help provides descriptions for the command group that you specify

and the commands that belong to the associated group. Command-specific help

provides description for the specified command, and associated parameters and

steps. Step-specific help provides a description for the specified step and the

associated parameters. For command and step-specific help, required parameters

are marked with an asterisk (*) in the help output.

v To obtain general help, use the code in the following examples:

Using Jacl:

Chapter 6. Using scripting (wsadmin) 103

$AdminTask help

Using Jython:

print AdminTask.help()

Example output:

WASX8001I: The AdminTask object enables the execution of available

 admin commands. AdminTask commands operate in two modes:

 the default mode is one which AdminTask communicates with the

 WebSphere server to accomplish its task. A local mode is also

 available in which no server communication takes place. The local

 mode of operation is invoked by bringing up the scripting client

 using the command line "-conntype NONE" option or setting the

 "com.ibm.ws.scripting.connectiontype=NONE" property in

 wsadmin.properties file.

The number of admin commands varies and depends on your WebSphere install.

Use the following help commands to obtain a list of supported commands

and their parameters:

help -commands

 list all the admin commands

help -commandGroups

 list all the admin command groups

help commandName

 display detailed information for

 the specified command

help commandName stepName

 display detailed information for

 the specified step belonging to

 the specified command

help commandGroupName

 display detailed information for

 the specified command group

There are various flavors to invoke an admin command:

commandName

 invokes an admin command that does not require any argument.

commandName targetObject

 invokes an admin command with the specified target object

 string, for example, the configuration object name of a

 resource adapter. The expected target object varies with

 the admin command invoked. Use help command to get

 information on the target object of an admin command.

commandName options

 invokes an admin command with the specified option

 strings. This invocation syntax is used to invoke an

 admin command that does not require a target object. It

 is also used to enter interactive mode if "-interactive"

 mode is included in the options string.

commandName targetObject options

 invokes an admin command with the specified target

 object and options strings. If "-interactive" is

 included in the options string, then interactive mode

 is entered. The target object and options strings vary

 depending on the admin command invoked. Use help

 command to get information on the target

 object and options.

v To list the available command groups, use the code in the following examples:

Using Jacl:

$AdminTask help -commandGroups

104 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

Using Jython:

print AdminTask.help(’-commandGroups‘)

Example output:

WASX8005I: Available admin command groups:

ClusterConfigCommands - Commands for configuring application

server clusters and cluster members.

JCAManagement - A group of admin commands that helps to configure

Java2 Connector Architecture(J2C) related resources.

v To list the available commands, use the code in the following examples:

Using Jacl:

$AdminTask help -commands

Using Jython:

print AdminTask.help(’-commands‘)

Example output:

WASX8004I: Available administrative commands:

copyResourceAdapter - copy the specified J2C resource adapter to the specified scope

createCluster - Creates a new application server cluster.

createClusterMember - Creates a new member of an application server cluster.

createJ2CConnectionFactory - Create a J2C connection factory

deleteCluster - Delete the configuration of an application server cluster.

deleteClusterMember - Deletes a member from an application server cluster.

listConnectionFactoryInterfaces - list all of the

defined connection factory interfaces on the

specified J2C resource adapter.

listJ2CConnectionFactories - List J2C connection factories that have a specified

connection factory interface defined in the specified J2C resouce adapter

createJ2CAdminObject - Create a J2C administrative object.

listAdminObjectInterfaces - List all the defined administrative object interfaces

on the specified J2C resource adapter.

interface on the specified J2C resource adapter.

listJ2CAdminObjects - List the J2C administrative objects that have a specified

administrative object interface defined in the specified J2C resource adapter.

createJ2CActivationSpec - Create a J2C activation specification.

listMessageListenerTypes - list all of the defined messageListener

type on the specified J2C resource adapter.

listJ2CActivationSpecs - List the J2C activation specifications that have a

specified message listener type defined in the specified J2C resource adapter.

v To obtain help about a command group, use the code in the following examples:

Using Jacl:

$AdminTask help JCAManagement

Using Jython:

print AdminTask.help(’JCAManagement‘)

Example output:

WASX8007I: Detailed help for command group: JCAManagement

Description: A group of administrative commands that help to

configure Java 2 Connector Architecture (J2C)-related resources.

Commands:

createJ2CConnectionFactory - Create a J2C connection factory

listConnectionFactoryInterfaces - list all of the defined connection

factory interfaces on the specified J2C resource adapter.

listJ2CConnectionFactories - List J2C connection factories that have

a specified connection factory interface defined in the

specified J2C resouce adapter.

createJ2CAdminObject - Create a J2C administrative object.

listAdminObjectInterfaces - List all the defined administrative

Chapter 6. Using scripting (wsadmin) 105

object interfaces on the specified J2C resource adapter.

listJ2CAdminObjects - List the J2C administrative objects that have a

specified adminstrative object interface defined in the

specified J2C resource adapter.

createJ2CActivationSpec - Create a J2C activation specification.

listMessageListenerTypes - list all of the defined

message listener types on the specified J2C resource adapter.

listJ2CActivationSpecs - List the J2C activation specifications that

have a specified message listener type defined in the

specified J2C resource adapter.

copyResourceAdapter - copy the specified J2C resource

adapter to the specified scope.

v To obtain help about an administrative command:

Using Jacl:

$AdminTask help createJ2CConnectionFactory

Using Jython:

print AdminTask.help(’createJ2CConnectionFactory‘)

Example output:

WASX8006I: Detailed help for command: createJ2CConnectionFactory

Description: Create a J2C connection factory

*Target object: The parent J2C resource adapter of the created J2C connection factory.

Arguments:

*connectionFactoryInterface - A connection factory interface that is defined in the

deployment description of the parent J2C resource adapter.

*name - The name of the J2C connection factory.

*jndiName - The JNDI name of the created J2C connection factory.

description - The description for the created J2C connection factory.

authDataAlias - the authentication data alias of the created J2C connection factory.

Steps:

None

In the command-specific help output that is previously listed, an administrative

command is divided into three input areas: target object, arguments, and steps.

Each area can require input depending on the administrative command. If an

area requires input, each input is described by its name and a description; except

for the target object area, which contains the description of the target object only.

When you use an administrative command in batch mode, you can use any

input name that resides in the argument area as the argument name. If an input

is required, an asterisk (*) is located before the name. If an area does not require

an input, it is marked None. The following example uses the help output for the

createJ2CConnectionFactory command:

– The target object area requires the configuration object name of a

J2CResourceAdapter.

– In the arguments area, there are five inputs with three being required inputs.

The argument names are connectionFactoryInterface, name, jndiName,

description, and authDataAlias. These names are used as the parameter

names in the option string to run an administrative command in batch mode,

for example:

-connectionFactoryInterface javax.resource.cci.ConnectionFactory

-name newConnectionFactory -jndiName CF/newConnectionFactory

See “Administrative command invocation syntax” on page 599 for more

information about specifying argument options.

– No step is associated with this administrative command.
v To obtain help on a command step, use the step-specific help.

106 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

Step-specific help provides the following data:

– A description for the command step.

– Information indicating whether this step supports collection. A collection

includes objects of the same type. In a command step, a collection contains

objects that have the same set of parameters.

– Information regarding each step parameter with its name and description. If a

step parameter is required, an asterisk (*) is located in front of the name.

The following example obtains help on a command step:

Using Jacl:

$AdminTask help createCluster clusterConfig

Using Jython:

print AdminTask.help(’createCluster‘, ’clusterConfig‘)

Example output:

WASX8013I: Detailed help for step: clusterConfig

Description: Specifies the configuration of the new server cluster.

Collection: No

Arguments:

 *clusterName - Name of server cluster.

 preferLocal - Enables node-scoped routing optimization for the cluster.

This example indicates the following information about the clusterConfig step:

– This step does not support collection. Only one set of parameter values for

the clusterName and perferLocal parameters is supported.

– This step contains two input arguments with one argument that is indicated

as required. The required arguments is clusterName and the non-required

parameter is preferLocal. The syntax to provide step parameter values is

different from the command argument values. You have to provide all

argument values of a step and provide them in the exact order as displayed

in the step specific help. For any optional argument that you do not want to

specify a value, put double quotes (″″) in place of a value. If a command step

is a collection type, for example, it can contain multiple objects where each

object has the same set of arguments, you can specify multiple objects with

each object enclosed by its own pair of braces. To run an administrative

command in batch mode and to include this step in the option string, use the

following syntax:

Using Jacl:

-clusterConfig {{newCluster false}}

Using Jython:

-clusterConfig [[newCluster false]]

See “Administrative command invocation syntax” on page 599 for more

information about specifying parameter options.

Invoking an administrative command in batch mode:

Perform the following steps to invoke an administrative command in batch mode.

To invoke an administrative command in interactive mode, see “Invoking an

administrative command in interactive mode” on page 113.

1. Invoke the AdminTask object commands interactively, in a script, or use the

wsadmin -c command from an operating system command prompt.

2. Issue one of the following commands:

Chapter 6. Using scripting (wsadmin) 107

v If an administrative command does not have a target object and an

argument, use the following command:

Using Jacl:

$AdminTask commandName

Using Jython:

AdminTask.commandName()

where:

 $ is a Jacl operator for substituting a variable

name with its value

AdminTask is an object allowing administrative

command management

commandName is the name of the administrative command

to invoke

v If an administrative command includes a target object but does not include

any arguments or steps, use the following command:

Using Jacl:

$AdminTask commandName targetObject

Using Jython:

AdminTask.commandName(targetObject)

where:

 $ is a Jacl operator for substituting a variable

name with its value

AdminTask is an object that supports administrative

command management

commandName is the name of the administrative command

to invoke

targetObject is the target object string for the invoked

administrative command. The expect target

object varies with each administrative

command. View the online help for the

invoked administrative command to learn

more about what you should specify as the

target object.

v If an administrative command includes an argument or a step but does not

include a target object, use the following command:

Using Jacl:

$AdminTask commandName options

Using Jython:

AdminTask.commandName(options)

where:

 $ is a Jacl operator for substituting a variable

name with its value

AdminTask is an object that supports administrative

command management

commandName is the name of the administrative command

to invoke

108 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

options is the option string for the invoked

administrative command. Depending on

which administrative command you are

invoking, the administrative command can

have required or optional option values. The

options string is different for each

administrative command. View the online

help for the invoked administrative

command to obtain more information about

which options are available. Arguments and

steps listed on the online administrative

command help are specified as options in

the option string.

Each option consists of a dash followed

immediately by an option name, and then

followed by an option value if the option

requires a value. If the invoked

administrative command includes target

objects, arguments, or steps, then the

–interactive option is available to enter

interactive mode. For example, using the

output of the following online help for the

listDataSource command:

WASX8006I: Detailed help for command:

exportServer

Description: export the configuration

of a server to a config archive.

Target object: None

Arguments:

*serverName - the name of a server

*nodeName - the name of a node. This

parameter becomes optional if the

specified server name is unique

across the cell.

*archive - the fully qualified file

path of a config archive.

Steps:

None

Option names are specified with a dash

before the names. Three options are required

for this administrative command. The

required options are -serverName,

-nodename, and -archive. In addition, the

-interactive option is available. Options are

specified in the option string, which is

enclosed by a pair of braces ({}) in Jacl and a

pair of brackets ([]) in Jython.

v If an administrative command includes a target object, and arguments or

steps:

Using Jacl:

$AdminTask commandName targetObject options

Using Jython:

AdminTask.commandName(targetObject, options)

Chapter 6. Using scripting (wsadmin) 109

where:

 $ is a Jacl operator for substituting a variable

name with its value

AdminTask is an object that supports administrative

command management

commandName is the name of the administrative command

to invoke

targetObject is the target object string for the invoked

administrative command. The expected

target object varies with each administrative

command. View the online help for the

invoked administrative command to obtain

information about what to specify as a target

object. For example, using the output of the

following online help for

createJ2CConnectionFactory:

WASX8006I: Detailed help for command:

createJ2CConnectionFactory

Description: Create a J2C connection

factory

*Target object: The parent J2C resource

adapter of the created J2C connection

factory.

Arguments:

*connectionFactoryInterface - A

connection factory interface that is

defined in the deployment description

of the parent J2C resource adapter.

*name - The name of the J2C connection

factory.

*jndiName - The JNDI name of the

created J2C connection factory.

description - The description for the

created J2C connection factory.

authDataAlias - the authentication data

alias of the created J2C connection

factory.

Steps:

None

The target object is a configuration object

name of a J2C resource adapter.

110 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

options is the option string for the invoked

administrative command. Depending on

which administrative command you are

invoking, the administrative command can

have required or optional option values. The

options string is different for each

administrative command. View the online

help for the invoked administrative

command to obtain more information about

which options are available. Arguments and

steps that are listed on the online

administrative command help are specified

as options in the option string. Each option

consists of a dash followed immediately by

an option name, and then followed by an

option value if the option requires a value. If

the invoked administrative command

includes target objects, arguments, or steps,

then the –interactive option is available to

enter interactive mode. For example, using

the output of the following online help for

listDataSource:

WASX8006I: Detailed help for command:

createJ2CConnectionFactory

Description: Create a J2C connection

factory

*Target object: The parent J2C resource

adapter of the created J2C connection

factory.

Arguments:

*connectionFactoryInterface - A

connection factory interface that is

defined in the deployment description

of the parent J2C resource adapter.

*name - The name of the J2C connection

factory.

*jndiName - The JNDI name of the created

J2C connection factory.

description - The description for the

created J2C connection factory.

authDataAlias - the authentication data

alias of the created J2C connection

factory.

Steps:

None

Option names are specified with a dash

before the names. The required options for

this administrative command include:

-connectionFactoryInterface, -name, and

-jndiName. The optional options include:

-description and -authDataAlias. In

addition, you can also use the -interactive

option. Options are specified in the option

string, which is enclosed by a pair of braces

({}) in Jacl and a pair of brackets ([]) in

Jython.

Chapter 6. Using scripting (wsadmin) 111

v The following example invokes an administrative command with no target

object, argument, or step:

Using Jacl:

$AdminTask listNodes

Using Jython:

print AdminTask.listNodes()

Example output:

myNode

v The following example invokes an administrative command with a target object

string:

Using Jacl:

set s1 [$AdminConfig getid /Server:server1/]

$AdminTask showServerInfo $s1

Using Jython:

s1 = AdminConfig.getid(’/Server:server1/’)

print AdminTask.showServerInfo(s1)

Example output:

{cell myCell}

{serverType APPLICATION_SERVER}

{com.ibm.websphere.baseProductVersion 6.0.0.0}

{node myNode}

{server server1}

v The following example invokes an administrative command with an option

string:

Using Jacl:

$AdminTask getNodeMajorVersion {-nodeName myNode}

Using Jython:

print AdminTask.getNodeMajorVersion(’[-nodeName myNode]’)

Example output:

6

v The following example invokes an administrative command with a target object

and non-step option strings:

Using Jacl:

set ra [$AdminConfig getid /J2CResourceAdapter:myResourceAdapter/]

$AdminTask createJ2CConnectionFactory $ra {-name myJ2CCF -jndiName j2c/cf

-connectionFactoryInterface javax.resource.cci.ConnectionFactory}

Using Jython:

ra = AdminConfig.getid(’/J2CResourceAdapter:myResourceAdapter/‘)

AdminTask.createJ2CConnectionFactory(ra, ’[-name myJ2CCF -jndiName j2c/cf

-connectionFactoryInterface javax.resource.cci.ConnectionFactory]‘)

Example output:

myJ2CCF(cells/myCell/nodes/myNode|resources.xml#J2CConnectionFactory_1069690568269)

v The following example invokes an administrative command with a target object

and a step option:

Using Jacl:

set serverCluster [$AdminConfig getid /ServerCluster:myCluster/]

$AdminTask createClusterMember $serverCluster {-memberConfig {{myNode

myClusterMember "" "" false false}}}

Using Jython:

112 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

serverCluster = AdminConfig.getid(’/ServerCluster:myCluster/‘)

AdminTask.createClusterMember(serverCluster, ’[-memberConfig [[myNode

myClusterMember "" "" false false]]]’)

Example output:

myClusterMember(cells/myCell/nodes/myNode|cluster.xml#ClusterMember_3673839301876)

Invoking an administrative command in interactive mode:

Perform the following steps to invoke an administrative command in interactive

mode. To invoke an administrative command in batch mode, see “Invoking an

administrative command in batch mode” on page 107.

1. Invoke the AdminTask object commands interactively, in a script, or use the

wsadmin -c command from an operating system command prompt.

2. Invoke an administrative command in interactive mode by issuing one of the

following commands:

v Use the following command invocation to enter interactive mode without

providing another input in the command invocation:

Using Jacl:

$AdminTask commandName {-interactive}

Using Jython:

AdminTask.commandName(’[-interactive]‘)

where:

 $ is a Jacl operator for substituting a variable

name with its value

AdminTask is an object that supports administrative

command management

commandName is the name of the administrative command

to invoke

-interactive is the interactive option

v Use the following command invocation to enter interactive mode using an

administrative command that takes a target object. You do not have to

provide a target object to enter interactive mode. Target objects provided in

the command invocation will be applied to the command and displayed as

the current target object value during interactive prompting.

Using Jacl:

$AdminTask commandName targetObject {-interactive}

Using Jython:

AdminTask.commandName(targetObject, ’[-interactive]‘)

where:

 $ is a Jacl operator for substituting a variable

name with its value

AdminTask is an object that supports administrative

command management

commandName is the name of the administrative command

to invoke

Chapter 6. Using scripting (wsadmin) 113

targetObject is the target object string for the invoked

administrative command. The target object is

different for each administrative command.

View the online help for the invoked

administrative command to learn more

about what to specify as a target object.

-interactive is the interactive option

v Use the following command invocation to enter interactive mode for an

administrative command that takes options. You do not have to provide

other options to enter interactive mode. Options provided in the command

invocation are applied to the command and the option values will be

displayed as the current values during interactive prompting.

Using Jacl:

$AdminTask commandName {-interactive commandOptions}

Using Jython:

AdminTask.commandName(’[-interactive commandOptions]‘)

where:

 $ is a Jacl operator for substituting a variable

name with its value

AdminTask is an object that supports administrative

command management

commandName is the name of the administrative command

to invoke

-interactive is the interactive option

114 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

commandOptions is the command option that is available for

the associated administrative command.

Available command options are different for

each administrative command. View the

online help for the invoked administrative

command to obtain more information about

which options are available. Arguments and

steps that are listed on the online

administrative command help are specified

as command options. Each option consists of

a dash followed immediately by an option

name, and then followed by an option value

if the option requires a value. For example,

using the output of the following online

help for the createJ2CConnectionFactory

command:

WASX8006I: Detailed help for command:

createJ2CConnectionFactory

Description: Create a J2C connection

factory

*Target object: The parent J2C

resource adapter of the created

J2C connection factory.

Arguments:

*connectionFactoryInterface - A

connection factory interface that is

defined in the deployment description

of the parent J2C resource adapter.

*name - The name of the J2C connection

factory.

*jndiName - The JNDI name of the created

J2C connection factory.

description - The description for the

created J2C connection factory.

authDataAlias - the authentication data

alias of the created J2C connection

factory.

Steps:

None

In this example, five options are available:

v -connectionFactoryInterface

v -name

v -jndiName

v -description

v -authDataAlias

Each option requires a value. Three of the

options are required and are denoted with a

star (*).

v Use the following command invocation to enter interactive mode for an

administrative command that has a target object and options. You do not

have to specify a target object to enter interactive mode. The values specified

are applied to the command before the command data is displayed. As a

result, the values specified will be displayed as the current values during

interactive prompting.

Chapter 6. Using scripting (wsadmin) 115

Using Jacl:

$AdminTask commandName targetObject {-interactive commandOptions}

Using Jython:

AdminTask.commandName(targetObject, ’[-interactive commandOptions]‘)

where:

 $ is a Jacl operator for substituting a variable

name with its value

AdminTask is an object that supports administrative

command management

commandName is the name of the administrative command

to invoke

targetObject is the target object string for the invoked

administrative command. The expect target

object varies with each admin command.

Consult the online help on the invoked

administrative command to learn more

about what to specify as target object.

-interactive is the interactive option

116 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

commandOptions is the command option that is available for

the associated administrative command.

Available command options are different for

each administrative command. View the

online help for the invoked administrative

command to obtain more information about

which options are available. Arguments and

steps that are listed on the online

administrative command help are specified

as command options. Each option consists of

a dash followed immediately by an option

name, and then followed by an option value

if the option requires a value. For example,

using the output of the following online

help for the createJ2CConnectionFactory

command:

WASX8006I: Detailed help for command:

createJ2CConnectionFactory

Description: Create a J2C connection

factory

*Target object: The parent J2C resource

adapter of the created J2C connection

factory.

Arguments:

*connectionFactoryInterface - A

connection factory interface that is

defined in the deployment description

of the parent J2C resource adapter.

*name - The name of the J2C connection

factory.

*jndiName - The JNDI name of the created

J2C connection factory.

description - The description for the

created J2C connection factory.

authDataAlias - the authentication data

alias of the created J2C connection

factory.

Steps:

None

In this example, five options are available:

v -connectionFactoryInterface

v -name

v -jndiName

v -description

v -authDataAlias

Each option requires a value. Three of the

options are required and are denoted with a

star (*).

v The following example invokes an administrative command in interactive mode

by specifying the -interactive option:

Using Jacl:

$AdminTask createJ2CConnectionFactory {-interactive}

Using Jython:

Chapter 6. Using scripting (wsadmin) 117

AdminTask.createJ2CConnectionFactory(’[-interactive]’)

Example output:

Create a J2C connection factory

*The J2C resource adapter: "WebSphere Relational ResourceAdapter

(cells/myCell/nodes/myNode|resources.xml#builtin_rra)"

A connection factory

interface (connectionFactoryInterface):javax.resource.cci.ConnectionFactory

*Name (name): myJ2CCF

*The JNDI name (jndiName): j2c/cf

Description (description):

authentication data alias (authDataAlias):

create J2C connection factory

F (Finish)

C (Cancel)

Select [F, C]: [F]

myJ2CCF(cells/myCell/nodes/myNode|resources.xml#J2CConnectionFactory_1069690568269)

v The following example invokes an administrative command using the

–interactive option with a target object that is specified in the command

invocation:

Using Jacl:

set ra [$AdminConfig getid /J2CResourceAdapter:myResourceAdapter/]

$AdminTask createJ2CConnectionFactory $ra {-interactive}

Using Jython:

ra = AdminConfig.getid(’/J2CResourceAdapter:myResourceAdapter/’)

AdminTask.createJ2CConnectionFactory(ra, ’[-interactive]‘)

Example output:

Create a J2C connection factory

*The J2C resource adapter: ["WebSphere Relational ResourceAdapter

(cells/myCell/nodes/myNode|resources.xml#builtin_rra)"]

A connection factory interface (connectionFactoryInterface):

javax.resource.cci.ConnectionFactory

*Name (name): myJ2CCF

*The JNDI name (jndiName): j2c/cf

Description (description):

authentication data alias (authDataAlias):

create J2C Connection Factory

F (Finish)

C (Cancel)

Select [F, C]: [F]

myJ2CCF(cells/myCell/nodes/myNode|resources.xml#J2CConnectionFactory_1069690568269)

v The following example invokes an administrative command using the

–interactive option where both the target object and the additional command

options are specified in the command invocation:

Using Jacl:

set ra [$AdminConfig getid /J2CResourceAdapter:myResourceAdapter/]

$AdminTask createJ2CConnectionFactory $ra {-name myNewCF -interactive}

Using Jython:

118 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

ra = AdminConfig.getid(’/J2CResourceAdapter:myResourceAdapter/’)

AdminTask.createJ2CConnectionFactory(ra, ’[-name myNewCF -interactive]‘)

Example output:

Create a J2C connection factory

*The J2C resource adapter: ["WebSphere Relational ResourceAdapter

(cells/myCell/nodes/myNode|resources.xml#builtin_rra)"]

A connection factory interface (connectionFactoryInterface):javax.

resource.cci.ConnectionFactory

*Name (name): [myNewCF]

*The JNDI name (jndiName): j2c/cf

Description (description):

authentication data alias (authDataAlias):

create J2C Connection Factory

F (Finish)

C (Cancel)

Select [F, C]: [F]

myNewCF(cells/myCell/nodes/myNode|resources.xml#J2CConnectionFactory_3839439380269)

Administrative command interactive mode environment: An administrative command

can be run in interactive mode by providing the -interactive option in the options

string when invoking the command. You can still provide other options, even

when using the interactive option. The options values that are specified are applied

to the command before the command data is displayed. Whether or not other

options are specified, the wsadmin tool steps the user through the command to

collect command information.

The general interactive flow sequence is:

1. Collect user inputs for target object and parameters

2. If the command does not include a step, the command execution menu

displays to run or cancel the command.

3. If the command includes a step, the menu to select the step displays. When all

the required inputs are entered, the menu includes command execution.

4. When a step is selected, if the step supports collection, then the menu to select

an object in the collection displays and you can exit the step. If you exit the

step, repeat steps 3-5.

5. Collect user inputs for the selected step or for an object in the collection

6. Repeat steps 4 and 5 if from the collection step menu

7. Repeat steps 3-5 if from step selection menu

Depending on what input area is enabled by an administrative command, you can

go through part or all of the interactive flow sequence. If an administrative

command is run in interactive mode, the syntax to run the command except for the

deletion of collection object in batch mode is generated and logged as a

WASX7278I message in both the interactive session and in the wsadmin trace file.

Collect user inputs for target object and parameters

The following interactive prompt is used to collect inputs for the Target object and

Arguments input areas that are displayed in the command-specific help:

Chapter 6. Using scripting (wsadmin) 119

Command title

Command Description

*target object title [current or default value]:

*param1 title (param1 name) [choice1, choice2, ...]: [current/default value]

param2 title (param2 name) [choice1, choice2, ...]: [current/default value]

...

This screen is usually the first interactive screen that is displayed when an

administrative command is invoked interactively unless the invoked command

does not contain any target object and non-step command parameters. If a

command does not have a target object, then the prompt for the target object is

skipped. The number of parameters depends on the number of arguments in the

Argument area of the command-specific help. If an input is required, then an

asterisk (*) is placed in front of the title. The parameter name is displayed for

information and is the name that is used to set this parameter in batch mode. If a

parameter value is restricted to a set of values, then the valid choices are

displayed. If current or default value is available, it is displayed. You can accept

the existing value by pressing the Enter key. To add or change an existing value,

enter a new value and click Enter.

Display command execution menu

If an administrative command does not contain a step, you are presented with the

following menu after collecting values for target object and parameters:

Command title

F (Finish)

C (Cancel)

Select [F, C]: F

The Finish option runs the command and the Cancel option cancels the command.

The default selection is F (Finish). This menu is the last menu that is displayed for

a non-step command to exit interactive mode by either canceling or running the

command.

Display command step selection and execution menu

If an administrative command contains a step, the following menu is displayed

after collecting values for target object and parameters:

Command title

Command description

 -> *1. step1 title (step1 name)

 2. step2 title (step2 name)

 *3. step3 title (step3 name)

 (4. step4 title (step4 name))

 ...

 n. stepn title (stepn name)

S (Select)

N (Next)

P (Previous)

F (Finish)

C (Cancel)

H (Help)

Select [S, N, P, F, C, H]: S

120 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

The number of steps that is displayed in the menu depends on the administrative

command. The step name is displayed for information and is the name that is used

to set data in this step in batch mode. The following notations are used to describe

a step:

v A “->” before the step indicates the current step position.

v A “*” before the step indicates a required step.

v A () enclosing the entire step indicates a disabled step. You cannot navigate to

this step by using the Next or Previous options.

Using the menu, you can navigate through steps sequentially by selecting Previous

or Next. Select selects the current step, Finish runs the command, Cancel cancels

the command, and Help provides online help for the command. Not all menu

choices are available. Previous is not available if the current step is the first step.

Next is not available if the current step is the last step. Finish is not available if

still steps are still missing required inputs. The default selection is S (Select) if the

current step is a valid step and steps are missing required inputs. Default selection

is F (Finish) if all the required input is provided for the steps.

For commands with steps, you can exit interactive mode on this menu by either

canceling or running the command.

Display collection step menu

A step might or might not support collection. A collection refers to objects of the

same type. In an administrative command, a collection contains objects that have

the same set of parameters. If a step that supports collection is selected, the

wsadmin tool displays the following menu to add and select an object in the

collection:

Step title (step name)

 | key param1 title (key param1 name), key param2 title (key param2 name), ...

-> | object1 key param1 value, key param2 value, ...

 *| object2 key param1 value, key param2 value, ...

 ...

key param1 title, key param2 title, ... must be provided to specify a row in batch row.

S (Select Row)

N (Next)

P (Previous)

A (Add Row or Add Row Before)

D (Delete Row)

F (Finish)

H (Help)

Select [S, N, P, A, D, F, H]: F

The number of objects that display in the menu depends on the command step.

Key parameters are identified by the step to use to uniquely identify an object in a

collection. Key parameter values are displayed to identify an object to select. As

with the command step selection menu, an arrow (->) is used to indicate the

current object position, and a asterisk (*) is used to indicate that required input is

missing in the object.

Use the menu to navigate through objects sequentially by selecting Previous or

Next. Select Row selects the current object, Add Row adds a new object, Add Row

Before adds a new object before the current object, Delete Row deletes the current

object, Finish returns control back to the step selection and execution menu, and

Help provides on-line help for the step. Not all menu choices are available.

Chapter 6. Using scripting (wsadmin) 121

Previous is not available if there is no object in the collection or the first object is

the current object. Next is not available if there is no object in the collection or the

last object is the current object. Select Row is available only if there is a current

object. Add Row is provided only if there is no object in the collection and the step

supports new object to be added. Add Row Before is provided if the step supports

new object to be added and there are existing objects in the collection. Delete Row

is provided only if there is a current object and the step supports an object to be

deleted. Finish is not available if there are still objects missing required inputs.

Default selection is A (Add Row) when there is no object in the collection and the

step supports objects to be added. Default selection is S (Select Row) if there is a

current object and there are still objects missing required inputs. Default selection

is F (Finish) if there is no required input missing in any object.

Collect user inputs for parameters of a collection object

After a collection object is selected, the parameter value for each parameter is

prompted sequentially as shown in the following example:

*param1 title (param1 name) [choice1, choice2, ...]: [current/default value]

param2 title (param2 name) [choice1, choice2, ...]: [current/default value]

...

The number of parameters depends on the number of arguments in the Argument

area of the command step-specific help. The same asterisk (*) notation is used to

denote a required parameter. If a parameter value is restricted to a set of values,

then the valid choices are displayed. If the current or default value is available, it

is displayed. For each writable parameter, you can accept the existing value by

pressing Enter. To add or change an existing value, enter a new value and press

Enter. For a read-only parameter, the parameter and its value are displayed. You

will not be given the prompt to modify its value. After you go through all of the

parameters, the wsadmin tool returns to the collection step menu.

Collect user inputs for non-collection step

This step has two parts. The first part displays the current or default parameter

values for the selected step, as shown in the following example:

Step title (step name)

*param1 title (param1 name) [choice1, choice2, ...]: [current/default value]

param2 title (param2 name) [choice1, choice2, ...]: [current/default value]

...

Select [C (Cancel), E (Edit)]: [E]

No prompting is included in this part. Instead, this part is more like a help

function providing parameter information on the selected step. The number of

parameters depends on the number of arguments in the argument area of the

command step specific help. The asterisk (*) notation denotes a required parameter.

If a parameter value is restricted to a set of values, then the valid choices will be

displayed. If the current or default value is available, it is displayed. You can

choose to cancel the step or continue to the next part to provide parameter inputs.

The default selection is Edit. Because it is possible that you are seeing default

values assigned to a new piece of data that is not yet set in the step, you can

accept the default selection to continue to the next part. Otherwise, if no data exists

in the selected step, selecting Cancel does not result in creating the data.

If you accept the default Edit selection, collect user inputs for parameters

sequentially just like Collect user inputs for parameters of a collection object.

122 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

*param1 title (param1 name) [choice1, choice2, ...]: [current/default value]

param2 title (param2 name) [choice1, choice2, ...]: [current/default value]

...

For each writable parameter, you can accept the existing value by pressing Enter.

To add or change an existing value, enter a new value and then press Enter. For a

read-only parameter, the parameter and its value are displayed. You will not be

given the prompt to modify the value of the parameter. As soon as you step

through all the parameters, the wsadmin tool will lead you back to the command

step selection and execution menu.

Starting the wsadmin scripting client

The WebSphere Application Server wsadmin tool provides the ability to run

scripts. You can use the wsadmin tool to manage a WebSphere Application Server

V6.0 installation, as well as configuration, application deployment, and server

run-time operations. The WebSphere Application Server only supports the Jacl and

Jython scripting languages.

You must start the wsadmin scripting client before you perform any other task

using scripting.

1. Locate the command that starts the wsadmin scripting client.

The command for invoking a scripting process is located in the

/WebSphere/AppServer/bin directory or the /WebSphere/DeploymentManager/bin

directory. Use the wsadmin.sh file.

2. Start the wsadmin scripting client. You can start the wsadmin scripting client in

several different ways. To specify the method for running scripts, perform one

of the following wsadmin tool options:

 Option for starting the

wsadmin scripting

client:

Explanation: Examples:

Chapter 6. Using scripting (wsadmin) 123

Run scripting

commands interactively

Run wsadmin with an

option other than -f or -c

or without an option.

An interactive shell is

displayed with a wsadmin

prompt. From the wsadmin

prompt, enter any Jacl or

Jython command. You can

also invoke commands

using the AdminControl,

AdminApp, AdminConfig,

AdminTask, or Help

wsadmin objects.

To leave an interactive

scripting session, use the

quit or exit commands.

These commands do not

take any arguments.

Using Jacl on Windows systems:

wsadmin.bat

Using Jacl on Unix systems:

wsadmin.sh

If security is enabled:

wsadmin.sh -user wsadmin

-password wsadmin

Using Jython on Windows systems:

wsadmin.bat -lang jython

Using Jython on Unix systems:

wsadmin.sh -lang jython

By default security is enabled:

wsadmin.sh -lang jython

-user wsadmin -password

wsadmin

Example output:

WASX7209I: Connected to

process server1 on node

myhost using SOAP

connector; The type of

process is:

UnManagedProcess

WASX7029I: For help,

enter: "$Help help"

wsadmin>$AdminApp list

adminconsole

DefaultApplication

ivtApp

wsadmin>exit

124 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

Run scripting

commands as

individual commands

Run the wsadmin tool with

the -c option.

Using Jacl on Windows systems:

wsadmin -c "$AdminApp list"

Using Jacl on Unix systems:

wsadmin.sh -c "\$AdminApp list"

or

wsadmin.sh -c ’$AdminApp list’

Using Jython on Windows systems:

wsadmin -lang jython -c

"AdminApp.list()"

Using Jython on Linux or Unix

systems:

wsadmin.sh -lang jython -c

’AdminApp.list()’

Example output:

WASX7209I: Connected to process

"server1" on node myhost using

SOAP connector; The type of

process is: UnManagedProcess

adminconsole

DefaultApplication

ivtApp

Chapter 6. Using scripting (wsadmin) 125

Run scripting

commands in a script

Run the wsadmin tool with

the -f option, and place the

commands that you want to

run into the file.

WebSphere Application

Server for z/OS supports

multiple encoding for the

Jacl and Jython command

files. The default encoding

for the command files is

ASCII. To run an EBCDIC

encoded file, add the

following Java virtual

machine (JVM) argument to

the wsadmin.sh file through

the -javaoption flag:

-Dscript.encoding=Cp1047

For example:

wsadmin.sh -javaoption

-Dprofile.encoding=Cp1047

You can alternatively have

two versions of the

wsadmin.sh file, one that

references the ASCII version

of the file and another that

references the EBCDIC

version of the file. For

example, copy the

wsadmin.sh file to the

wsadminE.sh file. Then add

-Dscript.encoding=Cp1047

to the wsadminE.sh file.

Using Jacl on Windows systems:

wsadmin -f al.jacl

Using Jacl on Unix systems:

wsadmin.sh -f al.jacl

where the al.jacl file contains the

following commands:

set apps [$AdminApp list]

puts $apps

Using Jython on Windows systems:

wsadmin -lang jython -f al.py

Using Jython on Unix systems:

wsadmin.sh -lang jython -f al.py

where the al.py file contains the

following commands:

apps = AdminApp.list()

print apps

Example output:

WASX7209I: Connected to process

"server1" on node myhost

using SOAP connector; The

type of process is:

UnManagedProcess

 adminconsole

 DefaultApplication

 ivtApp

126 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

Run scripting

commands in a profile

script

A profile script is a script

that runs before the main

script, or before entering

interactive mode. You can

use profile scripts to set up

a scripting environment that

is customized for the user

or the installation.

WebSphere Application

Server for z/OS supports

multiple encoding for Jacl

and Jython profile scripts.

The default encoding for the

profile file is ASCII. To run

an EBCDIC encoded profile

script file, add the following

Java virtual machine (JVM)

argument to the wsadmin.sh

file:

-Dprofile.encoding=Cp1047

For example:

wsadmin.sh -javaoption

-Dprofile.encoding=Cp1047

You can alternatively have

two versions of the

wsadmin.sh file, one that

references the ASCII version

of the file and another that

references the EBCDIC

version of the file. For

example, copy the

wsadmin.sh file to the

wsadminE.sh file. Then add

-Dprofile.encoding=Cp1047

to the wsadminE.sh file.

By default, the following

profile script files might be

configured for the

com.ibm.ws.scripting.profiles

profiles property in the

install_root/properties/wsadmin.

properties file:

install_root/bin/

securityProcs.jacl

install_root/bin/

LTPA_LDAPSecurityProcs.jacl

By default, these files are in

ASCII. If you use the

profile.encoding option to

run EBCDIC encoded

profile script files, change

the encoding of the files to

EBCDIC.

Using Jacl on Windows systems:

wsadmin.bat -profile alprof.jacl

Using Jacl on Linux or Unix

systems:

wsadmin.sh -profile alprof.jacl

where the alprof.jacl file contains

the following commands:

set apps [$AdminApp list]

puts "Applications currently

installed:\n$apps"

Example output:

WASX7209I: Connected to process

"server1" on node myhost

using SOAP connector; The type

of process is: UnManagedProcess

Applications currently installed:

 adminconsole

 DefaultApplication

 ivtApp

 WASX7029I: For help, enter:

"$Help help"

 wsadmin>

Using Jython on Windows systems:

wsadmin.bat -lang jython

 -profile alprof.py

Using Jython on Linux or Unix

systems:

wsadmin.sh -lang jython

-profile alprof.py

where the alprof.py file contains

the following commands:

apps = AdminApp.list()

print "Applications currently

installed:\n " + apps

Example output:

WASX7209I: Connected to process

"server1" on node myhost

using SOAP connector; The

type of process is:

UnManagedProcess

Applications currently installed:

 adminconsole

 DefaultApplication

 ivtApp

 WASX7029I: For help, enter:

"Help.help()"

 wsadmin>

Chapter 6. Using scripting (wsadmin) 127

To run scripting commands

in a profile script, run the

wsadmin tool with the

-profile option, and include

the commands that you

want to run into the profile

script.

To customize the script

environment, specify one or

more profile scripts to run.

Scripting: Resources for learning

Use the following links to find relevant supplemental information about the Jacl

and Jython scripting languages, and about using scripting with WebSphere

Application Server. The information resides on IBM and non-IBM Internet sites,

whose sponsors control the technical accuracy of the information.

These links are provided for convenience. Often, the information is not specific to

the IBM WebSphere Application Server product, but is useful all or in part for

understanding the product. When possible, links are provided to technical papers

and Redbooks that supplement the broad coverage of the release documentation

with in-depth examinations of particular product areas.

Programming instructions and examples

v Java command language

v Jacl: A Tcl implementation in Java

v Charming Jython

v Jython

v Sample scripts for WebSphere Application Server

Deploying applications using scripting

This topic contains the following tasks:

v Installing applications

v Uninstalling applications

Installing applications with the wsadmin tool

Before starting this task, the wsadmin tool must be running. See the “Starting the

wsadmin scripting client” on page 123 article for more information.

On a single server installation, the server must be running before you install an

application. See the “Starting servers using scripting” on page 180 article for more

information. On a network deployment installation, the deployment manager must

be running before you install an application. See the “startManager command” on

page 672article for more information.

You can install the application in batch mode, using the install command, or you

can install the application in interactive mode using the installinteractive

command. Interactive mode prompts you through a series of tasks to provide

information. Both the install command and the installinteractive command

support a set of options. See the “Options for the AdminApp object install,

installInteractive, edit, editInteractive, update, and updateInteractive commands”

on page 345

128 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

http://utenti.lycos.it/yanorel6/2/ch55.htm
http://www.usenix.org/publications/library/proceedings/tcl97/full_papers/lam/lam.pdf
http://www-106.ibm.com/developerworks/java/library/j-jython.html
http://www.jython.org
http://www-106.ibm.com/developerworks/websphere/library/samples/SampleScripts.html

on page 345 article for a list of valid options for the install and installinteractive

commands. You can also obtain a list of supported options for an Enterprise

Archive (EAR) file using the options command, for example:

Using Jacl:

$AdminApp options

Using Jython:

AdminApp.options()

For more information for the options, install, or installinteractive commands, see

the “Commands for the AdminApp object” on page 317 article.

The application that you install must be an enterprise archive file (EAR), a Web

archive (WAR) file, or a Java archive (JAR) file. The archive file must end in .ear,

.jar or .war for the wsadmin tool to be able to install it. The wsadmin tool uses

these extensions to figure out the archive type. If the file is a WAR or JAR file, it

will be automatically wrapped as an EAR file.

If you are installing an application that has the AdminApp

useMetaDataFromBinary option specified, then you can only install this application

on a WebSphere Application Server V6.x deployment target. This also applies to

editing the application, using the AdminApp edit command, after you install it. If

you use the V5.x wsadmin tool to install or edit an application on a WebSphere

Application Server V6.x cell, only the steps available for the V5.x wsadmin tool

will be shown.

Perform the following steps to install an application into the run time:

1. Install the application.

v Using batch mode:

– For a single server installation only, the following example uses the EAR

file and the command option information to install the application:

- Using Jacl:

$AdminApp install MyStuff/application1.ear {-server serv2}

- Using Jython list:

AdminApp.install(’MyStuff/application1.ear’, [’-server’, ’serv2’])

- Using Jython string:

AdminApp.install(’MyStuff/application1.ear’, ’[-server serv2]’)

where:

 $ is a Jacl operator for substituting a variable

name with its value

AdminApp is an object supporting application object

management

install is an AdminApp command

MyStuff/application1.ear is the name of the application to install

server is an installation option

serv2 is the value of the server option

– For a network deployment installation only, the following command uses

the EAR file and the command option information to install the

application on a cluster:

Chapter 6. Using scripting (wsadmin) 129

- Using Jacl:

$AdminApp install MyStuff/application1.ear {-cluster cluster1}

- Using Jython list:

AdminApp.install(’MyStuff/application1.ear’, [’-cluster’, ’cluster1’])

- Using Jython string:

AdminApp.install(’MyStuff/application1.ear’, ’[-cluster cluster1]’)

where:

 $ is a Jacl operator for substituting a variable

name with its value

AdminApp is an object allowing application objects to

be managed

install is an AdminApp command

MyStuff/application1.ear is the name of the application to install

cluster is an installation option

cluster1 the value of the cluster option which will be

cluster name

v Using interactive mode, the following command changes the application

information by prompting you through a series of installation tasks:

– Using Jacl:

$AdminApp installInteractive MyStuff/application1.ear

– Using Jython:

AdminApp.installInteractive(’MyStuff/application1.ear’)

where:

 $ is a Jacl operator for substituting a variable

name with its value

AdminApp is an object allowing application objects to

be managed

installInteractive is an AdminApp command

MyStuff/application1.ear is the name of the application to install

2. Save the configuration changes. See the “Saving configuration changes with the

wsadmin tool” on page 102 article for more information.

3. In a network deployment environment only, synchronize the node. See the

“Synchronizing nodes with the wsadmin tool” on page 86 article for more

information.

Uninstalling applications with the wsadmin tool

Before starting this task, the wsadmin tool must be running. See “Starting the

wsadmin scripting client” on page 123 for more information.

Steps to uninstall an application follow:

1. Uninstall the application:

Specify the name of the application you want to uninstall, not the name of the

Enterprise ARchive (EAR) file.

v Using Jacl:

$AdminApp uninstall application1

130 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

v Using Jython:

AdminApp.uninstall(’application1’)

where:

 $ is a Jacl operator for substituting a variable

name with its value

AdminApp is an object supporting application objects

management

uninstall is an AdminApp command

application1 is the name of the application to uninstall

2. Save the configuration changes. See the “Saving configuration changes with the

wsadmin tool” on page 102 article for more information.

3. In a network deployment environment only, synchronize the node. See the

“Synchronizing nodes with the wsadmin tool” on page 86 article for more

information.

Uninstalling an application removes it from the WebSphere Application Server

configuration and from all the servers that the application was installed on. The

application binaries (EAR file contents) are deleted from the installation directory.

This occurs when the configuration is saved for single server WebSphere

Application Server editions or when the configuration changes are synchronized

from deployment manager to the individual nodes for network deployment

configurations.

Managing deployed applications using scripting

This topic contains the following tasks:

v “Starting applications with scripting”

v “Updating installed applications with the wsadmin tool” on page 132

v “Stopping applications with scripting” on page 136

v “Listing the modules in an installed application with scripting” on page 137

v “Querying the application state using scripting” on page 142

v “Configuring applications for session management using scripting” on page 142

v “Configuring applications for session management in Web modules using

scripting” on page 145

v “Exporting applications using scripting” on page 149

v “Configuring a shared library using scripting” on page 150

v “Configuring a shared library for an application using scripting” on page 153

v “Setting background applications using scripting” on page 157

Starting applications with scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the

wsadmin scripting client” on page 123 article for more information.

You must install the application before starting it. See the “Installing applications

with the wsadmin tool” on page 128 article for more information.

Perform the following steps to start an application:

Chapter 6. Using scripting (wsadmin) 131

1. Identify the application manager MBean for the server where the application

resides and assign it the appManager variable. The following example returns

the name of the application manager MBean.

v Using Jacl:

 set appManager [$AdminControl queryNames cell=mycell,node=mynode,type=

ApplicationManager,process=server1,*]

v Using Jython:

appManager = AdminControl.queryNames(’cell=mycell,node=mynode,type=

ApplicationManager,process=server1,*’)

print appManager

where:

 set is a Jacl command

appManager is a variable name

$ is a Jacl operator for substituting a variable

name with its value

AdminControl is an object that enables the manipulation of

MBeans running in a WebSphere Application

Server process

queryNames is an AdminControl command

cell=mycell,node=mynode,type=

ApplicationManager,process=server1

is the hierarchical containment path of the

configuration object

print is a Jython command

Example output:

WebSphere:cell=mycell,name=ApplicationManager,mbeanIdentifier=ApplicationManager,

type=ApplicationManager,node=mynode,process=server1

2. Start the application. The following example invokes the startApplication

operation on the MBean, providing the application name that you want to start.

v Using Jacl:

$AdminControl invoke $appManager startApplication myApplication

v Using Jython:

AdminControl.invoke(appManager, ’startApplication’, ’myApplication’)

where:

 $ is a Jacl operator for substituting a variable

name with its value

AdminControl is an object that enables the manipulation of

MBeans running in a WebSphere Application

Server process

invoke is an AdminControl command

appManager evaluates to the ID of the server that is

specified in step number 1

startApplication is an attribute of the modify command

myApplication is the value of the startApplication attribute

Updating installed applications with the wsadmin tool

Before starting this task, the wsadmin tool must be running. See the “Starting the

wsadmin scripting client” on page 123 article for more information.

132 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

Before starting an application, it must be installed. See the “Installing applications

with the wsadmin tool” on page 128 article for more information.

Both the update command and the updateinteractive command support a set of

options. See the “Options for the AdminApp object install, installInteractive, edit,

editInteractive, update, and updateInteractive commands” on page 345 article for a

list of valid options for the update and updateinteractive commands. You can also

obtain a list of supported options for an Enterprise Archive (EAR) file using the

options command, for example:

Using Jacl:

$AdminApp options

Using Jython:

print AdminApp.options()

For more information for the options, update, or updateinteractive commands, see

the “Commands for the AdminApp object” on page 317 article. Perform the

following steps to update an application:

1. Update the installed application using one of the following options:

v The following command updates a single file in a deployed application:

– Using Jacl:

$AdminApp update app1 file {-operation update -contents

/apps/app1/my.xml -contenturi app1.jar/my.xml}

– Using Jython string:

AdminApp.update(’app1‘, ’file‘, ’[-operation update -contents

/apps/app1/my.xml -contenturi app1.jar/my.xml]‘)

– Using Jython list:

AdminApp.update(’app1‘, ’file‘, [’-operation‘, ’update‘, ’-contents‘,

’/apps/app1/my.xml‘, ’-contenturi‘, ’app1.jar/my.xml‘])

where:

 $ is a Jacl operator for substituting a variable

name with its value

AdminApp is an object that supports application objects

management

update is an AdminApp command

app1 is the name of the application to update

file is the content type value

operation is an option of the update command

update is the value of the operation option

contents is an option of the update command

/apps/app1/my.xml is the value of the contents option

contenturi is an option of the update command

app1.jar/my.xml is the value of the contenturi option

v The following command adds a module to the deployed application, if the

module does not exist. Otherwise, the existing module is updated.

– Using Jacl:

Chapter 6. Using scripting (wsadmin) 133

$AdminApp update app1 modulefile {-operation addupdate -contents

/apps/app1/Increment.jar -contenturi Increment.jar -nodeployejb

-BindJndiForEJBNonMessageBinding {{"Increment Enterprise Java Bean"

 Increment Increment.jar,META-INF/ejb-jar.xml Inc}}}

– Using Jython string:

AdminApp.update(’app1‘, ’modulefile‘, ’[-operation addupdate -contents

/apps/app1/Increment.jar -contenturi Increment.jar -nodeployejb

-BindJndiForEJBNonMessageBinding [["Increment Enterprise Java Bean

" Increment Increment.jar,META-INF/ejb-jar.xml Inc]]]’)

– Using Jython list:

bindJndiForEJBValue = [["Increment Enterprise Java Bean",

"Increment", " Increment.jar,META-INF/ejb-jar.xml", "Inc"]]

AdminApp.update(’app1‘, ’modulefile‘, [’-operation‘, ’addupdate‘, ’-contents‘,

’/apps/app1/Increment.jar‘, ’-contenturi‘,’Increment.jar‘ ’-nodeployejb’,

`-BindJndiForEJBNonMessageBinding’, bindJndiForEJBValue])

where:

 $ is a Jacl operator for substituting a variable

name with its value

AdminApp is an object that supports application objects

management

update is an AdminApp command

app1 is the name of the application to update

modulefile is the content type value

operation is an option of the update command

addupdate is the value of the operation option

contents is an option of the update command

/apps/app1/Increment.jar is the value of the contents option

contenturi is an option of the update command

Increment.jar is the value of the contenturi option

nodeployejb is an option of the update command

BindJndiForEJBNonMessageBinding is an option of the update command

″Increment Enterprise Java Bean″

Increment Increment.jar,META-INF/ejb-
jar.xml Inc

is the value of the

BindJndiForEJBNonMessageBinding option

bindJndiForEJBValue is a Jython variable that contains the value

of the BindJndiForEJBNonMessageBinding

option

v The following command uses a partial application to update a deployed

application:

– Using Jacl:

$AdminApp update app1 partialapp {-contents /apps/app1/app1Partial.zip}

– Using Jython string:

AdminApp.update(’app1‘, ’partialapp‘, ’[-contents /apps/app1/app1Partial.zip]’)

– Using Jython list:

AdminApp.update(’app1‘, ’partialapp‘, [’-contents‘, ’/apps/app1/app1Partial.zip‘])

134 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

where:

 $ is a Jacl operator for substituting a variable

name with its value

AdminApp is an object that supports application objects

management

update is an AdminApp command

app1 is the name of the application to update

partialapp is the content type value

contents is an option of the update command

/apps/app1/app1Partial.zip is the value of the contents option

v The following command updates the entire deployed application:

– Using Jacl:

$AdminApp update app1 app {-operation update -contents /apps/app1/newApp1.jar

-usedefaultbindings -nodeployejb -BindJndiForEJBNonMessageBinding

{{"Increment Enterprise Java Bean" Increment Increment.jar,META-INF/ejb-jar.xml Inc}}}

– Using Jython string:

AdminApp.update(’app1‘, ’app‘, ’[-operation update -contents /apps/app1/newApp1.ear

-usedefaultbindings -nodeployejb -BindJndiForEJBNonMessageBinding

[["Increment Enterprise Java Bean" Increment Increment.jar,META-INF/ejb-jar.xml Inc]]]’)

– Using Jython list:

bindJndiForEJBValue = [["Increment Enterprise Java Bean", "Increment",

" Increment.jar,META-INF/ejb-jar.xml", "Inc"]]

AdminApp.update(’app1‘, ’app‘, [’-operation‘, ’update‘, ’-contents‘,

’/apps/app1/NewApp1.ear‘, ’-usedefaultbindings‘, ’-nodeployejb’,

`-BindJndiForEJBNonMessageBinding’, bindJndiForEJBValue])

where:

 $ is a Jacl operator for substituting a variable

name with its value

AdminApp is an object that supports application objects

management

update is an AdminApp command

app1 is the name of the application to update

app is the content type value

operation is an option of the update command

update is the value of the operation option

contents is an option of the update command

/apps/app1/newApp1.ear is the value of the contents option

usedefaultbindings is an option of the update command

nodeployejb is an option of the update command

BindJndiForEJBNonMessageBinding is an option of the update command

″Increment Enterprise Java Bean″

Increment Increment.jar,META-INF/ejb-
jar.xml Inc

is the value of the

BindJndiForEJBNonMessageBinding option

bindJndiForEJBValue is a Jython variable containing the value of

the BindJndiForEJBNonMessageBinding

option

Chapter 6. Using scripting (wsadmin) 135

2. Save the configuration changes. See the “Saving configuration changes with the

wsadmin tool” on page 102 article for more information.

3. In a Network Deployment environment only, synchronize the node. See the

“Synchronizing nodes with the wsadmin tool” on page 86 article for more

information.

Stopping applications with scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the

wsadmin scripting client” on page 123 article for more information.

The following example stops all running applications on a server:

1. Identify the application manager MBean for the server where the application

resides, and assign it to the appManager variable.

v Using Jacl:

set appManager [$AdminControl queryNames cell=mycell,node=mynode,type=

ApplicationManager,process=server1,*]

v Using Jython:

appManager = AdminControl.queryNames(’cell=mycell,node=mynode,type=

ApplicationManager,process=server1,*’)

print appManager

where:

 set is a Jacl command

appManager is a variable name

$ is a Jacl operator for substituting a variable

name with its value

AdminControl is an object that enables the manipulation of

MBeans running in a WebSphere server

process

queryNames is an AdminControl command

cell=mycell,node=mynode,type=

ApplicationManager,process=server1

is the hierarchical containment path of the

configuration object

print is a Jython command

This command returns the application manager MBean.

Example output:

WebSphere:cell=mycell,name=ApplicationManager,mbeanIdentifier=ApplicationManager,

type=ApplicationManager,node=mynode,process=server1

2. Query the running applications belonging to this server and assign the result to

the apps variable.

v Using Jacl:

set apps [$AdminControl queryNames cell=mycell,node=mynode,type=Application,

process=server1,*]

v Using Jython:

get line separator

import java.lang.System as sys

lineSeparator = sys.getProperty(’line.separator’)

apps = AdminControl.queryNames(’cell=mycell,node=mynode,type=Application,

process=server1,*’).split(lineSeparator)

print apps

136 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

where:

 set is a Jacl command

apps is a variable name

$ is a Jacl operator for substituting a variable

name with its value

AdminControl is an object that enables the manipulation of

MBeans running in a WebSphere server

process

queryNames is an AdminControl command

cell=mycell,node=mynode,type=

ApplicationManager,process=server1

is the hierarchical containment path of the

configuration object

print is a Jython command

This command returns a list of application MBeans.

Example output:

WebSphere:cell=mycell,name=adminconsole,mbeanIdentifier=deployment.xml

#ApplicationDeployment_1,type=Application,node=mynode,Server=server1,

process=server1,J2EEName=adminconsole

WebSphere:cell=mycell,name=filetransfer,mbeanIdentifier=deployment.xml

#ApplicationDeployment_1,type=Application,node=mynode,Server=server1,

process=server1,J2EEName=filetransfer

3. Stop all the running applications.

v Using Jacl:

foreach app $apps {

 set appName [$AdminControl getAttribute $app name]

 $AdminControl invoke $appManager stopApplication $appName}

v Using Jython:

for app in apps:

 appName = AdminControl.getAttribute(app, ’name’)

 AdminControl.invoke(appManager, ’stopApplication’, appName)

This command stops all the running applications by invoking the

stopApplication operation on the MBean, passing in the application name to

stop.

Once you complete the steps for this task, all running applications on the server

are stopped.

 Related concepts

 “AdminControl object for scripted administration” on page 77
 Related tasks

 “Starting applications with scripting” on page 131
 Related reference

 “Commands for the AdminControl object” on page 292

Listing the modules in an installed application with scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the

wsadmin scripting client” on page 123 article for more information.

Use the AdminApp object listModules command to list the modules in an

installed application. For example:

v Using Jacl:

Chapter 6. Using scripting (wsadmin) 137

$AdminApp listModules DefaultApplication -server

v Using Jython:

print AdminApp.listModules(’DefaultApplication’, ’-server’)

where:

 $ is a Jacl operator for substituting a variable

name with its value

print is a Jython command

AdminApp is an object that supports application object

management

listmodules is an AdminApp command

DefaultApplication is the name of the application

-server is an optional option specified

Example output:

DefaultApplication#IncCMP11.jar+META-INF/ejb-jar.xml#WebSphere:cell=mycell,node=

mynode,server=myserver

DefaultApplication#DefaultWebApplication.war+WEB-INF/web.xml#WebSphere:cell=

mycell,node=mynode,server=myserver

Example: Listing the modules in an application server

The following example lists all modules on all enterprise applications installed on

server1 in node1:

Note: * means that the module is installed on server1 node node1 and other node

and/or server.

+ means that the module is installed on server1 node node1 only means that

the module is not installed on server1 node node1.

 1 #---

 2 # setting up variables to keep server name and node name

 3 #--

 4 set serverName server1

 5 set nodeName node1

 6 #---

 7 # setting up 2 global lists to keep the modules

 8 #---

 9 set ejbList {}

 10 set webList {}

11

12 #---

13 # gets all deployment objects and assigned it to deployments variable

14 #---

15 set deployments [$AdminConfig getid /Deployment:/]

16

17 #--

18 # lines 22 thru 148 Iterates through all the deployment objects to get the modules

19 # and perform filtering to list application that has at least one module installed

20 # in server1 in node myNode

21 #--

22 foreach deployment $deployments {

23

24 # ---

25 # reset the lists that hold modules for each application

26 #---

27 set webList {}

28 set ejbList {}

138 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

29

30 #--

31 # get the application name

32 #--

33 set appName [lindex [split $deployment (] 0]

34

35 #--

36 # get the deployedObjects

37 #--

38 set depObject [$AdminConfig showAttribute $deployment deployedObject]

39

40 #--

41 # get all modules in the application

42 #---

43 set modules [lindex [$AdminConfig showAttribute $depObject modules] 0]

44

45 #--

46 # initialize lists to save all the modules in the appropriate list to

 where they belong

47 #--

48 set modServerMatch {}

49 set modServerMoreMatch {}

50 set modServerNotMatch {}

51

52 #---

53 # lines 55 to 112 iterate through all modules to get the targetMappings

54 #---

55 foreach module $modules {

56 #--

57 # setting up some flag to do some filtering and get modules for

 server1 on node1

58 #---

59 set sameNodeSameServer "false"

60 set diffNodeSameServer "false"

61 set sameNodeDiffServer "false"

62 set diffNodeDiffServer "false"

63

64 #--

65 # get the targetMappings

66 #--

67 set targetMaps [lindex [$AdminConfig showAttribute $module targetMappings] 0]

68

69 #--

70 # lines 72 to 111 iterate through all targetMappings to get the target

71 #---

72 foreach targetMap $targetMaps {

73 #------------------------------

74 # get the target

75 #------------------------------

76 set target [$AdminConfig showAttribute $targetMap target]

77

78 #--

79 # do filtering to skip ClusteredTargets

80 #--

81 set targetName [lindex [split $target #] 1]

82 if {[regexp "ClusteredTarget" $targetName] != 1} {

83 set sName [$AdminConfig showAttribute $target name]

84 set nName [$AdminConfig showAttribute $target nodeName]

85

86 #--

87 # do the server name match

88 #--

89 if {$sName == $serverName} {

90 if {$nName == $nodeName} {

91 set sameNodeSameServer "true"

92 } else {

93 set diffNodeSameServer "true"

Chapter 6. Using scripting (wsadmin) 139

94 }

95 } else {

96 #---------------------------------------

97 # do the node name match

98 #---------------------------------------

99 if {$nName == $nodeName} {

100 set sameNodeDiffServer "true"

101 } else {

102 set diffNodeDiffServer "true"

103 }

104 }

105

106 if {$sameNodeSameServer == "true"} {

107 if {$sameNodeDiffServer == "true" || $diffNodeDiffServer

 == "true" || $diffNodeSameServer == "true"} {

108 break

109 }

110 }

111 }

112 }

113

114 #---

115 # put it in the appropriate list

116 #---

117 if {$sameNodeSameServer == "true"} {

118 if {$diffNodeDiffServer == "true" || $diffNodeSameServer == "true"

 || $sameNodeDiffServer == "true"} {

119 set modServerMoreMatch [linsert $modServerMoreMatch end

 [$AdminConfig showAttribute $module uri]]

120 } else {

121 set modServerMatch [linsert $modServerMatch end

 [$AdminConfig showAttribute $module uri]]

122 }

123 } else {

124 set modServerNotMatch [linsert $modServerNotMatch end

 [$AdminConfig showAttribute $module uri]]

125 }

126 }

127

128

129 #--

130 # print the output with some notation as a mark

131 #--

132 if {$modServerMatch != {} || $modServerMoreMatch != {}} {

133 puts stdout "\tApplication name: $appName"

 134 }

 135

 136 #---

 137 # do grouping to appropriate module and print

 138 #---

 139 if {$modServerMatch != {}} {

 140 filterAndPrint $modServerMatch "+"

 141 }

 142 if {$modServerMoreMatch != {}} {

 143 filterAndPrint $modServerMoreMatch "*"

 144 }

 145 if {($modServerMatch != {} || $modServerMoreMatch !=

 {}) "" $modServerNotMatch != {}} {

 146 filterAndPrint $modServerNotMatch ""

 147 }

 148}

 149

 150

 151 proc filterAndPrint {lists flag} {

 152 global webList

 153 global ejbList

 154 set webExists "false"

140 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

155 set ejbExists "false"

 156

 157 #---

 158 # If list already exists, flag it so as not to print

 the title more then once

 159 # and reset the list

 160 #---

 161 if {$webList != {}} {

 162 set webExists "true"

 163 set webList {}

 164 }

 165 if {$ejbList != {}} {

 166 set ejbExists "true"

 167 set ejbList {}

 168 }

 169

 170 #---

 171 # do some filtering for web modules and ejb modules

 172 #---

 173 foreach list $lists {

 174 set temp [lindex [split $list .] 1]

 175 if {$temp == "war"} {

 176 set webList [linsert $webList end $list]

 177 } elseif {$temp == "jar"} {

 178 set ejbList [linsert $ejbList end $list]

 179 }

 180 }

 181

 182 #---------------------------------------

 183 # sort the list before printing

 184 #---------------------------------------

 185 set webList [lsort -dictionary $webList]

 186 set ejbList [lsort -dictionary $ejbList]

 187

 188 #--

 189 # print out all the web modules installed in server1

 190 #---

 191 if {$webList != {}} {

 192 if {$webExists == "false"} {

 193 puts stdout "\t\tWeb Modules:"

 194 }

 195 foreach web $webList {

 196 puts stdout "\t\t\t$web $flag"

 197 }

 198 }

 199

 200 #---

 201 # print out all the ejb modules installed in server1

 202 #---

 203 if {$ejbList != {}} {

 204 if {$ejbExists == "false"} {

 205 puts stdout "\t\tEJB Modules:"

 206 }

 207 foreach ejb $ejbList {

 208 puts stdout "\t\t\t$ejb $flag"

 209 }

 210 }

 211}

Example output for server1 on node node1:

 Application name: TEST1

 EJB Modules:

 deplmtest.jar +

 Web Modules:

 mtcomps.war *

 Application name: TEST2

 Web Modules:

Chapter 6. Using scripting (wsadmin) 141

mtcomps.war +

 EJB Modules:

 deplmtest.jar +

 Application name: TEST3

 Web Modules:

 mtcomps.war *

 EJB Modules:

 deplmtest.jar *

 Application name: TEST4

 EJB Modules:

 deplmtest.jar *

 Web Modules:

 mtcomps.war

Querying the application state using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the

wsadmin scripting client” on page 123 article for more information.

The following example queries the presence of the Application MBean to find out

whether the application is running.

Using Jacl:

$AdminControl completeObjectName type=Application,name=myApplication,*

Using Jython:

print AdminControl.completeObjectName(’type=Application,name=myApplication,*’)

where:

 $ is a Jacl operator for substituting a variable

name with its value

AdminControl is an object that enables the manipulation of

MBeans running in a WebSphere Application

Server process

completeObjectName is an AdminControl command

type=Application,name=myApplication is the hierarchical containment path of the

configuration object

print is a Jython command

If myApplication is running, then an MBean is created. Otherwise, the command

returns nothing. If myApplication is running, the output would resemble the

following:

WebSphere:cell=mycell,name=myApplication,mbeanIdentifier=cells/mycell/applications/

myApplication.ear/deployments/myApplication/deployment.xml#ApplicationDeployment_1,

type=Application,node=mynode,Server=dmgr,process=dmgr,J2EEName=myApplication

Configuring applications for session management using

scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the

wsadmin scripting client” on page 123 article for more information.

142 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

You can use the AdminApp object to set configurations in an application. Some

configuration settings are not available through the AdminApp object. The

following task provides an example that uses the AdminConfig object to configure

a session manager for the application.

1. Identify the deployment configuration object for the application and assign it to

the deployment variable. For example:

v Using Jacl:

set deployments [$AdminConfig getid /Deployment:myApp/]

v Using Jython:

deployments = AdminConfig.getid(’/Deployment:myApp/’)

print deployments

where:

 set is a Jacl command

deployments is a variable name

$ is a Jacl operator for substituting a variable

name with its value

AdminConfig is an object representing the WebSphere

Application Server configuration

getid is an AdminConfig command

Deployment is an attribute

myApp is the value of the attribute

Example output:

myApp(cells/mycell/applications/myApp.ear/deployments/myApp|deployment.xml#Deployment_1)

2. Retrieve the application deployment object and assign it to the appDeploy

variable. For example:

v Using Jacl:

set appDeploy [$AdminConfig showAttribute $deployments deployedObject]

v Using Jython:

appDeploy = AdminConfig.showAttribute(deployments, ’deployedObject’)

print appDeploy

where:

 set is a Jacl command

appDeploy is a variable name

$ is a Jacl operator for substituting a variable

name with its value

AdminConfig is an object that represents the WebSphere

Application Server configuration

showAttribute is an AdminConfig command

deployments evaluates the ID of the deployment object

that is specified in step number 1

deployedObject is an attribute

Example output:

(cells/mycell/applications/myApp.ear/deployments/myApp|deployment.xml#ApplicationDeployment_1)

3. To obtain a list of attributes that you can set for a session manager, use the

attributes command. For example:

Chapter 6. Using scripting (wsadmin) 143

v Using Jacl:

$AdminConfig attributes SessionManager

v Using Jython:

print AdminConfig.attributes(’SessionManager’)

where:

 $ is a Jacl operator for substituting a variable

name with its value

AdminConfig is an object that represents the WebSphere

Application Server configuration

attributes is an AdminConfig command

SessionManager is an attribute

Example output:

"accessSessionOnTimeout Boolean"

"allowSerializedSessionAccess Boolean"

"context ServiceContext@"

"defaultCookieSettings Cookie"

"enable Boolean"

"enableCookies Boolean"

"enableProtocolSwitchRewriting Boolean"

"enableSSLTracking Boolean"

"enableSecurityIntegration Boolean"

"enableUrlRewriting Boolean"

"maxWaitTime Integer"

"properties Property(TypedProperty)*"

"sessionDRSPersistence DRSSettings"

"sessionDatabasePersistence SessionDatabasePersistence"

"sessionPersistenceMode ENUM(DATABASE, DATA_REPLICATION, NONE)"

"tuningParams TuningParams"

4. Set up the attributes for the session manager. The following example sets three

top-level attributes in the session manager. You can modify the example to set

other attributes of the session manager, including the nested attributes in

Cookie, DRSSettings, SessionDataPersistence, and TuningParms object types. To

list the attributes for those object types, use the attributes command of the

AdminConfig object.

v Using Jacl:

set attr1 [list enableSecurityIntegration true]

set attr2 [list maxWaitTime 30]

set attr3 [list sessionPersistenceMode NONE]

set attrs [list $attr1 $attr2 $attr3]

set sessionMgr [list sessionManagement $attrs]

Example output using Jacl:

sessionManagement {{enableSecurityIntegration true} {maxWaitTime 30}

{sessionPersistenceMode NONE}}

v Using Jython:

attr1 = [’enableSecurityIntegration’, ’true’]

attr2 = [’maxWaitTime’, 30]

attr3 = [’sessionPersistenceMode’, ’NONE’]

attrs = [attr1, attr2, attr3]

sessionMgr = [[’sessionManagement’, attrs]]

Example output using Jython:

[[sessionManagement, [[enableSecurityIntegration, true], [maxWaitTime, 30],

[sessionPersistenceMode, NONE]]]

144 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

where:

 set is a Jacl command

attr1, attr2, attr3, attrs, sessionMgr are variable names

$ is a Jacl operator for substituting a variable

name with its value

enableSecurityIntegration is an attribute

true is a value of the enableSecurityIntegration

attribute

maxWaitTime is an attribute

30 is a value of the maxWaitTime attribute

sessionPersistenceMode is an attribute

NONE is a value of the sessionPersistenceMode

attribute

5. Create the session manager for the application. For example:

v Using Jacl:

$AdminConfig create ApplicationConfig $appDeploy [list $sessionMgr]

v Using Jython:

print AdminConfig.create(’ApplicationConfig’, appDeploy, sessionMgr)

where:

 $ is a Jacl operator for substituting a variable

name with its value

AdminConfig is an object that represents the WebSphere

Application Server configuration

create is an AdminConfig command

ApplicationConfig is an attribute

appDeploy evaluates the ID of the deployed application

that is specified in step number 2

list is a Jacl command

sessionMgr evaluates the ID of the session manager that

is specified in step number 4

Example output:

(cells/mycell/applications/myApp.ear/deployments/myApp|deployment.xml#ApplicationConfig_1)

6. Save the configuration changes. See the “Saving configuration changes with the

wsadmin tool” on page 102 article for more information.

7. In a Network Deployment environment only, synchronize the node. See the

“Synchronizing nodes with the wsadmin tool” on page 86 article for more

information.

Configuring applications for session management in Web

modules using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the

wsadmin scripting client” on page 123 article for more information.

Chapter 6. Using scripting (wsadmin) 145

You can use the AdminApp object to set configurations in an application. Some

configuration settings are not available through the AdminApp object. The

following task uses the AdminConfig object to configure a session manager for a

Web module in the application.

1. Identify the deployment configuration object for the application and assign it to

the deployment variable. For example:

v Using Jacl:

set deployments [$AdminConfig getid /Deployment:myApp/]

v Using Jython:

deployments = AdminConfig.getid(’/Deployment:myApp/’)

print deployments

where:

 set is a Jacl command

deployments is a variable name

$ is a Jacl operator for substituting a variable

name with its value

AdminConfig is an object that represents the WebSphere

Application Server configuration

getid is an AdminConfig command

Deployment is an attribute

myApp is the value of the attribute

Example output:

myApp(cells/mycell/applications/myApp.ear/deployments/myApp|deployment.xml#Deployment_1)

2. Get all the modules in the application and assign them to the modules variable.

For example:

v Using Jacl:

set appDeploy [$AdminConfig showAttribute $deployments deployedObject]

set mod1 [$AdminConfig showAttribute $appDeploy modules]

Example output:

(cells/mycell/applications/myApp.ear/deployments/myApp:deployment.xml#WebModuleDeployment_1)

(cells/mycell/applications/myApp.ear/deployments/myApp:deployment.xml#EJBModuleDeployment_1)

(cells/mycell/applications/myApp.ear/deployments/myApp:deployment.xml#WebModuleDeployment_2)

v Using Jython:

appDeploy = AdminConfig.showAttribute(deployments, ’deployedObject’)

mod1 = AdminConfig.showAttribute(appDeploy, ’modules’)

print mod1

Example output:

[(cells/mycell/applications/myApp.ear/deployments/myApp|deployment.xml#WebModuleDeployment_1)

(cells/mycell/applications/myApp.ear/deployments/myApp|deployment.xml#EJBModuleDeployment_1)

(cells/mycell/applications/myApp.ear/deployments/myApp|deployment.xml#EJBModuleDeployment_2)]

where:

 set is a Jacl command

appDeploy is a variable name

mod1 is a variable name

$ is a Jacl operator for substituting a variable

name with its value

AdminConfig is an object that represents the WebSphere

Application Server configuration

146 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

showAttribute is an AdminConfig command

deployments evaluates the ID of the deployment object

that is specified in step number 1

deployedObject is an attribute

3. To obtain a list of attributes that you can set for a session manager, use the

attributes command. For example:

v Using Jacl:

$AdminConfig attributes SessionManager

v Using Jython:

print AdminConfig.attributes(’SessionManager’)

where:

 $ is a Jacl operator for substituting a variable

name with its value

AdminConfig is an object that represents the WebSphere

Application Server configuration

attributes is an AdminConfig command

SessionManager is an attribute

Example output:

"accessSessionOnTimeout Boolean"

"allowSerializedSessionAccess Boolean"

"context ServiceContext@"

"defaultCookieSettings Cookie"

"enable Boolean"

"enableCookies Boolean"

"enableProtocolSwitchRewriting Boolean"

"enableSSLTracking Boolean"

"enableSecurityIntegration Boolean"

"enableUrlRewriting Boolean"

"maxWaitTime Integer"

"properties Property(TypedProperty)*"

"sessionDRSPersistence DRSSettings"

"sessionDatabasePersistence SessionDatabasePersistence"

"sessionPersistenceMode ENUM(DATABASE, DATA_REPLICATION, NONE)"

"tuningParams TuningParams"

4. Set up the attributes for session manager. The following example sets four

top-level attributes in the session manager. You can modify the example to set

other attributes in the session manager, including the nested attributes in

Cookie, DRSSettings, SessionDataPersistence, and TuningParms object types. To

list the attributes for those object types, use the attributes command of

AdminConfig object.

v Using Jacl:

set attr0 [list enable true]

set attr1 [list enableSecurityIntegration true]

set attr2 [list maxWaitTime 30]

set attr3 [list sessionPersistenceMode NONE]

set attr4 [list enableCookies true]

set attr5 [list invalidationTimeout 45]

set tuningParmsDetailList [list $attr5]

set tuningParamsList [list tuningParams $tuningParmsDetailList]

set pwdList [list password 95ee608]

set userList [list userId Administrator]

set dsNameList [list datasourceJNDIName jdbc/session]

set dbPersistenceList [list $dsNameList $userList $pwdList]

set sessionDBPersistenceList [list $dbPersistenceList]

Chapter 6. Using scripting (wsadmin) 147

set sessionDBPersistenceList [list sessionDatabasePersistence $dbPersistenceList]

set kuki [list maximumAge 1000]

set cookie [list $kuki]

set cookieSettings [list defaultCookieSettings $cookie]

set sessionManagerDetailList [list $attr0 $attr1 $attr2 $attr3 $attr4

$cookieSettings $tuningParamsList $sessionDBPersistenceList]

set sessionMgr [list sessionManagement $sessionManagerDetailList]

set id [$AdminConfig create ApplicationConfig $appDeploy [list $sessionMgr] configs]

set targetMappings [lindex [$AdminConfig showAttribute $appDeploy targetMappings] 0]

set attrs [list config $id]

$AdminConfig modify $targetMappings [list $attrs]

Example output using Jacl:

sessionManagement {{enableSecurityIntegration true} {maxWaitTime 30}

{sessionPersistenceMode NONE} {enabled true}}

v Using Jython:

attr0 = [’enable’, ’true’]

attr1 = [’enableSecurityIntegration’, ’true’]

attr2 = [’maxWaitTime’, 30]

attr3 = [’sessionPersistenceMode’, ’NONE’]

attr4 = [’enableCookies’, ’true’]

attr5 = [’invalidationTimeout’, 45]

tuningParmsDetailList = [attr5]

tuningParamsList = [’tuningParams’, tuningParmsDetailList]

pwdList = [’password’, ’95ee608’]

userList = [’userId’, ’Administrator’]

dsNameList = [’datasourceJNDIName’, ’jdbc/session’]

dbPersistenceList = [dsNameList, userList, pwdList]

sessionDBPersistenceList = [dbPersistenceList]

sessionDBPersistenceList = [’sessionDatabasePersistence’, dbPersistenceList]

kuki = [’maximumAge’, 1000]

cookie = [kuki]

cookieSettings = [’defaultCookieSettings’, cookie]

sessionManagerDetailList = [attr0, attr1, attr2, attr3, attr4, cookieSettings,

tuningParamsList, sessionDBPersistenceList]

sessionMgr = [’sessionManagement’, sessionManagerDetailList]

id = AdminConfig.create(’ApplicationConfig’, appDeploy,[sessionMgr], ’configs’)

targetMappings = AdminConfig.showAttribute(appDeploy, ’targetMappings’)

targetMappings = targetMappings[1:len(targetMappings)-1]

print targetMappings

attrs = [’config’, id]

AdminConfig.modify(targetMappings,[attrs])

Example output using Jython:

[sessionManagement, [[enableSecurityIntegration, true], [maxWaitTime, 30],

[sessionPersistenceMode, NONE]]

5. Set up the attributes for the Web module. For example:

v Using Jacl:

set nameAttr [list name myWebModuleConfig]

set descAttr [list description "Web Module config post create"]

set webAttrs [list $nameAttr $descAttr $sessionMgr]

Example output:

{name myWebModuleConfig} {description {Web Module config post create}}

{sessionManagement {{enableSecurityIntegration true} {maxWaitTime 30}

{sessionPersistenceMode NONE} {enabled true}}}

v Using Jython:

nameAttr = [’name’, ’myWebModuleConfig’]

descAttr = [’description’, "Web Module config post create"]

webAttrs = [nameAttr, descAttr, sessionMgr]

Example output:

148 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

[[name, myWebModuleConfig], [description, "Web Module config post create"],

[sessionManagement, [[enableSecurityIntegration, true], [maxWaitTime, 30],

[sessionPersistenceMode, NONE], [enabled, true]]]]

where:

 set is a Jacl command

nameAttr, descAttr, webAttrs are variable names

$ is a Jacl operator for substituting a variable

name with its value

name is an attribute

myWebModuleConfig is a value of the name attribute

description is an attribute

Web Module config post create is a value of the description attribute

6. Create the session manager for each Web module in the application. You can

modify the following example to set other attributes of the session manager in

a Web module configuration.

v Using Jacl:

foreach module $mod1 {

 if {[regexp WebModuleDeployment $module] == 1} {

 $AdminConfig create WebModuleConfig $module $webAttrs

 $AdminConfig save

 }

 }

v Using Jython:

arrayModules = mod1[1:len(mod1)-1].split(" ")

for module in arrayModules:

 if module.find(’WebModuleDeployment’) != -1:

 AdminConfig.create(’WebModuleConfig’, module, webAttrs)

 Adminconfig.save()

Example output:

myWebModuleConfig(cells/mycell/applications/myApp.ear/deployments/myApp|

deployment.xml#WebModuleConfiguration_1)

7. Save the configuration changes. See the “Saving configuration changes with the

wsadmin tool” on page 102 article for more information.

8. In a Network Deployment environment only, synchronize the node. See the

“Synchronizing nodes with the wsadmin tool” on page 86 article for more

information.

Exporting applications using scripting

You can export your applications before you update installed applications or before

you migrate to a different version of the WebSphere Application Server product.

Before starting this task, the wsadmin tool must be running. See the “Starting the

wsadmin scripting client” on page 123 article for more information.

Exporting applications enables you to back them up and preserve their binding

information.

v Export an enterprise application to a location of your choice, for example:

– Using Jacl:

$AdminApp export app1 /mystuff/exported.ear

– Using Jython:

Chapter 6. Using scripting (wsadmin) 149

AdminApp.export(’app1’, ’/mystuff/exported.ear’)

where:

 $ is a Jacl operator for substituting a variable

name with its value

AdminApp is an object allowing application objects

management

export is an AdminApp command

app1 is the name of the application that will be

exported

/mystuff/exported.ear is the name of the file where the exported

application will be stored

v Export Data Definition Language (DDL) files in the enterprise bean module of

an application to a destination directory, for example:

– Using Jacl:

$AdminApp exportDDL app1 /mystuff

– Using Jython:

AdminApp.exportDDL(’app1’, ’/mystuff’)

where:

 $ is a Jacl operator for substituting a variable

name with its value

AdminApp is an object allowing application objects

management

exportDDL is an AdminApp command

app1 is the name of the application whose DDL

files will be exported

/mystuff is the name of the directory where the DDL

files export from the application

Configuring a shared library using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the

wsadmin scripting client” on page 123 article for more information.

Perform the following steps to configure an application server to use a shared

library.

1. Identify the server and assign it to the server variable. For example:

v Using Jacl:

set serv [$AdminConfig getid /Cell:mycell/Node:mynode/Server:server1/]

v Using Jython:

serv = AdminConfig.getid(’/Cell:mycell/Node:mynode/Server:server1/’)

print serv

where:

 set is a Jacl command

serv is a variable name

$ is a Jacl operator for substituting a variable

name with its value

150 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

AdminConfig is an object that represents the WebSphere

Application Server configuration

getid is an AdminConfig command

Cell is an attribute

mycell is the value of the attribute

Node is an attribute

mynode is the value of the attribute

Server is an attribute

server1 is the value of the attribute

Example output:

server1(cells/mycell/nodes/mynode/servers/server1|server.xml#Server_1)

2. Create the shared library in the server. For example:

v Using Jacl:

$AdminConfig create Library $serv {{name mySharedLibrary}

{classPath /mySharedLibraryClasspath}}

v Using Jython:

print AdminConfig.create(’Library’, serv, [[’name’, ’mySharedLibrary’],

[’classPath’, ’/mySharedLibraryClasspath’]])

where:

 $ is a Jacl operator for substituting a variable

name with its value

AdminConfig is an object that represents the WebSphere

Application Server configuration

create is an AdminConfig command

Library is an attribute

serv evaluates the ID of the server that is

specified in step number 1

name is an attribute

mySharedLibrary is a value of the name attribute

classPath is an attribute

/mySharedLibraryClasspath is the value of the classpath attribute

print is a Jython command

Example output:

MysharedLibrary(cells/mycell/nodes/mynode/servers/server1|libraries.xml#Library_1)

3. Identify the application server from the server and assign it to the appServer

variable. For example:

v Using Jacl:

set appServer [$AdminConfig list ApplicationServer $serv]

v Using Jython:

appServer = AdminConfig.list(’ApplicationServer’, serv)

print appServer

where:

 set is a Jacl command

appServer is a variable name

Chapter 6. Using scripting (wsadmin) 151

$ is a Jacl operator for substituting a variable

name with its value

AdminConfig is an object that represents the WebSphere

Application Server configuration

list is an AdminConfig command

ApplicationServer is an attribute

serv evaluates the ID of the server that is

specified in step number 1

print is a Jython command

Example output:

server1(cells/mycell/nodes/mynode/servers/server1|server.xml#ApplicationServer_1

4. Identify the class loader in the application server and assign it to the

classLoader variable. For example:

v To use the existing class loader that is associated with the server, the

following commands use the first class loader:

– Using Jacl:

set classLoad [$AdminConfig showAttribute $appServer classloaders]

set classLoader1 [lindex $classLoad 0]

– Using Jython:

classLoad = AdminConfig.showAttribute(appServer, ’classloaders’)

cleanClassLoaders = classLoad[1:len(classLoad)-1]

classLoader1 = cleanClassLoaders.split(’ ’)[0]

where:

 set is a Jacl command

classLoad, classLoader1 is a variable name

$ is a Jacl operator for substituting a variable

name with its value

AdminConfig is an object that represents the WebSphere

Application Server configuration

showAttribute is an AdminConfig command

appServer evaluates the ID of the application server

that is specified in step number 3

classloaders is an attribute

print is a Jython command

v To create a new class loader, issue the following command:

– Using Jacl:

set classLoader1 [$AdminConfig create Classloader $appServer {{mode PARENT_FIRST}}]

– Using Jython:

classLoader1 = AdminConfig.create(’Classloader’, appServer, [[’mode’, ’PARENT_FIRST’]])

where:

 set is a Jacl command

classLoader1 is a variable name

$ is a Jacl operator for substituting a variable

name with its value

152 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

AdminConfig is an object that represents the WebSphere

Application Server configuration

create is an AdminConfig command

Classloader is an attribute

appServer evaluates the ID of the application server

that is specified in step number 3

mode is an attribute

PARENT_FIRST is the value of the attribute

print is a Jython command

Example output:

(cells/mycell/nodes/mynode/servers/server1|server.xml#Classloader_1)

5. Associate the shared library that you created with the application server

through the class loader. For example:

v Using Jacl:

$AdminConfig create LibraryRef $classLoader1 {{libraryName

MyshareLibrary} {sharedClassloader true}}

v Using Jython:

print AdminConfig.create(’LibraryRef’, classLoader1, [[’libraryName’,

’MyshareLibrary’], [’sharedClassloader’, ’true’]])

where:

 $ is a Jacl operator for substituting a variable

name with its value

AdminConfig is an object that represents the WebSphere

Application Server configuration

create is an AdminConfig command

LibraryRef is an attribute

classLoader1 evaluates the ID of the class loader that is

specified in step number 4

libraryName is an attribute

MyshareLibrary is the value of the attribute

sharedClassloader is an attribute

true is the value of the attribute

print is a Jython command

Example output:

(cells/mycell/nodes/mynode/servers/server1|server.xml#LibraryRef_1)

6. Save the configuration changes. See the “Saving configuration changes with the

wsadmin tool” on page 102 article for more information.

7. In a Network Deployment environment only, synchronize the node. See the

“Synchronizing nodes with the wsadmin tool” on page 86 article for more

information.

Configuring a shared library for an application using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the

wsadmin scripting client” on page 123 article for more information.

Chapter 6. Using scripting (wsadmin) 153

You can use the AdminApp object to set certain configurations in the application.

This example uses the AdminConfig object to configure a shared library for an

application.

1. Identify the shared library and assign it to the library variable. You can either

use an existing shared library or create a new one, for example:

v To create a new shared library, perform the following steps:

a. Idenitfy the node and assign it to a variable, for example:

– Using Jacl:

set n1 [$AdminConfig getid /Cell:mycell/Node:mynode/]

– Using Jython:

n1 = AdminConfig.getid(’/Cell:mycell/Node:mynode/’)

print n1

where:

 set is a Jacl command

n1 is a variable name

$ is a Jacl operator for substituting a variable

name with its value

AdminConfig is an object representing the WebSphere

Application Server configuration

getid is an AdminConfig command

Cell is the object type

mycell is the name of the object that will be

modified

Node is the object type

mynode is the name of the object that will be

modified

Example output:

mynode(cells/mycell/nodes/mynode|node.xml#Node_1)

b. Create the shared library in the node. The following example creates a

new shared library in the node scope. You can modify it to use the cell or

server scope.

– Using Jacl:

set library [$AdminConfig create Library $n1 {{name mySharedLibrary}

{classPath /mySharedLibraryClasspath}}]

– Using Jython:

library = AdminConfig.create(’Library’, n1, [[’name’, ’mySharedLibrary’],

[’classPath’, ’/mySharedLibraryClasspath’]])

print library

where:

 set is a Jacl command

library is a variable name

$ is a Jacl operator for substituting a variable

name with its value

AdminConfig is an object representing the WebSphere

Application Server configuration

create is an AdminConfig command

Library is an AdminConfig object

154 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

n1 evaluates to the ID of host node specified in

step number 1

name is an attribute

mySharedLibrary is the value of the name attribute

classPath is an attribute

/mySharedLibraryClasspath is the value of the classPath attribute

Example output:

MySharedLibrary(cells/mycell/nodes/mynode|libraries.xml#Library_1)

v To use an existing shared library, issue the following command:

– Using Jacl:

set library [$AdminConfig getid /Library:mySharedLibrary/]

– Using Jython:

library = AdminConfig.getid(’/Library:mySharedLibrary/’)

print library

where:

 set is a Jacl command

library is a variable name

$ is a Jacl operator for substituting a variable

name with its value

AdminConfig is an object representing the WebSphere

Application Server configuration

getid is an AdminConfig command

Library is an attribute

mySharedLibrary is the value of the Library attribute

Example output:

MySharedLibrary(cells/mycell/nodes/mynode|libraries.xml#Library_1)

2. Identify the deployment configuration object for the application and assign it to

the deployment variable. For example:

v Using Jacl:

set deployment [$AdminConfig getid /Deployment:myApp/]

v Using Jython:

deployment = AdminConfig.getid(’/Deployment:myApp/’)

print deployment

where:

 set is a Jacl command

deployment is a variable name

$ is a Jacl operator for substituting a variable

name with its value

AdminConfig is an object representing the WebSphere

Application Server configuration

getid is an AdminConfig command

Deployment is an attribute

myApp is the value of the Deployment attribute

print is a Jython command

Example output:

Chapter 6. Using scripting (wsadmin) 155

myApp(cells/mycell/applications/myApp.ear/deployments/myApp|deployment.xml#Deployment_1)

3. Retrieve the application deployment and assign it to the appDeploy variable.

For example:

v Using Jacl:

set appDeploy [$AdminConfig showAttribute $deployment deployedObject]

v Using Jython:

appDeploy = AdminConfig.showAttribute(deployment, ’deployedObject’)

print appDeploy

where:

 set is a Jacl command

appDeploy is a variable name

$ is a Jacl operator for substituting a variable

name with its value

AdminConfig is an object representing the WebSphere

Application Server configuration

showAttribute is an AdminConfig command

deployment evaluates the ID of the deployment

configuration object specified in step number

2

deployedObject is an attribute of modify objects

print is a Jython command

Example output:

(cells/mycell/applications/myApp.ear/deployments/

myApp|deployment.xml#ApplicationDeployment_1)

4. Identify the class loader in the application deployment and assign it to the

classLoader variable. For example:

v Using Jacl:

set classLoad1 [$AdminConfig showAttribute $appDeploy classloader]

v Using Jython:

classLoad1 = AdminConfig.showAttribute(appDeploy, ’classloader’)

print classLoad1

where:

 set is a Jacl command

classLoad1 is a variable name

$ is a Jacl operator for substituting a variable

name with its value

AdminConfig is an object representing the WebSphere

Application Server configuration

showAttribute is an AdminConfig command

appDeploy evaluates the ID of the application

deployment specified in step number 3

classLoader is an attribute of modify objects

print is a Jython command

Example output:

(cells/mycell/applications/myApp.ear/deployments/myApp|deployment.xml#Classloader_1)

156 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

5. Associate the shared library in the application through the class loader. For

example:

v Using Jacl:

$AdminConfig create LibraryRef $classLoad1 {{libraryName

MyshareLibrary} {sharedClassloader true}}

v Using Jython:

print AdminConfig.create(’LibraryRef’, classLoad1, [[’libraryName’,

’MyshareLibrary’], [’sharedClassloader’, ’true’]])

where:

 $ is a Jacl operator for substituting a variable

name with its value

AdminConfig is an object representing the WebSphere

Application Server configuration

create is an AdminConfig command

LibraryRef is an AdminConfig object

classLoad1 evaluates to the ID of class loader specified

in step number 4

libraryName is an attribute

MyshareLibrary is the value of the libraryName attribute

sharedClassloader is an attribute

true is the value of the sharedClassloader

attribute

Example output:

(cells/mycell/applications/myApp.ear/deployments/myApp|deployment.xml#LibraryRef_1)

6. Save the configuration changes. See the “Saving configuration changes with the

wsadmin tool” on page 102 article for more information.

7. In a network deployment environment only, synchronize the node. See the

“Synchronizing nodes with the wsadmin tool” on page 86 article for more

information.

Setting background applications using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the

wsadmin scripting client” on page 123 article for more information.

Perform the following steps to enable or disable a background application.

Background applications specify whether the application must initialize fully

before the server starts. The default setting is false and this indicates that server

startup will not complete until the application starts. If you set the value to true,

the application starts on a background thread and server startup continues without

waiting for the application to start. The application may not ready for use when

the application server starts.

1. Locate the application deployment object for the application. For example:

v Using Jacl:

set applicationDeployment [$AdminConfig getid /Deployment:

adminconsole/ApplicationDeployment:/]

v Using Jython:

applicationDeployment = AdminConfig.getid(’/Deployment:

adminconsole/ApplicationDeployment:/’)

Chapter 6. Using scripting (wsadmin) 157

where:

 set is a Jacl command

applicationDeployment is a variable name

$ is a Jacl operator for substituting a variable

name with its value

AdminConfig is an object that represents the WebSphere

Application Server configuration

getid is an AdminConfig command

Deployment is a type

ApplicationDeployment is a type

adminconsole is the name of the application

2. Enable the background application. For example:

v Using Jacl:

$AdminConfig modify $applicationDeployment "{backgroundApplication true}"

v Using Jython:

AdminConfig.modify(applicationDeployment, [’backgroundApplication’, ’true’])

where:

 $ is a Jacl operator for substituting a variable

name with its value

AdminConfig is an object that represents the WebSphere

Application Server configuration

modify is an AdminConfig command

applicationDeployment is a variable name that was set in step 1

backgroundApplication is an attribute

true is the value of the backgroundApplication

attribute

3. Save the configuration changes. See the “Saving configuration changes with the

wsadmin tool” on page 102 article for more information.

4. In a Network Deployment environment only, synchronize the node. See the

“Synchronizing nodes with the wsadmin tool” on page 86 article for more

information.

Configuring servers with scripting

This topic contains the following tasks:

v “Creating a server using scripting” on page 159

v “Configuring the Java virtual machine using scripting” on page 159

v “Configuring enterprise bean containers using scripting” on page 160

v “Configuring a Performance Manager Infrastructure service using scripting” on

page 164

v “Configuring an ORB service using scripting” on page 166

v “Configuring processes using scripting” on page 168

v “Configuring transaction properties for a server using scripting” on page 169

v “Setting port numbers kept in the serverindex.xml file using scripting” on page

171

158 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

v “Disabling components using scripting” on page 175

v “Disabling services using scripting” on page 177

v “Dynamic caching with scripting” on page 178

Creating a server using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the

wsadmin scripting client” on page 123 article for more information.

Creating an application server involves a configuration command. Perform the

following steps to create a server:

1. Obtain the configuration ID of the object and assign it to the node variable, for

example:

Using Jacl:

set node [$AdminConfig getid /Node:mynode/]

Using Jython:

node = AdminConfig.getid(’/Node:mynode/’)

2. Create the server using the node that you specified in the first step:

Using Jacl:

$AdminConfig create Server $node {{name myserv}

{outputStreamRedirect {{fileName myfile.out}}}}

Using Jython:

AdminConfig.create(’Server’, node, [[’name’, ’myserv’],

[’outputStreamRedirect’, [[’fileName’, ’myfile.out’]]]])

3. Save the configuration changes. See the “Saving configuration changes with the

wsadmin tool” on page 102 article for more information.

4. In a network deployment environment only, synchronize the node. See the

“Synchronizing nodes with the wsadmin tool” on page 86 article for more

information.

Configuring the Java virtual machine using scripting

An example modifying the Java virtual machine (JVM) of a server to turn on

debug follows:

v Identify the server and assign it to the server1 variable.

Using Jacl:

set server1 [$AdminConfig getid /Cell:mycell/Node:mynode/Server:server1/]

Using Jython:

server1 = AdminConfig.getid(’/Cell:mycell/Node:mynode/Server:server1/’)

print server1

Example output:

server1(cells/mycell/nodes/mynode/servers/server1|server.xml#Server_1)

v Identify the JVM belonging to this server and assign it to the jvm variable.

Using Jacl:

set jvm [$AdminConfig list JavaVirtualMachine $server1]

Using Jython:

jvm = AdminConfig.list(’JavaVirtualMachine’, server1)

print jvm

Example output:

Chapter 6. Using scripting (wsadmin) 159

(cells/mycell/nodes/mynode/servers/server1:server.xml#JavaVirtualMachine_1)

(cells/mycell/nodes/mynode/servers/server1:server.xml#JavaVirtualMachine_2)

v Identify the controller JVM of the server and its servant region JVM.

Using Jacl:

set cjvm [lindex $jvm 0]

set sjvm [lindex $jvm 1]

Using Jython:

get line separator

import java

lineSeparator = java.lang.System.getProperty(’line.separator’)

arrayJVMs = jvm.split(lineSeparator)

cjvm = arrayJVMs[0]

sjvm = arrayJVMs[1]

v Modify the JVM to turn on debug.

Using Jacl:

$AdminConfig modify $cjvm {{debugMode true} {debugArgs "-Djava.compiler=NONE -Xdebug

-Xnoagent -Xrunjdwp:transport=dt_socket,server=y,suspend=n,address=7777"}}

$AdminConfig modify $sjvm {{debugMode true} {debugArgs "-Djava.compiler=NONE -Xdebug

-Xnoagent -Xrunjdwp:transport=dt_socket,server=y,suspend=n,address=7777"}}

Using Jython:

AdminConfig.modify(cjvm, [[’debugMode’, ’true’], [’debugArgs’, "-Djava.compiler=NONE

-Xdebug -Xnoagent -Xrunjdwp:transport=dt_socket,server=y,suspend=n,address=7777"]])

AdminConfig.modify(sjvm, [[’debugMode’, ’true’], [’debugArgs’, "-Djava.compiler=NONE

-Xdebug -Xnoagent -Xrunjdwp:transport=dt_socket,server=y,suspend=n,address=7777"]])

v Save the changes with the following command:

Using Jacl:

$AdminConfig save

Using Jython:

AdminConfig.save()

Configuring enterprise bean containers using scripting

Before starting this task, the wsadmin tool must be running. See “Starting the

wsadmin scripting client” on page 123 for more information.

Perform the following steps to configure an enterprise bean container:

1. Identify the application server and assign it to the serv1 variable. For example:

v Using Jacl:

set serv1 [$AdminConfig getid /Cell:mycell/Node:mynode/Server:server1/]

v Using Jython:

serv1 = AdminConfig.getid(’/Cell:mycell/Node:mynode/Server:server1/’)

print serv1

where:

 set is a Jacl command

serv1 is a variable name

$ is a Jacl operator for substituting a variable

name with its value

AdminConfig is an object representing the WebSphere

Application Server configuration

getid is an AdminConfig command

160 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

/Cell:mycell/Node:mynode/Server:server1/ is the hierarchical containment path of the

configuration object

Cell is the object type

mycell is the optional name of the object

Node is the object type

mynode is the optional name of the object

Server is the object type

server1 is the optional name of the object

Example output:

server1(cells/mycell/nodes/mynode/servers/server1|server.xml#Server_1)

2. Identify the EJB container belonging to the server and assign it to the ejbc1

variable. For example:

v Using Jacl:

set ejbc1 [$AdminConfig list EJBContainer $serv1]

v Using Jython:

ejbc1 = AdminConfig.list(’EJBContainer’, serv1)

print ejbc1

where:

 set is a Jacl command

ejbc1 is a variable name

$ is a Jacl operator for substituting a variable

name with its value

AdminConfig is an object representing the WebSphere

Application Server configuration

list is an AdminConfig command

EJBContainer is the object type

Note: The name of the object type that you

input here is the one based on the XML

configuration files and does not have to be

the same name that the administrative

console displays.

serv1 evaluates to the ID of the server specified in

step number 1

Example output:

(cells/mycell/nodes/mynode/servers/server1|server.xml#EJBContainer_1)

3. View all the attributes of the enterprise bean container.

v The following example command does not show nested attributes:

– Using Jacl:

$AdminConfig show $ejbc1

Example output:

{cacheSettings (cells/mycell/nodes/mynode/servers/

server1|server.xml#EJBCache_1)}

{components {}}

{inactivePoolCleanupInterval 30000}

{parentComponent (cells/mycell/nodes/mynode/servers/

server1|server.xml#ApplicationServer_1)

{passivationDirectory ${USER_INSTALL_ROOT}/temp}

Chapter 6. Using scripting (wsadmin) 161

{properties {}}

{services {(cells/mycell/nodes/mynode/servers/

server1|server.xml#MessageListenerService_1)}

{stateManagement (cells/mycell/nodes/mynode/servers/

server1|server.xml#StateManageable_10)}

– Using Jython:

print AdminConfig.show(ejbc1)

Example output:

[cacheSettings (cells/mycell/nodes/myode/servers/

server1|server.xml#EJBCache_1)]

[components []]

[inactivePoolCleanupInterval 30000]

[parentComponent (cells/mycell/nodes/myode/servers/

server1|server.xml#ApplicationServer_1)

[passivationDirectory ${USER_INSTALL_ROOT}/temp]

[properties []]

[services [(cells/mycell/nodes/myode/servers/

server1|server.xml#MessageListenerService_1)]

[stateManagement (cells/mycell/nodes/mynode/servers/

server1|server.xml#StateManageable_10)]

where:

 $ is a Jacl operator for substituting a variable

name with its value

print is a Jython command

AdminConfig is an object representing the WebSphere

Application Server configuration

showall is an AdminConfig command

ejbc1 evaluates to the ID of the enterprise bean

container specified in step number 2

v The following command example includes nested attributes:

– Using Jacl:

$AdminConfig showall $ejbc1

Example output:

{cacheSettings {{cacheSize 2053}

 {cleanupInterval 3000}}}

{components {}}

{inactivePoolCleanupInterval 30000}

{parentComponent (cells/mycell/nodes/mynode/servers/

server1|server.xml#ApplicationServer_1)}

{passivationDirectory ${USER_INSTALL_ROOT}/temp}

{properties {}}

{services {{{context (cells/mycell/nodes/mynode/servers/

server1|server.xml#EJBContainer_1)}

 {listenerPorts {}}

 {properties {}}

 {threadPool {{inactivityTimeout 3500}

 {isGrowable false}

 {maximumSize 50}

 {minimumSize 10}}}}}}

{stateManagement {{initialState START}

 {managedObject (cells/mycell/nodes/mynode/servers/

server1|server.xml#EJBContainer_1)}}}

– Using Jython:

print AdminConfig.showall(ejbc1)

Example output:

162 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

[cacheSettings [[cacheSize 2053]

 [cleanupInterval 3000]]]

[components []]

[inactivePoolCleanupInterval 30000]

[parentComponent (cells/mycell/nodes/mynode/servers/

server1|server.xml#ApplicationServer_1)]

[passivationDirectory ${USER_INSTALL_ROOT}/temp]

[properties []]

[services [[[context (cells/mycell/nodes/mynode/servers/

server1|server.xml#EJBContainer_1)]

 [listenerPorts []]

 [properties []]

 [threadPool [[inactivityTimeout 3500]

 [isGrowable false]

 [maximumSize 50]

 [minimumSize 10]]]]]]

[stateManagement {{initialState START]

 [managedObject (cells/mycell/nodes/mynode/servers/

server1|server.xml#EJBContainer_1)]]]

where:

 $ is a Jacl operator for substituting a variable

name with its value

print is a Jython command

AdminConfig is an object representing the WebSphere

Application Server configuration

showall is an AdminConfig command

ejbc1 evaluates to the ID of the enterprise bean

container specified in step number 2

4. Modify the attributes.

v The following example modifies the enterprise bean cache settings and it

includes nested attributes:

– Using Jacl:

$AdminConfig modify $ejbc1 {{cacheSettings

{{cacheSize 2500} {cleanupInterval 3500}}}}

– Using Jython:

AdminConfig.modify(ejbc1, [[’cacheSettings’,

[[’cacheSize’, 2500], [’cleanupInterval’, 3500]]]])

where:

 $ is a Jacl operator for substituting a variable

name with its value

AdminConfig is an object representing the WebSphere

Application Server configuration

modify is an AdminConfig command

ejbc1 evaluates to the ID of the enterprise bean

container specified in step number 2

cacheSettings is an attribute of modify objects

cacheSize is an attribute of modify objects

2500 is the value of the cacheSize attribute

cleanupInterval is an attribute of modify objects

3500 is the value of the cleanupInterval attribute

Chapter 6. Using scripting (wsadmin) 163

v The following example modifies the cleanup interval attribute:

– Using Jacl:

$AdminConfig modify $ejbc1 {{inactivePoolCleanupInterval 15000}}

– Using Jython:

AdminConfig.modify(ejbc1, [[’inactivePoolCleanupInterval’, 15000]])

where:

 $ is a Jacl operator for substituting a variable

name with its value

AdminConfig is an object representing the WebSphere

Application Server configuration

modify is an AdminConfig command

ejbc1 evaluates to the ID of the enterprise bean

container specified in step number 2

inactivePoolCleanupInterval is an attribute of modify objects

15000 is the value of the

inactivePoolCleanupInterval attribute

5. Save the changes. For example:

v Using Jacl:

$AdminConfig save

v Using Jython:

AdminConfig.save()

where:

 $ is a Jacl operator for substituting a variable

name with its value

AdminConfig is an object representing the WebSphere

Application Server configuration

save is an AdminConfig command

Configuring a Performance Manager Infrastructure service

using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the

wsadmin scripting client” on page 123 article for more information.

Use the following steps to configure the Performance Manager Infrastructure (PMI)

service for an application server:

1. Identify the application server and assign it to the s1 variable, for example:

v Using Jacl:

set s1 [$AdminConfig getid /Cell:mycell/Node:mynode/Server:server1/]

v Using Jython:

s1 = AdminConfig.getid(’Cell:mycell/Node:mynode/Server:server1/’)

where:

 set is a Jacl command

s1 is a variable name

164 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

$ is a Jacl operator for substituting a variable

name with its value

AdminConfig is an object representing the WebSphere

Application Server configuration

getid is an AdminConfig command

Cell is an attribute

mycell is the value of the Cell attribute

Node is an attribute

mynode is the value of the Node attribute

Server is an attribute

server1 is the value of the Server attribute

Example output:

server1(cells/mycell/nodes/mynode/servers/server1|server.xml#Server_1)

2. Identify the PMI service that belongs to the server and assign it to the pmi

variable, for example:

v Using Jacl:

set pmi [$AdminConfig list PMIService $s1]

v Using Jython:

pmi = AdminConfig.list(’PMIService’, s1)

print pmi

where:

 set is a Jacl command

pmi is a variable name

$ is a Jacl operator for substituting a variable

name with its value

AdminConfig is an object representing the WebSphere

Application Server configuration

list is an AdminConfig command

PMIService is an AdminConfig object

s1 evaluates to the ID of the application server

specified in step number 1

Example output:

(cells/mycell/nodes/mynode/servers/server1|server.xml#PMIService_1)

3. Modify the attributes, for example:

v Using Jacl:

$AdminConfig modify $pmi {{enable true}

{initialSpecLevel beanModule=H:cacheModule=H:connectionPoolModule=

H:j2cModule=H:jvmRuntimeModule=H:orbPerfModule=H:servletSessionsModule

=H:systemModule=H:threadPoolModule=H:transactionModule=H:

webAppModule=H:webServicesModule=H:wlmModule=H:wsgwModule=H}}

v Using Jython:

AdminConfig.modify(pmi, [[’enable’, ’true’],

[’initialSpecLevel’, ’beanModule=H:cacheModule=H:connectionPoolModule=

H:j2cModule=H:jvmRuntimeModule=H:orbPerfModule=H:servletSessionsModule=

H:systemModule=H:threadPoolModule=H:transactionModule=H:webAppModule=H:

webServicesModule=H:wlmModule=H:wsgwModule=H’]])

Chapter 6. Using scripting (wsadmin) 165

This example enables PMI service and sets the specification levels for all of

components in the server. The following are the valid specification levels for

the components:

 N represents none

L represents low

M represents medium

H represents high

X represents maximum

4. Save the configuration changes. See the “Saving configuration changes with the

wsadmin tool” on page 102 article for more information.

5. In a network deployment environment only, synchronize the node. See the

“Synchronizing nodes with the wsadmin tool” on page 86 article for more

information.

Configuring an ORB service using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the

wsadmin scripting client” on page 123 article for more information.

Perform the following steps to modify the Object Request Broker (ORB) service for

an application server:

1. Identify the application server and assign it to the server variable:

v Using Jacl:

set s1 [$AdminConfig getid /Cell:mycell/Node:mynode/Server:server1/]

v Using Jython:

s1 = AdminConfig.getid(’/Cell:mycell/Node:mynode/Server:server1/’)

print s1

where:

 set is a Jacl command

s1 is a variable name

$ is a Jacl operator for substituting a variable

name with its value

AdminConfig is an object representing the WebSphere

Application Server configuration

getid is an AdminConfig command

Cell is the object type

mycell is the name of the object that will be

modified

Node is the object type

mynode is the name of the object that will be

modified

Server is the object type

server1 is the name of the object that will be

modified

print a Jython command

Example output:

166 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

server1(cells/mycell/nodes/mynode/servers/server1|server.xml#Server_1)

2. Identify the ORB belonging to the server and assign it to the orb variable:

v Using Jacl:

set orb [$AdminConfig list ObjectRequestBroker $s1]

v Using Jython:

orb = AdminConfig.list(’ObjectRequestBroker’, s1)

print orb

where:

 set is a Jacl command

orb is a variable name

$ is a Jacl operator for substituting a variable

name with its value

AdminConfig is an object representing the WebSphere

Application Server configuration

list is an AdminConfig command

ObjectRequestBroker is an AdminConfig object

s1 evaluates to the ID of server specified in

step number 1

print a Jython command

Example output:

(cells/mycell/nodes/mynode/servers/server1|server.xml#ObjectRequestBroker_1)

3. Modify the attributes. The following example modifies the connection cache

maximum and pass by value attributes. You can modify the example to change

the value of other attributes.

v Using Jacl:

$AdminConfig modify $orb {{connectionCacheMaximum 252} {noLocalCopies true}}

v Using Jython:

AdminConfig.modify(orb, [[’connectionCacheMaximum’, 252], [’noLocalCopies’, ’true’]])

where:

 $ is a Jacl operator for substituting a variable

name with its value

AdminConfig is an object representing the WebSphere

Application Server configuration

modify is an AdminConfig command

orb evaluates to the ID of ORB specified in step

number 2

connectionCacheMaximum is an attribute

252 is the value of the

connectionCacheMaximum attribute

noLocalCopies is an attribute

true is the value of the noLocalCopies attribute

4. Save the configuration changes. See the “Saving configuration changes with the

wsadmin tool” on page 102 article for more information.

Chapter 6. Using scripting (wsadmin) 167

5. In a network deployment environment only, synchronize the node. See the

“Synchronizing nodes with the wsadmin tool” on page 86 article for more

information.

Configuring processes using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the

wsadmin scripting client” on page 123 article for more information.

Perform the following steps to configure a process:

1. Identify the server and assign it to the s1 variable. For example:

v Using Jacl:

set s1 [$AdminConfig getid /Cell:mycell/Node:mynode/Server:server1/]

v Using Jython:

s1 = AdminConfig.getid(’/Cell:mycell/Node:mynode/Server:server1/’)

print s1

where:

 set is a Jacl command

s1 is a variable name

$ is a Jacl operator for substituting a variable

name with its value

AdminConfig is an object representing the WebSphere

Application Server configuration

getid is an AdminConfig command

Cell is the object type

mycell is the name of the object that will be

modified

Node is the object type

mynode is the name of the object that will be

modified

Server is the object type

server1 is the name of the object that will be

modified

print a Jython command

Example output:

server1(cells/mycell/nodes/mynode/servers/server1|server.xml#Server_1)

2. Identify the process definition belonging to this server and assign it to the

processDef variable. For example:

v Using Jacl:

set processDef [$AdminConfig list JavaProcessDef $s1]

set controllerProcessDef [lindex $processDefs 1]

set servantProcessDef [lidex $processDefs 1]

v Using Jython:

processDef = AdminConfig.list(’JavaProcessDef’, s1)

get line separator

import java

lineSeparator = java.lang.System.getProperty(’line.separator’)

arrayPDs = processDefs.split(lineSeparator)

168 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

controllerProcessDef = arrayPDs[0]

servantProcessDef = arrayPDs[1]

print controllerProcessDef

print servantProcessDef

Example output:

(cells/mycell/nodes/mynode/servers/server1:server.xml#JavaProcessDef_1)

(cells/mycell/nodes/mynode/servers/server1:server.xml#JavaProcessDef_2)

3. Change the attributes.

v On z/OS systems, the following example shows how to change the process

definition of the servant region. You can change the process definition of the

controller region by substituting controllerProcessDef for servantProcessDef .

– Using Jacl:

$AdminConfig modify $servantProcessDef {{workingDirectory /temp/user1}}

– Using Jython:

AdminConfig.modify(servantProcessDef, [[’workingDirectory’, ’/temp/user1’]])

v The following example modifies the stderr file name:

– Using Jacl:

set errFile [list stderrFilename \${LOG_ROOT}/server1/new_stderr.log]

set attr [list $errFile]

$AdminConfig modify $servantProcessDef [subst {{ioRedirect {$attr}}}]

– Using Jython:

errFile = [’stderrFilename’, ’${LOG_ROOT}/server1/new_stderr.log’]

attr = [errFile]

AdminConfig.modify(servantProcessDef, [[’ioRedirect’, attr]])

v The following example modifies the process priority:

– Using Jacl:

$AdminConfig modify $processDef {{execution {{processPriority 15}}}}

– Using Jython:

AdminConfig.modify(processDef, [[’execution’, [[’processPriority’, 15]]]])

v The following example changes the maximum startup attempts. You can

modify this example to change other attributes in the process definition

object.

– Using Jacl:

$AdminConfig modify $processDef {{monitoringPolicy {{maximumStartupAttempts 1}}}}

– Using Jython:

AdminConfig.modify(processDef, [[’monitoringPolicy’, [[’maximumStartupAttempts’, 1]]]])

4. Save the configuration changes. See the “Saving configuration changes with the

wsadmin tool” on page 102 article for more information.

5. In a network deployment environment only, synchronize the node. See the

“Synchronizing nodes with the wsadmin tool” on page 86 article for more

information.

Configuring transaction properties for a server using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the

wsadmin scripting client” on page 123 article for more information.

Perform the following steps to configure the runtime transaction properties for an

application server.

1. Identify the transaction service MBean for the application server. The following

command returns the transaction service MBean for server1.

v Using Jacl:

set ts [$AdminControl completeObjectName cell=mycell,node=mynode,

process=server1,type=TransactionService,*]

Chapter 6. Using scripting (wsadmin) 169

v Using Jython:

ts = AdminControl.completeObjectName(’cell=mycell,node=mynode,

process=server1,type=TransactionService,*’)

print ts

where:

 set is a Jacl command

ts is a variable name

$ is a Jacl operator for substituting a variable

name with its value

AdminControl is an object that enables the manipulation of

MBeans running in a WebSphere server

process

completeObjectName is an AdminControl command

cell=mycell,node=mynode,process=

server1,type=TransactionService

is a fragment of the object name whose

complete name is returned by this

command. It is used to find the matching

object name which is, in this case, the

transaction object MBean for the node

mynode, where mynode is the name of the

node that you use to synchronize

configuration changes. For example:

type=TransactionService, process=server1.

It can be any valid combination of domain

and key properties. For example, type,

name, cell, node, process, etc.

Example output:

WebSphere:cell=mycell,name=TransactionService,mbeanIdentifier=TransactionService,

type=TransactionService,node=mynode,process=server1

2. Modify the attributes.

v Using Jacl:

$AdminControl setAttributes $ts {{clientInactivityTimeout 30}

{totalTranLifetimeTimeout 180}}

v Using Jython:

AdminControl.setAttributes(ts, [[’clientInactivityTimeout’, 30],

[’totalTranLifetimeTimeout’, 180]])

where:

 $ is a Jacl operator for substituting a variable

name with its value

AdminControl is an object that enables the manipulation of

MBeans running in a WebSphere server

process

setAttributes is an AdminControl command

ts evaluates to the ID of the transaction service

specified in step number 1

clientInactivityTimeout is an attribute

30 is the value of the clientInactivityTimeout

attribute specified in seconds. A value of 0

means that there is no timeout limit.

totalTranLifetimeTimeout is an attribute

170 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

180 is the value of the totalTranLifetimeTimeout

attribute specified in milliseconds. A value

of 0 means that there is no timeout limit.

Setting port numbers kept in the serverindex.xml file using

scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the

wsadmin scripting client” on page 123 article for more information.

This topic provides reference information about modifying port numbers in the

serverindex.xml file. The end points of the serverindex.xml file are part of

different objects in the configuration.

Use the following attributes to modify the end point information of the end point

attributes for a process:

v BOOTSTRAP_ADDRESS of server1 process

An attribute of the NameServer object that exists inside the server. It is used by

the naming client to specify the naming server to look up the initial context. To

modify its end point, obtain the ID of the NameServer object and issue a modify

command, for example:

– Using Jacl:

set s [$AdminConfig getid /Cell:mycell/Node:mynode/Server:server1/]

set ns [$AdminConfig list NameServer $s]

$AdminConfig modify $ns {{BOOTSTRAP_ADDRESS {{port 2810} {host myhost}}}}

– Using Jython:

s = AdminConfig.getid(’/Cell:mycell/Node:mynode/Server:server1/’)

ns = AdminConfig.list(’NameServer’, s)

AdminConfig.modify(ns, [[’BOOTSTRAP_ADDRESS’, [[’host’, ’myhost’], [’port’, 2810]]]])

v SOAP_CONNECTOR-ADDRESS of server1 process

An attribute of the SOAPConnector object that exists inside the server. It is the

port that is used by HTTP transport for incoming SOAP requests. To modify its

end point, obtain the ID of the SOAPConnector object and issue a modify

command, for example:

– Using Jacl:

set s [$AdminConfig getid /Cell:mycell/Node:mynode/Server:server1/]

set soap [$AdminConfig list SOAPConnector $s]

$AdminConfig modify $soap {{SOAP_CONNECTOR_ADDRESS {{host myhost} {port 8881}}}}

– Using Jython:

s = AdminConfig.getid(’/Cell:mycell/Node:mynode/Server:server1/’)

soap = AdminConfig.list(’SOAPConnector’, s)

AdminConfig.modify(soap, [[’SOAP_CONNECTOR_ADDRESS’, [[’host’, ’myhost’],

[’port’, 8881]]]])

v DRS_CLIENT_ADDRESS of server1 process

An attribute of the SystemMessageServer object that exists inside the server. It is

the port used to configure the Data Replication Service (DRS) which is a

JMS-based message broker system for dynamic caching. The

DRS_CLIENT_ADDRESS attribute is not available if a replication domain and a

replicator entry have not been added to the server.

To modify the end point of the DRS_CLIENT_ADDRESS attribute, obtain the ID

of the SystemMessageServer object and issue a modify command, for example:

– Using Jacl:

Chapter 6. Using scripting (wsadmin) 171

set s [$AdminConfig getid /Cell:mycell/Node:mynode/Server:server1/]

set sms [$AdminConfig list SystemMessageServer $s]

$AdminConfig modify $sms {{DRS_CLIENT_ADDRESS {{host myhost} {port 7874}}}}

– Using Jython:

s = AdminConfig.getid(’/Cell:mycell/Node:mynode/Server:server1/’)

sms = AdminConfig.list(’SystemMessageServer’, s)

AdminConfig.modify(sms, [[’DRS_CLIENT_ADDRESS’, [[’host’, ’myhost’], [’port’, 7874]]]])

v JMSSERVER_QUEUED_ADDRESS and JMSSERVER_DIRECT_ADDRESS of server1 process

An attribute of the JMSServer object that exists inside the server. These are ports

used to configure the WebSphere Application Server JMS provider topic

connection factory settings. To modify its end point, obtain the ID of the

JMSServer object and issue a modify command, for example:

– Using Jacl:

set s [$AdminConfig getid /Cell:mycell/Node:mynode/Server:server1/]

set jmss [$AdminConfig list JMSServer $s]

$AdminConfig modify $jmss {{JMSSERVER_QUEUED_ADDRESS {{host myhost} {port 5560}}}}

$AdminConfig modify $jmss {{JMSSERVER_DIRECT_ADDRESS {{host myhost} {port 5561}}}}

– Using Jython:

s = AdminConfig.getid(’/Cell:mycell/Node:mynode/Server:server1/’)

jmss = AdminConfig.list(’JMSServer’, s)

AdminConfig.modify(jmss, [[’JMSSERVER_QUEUED_ADDRESS’,

[[’host’, ’myhost’], [’port’, 5560]]]])

AdminConfig.modify(jmss, [[’JMSSERVER_DIRECT_ADDRESS’,

[[’host’, ’myhost’], [’port’, 5561]]]])

v NODE_DISCOVERY_ADDRESS of nodeagent process

An attribute of the NodeAgent object that exists inside the server. It is the port

used to receive the incoming process discovery messages inside a node agent

process. To modify its end point, obtain the ID of the NodeAgent object and

issue a modify command, for example:

– Using Jacl:

set nodeAgentServer [$AdminConfig getid /Cell:mycell/Node:mynode/Server:nodeagent/]

set nodeAgent [$AdminConfig list NodeAgent $nodeAgentServer]

$AdminConfig modify $nodeAgent {{NODE_DISCOVERY_ADDRESS {{host myhost} {port 7272}}}}

– Using Jython:

nodeAgentServer = AdminConfig.getid(’/Cell:mycell/Node:mynode/Server:nodeagent/’)

nodeAgent = AdminConfig.list(’NodeAgent’, nodeAgentServer)

AdminConfig.modify(nodeAgent, [[’NODE_DISCOVERY_ADDRESS’, [[’host’, ’myhost’],

[’port’, 7272]]]])

v CELL_DISCOVERY_ADDRESS of dmgr process

An attribute of the deploymentManager object that exists inside the server. It is

the port used to receive the incoming process discovery messages inside a

deployment manager process. To modify its end point, obtain the ID of the

deploymentManager object and issue a modify command, for example:

– Using Jacl:

set netmgr [$AdminConfig getid /Cell:mycell/Node:managernode/Server:dmgr/]

set deploymentManager [$AdminConfig list CellManager $netmgr]

$AdminConfig modify $deploymentManager {{CELL_MULTICAST_DISCOVERY_ADDRESS

{{host myhost} {port 7272}}}}

$AdminConfig modify $deploymentManager {{CELL_DISCOVERY_ADDRESS

{{host myhost} {port 7278}}}}

– Using Jython:

netmgr = AdminConfig.getid(’/Cell:mycell/Node:managernode/Server:dmgr/’)

deploymentManager = AdminConfig.list(’CellManager’, netmgr)

AdminConfig.modify(deploymentManager, [[’CELL_MULTICAST_DISCOVERY_ADDRESS’,

[[’host’, ’myhost’], [’port’, 7272]]]])

AdminConfig.modify(deploymentManager, [[’CELL_DISCOVERY_ADDRESS’,

[[’host’, ’myhost’], [’port’, 7278]]]])

v WC_defaulthost of server1 process

172 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

To modify a WC_defaulthost end point use the following example:

– Using Jacl:

set serverName server1

set node [$AdminConfig getid /Node:myNode/]

set serverEntries [$AdminConfig list ServerEntry $node]

foreach serverEntry $serverEntries {

 set sName [$AdminConfig showAttribute $serverEntry serverName]

 if {$sName == $serverName} {

 set specialEndPoints [lindex [$AdminConfig showAttribute

 $serverEntry specialEndpoints] 0]

 foreach specialEndPoint $specialEndPoints {

 set endPointNm [$AdminConfig showAttribute

 $specialEndPoint endPointName]

 if {$endPointNm == "WC_defaulthost"} {

 set ePoint [$AdminConfig showAttribute

 $specialEndPoint endPoint]

 $AdminConfig modify $ePoint [list

 [list host myhost] [list port 5555]]

 break

 }

 }

 }

}

– Using Jython:

serverName = "server1"

node = AdminConfig.getid(’/Node:myNode/’)

serverEntries = AdminConfig.list(’ServerEntry’, node).split

(java.lang.System.getProperty(’line.separator’)

for serverEntry in serverEntries:

 sName = AdminConfig.showAttribute(serverEntry, "serverName")

 if sName == serverName:

 specialEndPoints [AdminConfig.showAttribute(serverEntry,

"specialEndpoints")[1:len(specialEndPoints)-1].split(" ")

 for specialEndPoint in specialEndPoints:

 endPointNm = AdminConfig.showAttribute(specialEndPoint,

"endPointName")

 if endPointNm == "WC_defaulthost":

 ePoint = AdminConfig.showAttribute(specialEndPoint,

"endPoint")

 AdminConfig.modify(ePoint, [["host", "myhost"],

["port", 5555]])

 break

v WC_defaulthost_secure of server1 process

To modify a WC_defaulthost_secure end point use the following example:

– Using Jacl:

set serverName server1

set node [$AdminConfig getid /Node:myNode/]

set serverEntries [$AdminConfig list ServerEntry $node]

foreach serverEntry $serverEntries {

 set sName [$AdminConfig showAttribute $serverEntry serverName]

 if {$sName == $serverName} {

 set specialEndPoints [lindex [$AdminConfig showAttribute

$serverEntry specialEndpoints] 0]

 foreach specialEndPoint $specialEndPoints {

 set endPointNm [$AdminConfig showAttribute

$specialEndPoint endPointName]

 if {$endPointNm == "WC_defaulthost_secure"} {

 set ePoint [$AdminConfig showAttribute

$specialEndPoint endPoint]

 $AdminConfig modify $ePoint [list [list host myhost]

[list port 5544]]

 break

Chapter 6. Using scripting (wsadmin) 173

}

 }

 }

}

– Using Jython:

serverName = "server1"

node = AdminConfig.getid(’/Node:myNode/’)

serverEntries = AdminConfig.list(’ServerEntry’, node).split

(java.lang.System.getProperty(’line.separator’)

for serverEntry in serverEntries:

 sName = AdminConfig.showAttribute(serverEntry, "serverName")

 if sName == serverName:

 specialEndPoints [AdminConfig.showAttribute(serverEntry,

"specialEndpoints")[1:len(specialEndPoints)-1].split(" ")

 for specialEndPoint in specialEndPoints:

 endPointNm = AdminConfig.showAttribute(specialEndPoint,

"endPointName")

 if endPointNm == "WC_defaulthost_secure":

 ePoint = AdminConfig.showAttribute(specialEndPoint,

"endPoint")

 AdminConfig.modify(ePoint, [["host", "myhost"],

["port", 5544]])

 break

v WC_adminhost of server1 process

To modify a WC_adminhost end point use the following example:

– Using Jacl:

set serverName server1

set node [$AdminConfig getid /Node:myNode/]

set serverEntries [$AdminConfig list ServerEntry $node]

foreach serverEntry $serverEntries {

 set sName [$AdminConfig showAttribute $serverEntry serverName]

 if {$sName == $serverName} {

 set specialEndPoints [lindex [$AdminConfig showAttribute

$serverEntry specialEndpoints] 0]

 foreach specialEndPoint $specialEndPoints {

 set endPointNm [$AdminConfig showAttribute

$specialEndPoint endPointName]

 if {$endPointNm == "WC_adminhost"} {

 set ePoint [$AdminConfig showAttribute

$specialEndPoint endPoint]

 $AdminConfig modify $ePoint [list

[list host myhost] [list port 6666]]

 break

 }

 }

 }

}

– Using Jython:

serverName = "server1"

node = AdminConfig.getid(’/Node:myNode/’)

serverEntries = AdminConfig.list(’ServerEntry’, node).split

(java.lang.System.getProperty(’line.separator’)

for serverEntry in serverEntries:

 sName = AdminConfig.showAttribute(serverEntry, "serverName")

 if sName == serverName:

 specialEndPoints [AdminConfig.showAttribute(serverEntry,

"specialEndpoints")[1:len(specialEndPoints)-1].split(" ")

 for specialEndPoint in specialEndPoints:

 endPointNm = AdminConfig.showAttribute(specialEndPoint,

"endPointName")

 if endPointNm == "WC_adminhost":

 ePoint = AdminConfig.showAttribute(specialEndPoint,

174 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

"endPoint")

 AdminConfig.modify(ePoint, [["host", "myhost"],

["port", 6666]])

 break

v WC_adminhost_secure of server1 process

To modify a WC_adminhost_secure end point use the following example:

– Using Jacl:

set serverName server1

set node [$AdminConfig getid /Node:myNode/]

set serverEntries [$AdminConfig list ServerEntry $node]

foreach serverEntry $serverEntries {

 set sName [$AdminConfig showAttribute $serverEntry serverName]

 if {$sName == $serverName} {

 set specialEndPoints [lindex [$AdminConfig showAttribute

$serverEntry specialEndpoints] 0]

 foreach specialEndPoint $specialEndPoints {

 set endPointNm [$AdminConfig showAttribute

$specialEndPoint endPointName]

 if {$endPointNm == "WC_adminhost_secure"} {

 set ePoint [$AdminConfig showAttribute

$specialEndPoint endPoint]

 $AdminConfig modify $ePoint [list

[list host myhost] [list port 5566]]

 break

 }

 }

 }

}

– Using Jython:

serverName = "server1"

node = AdminConfig.getid(’/Node:myNode/’)

serverEntries = AdminConfig.list(’ServerEntry’, node).split

(java.lang.System.getProperty(’line.separator’)

for serverEntry in serverEntries:

 sName = AdminConfig.showAttribute(serverEntry, "serverName")

 if sName == serverName:

 specialEndPoints [AdminConfig.showAttribute(serverEntry,

"specialEndpoints")[1:len(specialEndPoints)-1].split(" ")

 for specialEndPoint in specialEndPoints:

 endPointNm = AdminConfig.showAttribute(specialEndPoint,

"endPointName")

 if endPointNm == "WC_adminhost_secure":

 ePoint = AdminConfig.showAttribute(specialEndPoint,

"endPoint")

 AdminConfig.modify(ePoint, [["host", "myhost"],

["port", 5566]])

 break

Save the configuration changes. See the “Saving configuration changes with the

wsadmin tool” on page 102 article for more information.

In a network deployment environment only, synchronize the node. See the

“Synchronizing nodes with the wsadmin tool” on page 86 article for more

information.

Disabling components using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the

wsadmin scripting client” on page 123 article for more information.

Chapter 6. Using scripting (wsadmin) 175

Perform the following steps to disable the name server component of a configured

server. You can modify this example to disable a different component.

1. Identify the server component and assign it to the nameServer variable.

v Using Jacl:

set nameServer [$AdminConfig list NameServer $server]

v Using Jython:

nameServer = AdminConfig.list(’NameServer’, server)

print nameServer

Example output:

(cells/mycell/nodes/mynode/servers/server1|server.xml#NameServer_1)

2. List the components belonging to the server and assign them to the

components variable.

v Using Jacl:

set components [$AdminConfig list Component $server]

v Using Jython:

components = AdminConfig.list(’Component’, server)

print components

The components variable contains a list of components.

Example output:

(cells/mycell/nodes/mynode/servers/server1|server.xml#ApplicationServer_1)

(cells/mycell/nodes/mynode/servers/server1|server.xml#EJBContainer_1)

(cells/mycell/nodes/mynode/servers/server1|server.xml#NameServer_1)

(cells/mycell/nodes/mynode/servers/server1|server.xml#WebContainer_1)

3. Identify the name server component and assign it to the nameServer variable.

Since the name server component is the third element in the list, retrieve this

element by using index 2.

v Using Jacl:

set nameServer [lindex $components 2]

v Using Jython:

get line separator

import java

lineSeparator = java.lang.System.getProperty(’line.separator’)

arrayComponents = components.split(lineSeparator)

nameServer = arrayComponents[2]

print nameServer

Example output:

(cells/mycell/nodes/mynode/servers/server1|server.xml#NameServer_1)

4. Disable the name server component by changing the nested initialState attribute

belonging to the stateManagement attribute. For example:

v Using Jacl:

$AdminConfig modify $nameServer {{stateManagement {{initialState STOP}}}}

v Using Jython:

AdminConfig.modify(nameServer, [[’stateManagement’, [[’initialState’, ’STOP’]]]])

5. Save the configuration changes. See the “Saving configuration changes with the

wsadmin tool” on page 102 article for more information.

6. In a network deployment environment only, synchronize the node. See the

“Synchronizing nodes with the wsadmin tool” on page 86 article for more

information.

176 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

Disabling services using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the

wsadmin scripting client” on page 123 article for more information.

Perform the following steps to disable the trace service of a configured server. You

can modify this example to disable a different service.

1. Identify the server and assign it to the server variable. For example:

v Using Jacl:

set server [$AdminConfig getid /Cell:mycell/Node:mynode/Server:server1/]

v Using Jython:

server = AdminConfig.getid(’/Cell:mycell/Node:mynode/Server:server1/’)

print server

Example output:

server1(cells/mycell/nodes/mynode/servers/server1|server.xml#Server_1)

2. List all the services belonging to the server and assign them to the services

variable. The following example returns a list of services:

v Using Jacl:

set services [$AdminConfig list Service $server]

v Using Jython:

services = AdminConfig.list(’Service’, server)

print services

Example output:

(cells/mycell/nodes/mynode/servers/server1|server.xml#AdminService_1)

(cells/mycell/nodes/mynode/servers/server1|server.xml#DynamicCache_1)

(cells/mycell/nodes/mynode/servers/server1|server.xml#MessageListenerService_1)

(cells/mycell/nodes/mynode/servers/server1|server.xml#ObjectRequestBroker_1)

(cells/mycell/nodes/mynode/servers/server1|server.xml#RASLoggingService_1)

(cells/mycell/nodes/mynode/servers/server1|server.xml#SessionManager_1)

(cells/mycell/nodes/mynode/servers/server1|server.xml#TraceService_1)

(cells/mycell/nodes/mynode/servers/server1|server.xml#TransactionService_1)

3. Identify the trace service and assign it to the traceService variable.

Since trace service is the 7th element in the list, retrieve this element by using

index 6.

v Using Jacl:

set traceService [$AdminConfig list TraceService $server]

v Using Jython:

traceService = AdminConfig.list(’TraceService’, server)

print traceService

Example output:

(cells/mycell/nodes/mynode/servers/server1|server.xml#TraceService_1)

4. Disable the trace service by modifying the enable attribute. For example:

v Using Jacl:

$AdminConfig modify $traceService {{enable false}}

v Using Jython:

AdminConfig.modify(traceService, [[’enable’, ’false’]])

5. Save the configuration changes. See the “Saving configuration changes with the

wsadmin tool” on page 102 article for more information.

6. In a network deployment environment only, synchronize the node. See the

“Synchronizing nodes with the wsadmin tool” on page 86 article for more

information.

Chapter 6. Using scripting (wsadmin) 177

Dynamic caching with scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the

wsadmin scripting client” on page 123 article for more information.

To see a list of parameters associated with dynamic caching, use the attributes

command. For example:

$AdminConfig attributes DynamicCache

Perform the following steps to enable servlet caching:

1. Locate the server object. The following example selects the first server found:

Using Jacl:

set s1 [$AdminConfig getid /Server:server1/]

Using Jython:

s1 = AdminConfig.getid(’/Server:server1/’)

2. List the web containers and assign them to the wc variable, for example:

Using Jacl:

set wc [$AdminConfig list WebContainer $s1]

Using Jython:

wc = AdminConfig.list(’WebContainer’, s1)

3. Set the enableServletCaching attribute to true and assign it to the serEnable

variable, for example:

Using Jacl:

set serEnable "{enableServletCaching true}"

Using Jython:

serEnable = [[’enableServletCaching’, ’true’]]

4. Enable caching, for example:

Using Jacl:

$AdminConfig modify $wc $serEnable

Using Jython:

AdminConfig.modify(wc, serEnable)

Configuring connections to Webservers with scripting

This topic contains the following tasks:

v “Regenerating the node plug-in configuration using scripting”

v “Creating new virtual hosts using templates with scripting” on page 179

Regenerating the node plug-in configuration using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the

wsadmin scripting client” on page 123 article for more information.

Perform the following steps to regenerate the node plug-in configuration:

1. Identify the plug-in and assign it to the generator variable, for example:

Using Jacl:

set generator [$AdminControl completeObjectName type=PluginCfgGenerator,node=mynode,*]

Using Jython:

generator = AdminControl.completeObjectName(’type=PluginCfgGenerator,node=mynode,*’)

178 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

2. Regenerate the node plug-in:

Using Jacl:

$AdminControl invoke $generator generate "c:/WebSphere/DeloymentManager/config

mycell mynode null plugin-cfg.xml"

Using Jython:

AdminControl.invoke(generator, ’generate’, "c:/WebSphere/DeloymentManager/config

mycell mynode null plugin-cfg.xml")

Creating new virtual hosts using templates with scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the

wsadmin scripting client” on page 123 article for more information.

Some configuration object types have templates that you can use when you create

a virtual host. You can create a new virtual host using a preexisting template or by

creating a new custom template. Perform the following steps to create a new

virtual host using a template:

1. If you want to create a new custom template, perform the following steps:

a. Copy and paste the following file into a new file, myvirtualhostname.xml:

<WAS-ROOT>\config\templates\default\virtualhosts.xml

b. Edit and customize the new myvirtualhostname.xml file.

c. Place the new file in the following directory:

<WAS-ROOT>\config\templates\custom\

If you want the new custom template to appear with the list of templates,

restart the deployment manager on a network deployment edition, or use the

AdminConfig object reset command. For example:

v Using Jacl:

$AdminConfig reset

v Using Jython:

AdminConfig.reset()

The administrative console does not support the use of custom templates. The

new template that you create will not be visible in the administrative console

panels.

2. Use the AdminConfig object listTemplates command to list available templates,

for example:

v Using Jacl:

$AdminConfig listTemplates VirtualHost

v Using Jython:

print AdminConfig.listTemplates(’VirtualHost’)

Example output:

default_host(templates/default:virtualhosts.xml#VirtualHost_1)

my_host(templates/custom:virtualhostname.xml#VirtualHost_1)

3. Create a new virtual host. For example:

v Using Jacl:

set cell [$AdminConfig getid /Cell:NetworkDeploymentCell/]

set vtempl [$AdminConfig listTemplates VirtualHost my_host]

$AdminConfig createUsingTemplate VirtualHost $cell {{name newVirHost}} $vtempl

v Using Jython:

Chapter 6. Using scripting (wsadmin) 179

cell = AdminConfig.getid(’/Cell:NetworkDeploymentCell/’)

vtempl = AdminConfig.listTemplates(’VirtualHost’, ’my_host’)

AdminConfig.createUsingTemplate(’VirtualHost’, cell, [[’name’, ’newVirHost’]], vtempl)

4. Save the configuration changes. See the “Saving configuration changes with the

wsadmin tool” on page 102 article for more information.

5. In a network deployment environment only, synchronize the node. See the

“Synchronizing nodes with the wsadmin tool” on page 86 article for more

information.

Managing servers with scripting

This topic contains the following tasks:

v “Stopping a node using scripting”

v “Starting servers using scripting”

v “Stopping servers using scripting” on page 181

v “Querying server state using scripting” on page 182

v “Listing running applications on running servers using scripting” on page 183

v “Starting listener ports using scripting” on page 185

v “Managing generic servers using scripting” on page 186

v “Setting development mode for server objects using scripting” on page 187

v “Disabling parallel startup using scripting” on page 187

v “Removing multicast endpoints using scripting” on page 188

v “Obtaining server version information with scripting” on page 188

Stopping a node using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the

wsadmin scripting client” on page 123 article for more information.

Stopping the node agent on a remote machine process is an asynchronous action

where the stop is initiated, and then control returns to the command line. Perform

the following task to stop a node:

1. Identify the node that you want to stop and assign it to a variable:

Using Jacl:

set na [$AdminControl queryNames type=NodeAgent,node=mynode,*]

Using Jython:

na = AdminControl.queryNames(’type=NodeAgent,node=mynode,*’)

2. Stop the node:

Using Jacl:

$AdminControl invoke $na stopNode

Using Jython:

AdminControl.invoke(na, ’stopNode’)

Starting servers using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the

wsadmin scripting client” on page 123 article for more information.

Use the startServer command to start the server. This command has several syntax

options. For example:

180 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

v To start a server on a WebSphere Application Server single server edition, choose

one of the following options:

– The following examples specify the server name only:

Using Jacl:

$AdminControl startServer serverName

Using Jython:

AdminControl.startServer(’serverName’)

– The following example starts an application server with the node specified:

- Using Jacl:

$AdminControl startServer server1 mynode

- Using Jython:

print AdminControl.startServer(’server1’, ’mynode’)

Example output:

WASX7319I: The serverStartupSyncEnabled attribute is set to false. A start

will be attempted for server "server1" but the configuration information for

node "mynode" may not be current.

WASX7262I: Start completed for server "server1" on node "mynode"

– The following example specify the server name and wait time:

- Using Jacl:

$AdminControl startServer serverName 10

- Using Jython:

AdminControl.startServer(’serverName’, 10)

where 10 is the number of milliseconds that the process should wait before

starting the server.
v To start a server on a WebSphere Application Server network deployment

edition, choose one of the following options:

– The following example specifies the server name and the node name:

- Using Jacl:

$AdminControl startServer serverName nodeName

- Using Jython:

AdminControl.startServer(’serverName’, ’nodeName’)

– The following example specifies the server name, the node name, and the

wait time:

- Using Jacl:

$AdminControl startServer serverName nodeName 10

- Using Jython:

AdminControl.startServer(’serverName’, ’nodeName’, 10)

where 10 is the number of milliseconds that the process should wait before

starting the server.

Stopping servers using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the

wsadmin scripting client” on page 123 article for more information.

Use the stopServer command to stop the server. This command has several syntax

options. For example:

v To stop a server on a WebSphere Application Server single server edition, choose

one of the following options:

Chapter 6. Using scripting (wsadmin) 181

– The following examples specify the server name only:

Using Jacl:

$AdminControl stopServer serverName

Using Jython:

AdminControl.stopServer(’serverName’)

– The following examples stop an application server with the node specified:

- Using Jacl:

$AdminControl stopServer serverName mynode

- Using Jython:

print AdminControl.stopServer(’serverName’, ’mynode’)

Example output:

WASX7337I: Invoked stop for server "serverName" Waiting for stop completion.

WASX7264I: Stop completed for server "serverName" on node "mynode"

– The following examples specify the server name and immediate:

- Using Jacl:

$AdminControl stopServer serverName immediate

- Using Jython:

AdminControl.stopServer(’serverName’, immediate)

v To stop a server on a WebSphere Application Server network deployment

edition, choose one of the following options:

– The following example specifies the server name and the node name:

- Using Jacl:

$AdminControl stopServer serverName nodeName

- Using Jython:

AdminControl.stopServer(’serverName’, ’nodeName’)

– The following example specifies the server name, the node name, and

immediate:

- Using Jacl:

$AdminControl stopServer serverName nodeName immediate

- Using Jython:

AdminControl.stopServer(’serverName’, ’nodeName’, immediate)

Querying server state using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the

wsadmin scripting client” on page 123 article for more information.

Perform the following steps to query the server state:

1. Identify the server and assign it to the server variable. The following example

returns the server MBean that matches the partial object name string:

v Using Jacl:

set server [$AdminControl completeObjectName cell=mycell,node=mynode,

name=server1,type=Server,*]

v Using Jython:

server = AdminControl.completObjectName(’cell=mycell,node=mynode,

name=server1,type=Server,*’)

print server

Example output:

182 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

WebSphere:cell=mycell,name=server1,mbeanIdentifier=server.xml#Server_1,

type=Server,node=mynode,process=server1,processType=ManagedProcess

2. Query for the state attribute. For example:

v Using Jacl:

$AdminControl getAttribute $server state

v Using Jython:

print AdminControl.getAttribute(server, ’state’)

The getAttribute command returns the value of a single attribute.

Example output:

STARTED

Listing running applications on running servers using

scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the

wsadmin scripting client” on page 123 article for more information.

Use the following example to list all the running applications on all the running

servers on each node of each cell:

v Using Jacl:

*Provide this example as a Jacl script file and run it with the "-f" option:

1 #--

2 # lines 4 and 5 find all the cell and process them one at a time

3 #--

4 set cells [$AdminConfig list Cell]

5 foreach cell $cells {

6 #---

7 # lines 10 and 11 find all the nodes belonging to the cell and

8 # process them at a time

9 #---

10 set nodes [$AdminConfig list Node $cell]

11 foreach node $nodes {

12 #--

13 # lines 16-20 find all the running servers belonging to the cell

14 # and node, and process them one at a time

15 #--

16 set cname [$AdminConfig showAttribute $cell name]

17 set nname [$AdminConfig showAttribute $node name]

18 set servs [$AdminControl queryNames type=Server,cell=$cname,node=$nname,*]

19 puts "Number of running servers on node $nname: [llength $servs]"

20 foreach server $servs {

21 #---

22 # lines 25-31 get some attributes from the server to display;

23 # invoke an operation on the server JVM to display a property.

24 #---

25 set sname [$AdminControl getAttribute $server name]

26 set ptype [$AdminControl getAttribute $server processType]

27 set pid [$AdminControl getAttribute $server pid]

28 set state [$AdminControl getAttribute $server state]

29 set jvm [$AdminControl queryNames type=JVM,cell=$cname,

 node=$nname,process=$sname,*]

30 set osname [$AdminControl invoke $jvm getProperty os.name]

31 puts " $sname ($ptype) has pid $pid; state: $state; on $osname"

32

j3 #---

34 # line 37-42 find the applications running on this server and

35 # display the application name.

35 #---

37 set apps [$AdminControl queryNames type=Application,

 cell=$cname,node=$nname,process=$sname,*]

Chapter 6. Using scripting (wsadmin) 183

38 puts " Number of applications running on $sname: [llength $apps]"

39 foreach app $apps {

40 set aname [$AdminControl getAttribute $app name]

41 puts " $aname"

42 }

43 puts "--"

44 puts ""

45

46 }

47 }

48 }

v Using Jython:

* Provide this example as a Jython script file and run it with the "-f" option:

1 #--

2 # lines 7 and 8 find all the cell and process them one at a time

3 #--

4 # get line separator

5 import java.lang.System as sys

6 lineSeparator = sys.getProperty(’line.separator’)

7 cells = AdminConfig.list(’Cell’).split(lineSeparator)

8 for cell in cells:

9 #--

10 # lines 13 and 14 find all the nodes belonging to the cell and

11 # process them at a time

12 #---

13 nodes = AdminConfig.list(’Node’, cell).split(lineSeparator)

14 for node in nodes:

15 #--

16 # lines 19-23 find all the running servers belonging to the cell

17 # and node, and process them one at a time

18 #--

19 cname = AdminConfig.showAttribute(cell, ’name’)

20 nname = AdminConfig.showAttribute(node, ’name’)

21 servs = AdminControl.queryNames(’type=Server,cell=’ + cname +

 ’,node=’ + nname + ’,*’).split(lineSeparator)

22 print "Number of running servers on node " +

 nname + ": %s \n" % (len(servs))

23 for server in servs:

24 #---

25 # lines 28-34 get some attributes from the server to display;

26 # invoke an operation on the server JVM to display a property.

27 #---

28 sname = AdminControl.getAttribute(server, ’name’)

29 ptype = AdminControl.getAttribute(server, ’processType’)

30 pid = AdminControl.getAttribute(server, ’pid’)

31 state = AdminControl.getAttribute(server, ’state’)

32 jvm = AdminControl.queryNames(’type=JVM,cell=’ +

 cname + ’,node=’ + nname + ’,process=’ + sname + ’,*’)

33 osname = AdminControl.invoke(jvm, ’getProperty’, ’os.name’)

34 print " " + sname + " " + ptype + " has pid " + pid +

 "; state: " + state + "; on " +

 osname + "\n"

35

36 #---

37 # line 40-45 find the applications running on this server and

38 # display the application name.

39 #---

40 apps = AdminControl.queryNames(’type=Application,cell=’ +

 Cname + ’,node=’ + nname + ’,process=’ + sname + ’,*’).

 split(lineSeparator)

41 print "Number of applications running on " + sname +

 ": %s \n" % (len(apps))

42 for app in apps:

184 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

43 aname = AdminControl.getAttribute(app, ’name’)

44 print aname + "\n"

45 print "--"

46 print "\n"

v Example output:

Number of running servers on node mynode: 2

mynode (NodeAgent) has pid 3592; state: STARTED; on Windows 2000

Number of applications running on mynode: 0

--

server1 (ManagedProcess) has pid 3972; state: STARTED; on Windows 2000

Number of applications running on server1: 0

--

Number of running servers on node mynodeManager: 1

dmgr (DeploymentManager) has pid 3308; state: STARTED; on Windows 2000

Number of applications running on dmgr: 2

adminconsole

filetransfer

--

Starting listener ports using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the

wsadmin scripting client” on page 123 article for more information.

Perform the following steps to start a listener port on an application server. The

following example returns a list of listener port MBeans:

1. Identify the listener port MBeans for the application server and assign it to the

lPorts variable.

v Using Jacl:

set lPorts [$AdminControl queryNames type=ListenerPort,

cell=mycell,node=mynode,process=server1,*]

v Using Jython:

lPorts = AdminControl.queryNames(’type=ListenerPort,

cell=mycell,node=mynode,process=server1,*’)

print lPorts

Example output:

WebSphere:cell=mycell,name=ListenerPort,mbeanIdentifier=server.xml#

ListenerPort_1,type=ListenerPort,node=mynode,process=server1

WebSphere:cell=mycell,name=listenerPort,mbeanIdentifier=ListenerPort,

type=server.xml#ListenerPort_2,node=mynode,process=server1

2. Start the listener port if it is not started. For example:

v Using Jacl:

foreach lPort $lPorts {

 set state [$AdminControl getAttribute $lport started]

 if {$state == "false"} {

 $AdminControl invoke $lPort start

 }

 }

v Using Jython:

get line separator

import java

lineSeparator = java.lang.System.getProperty(’line.separator’)

lPortsArray = lPorts.split(lineSeparator)

Chapter 6. Using scripting (wsadmin) 185

for lPort in lPortsArray:

 state = AdminControl.getAttribute(lPort, ’started’)

 if state == ’false’:

 AdminControl.invoke(lPort, ’start’)

These pieces of Jacl and Jython code loop through the listener port MBeans. For

each listener port MBean, get the attribute value for the started attribute. If the

attribute value is set to false, then start the listener port by invoking the start

operation on the MBean.

Managing generic servers using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the

wsadmin scripting client” on page 123 article for more information.

A generic server is a server that the WebSphere Application Server manages but

did not supply. You can use WebSphere Application Server to define, start, stop,

and monitor generic servers.

v To define a generic server, use the following example:

– Using Jacl:

$AdminTask createGenericServer mynode {-name generic1 -ConfigProcDef

{{"/usr/bin/myStartCommand" "arg1 arg2" "" "" "/tmp/workingDirectory"

"/tmp/stopCommand" "argy argz"}}}

$AdminConfig save

– Using Jython:

AdminTask.createGenericServer(’mynode’, ’[-name generic1 -ConfigProcDef

[[c:\tmp\myStartCommand.exe "a b c" "" "" C:\tmp\myStopCommand "x y z"]]]’)

AdminConfig.save()

v To start a generic server, use the launchProcess parameter, for example:

– Using Jacl:

set nodeagent [$AdminControl queryNames *:*,type=NodeAgent]

$AdminControl invoke $nodeagent launchProcess generic1

– Using Jython:

nodeagent = AdminControl.queryNames (’*:*,type=NodeAgent’)

AdminControl.invoke(nodeagent, ’launchProcess’, ’generic1’)

Example output:

true

or

false

v To stop a generic server, use the terminate parameter, for example:

– Using Jacl:

set nodeagent [$AdminControl queryNames *:*,type=NodeAgent]

$AdminControl invoke $nodeagent terminate generic1

– Using Jython:

nodeagent = AdminControl.queryNames (’*:*,type=NodeAgent’)

AdminControl.invoke(nodeagent, ’terminate’, ’generic1’)

Example output:

true

or

false

v To monitor the server state, use the getProcessStatus parameter, for example:

– Using Jacl:

$AdminControl invoke $nodeagent getProcessStatus generic1

186 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

Using Jython:

AdminControl.invoke(nodeagent, ’getProcessStatus’, ’generic1’)

Example output:

RUNNING

or

STOPPED

Setting development mode for server objects using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the

wsadmin scripting client” on page 123 article for more information.

Perform the following steps to set the development mode for a server object:

1. Locate the server object. The following example selects the first server found:

v Using Jacl:

set server [$AdminConfig getid /Server:server1/]

v Using Jython:

server = AdminConfig.getid(’/Server:server1/’)

2. Enable development mode:

v Using Jacl:

$AdminConfig modify $server "{developmentMode true}"

v Using Jython:

AdminConfig.modify(server, [[’developmentMode’, ’true’]])

3. Save the configuration changes. See the “Saving configuration changes with the

wsadmin tool” on page 102 article for more information.

4. In a network deployment environment only, synchronize the node. See the

“Synchronizing nodes with the wsadmin tool” on page 86 article for more

information.

Disabling parallel startup using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the

wsadmin scripting client” on page 123 article for more information.

Perform the following steps to disable parallel startup:

1. Locate the server object. The following example selects the first server found:

v Using Jacl:

set server[$AdminConfig getid /Server:server1/]

v Using Jython:

server = AdminConfig.getid(’/Server:server1/’]

2. Enable development mode. For example:

v Using Jacl:

$AdminConfig modify $server "{parallelStartEnabled false}"

v Using Jython:

AdminConfig.modify(server, [[’parallelStartEnabled’, ’false’]])

3. Save the configuration changes. See the “Saving configuration changes with the

wsadmin tool” on page 102 article for more information.

Chapter 6. Using scripting (wsadmin) 187

4. In a network deployment environment only, synchronize the node. See the

“Synchronizing nodes with the wsadmin tool” on page 86 article for more

information.

Removing multicast endpoints using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the

wsadmin scripting client” on page 123 article for more information.

WebSphere Application Server uses multicast broadcasting at the node level to

allow a node agent to discover the managed processes in the node. The IPv4 and

IPv6 multicast addresses are not compatible. Both the IPv4 and IPv6 multicast

addresses are defined in the node agent configuration and when a node agent

starts both addresses will be tried in sequence. It is recommended that you disable

one of the multicast addresses after installation. By limiting multicast discovery to

one protocol, the node agent will run more efficiently. Perform the following steps

to remove a multicast endpoint:

1. Remove the multicast end point:

v Using Jacl:

set se [$AdminConfig getid /Node:y2001/ServerIndex:/]

set eprs [lindex [$AdminConfig showAttribute $se endPointRefs] 0]

foreach ep $eprs {

 set epName [$AdminConfig showAttribute $ep endPointName]

 if {$epName == "NODE_MULTICAST_DISCOVERY_ADDRESS"} {

 puts "Removing NODE_MULTICAST_DISCOVERY_ADDRESS..."

 $AdminConfig remove $ep

 }

}

v Using Jython:

se = AdminConfig.getid(’/Node:y2001/ServerIndex:/’)

import java

lineseparator = java.lang.System.getProperty(’line.separator’)

eprs = AdminConfig.showAttribute(se, [’endPointRefs’]).split(lineseparator)[0]

print eprs

for ep in eprs:

 epName = AdminConfig.showAttribute(ep, [’endPointName’])

 if (epName) == "[NODE_MULTICAST_DISCOVERY_ADDRESS]":

 print "Removing NODE_MULTICAST_DISCOVERY_ADDRESS..."

 AdminConfig.remove(ep)

2. Save the configuration changes. See the “Saving configuration changes with the

wsadmin tool” on page 102 article for more information.

3. In a network deployment environment only, synchronize the node. See the

“Synchronizing nodes with the wsadmin tool” on page 86 article for more

information.

Obtaining server version information with scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the

wsadmin scripting client” on page 123 article for more information.

Perform the following steps to query the server version information:

1. Identify the server and assign it to the server variable.

v Using Jacl:

set server [$AdminControl completeObjectName type=Server,name=server1,node=mynode,*]

v Using Jython:

188 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

server = AdminControl.completeObjectName(’type=Server,name=server1,node=mynode,*’)

print server

Example output:

WebSphere:cell=mycell,name=server1,mbeanIdentifier=server.xml#Server_1,

type=Server,node=mynode,process=server1,processType=ManagedProcess

2. Query the server version. The server version information is stored in the

serverVersion attribute. The getAttribute command returns the attribute value

of a single attribute, passing in the attribute name.

v Using Jacl:

$AdminControl getAttribute $server1 serverVersion

v Using Jython:

print AdminControl.getAttribute(server1, ’serverVersion’)

Example output for a Network Deployment installation follows:

IBM WebSphere Application Server Version Report

 Platform Information

 --

 Name: IBM WebSphere Application Server

 Version: 5.0

 Product Information

 --

 ID: BASE

 Name: IBM WebSphere Application Server

 Build Date: 9/11/02

 Build Level: r0236.11

 Version: 5.0.0

 Product Information

 --

 ID: ND

 Name: IBM WebSphere Application Server for Network Deployment

 Build Date: 9/11/02

 Build Level: r0236.11

 Version: 5.0.0

 End Report

Clustering servers with scripting

This topic contains the following tasks:

v “Creating clusters using scripting” on page 190

v “Creating cluster members using scripting” on page 190

v “Creating clusters without cluster members using scripting” on page 191

v “Starting a cluster using scripting” on page 192

v “Querying cluster state using scripting” on page 193

v “Stopping clusters using scripting” on page 193

Chapter 6. Using scripting (wsadmin) 189

Creating clusters using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the

wsadmin scripting client” on page 123 article for more information.

Perform the following steps to create a cluster:

1. Identify the server to convert to a cluster and assign it to the server variable:

Using Jacl:

set server [$AdminConfig getid /Cell:mycell/Node:mynode/Server:server1/]

Using Jython:

server = AdminConfig.getid(’/Cell:mycell/Node:mynode/Server:server1/’)

2. Convert the existing server to a cluster by using the convertToCluster

command passing in the existing server and the cluster name:

Using Jacl:

$AdminConfig convertToCluster $server myCluster1

This command converts a cluster named myCluster with server1 as its member.

Using Jython:

print AdminConfig.convertToCluster(server, ’myCluster1’)

Example output:

myCluster1(cells/mycell/cluster/myCluster1|cluster.xml#ClusterMember_1)

3. Save the configuration changes. See the “Saving configuration changes with the

wsadmin tool” on page 102 article for more information.

4. In a network deployment environment only, synchronize the node. See the

“Synchronizing nodes with the wsadmin tool” on page 86 article for more

information.

Creating cluster members using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the

wsadmin scripting client” on page 123 article for more information.

You can also use the AdminTask object to perform this task. For more about using

the AdminTask object to create cluster members, see the Commands for

AdminTask object article. To create cluster members using the AdminConfig object,

perform the following steps:

1. Identify the existing cluster and assign it to the cluster variable:

v Using Jacl:

set cluster [$AdminConfig getid /ServerCluster:myCluster1/]

v Using Jython:

cluster = AdminConfig.getid(’/ServerCluster:myCluster1/’)

print cluster

Example output:

myCluster1(cells/mycell/cluster/myCluster1|cluster.xml#ServerCluster_1)

2. Identify the node to create the new server and assign it to the node variable:

v Using Jacl:

set node [$AdminConfig getid /Node:mynode/]

v Using Jython:

node = AdminConfig.getid(’/Node:mynode/’)

print node

190 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

Example output:

mynode(cells/mycell/nodes/mynode|node.xml#Node_1)

3. (Optional) Identify the cluster member template and assign it to the

serverTemplate variable:

v Using Jacl:

set serverTemplate [$AdminConfig listTemplates Server]

v Using Jython:

serverTemplate = AdminConfig.listTemplates(’Server’)

print serverTemplate

Example output:

server1(templates/default/nodes/servers/server1|server.xml#Server_1)

4. Create the new cluster member, by using the createClusterMember command.

v The following example creates the new cluster member, passing in the

existing cluster configuration ID, existing node configuration ID, and the new

member attributes:

– Using Jacl:

$AdminConfig createClusterMember $cluster $node {{memberName clusterMember1}}

– Using Jython:

AdminConfig.createClusterMember(cluster, node, [[’memberName’, ’clusterMember1’]])

v The following example creates the new cluster member with a template,

passing in the existing cluster configuration ID, existing node configuration

ID, the new member attributes, and the template ID:

– Using Jacl:

$AdminConfig createClusterMember $cluster $node

{{memberName clusterMember1}} $serverTemplate

– Using Jython:

print AdminConfig.createClusterMember(cluster, node,

[[’memberName’, ’clusterMember1’]], serverTemplate)

Example output:

clusterMember1(cells/mycell/clusters/myCluster1|cluster.xml$ClusterMember_2)

5. Save the configuration changes. See the “Saving configuration changes with the

wsadmin tool” on page 102 article for more information.

6. In a network deployment environment only, synchronize the node. See the

“Synchronizing nodes with the wsadmin tool” on page 86 article for more

information.

Creating clusters without cluster members using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the

wsadmin scripting client” on page 123 article for more information.

Perform the following steps to create a cluster without a cluster member:

1. Identify the cell configuration ID and set it to the s1 variable:

Using Jacl:

set s1 [$AdminConfig getid /Cell:mycell/]

Using Jython:

s1 = AdminConfig.getid(’/Cell:mycell/’)

2. Create a new cluster without a cluster member:

Using Jacl:

Chapter 6. Using scripting (wsadmin) 191

$AdminConfig create ServerCluster $s1 {{name ClusterName}}

Using Jython:

print AdminConfig.create(’ServerCluster’, s1, ’[[name ClusterName]]’)

3. Save the configuration changes. See the “Saving configuration changes with the

wsadmin tool” on page 102 article for more information.

4. In a network deployment environment only, synchronize the node. See the

“Synchronizing nodes with the wsadmin tool” on page 86 article for more

information.

Starting a cluster using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the

wsadmin scripting client” on page 123 article for more information.

Perform the following steps to start a cluster:

1. Identify the ClusterMgr MBean and assign it to the clusterMgr variable.

v Using Jacl:

set clusterMgr [$AdminControl completeObjectName cell=mycell,type=ClusterMgr,*]

v Using Jython:

clusterMgr = AdminControl.completeObjectName(’cell=mycell,type=ClusterMgr,*’)

print clusterMgr

This command returns the ClusterMgr MBean.

Example output:

WebSphere:cell=mycell,name=ClusterMgr,mbeanIdentifier=ClusterMgr,

type=ClusterMgr,process=dmgr

2. Refresh the list of clusters.

v Using Jacl:

$AdminControl invoke $clusterMgr retrieveClusters

v Using Jython:

AdminControl.invoke(clusterMgr, ’retrieveClusters’)

This command calls the retrieveClusters operation on the ClusterMgr MBean.

3. Identify the Cluster MBean and assign it to the cluster variable.

v Using Jacl:

set cluster [$AdminControl completeObjectName cell=mycell,type=Cluster,name=cluster1,*

v Using Jython:

cluster = AdminControl.completeObjectName(’cell=mycell,type=Cluster,name=cluster1,*’)

print cluster

This command returns the Cluster MBean.

Example output:

WebSphere:cell=mycell,name=cluster1,mbeanIdentifier=Cluster,type=Cluster,process=cluster1

4. Start the cluster.

v Using Jacl:

$AdminControl invoke $cluster start

v Using Jython:

AdminControl.invoke(cluster, ’start’)

This command invokes the start operation on the Cluster MBean.

192 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

Querying cluster state using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the

wsadmin scripting client” on page 123 article for more information.

Perform the following steps to query cluster state:

1. Identify the Cluster MBean and assign it to the cluster variable.

v Using Jacl:

set cluster [$AdminControl completeObjectName cell=mycell,type=Cluster,name=cluster1,*

v Using Jython:

cluster = AdminControl.completeObjectName(’cell=mycell,type=Cluster,name=cluster1,*’)

print cluster

This command returns the Cluster MBean.

Example output:

WebSphere:cell=mycell,name=cluster1,mbeanIdentifier=Cluster,type=Cluster,process=cluster1

2. Query the cluster state.

v Using Jacl:

$AdminControl getAttribute $cluster state

v Using Jython:

AdminControl.getAttribute(cluster, ’state’)

This command returns the value of the run-time state attribute.

Stopping clusters using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the

wsadmin scripting client” on page 123 article for more information.

Perform the following steps to stop a cluster:

1. Identify the Cluster MBean and assign it to the cluster variable.

v Using Jacl:

set cluster [$AdminControl completeObjectName cell=mycell,type=Cluster,name=cluster1,*

v Using Jython:

cluster = AdminControl.completeObjectName(’cell=mycell,type=Cluster,name=cluster1,*’)

print cluster

This command returns the Cluster MBean.

Example output:

WebSphere:cell=mycell,name=cluster1,mbeanIdentifier=Cluster,type=Cluster,process=cluster1

2. Stop the cluster.

v Using Jacl:

$AdminControl invoke $cluster stop

v Using Jython:

AdminControl.invoke(cluster, ’stop’)

This command invokes the stop operation on the Cluster MBean.

Configuring security with scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the

wsadmin scripting client” on page 123 article for more information.

Chapter 6. Using scripting (wsadmin) 193

If you enable security for a WebSphere Application Server cell, supply

authentication information to communicate with servers.

The sas.client.props and the soap.client.props files are located in the properties

directory for each WebSphere Application Server profile, profilePath/properties.

v The nature of the properties file updates required for running in secure mode

depend on whether you connect with a Remote Method Invocation (RMI)

connector, or a Simple Object Access Protocol (SOAP) connector:

– If you use a RMI connector, set the following properties in the

sas.client.props file with the appropriate values:

com.ibm.CORBA.loginUserid=

com.ibm.CORBA.loginPassword=

Also, set the following property:

com.ibm.CORBA.loginSource=properties

The default value for this property is prompt in the sas.client.props file. If

you leave the default value, a dialog box appears with a password prompt. If

the script is running unattended, it appears to hang.

– If you use a SOAP connector, set the following properties in the

soap.client.props file with the appropriate values:

com.ibm.SOAP.securityEnabled=true

com.ibm.SOAP.loginUserid=

com.ibm.SOAP.loginPassword=

Optionally, set the following property:

com.ibm.SOAP.loginSource=none

You can find the default value for this property in the soap.client.props file.

If you accept the default value and do not provide loginUserid and

loginPassword values, a dialog box appears with a password prompt. If the

script is running unattended, it appears to hang.
v To specify user and password information, choose one of the following methods:

– Specify user name and password on a command line, using the -user and

-password commands. For example:

wsadmin.sh -conntype RMI -port 2809 -user u1 -password secret1

– Specify user name and password in the sas.client.props file for a RMI

connector or the soap.client.props file for a SOAP connector.

If you specify user and password information on a command line and in the

sas.client.props file or the soap.client.props file, the command line

information overrides the information in the props file.

Note: On UNIX system, the use of -password option may result in security

exposure as the password information becomes visible to the system

status program such as ps command which can be invoked by other user

to display all the running processes. Do not use this option if security

exposure is a concern. Instead, specify user and password information in

the soap.client.props file for SOAP connector or sas.client.props file for

RMI connector. The soap.client.props and sas.client.props files are located

in the properties directory of your WebSphere Application Server profile.

Enabling and disabling global security using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the

wsadmin scripting client” on page 123 article for more information.

194 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

The default profile sets up procedures so that you can enable and disable global

security based on LocalOS registry.

v You can use the help command to find out the arguments that you need to

provide with this call, for example:

– Using Jacl:

securityon help

Example output:

Syntax: securityon user password

– Using Jython:

securityon()

Example output:

Syntax: securityon(user, password)

v To enable global security based on the LocalOS registry, use the following

procedure call and arguments:

– Using Jacl:

securityon user1 password1

– Using Jython:

securityon(’user1’, ’password1’)

v To disable global security based on the LocalOS registry, use the following

procedure call:

– Using Jacl:

securityoff

– Using Jython:

securityoff()

Enabling and disabling Java 2 security using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the

wsadmin scripting client” on page 123 article for more information.

Perform the following steps to enable or disable Java 2 security:

1. Identify the security configuration object and assign it to the security variable:

v Using Jacl:

set security [$AdminConfig list Security]

v Using Jython:

security = AdminConfig.list(’Security’)

print security

Example output:

(cells/mycell|security.xml#Security_1)

2. Modify the enforceJava2Security attribute to enable or disable Java 2 security.

For example:

v To enable Java 2 security:

– Using Jacl:

$AdminConfig modify $security {{enforceJava2Security true}}

– Using Jython:

AdminConfig.modify(security, [[’enforceJava2Security’, ’true’]])

v To disable Java 2 security:

– Using Jacl:

Chapter 6. Using scripting (wsadmin) 195

$AdminConfig modify $security {{enforceJava2Security false}}

– Using Jython:

AdminConfig.modify(security, [[’enforceJava2Security’, ’false’]])

3. Save the configuration changes. See the “Saving configuration changes with the

wsadmin tool” on page 102 article for more information.

4. In a network deployment environment only, synchronize the node. See the

“Synchronizing nodes with the wsadmin tool” on page 86 article for more

information.

Configuring data access with scripting

This topic contains the following tasks:

v “Configuring a JDBC provider using scripting”

v “Configuring new data sources using scripting” on page 197

v “Configuring new connection pools using scripting” on page 198

v “Configuring new data source custom properties using scripting” on page 199

v “Configuring new J2CAuthentication data entries using scripting” on page 200

v “Configuring new WAS40 data sources using scripting” on page 201

v “Configuring new WAS40 connection pools using scripting” on page 202

v “Configuring new WAS40 custom properties using scripting” on page 203

v “Configuring new J2C resource adapters using scripting” on page 204

v “Configuring custom properties for J2C resource adapters using scripting” on

page 205

v “Configuring new J2C connection factories using scripting” on page 206

v “Configuring new J2C authentication data entries using scripting” on page 208

v “Configuring new J2C administrative objects using scripting” on page 210

v “Configuring new J2C activation specs using scripting” on page 209

v “Testing data source connections using scripting” on page 212

Configuring a JDBC provider using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the

wsadmin scripting client” on page 123 article for more information.

Perform the following steps to configure a new JDBC provider:

1. Identify the parent ID and assign it to the node variable. The following

example uses the node configuration object as the parent. You can modify this

example to use the cell, cluster, server, or application configuration object as the

parent.

v Using Jacl:

set node [$AdminConfig getid /Cell:mycell/Node:mynode/]

v Using Jython:

node = AdminConfig.getid(’/Cell:mycell/Node:mynode/’)

print node

Example output:

mynode(cells/mycell/nodes/mynode|node.xml#Node_1)

2. Identify the required attributes:

v Using Jacl:

196 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

$AdminConfig required JDBCProvider

v Using Jython:

print AdminConfig.required(’JDBCProvider’)

Example output:

Attribute Type

name String

implementationClassName String

3. Set up the required attributes and assign it to the jdbcAttrs variable. You can

modify the following example to setup non-required attributes for JDBC

provider.

v Using Jacl:

set n1 [list name JDBC1]

set implCN [list implementationClassName myclass]

set jdbcAttrs [list $n1 $implCN]

Example output:

{name {JDBC1}} {implementationClassName {myclass}}

v Using Jython:

n1 = [’name’, ’JDBC1’]

implCN = [’implementationClassName’, ’myclass’]

jdbcAttrs = [n1, implCN]

print jdbcAttrs

Example output:

[[’name’, ’JDBC1’], [’implementationClassName’, ’myclass’]]

4. Create a new JDBC provider using node as the parent:

v Using Jacl:

$AdminConfig create JDBCProvider $node $jdbcAttrs

v Using Jython:

AdminConfig.create(’JDBCProvider’, node, jdbcAttrs)

Example output:

JDBC1(cells/mycell/nodes/mynode|resources.xml#JDBCProvider_1)

5. Save the configuration changes. See the “Saving configuration changes with the

wsadmin tool” on page 102 article for more information.

6. In a network deployment environment only, synchronize the node. See the

“Synchronizing nodes with the wsadmin tool” on page 86 article for more

information.

Attention: If you modify the class path or native library path of a JDBC provider:

After saving your changes (and synchronizing the node in a network deployment

environment), you must restart every application server within the scope of that

JDBC provider for the new configuration to work. Otherwise, you receive a data

source failure message.

Configuring new data sources using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the

wsadmin scripting client” on page 123 article for more information.

Perform the following steps to configure a new data source:

1. Identify the parent ID:

v Using Jacl:

set newjdbc [$AdminConfig getid /Cell:mycell/Node:mynode/JDBCProvider:JDBC1/]

Chapter 6. Using scripting (wsadmin) 197

v Using Jython:

newjdbc = AdminConfig.getid(’/Cell:mycell/Node:mynode/JDBCProvider:JDBC1/’)

print newjdbc

Example output:

JDBC1(cells/mycell/nodes/mynode|resources.xml#JDBCProvider_1)

2. Obtain the required attributes:

v Using Jacl:

$AdminConfig required DataSource

v Using Jython:

print AdminConfig.required(’DataSource’)

Example output:

Attribute Type

name String

3. Setting up required attributes:

v Using Jacl:

set name [list name DS1]

set dsAttrs [list $name]

v Using Jython:

name = [’name’, ’DS1’]

dsAttrs = [name]

4. Create a data source:

v Using Jacl:

set newds [$AdminConfig create DataSource $newjdbc $dsAttrs]

v Using Jython:

newds = AdminConfig.create(’DataSource’, newjdbc, dsAttrs)

print newds

Example output:

DS1(cells/mycell/nodes/mynode|resources.xml#DataSource_1)

5. Save the configuration changes. See the “Saving configuration changes with the

wsadmin tool” on page 102 article for more information.

6. In a network deployment environment only, synchronize the node. See the

“Synchronizing nodes with the wsadmin tool” on page 86 article for more

information.

Configuring new connection pools using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the

wsadmin scripting client” on page 123 article for more information.

Perform the following steps to configure a new connection pool:

1. Identify the parent ID:

v Using Jacl:

set newds [$AdminConfig getid /Cell:mycell/Node:mynode/JDBCProvider:JDBC1/DataSource:DS1/]

v Using Jython:

newds = AdminConfig.getid(’/Cell:mycell/Node:mynode/JDBCProvider:JDBC1/DataSource:DS1/’)

Example output:

DS1(cells/mycell/nodes/mynode|resources.xml$DataSource_1)

2. Creating connection pool:

v Using Jacl:

198 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

$AdminConfig create ConnectionPool $newds {}

v Using Jython:

print AdminConfig.create(’ConnectionPool’, newds, [])

Example output:

(cells/mycell/nodes/mynode|resources.xml#ConnectionPool_1)

3. Save the configuration changes. See the “Saving configuration changes with the

wsadmin tool” on page 102 article for more information.

4. In a network deployment environment only, synchronize the node. See the

“Synchronizing nodes with the wsadmin tool” on page 86 article for more

information.

Configuring new data source custom properties using

scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the

wsadmin scripting client” on page 123 article for more information.

Perform the following steps to configure a new data source custom property:g

1. Identify the parent ID:

v Using Jacl:

set newds [$AdminConfig getid /Cell:mycell/Node:mynode/JDBCProvider:JDBC1/DataSource:DS1/]

v Using Jython:

newds = AdminConfig.getid(’/Cell:mycell/Node:mynode/JDBCProvider:JDBC1/DataSource:DS1/’)

print newds

Example output:

DS1(cells/mycell/nodes/mynode|resources.xml$DataSource_1)

2. Get the J2EE resource property set:

v Using Jacl:

set propSet [$AdminConfig showAttribute $newds propertySet]

v Using Jython:

propSet = AdminConfig.showAttribute(newds, ’propertySet’)

print propSet

Example output:

(cells/mycell/nodes/mynode|resources.xml#J2EEResourcePropertySet_8)

3. Get required attribute:

v Using Jacl:

$AdminConfig required J2EEResourceProperty

v Using Jython:

print AdminConfig.required(’J2EEResourceProperty’)

Example output:

Attribute Type

name String

4. Set up attributes:

v Using Jacl:

set name [list name RP4]

set rpAttrs [list $name]

v Using Jython:

name = [’name’, ’RP4’]

rpAttrs = [name]

Chapter 6. Using scripting (wsadmin) 199

5. Create a J2EE resource property:

v Using Jacl:

$AdminConfig create J2EEResourceProperty $propSet $rpAttrs

v Using Jython:

print AdminConfig.create(’J2EEResourceProperty’, propSet, rpAttrs)

Example output:

RP4(cells/mycell/nodes/mynode|resources.xml#J2EEResourceProperty_8)

6. Save the configuration changes. See the “Saving configuration changes with the

wsadmin tool” on page 102 article for more information.

7. In a network deployment environment only, synchronize the node. See the

“Synchronizing nodes with the wsadmin tool” on page 86 article for more

information.

Configuring new J2CAuthentication data entries using

scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the

wsadmin scripting client” on page 123 article for more information.

Perform the following steps to configure a new J2CAuthentication data entry:

1. Identify the parent ID:

v Using Jacl:

set security [$AdminConfig getid /Cell:mycell/Security:/]

v Using Jython:

security = AdminConfig.getid(’/Cell:mycell/Security:/’)

print security

Example output:

(cells/mycell|security.xml#Security_1)

2. Get required attributes:

v Using Jacl:

$AdminConfig required JAASAuthData

v Using Jython:

print AdminConfig.required(’JAASAuthData’)

Example output:

Attribute Type

alias String

userId String

password String

3. Set up required attributes:

v Using Jacl:

set alias [list alias myAlias]

set userid [list userId myid]

set password [list password secret]

set jaasAttrs [list $alias $userid $password]

Example output:

{alias myAlias} {userId myid} {password secret}

v Using Jython:

200 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

alias = [’alias’, ’myAlias’]

userid = [’userId’, ’myid’]

password = [’password’, ’secret’]

jaasAttrs = [alias, userid, password]

print jaasAttrs

Example output:

[[’alias’, ’myAlias’], [’userId’, ’myid’], [’password’, ’secret’]]

4. Create JAAS auth data:

v Using Jacl:

$AdminConfig create JAASAuthData $security $jaasAttrs

v Using Jython:

print AdminConfig.create(’JAASAuthData’, security, jaasAttrs)

Example output:

(cells/mycell|security.xml#JAASAuthData_2)

5. Save the configuration changes. See the “Saving configuration changes with the

wsadmin tool” on page 102 article for more information.

6. In a network deployment environment only, synchronize the node. See the

“Synchronizing nodes with the wsadmin tool” on page 86 article for more

information.

Configuring new WAS40 data sources using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the

wsadmin scripting client” on page 123 article for more information.

Perform the following steps to configure a new WAS40 data source:

1. Identify the parent ID:

v Using Jacl:

set newjdbc [$AdminConfig getid "/JDBCProvider:Cloudscape JDBC Provider/"]

v Using Jython:

newjdbc = AdminConfig.getid(’/JDBCProvider:Cloudscape JDBC Provider/’)

print newjdbc

Example output:

JDBC1(cells/mycell/nodes/mynode|resources.xml$JDBCProvider_1)

2. Get required attributes:

v Using Jacl:

$AdminConfig required WAS40DataSource

v Using Jython:

print AdminConfig.required(’WAS40DataSource’)

Example output:

Attribute Type

name String

3. Set up required attributes:

v Using Jacl:

set name [list name was4DS1]

set ds4Attrs [list $name]

v Using Jython:

name = [’name’, ’was4DS1’]

ds4Attrs = [name]

4. Create WAS40DataSource:

Chapter 6. Using scripting (wsadmin) 201

v Using Jacl:

set new40ds [$AdminConfig create WAS40DataSource $newjdbc $ds4Attrs]

v Using Jython:

new40ds = AdminConfig.create(’WAS40DataSource’, newjdbc, ds4Attrs)

print new40ds

Example output:

was4DS1(cells/mycell/nodes/mynode|resources.xml#WAS40DataSource_1)

5. Save the configuration changes. See the “Saving configuration changes with the

wsadmin tool” on page 102 article for more information.

6. In a network deployment environment only, synchronize the node. See the

“Synchronizing nodes with the wsadmin tool” on page 86 article for more

information.

Configuring new WAS40 connection pools using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the

wsadmin scripting client” on page 123 article for more information.

Perform the following steps to configure a new WAS40 connection pool:

1. Identify the parent ID:

v Using Jacl:

set new40ds [$AdminConfig getid /Cell:mycell/Node:mynode/

Server:server1/JDBCProvider:JDBC1/WAS40DataSource:was4DS1/]

v Using Jython:

new40ds = AdminConfig.getid(’/Cell:mycell/Node:mynode/

Server:server1/JDBCProvider:JDBC1/WAS40DataSource:was4DS1/’)

print new40ds

Example output:

was4DS1(cells/mycell/nodes/mynodes:resources.xml$WAS40DataSource_1)

2. Get required attributes:

v Using Jacl:

$AdminConfig required WAS40ConnectionPool

v Using Jython:

print AdminConfig.required(’WAS40ConnectionPool’)

Example output:

Attribute Type

minimumPoolSize Integer

maximumPoolSize Integer

connectionTimeout Integer

idleTimeout Integer

orphanTimeout Integer

statementCacheSize Integer

3. Set up required attributes:

v Using Jacl:

set mps [list minimumPoolSize 5]

set minps [list minimumPoolSize 5]

set maxps [list maximumPoolSize 30]

set conn [list connectionTimeout 10]

set idle [list idleTimeout 5]

set orphan [list orphanTimeout 5]

set scs [list statementCacheSize 5]

set 40cpAttrs [list $minps $maxps $conn $idle $orphan $scs]

Example output:

202 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

{minimumPoolSize 5} {maximumPoolSize 30}

{connectionTimeout 10} {idleTimeout 5}

{orphanTimeout 5} {statementCacheSize 5}

v Using Jython:

minps = [’minimumPoolSize’, 5]

maxps = [’maximumPoolSize’, 30]

conn = [’connectionTimeout’, 10]

idle = [’idleTimeout’, 5]

orphan = [’orphanTimeout’, 5]

scs = [’statementCacheSize’, 5]

cpAttrs = [minps, maxps, conn, idle, orphan, scs]

print cpAttrs

Example output:

[[minimumPoolSize, 5], [maximumPoolSize, 30],

[connectionTimeout, 10], [idleTimeout, 5],

[orphanTimeout, 5], [statementCacheSize, 5]]

4. Create was40 connection pool:

v Using Jacl:

$AdminConfig create WAS40ConnectionPool $new40ds $40cpAttrs

v Using Jython:

print AdminConfig.create(’WAS40ConnectionPool’, new40ds, 40cpAttrs)

Example output:

(cells/mycell/nodes/mynode:resources.xml#WAS40ConnectionPool_1)

5. Save the configuration changes. See the “Saving configuration changes with the

wsadmin tool” on page 102 article for more information.

6. In a network deployment environment only, synchronize the node. See the

“Synchronizing nodes with the wsadmin tool” on page 86 article for more

information.

Configuring new WAS40 custom properties using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the

wsadmin scripting client” on page 123 article for more information.

Perform the following steps to configure a new WAS40 custom properties:

1. Identify the parent ID:

v Using Jacl:

set new40ds [$AdminConfig getid /Cell:mycell/Node:mynode/

JDBCProvider:JDBC1/WAS40DataSource:was4DS1/]

v Using Jython:

new40ds = AdminConfig.getid(’/Cell:mycell/Node:mynode/

JDBCProvider:JDBC1/WAS40DataSource:was4DS1/’)

print new40ds

Example output:

was4DS1(cells/mycell/nodes/mynodes|resources.xml$WAS40DataSource_1)

2. Get required attributes:

v Using Jacl:

set propSet [$AdminConfig showAttribute $newds propertySet]

v Using Jython:

propSet = AdminConfig.showAttribute(newds, ’propertySet’)

print propSet

Example output:

Chapter 6. Using scripting (wsadmin) 203

(cells/mycell/nodes/mynode|resources.xml#J2EEResourcePropertySet_9)

3. Get required attribute:

v Using Jacl:

$AdminConfig required J2EEResourceProperty

v Using Jython:

print AdminConfig.required(’J2EEResourceProperty’)

Example output:

Attribute Type

name String

4. Set up required attributes:

v Using Jacl:

set name [list name RP5]

set rpAttrs [list $name]

v Using Jython:

name = [’name’, ’RP5’]

rpAttrs = [name]

5. Create J2EE Resource Property:

v Using Jacl:

$AdminConfig create J2EEResourceProperty $propSet $rpAttrs

v Using Jython:

print AdminConfig.create(’J2EEResourceProperty’, propSet, rpAttrs)

Example output:

RP5(cells/mycell/nodes/mynode|resources.xml#J2EEResourceProperty_9)

6. Save the configuration changes. See the “Saving configuration changes with the

wsadmin tool” on page 102 article for more information.

7. In a network deployment environment only, synchronize the node. See the

“Synchronizing nodes with the wsadmin tool” on page 86 article for more

information.

Configuring new J2C resource adapters using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the

wsadmin scripting client” on page 123 article for more information.

Perform the following steps to configure a new J2C resource adapter:

1. Identify the parent ID and assign it to the node variable. The following

example uses the node configuration object as the parent. You can modify this

example to use the cell, cluster, server, or application configuration object as the

parent.

v Using Jacl:

set node [$AdminConfig getid /Cell:mycell/Node:mynode/]

v Using Jython:

node = AdminConfig.getid(’/Cell:mycell/Node:mynode/’)

print node

Example output:

mynode(cells/mycell/nodes/mynode|node.xml#Node_1)

2. Identify the required attributes:

v Using Jacl:

$AdminConfig required J2CResourceAdapter

204 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

v Using Jython:

print AdminConfig.required(’J2CResourceAdapter’)

Example output:

Attribute Type

name String

3. Set up the required attributes:

v Using Jacl:

set rarFile /currentScript/cicseci.rar

set option [list -rar.name RAR1]

v Using Jython:

rarFile = ’/currentScript/cicseci.rar’

option = ’[-rar.name RAR1]’

4. Create a resource adapter:

v Using Jacl:

set newra [$AdminConfig installResourceAdapter $rarFile mynode $option]

v Using Jython:

newra = AdminConfig.installResourceAdapter(rarFile, ’mynode’, option)

print newra

Example output:

RAR1(cells/mycell/nodes/mynode|resources.xml#J2CResourceAdapter_1)

5. Save the configuration changes. See the “Saving configuration changes with the

wsadmin tool” on page 102 article for more information.

6. In a network deployment environment only, synchronize the node. See the

“Synchronizing nodes with the wsadmin tool” on page 86 article for more

information.

Configuring custom properties for J2C resource adapters

using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the

wsadmin scripting client” on page 123 article for more information.

Perform the following steps to configure a new custom property for a J2C resource

adapters:

1. Identify the parent ID and assign it to the newra variable.

v Using Jacl:

set newra [$AdminConfig getid /Cell:mycell/Node:mynode/J2CResourceAdapter:RAR1/]

v Using Jython:

newra = AdminConfig.getid(’/Cell:mycell/Node:mynode/J2CResourceAdapter:RAR1/’)

print newra

Example output:

RAR1(cells/mycell/nodes/mynode|resources.xml#J2CResourceAdapter_1)

2. Get the J2EE resource property set:

v Using Jacl:

set propSet [$AdminConfig showAttribute $newra propertySet]

v Using Jython:

propSet = AdminConfig.showAttribute(newra, ’propertySet’)

print propSet

Example output:

(cells/mycell/nodes/mynode|resources.xml#PropertySet_8)

Chapter 6. Using scripting (wsadmin) 205

3. Identify the required attributes:

v Using Jacl:

$AdminConfig required J2EEResourceProperty

v Using Jython:

print AdminConfig.required(’J2EEResourceProperty’)

Example output:

Attribute Type

name String

4. Set up the required attributes:

v Using Jacl:

set name [list name RP4]

set rpAttrs [list $name]

v Using Jython:

name = [’name’, ’RP4’]

rpAttrs = [name]

5. Create a J2EE resource property:

v Using Jacl:

$AdminConfig create J2EEResourceProperty $propSet $rpAttrs

v Using Jython:

print AdminConfig.create(’J2EEResourceProperty’, propSet, rpAttrs)

Example output:

RP4(cells/mycell/nodes/mynode|resources.xml#J2EEResourceProperty_8)

6. Save the configuration changes. See the “Saving configuration changes with the

wsadmin tool” on page 102 article for more information.

7. In a network deployment environment only, synchronize the node. See the

“Synchronizing nodes with the wsadmin tool” on page 86 article for more

information.

Configuring new J2C connection factories using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the

wsadmin scripting client” on page 123 article for more information.

Perform the following steps to configure a new J2C connection factory:

1. Identify the parent ID and assign it to the newra variable.

v Using Jacl:

set newra [$AdminConfig getid /Cell:mycell/Node:mynode/J2CResourceAdapter:RAR1/]

v Using Jython:

newra = AdminConfig.getid(’/Cell:mycell/Node:mynode/J2CResourceAdapter:RAR1/’)

print newra

Example output:

RAR1(cells/mycell/nodes/mynode|resources.xml#J2CResourceAdapter_1)

2. There are two ways to configure a new J2C connection factory. Perform one of

the following:

v Using the AdminTask object:

a. List the connection factory interfaces:

– Using Jacl:

$AdminTask listConnectionFactoryInterfaces $newra

– Using Jacl:

206 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

AdminTask.listConnectionFactoryInterfaces(newra)

Example output:

javax.sql.DataSource

b. Create a J2CConnectionFactory:

– Using Jacl:

$AdminTask createJ2CConnectionFactory $newra { -name cf1

-jndiName eis/cf1 -connectionFactoryInterface

avax.sql.DataSource

– Using Jacl:

AdminTask.createJ2CConnectionFactory(newra, ’[’-name’, ’cf1’,

’-jndiName’, ’eis/cf1’, ’-connectionFactoryInterface’,

’avax.sql.DataSource’]’)

v Using the AdminConfig object:

a. Identify the required attributes:

– Using Jacl:

$AdminConfig required J2CConnectionFactory

– Using Jython:

print AdminConfig.required(’J2CConnectionFactory’)

Example output:

Attribute Type

connectionDefinition ConnectionDefinition@

b. If your resource adapter is JCA1.5 and you have multiple connection

definitions defined, it is required that you specify the

ConnectionDefinition attribute. If your resource adapter is JCA1.5 and

you have only one connection definition defined, it will be picked up

automatically. If your resource adapter is JCA1.0, you do not need to

specify the ConnectionDefinition attribute. Perform the following

command to list the connection definitions defined by the resource

adapter:

– Using Jacl:

$AdminConfig list ConnectionDefinition $newra

– Using Jython:

print AdminConfig.list(’ConnectionDefinition’, $newra)

c. Set up the required attributes:

– Using Jacl:

set name [list name J2CCF1]

set j2ccfAttrs [list $name]

set jname [list jndiName eis/j2ccf1]

– Using Jython:

name = [’name’, ’J2CCF1’]

j2ccfAttrs = [name]

jname = [’jndiName’, eis/j2ccf1]

d. If you are specifying the ConnectionDefinition attribute, also set up the

following:

– Using Jacl:

set cdattr [list connectionDefinition $cd]

– Using Jython:

cdattr = [’connectionDefinition’, $cd]

e. Create a J2C connection factory:

– Using Jacl:

Chapter 6. Using scripting (wsadmin) 207

$AdminConfig create J2CConnectionFactory $newra $j2ccfAttrs

– Using Jython:

print AdminConfig.create(’J2CConnectionFactory’, newra, j2ccfAttrs)

Example output:

J2CCF1(cells/mycell/nodes/mynode|resources.xml#J2CConnectionFactory_1)

3. Save the configuration changes. See the “Saving configuration changes with the

wsadmin tool” on page 102 article for more information.

4. In a network deployment environment only, synchronize the node. See the

“Synchronizing nodes with the wsadmin tool” on page 86 article for more

information.

Configuring new J2C authentication data entries using

scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the

wsadmin scripting client” on page 123 article for more information.

Perform the following steps to configure a new J2C authentication data entry:

1. Identify the parent ID and assign it to the security variable.

v Using Jacl:

set security [$AdminConfig getid /Security:mysecurity/]

v Using Jython:

security = AdminConfig.getid(’/Security:mysecurity/’)

2. Identify the required attributes:

v Using Jacl:

$AdminConfig required JAASAuthData

v Using Jython:

print AdminConfig.required(’JAASAuthData’)

Example output:

Attribute Type

alias String

userId String

password String

3. Set up the required attributes:

v Using Jacl:

set alias [list alias myAlias]

set userid [list userId myid]

set password [list password secret]

set jaasAttrs [list $alias $userid $password]

Example output:

{alias myAlias} {userId myid} {password secret}

v Using Jython:

alias = [’alias’, ’myAlias’]

userid = [’userId’, ’myid’]

password = [’password’, ’secret’]

jaasAttrs = [alias, userid, password]

Example output:

[[alias, myAlias], [userId, myid], [password, secret]]

4. Create JAAS authentication data:

v Using Jacl:

208 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

$AdminConfig create JAASAuthData $security $jaasAttrs

v Using Jython:

print AdminConfig.create(’JAASAuthData’, security, jaasAttrs)

Example output:

(cells/mycell/nodes/mynode|resources.xml#JAASAuthData_2)

5. Save the configuration changes. See the “Saving configuration changes with the

wsadmin tool” on page 102 article for more information.

6. In a network deployment environment only, synchronize the node. See the

“Synchronizing nodes with the wsadmin tool” on page 86 article for more

information.

Configuring new J2C activation specs using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the

wsadmin scripting client” on page 123 article for more information.

Perform the following steps to configure a J2C activation specs:

1. Identify the parent ID and assign it to the newra variable.

v Using Jacl:

set newra [$AdminConfig getid /Cell:mycell/Node:mynode/J2CResourceAdapter:RAR1/]

v Using Jython:

newra = AdminConfig.getid(’/Cell:mycell/Node:mynode/J2CResourceAdapter:RAR1/’)

print newra

Example output:

RAR1(cells/mycell/nodes/mynode|resources.xml#J2CResourceAdapter_1)

2. There are two ways to configure a new J2C administrative object. Perform one

of the following:

v Using the AdminTask object:

a. List the administrative object interfaces:

Using Jacl:

$AdminTask listMessageListenerTypes $newra

Using Jython:

AdminTask.listMessageListenerTypes(newra)

Example output:

javax.jms.MessageListener

b. Create a J2C administrative object:

Using Jacl:

$AdminTask createJ2CActivationSpec $newra { -name ac1

-jndiName eis/ac1 -message ListenerType

javax.jms.MessageListener}

Using Jython:

AdminTask.createJ2CActivationSpec(newra, [’-name’, ’ao1’,

’-jndiName’, ’eis/ao1’, ’-message’, ’ListenerType’,

’javax.jms.MessageListener’])

v Using the AdminConfig object:

a. Using Jacl:

$AdminConfig required J2CActivationSpec

Using Jython:

print AdminConfig.required(’J2CActivationSpec’)

Chapter 6. Using scripting (wsadmin) 209

Example output:

Attribute Type

activationSpec ActivationSpec@

b. If your resource adapter is JCA V1.5 and you have multiple activation

specs defined, it is required that you specify the activation spec attribute.

If your resource adapter is JCA V1.5 and you have only one activation

spec defined, it will be picked up automatically. If your resource adapter

is JCA V1.0, you do not need to specify the activationSpec attribute.

Perform the following command to list the activation specs defined by

the resource adapter:

Using Jacl:

$AdminConfig list ActivationSpec $newra

Using Jython:

print AdminConfig.list(’ActivationSpec’, $newra)

c. Set the administrative object that you need to a variable:

Using Jacl:

set ac ActivationSpecID

set name [list name J2CAC1]

set jname [jndiName eis/j2cac1]

set j2cacAttrs [list $name $jname]

Using Jython:

ac = ActivationSpecID

name = [’name’, ’J2CAC1’]

jname = [’jndiName’, ’eis/j2cac1’]

j2cacAttrs = [name, jname]

d. If you are specifying the ActivationSpec attribute, also set up the

following:

Using Jacl:

set cdcttr [list activationSpec $ac]

Using Jython:

cdattr = [’activationSpec’, ac]

e. Create a J2C activation spec object:

Using Jacl:

$AdminConfig create J2CActivationSpec $newra $j2cacAttrs

Using Jython:

print AdminConfig.create(’J2CActivationSpec’, newra,j2cacAttrs)

Example output:

J2CAC1(cells/mycell/nodes/mynode|resources.xml#J2CActivationSpec_1)

3. Save the configuration changes. See the “Saving configuration changes with the

wsadmin tool” on page 102 article for more information.

4. In a network deployment environment only, synchronize the node. See the

“Synchronizing nodes with the wsadmin tool” on page 86 article for more

information.

Configuring new J2C administrative objects using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the

wsadmin scripting client” on page 123 article for more information.

Perform the following steps to configure a J2C administrative object:

1. Identify the parent ID and assign it to the newra variable.

210 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

v Using Jacl:

set newra [$AdminConfig getid /Cell:mycell/Node:mynode/J2CResourceAdapter:RAR1/]

v Using Jython:

newra = AdminConfig.getid(’/Cell:mycell/Node:mynode/J2CResourceAdapter:RAR1/’)

print newra

Example output:

RAR1(cells/mycell/nodes/mynode|resources.xml#J2CResourceAdapter_1)

2. There are two ways to configure a new J2C administrative object. Perform one

of the following:

v Using the AdminTask object:

a. List the administrative object interfaces:

Using Jacl:

$AdminTask listAdminObjectInterfaces $newra

Using Jython:

AdminTask.listAdminObjectInterfaces(newra)

Example output:

com.ibm.test.message.FVTMessageProvider

b. Create a J2C administrative object:

Using Jacl:

$AdminTask createJ2CAdminObject $newra { -name ao1 -jndiName eis/ao1

-adminObjectInterface com.ibm.test.message.FVTMessageProvider }

Using Jython:

AdminTask.createJ2CAdminObject(newra, [’-name’, ’ao1’, ’-jndiName’, ’eis/ao1’,

’-adminObjectInterface’, ’com.ibm.test.message.FVTMessageProvider’])

v Using the AdminConfig object:

a. Using Jacl:

$AdminConfig required J2CAdminObject

Using Jython:

print AdminConfig.required(’J2CAdminObject’)

Example output:

Attribute Type

adminObject AdminObject@

b. If your resource adapter is JCA V1.5 and you have multiple

administrative objects defined, it is required that you specify the

administrative object attribute. If your resource adapter is JCA V1.5 and

you have only one administrative object defined, it will be picked up

automatically. If your resource adapter is JCA V1.0, you do not need to

specify the administrative object attribute. Perform the following

command to list the administrative objects defined by the resource

adapter:

Using Jacl:

$AdminConfig list AdminObject $newra

Using Jython:

print AdminConfig.list(’AdminObject’, $newra)

c. Set the administrative objects that you need to a variable:

Using Jacl:

set ao AdminObjectId

set name [list name J2CAO1]

set jname [jndiName eis/j2cao1]

set j2caoAttrs [list $name $jname]

Chapter 6. Using scripting (wsadmin) 211

Using Jython:

ao = AdminObjectId

name = [’name’, ’J2CAO1’]

set jname = [’jndiName’, eis/j2cao1]

j2caoAttrs = [name, jname]

d. If you are specifying the AdminObject attribute, also set up the following:

Using Jacl:

set cdattr [list adminObject $ao]

Using Jython:

cdattr = [’adminObject’, ao]

e. Create a J2C administrative object:

Using Jacl:

$AdminConfig create J2CAdminObject $newra $j2caoAttrs

Using Jython:

print AdminConfig.create(’J2CAdminObject’, newra, j2caoAttrs)

Example output:

J2CAO1(cells/mycell/nodes/mynode|resources.xml#J2CAdminObject_1)

3. Save the configuration changes. See the “Saving configuration changes with the

wsadmin tool” on page 102 article for more information.

4. In a network deployment environment only, synchronize the node. See the

“Synchronizing nodes with the wsadmin tool” on page 86 article for more

information.

Testing data source connections using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the

wsadmin scripting client” on page 123 article for more information.

Perform the following steps to test a data source to ensure a connection to the

database.

1. Identify the DataSourceCfgHelper MBean and assign it to the dshelper variable.

v Using Jacl:

set ds [$AdminConfig getid /DataSource:DS1/]

$AdminControl testConnection $ds

v Using Jython:

ds = AdminConfig.getid(’/DataSource:DS1/’)

AdminControl.testConnection(ds)

Example output:

WASX7217I: Connection to provided datasource was successful.

2. Test the connection. The following example invokes the

testConnectionToDataSource operation on the MBean, passing in the classname,

userid, password, database name, JDBC driver class path, language, and

country.

v Using Jacl:

$AdminControl invoke $dshelper testConnectionToDataSource

"COM.ibm.db2.jdbc.DB2XADataSource db2admin db2admin

{{databaseName sample}} /sqllib/java/db2java.zip en US"

v Using Jython:

print AdminControl.invoke(dshelper, ’testConnectionToDataSource’,

’COM.ibm.db2.jdbc.DB2XADataSource dbuser1 dbpwd1

"{{databaseName jtest1}}" /sqllib/java12/db \"\" \"\"’)

212 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

Example output:

WASX7217I: Connection to provided data source was successful.

Configuring messaging with scripting

This topic contains the following tasks:

v “Configuring the message listener service using scripting”

v “Configuring new JMS providers using scripting” on page 214

v “Configuring new JMS destinations using scripting” on page 215

v “Configuring new JMS connections using scripting” on page 216

v “Configuring new WebSphere queue connection factories using scripting” on

page 217

v “Configuring new WebSphere topic connection factories using scripting” on page

218

v “Configuring new WebSphere queues using scripting” on page 219

v “Configuring new WebSphere topics using scripting” on page 220

v “Configuring new MQ queue connection factories using scripting” on page 222

v “Configuring new MQ topic connection factories using scripting” on page 223

v “Configuring new MQ queues using scripting” on page 224

v “Configuring new MQ topics using scripting” on page 225

Configuring the message listener service using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the

wsadmin scripting client” on page 123 article for more information.

Perform the following steps to configure the message listener service for an

application server:

1. Identify the application server and assign it to the server variable:

v Using Jacl:

set server [$AdminConfig getid /Cell:mycell/Node:mynode/Server:server1/]

v Using Jython:

server = AdminConfig.getid(’/Cell:mycell/Node:mynode/Server:server1/’)

print server

Example output:

server1(cells/mycell/nodes/mynode/servers/server1|server.xml#Server_1)

2. Identify the message listener service belonging to the server and assign it to the

mls variable:

v Using Jacl:

set mls [$AdminConfig list MessageListenerService $server]

v Using Jython:

mls = AdminConfig.list(’MessageListenerService’, server)

print mls

Example output:

(cells/mycell/nodes/mynode/servers/server1|server.xml#MessageListenerService_1)

3. Modify various attributes with one of the following examples:

v This example command changes the thread pool attributes:

– Using Jacl:

Chapter 6. Using scripting (wsadmin) 213

$AdminConfig modify $mls {{threadPool {{inactivityTimeout 4000}

{isGrowable true} {maximumSize 100} {minimumSize 25}}}}

– Using Jython:

AdminConfig.modify(mls, [[’threadPool’, [[’inactivityTimeout’, 4000],

[’isGrowable’, ’true’], [’maximumSize’, 100], [’minimumSize’, 25]]]])

v This example modifies the property of the first listener port:

– Using Jacl:

set lports [$AdminConfig showAttribute $mls listenerPorts]

set lport [lindex $lports 0]

$AdminConfig modify $lport {{maxRetries 2}}

– Using Jython:

lports = AdminConfig.showAttribute(mls, ’listenerPorts’)

cleanLports = lports[1:len(lports)-1]

lport = cleanLports.split(" ")[0]

AdminConfig.modify(lport, [[’maxRetries’, 2]])

v This example adds a listener port:

– Using Jacl:

set new [$AdminConfig create ListenerPort $mls {{name my}

{destinationJNDIName di} {connectionFactoryJNDIName jndi/fs}}]

$AdminConfig create StateManageable $new {{initialState START}}

– Using Jython:

new = AdminConfig.create(’ListenerPort’, mls, [[’name’, ’my’],

[’destinationJNDIName’, ’di’], [’connectionFactoryJNDIName’, ’jndi/fsi’]])

print new

print AdminConfig.create(’StateManageable’, new, [[’initialState’, ’START’]])

Example output:

my(cells/mycell/nodes/mynode/servers/server1:server.xml#ListenerPort_1079471940692)

(cells/mycell/nodes/mynode/servers/server1:server.xml#StateManageable_107947182623)

4. Save the configuration changes. See the “Saving configuration changes with the

wsadmin tool” on page 102 article for more information.

5. In a network deployment environment only, synchronize the node. See the

“Synchronizing nodes with the wsadmin tool” on page 86 article for more

information.

Configuring new JMS providers using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the

wsadmin scripting client” on page 123 article for more information.

Perform the following steps to configure a new JMS provider:

1. Identify the parent ID:

v Using Jacl:

set node [$AdminConfig getid /Cell:mycell/Node:mynode/]

v Using Jython:

node = AdminConfig.getid(’/Cell:mycell/Node:mynode/’)

print node

Example output:

mynode(cells/mycell/nodes/mynode|node.xml#Node_1)

2. Get required attributes:

v Using Jacl:

$AdminConfig required JMSProvider

v Using Jython:

214 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

print AdminConfig.required(’JMSProvider’)

Example output:

Attribute Type

name String

externalInitialContextFactory String

externalProviderURL String

3. Set up required attributes:

v Using Jacl:

set name [list name JMSP1]

set extICF [list externalInitialContextFactory

"Put the external initial context factory here"]

set extPURL [list externalProviderURL "Put the external provider URL here"]

set jmspAttrs [list $name $extICF $extPURL]

v Using Jython:

name = [’name’, ’JMSP1’]

extICF = [’externalInitialContextFactory’,

"Put the external initial context factory here"]

extPURL = [’externalProviderURL’, "Put the external provider URL here"]

jmspAttrs = [name, extICF, extPURL]

print jmspAttrs

Example output:

{name JMSP1} {externalInitialContextFactory {Put the external

initial context factory here }} {externalProviderURL

{Put the external provider URL here}}

4. Create the JMS provider:

v Using Jacl:

set newjmsp [$AdminConfig create JMSProvider $node $jmspAttrs]

v Using Jython:

newjmsp = AdminConfig.create(’JMSProvider’, node, jmspAttrs)

print newjmsp

Example output:

JMSP1(cells/mycell/nodes/mynode|resources.xml#JMSProvider_1)

5. Save the configuration changes. See the “Saving configuration changes with the

wsadmin tool” on page 102 article for more information.

6. In a network deployment environment only, synchronize the node. See the

“Synchronizing nodes with the wsadmin tool” on page 86 article for more

information.

Configuring new JMS destinations using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the

wsadmin scripting client” on page 123 article for more information.

Perform the following steps to configure a new JMS destination:

1. Identify the parent ID:

v Using Jacl:

set newjmsp [$AdminConfig getid /Cell:mycell/Node:myNode/JMSProvider:JMSP1]

v Using Jython:

newjmsp = AdminConfig.getid(’/Cell:mycell/Node:myNode/JMSProvider:JMSP1’)

print newjmsp

Example output:

JMSP1(cells/mycell/nodes/mynode|resources.xml#JMSProvider_1)

2. Get required attributes:

Chapter 6. Using scripting (wsadmin) 215

v Using Jacl:

$AdminConfig required GenericJMSDestination

v Using Jython:

print AdminConfig.required(’GenericJMSDestination’)

Example output:

Attribute Type

name String

jndiName String

externalJNDIName String

3. Set up required attributes:

v Using Jacl:

set name [list name JMSD1]

set jndi [list jndiName jms/JMSDestination1]

set extJndi [list externalJNDIName jms/extJMSD1]

set jmsdAttrs [list $name $jndi $extJndi]

v Using Jython:

name = [’name’, ’JMSD1’]

jndi = [’jndiName’, ’jms/JMSDestination1’]

extJndi = [’externalJNDIName’, ’jms/extJMSD1’]

jmsdAttrs = [name, jndi, extJndi]

print jmsdAttrs

Example output:

{name JMSD1} {jndiName jms/JMSDestination1} {externalJNDIName jms/extJMSD1}

4. Create generic JMS destination:

v Using Jacl:

$AdminConfig create GenericJMSDestination $newjmsp $jmsdAttrs

v Using Jython:

print AdminConfig.create(’GenericJMSDestination’, newjmsp, jmsdAttrs)

Example output:

JMSD1(cells/mycell/nodes/mynode|resources.xml#GenericJMSDestination_1)

5. Save the configuration changes. See the “Saving configuration changes with the

wsadmin tool” on page 102 article for more information.

6. In a network deployment environment only, synchronize the node. See the

“Synchronizing nodes with the wsadmin tool” on page 86 article for more

information.

Configuring new JMS connections using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the

wsadmin scripting client” on page 123 article for more information.

Perform the following steps to configure a new JMS connection:

1. Identify the parent ID:

v Using Jacl:

set newjmsp [$AdminConfig getid /Cell:mycell/Node:myNode/JMSProvider:JMSP1]

v Using Jython:

newjmsp = AdminConfig.getid(’/Cell:mycell/Node:myNode/JMSProvider:JMSP1’)

print newjmsp

Example output:

JMSP1(cells/mycell/nodes/mynode|resources.xml#JMSProvider_1)

2. Get required attributes:

216 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

v Using Jacl:

$AdminConfig required GenericJMSConnectionFactory

v Using Jython:

print AdminConfig.required(’GenericJMSConnectionFactory’)

Example output:

Attribute Type

name String

jndiName String

externalJNDIName String

3. Set up required attributes:

v Using Jacl:

set name [list name JMSCF1]

set jndi [list jndiName jms/JMSConnFact1]

set extJndi [list externalJNDIName jms/extJMSCF1]

set jmscfAttrs [list $name $jndi $extJndi]

Example output:

{name JMSCF1} {jndiName jms/JMSConnFact1} {externalJNDIName jms/extJMSCF1}

v Using Jython:

name = [’name’, ’JMSCF1’]

jndi = [’jndiName’, ’jms/JMSConnFact1’]

extJndi = [’externalJNDIName’, ’jms/extJMSCF1’]

jmscfAttrs = [name, jndi, extJndi]

print jmscfAttrs

Example output:

[[name, JMSCF1], [jndiName, jms/JMSConnFact1], [externalJNDIName, jms/extJMSCF1]]

4. Create generic JMS connection factory:

v Using Jacl:

$AdminConfig create GenericJMSConnectionFactory $newjmsp $jmscfAttrs

v Using Jython:

print AdminConfig.create(’GenericJMSConnectionFactory’, newjmsp, jmscfAttrs)

Example output:

JMSCF1(cells/mycell/nodes/mynode|resources.xml#GenericJMSConnectionFactory_1)

5. Save the configuration changes. See the “Saving configuration changes with the

wsadmin tool” on page 102 article for more information.

6. In a network deployment environment only, synchronize the node. See the

“Synchronizing nodes with the wsadmin tool” on page 86 article for more

information.

Configuring new WebSphere queue connection factories using

scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the

wsadmin scripting client” on page 123 article for more information.

Perform the following steps to configure a new WebSphere queue connection

factory:

1. Identify the parent ID:

v Using Jacl:

set newjmsp [$AdminConfig getid /Cell:mycell/Node:mynode/JMSProvider:JMSP1/]

v Using Jython:

Chapter 6. Using scripting (wsadmin) 217

newjmsp = AdminConfig.getid(’/Cell:mycell/Node:myNode/JMSProvider:JMSP1/’)

print newjmsp

Example output:

JMSP1(cells/mycell/nodes/mynode|resources.xml#JMSProvider_1)

2. Get required attributes:

v Using Jacl:

$AdminConfig required WASQueueConnectionFactory

v Using Jython:

print AdminConfig.required(’WASQueueConnectionFactory’)

Example output:

Attribute Type

name String

jndiName String

3. Set up required attributes:

v Using Jacl:

set name [list name WASQCF]

set jndi [list jndiName jms/WASQCF]

set mqcfAttrs [list $name $jndi]

Example output:

{name WASQCF} {jndiName jms/WASQCF}

v Using Jython:

name = [’name’, ’WASQCF’]

jndi = [’jndiName’, ’jms/WASQCF’]

mqcfAttrs = [name, jndi]

print mqcfAttrs

Example output:

[[name, WASQCF], [jndiName, jms/WASQCF]]

4. Create was queue connection factories:

v Using Jacl:

$AdminConfig create WASQueueConnectionFactory $newjmsp $mqcfAttrs

v Using Jython:

print AdminConfig.create(’WASQueueConnectionFactory’, newjmsp, mqcfAttrs)

Example output:

WASQCF(cells/mycell/nodes/mynode|resources.xml#WASQueueConnectionFactory_1)

5. Save the configuration changes. See the “Saving configuration changes with the

wsadmin tool” on page 102 article for more information.

6. In a network deployment environment only, synchronize the node. See the

“Synchronizing nodes with the wsadmin tool” on page 86 article for more

information.

Configuring new WebSphere topic connection factories using

scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the

wsadmin scripting client” on page 123 article for more information.

Perform the following steps to configure a new WebSphere topic connection

factory:

1. Identify the parent ID:

v Using Jacl:

218 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

set newjmsp [$AdminConfig getid /Cell:mycell/Node:mynode/JMSProvider:JMSP1/]

v Using Jython:

newjmsp = AdminConfig.getid(’/Cell:mycell/Node:myNode/JMSProvider:JMSP1/’)

print newjmsp

Example output:

JMSP1(cells/mycell/nodes/mynode|resources.xml#JMSProvider_1)

2. Get required attributes:

v Using Jacl:

$AdminConfig required WASTopicConnectionFactory

v Using Jython:

print AdminConfig.required(’WASTopicConnectionFactory’)

Example output:

Attribute Type

name String

jndiName String

port ENUM(DIRECT, QUEUED)

3. Set up required attributes:

v Using Jacl:

set name [list name WASTCF]

set jndi [list jndiName jms/WASTCF]

set port [list port QUEUED]

set mtcfAttrs [list $name $jndi $port]

Example output:

{name WASTCF} {jndiName jms/WASTCF} {port QUEUED}

v Using Jython:

name = [’name’, ’WASTCF’]

jndi = [’jndiName’, ’jms/WASTCF’]

port = [’port’, ’QUEUED’]

mtcfAttrs = [name, jndi, port]

print mtcfAttrs

Example output:

[[name, WASTCF], [jndiName, jms/WASTCF], [port, QUEUED]]

4. Create was topic connection factories:

v Using Jacl:

$AdminConfig create WASTopicConnectionFactory $newjmsp $mtcfAttrs

v Using Jython:

print AdminConfig.create(’WASTopicConnectionFactory’, newjmsp, mtcfAttrs)

Example output:

WASTCF(cells/mycell/nodes/mynode|resources.xml#WASTopicConnectionFactory_1)

5. Save the configuration changes. See the “Saving configuration changes with the

wsadmin tool” on page 102 article for more information.

6. In a network deployment environment only, synchronize the node. See the

“Synchronizing nodes with the wsadmin tool” on page 86 article for more

information.

Configuring new WebSphere queues using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the

wsadmin scripting client” on page 123 article for more information.

Perform the following steps to configure a new WebSphere queue:

Chapter 6. Using scripting (wsadmin) 219

1. Identify the parent ID:

v Using Jacl:

set newjmsp [$AdminConfig getid /Cell:mycell/Node:mynode/JMSProvider:JMSP1/]

v Using Jython:

newjmsp = AdminConfig.getid(’/Cell:mycell/Node:myNode/JMSProvider:JMSP1/’)

print newjmsp

Example output:

JMSP1(cells/mycell/nodes/mynode|resources.xml#JMSProvider_1)

2. Get required attributes:

v Using Jacl:

$AdminConfig required WASQueue

v Using Jython:

print AdminConfig.required(’WASQueue’)

Example output:

Attribute Type

name String

jndiName String

3. Set up required attributes:

v Using Jacl:

set name [list name WASQ1]

set jndi [list jndiName jms/WASQ1]

set wqAttrs [list $name $jndi]

Example output:

{name WASQ1} {jndiName jms/WASQ1}

v Using Jython:

name = [’name’, ’WASQ1’]

jndi = [’jndiName’, ’jms/WASQ1’]

wqAttrs = [name, jndi]

print wqAttrs

Example output:

[[name, WASQ1], [jndiName, jms/WASQ1]]

4. Create was queue:

v Using Jacl:

$AdminConfig create WASQueue $newjmsp $wqAttrs

v Using Jython:

print AdminConfig.create(’WASQueue’, newjmsp, wqAttrs)

Example output:

WASQ1(cells/mycell/nodes/mynode|resources.xml#WASQueue_1)

5. Save the configuration changes. See the “Saving configuration changes with the

wsadmin tool” on page 102 article for more information.

6. In a network deployment environment only, synchronize the node. See the

“Synchronizing nodes with the wsadmin tool” on page 86 article for more

information.

Configuring new WebSphere topics using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the

wsadmin scripting client” on page 123 article for more information.

Perform the following steps to configure a new WebSphere topic:

220 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

1. Identify the parent ID:

v Using Jacl:

set newjmsp [$AdminConfig getid /Cell:mycell/Node:mynode/JMSProvider:JMSP1/]

v Using Jython:

newjmsp = AdminConfig.getid(’/Cell:mycell/Node:myNode/JMSProvider:JMSP1/’)

print newjmsp

Example output:

JMSP1(cells/mycell/nodes/mynode|resources.xml#JMSProvider_1)

2. Get required attributes:

v Using Jacl:

$AdminConfig required WASTopic

v Using Jython:

print AdminConfig.required(’WASTopic’)

Example output:

Attribute Type

name String

jndiName String

topic String

3. Set up required attributes:

v Using Jacl:

set name [list name WAST1]

set jndi [list jndiName jms/WAST1]

set topic [list topic "Put your topic here"]

set wtAttrs [list $name $jndi $topic]

Example output:

{name WAST1} {jndiName jms/WAST1} {topic {Put your topic here}}

v Using Jython:

name = [’name’, ’WAST1’]

jndi = [’jndiName’, ’jms/WAST1’]

topic = [’topic’, "Put your topic here"]

wtAttrs = [name, jndi, topic]

print wtAttrs

Example output:

[[name, WAST1], [jndiName, jms/WAST1], [topic, "Put your topic here"]]

4. Create was topic:

v Using Jacl:

$AdminConfig create WASTopic $newjmsp $wtAttrs

v Using Jython:

print AdminConfig.create(’WASTopic’, newjmsp, wtAttrs)

Example output:

WAST1(cells/mycell/nodes/mynode|resources.xml#WASTopic_1)

5. Save the configuration changes. See the “Saving configuration changes with the

wsadmin tool” on page 102 article for more information.

6. In a network deployment environment only, synchronize the node. See the

“Synchronizing nodes with the wsadmin tool” on page 86 article for more

information.

Chapter 6. Using scripting (wsadmin) 221

Configuring new MQ queue connection factories using

scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the

wsadmin scripting client” on page 123 article for more information.

Perform the following steps to configure a new MQ queue connection factory:

1. Identify the parent ID:

v Using Jacl:

set newjmsp [$AdminConfig getid /Cell:mycell/Node:mynode/JMSProvider:JMSP1/]

v Using Jython:

newjmsp = AdminConfig.getid(’/Cell:mycell/Node:myNode/JMSProvider:JMSP1’)

print newjmsp

Example output:

JMSP1(cells/mycell/nodes/mynode|resources.xml#JMSProvider_1)

2. Get required attributes:

v Using Jacl:

$AdminConfig required MQQueueConnectionFactory

v Using Jython:

print AdminConfig.required(’MQQueueConnectionFactory’)

Example output:

Attribute Type

name String

jndiName String

3. Set up required attributes:

v Using Jacl:

set name [list name MQQCF]

set jndi [list jndiName jms/MQQCF]

set mqqcfAttrs [list $name $jndi]

Example output:

{name MQQCF} {jndiName jms/MQQCF}

v Using Jython:

name = [’name’, ’MQQCF’]

jndi = [’jndiName’, ’jms/MQQCF’]

mqqcfAttrs = [name, jndi]

print mqqcfAttrs

Example output:

[[name, MQQCF], [jndiName, jms/MQQCF]]

4. Set up a template:

v Using Jacl:

set template [lindex [$AdminConfig listTemplates MQQueueConnectionFactory] 0]

v Using Jython:

import java

lineseparator = java.lang.System.getProperty(’line.separator’)

template = AdminConfig.listTemplates(’MQQueueConnectionFactory’).split(lineseparator)[0]

print template

Example output:

Example non-XA WMQ QueueConnectionFactory(templates/

system:JMS-resource-provider-templates.xml

#MQQueueConnectionFactory_3)

5. Create MQ queue connection factory:

222 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

v Using Jacl:

$AdminConfig createUsingTemplate MQQueueConnectionFactory

$newjmsp $mqqcfAttrs $template

v Using Jython:

print AdminConfig.createUsingTemplate(’MQQueueConnectionFactory’,

newjmsp, mqqcfAttrs, template)

Example output:

MQQCF(cells/mycell/nodes/mynode:resources.xml#MQQueueConnectionFactory_1)

6. Save the configuration changes. See the “Saving configuration changes with the

wsadmin tool” on page 102 article for more information.

7. In a network deployment environment only, synchronize the node. See the

“Synchronizing nodes with the wsadmin tool” on page 86 article for more

information.

Configuring new MQ topic connection factories using

scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the

wsadmin scripting client” on page 123 article for more information.

Perform the following steps to configure a new MQ topic connection factory:

1. Identify the parent ID:

v Using Jacl:

set newjmsp [$AdminConfig getid /Cell:mycell/Node:mynode/JMSProvider:JMSP1/]

v Using Jython:

newjmsp = AdminConfig.getid(’/Cell:mycell/Node:myNode/JMSProvider:JMSP1’)

print newjmsp

Example output:

JMSP1(cells/mycell/nodes/mynode:resources.xml#JMSProvider_1)

2. Get required attributes:

v Using Jacl:

$AdminConfig required MQTopicConnectionFactory

v Using Jython:

print AdminConfig.required(’MQTopicConnectionFactory’)

Example output:

Attribute Type

name String

jndiName String

3. Set up required attributes:

v Using Jacl:

set name [list name MQTCF]

set jndi [list jndiName jms/MQTCF]

set mqtcfAttrs [list $name $jndi]

Example output:

{name MQTCF} {jndiName jms/MQTCF}

v Using Jython:

name = [’name’, ’MQTCF’]

jndi = [’jndiName’, ’jms/MQTCF’]

mqtcfAttrs = [name, jndi]

print mqtcfAttrs

Example output:

Chapter 6. Using scripting (wsadmin) 223

[[name, MQTCF], [jndiName, jms/MQTCF]]

4. Set up a template:

v Using Jacl:

set template [lindex [$AdminConfig listTemplates MQTopicConnectionFactory] 0]

v Using Jython:

import java

lineseparator = java.lang.System.getProperty(’line.separator’)

template = AdminConfig.listTemplates(’MQTopicConnectionFactory’).split(lineseparator)[0]

print template

Example output:

Example non-XA WMQ TopicConnectionFactory(templates/system:

JMS-resource-provider-templates.xml

#MQTopicConnectionFactory_5)

5. Create mq topic connection factory:

v Using Jacl:

$AdminConfig create MQTopicConnectionFactory $newjmsp $mqtcfAttrs $template

v Using Jython:

print AdminConfig.create(’MQTopicConnectionFactory’, newjmsp, mqtcfAttrs, template)

Example output:

MQTCF(cells/mycell/nodes/mynode:resources.xml#MQTopicConnectionFactory_1)

6. Save the configuration changes. See the “Saving configuration changes with the

wsadmin tool” on page 102 article for more information.

7. In a network deployment environment only, synchronize the node. See the

“Synchronizing nodes with the wsadmin tool” on page 86 article for more

information.

Configuring new MQ queues using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the

wsadmin scripting client” on page 123 article for more information.

Perform the following steps to configure a new MQ queue:

1. Identify the parent ID:

v Using Jacl:

set newjmsp [$AdminConfig getid /Cell:mycell/Node:mynode/JMSProvider:JMSP1/]

v Using Jython:

newjmsp = AdminConfig.getid(’/Cell:mycell/Node:myNode/JMSProvider:JMSP1’)

print newjmsp

Example output:

JMSP1(cells/mycell/nodes/mynode|resources.xml#JMSProvider_1)

2. Get required attributes:

v Using Jacl:

$AdminConfig required MQQueue

v Using Jython:

print AdminConfig.required(’MQQueue’)

Example output:

Attribute Type

name String

jndiName String

baseQueueName String

224 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

3. Set up required attributes:

v Using Jacl:

set name [list name MQQ]

set jndi [list jndiName jms/MQQ]

set baseQN [list baseQueueName "Put the base queue name here"]

set mqqAttrs [list $name $jndi $baseQN]

Example output:

{name MQQ} {jndiName jms/MQQ} {baseQueueName {Put the base queue name here}}

v Using Jython:

name = [’name’, ’MQQ’]

jndi = [’jndiName’, ’jms/MQQ’]

baseQN = [’baseQueueName’, "Put the base queue name here"]

mqqAttrs = [name, jndi, baseQN]

print mqqAttrs

Example output:

[[name, MQQ], [jndiName, jms/MQQ], [baseQueueName, "Put the base queue name here"]]

4. Set up a template:

v Using Jacl:

set template [lindex [$AdminConfig listTemplates MQQueue] 0]

v Using Jython:

import java

lineseparator = java.lang.System.getProperty(’line.separator’)

template = AdminConfig.listTemplates(’MQQueue’).split(lineseparator)[0]

print template

Example output:

Example.JMS.WMQ.Q1(templates/system:JMS-resource-provider-

templates.xml#MQQueue_1)

5. Create MQ queue factory:

v Using Jacl:

$AdminConfig create MQQueue $newjmsp $mqqAttrs $template

v Using Jython:

print AdminConfig.create(’MQQueue’, newjmsp, mqqAttrs, template)

Example output:

MQQ(cells/mycell/nodes/mynode|resources.xml#MQQueue_1)

6. Save the configuration changes. See the “Saving configuration changes with the

wsadmin tool” on page 102 article for more information.

7. In a network deployment environment only, synchronize the node. See the

“Synchronizing nodes with the wsadmin tool” on page 86 article for more

information.

Configuring new MQ topics using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the

wsadmin scripting client” on page 123 article for more information.

Perform the following steps to configure a new MQ topic:

1. Identify the parent ID:

v Using Jacl:

set newjmsp [$AdminConfig getid /Cell:mycell/Node:mynode/JMSProvider:JMSP1/]

v Using Jython:

Chapter 6. Using scripting (wsadmin) 225

newjmsp = AdminConfig.getid(’/Cell:mycell/Node:myNode/JMSProvider:JMSP1’)

print newjmsp

Example output:

JMSP1(cells/mycell/nodes/mynode|resources.xml#JMSProvider_1)

2. Get required attributes:

v Using Jacl:

$AdminConfig required MQTopic

v Using Jython:

print AdminConfig.required(’MQTopic’)

Example output:

Attribute Type

name String

jndiName String

baseTopicName String

3. Set up required attributes:

v Using Jacl:

set name [list name MQT]

set jndi [list jndiName jms/MQT]

set baseTN [list baseTopicName "Put the base topic name here"]

set mqtAttrs [list $name $jndi $baseTN]

Example output:

{name MQT} {jndiName jms/MQT} {baseTopicName {Put the base topic name here}}

v Using Jython:

name = [’name’, ’MQT’]

jndi = [’jndiName’, ’jms/MQT’]

baseTN = [’baseTopicName’, "Put the base topic name here"]

mqtAttrs = [name, jndi, baseTN]

print mqtAttrs

Example output:

[[name, MQT], [jndiName, jms/MQT], [baseTopicName, "Put the base topic name here"]]

4. Create MQ topic factory:

v Using Jacl:

$AdminConfig create MQTopic $newjmsp $mqtAttrs

v Using Jython:

print AdminConfig.create(’MQTopic’, newjmsp, mqtAttrs)

Example output:

MQT(cells/mycell/nodes/mynode|resources.xml#MQTopic_1)

5. Save the configuration changes. See the “Saving configuration changes with the

wsadmin tool” on page 102 article for more information.

6. In a network deployment environment only, synchronize the node. See the

“Synchronizing nodes with the wsadmin tool” on page 86 article for more

information.

Configuring mail, URLs, and resource environment entries with

scripting

This topic contains the following tasks:

v “Configuring new mail providers using scripting” on page 227

v “Configuring new mail sessions using scripting” on page 228

v “Configuring new protocols using scripting” on page 229

226 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

v “Configuring new custom properties using scripting” on page 230

v “Configuring new resource environment providers using scripting” on page 231

v “Configuring custom properties for resource environment providers using

scripting” on page 232

v “Configuring new referenceables using scripting” on page 233

v “Configuring new resource environment entries using scripting” on page 234

v “Configuring custom properties for resource environment entries using

scripting” on page 235

v “Configuring new URL providers using scripting” on page 236

v “Configuring custom properties for URL providers using scripting” on page 237

v “Configuring new URLs using scripting” on page 238

v “Configuring custom properties for URLs using scripting” on page 239

Configuring new mail providers using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the

wsadmin scripting client” on page 123 article for more information.

Perform the following steps to configure a new mail provider:

1. Identify the parent ID:

v Using Jacl:

set node [$AdminConfig getid /Cell:mycell/Node:mynode/]

v Using Jython:

node = AdminConfig.getid(’/Cell:mycell/Node:mynode/’)

print node

Example output:

mynode(cells/mycell/nodes/mynode|node.xml#Node_1)

2. Get required attributes:

v Using Jacl:

$AdminConfig required MailProvider

v Using Jython:

print AdminConfig.required(’MailProvider’)

Example output:

Attribute Type

name String

3. Set up required attributes:

v Using Jacl:

set name [list name MP1]

set mpAttrs [list $name]

v Using Jython:

name = [’name’, ’MP1’]

mpAttrs = [name]

4. Create the mail provider:

v Using Jacl:

set newmp [$AdminConfig create MailProvider $node $mpAttrs]

v Using Jython:

newmp = AdminConfig.create(’MailProvider’, node, mpAttrs)

print newmp

Example output:

Chapter 6. Using scripting (wsadmin) 227

MP1(cells/mycell/nodes/mynode|resources.xml#MailProvider_1)

5. Save the configuration changes. See the “Saving configuration changes with the

wsadmin tool” on page 102 article for more information.

6. In a network deployment environment only, synchronize the node. See the

“Synchronizing nodes with the wsadmin tool” on page 86 article for more

information.

Configuring new mail sessions using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the

wsadmin scripting client” on page 123 article for more information.

Perform the following steps to configure a new mail session:

1. Identify the parent ID:

v Using Jacl:

set newmp [$AdminConfig getid /Cell:mycell/Node:mynode/MailProvider:MP1/]

v Using Jython:

newmp = AdminConfig.create(’MailProvider’, node, mpAttrs)

print newmp

Example output:

MP1(cells/mycell/nodes/mynode|resources.xml#MailProvider_1)

2. Get required attributes:

v Using Jacl:

$AdminConfig required MailSession

v Using Jython:

print AdminConfig.required(’MailSession’)

Example output:

Attribute Type

name String

jndiName String

3. Set up required attributes:

v Using Jacl:

set name [list name MS1]

set jndi [list jndiName mail/MS1]

set msAttrs [list $name $jndi]

Example output:

{name MS1} {jndiName mail/MS1}

v Using Jython:

name = [’name’, ’MS1’]

jndi = [’jndiName’, ’mail/MS1’]

msAttrs = [name, jndi]

print msAttrs

Example output:

[[name, MS1], [jndiName, mail/MS1]]

4. Create the mail session:

v Using Jacl:

$AdminConfig create MailSession $newmp $msAttrs

v Using Jython:

print AdminConfig.create(’MailSession’, newmp, msAttrs)

Example output:

228 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

MS1(cells/mycell/nodes/mynode|resources.xml#MailSession_1)

5. Save the configuration changes. See the “Saving configuration changes with the

wsadmin tool” on page 102 article for more information.

6. In a network deployment environment only, synchronize the node. See the

“Synchronizing nodes with the wsadmin tool” on page 86 article for more

information.

Configuring new protocols using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the

wsadmin scripting client” on page 123 article for more information.

Perform the following steps to configure a new protocol:

1. Identify the parent ID:

v Using Jacl:

set newmp [$AdminConfig getid /Cell:mycell/Node:mynode/MailProvider:MP1/]

v Using Jython:

newmp = AdminConfig.create(’MailProvider’, node, mpAttrs)

print newmp

Example output:

MP1(cells/mycell/nodes/mynode|resources.xml#MailProvider_1)

2. Get required attributes:

v Using Jacl:

$AdminConfig required ProtocolProvider

v Using Jython:

print AdminConfig.required(’ProtocolProvider’)

Example output:

Attribute Type

protocol String

classname String

3. Set up required attributes:

v Using Jacl:

set protocol [list protocol "Put the protocol here"]

set classname [list classname "Put the class name here"]

set ppAttrs [list $protocol $classname]

Example output:

{protocol protocol1} {classname classname1}

v Using Jython:

protocol = [’protocol’, "Put the protocol here"]

classname = [’classname’, "Put the class name here"]

ppAttrs = [protocol, classname]

print ppAttrs

Example output:

[[protocol, protocol1], [classname, classname1]]

4. Create the protocol provider:

v Using Jacl:

$AdminConfig create ProtocolProvider $newmp $ppAttrs

v Using Jython:

print AdminConfig.create(’ProtocolProvider’, newmp, ppAttrs)

Example output:

Chapter 6. Using scripting (wsadmin) 229

(cells/mycell/nodes/mynode|resources.xml#ProtocolProvider_4)

5. Save the configuration changes. See the “Saving configuration changes with the

wsadmin tool” on page 102 article for more information.

6. In a network deployment environment only, synchronize the node. See the

“Synchronizing nodes with the wsadmin tool” on page 86 article for more

information.

Configuring new custom properties using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the

wsadmin scripting client” on page 123 article for more information.

Perform the following steps to configure a new custom property:

1. Identify the parent ID:

v Using Jacl:

set newmp [$AdminConfig getid /Cell:mycell/Node:mynode/MailProvider:MP1/]

v Using Jython:

newmp = AdminConfig.create(’MailProvider’, node, mpAttrs)

print newmp

Example output:

MP1(cells/mycell/nodes/mynode|resources.xml#MailProvider_1)

2. Get the J2EE resource property set:

v Using Jacl:

set propSet [$AdminConfig showAttribute $newmp propertySet]

v Using Jython:

propSet = AdminConfig.showAttribute(newmp, ’propertySet’)

print propSet

Example output:

(cells/mycell/nodes/mynode|resources.xml#PropertySet_2)

3. Get required attributes:

v Using Jacl:

$AdminConfig required J2EEResourceProperty

v Using Jython:

print AdminConfig.required(’J2EEResourceProperty’)

Example output:

Attribute Type

name String

4. Set up the required attributes:

v Using Jacl:

set name [list name CP1]

set cpAttrs [list $name]

Example output:

{name CP1}

v Using Jython:

name = [’name’, ’CP1’]

cpAttrs = [name]

print cpAttrs

Example output:

[[name, CP1]]

5. Create a J2EE resource property:

230 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

v Using Jacl:

$AdminConfig create J2EEResourceProperty $propSet $cpAttrs

v Using Jython:

print AdminConfig.create(’J2EEResourceProperty’, propSet, cpAttrs)

Example output:

CP1(cells/mycell/nodes/mynode|resources.xml#J2EEResourceProperty_2)

6. Save the configuration changes. See the “Saving configuration changes with the

wsadmin tool” on page 102 article for more information.

7. In a network deployment environment only, synchronize the node. See the

“Synchronizing nodes with the wsadmin tool” on page 86 article for more

information.

Configuring new resource environment providers using

scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the

wsadmin scripting client” on page 123 article for more information.

Perform the following steps to configure a new resource environment provider:

1. Identify the parent ID and assign it to the node variable.

v Using Jacl:

set node [$AdminConfig getid /Cell:mycell/Node:mynode/]

v Using Jython:

node = AdminConfig.getid(’/Cell:mycell/Node:mynode/’)

print node

Example output:

mynode(cells/mycell/nodes/mynode|node.xml#Node_1)

2. Identify the required attributes:

v Using Jacl:

$AdminConfig required ResourceEnvironmentProvider

v Using Jython:

print AdminConfig.required(’ResourceEnvironmentProvider’)

Example output:

Attribute Type

name String

3. Set up the required attributes and assign it to the repAttrs variable:

v Using Jacl:

set n1 [list name REP1]

set repAttrs [list $name]

v Using Jython:

n1 = [’name’, ’REP1’]

repAttrs = [n1]

4. Create a new resource environment provider:

v Using Jacl:

set newrep [$AdminConfig create ResourceEnvironmentProvider $node $repAttrs]

v Using Jython:

newrep = AdminConfig.create(’ResourceEnvironmentProvider’, node, repAttrs)

print newrep

Example output:

Chapter 6. Using scripting (wsadmin) 231

REP1(cells/mycell/nodes/mynode|resources.xml#ResourceEnvironmentProvider_1)

5. Save the configuration changes. See the “Saving configuration changes with the

wsadmin tool” on page 102 article for more information.

6. In a network deployment environment only, synchronize the node. See the

“Synchronizing nodes with the wsadmin tool” on page 86 article for more

information.

Configuring custom properties for resource environment

providers using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the

wsadmin scripting client” on page 123 article for more information.

Perform the following steps to configure a new custom property for a resource

environment provider:

1. Identify the parent ID and assign it to the newrep variable.

v Using Jacl:

set newrep [$AdminConfig getid /Cell:mycell/Node:mynode/ResourceEnvironmentProvider:REP1/]

v Using Jython:

newrep = AdminConfig.getid(’/Cell:mycell/Node:mynode/ResourceEnvironmentProvider:REP1/’)

print newrep

Example output:

REP1(cells/mycell/nodes/mynode|resources.xml#ResourceEnvironmentProvider_1)

2. Identify the required attributes:

v Using Jacl:

$AdminConfig required J2EEResourceProperty

v Using Jython:

print AdminConfig.required(’J2EEResourceProperty’)

Example output:

Attribute Type

name String

3. Set up the required attributes and assign it to the repAttrs variable:

v Using Jacl:

set name [list name RP]

set rpAttrs [list $name]

v Using Jython:

name = [’name’, ’RP’]

rpAttrs = [name]

4. Get the J2EE resource property set:

v Using Jacl:

set propSet [$AdminConfig showAttribute $newrep propertySet]

v Using Jython:

propSet = AdminConfig.showAttribute(newrep, ’propertySet’)

print propSet

Example output:

(cells/mycell/nodes/mynode|resources.xml#PropertySet_1)

5. Create a J2EE resource property:

v Using Jacl:

$AdminConfig create J2EEResourceProperty $propSet $rpAttrs

232 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

v Using Jython:

print AdminConfig.create(’J2EEResourceProperty’, propSet, rpAttrs)

Example output:

RP(cells/mycell/nodes/mynode|resources.xml#J2EEResourceProperty_1)

6. Save the configuration changes. See the “Saving configuration changes with the

wsadmin tool” on page 102 article for more information.

7. In a network deployment environment only, synchronize the node. See the

“Synchronizing nodes with the wsadmin tool” on page 86 article for more

information.

Configuring new referenceables using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the

wsadmin scripting client” on page 123 article for more information.

Perform the following steps to configure a new referenceable:

1. Identify the parent ID and assign it to the newrep variable.

v Using Jacl:

set newrep [$AdminConfig getid /Cell:mycell/Node:mynode/

ResourceEnvironmentProvider:REP1/]

v Using Jython:

newrep = AdminConfig.getid(’/Cell:mycell/Node:mynode/

ResourceEnvironmentProvider:REP1/’)

print newrep

Example output:

REP1(cells/mycell/nodes/mynode|resources.xml#ResourceEnvironmentProvider_1)

2. Identify the required attributes:

v Using Jacl:

$AdminConfig required Referenceable

v Using Jython:

print AdminConfig.required(’Referenceable’)

Example output:

Attribute Type

factoryClassname String

classname String

3. Set up the required attributes:

v Using Jacl:

set fcn [list factoryClassname REP1]

set cn [list classname NM1]

set refAttrs [list $fcn $cn]

v Using Jython:

fcn = [’factoryClassname’, ’REP1’]

cn = [’classname’, ’NM1’]

refAttrs = [fcn, cn]

print refAttrs

Example output:

{factoryClassname {REP1}} {classname {NM1}}

4. Create a new referenceable:

v Using Jacl:

set newref [$AdminConfig create Referenceable $newrep $refAttrs]

v Using Jython:

Chapter 6. Using scripting (wsadmin) 233

newref = AdminConfig.create(’Referenceable’, newrep, refAttrs)

print newref

Example output:

(cells/mycell/nodes/mynode|resources.xml#Referenceable_1)

5. Save the configuration changes. See the “Saving configuration changes with the

wsadmin tool” on page 102 article for more information.

6. In a network deployment environment only, synchronize the node. See the

“Synchronizing nodes with the wsadmin tool” on page 86 article for more

information.

Configuring new resource environment entries using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the

wsadmin scripting client” on page 123 article for more information.

Perform the following steps to configure a new resource environment entry:

1. Identify the parent ID and assign it to the newrep variable.

v Using Jacl:

set newrep [$AdminConfig getid /Cell:mycell/Node:mynode/ResourceEnvironmentProvider:REP1/]

v Using Jython:

newrep = AdminConfig.getid(’/Cell:mycell/Node:mynode/ResourceEnvironmentProvider:REP1/’)

print newrep

Example output:

REP1(cells/mycell/nodes/mynode|resources.xml#ResourceEnvironmentProvider_1)

2. Identify the required attributes:

v Using Jacl:

$AdminConfig required ResourceEnvEntry

v Using Jython:

print AdminConfig.required(’ResourceEnvEntry’)

Example output:

Attribute Type

name String

jndiName String

referenceable Referenceable@

3. Set up the required attributes:

v Using Jacl:

set name [list name REE1]

set jndiName [list jndiName myjndi]

set newref [$AdminConfig getid /Cell:mycell/Node:mynode/Referenceable:/]

set ref [list referenceable $newref]

set reeAttrs [list $name $jndiName $ref]

v Using Jython:

name = [’name’, ’REE1’]

jndiName = [’jndiName’, ’myjndi’]

newref = AdminConfig.getid(’/Cell:mycell/Node:mynode/Referenceable:/’)

ref = [’referenceable’, newref]

reeAttrs = [name, jndiName, ref]

4. Create the resource environment entry:

v Using Jacl:

$AdminConfig create ResourceEnvEntry $newrep $reeAttrs

v Using Jython:

print AdminConfig.create(’ResourceEnvEntry’, newrep, reeAttrs)

234 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

Example output:

REE1(cells/mycell/nodes/mynode|resources.xml#ResourceEnvEntry_1)

5. Save the configuration changes. See the “Saving configuration changes with the

wsadmin tool” on page 102 article for more information.

6. In a network deployment environment only, synchronize the node. See the

“Synchronizing nodes with the wsadmin tool” on page 86 article for more

information.

Configuring custom properties for resource environment

entries using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the

wsadmin scripting client” on page 123 article for more information.

Perform the following steps to configure a new custom property for a resource

environment entry:

1. Identify the parent ID and assign it to the newree variable.

v Using Jacl:

set newree [$AdminConfig getid /Cell:mycell/Node:mynode/ResourceEnvEntry:REE1/]

v Using Jython:

newree = AdminConfig.getid(’/Cell:mycell/Node:mynode/ResourceEnvEntry:REE1/’)

print newree

Example output:

REE1(cells/mycell/nodes/mynode|resources.xml#ResourceEnvEntry_1)

2. Create the J2EE custom property set:

v Using Jacl:

set propSet [$AdminConfig showAttribute $newree propertySet]

v Using Jython:

propSet = AdminConfig.showAttribute(newree, ’propertySet’)

print propSet

Example output:

(cells/mycell/nodes/mynode|resources.xml#J2EEResourcePropertySet_5)

3. Identify the required attributes:

v Using Jacl:

$AdminConfig required J2EEResourceProperty

v Using Jython:

print AdminConfig.required(’J2EEResourceProperty’)

Example output:

Attribute Type

name String

4. Set up the required attributes:

v Using Jacl:

set name [list name RP1]

set rpAttrs [list $name]

v Using Jython:

name = [’name’, ’RP1’]

rpAttrs = [name]

5. Create the J2EE custom property:

v Using Jacl:

Chapter 6. Using scripting (wsadmin) 235

$AdminConfig create J2EEResourceProperty $propSet $rpAttrs

v Using Jython:

print AdminConfig.create(’J2EEResourceProperty’, propSet, rpAttrs)

Example output:

RPI(cells/mycell/nodes/mynode|resources.xml#J2EEResourceProperty_1)

6. Save the configuration changes. See the “Saving configuration changes with the

wsadmin tool” on page 102 article for more information.

7. In a network deployment environment only, synchronize the node. See the

“Synchronizing nodes with the wsadmin tool” on page 86 article for more

information.

Configuring new URL providers using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the

wsadmin scripting client” on page 123 article for more information.

Perform the following steps to configure a new URL provider:

1. Identify the parent ID and assign it to the node variable.

v Using Jacl:

set node [$AdminConfig getid /Cell:mycell/Node:mynode/]

v Using Jython:

node = AdminConfig.getid(’/Cell:mycell/Node:mynode/’)

print node

Example output:

mynode(cells/mycell/nodes/mynode|node.xml#Node_1)

2. Identify the required attributes:

v Using Jacl:

$AdminConfig required URLProvider

v Using Jython:

print AdminConfig.required(’URLProvider’)

Example output:

Attribute Type

streamHandlerClassName String

protocol String

name String

3. Set up the required attributes:

v Using Jacl:

set name [list name URLP1]

set shcn [list streamHandlerClassName "Put the stream handler classname here"]

set protocol [list protocol "Put the protocol here"]

set urlpAttrs [list $name $shcn $protocol]

Example output:

{name URLP1} {streamHandlerClassName {Put the stream handler classname here}}

{protocol {Put the protocol here}}

v Using Jython:

name = [’name’, ’URLP1’]

shcn = [’streamHandlerClassName’, "Put the stream handler classname here"]

protocol = [’protocol’, "Put the protocol here"]

urlpAttrs = [name, shcn, protocol]

print urlpAttrs

Example output:

236 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

[[name, URLP1], [streamHandlerClassName, "Put the stream handler classname here"],

[protocol, "Put the protocol here"]]

4. Create a URL provider:

v Using Jacl:

$AdminConfig create URLProvider $node $urlpAttrs

v Using Jython:

print AdminConfig.create(’URLProvider’, node, urlpAttrs)

Example output:

URLP1(cells/mycell/nodes/mynode|resources.xml#URLProvider_1)

5. Save the configuration changes. See the “Saving configuration changes with the

wsadmin tool” on page 102 article for more information.

6. In a network deployment environment only, synchronize the node. See the

“Synchronizing nodes with the wsadmin tool” on page 86 article for more

information.

Configuring custom properties for URL providers using

scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the

wsadmin scripting client” on page 123 article for more information.

Perform the following steps to configure custom properties for URL providers:

1. Identify the parent ID and assign it to the newurlp variable.

v Using Jacl:

set newurlp [$AdminConfig getid /Cell:mycell/Node:mynode/URLProvider:URLP1/]

v Using Jython:

newurlp = AdminConfig.getid(’/Cell:mycell/Node:mynode/URLProvider:URLP1/’)

print newurlp

Example output:

URLP1(cells/mycell/nodes/mynode|resources.xml#URLProvider_1)

2. Get the J2EE resource property set:

v Using Jacl:

set propSet [$AdminConfig showAttribute $newurlp propertySet]

v Using Jython:

propSet = AdminConfig.showAttribute(newurlp, ’propertySet’)

print propSet

Example output:

(cells/mycell/nodes/mynode|resources.xml#PropertySet_7)

3. Identify the required attributes:

v Using Jacl:

$AdminConfig required J2EEResourceProperty

v Using Jython:

print AdminConfig.required(’J2EEResourceProperty’)

Example output:

Attribute Type

name String

4. Set up the required attributes:

v Using Jacl:

Chapter 6. Using scripting (wsadmin) 237

set name [list name RP2]

set rpAttrs [list $name]

v Using Jython:

name = [’name’, ’RP2’]

rpAttrs = [name]

5. Create a J2EE resource property:

v Using Jacl:

$AdminConfig create J2EEResourceProperty $propSet $rpAttrs

v Using Jython:

print AdminConfig.create(’J2EEResourceProperty’, propSet, rpAttrs)

Example output:

RP2(cells/mycell/nodes/mynode|resources.xml#J2EEResourceProperty_1)

6. Save the configuration changes. See the “Saving configuration changes with the

wsadmin tool” on page 102 article for more information.

7. In a network deployment environment only, synchronize the node. See the

“Synchronizing nodes with the wsadmin tool” on page 86 article for more

information.

Configuring new URLs using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the

wsadmin scripting client” on page 123 article for more information.

Perform the following example to configure a new URL:

1. Identify the parent ID and assign it to the newurlp variable.

v Using Jacl:

set newurlp [$AdminConfig getid /Cell:mycell/Node:mynode/URLProvider:URLP1/]

v Using Jython:

newurlp = AdminConfig.getid(’/Cell:mycell/Node:mynode/URLProvider:URLP1/’)

print newurlp

Example output:

URLP1(cells/mycell/nodes/mynode|resources.xml#URLProvider_1)

2. Identify the required attributes:

v Using Jacl:

$AdminConfig required URL

v Using Jython:

print AdminConfig.required(’URL’)

Example output:

Attribute Type

name String

spec String

3. Set up the required attributes:

v Using Jacl:

set name [list name URL1]

set spec [list spec "Put the spec here"]

set urlAttrs [list $name $spec]

Example output:

{name URL1} {spec {Put the spec here}}

v Using Jython:

238 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

name = [’name’, ’URL1’]

spec = [’spec’, "Put the spec here"]

urlAttrs = [name, spec]

Example output:

[[name, URL1], [spec, "Put the spec here"]]

4. Create a URL:

v Using Jacl:

$AdminConfig create URL $newurlp $urlAttrs

v Using Jython:

print AdminConfig.create(’URL’, newurlp, urlAttrs)

Example output:

URL1(cells/mycell/nodes/mynode|resources.xml#URL_1)

5. Save the configuration changes. See the “Saving configuration changes with the

wsadmin tool” on page 102 article for more information.

6. In a network deployment environment only, synchronize the node. See the

“Synchronizing nodes with the wsadmin tool” on page 86 article for more

information.

Configuring custom properties for URLs using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the

wsadmin scripting client” on page 123 article for more information.

Perform the following steps to configure a new custom property for a URL:

1. Identify the parent ID and assign it to the newurl variable.

v Using Jacl:

set newurl [$AdminConfig getid /Cell:mycell/Node:mynode/URLProvider:URLP1/URL:URL1/]

v Using Jython:

newurl = AdminConfig.getid(’/Cell:mycell/Node:mynode/URLProvider:URLP1/URL:URL1/’)

print newurl

Example output:

URL1(cells/mycell/nodes/mynode|resources.xml#URL_1)

2. Create a J2EE resource property set:

v Using Jacl:

set propSet [$AdminConfig showAttribute $newurl propertySet]

v Using Jython:

propSet = AdminConfig.showAttribute(newurl, ’propertySet’)

print propSet

Example output:

(cells/mycell/nodes/mynode|resources.xml#J2EEResourcePropertySet_7)

3. Identify the required attributes:

v Using Jacl:

$AdminConfig required J2EEResourceProperty

v Using Jython:

print AdminConfig.required(’J2EEResourceProperty’)

Example output:

Attribute Type

name String

4. Set up the required attributes:

Chapter 6. Using scripting (wsadmin) 239

v Using Jacl:

set name [list name RP3]

set rpAttrs [list $name]

v Using Jython:

name = [’name’, ’RP3’]

rpAttrs = [name]

5. Create a J2EE resource property:

v Using Jacl:

$AdminConfig create J2EEResourceProperty $propSet $rpAttrs

v Using Jython:

print AdminConfig.create(’J2EEResourceProperty’, propSet, rpAttrs)

Example output:

RP3(cells/mycell/nodes/mynode|resources.xml#J2EEResourceProperty_7)

6. Save the configuration changes. See the “Saving configuration changes with the

wsadmin tool” on page 102 article for more information.

7. In a network deployment environment only, synchronize the node. See the

“Synchronizing nodes with the wsadmin tool” on page 86 article for more

information.

Troubleshooting with scripting

This topic contains the following tasks:

v “Tracing operations with the wsadmin tool”

v “Configuring traces using scripting” on page 241

v “Turning traces on and off in servers processes using scripting” on page 242

v “Dumping threads in server processes using scripting” on page 243

v “Setting up profile scripts to make tracing easier using scripting” on page 243

v “Enabling the Runtime Performance Advisor tool using scripting” on page 244

Tracing operations with the wsadmin tool

Before starting this task, the wsadmin tool must be running. See the “Starting the

wsadmin scripting client” on page 123 article for more information.

Perform the following steps to trace operations:

Enable wsadmin client tracing with the following command:

v Using Jacl:

$AdminControl trace com.ibm.*=all=enabled

v Using Jython:

AdminControl.trace(’com.ibm.*=all=enabled’)

where:

 $ is a Jacl operator for substituting a variable

name with its value

AdminControl is an object that enables the manipulation of

MBeans running in a WebSphere server

process

trace is an AdminControl command

240 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

com.ibm.*=all=enabled indicates to turn on tracing

The following command disables tracing:

v Using Jacl:

$AdminControl trace com.ibm.*=all=disabled

v Using Jython:

AdminControl.trace(’com.ibm.*=all=disabled’)

where:

 $ is a Jacl operator for substituting a variable

name with its value

AdminControl is an object that enables the manipulation of

MBeans running in a WebSphere server

process

trace is an AdminControl command

com.ibm.*=all=disabled indicates to turn off tracing

The trace command changes the trace settings for the current session. You can

change this setting persistently by editting the wsadmin.properties file. The

property com.ibm.ws.scripting.traceString is read by the launcher during

initialization. If it has a value, the value is used to set the trace.

A related property, com.ibm.ws.scripting.traceFile, designates a file to receive all

trace and logging information. The wsadmin.properties file contains a value for

this property. Run the wsadmin tool with a value set for this property. It is

possible to run without this property set, where all logging and tracing goes to the

administrative console.

Configuring traces using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the

wsadmin scripting client” on page 123 article for more information.

Perform the following steps to set the trace for a configured server:

1. Identify the server and assign it to the server variable:

v Using Jacl:

set server [$AdminConfig getid /Cell:mycell/Node:mynode/Server:server1/]

v Using Jython:

server = AdminConfig.getid(’/Cell:mycell/Node:mynode/Server:server1/’)

print server

Example output:

server1(cells/mycell/nodes/mynode/servers/server1|server.xml#Server_1)

2. Identify the trace service belonging to the server and assign it to the tc variable:

v Using Jacl:

set tc [$AdminConfig list TraceService $server]

v Using Jython:

tc = AdminConfig.list(’TraceService’, server)

print tc

Example output:

(cells/mycell/nodes/mynode/servers/server1|server.xml#TraceService_1)

Chapter 6. Using scripting (wsadmin) 241

3. Set the trace string. The following example sets the trace string for a single

component:

v Using Jacl:

$AdminConfig modify $tc {{startupTraceSpecification

com.ibm.websphere.management.*=all=enabled}}

v Using Jython:

AdminConfig.modify(tc, [[’startupTraceSpecification’,

’com.ibm.websphere.management.*=all=enabled’]])

4. The following command sets the trace string for multiple components:

v Using Jacl:

$AdminConfig modify $tc {{startupTraceSpecification

com.ibm.websphere.management.*=all=enabled:com.ibm.ws.

management.*=all=enabled:com.ibm.ws.runtime.*=all=enabled}}

v Using Jython:

AdminConfig.modify(tc, [[’startupTraceSpecification’,

’com.ibm.websphere.management.*=all=enabled:com.ibm.ws.

management.*=all=enabled:com.ibm.ws.runtime.*=all=enabled’]])

5. Save the configuration changes. See the “Saving configuration changes with the

wsadmin tool” on page 102 article for more information.

6. In a network deployment environment only, synchronize the node. See the

“Synchronizing nodes with the wsadmin tool” on page 86 article for more

information.

Turning traces on and off in servers processes using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the

wsadmin scripting client” on page 123 article for more information.

Perform the following steps to turning traces on and off in server processes:

1. Identify the object name for the TraceService MBean running in the process:

v Using Jacl:

$AdminControl completeObjectName type=TraceService,node=mynode,process=server1,*

v Using Jython:

AdminControl.completeObjectName(’type=TraceService,node=mynode,process=server1,*’)

2. Obtain the name of the object and set it to a variable:

v Using Jacl:

set ts [$AdminControl completeObjectName type=TraceService,process=server1,*]

v Using Jython:

ts = AdminControl.completeObjectName(’type=TraceService,process=server1,*’)

3. Turn tracing on or off for the server. For example:

v To turn tracing on, perform the following step:

– Using Jacl:

$AdminControl setAttribute $ts traceSpecification com.ibm.*=all=enabled

– Using Jython:

AdminControl.setAttribute(ts, ’traceSpecification’, ’com.ibm.*=all=enabled’)

v To turn tracing off, perform the following step:

– Using Jacl:

$AdminControl setAttribute $ts traceSpecification com.ibm.*=all=disabled

– Using Jython:

AdminControl.setAttribute(ts, ’traceSpecification’, ’com.ibm.*=all=disabled’)

242 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

Dumping threads in server processes using scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the

wsadmin scripting client” on page 123 article for more information.

Use the AdminControl object to dump the Java threads of a running server. The

following example produces a Java core file. You can use this file for problem

determination.

v Using Jacl:

set jvm [$AdminControl completeObjectName type=JVM,process=server1,*]

$AdminControl invoke $jvm dumpThreads

v Using Jython:

jvm = AdminControl.completeObjectName(’type=JVM,process=server1,*’)

AdminControl.invoke(jvm, ’dumpThreads’)

Setting up profile scripts to make tracing easier using

scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the

wsadmin scripting client” on page 123 article for more information.

Set up a profile script to make tracing easier. The following profile script example

turns tracing on and off for server1:

v Using Jacl:

proc ton {} {

 global AdminControl

 set ts [$AdminControl queryNames type=TraceService,node=mynode,process=server1,*]

 $AdminControl setAttribute $ts traceSpecification com.ibm.=all=enabled

}

proc toff {} {

 global AdminControl

 set ts [$AdminControl queryNames type=TraceService,node=mynode,process=server1,*]

 $AdminControl setAttribute $ts traceSpecification com.ibm.*=all=disabled

}

proc dt {} {

 global AdminControl

 set jvm [$AdminControl queryNames type=JVM,node=mynode,process=server1,*]

 $AdminControl invoke $jvm dumpThreads

}

v Using Jython:

def ton():

 global lineSeparator

 ts = AdminControl.queryNames(’type=TraceService,node=mynode,process=server1,*’)

 AdminControl.setAttribute(ts, ’traceSpecification’, ’com.ibm.=all=enabled’)

def toff():

 global lineSeparator

 ts = AdminControl.queryNames(’type=TraceService,node=mynode,process=server1,*’)

 AdminControl.setAttribute(ts, ’traceSpecification’, ’com.ibm.*=all=disabled’)

def dt():

 global lineSeparator

 jvm = AdminControl.queryNames(’type=JVM,node=mynode,process=server1,*’)

 AdminControl.invoke(jvm, ’dumpThreads’)

Chapter 6. Using scripting (wsadmin) 243

If you start the wsadmin tool with this profile script, you can use the ton

command to turn on tracing in the server, the toff command to turn off tracing,

and the dt command to dump the Java threads. For more information about

running scripting commands in a profile script, see the “Starting the wsadmin

scripting client” on page 123 article.

Enabling the Runtime Performance Advisor tool using

scripting

Before starting this task, the wsadmin tool must be running. See the “Starting the

wsadmin scripting client” on page 123 article for more information.

The Runtime Performance Advisor tool provides advice to help tune systems for

optimal performance. You can configure the Runtime Performance Advisor using

the wsadmin tool or the administrative console. See the Using the Runtime

Performance Advisor article for more information on how to enable this tool using

the administrative console. The recommendations display as text in the

SystemOut.log file.

The Runtime Performance Advisor (RPA) requires that the Performance Monitoring

Service (PMI) is enabled. It does not require that individual counters be enabled.

When a counter that is needed by the RPA is not enabled, the RPAr will enable it

automatically.

There is no MBean/object available for wsadmin to create a RPA configuration.

You can use wsadmin to change the settings and make them effective at runtime.

These changes will not be persisted. The changes remain until you stop the server.

Since the RPA is disabled once you stop the server, you may want to disable the

PMI Service or the counters that were enabled while it was active. You can enable

the following counters using the Runtime Performance Advisor:

ThreadPools (module)

Web Container (module)

Pool Size

Active Threads

Object Request Broker (module)

Pool Size

Active Threads

JDBC Connection Pools (module)

Pool Size

Percent used

Prepared Statement Discards

Servlet Session Manager (module)

External Read Size

External Write Size

External Read Time

External Write Time

No Room For New Session

System Data (module)

CPU Utilization

Free Memory

The following provides an explanation for some of the settings that you can use:

v Calculation interval PMI data - This setting is taken over an interval of time and

averaged to provide advice. The calculation interval specifies the length of the

time over which data is taken for this advice. Details within the advice messages

will appear as averages over this interval.

v Maximum warning sequence - This setting refers to the number of consecutive

warnings issued before the threshold is relaxed. For example, if the maximum

244 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

warning sequence is set to 3, then the advisor only sends three warnings to

indicate that the prepared statement cache is overflowing. After that, a new alert

is only issued if the rate of discards exceeds the new threshold setting.

v Number of processors - This setting specifies the number of processors on the

server. It is critical in order to ensure accurate advice for the specific

configuration of the system.

To enable the Runtime Performance Advisor tool using the wsadmin tool, perform

the following steps:

v Enable the Performance Monitoring Service (PMI), for example:

– Using Jacl:

set s1 [$AdminConfig getid /Node:wandNode51/Server:server1/]

server1(cells/wandCell51/nodes/wandNode51/servers/server1:server

.xml#Server_1)

set pmis1 [$AdminConfig list PMIService $s1](cells/wandCell51/

nodes/wandNode51/servers/server1:server.xml#PMIService_1)

$AdminConfig modify $pmis1 {{enable true}{initialSpecLevel

beanModule=H:cacheModule=H:connectionPoolModule=H:j2cModule=H:jv

mRuntime Module=H:orbPerfModule=H:servletSessionsModule=H:systemModule=H:

threadPoolModule=H:transactionModule=H:webAppModule=H:webServicesModule=

H:wlmModule=H:wsgwModule=H}}

$AdminConfig save

– Using Jython:

s1 = AdminConfig.getid(’/Node:wandNode51/Server:server1/’, ’[

server1(cells/wandCell51/nodes/wandNode51/servers/server1:server

.xml#Server_1)]’)

print s1

pmis1 = AdminConfig.list(’PMIService’, s1, ’cells/wandCell51/

nodes/wandNode51/servers/server1:server.xml#PMIService_1’)

print pmis1

AdminConfig.modify(pmis1, [[’enable’, ’true’], [’initialSpecLevel’,

’beanModule=H:cacheModule=H:connectionPoolModule=H:j2cModule=H:jv

mRuntime Module=H:orbPerfModule=H:servletSessionsModule=H:systemModule=H:

threadPoolModule=H:transactionModule=H:webAppModule=H:webServicesModule=

H:wlmModule=H:wsgwModule=H’]])

AdminConfig.save()

v Setup the Runtime Performance Advisor (RPA), for example:

– Using Jacl:

set perf [$AdminControl queryNames mbeanIdentifier=ServerRuleDriverMBean,process=server1,*]

$AdminControl setAttribute $perf {{enable true}}

$AdminControl invoke $perf reInit

$AdminConfig save

– Using Jython:

perf = AdminControl.queryNames(’mbeanIdentifier=ServerRuleDriverMBean,process=server1,*’)

AdminControl.setAttribute(perf, [[’enabled’, ’true’]])

AdminControl.invoke(perf, ’reInit’)

AdminConfig.save()

Chapter 6. Using scripting (wsadmin) 245

After completing the previous steps, start the server and monitor RPA.

Scripting reference material

This topic contains the following tasks:

v “Wsadmin tool”

v “Commands for the AdminConfig object” on page 265

v “Commands for the AdminControl object” on page 292

v “Commands for the AdminApp object” on page 317

v “Commands for the AdminTask object” on page 412

v “Administrative command invocation syntax” on page 599

v “Commands for the Help object” on page 250

v “Properties used by scripted administration” on page 601

Wsadmin tool

The WebSphere Application Server wsadmin tool runs scripts. You can use the

wsadmin tool to manage WebSphere Application Server as well as the

configuration, application deployment, and server run-time operations.

You can run wsadmin commands from WebSphere Application Server on a

distributed platform and use that distributed command to administer WebSphere

Application Server on a z/OS platform.

The command-line invocation syntax for the wsadmin scripting client is as follows:

wsadmin.sh [-h(help)]

[-?]

[-c <commands>]

[-p <properties_file_name>]

[-profile <profile_script_name>]

[-profileName <profile_name>]

[-f <script_file_name>]

[-javaoption java_option]

[-lang language]

[-wsadmin_classpath classpath]

[-conntype SOAP [-host host_name] [-port port_number] [-user userid] [-password password] |

 RMI [-host host_name] [-port port_number] [-user userid] [-password password] |

 NONE

]

[script parameters]

Where script parameters represent any arguments other than the ones listed

previously. The argc variable contains the argument number, and the argv variable

contains the contents.

246 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

Options

-c Designates to run a single command.

 Multiple -c options can exist on the command line. They run in the order that

you designate. You must save after using this command.

-f Designates a script to run.

 Only one -f option can exist on the command line.

-javaoption

Specifies a valid Java standard or a non-standard option.

 Multiple -javaoption options can exist on the command line.

-lang

Specifies the language of the script file, the command, or an interactive shell.

The possible languages include: Jacl and Jython. The options for the -lang

argument include: jacl and jython.

 This option overrides language determinations that are based on a script file

name, or the com.ibm.ws.scripting.defaultLang property. The -lang argument

has no default value. If the command line or the property does not supply the

script language, and the wsadmin tool cannot determine it, an error message

generates. This argument is required if not determined from the script file

name.

-p

Specifies a properties file.

 The file listed after -p, represents a Java properties file that the scripting

process reads. Three levels of default properties files load before the properties

file that you specify on the command line. The first level is the installation

default, wsadmin.properties, which is located in the WebSphere Application

Server properties directory. The second level is the user default,

wsadmin.properties, which is located in your home directory. The third level is

the properties file that the environment variable WSADMIN_PROPERTIES points to.

 Multiple -p options can exist on the command line. They invoke in the order

that you supply them.

-profile

Specifies a profile script.

 The profile script runs before other commands, or scripts. If you specify -c, the

profile script runs before it invokes this command. If you specify -f, the profile

script runs before it runs the script. In interactive mode, you can use the

profile script to perform any standard initialization that you want. You can

specify multiple -profile options on the command line, and they invoke in the

order that you supply them.

-profileName

Specifies the profile from which the wsadmin tool will run. Specify this option

if one the following reasons apply:

 v You run the wsadmin tool from the WAS_HOME/bin directory and you do not

have a default profile or you want to run in a profile other than the default

profile.

v You are currently in a profile bin directory but want to run the wsadmin

tool from a different profile.

-? Provides syntax help.

Chapter 6. Using scripting (wsadmin) 247

-help

Provides syntax help.

-conntype

Specifies the type of connection to use.

 This argument consists of a string that determines the type, for example, SOAP,

and the options that are specific to that connection type. Possible types include:

SOAP, RMI, and NONE.

 The options SOAP and RMI for the -conntype argument also include: host,

port, user, and password.

 Use the -conntype NONE option to run in local mode. The result is that the

scripting client is not connected to a running server. You can manage server

configuration, the installation and the uninstallation of applications without the

application server running.

-wsadmin_classpath

Use this option to make additional classes available to your scripting process.

 Follow this option with a class path string. For example:

/MyDir/Myjar.jar;/yourdir/yourdir.jar

The class path is then added to the class loader for the scripting process.

 You can also specify this option in a properties file that is used by the

wsadmin tool. The property is com.ibm.ws.scripting.classpath. If you specify

-wsadmin_classpath on the command line, the value of this property overrides

any value that is specified in a properties file. The class path property and the

command-line options are not concatenated.

-host

Specify a hostname to which wsadmin should attempt to connect. The default

wsadmin.properties file located in the properties directory of each WebSphere

profile provides localhost as the value of the host property if this option is not

specified.

-password

Specify a password to be used by the connector to connect to the server if

security is enabled in the server.

 Warning: On UNIX system, the use of -password option may result in security

exposure as the password information becomes visible to the system status

program such as ps command which can be invoked by other user to display

all the running processes. Do not use this option if security exposure is a

concern. Instead, specify user and password information in the

soap.client.props file for SOAP connector or sas.client.props file for RMI

connector. The soap.client.props and sas.client.props files are located in the

properties directory of your WebSphere profile.

-username

Specify a user name to be used by the connector to connect to the server if

security is enabled in the server.

-port

Specify a port to be used by the connector. The default wsadmin.properties file

located in the properties directory of each WebSphere Application Server

profile provides a value in the port property to connect to the local server.

248 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

In the following syntax examples, mymachine is the name of the host in the

wsadmin.properties file that is specified by the com.ibm.ws.scripting.port property:

SOAP connection to the local host

Use the options that are defined in the wsadmin.properties file.

SOAP connection to the mymachine host

Using Jacl:

wsadmin.sh -f test1.jacl -profile setup.jacl -conntype SOAP

-port mymachinesoapportnumber -host mymachine

Using Jython:

wsadmin.sh -lang jython -f test1.py -profile setup.py -conntype

SOAP -port mymachinesoapportnumber -host mymachine

Initial and maximum Java heap size

Using Jacl:

wsadmin.sh -javaoption -Xms128m -javaoption -Xmx256m -f test.jacl

Using Jython:

wsadmin.sh -lang jython -javaoption -Xms128m -javaoption -Xmx256m -f test.py

RMI connection with security

Using Jacl:

wsadmin.sh -conntype RMI -port rmiportnumber -userid userid

-password password

Using Jython:

wsadmin.sh -lang jython -conntype RMI -port rmiportnumber -userid userid

-password password

Warning: On UNIX system, the use of -password option may result in

security exposure as the password information becomes visible to the

system status program such as ps command which can be invoked by

other user to display all the running processes. Do not use this option if

security exposure is a concern. Instead, specify user and password

information in the soap.client.props file for SOAP connector or

sas.client.props file for RMI connector. The soap.client.props and

sas.client.props files are located in the properties directory of your

WebSphere profile.

Local mode of operation to perform a single command

Using Jacl:

 wsadmin.sh -conntype NONE -c "\$AdminApp uninstall app"

or

wsadmin.sh -conntype NONE -c ’$AdminApp uninstall app’

Using Jython:

 wsadmin.sh -lang jython -conntype NONE -c "\AdminApp.uninstall(’app’)"

or

wsadmin.sh -lang jython -conntype NONE -c ’AdminApp.uninstall(’app’)’

wsadmin tool performance tips

The following performance tips are for the wsadmin tool:

v When you launch a script using the wsadmin.bat or the wsadmin.sh files, a new

process is created with a new Java virtual machine (JVM) API. If you use

scripting with multiple wsadmin -c commands from a batch file or a shell script,

these commands run slower than if you use a single wsadmin -f command. The

Chapter 6. Using scripting (wsadmin) 249

-f option runs faster because only one process and JVM API are created for

installation and the Java classes for the installation load only once.

The following example, illustrates running multiple application installation

commands from a batch file:

Using Jacl:

wsadmin.sh -c "\$AdminApp install /myApps/App1.ear {-appname appl1}"

wsadmin.sh -c "\$AdminApp install /myApps/App2.ear {-appname appl2}"

wsadmin.sh -c "\$AdminApp install /myApps/App3.ear {-appname appl3}"

or

wsadmin.sh -c ’$AdminApp install /myApps/App1.ear {-appname appl1}’

wsadmin.sh -c ’$AdminApp install /myApps/App2.ear {-appname appl2}’

wsadmin.sh -c ’$AdminApp install /myApps/App3.ear {-appname appl3}’

Using Jython:

wsadmin.sh -lang jython -c "\AdminApp.install(’/myApps/App1.ear’, ’[-appname appl1]’)"

wsadmin.sh -lang jython -c "\AdminApp.install(’/myApps/App2.ear’, ’[-appname appl2]’)"

wsadmin.sh -lang jython -c "\AdminApp.install(’/myApps/App3.ear’, ’[-appname appl3]’)"

or

wsadmin.sh -lang jython -c ’AdminApp.install(’/myApps/App1.ear’, ’[-appname appl1]’)’

wsadmin.sh -lang jython -c ’AdminApp.install(’/myApps/App2.ear’, ’[-appname appl2]’)’

wsadmin.sh -lang jython -c ’AdminApp.install(’/myApps/App3.ear’, ’[-appname appl3]’)’

Or, for example, using Jacl, you can create the appinst.jacl file that contains the

commands:

$AdminApp install /myApps/App1.ear {-appname appl1}

$AdminApp install /myApps/App2.ear {-appname appl2}

$AdminApp install /myApps/App3.ear {-appname appl3}

Invoke this file using the following command: wsadmin -f appinst.jacl

Or using Jython, you can create the appinst.py file, that contains the commands:

AdminApp.install(’/myApps/App1.ear’, ’[-appname appl1]’)

AdminApp.install(’/myApps/App2.ear’, ’[-appname appl2]’)

AdminApp.install(’/myApps/App3.ear’, ’[-appname appl3]’)

Then invoke this file using the following command: wsadmin.sh -lang jython

-f appinst.py.

v Use the AdminControl queryNames and completeObjectName commands

carefully with a large installation. For example, if only a few beans exist on a

single machine, the $AdminControl queryNames * command performs well. If a

scripting client connects to the deployment manager in a multiple machine

environment, use a command only if it is necessary for the script to obtain a list

of all the MBeans in the system. If you need the MBeans on a node, it is easier

to invoke ″$AdminControl queryNames node=mynode,*″. The JMX system

management infrastructure forwards requests to the system to fulfill the first

query, *. The second query, node=mynode,* is targeted to a specific machine.

v The WebSphere Application Server is a distributed system, and scripts perform

better if you minimize remote requests. If some action or interrogation is

required on several items, for example, servers, it is more efficient to obtain the

list of items once and iterate locally. This procedure applies to the actions that

the AdminControl object performs on running MBeans, and actions that the

AdminConfig object performs on configuration objects.

Commands for the Help object

The Help object provides general help and dynamic online information about the

currently running MBeans. You can use the Help object as an aid in writing and

running scripts with the AdminControl object.

The following commands are available for the Help object:

250 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

Command

name:

Description: Parameters and return

values:

Examples:

Chapter 6. Using scripting (wsadmin) 251

AdminApp Provides a

summary of

all of the

available

methods for

the

AdminApp

object.

v Parameters: none

v Returns: string

Example usage:

Using Jacl:

$Help AdminApp

Using Jython:

print Help.AdminApp()

Example output:

WASX7095I: The AdminApp object

allows application objects to

be manipulated -- this includes

installing, uninstalling,

editing,and listing. Most of

the commands supported by

AdminApp operate in two

modes: the default mode is one

in which AdminApp communicates

with the WebSphere Application

Server to accomplish

its tasks. A local mode is

also possible, in which

no server communication takes

place. The local mode of

operation is invoked by bringing

up the scripting client with

no server connected using the

command line "-conntype NONE"

option or setting the

"com.ibm.ws.scripting.

connectionType=NONE" property

in the wsadmin.properties.

The following commands are

supported by AdminApp; more

detailed information

about each of these commands

is available by using the

"help" command of AdminApp and

supplying the name of the

command as an argument.

deleteUserAndGroupEntries

Deletes all the user/group

information for all the

roles and all the username/

password information for RunAs

roles for a given application.

edit Edit the properties of

an application

editInteractive Edit the

properties of an application

interactively

export Export application

to a file

exportDDL Export DDL from

application to a directory

help Show help information

252 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

install Installs an

application, given a file name

and an option string.

installInteractive Installs

an application in interactive

mode, given a file name

and an option string.

isAppReady Checks whether

the application is ready

to be run

list List all installed

applications

listModules List the modules

in a specified application

options Shows the options

available, either for a given

file, or in general.

publishWSDL Publish WSDL

files for a given application

taskInfo Shows detailed

information pertaining

to a given installation

task for a given file

uninstall Uninstalls an

application, given an

application name and

an option string

updateAccessIDs Updates

the user/group

binding information with

accessID from user

registry for a given

application

view View an application

or module,given an

application or module name

Chapter 6. Using scripting (wsadmin) 253

Admin

Config

Provides a

summary of

all the

available

methods for

the Admin

Config

object.

v Parameters: None

v Returns: string

Example usage:

Using Jacl:

$Help AdminConfig

Using Jython:

print Help.AdminConfig()

Example output:

WASX7053I: The following

functions are supported

by AdminConfig:

create Creates a configuration

object, given a type,

a parent, and

a list of attributes

create Creates a configuration

object, given a type, a parent, a

list of attributes, and an

attribute name for the new object

remove Removes the specified

configuration object

list Lists all configuration

objects of a given type

list Lists all configuration

objects of a given type,

contained

within the scope supplied

show Show all the attributes

of a given configuration object

show Show specified attributes

of a given configuration object

modify Change specified attributes

of a given configuration object

getId Show the configId of an

object, given a string version of

its containment

contents Show the objects which

a given type contains

parents Show the objects which

contain a given type

attributes Show the attributes

for a given type

types Show the possible types

for configuration

help Show help information

254 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

Admin

Control

Provides a

summary of

the help

commands

and ways to

invoke an

administrative

command.

v Parameters: None

v Returns: string

Example usage:

Using Jacl:

$Help AdminControl

Using Jython:

print Help.AdminControl()

Example output:

WASX7027I: The following

functions are supported

by AdminControl:

getHost returns String

representation of connected

host

getPort returns String

representation of port in use

getType returns String

representation of connection

type in use

reconnect reconnects with

server

queryNames Given ObjectName

and QueryExp, retrieves set

of ObjectNames that match.

queryNames Given String version

of ObjectName, retrieves String

of ObjectNames that match.

getMBeanCount returns number

of registered beans

getDomainName returns

"WebSphere"

getDefaultDomain returns

"WebSphere"

getMBeanInfo Given ObjectName,

returns MBeanInfo structure

for MBean

isInstanceOf Given ObjectName

and class name, true if MBean

is of that class

isRegistered true if supplied

ObjectName is registered

isRegistered true if supplied

String version of ObjectName

is registered

getAttribute Given ObjectName

and name of attribute, returns

value of attribute

Chapter 6. Using scripting (wsadmin) 255

getAttribute Given String

version of ObjectName and

name of attribute, returns

value of attribute

getAttributes Given ObjectName

and array of attribute names,

returns AttributeList

getAttributes Given String

version of ObjectName and

attribute names, returns

String of name value pairs

setAttribute Given ObjectName

and Attribute object, set

attribute for MBean specified

setAttribute Given String

version of ObjectName,

attribute name and attribute

value, set attribute for

MBean specified

setAttributes Given ObjectName

and AttributeList object,

set attributes for the MBean

specified

invoke Given ObjectName,

name of method, array of

parameters and signature,

invoke method on MBean

specified

invoke Given String version

of ObjectName, name of method,

String version of parameter

list, invoke method on

MBean specified.

invoke Given String version of

ObjectName, name of method,

String version of parameter

list, and String version

of array of signatures, invoke

method on MBean specified.

makeObjectName Return an

ObjectName built with the

given string

completeObjectName Return a

String version of an object

name given a template name

trace Set the wsadmin trace

specification

help Show help information

256 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

AdminTask Provides a

summary of

help

commands

and ways to

invoke an

administrative

command.

v Parameters: None

v Returns: string

Example usage:

Using Jacl:

$AdminTask help

Using Jython:

print AdminTask.help()

Example output:

WASX8001I: The AdminTask

object enables the available

administrative commands.

AdminTask commands operate

in two modes:

the default mode is one

which AdminTask communicates

with the

WebSphere Application Server

to accomplish its task. A

local mode is also

available in which no server

communication takes place.

The local

mode of operation is invoked

by bringing up the scripting

client using the command

line "-conntype NONE" option

or setting the

"com.ibm.ws.scripting.

connectiontype=NONE" property

in wsadmin.properties file.

The number of administrative

commands varies and

depends on your WebSphere

Application Server

installation. Use the following

help commands to obtain

a list of supported commands

and their parameters:

help -commands

list all the administrative

commands

help -commandGroups

list all the administrative

command groups

help commandName

display detailed

information for

the specified command

help commandName stepName

display detailed information

for the specified step

belonging to the specified

command

help commandGroupName

display detailed information

for the specified command

group

Chapter 6. Using scripting (wsadmin) 257

There are various flavors

to invoke an administrative

command. They are

commandName invokes an

administrative command that

does not require any

argument.

commandName targetObject

invokes an admin command

with the target object

string, for example,

the configuration object

name of a resource

adapter. The expected

target object varies

with the administrative

command invoked.

Use help command to get

information on the

target object of an

administrative command.

commandName options invokes

an administrative command

with the specified option

strings. This invocation

syntax is used to invoke an

administrative command that

does not require a target

object.

It is also used to enter

interactive mode if

"-interactive" mode is

included in the options

string.

commandName targetObject

options invokes an

administrative command

with the specified target

object and options strings.

If "-interactive" is

included in the options

string, then interactive

mode is entered. The target

object and options strings

vary depending on the admin

command invoked. Use help

command to get information

on the target object

and options.

258 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

all Provides a

summary of

the

information

that the

MBean

defines by

name.

v Parameters: name -

string

v Returns: string

Example usage:

Using Jacl:

$Help all [$AdminControl

queryNames type=TraceService,

process=server1,node=pongo,*]

Using Jython:

print Help.all(AdminControl.

queryNames(’type=TraceService,

process=server1,node=pongo,*’))

Example output:

Name: WebSphere:cell=pongo,name=

TraceService,mbeanIdentifier=cells/

pongo/nodes/pongo/servers/

server1/server.xml#TraceService_1,

type=TraceService,node=pongo,

process=server1

Description: null

Class name: javax.management.

modelmbean.RequiredModelMBean

Attribute Type

Access

ringBufferSize int

traceSpecification java.lang.String

Operation

int getRingBufferSize()

void setRingBufferSize(int)

java.lang.String

getTraceSpecification()

void setTraceState

(java.lang.String)

void appendTraceString

(java.lang.String)

void dumpRingBuffer

(java.lang.String)

void clearRingBuffer()

[Ljava.lang.String;

listAllRegisteredComponents()

[Ljava.lang.String;

listAllRegisteredGroups()

[Ljava.lang.String;

listComponentsInGroup

(java.lang.String)

[Lcom.ibm.websphere.ras.

TraceElementState;

getTracedComponents()

[Lcom.ibm.websphere.ras.

TraceElementState;

getTracedGroups()

java.lang.String

getTraceSpecification

(java.lang.String)

void processDumpString

(java.lang.String)

void checkTraceString

(java.lang.String)

void setTraceOutputToFile

(java.lang.String, int,

int, java.lang.String)

void setTraceOutputTo

RingBuffer

Chapter 6. Using scripting (wsadmin) 259

(int, java.lang.String)

java.lang.String

rolloverLogFileImmediate

(java.lang.String,

java.lang.String)

Notifications

jmx.attribute.changed

Constructors

attributes Provides a

summary of

all the

attributes

that the

MBean

defines by

name.

v Parameters: name -

string

v Returns: string

Example usage:

Using Jacl:

$Help attributes

[$AdminControl queryNames

type=TraceService,process=

server1,node=pongo,*]

Using Jython:

print Help.attributes

(AdminControl.queryNames

(’type=TraceService,process=

server1,node=pongo,*’))

Example output:

Attribute Type Access

ringBufferSize java.

lang.Integer RW

traceSpecification string RW

classname Provides a

class name

that the

MBean

defines by

name.

v Parameters: name -

string

v Returns: string

Example usage:

Using Jacl:

$Help classname

[$AdminControl queryNames

type=TraceService,process=

server1,node=pongo,*]

Using Jython:

print Help.classname

(AdminControl.queryNames

(’type=TraceService,process=

server1,node=pongo,*’))

Example output:

javax.management.modelmbean.

RequiredModelMBean

260 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

constructors Provides a

summary of

all of the

constructors

that the

MBean

defines by

name.

v Parameters: name -

string

v Returns: string

Example usage:

Using Jacl:

$Help constructors

[$AdminControl queryNames

type=TraceService,process=

server1,node=pongo,*]

Using Jython:

print Help.constructors

(AdminControl.queryNames

(’type=TraceService,process=

server1,node=pongo,*’))

Example output:

Constructors

description Provides a

description

that the

MBean

defines by

name.

v Parameters: name -

string

v Returns: string

Example usage:

Using Jacl:

$Help description

[$AdminControl queryNames

type=TraceService,process=

server1,node=pongo,*]

Using Jython:

print Help.description

(AdminControl.queryNames

(’type=TraceService,process=

server1,node=pongo,*’))

Example output:

Managed object for overall

server process.

Chapter 6. Using scripting (wsadmin) 261

help Provides a

summary of

all the

available

methods for

the Help

object.

v Parameters: None

v Returns: string

Example output:

WASX7028I: The Help object

has two purposes:

First, provide general

help information for the

objects supplied by the

wsadmin tool for scripting:

Help, AdminApp, AdminConfig,

and AdminControl.

Second, provide a means to

obtain interface information

about the MBeans that run

in the system. For this

purpose, a variety of

commands are available to

get information about the

operations, attributes, and

other interface information

about particular

MBeans.

The following commands are

supported by Help; more detailed

information about each of

these commands is available

by using the

"help" command of Help and

by supplying the name of the

command as an argument.

attributes

given an MBean, returns

help for attributes

operations

given an MBean, returns

help for operations

constructors

given an MBean, returns

help for constructors

description

given an MBean, returns

help for description

notifications

given an MBean, returns

help for notifications

classname

given an MBean, returns

help for class name

all

given an MBean, returns

help for all the previous

help

returns this help text

AdminControl

returns general help text

for the AdminControl object

AdminConfig

returns general help text

for the AdminConfig object

AdminApp

returns general help text

for the AdminApp object

262 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

AdminTask

returns general help text

for the AdminTask object

wsadmin

returns general help text

for the wsadmin script

launcher

message

given a message ID, returns

an explanation and a user

action

message Displays

information

for a

message ID.

v Parameters: message

ID

v Returns: string

Example usage:

Using Jacl:

$Help message CNTR0005W

Using Jython:

print Help.message(’CNTR0005W’)

Example output:

Explanation: The container

was unable to passivate an

enterprise bean due to

exception {2}

User action: Take action

based upon message in

exception {2}

notifications Provides a

summary of

all the

notifications

that the

MBean

defines by

name.

v Parameters: name -

string

v Returns: string

Example usage:

Using Jacl:

$Help notifications

[$AdminControl queryNames

type=TraceService,process=

server1,node=pongo,*]

Using Jython:

print Help.notifications

(AdminControl.queryNames

(’type=TraceService,process=

server1,node=pongo,*’))

Example output:

Notification

websphere.messageEvent.

audit

websphere.messageEvent.

fatal

websphere.messageEvent.

error

websphere.seriousEvent.

info

websphere.messageEvent.

warning

jmx.attribute.changed

Chapter 6. Using scripting (wsadmin) 263

operations Provides a

summary of

all the

operations

that the

MBean

defines by

name.

v Parameters: name -

string

v Returns: string

Example usage:

Using Jacl:

$Help operations

[$AdminControl queryNames

type=TraceService,process=

server1,node=pongo,*]

Using Jython:

print Help.operations

(AdminControl.queryNames

(’type=TraceService,process=

server1,node=pongo,*’))

Example output:

Operation

int getRingBufferSize()

void setRingBufferSize(int)

java.lang.String

getTraceSpecification()

void setTraceState

(java.lang.String)

void appendTraceString

(java.lang.String)

void dumpRingBuffer

(java.lang.String)

void clearRingBuffer()

[Ljava.lang.String;

listAllRegisteredComponents()

[Ljava.lang.String;

listAllRegisteredGroups()

[Ljava.lang.String;

listComponentsInGroup

(java.lang.String)

[Lcom.ibm.websphere.ras.

TraceElementState;

getTracedComponents()

[Lcom.ibm.websphere.ras.

TraceElementState;

getTracedGroups()

java.lang.String getTrace

Specification(java.lang.String)

void processDumpString

(java.lang.String)

void checkTraceString

(java.lang.String)

void setTraceOutputToFile

(java.lang.String, int, int,

 java.lang.String)

void setTraceOutputToRin

gBuffer(int, java.lang.String)

java.lang.String

rolloverLogFileImmediate

(java.lang.String,

java.lang.String)

264 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

operations Provides the

signature of

the opname

operation

for the

MBean that

is defined

by name.

v Parameters: name -

string, opname -

string

v Returns: string

Example usage:

Using Jacl:

$Help operations

[$AdminControl queryNames

type=TraceService,process=

server1,node=pongo,*]

processDumpString

Using Jython:

print Help.operations

(AdminControl.queryNames

(’type=TraceService,process=

server1,node=pongo,*’),

’processDumpString’)

Example output:

void processDumpString(string)

Description: Write the

contents of the Ras

services ring buffer to

the specified file.

Parameters:

Type string

Name dumpString

Description A String in

the specified format to

process or null.

Commands for the AdminConfig object

Use the AdminConfig object to invoke configuration commands and to create or

change elements of the WebSphere Application Server configuration, for example,

creating a data source.

You can start the scripting client without a running server, if you only want to use

local operations. To run in local mode, use the -conntype NONE option to start the

scripting client. You receive a message that you are running in the local mode. If a

server is currently running, running the AdminConfig tool in local mode is not

recommended. This is because any configuration changes made in local mode will

not be reflected in the running server configuration and vice versa. If you save a

conflicting configuration, you could corrupt the configuration. In a deployment

manager environment, configuration updates are available only if a scripting client

is connected to a deployment manager. When connected to a node agent or a

managed application server, you will not be able to update the configuration

because the configuration for these server processes are copies of the master

configuration which resides in the deployment manager. The copies are created on

a node machine when a configuration synchronization occurs between the

deployment manager and the node agent. Make configuration changes to the

server processes by connecting a scripting client to a deployment manager. For this

reason, to change a configuration, do not run a scripting client in local mode on a

node machine. It is not a supported configuration.

The following commands are available for the AdminConfig object:

Chapter 6. Using scripting (wsadmin) 265

Command

name:

Description: Parameters and return

values:

Examples:

attributes Returns a

list of the

top level

attributes

for a given

type.

v Parameters: object

type

The name of the

object type that you

input here is the one

based on the XML

configuration files and

does not have to be

the same name that

the administrative

console displays.

v Returns: A list of

attributes.

Example usage:

Using Jacl:

$AdminConfig attributes

ApplicationServer

Using Jython:

print AdminConfig.attributes

(’ApplicationServer’)

Example output:

"properties Property*"

"serverSecurity

ServerSecurity"

"server Server@" "id Long"

"stateManagement

StateManageable"

"name String" "moduleVisibility

EEnumLiteral(MODULE,

COMPATIBILITY, SERVER,

APPLICATION)" "services

Service*"

"statisticsProvider

StatisticsProvider"

checkin Checks a

file that the

document

URI

describes

into the

configuration

repository.

This

method

only applies

to

deployment

manager

configurations.

v Parameters: document

URI, filename, opaque

object

v Returns: None

Example usage:

Using Jacl:

$AdminConfig checkin cells

/MyCell/Node/MyNode/

serverindex.xml

\mydir\myfile $obj

Using Jython:

AdminConfig.checkin(’cells/

MyCell/Node/MyNode/

serverindex.xml’,

’\mydir\myfile’, obj)

The document URI is relative to the

root of the configuration repository,

for example,

\WebSphere\AppServer\config.

The file that is specified by filename

is used as the source of the file to

check. The opaque object is an object

that the extract command of the

AdminConfig object returns by a

prior call.

266 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

convert

ToCluster

Converts a

server so

that it is the

first

member of

a new

server

cluster.

v Parameters: server ID,

cluster name

v Returns: The

configuration ID of

the new cluster.

Example usage:

Using Jacl:

set serverid [$AdminConfig

getid /Server:myServer/]

$AdminConfig convertToCluster

$serverid myCluster

Using Jython:

serverid = AdminConfig.

getid(’/Server:myServer/’)

AdminConfig.convertToCluster

(serverid, ’myCluster’)

Example output:

myCluster(cells/mycell/

clusters/myCluster|cluster.

xml#ClusterMember_2

create Creates

configuration

objects.

v Parameters using Jacl:

type- string; parent

ID- string; attributes-

string

v Parameters using

Jython: type- string;

parent ID- string;

attributes- string or

type- string; parent

ID- string; attributes-

Jython list

v Returns: A string with

configuration object

names.

The name of the object type that you

input here is the one that is based

on the XML configuration files. This

name does not have to be the same

name that the administrative console

displays.

Example usage:

Using Jacl:

set jdbc1 [$AdminConfig

getid /JDBCProvider:jdbc1/]

$AdminConfig create

DataSource $jdbc1

{{name ds1}}

Using Jython with string attributes:

jdbc1 = AdminConfig.getid

(’/JDBCProvider:jdbc1/’)

AdminConfig.create

(’DataSource’, jdbc1,

’[[name ds1]]’)

Using Jython with object attributes:

jdbc1 = AdminConfig.getid

(’/JDBCProvider:jdbc1/’)

AdminConfig.create

(’DataSource’, jdbc1,

[[’name’, ’ds1’]])

Example output:

ds1(cells/mycell/nodes/

DefaultNode/servers/

server1|resources.xml#

DataSource_6)

Chapter 6. Using scripting (wsadmin) 267

createCluster

Member

Creates a

new server

as a

member of

an existing

cluster.

This

method

creates a

new server

object on

the node

that the

node id

parameter

specifies.

This server

is created as

a new

member of

the existing

cluster that

is specified

by the

cluster id

parameter,

and

contains

attributes

that are

specified in

the member

attributes

parameter.

The server

is created

using the

server

template

that is

specified by

the template

id attribute,

and that

contains the

name

specified by

the

memberName

attribute.

The

memberName

attribute is

required.

v Parameters using Jacl:

cluster ID- string;

node ID- string;

member attributes-

string

v Parameters using

Jython: cluster ID-

string; node ID-

string; member

attributes- string or

cluster ID- string;

node ID- string;

member attributes-

Jython list

v Returns: The

configuration ID of

the new cluster

member.

The name of the object type that you

input here is the one that is based

on the XML configuration files. This

name does not have to be the same

name that the administrative console

displays.

Example usage:

Using Jacl:

set clid [$AdminConfig

getid /ServerCluster:

myCluster/]

set nodeid [$AdminConfig

getid /Node:mynode/]

$AdminConfig create

ClusterMember $clid

$nodeid {{memberName

newMem1} {weight 5}}

Using Jython with string attributes:

clid = AdminConfig.getid

(’/ServerCluster:

myCluster/’)

nodeid = AdminConfig.

getid(’/Node:mynode/’)

AdminConfig.create

ClusterMember(clid,

nodeid, ’[[memberName

newMem1] [weight 5]]’)

Using Jython with object attributes:

clid = AdminConfig.getid

(’/ServerCluster:

myCluster/’)

nodeid = AdminConfig.

getid(’/Node:mynode/’)

AdminConfig.createCluster

Member(clid, nodeid,

[[’memberName’,

’newMem1’], [’weight’, 5]])

Example output:

myCluster(cells/mycell/

clusters/myCluster|

cluster.xml#ClusterMember_2)

268 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

create

Document

Creates a

new

document

in the

configuration

repository.

The

documentURI

parameter

names the

document

to create in

the

repository.

The

filename

parameter

must be a

valid local

file name

where the

contents of

the

document

exist.

v Parameters:

documentURI,

filename

v Returns: None

Example usage:

Using Jacl:

$AdminConfig createDocument

cells/mycell/myfile.xml

\mydir\\myfile

Using Jython:

AdminConfig.createDocument

(’cells/mycell/myfile.xml’,

’\mydir\myfile’)

createUsing

Template

Creates a

type of

object with

the given

parent,

using a

template.

v Parameters using Jacl:

type- string; parent

id-string;

attributes-string;

template ID-string

v Parameters using

Jython: type-string;

parent id- string;

attributes-string;

template ID-string or

type-string; parent

id-string; attributes-

Jython list; template

ID-string

v Returns: The

configuration ID of a

new object.

Example usage:

Using Jacl:

set node [$AdminConfig

getid /Node:mynode/]

set templ [$AdminConfig

listTemplates JDBCProvider

"DB2 JDBC Provider (XA)"]

$AdminConfig createUsing

Template JDBCProvider $node

{{name newdriver}}

$templ

Using Jython using string attributes:

node = AdminConfig.getid

(’/Node:mynode/’)

templ = AdminConfig.

listTemplates(’JDBCProvider’,

"DB2 JDBC Provider (XA)")

AdminConfig.createUsing

Template(’JDBCProvider’,

node, ’[[name newdriver]]’,

templ)

Using Jython using object attributes:

node = AdminConfig.getid

(’/Node:mynode/’)

templ = AdminConfig.

listTemplates(’JDBCProvider’,

"DB2 JDBC Provider (XA)")

AdminConfig.createUsing

Template(’JDBCProvider’,

node, [[’name’,

’newdriver’]], templ)

Chapter 6. Using scripting (wsadmin) 269

defaults Displays the

default

values for

attributes of

a given

type.

This

method

displays all

of the

possible

attributes

contained

by an object

of a specific

type. If the

attribute has

a default

value, this

method also

displays the

type and

default

value for

each

attribute.

v Parameters: type

The name of the

object type that you

input here is the one

based on the XML

configuration files.

This name does not

have to be the same

name that the

administrative console

displays.

v Returns: A string that

contains a list of

attributes with its

type and value.

Example usage:

Using Jacl:

$AdminConfig defaults

TuningParams

Using Jython:

print AdminConfig.defaults

(’TuningParams’)

Example output:

Attribute Type Default

usingMultiRowSchema

Boolean false

maxInMemorySessionCount

Integer 1000

allowOverflow

Boolean true

scheduleInvalidation

Boolean false

writeFrequency

ENUM

writeInterval

Integer 120

writeContents

ENUM

invalidationTimeout

Integer 30

invalidationSchedule

InvalidationSchedule

delete

Document

Deletes a

document

from the

configuration

repository.

The

documentURI

parameter

names the

document

to delete

from the

repository.

v Parameters:

documentURI

v Returns: None

Example usage:

Using Jacl:

$AdminConfig deleteDocument

cells/mycell/myfile.xml

Using Jython:

AdminConfig.delete

Document(’cells/mycell

/myfile.xml’)

exists

Document

Tests for the

existence of

a document

in the

configuration

repository.

The

documentURI

parameter

names the

document

to test in

the

repository.

v Parameters:

documentURI

v Returns: A true value,

if the document exists.

Example usage:

Using Jacl:

$AdminConfig existsDocument

cells/mycell/myfile.xml

Using Jython:

AdminConfig.existsDocument

(’cells/mycell/myfile.xml’)

Example output:

1

270 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

extract Extracts a

configuration

repository

file that is

described

by the

document

URI and

places it in

the file

named by

filename.

This

method

only applies

to

deployment

manager

configurations.

v Parameters: document

URI, filename

v Returns: An opaque

java.lang.Object to use

when checking in the

file.

Example usage:

Using Jacl:

set obj [$AdminConfig

extract cells/MyCell/

nodes/MyNode/serverindex.

xml \mydir\myfile]

Using Jython:

obj = AdminConfig.extract

(’cells/MyCell/nodes/

MyNode/serverindex.xml’,

’\mydir\myfile’)

The document URI is relative to the

root of the configuration repository,

for example,

/WebSphere/AppServer/config.

If the file that is specified by the

filename parameter exists, the

extracted file replaces it.

getCross

Document

Validation

Enabled

Returns a

message

with the

current

cross-
document

enablement

setting.

This

method

returns true

if

cross-
document

validation is

enabled.

v Parameters: None

v Returns: A string that

contains the message

with the

cross-document

validation setting.

Example usage:

Using Jacl:

$AdminConfig getCross

DocumentValidationEnabled

Using Jython:

print AdminConfig.getCross

DocumentValidationEnabled()

Example output:

WASX7188I: Cross-document

validation enablement

set to true

getid Returns the

configuration

ID of an

object.

v Parameters:

containment path

v Returns: The

configuration ID for

an object that is

described by the

containment path.

Example usage:

Using Jacl:

$AdminConfig getid /Cell:

testcell/Node:testNode/

JDBCProvider:Db2JdbcDriver/

Using Jython:

AdminConfig.getid(’/Cell:

testcell/Node:testNode/

JDBCProvider:Db2JdbcDriver/’)

Example output:

Db2JdbcDriver(cells/

testcell/nodes/testnode|

resources.xml#

JDBCProvider_1)

Chapter 6. Using scripting (wsadmin) 271

getObjectName Returns a

string

version of

the object

name for

the

corresponding

running

MBean.

This

method

returns an

empty

string if no

corresponding

running

MBean

exists.

v Parameters:

configuration ID

v Returns: A string that

contains the object

name.

Example usage:

Using Jacl:

set server [$AdminConfig

getid /Node:mynode/

Server:server1/]

$AdminConfig getObjectName

$server

Using Jython:

server = AdminConfig.

getid(’/Node:mynode/

Server:server1/’)

AdminConfig.getObject

Name(server)

Example output:

WebSphere:cell=mycell,

name=server1,mbean

Identifier=cells/

mycell/nodes/mynode/

servers/server1/server.

xml#Server_1,

type=Server,node=mynode,

process=server1,process

Type=UnManagedProcess

272 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

getSaveMode Returns the

mode that is

used when

you invoke

a save

command.

Possible

values

include the

following:

v overwrite

OnConflict

- Saves

changes

even if

they

conflict

with

other

configuration

changes

v rollback

OnConflict

- Causes

a save

operation

to fail if

changes

conflict

with

other

configuration

changes.

This

value is

the

default.

v Parameters: None

v Returns: A string that

contains the current

save mode setting.

Example usage:

Using Jacl:

$AdminConfig getSaveMode

Using Jython:

print AdminConfig.

getSaveMode()

Example output:

rollbackOnConflict

getValidation

Level

Returns the

validation

used when

files are

extracted

from the

repository.

v Parameters: None

v Returns: A string that

contains the

validation level.

Example usage:

Using Jacl:

$AdminConfig getValidationLevel

Using Jython:

AdminConfig.getValidationLevel()

Example output:

WASX7189I: Validation level

set to HIGH

Chapter 6. Using scripting (wsadmin) 273

getValidation

SeverityResult

Returns the

number of

validation

messages

with the

given

severity

from the

most recent

validation.

v Parameters: severity

v Returns: A string that

indicates the number

of validation messages

of the given severity.

Example usage:

Using Jacl:

$AdminConfig getValidation

SeverityResult 1

Using Jython:

AdminConfig.getValidation

SeverityResult(1)

Example output:

16

hasChanges Returns

true if

unsaved

configuration

changes

exist.

v Parameters: None

v Returns: A string that

indicates whether

unsaved configuration

changes exist.

Example usage:

Using Jacl:

$AdminConfig hasChanges

Using Jython:

AdminConfig.hasChanges()

Example output:

1

274 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

help Displays

static help

information

for the

AdminConfig

object.

v Parameters: None

v Returns: A list of

options.

Example usage:

Using Jacl:

$AdminConfig help

Using Jython:

print AdminConfig.help()

Example output:

WASX7053I: The AdminConfig

object communicates

with the

configuration service in

a WebSphere Application

Server to manipulate

configuration data

for an Application Server

installation. The

AdminConfig

object has commands to

list, create,

remove, display, and

modify configuration data,

as well as commands to

display information about

configuration data types.

Most of the commands

supported by the AdminConfig

object operate in two modes:

the default mode is one

in which the AdminConfig

object communicates with the

Application Server to

accomplish its tasks.

A local mode is also

possible, in which no

server communication

takes place. The local

mode of operation is

invoked by bringing up

the scripting client

without

a server connected using

the command line "-conntype

NONE" option

or setting the "com.ibm.

ws.scripting.connectionType

=NONE" property in

the wsadmin.properties file.

The following commands are

supported by the AdminConfig

object; more detailed

information about each of

these commands is available

by using the

help command of the

AdminConfig object and by

supplying the name of

the command

as an argument.

Chapter 6. Using scripting (wsadmin) 275

attributes Shows the

attributes for a given type

checkin Checks a

file into the configuration

repository.

convertToCluster

Converts a server to be

the first member of a

new server cluster

create Creates a

configuration object, given

a type, a parent, and a list

of attributes, and

optionally an attribute

name for the new object

createClusterMember

Creates a new server

that is a member of an

existing cluster.

createDocument Creates a

new document in the

configuration repository.

installResourceAdapter

Installs a J2C resource

adapter with the given RAR

file name and an option

string in the node.

createUsingTemplate

Creates an object using

a particular template type.

defaults

Displays the default

values for the attributes

of a given type.

deleteDocument Deletes a

document from the

configuration repository.

existsDocument Tests for

the existence of a document

in the configuration

repository.

extract

Extracts a file from the

configuration repository.

getCrossDocumentValidationEnabled

Returns true if cross-document

validation is enabled.

getid

Show the configuration ID

of an object, given a

string version of its containment

getObjectName

Given a configuration ID,

returns a string version

of the ObjectName

276 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

for the corresponding

running MBean, if any.

getSaveMode

Returns the mode used

when "save" is invoked

getValidationLevel

Returns the validation

that is used when files

are extracted from the repository.

getValidationSeverityResult

Returns the number of messages

of a given severity from

the most recent validation.

hasChanges

Returns true if unsaved

configuration changes exist

help Shows help information

list Lists all the

configuration objects of

a given type

listTemplates

Lists all the available

configuration templates

of a given type.

modify

Changes the specified

attributes of a given

configuration object

parents

Shows the objects which

contain a given type

queryChanges

Returns a list of

unsaved files

remove

Removes the specified

configuration object

required

Displays the required

attributes of a given type.

reset

Discards the unsaved

configuration changes

save

Commits the unsaved

changes to the

configuration repository

setCrossDocument

ValidationEnabled

Sets the cross-document

validation enabled mode.

setSaveMode

Chapter 6. Using scripting (wsadmin) 277

Changes the mode used

when "save" is invoked

setValidationLevel

Sets the validation

used when files are

extracted from the

repository.

show

Shows the attributes of

a given configuration object

showall

Recursively shows the

attributes of a given

configuration object, and

all the objects that are

contained within each

attribute.

showAttribute

Displays only the value

for the single attribute

that is specified.

types

Shows the possible types

for configuration

validate Invokes validation

278 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

install

Resource

Adapter

Installs a

Java 2

Connector

(J2C)

resource

adapter

with the

given

Resource

Adapter

Archive

(RAR) file

name and

an option

string in the

node.

The RAR

file name is

the fully

qualified

file name

that resides

in the node

that you

specify. The

valid

options

include the

following

options:

v rar.name

v rar.desc

v rar.

archivePath

v rar.

classpath

v rar.

nativePath

v rar.

threadPoolAlias

v rar.

propertiesSet

v Parameters: RAR file

name, node, options

v Returns: The

configuration ID of

the new

J2CResourceAdapter

object.

Example usage:

Using Jacl:

$AdminConfig installResource

Adapter /rar/mine.rar mynode

{-rar.name myResourceAdapter

-rar.desc "My rar file"}

Using Jython:

print AdminConfig.install

ResourceAdapter(’/rar/

mine.rar’, ’mynode’,

’[-rar.name myResource

Adapter -rar.desc

"My rar file"]’)

Example output:

myResourceAdapter(cells/

mycell/nodes/mynode|

resources.xml#J2CResourceAdapter_1)

Chapter 6. Using scripting (wsadmin) 279

The

rar.name

option is the

name for

the J2C

resource

adapter. If

you do not

specify this

option, the

display

name in the

RAR

deployment

descriptor is

used. If that

name is not

specified,

the RAR file

name is

used. The

rar.desc

option is a

description

of the

J2CResourceAdapter.

The

rar.archivePath

is the name

of the path

where you

extract the

file. If you

do not

specify this

option, the

archive is

extracted to

the

$\{CONNECTOR_INSTALL_ROOT\}

directory.

The

rar.classpath

option is the

additional

class path.

rar.propertiesSet

is

constructed

with the

following:

name String

value String

type String

*desc String

*required true/false

* means the item is optional

280 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

Each

attribute of

the property

are specified

in a set of

{}. A

property is

specified in

a set of {}.

You can

specify

multiple

properties

in {}.

When you

edit the

installed

application

with the

embedded

RAR, only

existing J2C

connection

factory, J2C

activation

specs, and

J2C

administrative

objects will

be edited.

No new J2C

objects will

be created.

list Returns a

list of

objects of a

given type,

possibly

scoped by a

parent.

v Parameters: Object

type

The name of the

object type that you

input here is the one

that is based on the

XML configuration

files and does not

have to be the same

name that the

administrative console

displays.

v Returns: A list of

objects.

Example usage:

Using Jacl:

$AdminConfig list JDBCProvider

Using Jython:

print AdminConfig.list

(’JDBCProvider’)

Example output:

Db2JdbcDriver(cells/mycell/

nodes/DefaultNode|resources.

xml#JDBCProvider_1)

Db2JdbcDriver(cells/mycell/

nodes/DefaultNode/servers/

deploymentmgr|resources.

xml#JDBCProvider_1)

Db2JdbcDriver(cells/mycell/

nodes/DefaultNode/servers/

nodeAgent|resources.xml#

JDBCProvider_1)

Chapter 6. Using scripting (wsadmin) 281

listTemplates Displays a

list of

template

object IDs.

v Parameters: object

type

The name of the

object type that you

input here is the one

that is based on the

XML configuration

files and does not

have to be the same

name that the

administrative console

displays.

v Returns: A list of

template IDs.

Example usage:

Using Jacl:

$AdminConfig listTemplates

JDBCProvider

Using Jython:

print AdminConfig.list

Templates(’JDBCProvider’)

This example displays a list of all

the JDBCProvider templates that are

available on the system.

modify Supports

the

modification

of object

attributes.

v Parameters using Jacl:

object-string;

attributes-string

v Parameters using

Jython: object-string;

attributes-string or

object-string;

attributes- Jython list

v Returns: None

Example usage:

Using Jacl:

$AdminConfig modify

ConnFactory1(cells/

mycell/nodes/Default

Node/servers/

deploymentmgr|resources.

xml#GenericJMSConnection

Factory_1) {{userID newID}

{password newPW}}

Using Jython with string attributes:

AdminConfig.modify

(’ConnFactory1(cells/

mycell/nodes/DefaultNode/

servers/deploymentmgr|

resources.xml#Generic

JMSConnectionFactory_1)’,

’[[userID newID]

[password newPW]]’)

Using Jython with object attributes:

AdminConfig.modify

(’ConnFactory1(cells/

mycell/nodes/DefaultNode/

servers/deploymentmgr|

resources.xml#Generic

JMSConnectionFactory_1)’,

[[’userID’, ’newID’],

[’password’, ’newPW’]])

parents Obtains

information

about object

types.

v Parameters: object

type

The name of the

object type that you

input here is the one

that is based on the

XML configuration

files and does not

have to be the same

name that the

administrative console

displays.

v Returns: A list of

object types.

Example usage:

Using Jacl:

$AdminConfig parents JDBCProvider

Using Jython:

AdminConfig.parents

(’JDBCProvider’)

Example output:

Cell

Node

Server

282 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

query

Changes

Returns a

list of

unsaved

configuration

files.

v Parameters: None

v Returns: A string that

contains a list of files

with unsaved

changes.

Example usage:

Using Jacl:

$AdminConfig queryChanges

Using Jython:

AdminConfig.queryChanges()

Example output:

WASX7146I: The following

configuration files

contain unsaved changes:

cells/mycell/nodes/mynode/

servers/server1|resources.xml

remove Removes a

configuration

object.

v Parameters: Object

v Returns: None

Example usage:

Using Jacl:

$AdminConfig remove

ds1(cells/mycell/nodes/

DefaultNode/servers/

server1:resources.xml#

DataSource_6)

Using Jython:

AdminConfig.remove(’ds1

(cells/mycell/nodes/

DefaultNode/servers/

server1:resources.xml#

DataSource_6)’)

required Displays the

required

attributes

that are

contained

by an object

of a certain

type.

v Parameters: Type

The name of the

object type that you

input here is the one

that is based on the

XML configuration

files. It does not have

to be the same name

that the

administrative console

displays.

v Returns: A string that

contains a list of the

required attributes

with its type.

Example usage:

Using Jacl:

$AdminConfig required URLProvider

Using Jython:

print AdminConfig.required

(’URLProvider’)

Example output:

Attribute Type

streamHandlerClassName String

protocol String

reset Resets the

temporary

workspace

that holds

updates to

the

configuration.

v Parameters: None

v Returns: None

Example usage:

Using Jacl:

$AdminConfig reset

Using Jython:

AdminConfig.reset()

save Saves

changes in

the

configuration

repository.

v Parameters: None

v Returns: None

Example usage:

Using Jacl:

$AdminConfig save

Using Jython:

AdminConfig.save()

Chapter 6. Using scripting (wsadmin) 283

setCross

Document

Validation

Enabled

Sets the

cross-
document

validation

enabled

mode.

Values

include true

or false.

v Parameters: Flag

v Returns: None

Example usage:

Using Jacl:

$AdminConfig setCrossDocument

ValidationEnabled true

Using Jython:

AdminConfig.setCrossDocument

ValidationEnabled(’true’)

setSaveMode Toggles the

behavior of

the save

command.

The default

value is

rollbackOnConflict.

When a

conflict is

discovered

while

saving, the

unsaved

changes are

not

committed.

The

alternative

value is

overwriteOnConflict,

which saves

the changes

to the

configuration

repository

even if

conflicts

exist.

To use

overwriteOnConflict

as the value

of this

command,

the

deployment

manager

must be

enabled for

configuration

overwrite.

v Parameters: Mode

v Returns: None

Example usage:

Using Jacl:

$AdminConfig setSaveMode

overwriteOnConflict

Using Jython:

AdminConfig.setSaveMode

(’overwriteOnConflict’)

284 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

setValidation

Level

Sets the

validation

that is used

when files

are

extracted

from the

repository.

Five

validation

levels are

available:

none, low,

medium,

high, or

highest.

v Parameters: Level

v Returns: A string that

contains the

validation level

setting.

Example usage:

Using Jacl:

$AdminConfig setValidationLevel

high

Using Jython:

AdminConfig.setValidationLevel

(’high’)

Example output:

WASX7189I: Validation

level set to HIGH

show Returns the

top-level

attributes of

the given

object.

v Parameters: Object,

attributes

v Returns: A string that

contains the attribute

value.

Example usage:

Using Jacl:

$AdminConfig show Db2JdbcDriver

(cells/mycell/nodes/

DefaultNode|resources.xm#

JDBCProvider_1)

Example output with Jacl:

{name "Sample Datasource"}

{description "Data source

for the Sample entity beans"}

Using Jython:

print AdminConfig.show

(’Db2JdbcDriver(cells/

mycell/nodes/DefaultNode|

resources.xm#JDBCProvider_1)’)

Example output with Jython:

 [name "Sample Datasource"]

[description "Data source

for the Sample entity beans"]

Chapter 6. Using scripting (wsadmin) 285

showall Recursively

shows the

attributes of

a given

configuration

object.

v Parameters: Object,

attributes

v Returns: A string that

contains the attribute

value.

Example usage:

Using Jacl:

$AdminConfig showall

"Default Datasource

(cells/mycell/nodes/

DefaultNode/servers/

server1:resources.xml#

DataSource_1)

Example output with Jacl:

{authMechanismPreference

BASIC_PASSWORD}

{category default}

{connectionPool

{{agedTimeout 0}

{connectionTimeout 1000}

{maxConnections 30}

{minConnections 1}

{purgePolicy Failing

ConnectionOnly}

{reapTime 180}

{unusedTimeout 1800}}}

{datasourceHelperClassname

com.ibm.websphere.

rsadapter.CloudscapeData

StoreHelper}

{description "Datasource

for the WebSphere

Default Application"}

{jndiName DefaultDatasource}

{name "Default Datasource"}

{propertySet {{resource

Properties {{{description

"Location of Cloudscape

default database."}

{name databaseName}

{type string}

{value ${WAS_INSTALL_ROOT}

/bin/DefaultDB}} {{name

remoteDataSourceProtocol}

{type string}

{value {}}} {{name

shutdownDatabase}

{type string}

{value {}}} {{name

dataSourceName}

{type string}

{value {}}} {{name

description}

{type string}

{value {}}} {{name

connectionAttributes}

{type string}

{value {}}} {{name

createDatabase}

{type string}

{value {}}}}}}}

{provider "Cloudscape

JDBC Driver(cells/pongo/

nodes/pongo/

servers/server1|resources.

xml#JDBCProvider_1)"}

{relationalResourceAdapter

286 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

"WebSphere Relational

Resource Adapter(cells/

pongo/nodes/pongo/servers/

server1|resources.xml#

builtin_rra)"}

{statementCacheSize 0}

Using Jython:

AdminConfig.showall

("Default Datasource

(cells/mycell/nodes/

DefaultNode/servers/

server1:resources.xml#

DataSource_1)")

Example output with Jython:

 [authMechanismPreference

BASIC_PASSWORD]

[category default]

[connectionPool

[[agedTimeout []]

[connectionTimeout 1000]

[maxConnections 30]

[minConnections 1]

[purgePolicy Failing

ConnectionOnly]

[reapTime 180]

[unusedTimeout 1800]]]

[datasourceHelperClassname

com.ibm.websphere.

rsadapter.CloudscapeData

StoreHelper]

[description "Datasource

for the WebSphere

Default Application"]

[jndiName DefaultDatasource]

[name "Default Datasource"]

[propertySet [[resource

Properties [[[description

"Location of Cloudscape

default database."]

[name databaseName]

[type string]

[value ${WAS_INSTALL_ROOT}

/bin/DefaultDB]] [[name

remoteDataSourceProtocol]

[type string]

[value []]] [[name

shutdownDatabase]

[type string]

Chapter 6. Using scripting (wsadmin) 287

[value []]] [[name

dataSourceName]

[type string]

[value []]] [[name

description]

[type string]

[value []]] [[name

connectionAttributes]

[type string]

[value []]] [[name

createDatabase]

[type string]

[value []]]]]]]

[provider "Cloudscape

JDBC Driver(cells/pongo/

nodes/pongo/servers/

server1|resources.xml#

JDBCProvider_1)"]

[relationalResourceAdapter

"WebSphere Relational

Resource Adapter(cells/

pongo/nodes/pongo/servers/

server1|resources.xml#

builtin_rra)"]

[statementCacheSize 0]

show

Attribute

Displays

only the

value for

the single

attribute

that you

specify.

The output

of this

command is

different

from the

output of

the show

command

when a

single

attribute is

specified.

The

showAttribute

command

does not

display a

list that

contains the

attribute

name and

value. It

only

displays the

attribute

value.

v Parameters:

Configuration ID,

attribute

v Returns: A string that

contains the attribute

value.

Example usage:

Using Jacl:

set ns [$AdminConfig getid

/Node:mynode/]

$AdminConfig showAttribute

$ns hostName

Using Jython:

ns = AdminConfig.getid

(’/Node:mynode/’)

print AdminConfig.show

Attribute(ns, ’hostName’)

Example output:

mynode

288 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

types Returns a

list of the

configuration

object types

that you can

manipulate.

v Parameters: None

v Returns: A list of

object types.

Example usage:

Using Jacl:

$AdminConfig types

Using Jython:

print AdminConfig.types()

Example output:

AdminService

Agent

ApplicationConfig

ApplicationDeployment

ApplicationServer

AuthMechanism

AuthenticationTarget

AuthorizationConfig

AuthorizationProvider

AuthorizationTableImpl

BackupCluster

CMPConnectionFactory

CORBAObjectNameSpaceBinding

Cell

CellManager

Classloader

ClusterMember

ClusteredTarget

CommonSecureInteropComponent

Chapter 6. Using scripting (wsadmin) 289

uninstall

Resource

Adapter

Uninstalls a

Java 2

Connector

(J2C)

resource

adapter

with the

given J2C

resource

adapter

configuration

ID and an

option list.

One option

is valid for

this

command: *

force

This option

forces the

uninstallation

of the

resource

adapter

without

checking

whether the

resource

adapter is

being used

by an

application.

The

application

that is using

it will not

be

uninstalled.

If you do

not specify

the force

option and

the

specified

resource

adapter is

still in use,

the resource

adapter is

not

uninstalled.

v Parameters: J2C

resource adapter

configuration ID, list

of options

v Returns: The

configuration ID of

J2CResourceAdapter

object that is removed.

Example usage:

Using Jacl:

set j2cra [$AdminConfig getid

/J2CResourceAdapter:MyJ2CRA/]

$AdminConfig uninstallResource

Adapter $j2cra {-force}

$AdminConfig save

Using Jython:

j2cra = AdminConfig.getid

(’/J2CResourceAdapter:

MyJ2CRA/’)

print AdminConfig.uninstall

ResourceAdapter(j2cra,

’[-force]’)

AdminConfig.save()

Example output:

WASX7397I: The following

J2CResourceAdapter objects

are removed:

MyJ2CRA(cells/juniarti/

nodes/juniarti|resources.

xml#J2CResourceAdapter_

1069433028609)

290 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

When you

remove a

J2CResourceAdapter

object from

the

configuration

repository,

the installed

directory

will be

removed at

the time of

synchronization.

A stop

request will

be sent to

the

J2CResourceAdapter

MBean that

was

removed.

Chapter 6. Using scripting (wsadmin) 291

validate Invokes

validation.

This

command

requests

configuration

validation

results

based on

the files in

your

workspace,

the value of

the

cross-
document

validation

enabled

flag, and

the

validation

level

setting.

Optionally,

you can

specify a

configuration

ID to set the

scope. If

you specify

a

configuration

ID, the

scope of this

request is

the object

named by

the config

id

parameter.

v Parameters: config id

(optional)

v Returns: A string that

contains results of the

validation.

Example usage:

Using Jacl:

$AdminConfig validate

Using Jython:

print AdminConfig.validate()

Example output:

WASX7193I: Validation results

are logged in \WebSphere5\

AppServer\logs\wsadmin.valout:

Total number of messages: 16

WASX7194I: Number of messages

of severity 1: 16

Commands for the AdminControl object

Use the AdminControl object to invoke operational commands that deal with

running objects in the WebSphere Application Server. Many of the AdminControl

commands have multiple signatures so that they can either invoke in a raw mode

using parameters that are specified by Java Management Extensions (JMX), or by

using strings for parameters. In addition to operational commands, the

AdminControl object supports some utility commands for tracing, reconnecting

with a server, and converting data types.

The following commands are available for the AdminControl object:

 Command

name:

Description: Parameters and return

values:

Examples:

292 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

complete

ObjectName

Creates a

string

representation

of a

complete

ObjectName

value that is

based on a

fragment.

This

command

does not

communicate

with the

server to

find a

matching

ObjectName

value. If it

finds several

MBeans that

match the

fragment,

the

command

returns the

first one.

v Parameters:

name-java.lang.String

v Returns:

java.lang.String

Example usage:

Using Jacl:

set serverON [$AdminControl

completeObjectName node=

mynode,type=Server,*]

Using Jython:

serverON = AdminControl.

completeObjectName(’node=

mynode,type=Server,*’)

getAttribute Returns the

value of the

attribute for

the name

that you

provide.

v Parameters:

name-java.lang.String;

attribute-
java.lang.String

v Returns:

java.lang.String

Example usage:

Using Jacl:

set objNameString

[$AdminControl complete

ObjectName WebSphere:

type=Server,*]

$AdminControl getAttribute

$objNameString processType

Using Jython:

objNameString = Admin

Control.completeObject

Name(’WebSphere:type=

Server,*’)

AdminControl.getAttribute

(objNameString,

’processType’)

Chapter 6. Using scripting (wsadmin) 293

getAttribute

_jmx

Returns the

value of the

attribute for

the name

that you

provide.

v Parameters:

name-ObjectName;

attribute-
java.lang.String

v Returns:

java.lang.String

Example usage:

Using Jacl:

set objNameString

[$AdminControl complete

ObjectName WebSphere:

type=Server,*]

set objName [java::new

javax.management.Object

Name $objNameString]

$AdminControl

getAttribute_jmx

$objName processType

Using Jython:

objNameString =

AdminControl.complete

ObjectName(’WebSphere:

type=Server,*’)

import javax.

management as mgmt

objName = mgmt.Object

Name(objNameString)

AdminControl.getAttribute

_jmx(objName,

’processType’)

getAttributes Returns the

attribute

values for

the names

that you

provide.

v Parameters using Jacl:

name-String;

attributes-
java.lang.String

v Parameters using

Jython: name-String;

attributes-
java.lang.String or

name-String;

attributes-
java.lang.Object[]

v Returns:

java.lang.String

Example usage:

Using Jacl:

set objNameString

[$AdminControl complete

ObjectName WebSphere:

type=Server,*]

$AdminControl

getAttributes $objName

String "cellName nodeName"

Using Jython with string attributes:

objNameString = Admin

Control.completeObject

name(’WebSphere:type

=Server,*)

AdminControl.getAttributes

(objNameString,

’[cellName nodeName]’)

Using Jython with object attributes:

objNameString = Admin

Control.completeObject

name(’WebSphere:type

=Server,*)

AdminControl.get

Attributes(objNameString,

[’cellName’, ’nodeName’])

294 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

getAttributes

_jmx

Returns the

attribute

values for

the names

that you

provide.

v Parameters:

name-ObjectName;

attributes-
java.lang.String[]

v Returns:

javax.management.

AttributeList

Example usage:

Using Jacl:

set objectNameString

[$AdminControl complete

ObjectName WebSphere:

type=Server,*]

set objName [$AdminControl

makeObjectName

$objectNameString]

set attrs [java::new

{String[]} 2 {cellName

nodeName}]

$AdminControl getAttributes

_jmx $objName $attrs

Using Jython:

objectNameString =

AdminControl.complete

ObjectName(’type=Server,*’)

objName = AdminControl.

makeObjectName

(objectNameString)

attrs = [’cellName’,

’nodeName’]

AdminControl.getAttributes

_jmx(objName, attrs)

getCell Returns the

name of the

connected

cell.

v Parameters: None

v Returns:

java.lang.String

Example usage:

Using Jacl:

$AdminControl getCell

Using Jython:

AdminControl.getCell()

Example output:

Mycell

Chapter 6. Using scripting (wsadmin) 295

getConfigId Creates a

configuration

ID from an

ObjectName

or an

ObjectName

fragment.

Use this ID

with the

$AdminConfig

command.

Not all

MBeans that

run have

configuration

objects that

correspond.

If several

MBeans

correspond

to an

ObjectName

fragment, a

warning is

created and

a

configuration

ID builds

for the first

MBean it

finds.

v Parameters:

name-java.lang.String

v Returns:

java.lang.String

Example usage:

Using Jacl:

set serverConfigId

[$AdminControl getConfigId

node=SY1,type=Server,*]

Using Jython:

serverConfigId = AdminControl.

getConfigId(’node=SY1,

type=Server,*’)

getDefault

Domain

Returns the

default

domain

name from

the server.

v Parameters: None

v Returns:

java.lang.String

Example usage:

Using Jacl:

$AdminControl getDefaultDomain

Using Jython:

AdminControl.getDefaultDomain()

Example output:

WebSphere

getDomain

Name

Returns the

domain

name from

the server.

v Parameters: None

v Returns:

java.lang.String

Example usage:

Using Jacl:

$AdminControl getDomainName

Using Jython:

AdminControl.getDomainName()

Example output:

WebSphere

296 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

getHost Returns the

name of

your host.

v Parameters: None

v Returns:

java.lang.String

Example usage:

Using Jacl:

$AdminControl getHost

Using Jython:

AdminControl.getHost()

Example output:

myhost

getMBean

Count

Returns the

number of

MBeans that

are

registered in

the server.

v Parameters: None

v Returns:

java.lang.Integer

Example usage:

Using Jacl:

$AdminControl getMBeanCount

Using Jython:

AdminControl.getMBeanCount()

Example output:

114

getMBeanInfo

_jmx

Returns the

Java

Management

Extension

MBeanInfo

structure

that

corresponds

to an

ObjectName

value. No

string

signature

exists for

this

command,

because the

Help object

displays

most of the

information

available

from the

getMBeanInfo

command.

v Parameters:

name-ObjectName

v Returns:

javax.management.

MBeanInfo

Example usage:

Using Jacl:

set objectNameString

[$AdminControl complete

ObjectName type=Server,*]

set objName [$AdminControl

makeObjectName

$objectNameString]

$AdminControl getMBeanInfo

_jmx $objName

Using Jython:

objectNameString =

AdminControl.complete

ObjectName(’type=Server,*’)

objName = AdminControl.

makeObjectName

(objectNameString)

AdminControl.getMBeanInfo

_jmx(objName)

Example output:

javax.management.modelmbean.

ModelMBeanInfoSupport@

10dd5f35

getNode Returns the

name of the

connected

node.

v Parameters: None

v Returns:

java.lang.String

Example usage:

Using Jacl:

$AdminControl getNode

Using Jython:

AdminControl.getNode()

Example output:

Myhost

Chapter 6. Using scripting (wsadmin) 297

getPort Returns the

name of

your port.

v Parameters: None

v Returns:

java.lang.String

Example usage:

Using Jacl:

$AdminControl getPort

Using Jython:

AdminControl.getPort()

Example output:

8877

getProperties

ForData

Source

Deprecated,

no

replacement.

This

command

incorrectly

assumes the

availability

of a

configuration

service

when

running in

connected

mode.

v Parameters:

configId-
java.lang.String

v Returns:

java.lang.String

Example usage:

Using Jacl:

set ds [lindex

[$AdminConfig list

DataSource] 0]

$AdminControl getProper

tiesForDataSource $ds

Using Jython:

ds = AdminConfig.list

(’DataSource’)

get line separator

import java.lang.

System as sys

lineSeparator = sys.

getProperty(’line.

separator’)

dsArray = ds.split

(lineSeparator)

AdminControl.getProper

tiesForDataSource

(dsArray[0])

Example output:

WASX7389E: Operation

not supported - get

PropertiesForDataSource

command is not supported.

getType Returns the

connection

type.

v Parameters: None

v Returns:

java.lang.String

Example usage:

Using Jacl:

$AdminControl getType

Using Jython:

AdminControl.getType()

Example output:

SOAP

298 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

help Returns

general help

text for the

AdminControl

object.

v Parameters: None

v Returns:

java.lang.String

Example usage:

Using Jacl:

$AdminControl help

Using Jython:

AdminControl.help()

Example output:

WASX7027I: The AdminControl

object enables the

manipulation of MBeans that

run in a WebSphere

Application Server process.

The number and type of MBeans

that are available to the

scripting client depend

on the server to

which the client is connected.

If the client is

connected to a

deployment manager, then

all the MBeans running

in the Deployment

Manager are visible, as

are all the MBeans running

in the node agents

that are connected to this

deployment manager, and

all the MBeans that run in

the application servers

on those nodes.

The following commands are

supported by the

AdminControl object;

more detailed information

about each of these

commands is available by

using the "help" command

of the AdminControl object

and supplying the name

of the command as an

argument.

Many of these commands

support two different

sets of signatures: one

that accepts and returns

strings, and one low-level

set that works with JMX

objects like ObjectName

and AttributeList.

In most situations, the

string signatures are

likely to be more useful,

but JMX-object signature

versions are supplied

as well. Each of these

JMX-object signature

commands has "_jmx"

appended to the command

name, so an "invoke"

command, as well as a

"invoke_jmx" command

are supported.

Chapter 6. Using scripting (wsadmin) 299

completeObjectName

Return a String version

of an object name given a

template name

getAttribute_jmx

Given ObjectName and

name of attribute,

returns value of

attribute

getAttribute

Given String version

of ObjectName and

name of attribute,

returns value of

attribute

getAttributes_jmx

Given ObjectName and

array of attribute

names, returns AttributeList

getAttributes

Given String version

of ObjectName and

attribute names,

returns String of

name value pairs

getCell

returns the cell name

of the connected server

getConfigId

Given String version of

ObjectName, return a

config id for the

corresponding configuration

object, if any.

getDefaultDomain

returns "WebSphere"

getDomainName

returns "WebSphere"

getHost

returns String

representation of

connected host

getMBeanCount

returns number of

registered beans

getMBeanInfo_jmx

Given ObjectName,

returns MBeanInfo

structure for MBean

getNode

returns the node name

of the connected server

getPort

returns String

representation of

port in use

getType

returns String

representation of

connection type in use

help

300 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

Show help information

invoke_jmx

Given ObjectName, name

of command, array of

parameters and

signature, invoke

command on MBean

specified

invoke

Invoke a command on

the specified MBean

isRegistered_jmx

true if supplied

ObjectName is registered

isRegistered

true if supplied String

version of ObjectName

is registered

makeObjectName

Return an ObjectName

built with the given string

queryNames_jmx

Given ObjectName and

QueryExp, retrieves

set of ObjectNames

that match.

queryNames

Given String version of

ObjectName, retrieves

String of ObjectNames

that match.

reconnect

reconnects with server

setAttribute_jmx

Given ObjectName and

Attribute object, set

attribute for MBean

specified

setAttribute

Given String version

of ObjectName,

attribute name and

attribute value, set

attribute for MBean

specified

setAttributes_jmx

Given ObjectName and

AttributeList object,

set attributes for

the MBean specified

startServer

Given the name of a

server, start that server.

stopServer

Given the name of a

server, stop that server.

testConnection

Test the connection

to a DataSource object

trace

Set the wsadmin trace

specification

Chapter 6. Using scripting (wsadmin) 301

help Returns help

text for the

specific

command of

the

AdminControl

object. The

command

name is not

case

sensitive.

v Parameters:

command-
java.lang.String

v Returns:

java.lang.String

Example usage:

Using Jacl:

$AdminControl help getAttribute

Using Jython:

AdminControl.help(’getAttribute’)

Example output:

WASX7043I: command: getAttribute

Arguments: object name, attribute

Description: Returns value of

"attribute" for the MBean

described by "object name."

invoke Invokes the

object

operation

without any

parameter.

Returns the

result of the

invocation.

v Parameters: name-

java.lang.String;

operationName-

java.lang.String

v Returns:

java.lang.String

Example usage:

Using Jacl:

set objNameString [$AdminControl

completeObjectName WebSphere:

type=Server,*]

$AdminControl invoke

$objNameString stop

Using Jython:

objNameString = AdminControl.

completeObjectName(’WebSphere:

type=Server,*’)

AdminControl.invoke(objNameString,

’stop’)

302 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

invoke Invokes the

object

operation

using the

parameter

list that you

supply. The

signature

generates

automatically.

The types of

parameters

are supplied

by

examining

the

MBeanInfo

that the

MBean

supplies.

Returns the

string result

of the

invocation.

The string

that is

returned is

controlled

by the

Mbean

method that

you

invoked. If

the Mbean

method is

synchronous,

then control

is returned

back to the

wsadmin

tool only

when the

operation is

complete. If

the Mbean

method is

asynchronous,

control is

returned

back to the

wsadmin

tool

immediately

even though

the invoked

task might

not be

complete.

v Parameters:

name-java.lang.String;

operationName-
java.lang.String;

params-
java.lang.String

v Returns:

java.lang.String

Example usage:

Using Jacl:

set objNameString [$AdminControl

completeObjectName WebSphere:

type=Server,*]

$AdminControl invoke

$objNameString appendTraceString

com.ibm.*=all=enabled

Using Jython:

objNameString = AdminControl.

completeObjectName(’WebSphere:

type=Server,*’)

AdminControl.invoke(objName

String, ’appendTraceString’,

’com.ibm.*=all=enabled’)

Chapter 6. Using scripting (wsadmin) 303

invoke Invokes the

object

operation by

conforming

the

parameter

list to the

signature.

Returns the

result of the

invocation.

v Parameters:

name-java.lang.String;

operationName-
java.lang.String;

params-
java.lang.String;

sigs-java.lang.String

v Returns:

java.lang.String

Example usage:

Using Jacl:

set objNameString [$AdminControl

completeObjectName WebSphere:

type=Server,*]

$AdminControl invoke

$objNameString appendTraceString

com.ibm.*=all=enabled

java.lang.String

Using Jython:

objNameString = AdminControl.

completeObjectName(’WebSphere:

type=Server,*’)

AdminControl.invoke

(objNameString, ’appendTrace

String’, ’com.ibm.*=all=enabled’,

’java.lang.String’)

invoke_jmx Invokes the

object

operation by

conforming

the

parameter

list to the

signature.

Returns the

result of the

invocation.

v Parameters:

name-ObjectName;

operationName-
java.lang.String;

params-

java.lang.Object[];

signature-
java.lang.String[]

v Returns:

java.lang.Object

Example usage:

set objNameString [$AdminControl

completeObjectName WebSphere:

type=TraceService,*]

set objName [java::new javax.

management.ObjectName

$objNameString]

set parms [java::new {java.

lang.Object[]} 1 com.ibm.ejs.

sm.*=all=disabled]

set signature [java::new

{java.lang.String[]} 1

java.lang.String]

$AdminControl invoke_jmx

$objName appendTraceString

$parms $signature

Using Jython:

objNameString = AdminControl.

completeObjectName(’WebSphere:

type=TraceService,*’)

import javax.management

as mgmt

objName = mgmt.ObjectName

(objNameString)

parms = [’com.ibm.ejs.sm.*=

all=disabled’]

signature = [’java.lang.

String’]

AdminControl.invoke_jmx

(objName, ’appendTraceString’,

parms, signature)

304 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

isRegistered If the

ObjectName

value is

registered in

the server,

then the

value is

true.

v Parameters:

name-java.lang.String

v Returns: Boolean

Example usage:

Using Jacl:

set objNameString [$AdminControl

completeObjectName WebSphere:

type=Server,*]

$AdminControl isRegistered

$objNameString

Using Jython:

objNameString = AdminControl.

completeObjectName(’WebSphere:

type=Server,*’)

AdminControl.isRegistered

(objNameString)

isRegistered

_jmx

If the

ObjectName

value is

registered in

the server,

then the

value is

true.

v Parameters:

name-ObjectName

v Returns: Boolean

Example usage:

Using Jacl:

set objectNameString [$AdminControl

completeObjectName type=Server,*]

set objName [$AdminControl

makeObjectName $objNameString]

$AdminControl isRegistered_jmx

$objName

Using Jython:

objectNameString = AdminControl.

completeObjectName(’type=Server,*’)

objName = AdminControl.

makeObjectName(objectNameString)

AdminControl.isRegistered_jmx

(objName)

Chapter 6. Using scripting (wsadmin) 305

makeObject

Name

A

convenience

command

that creates

an

ObjectName

value that is

based on the

strings

input. This

command

does not

communicate

with the

server, so

the

ObjectName

value that

results

might not

exist. If the

string you

supply

contains an

extra set of

double

quotes, they

are

removed. If

the string

does not

begin with a

Java

Management

Extensions

(JMX)

domain, or a

string

followed by

a colon,

then the

WebSphere

Application

Server string

appends to

the name.

v Parameters:

name-java.lang.String

v Returns:

javax.management.

ObjectName

Example usage:

Using Jacl:

set objectNameString

[$AdminControl complete

ObjectName type=Server,

node=mynode,*]

set objName [$AdminControl

makeObjectName $objNameString]

Using Jython:

objectNameString =

AdminControl.completeObjec

tName(’type=Server,

node=mynode,*’)

objName = AdminControl.

makeObjectName

(objectNameString)

306 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

queryNames Returns a

string that

lists all the

ObjectName

objects

based on the

name

template.

v Parameters:

name-java.lang.String

v Returns:

java.lang.String

Example usage:

Using Jacl:

$AdminControl queryNames

WebSphere:type=Server,*

Using Jython:

AdminControl.queryNames

(’WebSphere:type=Server,*’)

Example output:

WebSphere:cell=Base

ApplicationServerCell,

name=server1,mbeanIdentifier=

server1,type=Server,node=

mynode,process=server1

queryNames

_jmx

Returns a

set of

ObjectName

objects that

are based on

the

ObjectName

object and

the

QueryExp

query that

you provide.

v Parameters:

name-
javax.management.

ObjectName;query-
javax

.management.QueryExp

v Returns: java.util.Set

Example usage:

Using Jacl:

set objectNameString

[$AdminControl complete

ObjectName type=Server,*]

set objName [$AdminControl

makeObjectName $objNameString]

set null [java::null]

$AdminControl queryNames

_jmx $objName $null

Using Jython:

objectNameString =

AdminControl.completeObject

Name(’type=Server,*’)

objName = AdminControl.make

ObjectName(objectNameString)

AdminControl.queryNames_

jmx(objName, None)

Example output:

[WebSphere:cell=Base

ApplicationServerCell,

name=server1,mbeanIdentifier=

server1,type=Server,node=

mynode,process=server1]

reconnect Reconnects

to the

server, and

clears

information

out of the

local cache.

v Parameters: None

v Returns: None

Example usage:

Using Jacl:

$AdminControl reconnect

Using Jython:

AdminControl.reconnect()

Example output:

WASX7074I: Reconnect of

SOAP connector to host

myhost completed.

Chapter 6. Using scripting (wsadmin) 307

setAttribute Sets the

attribute

value for the

name that

you provide.

v Parameters:

name-java.lang.String;

attributeName-
java.lang.String;

attributeValue-
java.lang.String

v Returns: None

Example usage:

Using Jacl:

set objNameString [$AdminControl

completeObjectName WebSphere:

type=TraceService,*]

$AdminControl setAttribute

$objNameString traceSpecification

com.ibm.*=all=disabled

Using Jython:

objNameString = AdminControl.

completeObjectName(’WebSphere:

type=TraceService,*’)

AdminControl.setAttribute

(objNameString, ’trace

Specification’, ’com.ibm.

*=all=disabled’)

setAttribute

_jmx

Sets the

attribute

value for the

name that

you provide.

v Parameters:

name-ObjectName;

attribute-javax.

management. Attribute

v Returns: None

Example usage:

Using Jacl:

set objectNameString

[$AdminControl complete

ObjectName WebSphere:

type=TraceService,*]

set objName [$AdminControl

makeObjectName

$objectNameString]

set attr [java::new javax.

management.Attribute

traceSpecification com.ibm.

*=all=disabled]

$AdminControl setAttribute_

jmx $objName $attr

Using Jython:

objectNameString = AdminControl.

completeObjectName(’WebSphere:

type=TraceService,*’)

import javax.management

as mgmt

objName = AdminControl.

makeObjectName(objectNameString)

attr = mgmt.Attribute

(’traceSpecification’,

’com.ibm.*=all=disabled’)

AdminControl.setAttribute_

jmx(objName, attr)

308 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

setAttributes Sets the

attribute

values for

the names

that you

provide and

returns a list

of

successfully

set names.

v Parameters using Jacl:

name-String;

attributes-
java.lang.String

v Parameters using

Jython: name-String;

attributes-
java.lang.String or

name-String;

attributes-
java.lang.Object[]

v Returns:

java.lang.String

Example usage:

Using Jacl:

set objNameString [$AdminControl

completeObjectName WebSphere:

type=TracesService,*]

$AdminControl setAttributes

$objNameString {{trace

Specification com.ibm.ws.

*=all=enabled}}

Using Jython with string attributes:

objNameString = AdminControl.

completeObjectName(’WebSphere:

type=TracesService,*’)

AdminControl.setAttributes

(objNameString, ’[[trace

Specification "com.ibm.ws.

*=all=enabled"]]’)

Using Jython with object attributes:

objNameString = AdminControl.

completeObjectName(’WebSphere:

type=TracesService,*’)

473 AdminControl.setAttributes

(objNameString, [[’trace

Specification’, ’com.ibm.ws.

*=all=enabled’]])

Chapter 6. Using scripting (wsadmin) 309

setAttributes

_jmx

Sets the

attribute

values for

the names

that you

provide and

returns a list

of

successfully

set names.

v Parameters:

name-ObjectName;

attributes-
javax.management.

AttributeList

v Returns:

javax.management.

AttributeList

Example usage:

Using Jacl:

set objectNameString

[$AdminControl completeObject

Name WebSphere:type=

TraceService,*]

set objName [$AdminControl

makeObjectName

$objectNameString]

set attr [java::new javax.

management.Attribute

traceSpecification com.

ibm.ws.*=all=enabled]

set alist [java::new javax.

management.AttributeList]

$alist add $attr

$AdminControl setAttributes

_jmx $objName $alist

Using Jython:

objectNameString =

AdminControl.completeObject

Name(’WebSphere:type=

TraceService,*’)

import javax.management

as mgmt

objName = AdminControl.

makeObjectName(object

NameString)

attr = mgmt.Attribute

(’traceSpecification’,

’com.ibm.ws.*=all=enabled’)

alist = mgmt.AttributeList()

alist.add(attr)

AdminControl.setAttributes_

jmx(objName, alist)

310 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

startServer Starts the

specified

application

server by

locating it in

the

configuration.

This

command

uses the

default wait

time. You

can only use

this

command if

the scripting

client is

connected to

a node

agent. This

command

returns a

message to

indicate if

the server

starts

successfully.

v Parameters: server

name-java.lang.String

v Returns:

java.lang.String

Example usage:

Using Jacl:

$AdminControl startServer server1

Using Jython:

AdminControl.startServer

(’server1’)

startServer Starts the

specified

application

server by

locating it in

the

configuration.

The start

process

waits the

number of

seconds

specified by

the wait

time for the

server to

start. You

can only use

this

command if

the scripting

client is

connected to

a node

agent. This

command

returns a

message to

indicate if

the server

starts

successfully.

v Parameters: server

name-java.lang.String,

wait

time-java.lang.String

v Returns:

java.lang.String

Example usage:

Using Jacl:

$AdminControl startServer

server1 100

Using Jython:

AdminControl.startServer

(’server1’, 100)

Chapter 6. Using scripting (wsadmin) 311

startServer Starts the

specified

application

server by

locating it in

the

configuration.

This

command

uses the

default wait

time. You

can use this

command

when the

scripting

client is

either

connected to

a node

agent or to a

deployment

manager

process. It

returns a

message to

indicate if

the server

starts

successfully.

v Parameters: server

name-java.lang.String,

node

name-java.lang.String

v Returns:

java.lang.String

Example usage:

Using Jacl:

$AdminControl startServer

server1 myNode

Using Jython:

AdminControl.startServer

(’server1’, ’myNode’)

312 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

startServer Starts the

specified

application

server by

locating it in

the

configuration.

The start

process

waits the

number of

seconds

specified by

the wait

time for the

server to

start. You

can use this

command

when the

scripting

client is

either

connected to

a node

agent or to a

deployment

manager

process.

This

command

returns a

message to

indicate if

the server

starts

successfully.

v Parameters: server

name-java.lang.String,

node

name-java.lang.String,

wait

time-java.lang.String

v Returns:

java.lang.String

Example usage:

Using Jacl:

$AdminControl startServer

server1 myNode 100

Using Jython:

AdminControl.startServer

(’server1’, ’myNode’, 100)

stopServer Stops the

specified

application

server. The

command

returns a

message to

indicate if

the server

stops

successfully.

v Parameters: server

name-java.lang.String

v Returns:

java.lang.String

Example usage:

Using Jacl:

$AdminControl stopServer

server1

Using Jython:

AdminControl.stopServer

(’server1’)

Chapter 6. Using scripting (wsadmin) 313

stopServer Stops the

specified

application

server. If

you set the

flag to

immediate,

the server

stops

immediately.

Otherwise, a

normal stop

occurs. This

command

returns a

message to

indicate if

the server

stops

successfully.

v Parameters: server

name-java.lang.String,

immediate

flag-java.lang.String

v Returns:

java.lang.String

Example usage:

Using Jacl:

$AdminControl stopServer

server1 immediate

Using Jython:

AdminControl.stopServer

(’server1’, ’immediate’)

stopServer Stops the

specified

application

server. This

command

returns a

message to

indicate if

the server

stops

successfully.

v Parameters: server

name-java.lang.String,

node

name-java.lang.String

v Returns:

java.lang.String

Example usage:

Using Jacl:

$AdminControl stopServer

server1 myNode

Using Jython:

AdminControl.stopServer

(’server1’, ’my Node’)

stopServer Stops the

specified

application

server. If

you set the

flag to

immediate,

the server

stops

immediately.

Otherwise, a

normal stop

occurs. This

command

returns a

message to

indicate if

the server

stops

successfully.

v Parameters: server

name-java.lang.String,

node

name-java.lang.String,

immediate

flag-java.lang.String

v Returns:

java.lang.String

Example usage:

Using Jacl:

$AdminControl stopServer

server1 myNode immediate

Using Jython:

AdminControl.stopServer

(’server1’, ’my Node’,

’immediate’)

314 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

test

Connection

A

convenience

command

communicates

with the

DataSource

CfgHelper

MBean to

test a

DataSource

connection.

This

command

works with

the

DataSource

that resides

in the

configuration

repository. If

the

DataSource

to be tested

is in the

temporary

workspace

that holds

the update

to the

repository,

you have to

save the

update to

the

configuration

repository

before

running this

command.

Use this

command

with the

configuration

ID that

corresponds

to the

DataSource

and the

WAS40DataSource

object types.

v Parameters:

configId-
java.lang.String

v Returns:

java.lang.String

Example usage:

Using Jacl:

set ds [lindex [$AdminConfig list

DataSource] 0]

$AdminControl testConnection $ds

Using Jython:

get line separator

import java.lang.System as sys

lineSeparator = sys.getProperty

(’line.separator’)

ds = AdminConfig.list

(’DataSource’).split

(lineSeparator)[0]

AdminControl.testConnection(ds)

Example output:

WASX7217I: Connection to

provided datasource was

successful.

Chapter 6. Using scripting (wsadmin) 315

The return

value is a

message

that contains

the message

indicating a

successful

connection

or a

connection

with

warning. If

the

connection

fails, an

exception is

created from

the server

indicating

the error.

test

Connection

Deprecated.

This

command

can give

false results

and does

not work

when

connected to

a node

agent. As of

V5.0.2, the

preferred

way to test

a data

source

connection

is with the

test

Connection

command

that passes

in the

DataSource

configId

parameter

as the only

parameter.

v Parameters:

configId-
java.lang.String;

props-java.lang.String

v Returns:

java.lang.String

Example usage:

Using Jacl:

set ds [lindex [$AdminConfig list

DataSource] 0]

$AdminControl testConnection $ds

{{prop1 val1}}

Using Jython:

get line separator

import java.lang.System as sys

lineSeparator = sys.getProperty

(’line.separator’)

ds = AdminConfig.list

(’DataSource’).split

(lineSeparator)[0]

AdminControl.testConnection(ds,

’[[prop1 val1]]’)

Example output:

WASX7390E: Operation not

supported - testConnection

command with config id

and properties arguments is

not supported. Use

testConnection command with

config id argument only.

trace Sets the

trace

specification

for the

scripting

process to

the value

that you

specify.

v Parameters:

traceSpec-
java.lang.String

v Returns: None

Example usage:

Using Jacl:

$AdminControl trace com.

ibm.ws.scripting.

*=all=enabled

Using Jython:

AdminControl.trace(’com.

ibm.ws.scripting.

*=all=enabled’)

316 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

Commands for the AdminApp object

Use the AdminApp object to install, modify, and administer applications. The

AdminApp object interacts with the WebSphere Application Server management

and configuration services to make application inquiries and changes. This

interaction includes installing and uninstalling applications, listing modules,

exporting, and so on.

You can start the scripting client when no server is running, if you want to use

only local operations. To run in local mode, use the -conntype NONE option to start

the scripting client. You receive a message that you are running in the local mode.

Running the AdminApp object in local mode when a server is currently running is

not recommended. This is because any configuration changes made in local mode

will not be reflected in the running server configuration and vice versa. If you save

a conflicting configuration, you could corrupt the configuration. In a deployment

manager environment, configuration updates are available only if a scripting client

is connected to a deployment manager. When connected to a node agent or a

managed application server, you will not be able to update the configuration

because the configuration for these server processes are copies of the master

configuration which resides in the deployment manager. The copies are created on

a node machine when a configuration synchronization occurs between the

deployment manager and the node agent. Make configuration changes to the

server processes by connecting a scripting client to a deployment manager. For this

reason, to change a configuration, do not run a scripting client in local mode on a

node machine. It is not a supported configuration.

The following commands are available for the AdminApp object:

 Command

name:

Description: Parameters and return

values:

Examples:

deleteUser

AndGroup

Entries

Deletes

users or

groups for

all roles,

and deletes

user IDs

and

passwords

for all of the

RunAs roles

that are

defined in

the

application.

v Parameters: appname

v Returns: None

Example usage:

Using Jacl:

$AdminApp deleteUserAndGroup

Entries myapp

Using Jython:

AdminApp.deleteUserAndGroup

Entries(’myapp’)

Chapter 6. Using scripting (wsadmin) 317

edit Edits an

application

or module

in

non-
interactive

mode.

The edit

command

changes the

application

deployment.

Specify

these

changes in

the options

parameter.

No options

are required

for the edit

command.

v Parameters using Jacl:

appname - string;

options - string

v Parameters using

Jython: appname -

string; options - string

or appname - string;

options - Jython list

v Returns: string

Example usage:

Using Jacl:

$AdminApp edit "JavaMail

Sample" {-MapWebModToVH

{{"JavaMail Sample WebApp"

mtcomps.war,WEB-INF/web.xml

newVH}}}

Using Jython with string options:

AdminApp.edit("JavaMail

Sample", ’[-MapWebModToVH

[["JavaMail 32 Sample WebApp"

mtcomps.war,WEB-INF/web.xml

newVH]]]’)

Using Jython with list options:

option = [["JavaMail 32 Sample

WebApp", "mtcomps.war,WEB-INF/

web.xml",

"newVH"]]

mapVHOption = ["-MapWebModToVH",

option]

AdminApp.edit("JavaMail Sample",

mapVHOption)

editInter

active

Edits an

application

or module

in

interactive

mode.

The

editInteractive

command

changes the

application

deployment.

Specify

these

changes in

the options

parameter.

No options

are required

for the

editInteractive

command.

v Parameters using Jacl:

appname - string;

options - string

v Parameters using

Jython: appname -

string; options - string

or appname - string;

options - Jython list

v Returns: string

Example usage:

Using Jacl:

$AdminApp editInteractive ivtApp

Using Jython:

AdminApp.editInteractive(’ivtApp’)

export Exports the

application

appname

parameter

to a file that

you specify

by file

name.

v Parameters: appname,

filename

v Returns: None

Example usage:

Using Jacl:

$AdminApp export "My App"

/usr/me/myapp.ear

Using Jython:

AdminApp.export("My App",

’/usr/me/myapp.ear’)

318 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

exportDDL Extracts the

data

definition

language

(DDL) from

the

application

appname

parameter

to the

directoryname

parameter

that a

directory

specifies.

The options

parameter is

optional.

v Parameters: appname,

directoryname,

options

v Returns: None

Example usage:

Using Jacl:

$AdminApp exportDDL "My App"

/usr/me/DDL {-ddlprefix myApp}

Using Jython:

AdminApp.exportDDL("My App",

’/usr/me/DDL’, ’[-ddlprefix

myApp]’)

Chapter 6. Using scripting (wsadmin) 319

help Displays

general help

for the

AdminApp

object.

v Parameters: None

v Returns: None

Example usage:

Using Jacl:

$AdminApp help

Using Jython:

print AdminApp.help()

Example output:

WASX7095I: The AdminApp object

allows application objects to

be manipulated including

installing, uninstalling,

editing, and listing. Most

of the commands supported by

AdminApp operate in two

modes: the default mode is one

in which AdminApp communicates

with the WebSphere Application

Server to accomplish its tasks.

A local mode is also

possible, in which no server

communication takes place.

The local mode of operation

is invoked by including the

"-conntype NONE" flag in the

option string supplied to

the command.

The following commands are

supported by AdminApp; more

detailed

information about each of

these commands is available

by using the

"help" command of AdminApp

and supplying the name of

the command as an argument.

edit

Edit the properties of

an application

editInteractive Edit the

properties of an application

interactively

export

Export application to a file

exportDDL

Extract DDL from application

to a directory

help

Show help information

install

Installs an application,

given a file name and an

option string.

installInteractive

Installs an application in

interactive mode, given

a file name and an option string.

list

List all installed applications

listModules

320 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

List the modules in a

specified application

options

Shows the options available,

either for a given file, or in

 general.

taskInfo

Shows detailed information

pertaining to a given

installation task for a

given file

uninstall

Uninstalls an application,

given an application name and

an option string

help Displays

help for an

AdminApp

command

or

installation

option.

v Parameters: operation

name

v Returns: none

Example usage:

Using Jacl:

$AdminApp help uninstall

Using Jython:

print AdminApp.help(’uninstall’)

Example output:

WASX7102I: Method: uninstall

Arguments: application name,

options

Description: Uninstalls

application named by "application

name" using the options supplied

by String 2.

Method: uninstall

Arguments: application name

Description: Uninstalls the

application specified by

"application name" using

default options.

Chapter 6. Using scripting (wsadmin) 321

install Installs an

application

in

non-
interactive

mode, given

a fully

qualified file

name and a

string of

installation

options. The

options

parameter is

optional.

v Parameters using Jacl:

earfile- string;

options- string

v Parameters using

Jython: earfile- string;

options- string or

earfile- string;

options- Jython list

v Returns: None

Example usage:

Using Jacl:

$AdminApp install

c:/apps/myapp.ear

Using Jython:

AdminApp.install

(’c:/apps/myapp.ear’)

Many options are available for this

command. You can obtain a list of

valid options for an Enterprise

Archive (EAR) file with the

following command:

Using Jacl:

$AdminApp options myApp.ear

Using Jython:

AdminApp.options(’myApp.ear’)

You can also obtain help for each

object with the following command:

Using Jacl:

$AdminApp help MapModulesToServers

Using Jython:

AdminApp.help(’MapModulesTo

Servers’)

install

Interactive

Installs an

application

in

interactive

mode, given

a fully

qualified file

name and a

string of

installation

options. The

options

parameter is

optional.

v Parameters using Jacl:

earfile- string;

options- string

v Parameters using

Jython: earfile- string;

options- string or

earfile- string;

options- Jython list

v Returns: None

Example usage:

Using Jacl:

$AdminApp installInteractive

c:/websphere/appserver/

installableApps/jmsample.ear

Using Jython:

AdminApp.installInteractive

(’c:/websphere/appserver/

installableApps/jmsample.ear’)

322 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

isAppReady Tests to see

if the

specified

application

has been

distributed

and is ready

to be run.

Returns a

value of

true if the

application

is ready, or

a value of

false if the

application

is not ready.

This

command is

not

supported

when the

wsadmin

tool is not

connected

to a server.

v Parameters:

application name

v Returns: true or false

Example usage:

Using Jacl:

$AdminApp isAppReady

DefaultApplication

Using Jython:

AdminApp.isAppReady

(’DefaultApplication’)

Example output:

ADMA5071I: Distribution

status check started for

application Default

Application. WebSphere:

cell=Node03Cell,node=

myNode,distribution=true

ADMA5011I: The cleanup of

the temp directory for

application Default

Application is complete.

ADMA5072I: Distribution

status check completed

for application Default

Application.

true

list Lists the

applications

that are

installed in

the

configuration.

v Parameters: None

v Returns: application

names

Example usage:

Using Jacl:

$AdminApp list

Using Jython:

print AdminApp.list()

Example output:

adminconsole

DefaultApplication

ivtApp

listModules Lists the

modules in

an

application.

The options

parameter is

optional.

The valid

option is

-server. This

option lists

the

application

servers on

which the

modules are

installed.

v Parameters: appname,

options

v Returns: modules in

the application

Example usage:

Using Jacl:

$AdminApp listModules ivtApp

Using Jython:

print AdminApp.listModules

(’ivtApp’)

Example output:

ivtApp#ivtEJB.jar+META-INF/

ejb-jar.xml

ivtApp#ivt_app.war+WEB-INF

/web.xml

This example is formed by the

concatenation of appname, #,

module URI, +, and DD URI. You

can pass this string to the edit and

editInteractive AdminApp

commands.

Chapter 6. Using scripting (wsadmin) 323

options Displays a

list of

options for

installing an

Enterprise

Archive

(EAR) file.

v Parameters: earfile

v Returns: Information

about the valid

installation options for

an Enterprise Archive

(EAR) file.

Example usage:

Using Jacl:

$AdminApp options c:/websphere/

appserver/installableApps/

ivtApp.ear

Using Jython:

AdminApp.options(’c:/websphere/

appserver/installableApps/

ivtApp.ear’)

Example usage:

WASX7112I: The following options

are valid for

"c:/websphere/appserver/

installableapps/ivtApp.ear"

MapRolesToUsers

BindJndiForEJBNonMessageBinding

MapEJBRefToEJB

MapWebModToVH

MapModulesToServers

EnsureMethodProtectionFor10EJB

GetServerName

preCompileJSPs

nopreCompileJSPs

distributeApp

nodistributeApp

useMetaDataFromBinary

nouseMetaDataFromBinary

deployejb

nodeployejb

createMBeansForResources

nocreateMBeansForResources

reloadEnabled

noreloadEnabled

deployws

nodeployws

usedefaultbindings

defaultbinding.force

allowPermInFilterPolicy

noallowPermInFilterPolicy

verbose

update

update.ignore.old

update.ignore.new

installed.ear.destination

appname

reloadInterval

validateinstall

deployejb.rmic

deployejb.dbtype

deployejb.dbschema

deployejb.classpath

deployws.classpath

deployws.jardirs

defaultbinding.datasource.

jndi

defaultbinding.datasource.

username

defaultbinding.datasource.

password

324 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

defaultbinding.cf.jndi

defaultbinding.cf.resauth

defaultbinding.ejbjndi.prefix

defaultbinding.virtual.host

defaultbinding.strategy.file

server

node

cell

cluster

contextroot

custom

options Displays a

list of

options for

editing an

existing

application.

v Parameters:

Application name

v Returns: Information

about the valid edit

options for an

application.

Example usage:

Using Jacl:

$AdminApp options ivtApp

Using Jython:

AdminApp.options(’ivtApp’)

Example output:

WASX7112I: The following

options are valid for "ivtApp"

MapRolesToUsers

BindJndiForEJBNonMessageBinding

MapEJBRefToEJB

MapWebModToVH

MapModulesToServers

distributeApp

nodistributeApp

useMetaDataFromBinary

nouseMetaDataFromBinary

createMBeansForResources

nocreateMBeansForResources

reloadEnabled

noreloadEnabled

verbose

installed.ear.destination

reloadInterval

options Displays a

list of

options for

editing a

module in

an existing

application.

v Parameters:

application module

name. This parameter

requires the same

module name format

as the output that is

returned by the

listModules

command.

v Returns: Information

about the valid edit

options for a module.

Example usage:

Using Jacl:

$AdminApp options ivtApp#

ivtEJB.jar+META-INF/

ejb-jar.xml

Using Jython:

AdminApp.options(’ivtApp#

ivtEJB.jar+META-INF/

ejb-jar.xml’)

Example output:

WASX7112I: The following

options are valid for

"ivtApp#ivtEJB.jar+META-INF

/ejb-jar.xml"

MapRolesToUsers

BindJndiForEJBNon

MessageBinding

MapModulesToServers

verbose

Chapter 6. Using scripting (wsadmin) 325

options Displays a

list of

options for

installing or

updating an

application

or

application

module file.

v Parameters:

file, operation - The

following list includes

the valid values:

– installapp -

Installing the file

that is specified

– updateapp -

Updating an

existing application

with the file that is

specified

– addmodule -

Adding the module

file that is specified

to an existing

application

– updatemodule -

Updating an

existing module in

an application with

the module file that

is specified

v Returns: Information

about the valid

options that are

available for the

operation that is

requested with the

input file.

Example using the updateapp

operation:

Using Jacl:

$AdminApp options c:/websphere/

appserver/installableApps/

ivtApp.ear updateapp

Using Jython:

AdminApp.options(’c:/websphere/

appserver/installableApps/

ivtApp.ear’, ’updateapp’)

Example using the addmodule

operation:

Using Jacl:

$AdminApp options

myModule.jar addmodule

Using Jython:

AdminApp.options(’Default

WebApplication.war’, ’addmodule’)

Example output using the

updateapp operation:

WASX7112I: The following

options are valid for

"c:/websphere/appserver/

installableApps/ivtApp.ear"

MapRolesToUsers

BindJndiForEJBNonMessageBinding

MapEJBRefToEJB

MapWebModToVH

MapModulesToServers

EnsureMethodProtectionFor10EJB

GetServerName

preCompileJSPs

nopreCompileJSPs

distributeApp

nodistributeApp

useMetaDataFromBinary

nouseMetaDataFromBinary

deployejb

nodeployejb

createMBeansForResources

nocreateMBeansForResources

reloadEnabled

noreloadEnabled

deployws

nodeployws

usedefaultbindings

defaultbinding.force

allowPermInFilterPolicy

noallowPermInFilterPolicy

verbose

update

update.ignore.old

update.ignore.new

installed.ear.destination

reloadInterval

326 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

deployejb.rmic

deployejb.dbtype

deployejb.dbschema

deployejb.classpath

deployws.classpath

deployws.jardirs

defaultbinding.datasource.

jndi

defaultbinding.datasource.

username

defaultbinding.datasource.

password

defaultbinding.cf.jndi

defaultbinding.cf.resauth

defaultbinding.ejbjndi.prefix

defaultbinding.virtual.host

defaultbinding.strategy.file

appname

contextroot

custom

contenturi

contents

operation

Example output using the

addmodule operation:

WASX7112I: The following

options are valid for

"DefaultWebApplication.war"

MapRolesToUsers

MapEJBRefToEJB

MapWebModToVH

MapModulesToServers

GetServerName

preCompileJSPs

nopreCompileJSPs

deployejb

nodeployejb

deployws

nodeployws

usedefaultbindings

defaultbinding.force

verbose

defaultbinding.datasource.

jndi

defaultbinding.datasource.

username

defaultbinding.datasource.

password

defaultbinding.cf.jndi

defaultbinding.cf.resauth

defaultbinding.ejbjndi.prefix

defaultbinding.virtual.host

defaultbinding.strategy.file

server

node

cell

cluster

contextroot

custom

contenturi

contents

operation

Chapter 6. Using scripting (wsadmin) 327

publish

WSDL

Publishes

Web

Services

Description

Language

(WSDL)

files for the

application

that is

specified in

the

appname

parameter

to the file

that is

specified in

the filename

parameter.

v Parameters: appname,

filename

v Returns: None

Example usage:

Using Jacl:

$AdminApp publishWSDL

JAXRPCHandlerServer

c:/temp/a.zip

Using Jython:

AdminApp.publishWSDL

(’JAXRPCHandlerServer’,

’c:/temp/a.zip’)

publish

WSDL

Publishes

Web

Services

Description

Language

(WSDL)

files for the

application

that is

specified in

the

appname

parameter

to the file

that is

specified in

the filename

parameter

using the

SOAP

address

prefixes that

are specified

in the

soapAddress

Prefixes

parameter.

v Parameters: appname,

filename,

soapAddressPrefixes

v Returns: None

Example usage:

Using Jacl:

$AdminApp publishWSDL

JAXRPCHandlersServer

c:/temp/a.zip

{{JAXRPCHandlersServerApp.war

{{http http://

localhost:9080}}}}

Using Jython:

AdminApp.publishWSDL

(’JAXRPCHandlersServer’,

’c:/temp/a.zip’,

’[[JAXRPCHandlersServerApp.

war [[http http://

localhost:9080]]]]’)

328 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

searchJNDI

References

Lists

applications

that refer to

the Java

Naming and

Directory

Interface

(JNDI)

name on a

specific

node.

v Parameters: Node

configuration ID,

options

v Returns: string

Example usage:

The following example assumes that

an installed application named MyApp

has a JNDI name of eis/J2CCF1.

Using Jacl:

$AdminApp searchJNDIReferences

$node {-JNDIName eis/J2CCF1

-verbose}

Using Jython:

print AdminApp.searchJNDI

References(node, ’[-JNDIName

eis/J2CCF1 -verbose]’)

Example output:

WASX7410W: This operation

may take a while depending on

the number of applications

installed in your system.

MyApp

MapResRefToEJB :ejb-jar-

ic.jar : [eis/J2CCF1]

Chapter 6. Using scripting (wsadmin) 329

taskInfo Provides

information

about a

particular

task option

for an

application

file.

v Parameters: earfile,

task name

v Returns: None

Example usage:

Using Jacl:

$AdminApp taskInfo

c:/websphere/appserver/

installableApps/jmsample.

ear MapWebModToVH

Using Jython:

print AdminApp.taskInfo

(’c:/websphere/appserver/

installableApps/jmsample.

ear’, ’MapWebModToVH’)

Example output:

MapWebModToVH: Selecting

virtual hosts for Web modules

Specify the virtual host

where you want to install

the Web modules that are

contained in your

application. Web modules

can be installed on

the same virtual host or

dispersed among several hosts.

Each element of the

MapWebModToVH task consists of

the following three

fields: "webModule,"

"uri," "virtualHost."

Of these fields, the

following fields might

be assigned new values:

"virtualHost"and the

following are required:

"virtualHost"

The current contents of

the task after running

default bindings are:

webModule: JavaMail

Sample WebApp

uri: mtcomps.war,WEB-

INF/web.xml

virtualHost: default_host

330 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

uninstall Uninstalls

an existing

application.

v Parameters: appname-

string

v Returns: None

Example usage:

Using Jacl:

$AdminApp uninstall myApp

Using Jython:

AdminApp.uninstall(’myApp’)

Example output:

ADMA5017I: Uninstallation

of myapp started.

ADMA5104I: Server index

entry for myCellManager was

updated successfully.

ADMA5102I: Deletion of

config data for myapp

from config

repository completed

successfully.

ADMA5011I: Cleanup of

temp dir for app myapp done.

ADMA5106I: Application

myapp uninstalled

successfully.

Chapter 6. Using scripting (wsadmin) 331

update

Access IDs

Updates the

access ID

information

for users

and groups

that are

assigned to

various

roles that

are defined

in the

application.

The access

IDs are read

from the

user registry

and saved

in the

application

bindings.

This

operation

improves

run-time

performance

of the

application.

Call this

command

after

installing an

application

or after

editing

security

role-specific

information

for an

installed

application.

This method

cannot be

invoked

when the

-conntype

option is set

to NONE. You

must be

connected

to a server

to invoke

this

command.

v Parameters: appname,

bALL

v Returns: None

Example usage:

Using Jacl:

$AdminApp updateAccessIDs

myapp true

Using Jython:

AdminApp.updateAccessIDs

(’myapp’, ’true’)

332 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

The bALL

Boolean

parameter

retrieves

and saves

all access

IDs for

users and

groups in

the

application

bindings.

Specify

false if you

want to

retrieve

access IDs

for users or

groups that

do not have

an access ID

in the

application

bindings.

Chapter 6. Using scripting (wsadmin) 333

view View the

task that is

specified by

the

taskname

option

parameter

for the

application

or by the

module that

is specified

by the name

parameter.

Use

-tasknames

as the

option to

get a list of

valid task

names for

the

application.

Otherwise,

specify one

or more

task names

as the

option.

v Parameters: name,

taskname option

v Returns: string

Example usage:

Using Jacl:

$AdminApp view adminconsole

{-tasknames}

Using Jython:

AdminApp.view(’adminconsole’,

[’-tasknames’])

Example output:

MapModulesToServers

MapWebModToVH

MapRolesToUsers

Using Jacl:

$AdminApp view adminconsole

{-MapModulesToServers}

Using Jython:

AdminApp.view(’adminconsole’,

[’-MapModulesToServers’])

Example output:

MapModulesToServers: Selecting

Application Servers

Specify the application server

where you want to install the

modules that are contained in

your application. Modules can

be installed on the same server

or dispersed among several servers:

Module: adminconsole

URI: adminconsole.war,WEB-INF/

web.xml

Server: WebSphere:cell=juniarti

Network,node=juniartiManager,

server=dmgr

Example usage:

Using Jacl:

$AdminApp view adminconsole#

adminconsole.war+WEB-INF/

web.xml {-MapRolesToUsers}

Using Jython:

AdminApp.view(’adminconsole#

adminconsole.war+WEB-INF/

web.xml’, [’-MapRolesToUsers’])

Example output:

MapRolesToUsers: Mapping

Users to Roles

Each role that is defined in

the application or the module

must be mapped to a user or

a group from the user registry

of the domain:

334 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

Role: administrator

Everyone?: No

All Authenticated?: No

Mapped Users:

Mapped Groups:

Role: operator

Everyone?: No

All Authenticated?: No

Mapped Users:

Mapped Groups:

Role: configurator

Everyone?: No

All Authenticated?: No

Mapped Users:

Mapped Groups:

Role: monitor

Everyone?: No

All Authenticated?: No

Mapped Users:

Mapped Groups:

Chapter 6. Using scripting (wsadmin) 335

update Updates an

application

in

non-
interactive

mode.

Provide the

application

name,

content

type, and

update

options.

v Parameters using Jacl:

appname, content

type, options – string

format

v Parameters using

Jython: appname,

content type, option-

string or list format

v Returns: String

This command

supports the addition,

removal, and update

of application

subcomponents or the

entire application.

Use the content type

parameter to indicate

if you want to update

part of the application

or the entire

application. The

following list includes

the valid content type

values for the update

command:

– app - Indicates that

you want to update

the entire

application. This

option is the same

as indicating the

update option with

the install

command. With the

app value as the

content type, you

must specify the

operation option

with update as the

value. Provide the

new enterprise

archive file (EAR)

file using the

contents option.

You can also

specify binding

information and

application options.

By default, binding

information for

installed modules

is merged with the

binding

information for

updated modules.

Example usage:

Using Jacl:

$AdminApp update myApp file

{-operation add -contents

/apps/myApp/web.xml

-contenturi META-INF/web.xml}

Using Jython with string options:

AdminApp.update(’myApp‘,

’file‘, ’[-operation add

-contents

/apps/myApp/web.xml

-contenturi META-INF/web.xml]‘)

Using Jython with list options:

AdminApp.update(’myApp‘,

’file‘, [’-operation‘, ’add‘,

’-contents‘, ’/apps/myApp/

web.xml‘, ’-contenturi‘,

’META-INF/web.xml‘])

Example output:

Update of singleFile has

started.

ADMA5009I: Application

archive extracted at

C:\DOCUME~1\lavena\LOCALS~1

\Temp\app_fb5a1960f0\ext

Added files from partial

ear: []

performFileOperation:

source=C:\DOCUME~1\lavena\

LOCALS~1\Temp\

app_fb5a1960f0\ext,

dest=C:\DOCUME~1\lavena\

LOCALS~1\Temp\

app_fb5a1960f0\mrg, uri=

META-INF/web.xml, op= add

Copying file from C:\

DOCUME~1\lavena\LOCALS~1\

Temp\

app_fb5a1960f0\ext/

META-INF/web.xml to

C:\DOCUME~1\lavena\

LOCALS~1\Temp

\app_fb5a1960f0\mrg\

META-INF\web.xml

Collapse list is: []

FileMergeTask completed

successfully

ADMA5005I: Application

singleFile

configured in WebSphere

repository

delFiles: []

delM: null

addM: null

Pattern for remove

loose and mod:

Loose add pattern:

336 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

To change this default

behavior, specify the

update.ignore.old or the

update.ignore.new

options.

v file - Indicates that

you want to update a

single file. You can

add, remove, or

update individual

files at any scope

within the deployed

application. With the

file value as the

content type, you

must perform

operations on the file

using the operation

option. Depending on

the type of operation,

additional options are

required. For file

additions and

updates, you must

provide file content

and the file URI

relative to the root of

the EAR file using the

contents and

contenturi options.

For file deletion, you

must provide the file

URI relative to the

root of the EAR file

using the contenturi

option which is the

only required input.

Any other options

that you provide are

ignored.

v modulefile - Indicates

that you want to

update a module. You

can add, remove, or

update an individual

application module. If

you specify the

modulefile value as

the content type, you

must indicate the

operation that

META-INF/[^/]*|WEB-INF/

[^/]*|.*wsdl

root file to be copied:

META-INF/web.xml to

C:\asv\b0403.04\WebSphere\

AppServer\

wstemp\Scriptfb5a191b4e\

workspace\cells\BAMBIE\

applications\

singleFile.ear\deployments\

singleFile/META-INF/web.xml

ADMA5005I: Application

singleFile

configured in WebSphere

repository

xmlDoc: [#document: null]

root element:

[app-delta: null]

****** delta file name:

C:\asv\b0403.04\WebSphere\

AppServer\wstemp\Scriptfb5a191

b4e\workspace\cells\

BAMBIE\applications\

singleFile.ear/deltas/

delta-1079548405564

ADMA5005I: Application

singleFile

configured in WebSphere

repository

ADMA6011I: Deleting

directory tree

C:\DOCUME~1\lavena\LOCALS~1\

Temp\app_fb5a1960f0

ADMA5011I: Cleanup of temp

dir for app singleFile done.

Update of singleFile has ended.

Chapter 6. Using scripting (wsadmin) 337

you want to perform on

the module using the

operation option.

Depending on the type

of operation, further

options are required. For

installing new modules

or updating existing

modules in an

application, you must

indicate the file content

and the file URI relative

to the root of the EAR

file using the contents

and contenturi options.

You can also specify

binding information and

application options that

pertain to the new or

updated modules. For

module updates, the

binding information for

the installed module is

merged with the binding

information for the

input module by

default. To change the

default behavior, specify

the update.ignore.old or

the update.ignore.new

options. To delete a

module, indicate the file

URI relative to the root

of the EAR file.

v partialapp - Indicates

that you want to

update a partial

application. Using a

subset of application

components provided

in a zip file format

you can update, add,

and delete files and

modules. The zip file

is not a valid Java 2

platform, Enterprise

Edition (J2EE) archive.

338 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

Instead, it contains

application artifacts in

the same hierarchical

structure as they display

in an EAR file. For more

information on how to

construct the partial

application zip file, see

the Java API section. If

you indicate the

partialapp value as the

content type, use the

contents option to

specify the location of

the zip file. When a

partial application is

provided as an update

input, binding

information and

application options

cannot be specified and

are ignored, if provided.

For a list of the valid

options for the update

command, see “Options

for the AdminApp

object install,

installInteractive, edit,

editInteractive, update,

and updateInteractive

commands” on page

345.

Chapter 6. Using scripting (wsadmin) 339

update

Interactive

Updates an

application

in

interactive

mode.

Provide the

application

name,

content

type, and

update

options.

v Parameters using Jacl:

appname, content

type, options - string

format

v Parameters using

Jython: appname,

content type, option -

string or list format

v Returns: String

Use the

updateInteractive

command to add,

remove, and update

application

subcomponents or an

entire application.

When you update an

application module or

an entire application

using interactive

mode, the steps that

you use to configure

binding information

are similar to those

that apply to the

installInteractive

command. If you

update a file or a

partial application, the

steps that you use to

configure the binding

information are not

available. In this case,

the steps are the same

as the ones you use

with the update

command.

Use the content type

parameter to indicate

if you want to update

part of the application

or the entire

application. The

following list contains

the valid content type

values for the

updateInteractive

command:

– app - Indicates that

you want to update

the entire

application. This

option is the same

as indicating the

update option with

install command.

Example usage:

Using Jacl:

$AdminApp updateInteractive

myApp modulefile

{-operation add -contents

/apps/myApp/Increment.jar

-contenturi Increment.jar

-nodeployejb

-BindJndiForEJBNonMessage

Binding {{"Increment

Enterprise JavaBeans"

Increment Increment.jar,

META-INF/ejb-jar.xml Inc}}}

Using Jython string:

AdminApp.updateInteractive

(’myApp‘, ’modulefile‘,

’[-operation add

-contents /apps/myApp/

Increment.jar -contenturi

Increment.

jar -nodeployejb -BindJndiFor

EJBNonMessageBinding

[["Increment Enterprise

JavaBeans" Increment Increment.

jar,META-INF/ejb-jar.xml Inc]]]‘)

Using Jython list:

bindJndiForEJBValue =

[["Increment Enterprise

JavaBeans", "Increment",

"Increment.jar,META-INF/

ejb-jar.xml", "Inc"]]

AdminApp.updateInteractive

(’myApp‘, ’modulefile‘,

[’-operation‘, ’add‘,

’-contents‘,

’/apps/myApp/Increment.

jar‘, ’-contenturi‘,

’Increment.jar‘, ’-nodeployejb‘,

’-BindJndiForEJBNon

MessageBinding‘,

bindJndiForEJBValue])

Example output:

Getting tasks for: myApp

WASX7266I: A was.policy

file exists for this

application; would you

like to display it? [No]

Task[4]: Binding enterprise

beans to JNDI names

Each non message driven

enterprise bean in your

application or module

must be bound to a JNDI name.

EJB Module: Increment

Enterprise Java Bean

EJB: Increment

URI: Increment.jar,

META-INF/ejb-jar.xml

JNDI Name: [Inc]:

340 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

With the app value as

the content type, you

must specify the

operation option with

update as the value.

Provide the new

enterprise archive file

(EAR) file using the

contents option. You can

also specify binding

information and

application options. By

default, binding

information for installed

modules is merged with

the binding information

for updated modules. To

change this default

behavior, specify the

update.ignore.old or the

update.ignore.new

options.

v file - Indicates that

you want to update a

single file. You can

add, remove, or

update individual

files at any scope

within the deployed

application. With the

file value as the

content type, you

must perform

operations on the file

using the operation

option. Depending on

the type of operation,

additional options are

required. For file

additions and

updates, you must

provide file content

and the file URI

relative to the root of

the EAR file using the

contents and

contenturi options.

For file deletion, you

must provide the file

URI relative to the

root of the EAR file

using the contenturi

option which is the

only required input.

Any other options

that you provide are

ignored.

Task[10]: Specifying the

default data source for

EJB 2.x modules

Specify the default

data source for

the EJB 2.x Module

containing 2.x CMP beans.

WASX7349I: Possible

value for resource

authorization is container

or per connection factory

EJB Module: Increment

Enterprise Java Bean

URI: Increment.jar,

META-INF/ejb-jar.xml

JNDI Name: [DefaultDatasource]:

Resource Authorization:

[Per connection factory]:

Task[12]: Specifying

data sources for individual

2.x CMP beans

Specify an optional data

source for each

2.x CMP bean. Mapping a

specific data source

to a CMP bean

overrides the default

data source for

the module containing

the enterprise bean.

WASX7349I: Possible

value for resource

authorization is container

or per connection factory

EJB Module: Increment

Enterprise Java Bean

EJB: Increment

URI: Increment.jar,

META-INF/ejb-jar.xml

JNDI Name: [DefaultDatasource]:

Resource Authorization:

[Per connection factory]:

container

Setting "Resource Authorization"

to "cmpBinding.container"

Task[14]: Selecting

Application Servers

Specify the application

server where you want

to install modules that

are contained in your

application.

Modules can be installed

on the same server or

dispersed among several

servers.

Module: Increment

Enterprise Java Bean

URI: Increment.jar,META-INF

/ejb-jar.xml

Server: [WebSphere:cell=

myCell,node=myNode,

server=server1]:

Chapter 6. Using scripting (wsadmin) 341

v modulefile - Indicates

that you want to

update a module. You

can add, remove, or

update an individual

application module. If

you specify the

modulefile value as

the content type, you

must indicate the

operation that you

want to perform on

the module using the

operation option.

Depending on the

type of operation,

additional options are

required. For

installing new

modules or updating

existing modules in

an application, you

must indicate the file

content and the file

URI relative to the

root of the EAR file

using the contents

and the contenturi

options. You can also

specify binding

information and

application options

that pertain to the

new or updated

modules. For module

updates, the binding

information for the

installed module is

merged with the

binding information

for the input module

by default. To change

the default behavior,

specify the

update.ignore.old or

the update.ignore.new

options. To delete a

module, indicate the

file URI relative to the

root of the EAR file.

v partialapp - Indicates

that you want to

update a partial

application. Using

subset of application

components provided

in a zip file format

you can update, add,

and delete files and

modules.

Task[16]: Selecting method

protections for

unprotected methods

for 2.x EJB

Specify whether you want

to assign security role

to the unprotected method,

add the method to

the exclude list, or mark

the method as unchecked.

EJB Module: Increment

Enterprise Java Bean

URI: Increment.jar,

META-INF/ejb-jar.xml

Protection Type:

[methodProtection.uncheck]:

Task[18]: Selecting

backend ID

Specify the selection

for the BackendID

EJB Module: Increment

Enterprise Java Bean

URI: Increment.jar,

META-INF/ejb-jar.xml

BackendId list:

CLOUDSCAPE_V50_1

CurrentBackendId:

[CLOUDSCAPE_V50_1]:

Task[21]: Specifying

application options

Specify the various

options available

to prepare and install

your application.

Pre-compile JSP: [No]:

Deploy EJBs: [No]:

Deploy WebServices: [No]:

Task[22]: Specifying

EJB deploy options

Specify the options

to deploy EJB.

....EJB Deploy option

is not enabled.

Task[24]: Copy WSDL files

Copy WSDL files

....This task does not

require any user input

Task[25]: Specify options

to deploy Web services

Specify options to

deploy Web services

342 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

....Web Services deploy

option is not enabled.

Update of myApp has started.

ADMA5009I: Application

archive extracted at

C:\DOCUME~1\lavena\LOCALS~1\

Temp\app_fb5a48e969\ext/

Increment.jar

FileMergeTask completed

successfully

ADMA5005I: Application

myApp configured in

WebSphere repository

delFiles: []

delM: null

addM: [Increment.jar,]

Chapter 6. Using scripting (wsadmin) 343

The zip file is not a

valid Java 2 platform,

Enterprise Edition (J2EE)

archive. Instead, this file

contains application

artifacts in the same

hierarchical structure as

they are displayed in an

EAR file. For more

information on how to

construct the partial

application zip file, see

the Java API section. If

you indicate the

partialapp value as the

content type, use the

contents option to

specify the location of

the zip file. When a

partial application is

provided as an update

input, the binding

information and

application options

cannot be specified and

are ignored, if provided.

For a list of the valid

options for the

updateInteractive

command, see “Options

for the AdminApp

object install,

installInteractive, edit,

editInteractive, update,

and updateInteractive

commands” on page

345.

Pattern for remove

loose and mod:

Loose add pattern:

META-INF/[^/]*|WEB-INF/

[^/]*|.*wsdl

root file to be copied:

META-INF/application.xml to C:\

asv\b0403.04\WebSphere\

AppServer\wstemp\

Scriptfb5a487089\

workspace\cells\BAMBIE\

applications\testSM.ear\

deployments\

testSM/META-INF/application.xml

del files for full

module add/update: []

ADMA6017I: Saved document

C:\asv\b0403.04\WebSphere\

AppServer\

wstemp\Scriptfb5a487089\

workspace\cells\BAMBIE\

applications\

testSM.ear\deployments\

testSM/Increment.jar

\META-INF/ejb-jar.xml

ADMA6016I: Add to workspace

Increment.jar/META-INF/

ejb-jar.xml

ADMA6017I: Saved document

C:\asv\b0403.04\WebSphere

\AppServer\

wstemp\Scriptfb5a487089\

workspace\cells\BAMBIE\

applications\

testSM.ear\deployments\

testSM/Increment.jar\

META-INF/MANIFEST.MF

ADMA6016I: Add to workspace

Increment.jar/META-INF/

MANIFEST.MF

ADMA6017I: Saved document

C:\asv\b0403.04\WebSphere

\AppServer\

wstemp\Scriptfb5a487089\

workspace\cells\BAMBIE\

applications\

testSM.ear\deployments\

testSM/Increment.jar\

META-INF/ibm-ejb-jar-bnd.xmi

ADMA6016I: Add to workspace

Increment.jar/META-INF/

ibm-ejb-jar-bnd.xmi

ADMA6017I: Saved document

C:\asv\b0403.04\WebSphere

\AppServer\

wstemp\Scriptfb5a487089\

workspace\cells\BAMBIE\

applications\

testSM.ear\deployments\

testSM/Increment.jar\

META-INF/Table.ddl

ADMA6016I: Add to workspace

Increment.jar/META-INF/

Table.ddl

344 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

ADMA6017I: Saved document

C:\asv\b0403.04\WebSphere\

AppServer\wstemp\Scriptfb5

a487089\workspace\cells\BAMBIE\

applications\testSM.ear\

deployments\testSM/

Increment.jar\META-INF/

ibm-ejb-jar-ext.xmi

ADMA6016I: Add to workspace

Increment.jar/META-INF/

ibm-ejb-jar-ext.xmi

add files for full module

add/update: [Increment.jar/

META-INF/ejb-jar.xml,

Increment.jar/META-INF/

MANIFEST.MF,

Increment.jar/META-INF/

ibm-ejb-jar-bnd.xmi,

Increment.jar/META-INF/

Table.ddl, Increment.jar/

META-INF/ibm-ejb-jar-ext.xmi]

ADMA5005I: Application

myApp configured in WebSphere

repository

xmlDoc: [#document: null]

root element: [app-delta: null]

****** delta file name:

C:\asv\b0403.04\WebSphere\

AppServer\wstemp\Scriptfb5

a487089\workspace\cells\BAMBIE\

applications\testSM.ear/

deltas/delta-1079551520393

ADMA5005I: Application

myApp configured in

WebSphere repository

ADMA6011I: Deleting

directory tree

C:\DOCUME~1\lavena\LOCALS~1\

Temp\app_fb5a48e969

ADMA5011I: Cleanup of temp

dir for app myApp done.

Update of myApp has ended.

Options for the AdminApp object install, installInteractive, edit,

editInteractive, update, and updateInteractive commands

This article lists the available options for the install, installInteractive, edit,

editInteractive, update, and updateInteractive commands of the AdminApp object.

The options listed in this article apply to all of these commands except where

noted.

See Commands for the AdminApp object for more detailed information on how to

use the commands. See Usage table for the options of the AdminApp object install,

installInteractive, update, updateInteractive, edit, and editInteractive commands for

a list of applicable commands for each option.

The following options are available for the install, installInteractive, edit,

editInteractive, update, and updateInteractive commands:

 Option name: Description: Examples:

Chapter 6. Using scripting (wsadmin) 345

ActSpecJNDI Binds J2C

activation

specs to

destination

JNDI names.

You can bind

J2C activation

specs in your

application or

module to a

destination

JNDI name.

This option is

optional. Each

element of the

ActSpecJNDI

option

consists of the

following

fields:

RARModule,

uri, j2cid,

j2c.jndiName.

j2c.jndiName

field, can be

assigned a

value. The

current

contents of

the option

after running

default

bindings

include:

v

 RARModule:

<rar module

name>

v uri: <rar

name>,META-INF/ra.xml

v j2cid:

<messageListenerType>

v

 j2c.jndiName:

null

v Object

identifier:

javax.jms.MessageListener

Using Jacl:

$AdminApp install $embeddedEar {-ActSpecJNDI

{{"FVT Resource Adapter"

jca15cmd.rar,META-INF/ra.xml javax.jms.

MessageListener jndi5} {"FVT Resource Adapter"

jca15cmd.rar,META-INF/ra.xml

javax.jms.MessageListener2 jndi6}}}

Using Jython:

AdminApp.install(embeddedEar, [’-ActSpecJNDI’,

[["FVT Resource Adapter", ’jca15cmd.rar,META-INF/

ra.xml’, ’javax.jms.MessageListener’, ’jndi5’],

["FVT Resource Adapter", ’jca15cmd.rar,META-INF/

ra.xml’, ’javax.jms.MessageListener2’, ’jndi6’]]])

346 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

You can only

use this

option if the

activation

spec has the

Destination

property

defined in the

ra.xml file

and the

introspected

type of the

Destination

property is

the following:

javax.jms.Destination

Use the

taskInfo

command of

the

AdminApp

object to

obtain

information

about the

data that is

needed for

your

application.

You need to

provide data

for rows or

entries that

are either

missing

information,

or require an

update.

allowPermInFilter

Policy

Specifies to

continue with

the

application

deployment

process even

when the

application

contains

policy

permissions

that are in the

filter policy.

This option

does not

require a

value.

Chapter 6. Using scripting (wsadmin) 347

appname Specifies the

name of the

application.

The default is

the display

name of the

application.

BackendId

Selection

Specifies the

backend ID

for the

enterprise

bean Java

archive (JAR)

modules that

have

container-
managed

persistence

(CMP) beans.

An enterprise

bean JAR

module can

support

multiple

backend

configurations

as specified

using an

application

assembly tool.

Use this

option to

change the

backend ID

during

installation.

Using Jacl:

$AdminApp install myapp.ear {-BackendIdSelection

{{Annuity20EJB Annuity20EJB.jar,META-INF/ejb-jar.xml

DB2UDBNT_V72_1}}}

Using Jython:

AdminApp.install(’myapp.ear’, ’[-BackendIdSelection

[[Annuity20EJB Annuity20EJB.jar,META-INF/ejb-jar.xml

DB2UDBNT_V72_1]]]’)

348 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

BindJndiFor

EJBMessage

Binding

Binds

enterprise

beans to

listener port

names or Java

Naming and

Directory

Interface

(JNDI) names.

Use this

option to

provide

missing data

or update a

task. Ensure

each

message-
driven

enterprise

bean in your

application or

module is

bound to a

listener port

name.

Each element

of the

BindJndiForEJBMessageBinding

option

consists of the

following

fields:

EJBModule,

EJB, uri,

listenerPort,

JNDI,

jndi.dest, and

actspec.auth.

Some of these

fields, can be

assigned

values:

listenerPort,

JNDI,

jndi.dest, and

actspec.auth.

Using Jacl:

$AdminApp install $ear {-BindJndiForEJBMessage

Binding {{Ejb1 MessageBean

ejb-jar-ic.jar,META-INF/ejb-jar.xml myListener

Port jndi1 jndiDest1 actSpecAuth1}}}

Using Jython:

AdminApp.install(ear, [’-BindJndiForEJBMessage

Binding’, [[’Ejb1’, ’MessageBean’,

’ejb-jar-ic.jar,META-INF/ejb-jar.xml’, ’myListener

Port’, ’jndi1’, ’jndiDest1’, ’actSpecAuth1’]]])

Chapter 6. Using scripting (wsadmin) 349

The current

contents of

the option

after running

default

bindings

include:

v EJBModule:

Ejb1

v EJB:

MessageBean

v uri:

ejb-jar-
ic.jar,META-INF/ejb-jar.xml

v listenerPort:

MessageBeanPort

v JNDI: null

v jndi.dest:

null

v

 actspec.auth:

null

Use the

taskInfo

command of

the

AdminApp

object to

obtain

information

about the

data that is

needed for

your

application.

You need to

provide data

for rows or

entries that

are either

missing

information,

or require an

update.

350 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

BindJndiFor

EJBNon

Message

Binding

Binds

enterprise

beans to Java

Naming and

Directory

Interface

(JNDI) names.

Ensure each

non

message-
driven

enterprise

bean in your

application or

module is

bound to a

JNDI name.

Use this

option to

provide

missing data

or update a

task.

Use the

taskInfo

command of

the

AdminApp

object to

obtain

information

about the

data that is

needed for

your

application.

You need to

provide data

for rows or

entries that

are either

missing

information,

or require an

update.

Using Jacl:

$AdminApp install myapp.ear {-BindJndiForEJBNon

MessageBinding {{"Increment Bean Jar" Inc

Increment.jar,META-INF/ejb-jar.xml IncBean}}}

Using Jython:

AdminApp.install(’myapp.ear’, ’[-BindJndiFor

EJBNonMessageBinding [["Increment Bean Jar"

Inc Increment.jar,META-INF/ejb-jar.xml IncBean]]]’)

Chapter 6. Using scripting (wsadmin) 351

cell Specifies the

cell name to

install or

update an

entire

application or

to update an

application in

order to add

a new

module. If

you want to

update an

entire

application,

this option

only applies if

the

application

contains a

new module

that does not

exist in the

installed

application.

cluster Specifies the

cluster name

to install or

update an

entire

application or

to update an

application in

order to add

a new

module. This

option only

applies in a

Network

Deployment

environment.

If you want to

update an

entire

application,

this option

only applies if

the

application

contains a

new module

that does not

exist in the

installed

application.

352 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

contents Specifies the

file that

contains the

content that

you want to

update. For

example,

depending on

the content

type, the file

could be an

EAR file, a

module, a

partial zip, or

a single file.

The path to

the file must

be local to the

scripting

client. The

contents

option is

required

unless you

have specified

the delete

option.

contenturi Specifies the

URI of the file

that you are

adding,

updating, or

removing

from an

application.

This option

only applies

to the update

command.

The

contenturi

option is

required if the

content type

is file or

modulefile.

This option is

ignored for

other content

types.

contextroot Specifies the

context root

that you use

when

installing a

stand-alone

Web archive

(WAR) file.

Chapter 6. Using scripting (wsadmin) 353

CorrectOracle

IsolationLevel

Specifies the

isolation level

for the Oracle

type provider.

Use this

option to

provide

missing data

or to update a

task.

The last field

of each entry

specifies the

isolation level.

Valid isolation

level values

are 2 or 4.

Use the

taskInfo

command of

the

AdminApp

object to

obtain

information

about the

data that is

needed for

your

application.

You only

need to

provide data

for rows or

entries that

are either

missing

information,

or require an

update.

Using Jacl:

$AdminApp install myapp.ear

{-CorrectOracleIsolationLevel

{{AsyncSender jms/MyQueueConnection

Factory jms/Resource1 2}}

Using Jython:

AdminApp.install(’myapp.ear’,

’[-CorrectOracleIsolationLevel

[[AsyncSender jms/MyQueueConnection

Factory jms/Resource1 2]]]’)

354 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

CorrectUse

System

Identity

Replaces

RunAs

System to

RunAs Roles.

The enterprise

beans that

you install

contain a

RunAs system

identity. You

can optionally

change this

identity to a

RunAs role.

Use this

option to

provide

missing data

or update a

task.

Use the

taskInfo

command of

the

AdminApp

object to

obtain

information

about the

data that is

needed for

your

application.

You need to

provide data

for rows or

entries that

are either

missing

information,

or require an

update.

Using Jacl:

$AdminApp install myapp.ear

{-CorrectUseSystem Identity

{{Inc "Increment Bean Jar"

Increment.jar,META-INF/

ejb-jar.xml getValue()

RunAsUser2 user2 password2}

{Inc "Increment

Bean Jar" Increment.jar,

META-INF/ejb-jar.xml

Increment() RunAsUser2

user2 password2}}}

Using Jython:

AdminApp.install(’myapp.

ear’, ’[-CorrectUseSystem

Identity [[Inc

"Increment Bean Jar"

Increment.jar,META-INF/

ejb-jar.xml getValue()

RunAsUser2 user2 password2]

[Inc "Increment

Bean Jar" Increment.jar,

META-INF/ejb-jar.xml

Increment() RunAsUser2

user2 password2]]]’)

Chapter 6. Using scripting (wsadmin) 355

createMBeans

ForResources

Specifies that

MBeans are

created for all

resources

such as,

servlets,

JavaServer

Pages (JSP)

files, and

enterprise

beans, that

are defined in

an application

when the

application

starts on a

deployment

target. This

option does

not require a

value. The

default setting

is the

nocreateMBeansForResources

option.

custom Specifies a

name-value

pair using the

format

name=value.

Use the

custom option

to pass

options to

application

deployment

extensions.

See the

application

deployment

extension

documentation

for available

custom

options.

356 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

DataSource

For10CMP

Beans

Specifies

optional data

sources for

individual 1.x

container-
managed

persistence

(CMP) beans.

Use this

option to

provide

missing data

or to update a

task.

Mapping a

specific data

source to a

CMP bean

overrides the

default data

source for the

module that

contains the

enterprise

bean. Each

element of the

DataSourceFor

10CMPBeans

option

consists of the

following

fields:

EJBModule,

EJB, uri,

JNDI,

userName,

password,

login.config.name,

and

auth.props.

Of these

fields, the

following can

be assigned

values: JNDI,

userName,

password,

login.config.name,

and

auth.props.

The current

contents of

the option

after running

default

bindings

include:

Using Jacl:

$AdminApp install myapp.ear {-DataSource

For10CMPBeans {{"Increment CMP 1.1 EJB"

IncCMP11 IncCMP11.jar,META-INF/ejb-jar.xml

myJNDI user1 password1 loginName1

authProps1}}}

Using Jython:

AdminApp.install(’myapp.ear’,

[’-DataSourceFor10CMPBeans’, [["Increment

CMP 1.1 EJB", ’IncCMP11’, ’IncCMP11.jar,

META-INF/ejb-jar.xml’, ’myJNDI’, ’user1’,

’password1’, ’loginName1’, ’authProps1’]]])

Chapter 6. Using scripting (wsadmin) 357

v EJBModule:

Increment

CMP 1.1

EJB

v EJB:

IncCMP11

v uri:

IncCMP11.jar,META-INF/ejb-jar.xml

v JNDI:

DefaultDatasource

v userName:

null

v password:

null

v

 login.config.name:

DefaultPrincipalMapping

v auth.props:

v

 LoginConfiguration:

Name

v Properties

If the

login.config.name

is set to

DefaultPrincipalMapping,

a property is

created with

the name

com.ibm.mapping.authDataAlias

. The value of

the property

is set by the

auth.props.

358 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

If the

login.config

name is not

set to

DefaultPrincipalMapping,

the

auth.props

can specify

multiple

properties.

The string

format is

websphere:name=

<name1>,value=<value1>,description=<desc1>.

Specify

multiple

properties

using the plus

sign (+) .

Use the

taskInfo

command of

the

AdminApp

object to

obtain

information

about the

data that is

needed for

your

application.

You need to

provide data

for rows or

entries that

are missing

information,

or require an

update.

Chapter 6. Using scripting (wsadmin) 359

DataSource

For20CMP

Beans

Specifies

optional data

sources for

individual 2.x

container-
managed

persistence

(CMP) beans.

Use this

option to

provide

missing data

or to update a

task.

Mapping a

specific data

source to a

CMP bean

overrides the

default data

source for the

module that

contains the

enterprise

bean. Each

element of the

DataSourceFor

20CMPBeans

option

consists of the

following

fields:

EJBModule,

EJB, uri,

JNDI,

resAuth,

login.config.name,

and

auth.props.

Of these

fields, the

following can

be assigned

values: JNDI,

resAuth,

login.config.name,

and

auth.props.

The current

contents of

the option

after running

default

bindings

includes the

following:

Using Jacl:

$AdminApp install myapp.ear {-DataSource

For20CMPBeans {{"Increment Enterprise Java

Bean" Increment Increment.jar,

META-INF/ejb-jar.xml jndi1 container}}}

Using Jython:

AdminApp.install(’myapp.ear’,

[’-DataSourceFor20CMPBeans’,

[["Increment Enterprise Java Bean",

’Increment’, ’Increment.jar,

META-INF/ejb-jar.xml’, ’jndi1’,

’container’]]])

360 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

v EJBModule:

Increment

enterprise

bean

v EJB:

Increment

v uri:

Increment.jar,META-INF/ejb-jar.xml

v JNDI:

DefaultDatasource

v resAuth:

cmpBinding.perConnectionFactory

v

 login.config.name:

DefaultPrincipalMapping

v auth.props:

v

 LoginConfiguration:

Name

v Properties

The last field

in each entry

of this task

specifies the

value for

resource

authorization.

Valid values

for resource

authorization

are per

connection

factory or

container.

Chapter 6. Using scripting (wsadmin) 361

If the

login.config.name

is set to

DefaultPrincipalMapping,

a property is

created with

the name

com.ibm.mapping.authDataAlias

. The value of

the property

is set by the

auth.props. If

the

login.config

name is not

set to

DefaultPrincipalMapping,

the

auth.props

can specify

multiple

properties.

The string

format is

websphere:name=

<name1>,value=<value1>,description=<desc1>.

Specify

multiple

properties

using the plus

sign (+) .

Use the

taskInfo

command of

the

AdminApp

object to

obtain

information

about the

data needed

for your

application.

You only

need to

provide data

for rows or

entries that

are missing

information,

or require an

update.

362 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

DataSource

For10EJB

Modules

Specifies the

default data

source for the

enterprise

bean module

that contains

1.x

container-
managed

persistence

(CMP) beans.

Use this

option to

provide

missing data

or update a

task.

Each element

of the

DataSourceFor

10EJBModules

option

consists of the

following

fields:

EJBModule,

uri, JNDI,

userName,

password,

login.config.name,

and

auth.props.

Of these

fields, the

following can

be assigned

values: JNDI,

userName,

password,

login.config.name,

and

auth.props.

The current

contents of

the option

after running

default

bindings

include:

Using Jacl:

$AdminApp install myapp.ear {-DataSource

For10EJBModules {{"Increment CMP 1.1 EJB"

IncCMP11.jar,META-INF/ejb-jar.xml yourJNDI

user2 password2 loginName authProps}}}

Using Jython:

AdminApp.install(’myapp.ear’,

[’-DataSourceFor10EJBModules’,

[["Increment CMP 1.1 EJB",

 ’IncCMP11.jar,META-INF/ejb-jar.xml’,

’yourJNDI’, ’user2’, ’password2’,

’loginName’, ’authProps’]]])

Chapter 6. Using scripting (wsadmin) 363

v EJBModule:

Increment

CMP 1.1

enterprise

bean

v uri:

IncCMP11.jar,META-INF/ejb-jar.xml

v JNDI:

DefaultDatasource

v userName:

null

v password:

null

v

 login.config.name:

DefaultPrincipalMapping

v auth.props:

v

 LoginConfiguration:

Name

v Properties

If the

login.config.name

is set to

DefaultPrincipalMapping,

a property is

created with

the name

com.ibm.mapping.authDataAlias

. The value of

the property

is set by the

auth.props. If

the

login.config

name is not

set to

DefaultPrincipalMapping,

the

auth.props

can specify

multiple

properties.

The string

format is

websphere:name=

<name1>,value=<value1>,description=<desc1>.

Specify

multiple

properties

using the plus

sign (+) .

364 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

Use the

taskInfo

command of

the

AdminApp

object to

obtain

information

about the

data that is

needed for

your

application.

You need to

provide data

for rows or

entries that

are either

missing

information,

or require an

update.

Chapter 6. Using scripting (wsadmin) 365

DataSource

For20EJB

Modules

Specifies the

default data

source for the

enterprise

bean 2.x

module that

contains 2.x

container

managed

persistence

(CMP) beans.

Use this

option to

provide

missing data

or update a

task.

Each element

of the

DataSourceFor

20EJBModules

option

consists of the

following

fields:

EJBModule,

uri, JNDI,

resAuth,

login.config.name,

and

auth.props.

Of these

fields, the

following can

be assigned

values: JNDI,

resAuth,

login.config.name,

and

auth.props.

The current

contents of

the option

after running

default

bindings

include:

Using Jacl:

$AdminApp install myapp.ear

{-DataSourceFor20EJBModules

{{"Increment Enterprise Java Bean"

Increment.jar,META-INF/ejb-jar.xml

jndi2 container}}}

Using Jython:

AdminApp.install(’myapp.ear’,

[’-DataSourceFor20EJBModules’,

[["Increment Enterprise Java Bean",

’Increment.jar,META-INF/ejb-jar.xml’,

’jndi2’, ’container’]]])

366 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

v EJBModule:

Increment

enterprise

bean

v uri:

Increment.jar,META-INF/ejb-jar.xml

v JNDI:

DefaultDatasource

v resAuth:

cmpBinding.perConnectionFactory

v

 login.config.name:

DefaultPrincipalMapping

v auth.props:

v

 LoginConfiguration:

Name

v Properties

The last field

in each entry

of this task

specifies the

value for

resource

authorization.

Valid values

for resource

authorization

are per

connection

factory or

container.

Chapter 6. Using scripting (wsadmin) 367

If the

login.config.name

is set to

DefaultPrincipalMapping,

a property is

created with

the name

com.ibm.mapping.authDataAlias

. The value of

the property

is set by the

auth.props. If

the

login.config

name is not

set to

DefaultPrincipalMapping,

the

auth.props

can specify

multiple

properties.

The string

format is

websphere:name=

<name1>,value=<value1>,description=<desc1>.

Specify

multiple

properties

using the plus

sign (+) .

Use the

taskInfo

command of

the

AdminApp

object to

obtain

information

about the

data that is

needed for

your

application.

You need to

provide data

for rows or

entries that

are either

missing

information,

or require

update.

368 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

defaultbinding.

cf.jndi

Specifies the

Java Naming

and Directory

Interface

(JNDI) name

for the default

connection

factory.

defaultbinding.

cf.resauth

Specifies the

RESAUTH for

the

connection

factory.

defaultbinding.

datasource.jndi

Specifies the

Java Naming

and Directory

Interface

(JNDI) name

for the default

data source.

defaultbinding.

datasource.

password

Specifies the

password for

the default

data source.

defaultbinding.

datasource.

username

Specifies the

user name for

the default

data source.

defaultbinding.

ejbjndi.prefix

Specifies the

prefix for the

enterprise

bean Java

Naming and

Directory

Interface

(JNDI) name.

To use the

defaultbinding.ejbjndi.prefix

option on the

z/OS

platform, you

must also

specify the

usedefaultbindings

option. If you

do not specify

the use

usedefaultbindings

option, then

the default is

the

nousedefaultbindings

option.

Chapter 6. Using scripting (wsadmin) 369

defaultbinding.

force

Specifies that

the default

bindings

override the

current

bindings.

defaultbinding.

strategy.file

Specifies a

custom

default

bindings

strategy file.

defaultbinding.

virtual.host

Specifies the

default name

for a virtual

host.

depl.extension.

reg

Deprecated.

No replication

option is

available.

deployejb Specifies to

run the

EJBDeploy

tool during

installation.

This option

does not

require a

value.

If you

pre-deploy

the

application

Enterprise

Archive

(EAR) file

using the

EJBDeploy

tool then the

default value

is

nodeployejb.

If not, the

default value

is deployejb.

deployejb.

classpath

Specifies an

extra class

path for the

EJBDeploy

tool.

deployejb.

dbschema

Specifies the

database

schema for

the

EJBDeploy

tool.

370 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

deployejb.

dbtype

Specifies the

database type

for the

EJBDeploy

tool.

Possible

values

include:

CLOUDSCAPE_V5

DB2UDB_V72

DB2UDBOS390_V6

DB2UDBISERIES

INFORMIX_V73

INFORMIX_V93

MSSQLSERVER_V7

MSSQLSERVER_2000

ORACLE_V8

ORACLE_V9I

SYBASE_V1200

For a list of

current

supported

database

vendor types,

run ejbdeploy

-?.

deployejb.

rmic

Specifies extra

RMIC options

to use for the

EJBDeploy

tool.

deployws Specifies to

deploy Web

services

during

installation.

This option

does not

require a

value.

The default

value is:

nodeployws.

deployws.

classpath

Specifies the

extra class

path to use

when you

deploy Web

services.

deployws.

jardirs

Specifies the

extra

extension

directories to

use when you

deploy Web

services.

Chapter 6. Using scripting (wsadmin) 371

distributeApp Specifies that

the

application

management

component

distributes

application

binaries. This

option does

not require a

value.

This setting is

the default.

372 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

EmbeddedRar Binds Java 2

Connector

objects to

JNDI names.

You must

bind each

Java 2

Connector

object in your

application or

module, such

as, J2C

connection

factories, J2C

activation

specs and J2C

administrative

objects, to a

JNDI name.

Each element

of the

EmbeddedRar

option

contains the

following

fields:

RARModule,

uri, j2cid,

j2c.name,

j2c.jndiName.

You can

assign the

following

values to the

fields:

j2c.name,

j2c.jndiName.

The current

contents of

the option

after running

default

bindings

include:

RARModule:

<rar module

name>uri:

<rar name>,

META-INF/

ra.xml

j2cid:

<identifier

of the J2C

object>

j2c.name:

j2cid

j2c.jndi

Name:

eis/j2cid

Using Jacl:

$AdminApp install $embeddedEar {-EmbeddedRar

{{"FVT Resource Adapter" jca15cmd.rar,

META-INF/ra.xml javax.sql.DataSource

javax.sql.DataSource1

eis/javax.sql.javax.sql.DataSSource1}

{"FVT Resource Adapter"

jca15cmd.rar,META-INF/ra.xml javax.sql.

DataSource2 javax.sql.DataSource2

eis/javax.sql.DataSource2}

{"FVT Resource Adapter"

jca15cmd.rar,META-INF/ra.xml

javax.jms.MessageListener

javax.jms.MessageListener1 eis/

javax.jms.MessageListener1}

{"FVT Resource Adapter" jca15cmd.rar,

META-INF/ra.xml javax.jms.MessageLListener2

javax.jms.MessageListener2 eis/

javax.jms.MessageListener2}

{"FVT Resource Adapter"

jca15cmd.rar,META-INF/ra.xml

fvt.adapter.message.FVTMessageProvider

fvt.adapter.message.FVTMessageProvider1

eis/fvt.adapter.message.FVTMessage

Provider1} {"FVT Resource Adapter"

jca15cmd.rar,META-INF/ra.xml fvt.adapter.

message.FVTMessageProvider2 fvt.

adapter.message.FVTMessageProvider2

eis/fvt.adapter.

message.FVTMessageProvider2}}}

Using Jython:

AdminApp.install(embeddedEar,

[’-EmbeddedRar’, [["FVT Resource Adapter",

’jca15cmd.rar,META-INF/ra.xml’,

’javax.sql.DataSource’,

’javax.sql.DataSource1’,

’eis/javax.sql.javax.sql.DataSSource1’],

["FVT Resource Adapter",

’jca15cmd.rar,META-INF/ra.xml

javax.sql.DataSource2’, ’javax.sql.

DataSource2’,

’eis/javax.sql.DataSource2’],

["FVT Resource Adapter",

’jca15cmd.rar,META-INF/ra.xml’,

’javax.jms.MessageListener’,

’javax.jms.MessageListener1’,

’eis/javax.jms.MessageListener1’],

["FVT Resource Adapter", ’jca15cmd.

rar,META-INF/ra.xml’,

’javax.jms.MessageLListener2’,

’javax.jms.MessageListener2’,

’eis/javax.jms.MessageListener2’],

["FVT Resource Adapter",

’jca15cmd.rar,META-INF/ra.xml

fvt.adapter.message.FVTMessageProvider’,

’fvt.adapter.message.FVTMessage

Provider1’, ’eis/fvt.adapter.message.

FVTMessageProvider1’], ["FVT Resource

Adapter", ’jca15cmd.rar,META-INF/

ra.xml’, ’fvt.adapter.message.

FVTMessageProvider2’,

’fvt.adapter.message.

FVTMessageProvider2’, ’eis/fvt.

adapter.message.FVTMessage

Provider2’]]])

Chapter 6. Using scripting (wsadmin) 373

Where j2cid

is:

J2C connection

factory :

connection

FactoryInterface

J2C admin object

:adminObject

Interface

 J2C activation

spec : message

listener type

If the ID is

not unique in

the ra.xml

file,

-<number>

will be added.

For example,

javax.sql.DataSource-2.

Use the

taskInfo

command of

the

AdminApp

object to

obtain

information

about the

data that is

needed for

your

application.

You need to

provide data

for rows or

entries that

are either

missing

information,

or require an

update.

374 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

EnsureMethod

Protection

For10EJB

Selects

method

protections

for

unprotected

methods of

1.x enterprise

beans. Specify

to leave the

method as

unprotected,

or assign

protection

which denies

all access. Use

this option to

provide

missing data

or to update a

task.

Use the

taskInfo

command of

the

AdminApp

object to

obtain

information

about the

data that is

needed for

your

application.

You need to

provide data

for rows or

entries that

are either

missing

information,

or require an

update.

Using Jacl:

$AdminApp install myapp.ear {-EnsureMethod

ProtectionFor10EJB {{"Increment EJB Module"

 IncrementEJBBean.jar,META-INF/

ejb-jar.xml ""} {"Timeout EJB Module"

 TimeoutEJBBean.jar,META-INF/ejb-jar.xml

methodProtection.denyAllPermission}}}

Using Jython:

AdminApp.install(’myapp.ear’,

’[-EnsureMethodProtectionFor10EJB

[["Increment EJB Module" IncrementEJBBean.

jar,META-INF/ejb-jar.xml ""]

["Timeout EJB Module" TimeoutEJBBean.jar,

META-INF/ejb-jar.xml methodProtection.

denyAllPermission]]]’)

The last field in each entry of this task specifies the value

of the protection. Valid protection values include:

methodProtection.denyAllPermission. You can also leave

the value blank if you want the method to remain

unprotected.

Chapter 6. Using scripting (wsadmin) 375

EnsureMethod

Protection

For20EJB

Selects

method

protections

for

unprotected

methods of

2.x enterprise

beans. Specify

to assign a

security role

to the

unprotected

method, add

the method to

the exclude

list, or mark

the method as

cleared. You

can assign

multiple roles

for a method

by separating

roles names

with commas.

Use this

option to

provide

missing data

or to update a

task.

Use the

taskInfo

command of

the

AdminApp

object to

obtain

information

about the

data that is

needed for

your

application.

You need to

provide data

for rows or

entries that

are either

missing

information,

or require an

update the

existing data.

Using Jacl:

$AdminApp install myapp.ear {-EnsureMethod

ProtectionFor20EJB {{CustmerEjbJar

customerEjb.jar,META-INF/ejb-jar.xml

methodProtection.uncheck} {SupplierEjbJar

supplierEjb.jar,META-INF/ejb-jar.xml

methodProtection.exclude}}}

Using Jython:

AdminApp.install(’myapp.ear’,

’[-EnsureMethodProtectionFor20EJB

[[CustmerEjbJar customerEjb.jar,META-INF/

ejb-jar.xml methodProtection.uncheck]

[SupplierEjbJar supplierEjb.jar,META-INF/

ejb-jar.xml methodProtection.exclude]]]’)

The last field in each entry of this task specifies the value

of the protection. Valid protection values include:

methodProtection.uncheck, methodProtection.exclude, or a

list of security roles that are separated by commas.

installdir Deprecated.

This option is

replaced by

the

installed.ear.destination

option.

376 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

installed.ear.

destination

Specifies the

directory to

place

application

binaries.

MapModules

ToServers

Specifies the

application

server where

you want to

install

modules that

are contained

in your

application.

You can

install

modules on

the same

server, or

disperse them

among

several

servers. Use

this option to

provide

missing data

or to update

to a task.

Use the

taskInfo

command of

the

AdminApp

object to

obtain

information

about the

data that is

needed for

your

application.

You need to

provide data

for rows or

entries that

are either

missing

information,

or require an

update.

Using Jacl:

$AdminApp install myapp.ear {-MapModulesTo

Servers {{"Increment Bean Jar" Increment.

jar,META-INF/ejb-jar.xml WebSphere:

cell=mycell,node=mynode,server=server1}

{"Default Application" default_app.war,

WEB-INF/web.xml WebSphere:cell=mycell,

node=mynode,server=server1} {"Examples

Application" examples.war,WEB-INF/

web.xml WebSphere:cell=mycell,

node=mynode,server=server1}}}

Using Jython:

AdminApp.install(’myapp.ear’,

’[-MapModulesToServers [["Increment

Bean Jar" Increment.jar,META-INF/

ejb-jar.xml WebSphere:cell=mycell,

node=mynode,server=server1]

["Default Application" default_app.

war,WEB-INF/web.xml WebSphere:

cell=mycell,node=mynode,server=server1]

["Examples Application" examples.

war,WEB-INF/web.xml WebSphere:

cell=mycell,node=mynode,server=server1]]]’)

Chapter 6. Using scripting (wsadmin) 377

MapEJB

RefToEJB

Maps

enterprise

Java

references to

enterprise

beans. You

must map

each

enterprise

bean reference

defined in

your

application to

an enterprise

bean. Use this

option to

provide

missing data

or update to a

task.

Use the

taskInfo

command of

the

AdminApp

object to

obtain

information

about the

data needed

for your

application.

You only

need to

provide data

for rows or

entries that

are missing

information,

or those

where you

want to

update the

existing data.

Using Jacl:

$AdminApp install myapp.ear {-MapEJBRefToEJB

{{"Examples Application" "" examples.war,

WEB-INF/web.xml BeenThereBean

com.ibm.websphere.beenthere.BeenThere IncBean}}}

Using Jython:

AdminApp.install(’myapp.ear’,

’[-MapEJBRefToEJB [["Examples Application" ""

examples.war,WEB-INF/web.xml

BeenThereBean com.ibm.websphere.

beenthere.BeenThere IncBean]]]’)

378 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

MapMessage

Destination

RefToEJB

Maps

message

destination

references to

Java Naming

and Directory

Interface

(JNDI) names

of

administrative

objects from

the installed

resource

adapters. You

must map

each message

destination

reference that

is defined in

your

application to

an

administrative

object. Use

this option to

provide

missing data

or to update a

task.

The current

contents of

the option

after running

default

bindings

include:

v EJB

Module:

ejb-jar-ic.jar

v EJB:

MessageBean

v URI:

ejb-jar-
ic.jar,META-INF/ejb-jar.xml

v JNDI

Name:

[eis/J2CACT1]:

v Destination

JNDI

Name:

[jms/TopicName]:

Using Jacl:

$AdminApp install $earfile {-MapMessage

DestinationRefToEJB

{{ejb-jar-ic.jar Publisher ejb-jar-ic.jar,

META-INF/ejb-jar.xml MyConnection jndi2}

{ejb-jar-ic.jar Publisher ejb-jar-ic.jar,

META-INF/ejb-jar.xml PhysicalTopic jndi3}

{ejb-jar-ic.jar Publisher ejb-jar-ic.jar,

META-INF/ejb-jar.xml jms/ABC jndi4}}}

Using Jython:

AdminApp.install(ear1, [’-MapMessage

DestinationRefToEJB’,

[[’ejb-jar-ic.jar’, ’Publisher’,

’ejb-jar-ic.jar,META-INF/

ejb-jar.xml’, ’MyConnection’, ’jndi2’],

[’ejb-jar-ic.jar’, ’Publisher’,

’ejb-jar-ic.jar,META-INF/

ejb-jar.xml’, ’PhysicalTopic’, ’jndi3’],

[’ejb-jar-ic.jar’, ’Publisher’,

’ejb-jar-ic.jar,META-INF/

ejb-jar.xml’, ’jms/ABC’, ’jndi4’]]])

Chapter 6. Using scripting (wsadmin) 379

v The default

JNDI name

will be

picked up

from the

corresponding

message

destination

reference.

Use the

taskInfo

command of

the

AdminApp

object to

obtain

information

about the

data that is

needed for

your

application.

You need to

provide data

for rows or

entries that

are either

missing

information,

or require an

update.

380 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

MapRes

EnvRef ToRes

Maps

resource

environment

references to

resources. You

must map

each resource

environment

reference that

is defined in

your

application to

a resource.

Use this

option to

provide

missing data

or to update a

task.

Use the

taskInfo

command of

the

AdminApp

object to

obtain

information

about the

data that is

needed for

your

application.

You need to

provide data

for rows or

entries that

are either

missing

information,

or require an

update.

Using Jacl:

$AdminApp install myapp.ear {-MapResEnvRefToRes

{{AsyncSender AsyncSender

asyncSenderEjb.jar,META-INF/ejb-jar.xml jms/

ASYNC_SENDER_QUEUE

javax.jms.Queue jms/Resource2}}}

Using Jython:

AdminApp.install(’myapp.ear’,

’[-MapResEnvRefToRes [[AsyncSender

AsyncSender asyncSenderEjb.jar,META-INF/

ejb-jar.xml jms/ASYNC_SENDER_QUEUE

javax.jms.Queue jms/Resource2]]]’)

Chapter 6. Using scripting (wsadmin) 381

MapRes

RefTo EJB

Maps

resource

references to

resources. You

must map

each resource

reference that

is defined in

your

application to

a resource.

Use this

option to

provide

missing data

or to update a

task.

Each element

of the

MapResRefToEJB

option

consists of the

following

fields:

module, EJB,

uri,

referenceBinding,

resRef.type,

JNDI,

login.config.name,

and

auth.props.

Of these

fields, the

following can

be assigned

values: JNDI,

login.config.name,

auth.props.

The JNDI

field is

required.

The current

contents of

the option

after running

default

bindings

include:

Using Jacl:

$AdminApp install myapp.ear {-MapResRefToEJB

{{deplmtest.jar MailEJBObject deplmtest.jar,

META-INF/ejb-jar.xml mail/MailSession9

javax.mail.Session jndi1 login1 authProps1}

{"JavaMail Sample WebApp" "" mtcomps.war,

WEB-INF/web.xml mail/MailSession9 javax.mail.

Session jndi2 login2 authProps2}}}

Using Jython:

AdminApp.install(’myapp.ear’,

[’-MapResRefToEJB’, [[’deplmtest.jar’,

’MailEJBObject’, ’deplmtest.jar,META-INF/

ejb-jar.xml mail/MailSession9’,

’javax.mail.Session’,

’jndi1’, ’login1’, ’authProps1’],

["JavaMail Sample WebApp",

"", ’mtcomps.war,WEB-INF/web.xml’,

’mail/MailSession9’, ’javax.mail.Session’,

’jndi2’, ’login2’, ’authProps2’]]])

382 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

v Module:

deplmtest.jar

v EJB:

MailEJBObject

v uri:

deplmtest.jar,META-INF/ejb-jar.xml

v

 referenceBinding:

mail/MailSession9

v resRef.type:

javax.mail.Session

v JNDI:

mail/DefaultMailSession

v

 login.config.name:

DefaultPrincipalMapping

v auth.props:

If the

login.config.name

is set to

DefaultPrincipalMapping,

a property is

created with

the name

com.ibm.mapping.authDataAlias

.

Chapter 6. Using scripting (wsadmin) 383

The value of

the property

is set by the

auth.props. If

the

login.config

name is not

set to

DefaultPrincipalMapping,

the

auth.props

can specify

multiple

properties.

The string

format is

websphere:name=

<name1>,value=<value1>,description=<desc1>.

Specify

multiple

properties

using the plus

sign (+) .

Use the

taskInfo

command of

the

AdminApp

object to

obtain

information

about the

data that is

needed for

your

application.

You need to

provide data

for rows or

entries that

are either

missing

information,

or require an

update.

384 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

MapRoles

ToUsers

Maps users to

roles. You

must map

each role that

is defined in

the

application or

module to a

user or group

from the

domain user

registry. You

can specify

multiple users

or groups for

a single role

by separating

them with a

pipe (|). Use

this option to

provide

missing data

or to update a

task.

Use the

taskInfo

command of

the

AdminApp

object to

obtain

information

about the

data that is

needed for

your

application.

You need to

provide data

for rows or

entries that

are either

missing

information,

or require an

update.

Using Jacl:

$AdminApp install myapp.ear {-MapRolesToUsers

{{"All Role" No Yes "" ""} {"Every Role"

Yes No "" ""} {DenyAllRole No No user1 group1}}}

Using Jython:

AdminApp.install(’myapp.ear’,

’[-MapRolesToUsers [["All Role" No Yes "" ""]

["Every Role" Yes No "" ""]

[’DenyAllRole No No user1 group1]]]’)

where {{″All Role″ No Yes ″″ ″″} corresponds to the

following:

″All Role″ Represents the role name

No Indicates to allow access to everyone (yes/no)

Yes Indicates to allow access to all authenticated users

(yes/no)

″″ Indicates the mapped users

″″ Indicates the mapped groups

Chapter 6. Using scripting (wsadmin) 385

MapRun

AsRoles

ToUsers

Maps RunAs

Roles to

users. The

enterprise

beans you

that install

contain

predefined

RunAs roles.

Enterprise

beans that

need to run

as a particular

role for

recognition

while

interacting

with another

enterprise

bean use

RunAs roles.

Use this

option to

provide

missing data

or to update a

task.

Use the

taskInfo

command of

the

AdminApp

object to

obtain

information

about the

data that is

needed for

your

application.

You need to

provide data

for rows or

entries that

are either

missing

information,

or require an

update.

Using Jacl:

$AdminApp install myapp.ear {-MapRunAs

RolesToUsers {{UserRole user1 password1}

{AdminRole administrator administrator}}}

Using Jython:

AdminApp.install(’myapp.ear’, ’[-MapRunAs

RolesToUsers [[UserRole user1 password1]

[AdminRole administrator administrator]]]’)

386 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

MapWeb

ModTo VH

Selects virtual

hosts for Web

modules.

Specify the

virtual host

where you

want to install

the Web

modules that

are contained

in your

application.

You can

install Web

modules on

the same

virtual host,

or disperse

them among

several hosts.

Use this

option to

provide

missing data

or to update a

task.

Use the

taskInfo

command of

the

AdminApp

object to

obtain

information

about the

data that is

needed for

your

application.

You need to

provide data

for rows or

entries that

are either

missing

information,

or require an

update.

Using Jacl:

$AdminApp install myapp.ear {-MapWebModToVH

{{"Default Application" default_app.war,

WEB-INF/web.xml default_host}

{"Examples Application" examples.war,

WEB-INF/web.xml default_host}}}

Using Jython:

AdminApp.install(’myapp.ear’,

’[-MapWebModToVH [["Default Application"

default_app.war,WEB-INF/web.xml default_host]

["Examples Application"

examples.war,WEB-INF/web.xml default_host]]]’)

Chapter 6. Using scripting (wsadmin) 387

noallow

PermIn Filter

Policy

Specifies not

to continue

with the

application

deployment

process when

the

application

contains

policy

permissions

that are in the

filter policy.

This option is

the default

setting and it

does not

require a

value.

node Specifies the

node name to

install or

update an

entire

application or

to update an

application in

order to add

a new

module. If

you want to

update an

entire

application,

this option

only applies if

the

application

contains a

new module

that does not

exist in the

installed

application.

388 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

nocreate

MBeans For

Resources

Specifies that

MBeans are

not created

for all

resources

such as,

servlets, JSPs,

and enterprise

beans, that

are defined in

an application

when the

application

starts on a

deployment

target. This

option is the

default setting

and it does

not require a

value.

nodeploy ejb Specifies not

to run the

EJBDeploy

tool during

installation.

This option is

the default

setting and it

does not

require a

value.

nodeploy ws Specifies not

to deploy

Web services

during

installation.

This option is

the default

setting and it

does not

require a

value.

nodistribute

App

Specifies that

the

application

management

component

does not

distribute

application

binaries. This

option does

not require a

value. The

default setting

is the

distributeApp

option.

Chapter 6. Using scripting (wsadmin) 389

noreload

Enabled

Disables class

reloading.

This option

does not

require a

value. The

default setting

is the

reloadEnabled

option.

nopreCompile

JSPs

Specifies not

to precompile

JavaServer

Pages files.

This option is

the default

setting and it

does not

require a

value.

noprocess

Embedded

Config

Use this

option to

ignore the

embedded

configuration

data that is

include in the

application.

This option

does not

required a

value.

If the

application

Enterprise

Archive

(EAR) file

does not

contain

embedded

configuration

data, the

noprocessEmbeddedConfig

option is the

default

setting.

Otherwise,

the default

setting is the

processEmbeddedConfig

option.

390 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

nouseMeta

DataFrom

Binary

Specifies that

the metadata

that is used at

run time, for

example,

deployment

descriptors,

bindings,

extensions,

and so on,

come from

the

configuration

repository.

This option is

the default

setting and it

does not

require a

value. Use

this option to

indicate that

the metadata

that is used at

run time

comes from

the enterprise

archive file

(EAR) file.

nouse default

bindings

Specifies not

to use default

bindings for

installation.

This option is

the default

setting and it

does not

require a

value.

Chapter 6. Using scripting (wsadmin) 391

operation Specifies the

operation that

you want to

perform. This

option only

applies to the

update

command.

The valid

values

include:

v add - Adds

new

content.

v addupdate -

Adds or

updates

content

based on

the

existence of

content in

the

application.

v delete -

Deletes

content.

v update -

Updates

existing

content.

The operation

option is

required if the

content type

is file or

modulefile. If

the value of

the content

type is app,

the value of

the operation

option must

be update.

The following examples show how to use the options for

the update command to update a single file in a deployed

application:

Using Jacl:

$AdminApp update app1 file {-operation

update -contents

/apps/app1/my.xml -contenturi

app1.jar/my.xml}

Using Jython string:

AdminApp.update(’app1’, ’file’,

’[-operation update -contents

/apps/app1/my.xml -contenturi

app1.jar/my.xml]’)

Using Jython list:

AdminApp.update(’app1’, ’file’,

[’-operation’, ’update’,

’-contents’, ’/apps/app1/my.xml’,

’-contenturi’, app1.jar/my.xml’])

where AdminApp is the scripting object, update is the

command, app1 is the name of the application you want to

update, file is the content type, operation is an option of

the update command, update is the value of the

operationoption, contents is an option of the update

command, /apps/app1/my.xml is the value of the contents

option, contenturi is an option of the update command,

app1.jar/my.xml is the value of the contenturi option.

392 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

process

Embedded

Config

Use this

option to

process the

embedded

configuration

data that is

included in

the

application.

This option

does not

required a

value.

If the

application

Enterprise

Archive

(EAR) file

contains

embedded

configuration

data, this

option is the

default

setting. If not,

the default

setting is the

nonprocessEmbeddedConfig

option.

preCompile

JSPs

Specifies to

precompile

the JavaServer

Pages files.

This option

does not

require a

value. The

default is

nopreCompileJSPs.

reload

Enabled

Specifies that

the file

system of the

application

will be

scanned for

updated files

so that

changes

reload

dynamically.

This option is

the default

setting and it

does not

require a

value.

Chapter 6. Using scripting (wsadmin) 393

reload

Interval

Specifies the

time period in

seconds that

the file

system of the

application

will be

scanned for

updated files.

Valid range is

greater than

zero. The

default is

three seconds.

server Specifies the

server name

to install or

update an

entire

application or

to update an

application in

order to add

a new

module. If

you want to

update an

application,

this option

only applies if

the

application

contains a

new module

that does not

exist in the

installed

application.

394 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

update Updates the

installed

application

with a new

version of the

enterprise

archive file

(EAR) file.

This option

does not

require a

value.

The

application

that is being

updated,

which is

specified by

the appname

option, must

already be

installed in

the

WebSphere

Application

Server

configuration.

The update

action merges

bindings from

the new

version with

the bindings

from the old

version,

uninstalls the

old version,

and installs

the new

version. The

binding

information

from new

version of the

EAR file is

preferred over

the

corresponding

one from the

old version. If

any element

of binding is

missing in the

new version,

the

corresponding

element from

the old

version is

used.

Chapter 6. Using scripting (wsadmin) 395

update.

ignore. new

Specifies that

during the

update action,

bindings from

the new

version of the

application

are ignored.

This option

does not

require a

value.

This option

applies only if

you specify

one of the

following

items:

v The update

option for

the install

command.

v The

modulefile

or app as

the content

type for the

update

command.

396 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

update.

ignore. old

Specifies that

during the

update action,

the bindings

from the

installed

version of the

application

are ignored.

This option

does not

require a

value.

This option

applies only if

you specify

one of the

following

items:

v The update

option for

the install

command.

v The

modulefile

or app as

the content

type for the

update

command.

useMeta

DataFrom

Binary

Specifies that

the metadata

that is used at

run time, for

example,

deployment

descriptors,

bindings,

extensions,

and so on,

come from

the EAR file.

This option

does not

require a

value.

The default

value is

nouseMetaDataFromBinary,

which means

that the

metadata that

is used at run

time comes

from the

configuration

repository.

Chapter 6. Using scripting (wsadmin) 397

usedefault

bindings

Specifies to

use default

bindings for

installation.

This option

does not

require a

value.

The default

setting is

nousedefaultbindings.

398 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

validate

install

Specifies the

level of

application

installation

validation.

Valid option

values

include:

v off -

Specifies no

application

deployment

validation.

This value

is the

default.

v warn -

Performs

application

deployment

validation

and

continues

with the

application

deployment

process

even when

reported

warnings

or error

messages

exist.

v fail -

Performs

application

deployment

validation

and does

not to

continue

with the

application

deployment

process

when

reported

warnings

or error

messages

exist.

Chapter 6. Using scripting (wsadmin) 399

verbose Causes

additional

messages to

display

during

installation.

This option

does not

require a

value.

400 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

WebServices

ClientBind

Deployed

WSDL

The

immutable

values for this

option

identify the

client Web

service that

you are

modifying.

The scoping

fields include:

Module, EJB,

and Web

service. The

single

mutable value

for this task is

the deployed

WSDL file

name. It

indicates the

Web Services

Description

Language

(WSDL) the

client uses.

The Module

field identifies

the enterprise

or Web

application

within the

application. If

the module is

an enterprise

bean , the EJB

field identifies

a particular

enterprise

bean within

the module.

The Web

service field

identifies the

Web service

within the

enterprise

bean or the

Web

application

module.

Using Jacl:

$AdminApp install WebServicesSamples.ear

{-WebServicesClientBindDeployedWSDL

{{AddressBookW2JE.jar AddressBookW2JE

service/WSLoggerService2

META-INF/wsdl/DeployedWsdl1.wsdl}}}

Using Jython:

AdminApp.install(’WebServicesSamples.ear’,

’[-WebServicesClientBindDeployedWSDL

[[AddressBookW2JE.jar AddressBookW2JE

service/WSLoggerService2

META-INF/wsdl/DeployedWsdl1.wsdl]]]’)

Chapter 6. Using scripting (wsadmin) 401

This identifier

corresponds

to the

wsdl:service

attribute in

the WSDL

file,

prepended

with

service/, for

example,

service/WSLoggerService2.

The deployed

WSDL

attribute

names a

WSDL file

relative to the

client module.

An example

of a deployed

WSDL for a

Web

application is

the following:

WEB-
INF/wsdl/WSLoggerService.

402 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

WebServices

ClientBind

PortInfo

The

immutable

values

identify the

port of a

client Web

service that

you are

modifying.

The scoping

fields include:

Module, EJB,

Web service

and Port. The

mutable

values for this

task include:

Sync Timeout,

BasicAuth ID,

BasicAuth

Password, SSL

Config, and

Overridden

Endpoint URI.

The basic

authentication

and Secure

Sockets Layer

(SSL) fields

affect

transport

level security,

not Web

services

security.

Using Jacl:

$AdminApp install WebServicesSamples.ear

{-WebServicesClientBindPortInfo

{{AddressBookW2JE.jar AddressBookW2JE

service/WSLoggerService2 WSLoggerJMS 3000

newHTTP_ID newHTTP_pwd

sslAliasConfig http://yunus:9090/

WSLoggerEJB/services/WSLoggerJMS}}}

Using Jython:

AdminApp.install(’WebServicesSamples.ear’,

’[-WebServicesClientBindPortInfo

[[AddressBookW2JE.jar AddressBookW2JE

service/WSLoggerService2 WSLoggerJMS

3000 newHTTP_ID newHTTP_pwd

sslAliasConfig http://yunus:9090/

WSLoggerEJB/services/WSLoggerJMS]]]’)

Chapter 6. Using scripting (wsadmin) 403

WebServices

ClientBind

PreferredPort

Associates a

preferred port

(implementation)

with a port

type

(interface) for

a client Web

service. The

immutable

values

identify a

port type of

the client Web

service that

you are

modifying.

The scoping

fields include:

Module, EJB,

Web service

and Port

Type. The

mutable value

for this task is

Port.

v Port Type -

QName

(″{namespace}

localname″)

of a port

type that is

defined by

a

wsdl:portType

attribute in

the WSDL

file that

identifies

an

interface.

v Port -

QName of

a port

defined by

a wsdl:port

attribute

within a

wsdl:service

attribute in

a WSDL

file that

identifies

an

implementation

that has

preference.

Using Jacl:

$AdminApp install WebServicesSamples.ear

{-WebServicesClientBindPreferredPort

{{AddressBookW2JE.jar AddressBookW2JE

service/WSLoggerService2

WSLoggerJMS WSLoggerJMSPort}}}

Using Jython:

AdminApp.install(’WebServicesSamples.ear’,

’[-WebServicesClientBindPreferredPort

[[AddressBookW2JE.jar AddressBookW2JE

service/WSLoggerService2

WSLoggerJMS WSLoggerJMSPort]]]’)

404 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

WebServices

ServerBind

Port

Sets two

attributes of a

Web service

port. The

immutable

values

identify the

port of a Web

service that

you are

modifying.

The scope

fields include:

Module, Web

service and

Port. The

mutable

values

include: WSDL

Service Name,

and Scope.

The scope

determines

the life cycle

of

implementing

the Java bean.

The valid

values

include:

Request (new

instance for

each request),

Application

(one instance

for each

web-app),

and Session

(new instance

for each

HTTP

session).

Using Jacl:

$AdminApp install WebServicesSamples.ear

{-WebServicesServerBindPort

{{AddressBookW2JE.jar service/

WSLoggerService2 WSLoggerJMS {} Session}}}

Using Jython:

AdminApp.install(’WebServicesSamples.ear’,

’[-WebServicesServerBindPort

[[AddressBookW2JE.jar service/WSLoggerService2

WSLoggerJMS "" Session]]]’)

Chapter 6. Using scripting (wsadmin) 405

The scope

attribute does

not apply to

Web services

that a Java

Message

Service (JMS)

transport. The

scope

attribute does

not apply to

enterprise

beans.

The WSDL

service name

identifies a

service when

more than

one service

has the same

port name.

The WSDL

service name

is represented

as a QName

string, for

example,

{namespace}localname

.

406 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

WebServices

ClientCustom

Property

Supports the

configuration

of the name

value

parameter for

the

description of

the client

bind file of a

Web service.

The

immutable

values

identify the

port of the

Web service

that you are

modifying.

The scope

fields include:

Module, Web

service, and

Port. The

mutable

values

include: name

and value.

The format of

the name and

value values

include a

string that

represents

multiple

name and

value pairs by

using the +

character as a

separator. For

example,

name string =

″n1+n2+n3″

value string =

″v1+v2+v3″

yields

name/value

pairs: {{″n1″

″v1″}, {″n2″

″v2″}, {″n3″ ″

v3″}}

Using Jacl:

$AdminApp edit WebServicesSamples

{-WebServicesServerCustomProperty

{{AddressBookW2JE.jar AddressBookService

AddressBook http.proxyHost

+http.proxyPort myhost+80}}}

Using Jython:

AdminApp.edit (’WebServicesSamples’,

’[-WebServicesServerCustomProperty

[[AddressBookW2JE.jar

AddressBookService AddressBook

http.proxyHost+http.proxyPort

myhost+80]]]’)

Chapter 6. Using scripting (wsadmin) 407

WebServices

ServerCustom

Property

Supports the

configuration

of the name

value

parameter for

the

description of

the server

bind file of a

Web service.

The scoping

fields include

the following:

Module, EJB,

and Web

service. The

mutable

values for this

task include:

name and

value.

The format of

the these

values

include a

string that

represents

multiple

name and

value pairs by

using the plus

(+) character

as a separator.

For example,

name string =

″n1+n2+n3″

value string =

″v1+v2+v3″

yields

name/value

pairs: {{″n1″

″v1″}, {″n2″

″v2″}, {″n3″ ″

v3″}}

Using Jacl:

$AdminApp edit WebServicesSamples

{-WebServicesServerCustomProperty

{{AddressBookW2JE.jar AddressBook

Service AddressBook com.ibm.websphere.

webservices.http.

responseContentEncoding deflate}}}

Using Jython:

AdminApp.edit (’WebServicesSamples’,

’[-WebServicesServerCustomProperty

[[AddressBookW2JE.jar AddressBookService

AddressBook

com.ibm.websphere.webservices.http.

responseContentEncoding deflate]]]’)

Usage table for the options of the AdminApp object install, installInteractive,

update, updateInteractive, edit, and editInteractive commands:

The following table lists all of the options available for the install,

installInteractive, update, updateInteractive, edit, and editInteractive commands

of the AdminApp object. The table indicates the applicable commands for each

option.

408 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

Option name install

and

install

Inter

active

command

s - install

an

applicati

on

update

and

update

Inter

active

command

s -

Update

an

applicati

on

update

and

update

Inter

active

command

s - Add a

module

update

and

update

Inter

active

command

s -

Update

a

module

edit and

edit

Inter

active

command

s - Edit

an

applicati

on

edit and

edit

Inter

active

command

s - Edit a

module

ActSpecJNDI Yes Yes Yes Yes Yes Yes

allowPermInFilterPolicy Yes Yes

appname Yes Yes

BackendIdSelection Yes Yes Yes Yes

BindJndiForEJBMessagin

gBinding

Yes Yes Yes Yes Yes Yes

BindJndiForEJBNonMess

ageBinding

Yes Yes Yes Yes Yes Yes

cell Yes Yes Yes

cluster Yes Yes Yes

contents Yes Yes Yes

contenturi Yes Yes Yes

contextroot Yes Yes Yes

CorrectOracleIsolation

Level

Yes Yes Yes Yes Yes Yes

CorrectUseSystem

Identity

Yes Yes Yes Yes Yes Yes

createMBeansFor

Resources

Yes Yes Yes

custom Yes Yes Yes Yes Yes Yes

DataSourceFor10

CMPBeans

Yes Yes Yes Yes Yes Yes

DataSourceFor20

CMPBeans

Yes Yes Yes Yes Yes Yes

DataSourceFor10

EJBModules

Yes Yes Yes Yes Yes Yes

DataSourceFor20

EJBModules

Yes Yes Yes Yes Yes Yes

defaultbinding.

datasource .jndi

Yes Yes Yes Yes

defaultbinding. cf.jndi Yes Yes Yes Yes

defaultbinding.

cf.resauth

Yes Yes Yes Yes

defaultbinding.

datasource. password

Yes Yes Yes Yes

defaultbinding.

datasource. username

Yes Yes Yes Yes

Chapter 6. Using scripting (wsadmin) 409

defaultbinding. ejbjndi.

prefix

Yes Yes Yes Yes

defaultbinding. force Yes Yes Yes Yes

defaultbinding.

strategy.file

Yes Yes Yes Yes

defaultbinding.

virtual.host

Yes Yes Yes Yes

depl.extension. reg

(deprecated)

deployejb Yes Yes Yes Yes

deployejb.classpath Yes Yes Yes Yes

deployejb.dbschema Yes Yes Yes Yes

deployejb.dbtype Yes Yes Yes Yes

deployejb.rmic Yes Yes Yes Yes

deployws Yes Yes Yes Yes

deployws.classpath Yes Yes Yes Yes

deployws.jardirs Yes Yes Yes Yes

distributeApp Yes Yes Yes

EmbeddedRar Yes Yes Yes Yes Yes Yes

EnsureMethod

ProtectionFor 10EJB

Yes Yes Yes Yes

EnsureMethod

ProtentionFor 20EJB

Yes Yes Yes Yes

installdir (deprecated)

installed.ear.destination Yes Yes Yes

MapMessage

Destination RefToEJB

Yes Yes Yes Yes Yes Yes

MapModulesToServers Yes Yes Yes Yes Yes Yes

MapEJBRefToEJB Yes Yes Yes Yes Yes Yes

MapResEnvRefToRes Yes Yes Yes Yes Yes Yes

MapResRefToEJB Yes Yes Yes Yes Yes Yes

MapRolesToUsers Yes Yes Yes Yes

MapRunAsRolesToUsers Yes Yes Yes Yes Yes Yes

MapWebModToVH Yes Yes Yes Yes Yes Yes

noallowPermIn

FilterPolicy

Yes Yes

nocreateMBeans

ForResources

Yes Yes Yes

node Yes Yes Yes

nodeployejb Yes Yes Yes Yes

nodeployws Yes Yes Yes Yes

nodistributeApp Yes Yes Yes

nopreCompileJSPs Yes Yes Yes Yes

noprocessEmbedded

Config

Yes Yes

410 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

noreloadEnabled Yes Yes Yes

nousedefaultbindings Yes Yes Yes Yes

nouseMetaData

FromBinary

Yes Yes Yes

operation Yes Yes Yes

preCompileJSPs Yes Yes Yes Yes

processEmbedded

Config

Yes Yes

reloadEnabled Yes Yes Yes

reloadInterval Yes Yes Yes

server Yes Yes Yes

update Yes Yes

update.ignore.old Yes Yes Yes

update.ignore.new Yes Yes Yes

useMetaData

FromBinary

Yes Yes Yes

usedefaultbindings Yes Yes Yes Yes

validateinstall Yes Yes

verbose Yes Yes Yes Yes Yes Yes

WebServicesClient

BindingDeployed WSDL

Yes Yes Yes Yes Yes Yes

WebServicesClient

BindPortInfo

Yes Yes Yes Yes Yes Yes

WebServicesClient

BindPreferred Port

Yes Yes Yes Yes Yes Yes

WebServicesClient

CustomProperty

Yes Yes Yes Yes Yes Yes

WebServicesServer

BindPort

Yes Yes Yes Yes Yes Yes

WebServicesServer

CustomProperty

Yes Yes Yes Yes Yes Yes

Example: Obtaining option information for AdminApp object

commands

Use the taskInfo command of the AdminApp object to obtain information about

the data that is needed for your application. You need to provide data for rows or

entries that are either missing information, or require an update.

v You can use the options command to see the requirements for an enterprise

archive file (EAR) file if you construct installation command lines. The taskInfo

command provides detailed information for each task option with a default

binding applied to the result.

v The options for the AdminApp install command can be complex if you specify

various types of binding information, for example, Java Naming and Directory

Interface (JNDI) name, data sources for enterprise bean modules, or virtual hosts

for Web modules. An easy way to specify command-line installation options is

to use a feature of the installInteractive command that generates the options for

you. After you install the application interactively once and specify all the

updates that you need, look for message WASX7278I in the wsadmin output log.

Chapter 6. Using scripting (wsadmin) 411

The default output log for wsadmin is wsadmin.traceout. You can cut and paste

the data in this message into a script, and modify it. For example:

WASX7278I: Generated command line: install /websphere/appserver/installableapps/

jmsample.ear

{-BindJndiForEJBNonMessageBinding {{deplmtest.jar MailEJBObject deplmtest.jar,

META-INF/ejb-jar.xml ejb/JMSampEJB1 }}

-MapResRefToEJB {{deplmtest.jar MailEJBObject deplmtest.jar,META-INF/ejb-jar.xml

mail/MailSession9

javax.mail.Session mail/DefaultMailSessionX } {"JavaMail Sample WebApp"

 mtcomps.war,WEB-INF/web.xml

mail/MailSession9 javax.mail.Session mail/DefaultMailSessionY }}

-MapWebModToVH {{"JavaMail Sample WebApp"

mtcomps.war,WEB-INF/web.xml newhost }} -nopreCompileJSPs

-novalidateApp -installed.ear.destination

/mylocation -distributeApp -nouseMetaDataFromBinary}

Commands for the AdminTask object

Use AdminTask object to run an administrative command. Administrative

commands are discovered dynamically when you start the wsadmin tool. The

administrative commands that are available for your use, and what you can do

with them, depends on the edition of the WebSphere Application Server that you

have.

You can start the scripting client without a server running by using the -conntype

NONE option with the wsadmin tool. The AdminTask administrative commands are

available in both connected and local modes. If a server is currently running, it is

not recommended to run the AdminTask commands in local mode. This is because

any configuration changes made in local mode will not be reflected in the running

server configuration and vice versa. If you save a conflicting configuration, you

could corrupt the configuration. In a deployment manager environment,

configuration updates are available only if a scripting client is connected to a

deployment manager. When connected to a node agent or a managed application

server, you will not be able to update the configuration because the configuration

for these server processes are copies of the master configuration which resides in

the deployment manager. The copies are created on a node machine when a

configuration synchronization occurs between the deployment manager and the

node agent. Make configuration changes to the server processes by connecting a

scripting client to a deployment manager. For this reason, to change a

configuration, do not run a scripting client in local mode on a node machine. It is

not a supported configuration.

The following commands are available for the AdminTask object:

 Comman

d name:

Group

name:

Descrip

tion:

Target

object:

Parameters and

return values:

Examples:

412 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

addNode

Group

Member

Node

Group

Commands

group

The

addNode

Group

Member

command

adds a

member

to a node

group.

Nodes

may be

members

of more

than one

node

group.

The

command

will do

validity

checking

to ensure

the

following:

v

 Distributed

and

z/OS

nodes

are not

combined

in the

same

node

group.

v z/OS

platform

from

different

sysplexs

are not

combined

into

the

same

node

group.

The

target

object is

the node

group

where

the

member

will be

created.

This

target

object is

required.

v Parameters:

- nodeName

The name of

the node to

be added to

a node

group. This

parameter is

required.

v Returns: Node

group member

object ID

Batch mode example

usage:

v Using Jacl:

$AdminTask addNodeGroup

Member WBINodeGroup

{-nodeName WBINode}

v Using Jython:

AdminTask.addNodeGroup

Member(’WBINodeGroup’,

’[-nodeName WBINode]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask addNodeGroup

Member {-interactive}

v Using Jython:

AdminTask.addNodeGroup

Member (’[-interactive]’)

Chapter 6. Using scripting (wsadmin) 413

addSIB

WSInbo

undPort

SIB Web

Services

group

The

addSIB

WSInbound

Port

command

adds the

configuration

for an

inbound

port to

an

inbound

service.

This

command

will fail

if:

v the

port

name

is

already

in use

by

another

inbound

port

for the

inbound

service

or the

end

point

listener

that

you

specified.

v the

template

port

that

you

specified

does

not

exist in

the

template

WSDL

of the

inbound

service.

The

object

name of

the

inbound

service to

which

the port

will be

added.

v Parameters:

name

The name of

the port.

(required)

endpointListener

The name of

the

associated

end point

listener.

(required)

node

The node

where the

endpoint

listener is

located. You

must specify

the node

parameter,

the server

parameter,

or the

cluster

parameter.

(conditional)

server

The server

where the

endpoint

listener is

located. You

must specify

the node

parameter,

the server

parameter,

or the

cluster

parameter.

(conditional)

cluster

The cluster

where the

endpoint

listener is

located. You

must specify

the node

parameter,

the server

parameter,

or the

cluster

parameter.

(conditional)

Batch mode example

usage:

v Using Jacl:

set inPort [$AdminTask

addSIBWSInboundPort

$inService {-name

"MyServiceSoap"

-endpointListener

"SOAPHTTP1" -node

"MyNode" -server

"server1"}]

v Using Jython:

inPort = AdminTask.

addSIBWSInboundPort

(inService, ’[-name

MyServiceSoap

-endpointListener

SOAPHTTP1 -node

MyNode -server

server1]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask addSIBWS

InboundPort

{-interactive}

v Using Jython:

AdminTask.addSIBWS

InboundPort

(’[-interactive]’)

414 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

templatePort

The name of

the port in the

template

WSDL to use

as a basis for

the binding of

the port.

(optional)

v Returns: The

object name of

the inbound port

object that was

created.

Chapter 6. Using scripting (wsadmin) 415

add SIB

WS

Outbound

Port

SIB Web

Services

group

The add

SIBWS

Outbound

Port

command

adds the

configuration

for an

outbound

port to

an

outbound

service.

The

object

name of

the

outbound

service

for which

the port

will be

associated.

v Parameters:

name

The name of

the port in

the WSDL

of the

service

provider.

(required)

node

Node where

the port

destination

will be

localized.

You must

specify the

node

parameter,

the server

parameter,

or the

cluster

parameter.

(conditional)

server

The server

where the

port

destination

will be

localized.

You must

specify the

node

parameter,

the server

parameter,

or the

cluster

parameter.

(conditional)

cluster

The cluster

where the

port

destination

will be

localized.

You must

specify the

node

parameter,

the server

parameter,

or the

cluster

parameter.

(conditional)

Batch mode example

usage:

v Using Jacl:

set outPort

[$AdminTask addSIBWS

OutboundPort $out

Service {-name

"MyServiceSoap"

-node "MyNode"

-server

"server"}]

v Using Jython:

outPort = AdminTask.

addSIBWSOutboundPort

(outService, ’[-name

MyServiceSoap

-node MyNode

-server server]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask addSIBWS

OutboundPort

{-interactive}

v Using Jython:

AdminTask.addSIBWS

OutboundPort

(’[-interactive]’)

416 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

destination

The name of

the port

destination.

(optional)

userId

The user ID to

use to retrieve

the WSDL.

(optional)

password

The password

to use to

retrieve the

WSDL.

(optional)

v Returns: The

object name of

the outbound

port object that

you created.

Chapter 6. Using scripting (wsadmin) 417

addSI

Bus

Member

SIB

Admin

Commands

group

Use this

command

to add a

server or

a cluster

to a SIB

bus.

None v Parameters:

bus

name of bus

to add

member to

(String,

required)

node

to specify a

server bus

member,

supply node

and server

name, but

not cluster

name

(String,

optional)

server

to specify a

server bus

member,

supply node

and server

name, but

not cluster

name

(String,

optional)

cluster

to specify a

cluster bus

member,

supply

cluster

name but

not node

and server

name

(String,

optional)

createDefault

Datasource

set this to

true if a

default data

source

should be

created

when the

messaging

engine is

created.

(Boolean,

optional)

Batch mode example

usage:

v Using Jacl:

$AdminTask addSIBus

Member {-bus

busname -node

nodename -server

servername

-description

text}

v Using Jython:

AdminTask.addSIBus

Member(’[-bus

busname -node

nodename -server

servername

-description

"text"]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask addSIBus

Member {-interactive}

v Using Jython:

AdminTask.addSIBus

Member

(’[-interactive]’)

418 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

datasourceJndi

Name

the JNDI name

of the data

source to be

referenced

from the

datastore

created when

the member is

added to the

bus (String,

optional)

Chapter 6. Using scripting (wsadmin) 419

addWSG

WTarget

Service

WS

Gateway

group

The add

WSGW

Target

Service

command

adds a

target to

a

gateway

service.

You must

specify

the

targetService

parameter

or the

targetDestination

parameter.

Object

name of

the

GatewayService

object

v Parameters:

name

The

administrative

name of the

target

service.

(Required)

targetDestination

The name of

the target

destination.

This can be

within the

same bus as

the gateway

destination

or in a

different

bus. If the

target

destination

is not

within the

same bus as

the gateway

destination,

you must

also specify

the

targetBus

parameter.

You must

either

specify the

targetDestination

parameter

or the

targetService

parameter.

(Conditional)

targetService

The name of

the target

outbound

service. You

must either

specify the

targetDestination

parameter

or the

targetService

parameter.

(Conditional)

Batch mode example

usage:

v Using Jacl:

set gwTarget [$Admin

Task addWSGWTarget

Service $gwService

{-name

"AnotherTarget"

-targetService

"AnotherService

"}]

v Using Jython:

gwTarget=AdminTask.

addWSGWTargetService

(gwService, ’[-name

AnotherTarget

-targetService

AnotherService

]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask addWSGW

TargetService

{-interactive}

v Using Jython:

AdminTask.addWSGW

TargetService

(’[-interactive]’)

420 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

targetBus

The name of

the WPM bus

that contains

the target.

(Optional)

v Returns: The

object name of

the target service

object that you

created.

create

Application

Server

Server

Management

group

Use the

create

Application

Server

command

to create

a new

application

server.

Node

name

(optional)

v Parameters:

- name

The name of

the server

that you

want to

create.

(String)

- templateName

The name of

the template

from which

to base the

server.

(String)

-

genUniquePorts

Specifies

that unique

ports should

be created

for the

server.

(boolean)

-

templateLocation

The location

of a

template.

(ObjectName)

v Returns: The

configuration ID

of the server you

created.

Batch mode example

usage:

v Using Jacl:

$AdminTask create

ApplicationServer

ndnode1 {-name test1

–templateName default}

v Using Jython:

AdminTask.create

ApplicationServer

(ndnode1, ’[-name

test1]’, ’[-template

Name default]‘)

Interactive mode example

usage:

v Using Jacl:

$AdminTask create

ApplicationServer

{-interactive}

v Using Jython:

AdminTask.create

ApplicationServer

(’[-interactive]’)

Chapter 6. Using scripting (wsadmin) 421

create

Application

Server

Template

Server

Management

group

The

create

Application

Server

Template

command

creates a

new

application

server

template.

None v Parameters:

- templateName

The name of

the

application

server

template

that you

want to

create.

(String)

- serverName

The name of

the server

from which

to base the

template.

(String)

- nodeName

The node

that

corresponds

to the server

from which

to base the

template.

(String)

- description

The

description

of the

template.

(String)

-

templateLocation

The location

where you

want to

place the

template.

(String)

v Returns: The

configuration ID

of a new

template.

Batch mode example

usage:

v Using Jacl:

$AdminTask createAppl

icationServerTemplate

{-templateName new

Template -serverName

server1 -nodeName

ndnode1 -description

"This is my new

template"}

v Using Jython:

AdminTask.createAppli

cationServerTemplate

(’[-templateName new

Template -serverName

server1 -nodeName

ndnode1 -description

"This is my new

template"]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask createAppli

cationServerTemplate

{-interactive}

v Using Jython:

AdminTask.createApplic

ationServerTemplate

(’[-interactive]’)

422 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

compare

Node

Version

Managed

Object

Metadata

group

The

compare

Node

Version

command

compares

the

WebSphere

Application

Server

version

given a

node that

you

specify

and an

input

version.

None v Parameters:

- nodeName

The name of

the node

associated

with the

metadata

you want

this

command to

return.

- version

A version

number that

you want to

compare to

the

WebSphere

Application

Server

version

number.

v Returns:

– 0 if node

version

matches the

input version

– -1 if node

version is

smaller than

the input

version

– 1 is node

version is

higher than

the input

version

Batch mode example

usage:

v Using Jacl:

$AdminTask compare

NodeVersion

{-nodeName node1

-version 5}

v Using Jython:

AdminTask.compareNode

Version(’[-nodeName

node1 -version

5]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask compare

NodeVersion

{-interactive}

v Using Jython:

AdminTask.compareNode

Version

(’[-interactive]’)

configure

TAM

Interactive mode example

usage:

v Using Jacl:

$AdminTask configure

TAM {-interactive}

v Using Jython:

AdminTask.configure

TAM (’[-interactive]’)

Chapter 6. Using scripting (wsadmin) 423

connect

SIBWS

Endpoint

Listener

SIBWeb

Services

group

The

connect

SIBWS

Endpoint

Listener

command

connects

an end

point

listener

to a bus.

Object

name of

the end

point

listener

that you

want to

create.

v Parameters:

bus

The name of

the bus to

which the

end point

listener will

be

connected.

(required)

replyDestination

The name of

the reply

destination

for the

connection.

(optional)

v Returns: The

SIBWS bus

connection

property object.

Batch mode example

usage:

v Using Jacl:

set busConn [$Admin

Task connectSIBWSEnd

pointListener $epl

{-bus "MyBus"}]

v Using Jython:

busConn = AdminTask.

connectSIBWSEndpoint

Listener(epl, ’[-bus

MyBus]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask connect

SIBWSEndpointListener

{-interactive}

v Using Jython:

AdminTask.connectSIB

WSEndpointListener

(’[-interactive]’)

424 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

copy

Resource

Adapter

JCA

manage

ment

group

Use the

copy

Resource

Adapter

command

to create

a Java 2

Connector

(J2C)

resource

adapter

under the

scope

that you

specify.

J2C

Resource

Adapter_

object_ID

v Parameters:

- name

Indicates the

name of the

new J2C

resource

adapter.

This

parameter is

required.

- scope

Indicates the

scope object

ID. This

parameter is

required.

- useDeepCopy

If you set

this

parameter

to true, all

of the J2C

connection

factory, J2C

activation

specification,

and J2C

administrative

objects will

be copied to

the new J2C

resource

adapter

(deep copy).

If you set

this

parameter

to false, the

objects are

not created

(shallow

copy). The

default is

false.

v Returns: J2C

resource adapter

object ID

Batch mode example

usage:

v Using Jacl:

$AdminTask copy

ResourceAdapter $ra

[subst {-name newRA

-scope $scope}]

v Using Jython:

AdminTask.copy

ResourceAdapter(ra,

’[-name newRA

-scope scope]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask copy

ResourceAdapter

{-interactive}

v Using Jython:

AdminTask.copy

ResourceAdapter

(’[-interactive]’)

Chapter 6. Using scripting (wsadmin) 425

create

Application

Server

Interactive mode example

usage:

v Using Jacl:

$AdminTask create

ApplicationServer

{-interactive}

v Using Jython:

AdminTask.create

ApplicationServer

(’[-interactive]’)

create

Application

Server

Template

Interactive mode example

usage:

v Using Jacl:

$AdminTask create

ApplicationServer

Template

{-interactive}

v Using Jython:

AdminTask.create

ApplicationServer

Template

(’[-interactive]’)

426 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

create

Chain

Channel

Frame

work

Manage

ment

group

The

create

Chain

command

creates a

new

chain of

transport

channels

based on

a chain

template.

The

instance

of the

transport

channel

service

under

which

the new

chain is

created.

(ObjectName,

required)

v Parameters:

- template

The chain

template on

which to

base the

new chain.

(ObjectName,

required)

- name

The name of

the new

chain.

(String,

required)

- endPoint

The name of

the end

point to be

used by the

instance of

the TCP

inbound

channel in

the new

chain if the

chain is an

inbound

chain.

(ObjectName,

optional)

v Returns: The

object name of

the channel

chain that was

created.

Batch mode example

usage:

v Using Jacl:

$AdminTask create

Chain (cells/

rohitbuildCell01/

nodes/rohitbuild

CellManager01/

servers/dmgr|

server.xml#

TransportChannel

Service_1) {-template

WebContainer

(templates/chains|

webcontainer-chains.

xml#Chain_1)

-name

trialChain1}

$AdminTask create

Chain (cells/

rohitbuildCell01/

nodes/rohitbuild

CellManager01/

servers/dmgr|

server.xml#Transport

ChannelService_1)

{-template

WebContainer

(templates/chains|

webcontainer-chains.

xml#Chain_1) -name

trialChain1

-endPoint (cells/

rohitbuildCell01/

nodes/rohitbuild

CellManager01|server

index.xml#EndPoint_3)}

v Using Jython:

 AdminTask.create

Chain(’cells/rohit

buildCell01/nodes/

rohitbuildCellManager

01/servers/dmgr|

server.xml#

TransportChannel

Service_1’, ’[-temp

late "WebContainer

(templates/chains|

webcontainer-chains.

xml#Chain_1)"

-name trialChain]’)

Chapter 6. Using scripting (wsadmin) 427

AdminTask.createChain

(’cells/rohitbuild

Cell01/nodes/rohit

buildCellManager01/

servers/dmgr|server.

xml#TransportChannel

Service_1’,

’[-template

"WebContainer

(templates/chains|web

container-chains.

xml#Chain_1)" -name

trialChain -endPoint

"(cells/rohitbuild

Cell01/nodes/rohit

buildCellManager01|

serverindex.xml#

EndPoint_3)"]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask createChain

{-interactive}

v Using Jython:

AdminTask.createChain

(’[-interactive]’)

428 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

create

Cluster

Cluster

Config

Comm

ands

The

create

Cluster

command

creates a

new

server

cluster. A

server

cluster

consists

of a

group of

application

servers

which are

referred

to as

cluster

members.

Optionally,

a

replication

domain

can be

created

for the

new

cluster,

and an

existing

server

can be

included

as the

first

cluster

member.

None v Parameters for

step one:

-clusterConfig

Specifies the

configuration

of the new

server

cluster. This

command

step is

required.

The

following

parameters

can be

specified for

this step.

clusterName

The name of

the new

server

cluster. This

parameter is

required.

preferLocal

Enables or

disables

node scoped

routing

optimization

within this

cluster. This

parameter is

optional.

The value is

true or false.

It not

specified,

the default

value is

true.

v Parameters for

step two:

Batch mode example

usage:

v Using Jacl:

$AdminTask create

Cluster { -cluster

Config {{cluster1

true}}}

$AdminTask create

Cluster { -cluster

Config {{cluster1

true}} -replication

Domain {{true}}}

$AdminTask create

Cluster { -cluster

Config {{cluster1

true}} -convert

Server {{server1

node1 "" "" ""}}}

v Using Jython:

AdminTask.create

Cluster(’[-cluster

Config [[cluster1

true]]]’)

AdminTask.create

Cluster(’[-cluster

Config [[cluster1

true]] -replication

Domain [[true]]]’)

AdminTask.create

Cluster(’[-cluster

Config [[cluster1

true]] -convert

Server [[server1

node1 "" "" ""]]]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask create

Cluster {-interactive}

v Using Jython:

AdminTask.create

Cluster (’[-inter

active]’)

Chapter 6. Using scripting (wsadmin) 429

-replicationDomain

Specifies the

configuration

of a replication

domain for

this cluster. A

replication

domain is

used to

support HTTP

session data

replication.

This command

step is

optional. The

following

parameters

can be

specified for

this step:

createDomain

Creates a

replication

domain with a

name set to

the name of

the new

cluster. This

parameter is

optional. The

value is true

or false. It not

specified, the

default value

is false.

v Parameters for

step three:

-convertServer

Specifies

information

about an

existing

application

server to

convert to

be the first

member of

the cluster.

This

command

step is

optional.

The

following

parameters

can be

specified for

this step:

430 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

serverNode

The name of

the node with

the server to

be converted

to the first

cluster

member. This

parameter is

required for

the command

step. You must

also specify

the

serverName

parameter.

serverName

The name of

the application

server to be

converted to

the first cluster

member. This

parameter is

required for

the command

step. You must

also specify

the

serverNode

parameter.

memberWeight

The weight of

the cluster

member. The

weight

controls the

amount of

work directed

to the

application

server. If the

weight is

greater than

the weight

assigned to

other cluster

members, the

server will

receive a

larger share of

the workload.

The value is a

number

between 0 and

100. If none is

specified, the

default is 2.

Chapter 6. Using scripting (wsadmin) 431

nodeGroup

The name of

the node

group which

this cluster

member‘s

node, and all

future cluster

members‘

nodes, must

belong to. All

cluster

members must

reside on

nodes in the

same node

group. This

parameter is

optional. If

specified, it

must be one of

the node

groups which

this member‘s

node belongs

to. If not

specified, the

default value

will be the

first node

group listed

for this

member‘s

node.

432 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

replicatorEntry

Specifies a

replicator

entry for the

converted

member will

be created in

the cluster‘s

replication

domain. A

replicator

entry is used

to provide

HTTP session

data

replication.

This command

parameter is

optional. The

value is true

or false which

indicates

whether the

replicator

entry will be

created. The

default value

is false. You

can specify

this parameter

only if the

createDomain

parameter was

set to true in

the

replicationDomain

command

step.

v Returns:

ObjectName of

cluster created.

Chapter 6. Using scripting (wsadmin) 433

create

Cluster

Member

Cluster

Config

Comma

nds

The

create

Cluster

Member

command

creates a

member

of a

server

cluster. A

cluster

member

is an

application

server

that

belongs

to a

cluster. If

this is the

first

member

of the

cluster,

you must

specify a

template

to use as

the

model for

the

cluster

member.

The

template

can be

either a

default

server

template,

or an

existing

application

server

cluster

ObjectID

- The

configur

ation

object ID

of the

cluster

which

the new

member

will

belong

to. If this

is not

specified,

then the

clusterName

parameter

must be

specified.

The

object

name can

be

obtained

programmatically

via Java

using the

WebSphere

ConfigService

API, or

via

wsadmin

scripting

using the

AdminConfig

command.

v Parameters:

-clusterName

The name of

the cluster

which the

new

member will

belong to. If

this

parameter is

not

specified,

then the

cluster

object ID

must be

specified in

the

command

target.

v Parameters for

step one:

-memberConfig

Specifies the

attributes of

the new

cluster

member to

be created

in the

cluster. This

command

step is

required.

The

following

parameters

can be

specified for

this step:

memberName

The name of

the server to

be created

for the new

cluster

member.

This

parameter is

required.

Batch mode example

usage:

v Using Jacl:

First member creation

using template name:

$AdminTask create

ClusterMember

{-clusterName cluster1

-memberConfig {{node1

member1 "" "" true

false}} -firstmember

{{ serverTemplateName

"" "" "" ""}}}

First member creation

using server and node

for template:

$AdminTask create

ClusterMember

{-clusterName cluster1

-memberConfig {{node1

member1 "" "" true

false}} -firstmember

{{ "" node1 server1

"" ""}}}

Second member creation:

$AdminTask create

ClusterMember

{-clusterName cluster1

-memberConfig {{node1

member2 "" "" true

false}}}

v Using Jython:

First member creation

using template name:

AdminTask.create

ClusterMember

(’[-clusterName

cluster1 -memberConfig

[[node1 member1 ""

"" true false]]

-firstMember [[server

TemplateName "" ""

"" ""]]]’)

First member creation

using server and node

for template:

AdminTask.create

ClusterMember

(’[-clusterName

cluster1 -memberConfig

[[node1 member1 "" ""

true false]]

-firstMember [[""

node1 server1 ""

""]]]’)

Second member creation:

AdminTask.create

ClusterMember

(’[-clusterName

cluster1 -memberConfig

[[node1 member2 "" ""

true false]]]’)

434 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

memberNode

The name of

the node

where the new

cluster

member will

be created.

This parameter

is required.

memberWeight

The weight of

the new

cluster

member. This

controls the

amount of

work directed

to the

application

server. If the

weight is

greater than

the weight

assigned to

other cluster

members, the

server will

receive a

larger share of

the workload.

The value is a

number

between 0 and

100. The

default value

is 2.

genUniquePorts

Generates

unique port

numbers for

each HTTP

transport

defined in the

server. The

new server

will not have

HTTP

transports

which conflict

with any other

servers

defined on the

same node.

The value is

true or false.

The default

value is true .

Interactive mode example

usage:

v Using Jacl:

$AdminTask create

ClusterMember

{-interactive}

v Using Jython:

AdminTask.create

ClusterMember

(’[-interactive]’)

Chapter 6. Using scripting (wsadmin) 435

replicatorEntry

Specifies a

replicator

entry for the

new cluster

member will

be created in

the cluster‘s

replication

domain. A

replicator

entry is used

to provide

HTTP session

data

replication.

This command

parameter is

optional. The

value is true

or false which

indicates

whether the

entry will be

created. The

default value

is false. You

can specify

this parameter

only if a

replication

domain has

been created

for the cluster.

436 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

v Parameters for

step two:

-firstMember

Specifies

additional

information

necessary to

create the

first cluster

member.

This

command

step is

required

when

creating the

first

member of

the cluster,

and is

executable

only when

creating the

first

member of

the cluster.

The target

of this

command

step is a

Boolean

value

indicating

whether or

not to

perform this

step.

Chapter 6. Using scripting (wsadmin) 437

The default value

is true if any of the

step parameters

are specified;

otherwise the

default value is

false. The

following

parameters can be

specified for this

step:

templateName

The name of

an application

server

template to

use when

creating the

new cluster

member. If

you specify a

template, you

cannot specify

the

templateServerNode

and

templateServerName

parameters to

use an existing

application

server as a

template. You

are required to

specify either

the

templateName

parameter, or

the

templateServerNode

and

templateServerName

parameters in

this step.

438 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

templateServerNode

The name of

the node with

an existing

application

server to use

as the

template when

creating the

new cluster

member. If

you specify

the

templateServerNode

parameter, you

must also

specify the

templateServerName

parameter, and

you cannot

specify the

templateName

parameter. You

are required to

specify either

the

templateName

parameter, or

the

templateServerNode

and

templateServerName

parameters, in

this step.

Chapter 6. Using scripting (wsadmin) 439

templateServerName

The name of

the existing

application

server to use

as the model

when creating

the new

cluster

member. If

you specify

the

templateServerName

parameter, you

must also

specify the

templateServerNode

parameter, and

you cannot

specify the

templateName

parameter. You

are required to

specify either

the

templateName

parameter, or

the

templateServerNode

and

templateServerName

parameters, in

this command

step.

440 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

nodeGroup

The name of

the node

group which

this cluster

member‘s

node, and all

future cluster

members‘

nodes, must

belong to. All

cluster

members must

reside on

nodes in the

same node

group. This

parameter is

optional. If

specified, it

must be one of

the node

groups which

this member‘s

node belongs

to. If not

specified, the

default value

will be the

first node

group listed

for this

member‘s

node.

Chapter 6. Using scripting (wsadmin) 441

coreGroup

The name of

the core group

this cluster

member, and

all future

cluster

members,

must belong

to. All cluster

members must

belong to the

same core

group. This

parameter is

optional. If not

specified, the

default value

is the default

core group

defined in the

cell.

v Returns:

ObjectName of

cluster member

created.

create

Core

Group

Core

Group

Manag

ement

group

The

create

Core

Group

command

creates a

new core

group.

The core

group

that you

create

will

contain

no

members.

None v Parameters:

-

coreGroupName

The name of

the core

group that

you are

creating.

(String

required)

v Returns: None

Batch mode example

usage:

v Using Jacl:

$AdminTask createCore

Group {-coreGroupName

MyCoreGroup}

v Using Jython:

AdminTask.createCore

Group(’[-coreGroup

Name MyCoreGroup

]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask createCore

Group {-interactive}

v Using Jython:

AdminTask.createCore

Group (’[-interactive

]’)

442 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

create

Core

Group

Access

Point

Core

Group

Bridge

Manage

ment

group

The

create

Core

Group

Access

Point

command

creates a

default

core

group

access

point for

the core

group

that you

specify

and adds

it to the

default

access

point

group. If

the

default

access

point

group

does not

exist, the

command

creates a

default

access

point

group.

Core

group

bridge

settings

object for

the cell.

(ObjectName,

required).

v Parameters:

-

coreGroupName

The name of

the core

group for

which the

core group

access point

will be

created.

(String

required)

v Returns: None

Batch mode example

usage:

v Using Jacl:

$AdminTask createCore

GroupAccessPoint

(cells/rohitbuild

Cell01|coregroup

bridge.xml#CoreGroup

BridgeSettings_1)

"-coreGroupName

DefaultCoreGroup"

v Using Jython:

AdminTask.createCore

GroupAccessPoint

(’cells/rohitbuild

Cell01|coregroup

bridge.xml#CoreGroup

BridgeSettings_1’,

’[-coreGroupName

DefaultCoreGroup]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask createCore

GroupAccessPoint

{-interactive}

v Using Jython:

AdminTask.createCore

GroupAccessPoint

(’[-interactive]’)

create

Default

CGAP

Interactive mode example

usage:

v Using Jacl:

$AdminTask create

DefaultCGAP

{-interactive}

v Using Jython:

AdminTask.create

DefaultCGAP

(’[-interactive]’)

Chapter 6. Using scripting (wsadmin) 443

create

Generic

Server

Server

Manage

ment

group

Step:

Config

ProcDef

Use the

create

Generic

Server

command

to create

a new

generic

server in

the

configuration.

A generic

server is

a server

that the

WebSphere

Application

Server

manages

but did

not

supply.

The

create

Generic

Server

command

provides

an

additional

step,

ConfigProcDef,

that you

can use

to

configure

the

parameters

that are

specific

to generic

servers.

None v Parameters:

- name

The name of

the server

that you

want to

create.

- templateName

Picks up a

server

template.

This step

provides a

list of

application

server

templates

for the node

and server

type. The

default

value is the

default

templates

for the

server type.

(String,

optional)

-

genUniquePorts

The port for

the server.

-

templateLocation

The location

of the server

template.

- startCommand

Indicates the

path to the

command

that will run

when this

generic

server is

started.

(String,

optional)

Batch mode example

usage:

v Using Jacl:

$AdminTask create

GenericServer

jim667BaseNode {-name

jgeneric -ConfigProc

Def {{"/usr/bin/my

StartCommand" "arg1

arg2" "" "" "/tmp/

workingDirectory"

 "/tmp/stopCommand"

"argy argz"}}}

v Using Jython:

AdminTask.create

GenericServer(jim667

BaseNode, ’[-name

jgeneric -ConfigProc

Def [[/usr/bin/myStart

Command "arg1 arg2"

"" "" /tmp/working

Directory /tmp/Stop

Command "argy argz

"]]]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask create

GenericServer

{-interactive}

v Using Jython:

AdminTask.create

GenericServer

(’[-interactive]’)

444 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

-

startCommandArgs

 Indicates the

arguments to

pass to the

startCommand

when the

generic server

is started.

(String,

optional)

-

executableTargetKind

Specifies

whether a Java

class name

(use

JAVA_CLASS) or

the name of an

executable JAR

file (use

EXECUTABLE_JAR)

will be used as

the executable

target for this

process. This

field should be

left blank for

binary

executables.

This parameter

is only

applicable for

Java processes.

(String

optional)

- executableTarget

Specifies the

name of the

executable

target (a Java

class

containing a

main() method

or the name of

an executable

JAR),

depending on

the executable

target type.

This field

should be left

blank for

binary

executables.

This parameter

is only

applicable for

Java processes.

(String,

optional)

Chapter 6. Using scripting (wsadmin) 445

-

workingDirectory

Specifies the

working

directory for

the generic

server.

- stopCommand

Indicates the

path to the

command that

will run when

this generic

server is

stopped.

(String,

optional)

-

stopCommandArgs

Indicates the

arguments to

pass to the

stopCommand

parameter

when the

generic server

is stopped.

(String,

optional)

v Returns: null

create

Generic

Server

Template

Interactive mode example

usage:

v Using Jacl:

$AdminTask create

GenericServerTemplate

{-interactive}

v Using Jython:

AdminTask.create

GenericServerTemplate

(’[-interactive]’)

446 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

create

J2CAct

ivation

Spec

JCA

manage

ment

group

Use the

create

J2C

Activation

Spec

command

to create

a Java 2

Connector

(J2C)

activation

specification

under a

J2C

resource

adapter

and

attributes

that you

specify.

Use the

messageListenerType

parameter

to

indicate

the

activation

specification

that is

defined

for the

J2C

resource

adapter.

J2C

Resource

Adapter

_object_ID

v Parameters:

-

messageListenerType

Identifies

the

activation

specification

for the J2C

activation

specification

to be

created. Use

this

parameter

to identify

the

activation

specification

template for

the J2C

resource

adapter that

you specify.

- name

Indicates the

name of the

J2C

activation

specification

that you are

creating.

- jndiName

Indicates the

name of the

Java

Naming and

Directory

Interface

(JNDI).

-

destinationJndiName

Indicates the

name of the

Java

Naming and

Directory

Interface

(JNDI) of

corresponding

destination.

Batch mode example

usage:

v Using Jacl:

$AdminTask createJ2C

ActivationSpec $ra

{-name J2CActSpec

-jndiName eis/ActSpec1

-messageListenerType

javax.jms.Message

Listener }

v Using Jython:

AdminTask.createJ2C

ActivationSpec(ra,

’[-name J2CActSpec

-jndiName eis/ActSpec1

-messageListenerType

javax.jms.Message

Listener]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask createJ2C

ActivationSpec

{-interactive}

v Using Jython:

AdminTask.createJ2C

ActivationSpec

(’[-interactive]’)

Chapter 6. Using scripting (wsadmin) 447

-

authenticationAlias

 Indicates the

authentication

alias of the

J2C activation

specification

that you are

creating.

- description

Description of

the created

J2C activation

spec.

v Returns:

J2CActivationSpec

object ID

448 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

create

J2C

Admin

Object

JCA

manage

ment

group

Use the

create

J2C

Admin

Object

command

to create

a

administrative

object

under a

resource

adapter

with

attributes

that you

specify.

Use the

administrative

object

interface

to

indicate

the

administrative

object

defined

in the

resource

adapter.

J2CResource

Adapter_

object_ID

v Parameters:

-adminObject

Interface

Specifies the

administrative

object

interface to

identify the

administrative

object for

the resource

adapter that

you specify.

This

parameter is

required.

-name

Indicates the

name of the

administrative

object.

-jndiName

Specifies the

name of the

Java

Naming and

Directory

Interface

(JNDI).

-description

Description

of the

created J2C

admin

object.

v Returns:

J2CAdminObject

object ID

Batch mode example

usage:

v Using Jacl:

$AdminTask createJ2C

AdminObject $ra

{-adminObjectInterface

fvt.adapter.message.

FVTMessageProvider

-name J2CA01

-jndiName

eis/J2CA01}

v Using Jython:

AdminTask.createJ2C

AdminObject(ra,

’[-adminObjectInter

face fvt.adapter.

message.FVTMessage

Provider -name

J2CA01 -jndiName

eis/J2CA01]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask createJ2C

AdminObject

{-interactive}

v Using Jython:

AdminTask.createJ2C

AdminObject

(’[-interactive]’)

Chapter 6. Using scripting (wsadmin) 449

createJ2C

Conne

ction

Factory

JCA

manag

ement

group

Use the

create

J2C

Conne

ction

Factory

command

to create

a Java 2

connection

factory

under a

Java 2

resource

adapter

and

attributes

that you

specify.

Use the

connection

factory

interfaces

to

indicate

the

connection

definitions

defined

for the

Java 2

resource

adapter.

J2C

Connection

Factory_

object_ID

v Parameters:

-connectionFactory

Interface

Identifies

the

connection

definition

for the Java

2 resource

adapter that

you specify.

This

parameter is

required.

-name

Indicates the

name of the

connection

factory.

-jndiName

Indicates the

name of the

Java

Naming and

Directory

Interface

(JNDI).

-description

Description

of the

created J2C

connection

factory.

v Returns: J2C

connectionfactory

object ID.

Batch mode example

usage:

v Using Jacl:

$AdminTask createJ2C

ConnectionFactory $ra

{-connectionFactory

Interfaces javax.

sql.DataSource

-name J2CCF1

-jndiName

eis/J2CCF1}

v Using Jython:

AdminTask.createJ2C

ConnectionFactory

(ra, ’[-connection

FactoryInterfaces

javax.sql.Data

Source -name

J2CCF1 -jndiName

eis/J2CCF1]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask createJ2C

ConnectionFactory

{-interactive}

v Using Jython:

AdminTask.createJ2C

ConnectionFactory

(’[-interactive]’)

450 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

create

Node

Group

Node

Group

Comma

nds

group

The

create

Node

Group

command

creates a

new

node

group. A

node

group

consists

of a

group of

nodes

which are

referred

to as

node

group

members.

Optionally,

you can

create a

short

name

and

description

for the

new

node

group.

The node

group

name to

be

created.

This

target

object is

required.

v Parameters:

- shortName

The short

name of the

node group.

This

parameter is

optional.

- description

The

description

of the node

group. This

parameter is

optional.

v Returns: Node

group object ID

Batch mode example

usage:

v Using Jacl:

$AdminTask createNode

Group WBINodeGroup

v Using Jython:

AdminTask.createNode

Group(’WBINodeGroup’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask createNode

Group {-interactive}

v Using Jython:

AdminTask.createNode

Group

(’[-interactive]’)

Chapter 6. Using scripting (wsadmin) 451

create

Node

Group

Property

Node

Group

Comm

ands

group

The

create

Node

Group

Property

command

creates

custom

properties

for a

node

group.

The

name of

the node

group.

This

target

object is

required.

v Parameters:

- name

The name of

the custom

property to

create. This

parameter is

required.

- value

The value of

the custom

property.

This

parameter is

optional.

- description

The

description

of the

custom

property.

This

parameter is

optional.

v Returns:

Properties object

ID

Batch mode example

usage:

v Using Jacl:

$AdminTask createNode

GroupProperty WBINode

Group {-name Channel

-value

"channel1"}

v Using Jython:

AdminTask.createNode

GroupProperty(’WBI

NodeGroup’, ’[-name

Channel -value

channel1]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask createNode

GroupProperty

{-interactive}

v Using Jython:

AdminTask.createNode

GroupProperty

(’[-interactive]’)

452 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

create

SIB

Destin

ation

SIB

Admin

Comm

ands

Use this

command

to create

a SIB

destination.

None v Parameters:

bus

name of the

bus where

this

destination

is to be

configured

(String,

required)

name

destination

name

(String,

required)

type

The

destination

type. Valid

value

include:

Queue,

TopicSpace,

WebService

or Port. If

the type is

not

TopicSpace,

you must

use the

node/server

or cluster

option to

specify a

bus

member.

(String,

required)

cluster

to assign the

destination

to a cluster,

supply

cluster

name, but

not node

and server

name.

(optional)

node

to assign the

destination

to a server,

supply node

name server

name, but

not cluster

name.

(optional)

Batch mode example

usage:

v Using Jacl:

$AdminTask createSIB

Destination {-bus

busname -name

destname -type

TopicSpace}

v Using Jython:

AdminTask.createSIB

Destination(’[-bus

busname -name

destname -type

TopicSpace]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask createSIB

Destination

{-interactive}

v Using Jython:

AdminTask.createSIB

Destination

(’[-interactive]’)

Chapter 6. Using scripting (wsadmin) 453

server

to assign the

destination to

a server,

supply node

name server

name, but not

cluster name.

(optional)

aliasBus

if this is an

alias

destination,

the source bus

name of alias

mapping.

(optional)

targetBus

if this is an

alias

destination,

the name of

the bus that

the destination

it maps to is

configured on.

(optional)

targetName

if this is an

alias

destination,

the name of

the destination

it maps to.

(optional)

foreignBus

if this is a

foreign

destination,

the name of

the foreign

bus. (optional)

454 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

description

description.

(optional)

reliability

the reliability

quality of

service for

message flows

through this

destination,

from

BEST_EFFORT_NON-PERSISTENT

to

ASSURED_PERSISTENT,

in order of

increasing

reliability.

Higher levels

of reliability

have higher

impacts on the

performance.

(optional)

maxReliability

the maximum

reliability

quality of

service that is

accepted for

values

specified by

producers.

(optional)

overrideOfQOSByProducerAllowed

controls the

quality of

service for

message flows

between

producers and

the

destination.

Select this

option to use

the quality of

service

specified by

producers

instead of the

quality

defined for the

destination.

(optional)

Chapter 6. Using scripting (wsadmin) 455

defaultPriority

the default

priority for

message flows

through this

destination, in

the range 0

(lowest)

through 9

(highest). This

default

priority is

used for

messages that

do not contain

a priority

value (Integer,

optional).

(optional)

maxFailedDeliveries

the maximum

number of

times that

service tries to

deliver a

message to the

destination

before

forwarding it

to the

exception

destination

(Integer,

optional).

(optional)

exceptionDestination

the name of

another

destination to

which the

system sends a

message that

cannot be

delivered to

this

destination

within the

specified

maximum

number of

failed

deliveries.

(optional)

456 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

sendAllowed

clear this

option (setting

it to false) to

stop producers

from being

able to send

messages to

this

destination.

(optional)

receiveAllowed

clear this

option (setting

it to false) to

prevent

consumers

from being

able to receive

messages from

this

destination.

(optional)

quiesceMode

select this

option (setting

it to true) to

indicate that

the destination

is quiescing. In

quiesce mode,

new messages

for the

destination

cannot be

added to the

bus, but any

messages

already in the

bus can still be

sent to, and

processed by,

the destination

(Boolean,

optional,

default=False).

(optional)

receiveExclusive

select this

option (setting

it to true) to

allow only one

consumer to

attach to a

destination

(Boolean,

optional,

default=False).

(optional)

Chapter 6. Using scripting (wsadmin) 457

topicAccessCheckRequired

topic access

check required

(Boolean,

optional)

replyDestination

clear this

option (setting

it to false) to

stop producers

from being

able to send

messages to

this

destination.

(optional)

replyDestinationBus

clear this

option (setting

it to false) to

prevent

consumers

from being

able to receive

messages from

this

destination.

(optional)

delegateAuthorizationCheckToTarget

 indicates

whether the

authorization

check should

be delegated

to the alias or

target

destination

(Boolean,

optional)

v Parameters for

step one:

defaultForwardRoutingPath

the default

forward

routing

path.

bus

bus name

destination

destination

name

v Returns: A new

SIB destination.

458 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

create

SIB

Engine

SIBAd

min

Comm

ands

Use the

create

SIB

Engine

command

to create

a new

messaging

engine

for a bus

member.

None v Parameters:

bus

name of the

bus to

which the

messaging

engine is to

belong

(String,

optional)

node

to create a

messaging

engine on a

server,

supply node

and server

name, but

not cluster

name

(String,

optional)

server

to create a

messaging

engine on a

server,

supply node

and server

name, but

not cluster

name

(String,

optional)

cluster

to create a

messaging

engine on a

cluster,

supply

cluster

name, but

not node

and server

name

(String,

optional)

description

description

of the

messaging

engine

(String,

optional)

Batch mode example

usage:

v Using Jacl:

$AdminTask createSIB

Engine {-bus

busname -node

nodeName -server

severname}

v Using Jython:

AdminTask.createSIB

Engine(’[-bus

busname -node

nodeName -server

severname]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask createSIB

Engine {-interactive}

v Using Jython:

AdminTask.createSIB

Engine

(’[-interactive]’)

Chapter 6. Using scripting (wsadmin) 459

initialState

Indicates if the

messaging

engine is

started or

stopped when

the associated

application

server starts.

Until started,

the messaging

engine is

unavailable.

Valid values

are Stopped

and Started.

(String,

optional)

destinationHighMsgs

the maximum

total number

of messages

that the

messaging

engine can

place on its

message

points (Long,

optional)

createDefaultDatasource

Set to true if a

default data

source should

be created

when the

messaging

engine is

created

(Boolean,

optional)

datasourceJndiName

JNDI name of

the data

source to be

referenced

from the

datastore

created when

the messaging

engine is

created

(String,

optional)

v Returns: A new

SIB messaging

engine.

460 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

create

SIB JMS

Activation

Spec

SIB JMS

Admin

Comm

ands

Use the

create

SIB JMS

Activation

Spec

command

to create

a SIB

JMS

activation

specific

ation.

Scope of

the SIB

JMS

resource

adapter

to which

the

activation

specification

will be

added.

v Parameters:

name

name of

new

activation

specification

(String,

required)

jndiName

JNDI name

of the

activation

specification

(String,

required)

destination

JndiName

JNDI name

of a

destination

(String,

required)

description

a JMS

activation

specification

is used by

the default

messaging

provider to

validate the

activation-
configuration

properties

for a JMS

message-
driven bean

(MDB)

(String,

optional)

acknowledgeMode

 how the

session

acknowledges

any

messages it

receives

(String,

optional)

Batch mode example

usage:

v Using Jacl:

$AdminTask createSIB

JMSActivationSpec $ra

{-name specname

-jndiName

specname}

v Using Jython:

AdminTask.createSIB

JMSActivationSpec

(ra, ’[-name

specname

-jndiName

specname]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask createSIB

JMSActivationSpec

{-interactive}

v Using Jython:

AdminTask.createSIB

JMSActivationSpec

(’[-interactive]’)

Chapter 6. Using scripting (wsadmin) 461

authenticationAlias

authentication

alias (String,

optional)

busName

name of the

SIB bus to

connect to

(String,

required)

clientId

client

identifier.

Required for

durable topic

subscriptions

(String,

optional)

destinationType

Indicates if the

message-
driven bean

uses a queue

or topic

destination.

(String,

optional)

durableSubscriptionHome

The name of

the durable

subscription

home. This

identifies the

messaging

engine where

all durable

subscriptions

accessed

through this

activation

specification

are managed

(String,

optional)

462 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

maxBatchSize

the maximum

number of

messages

received from

the messaging

engine in a

single batch

(Integer,

optional)

maxConcurrency

the maximum

number of

endpoints to

which

messages are

delivered

concurrently

(Integer,

optional)

messageSelector

the JMS

message

selector used

to determine

which

messages the

message-
driven bean

(MDB)

receives

(String,

optional)

password

password

(String,

optional)

subscriptionDurability

whether a JMS

topic

subscription is

durable or

nondurable

(String,

optional)

Chapter 6. Using scripting (wsadmin) 463

subscriptionName

the

subscription

name needed

for durable

topic

subscriptions

(String,

optional)

shareDurableSubscriptions

used to control

how durable

subscriptions

are shared

(String,

optional,

default =

AsCluster)

userName

user name

(String,

optional)

v Returns: A new

SIB JMS

activation

specification.

464 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

create

SIB JMS

Conne

ction

Factory

SIB JMS

Admin

Comm

ands

Use the

create

SIB JMS

Connection

Factory

command

to create

a generic,

queue or

topic SIB

JMS

connection

factory.

Scope of

the SIB

JMS

resource

adapter

to which

the SIB

JMS

connection

factory

will be

added.

v Parameters:

name

The name of

the SIB JMS

connection

factory

(String,

required)

jndiName

the JNDI

name of the

SIB JMS

connection

factory

(String,

required)

type

The type of

connection

factory to

create. To

create a

queue

connection

factory, set

the value to

Queue. To

create a

topic

connection

factory, set

to Topic. To

create a

generic

connection

factory, do

not set a

value.

(String,

optional)

authDataAlias

Specifies a

user ID and

password to

be used to

authenticate

connections

to the JMS

provider for

application-
managed

authentication

(String,

optional)

Batch mode example

usage:

v Using Jacl:

$AdminTask createSIB

JMSConnectionFactory

$ra {-name connec

tionfactory_name

-jndiName jndi_

name}

v Using Jython:

AdminTask.createSIB

JMSConnectionFactory

(ra, ’[-name

connectionfactory

_name -jndiName

jndi_name]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask createSIB

JMSConnectionFactory

{-interactive}

v Using Jython:

AdminTask.createSIB

JMSConnectionFactory

(’[-interactive]’)

Chapter 6. Using scripting (wsadmin) 465

category

classifies or

groups the

connection

factory (String,

optional)

description

description of

the connection

factory (String,

optional)

logMissingTransactionContext

whether or not

the container

logs that there

is a missing

transaction

context when

a connection is

obtained

(Boolean,

optional,

default =

False)

manageCachedHandles

Indicates if

cached

handles

(handles held

in instance

variables in a

bean) should

be tracked by

the container

(Boolean,

optional,

default =

False)

466 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

xaRecoveryAuthAlias

the

authentication

alias used

during XA

recovery

processing

(String,

optional)

busName

the SIB bus

name (String,

optional)

clientID

user-defined

string, only

required for

durable

subscriptions

(String,

optional)

userName

The user name

that is used to

create

connections

from the

connection

factory (String,

optional)

password

the password

that is used to

create

connections

from the

connection

factory (String,

optional)

Chapter 6. Using scripting (wsadmin) 467

nonPersistentMapping

non-persistent

mapping

value. Valid

values include:

BestEffortNonPersistent,

ExpressNonPersistent,

ReliableNonPersistent,

ReliablePersistent,

AssuredPersistent,

AsSIBDestination

and None

(String,

optional)

persistentMapping

persistent

mapping

value. Valid

values include:

BestEffortNonPersistent,

ExpressNonPersistent,

ReliableNonPersistent,

ReliablePersistent,

AssuredPersistent,

AsSIBDestination

and None

(String,

optional)

468 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

durableSubscriptionHome

durable

subscription

home value

(String,

optional)

readAhead

read-ahead

value. Valid

values include:

Default,

AlwaysOn and

AlwaysOff

(String,

optional)

target

the name of a

target that

resolves to a

group of

messaging

engines

(String,

optional)

targetType

specifies the

type of the

name in the

target

parameter.

Valid values

are BusMember,

Custom and ME

(String,

optional)

targetSignificance

this property

specifies the

significance of

the target

group (String,

optional)

Chapter 6. Using scripting (wsadmin) 469

remoteProtocol

the name of

the protocol

that should be

used to

connect to a

remote

messaging

engine (String,

optional)

providerEndPoints

A list of

endpoint

triplets

seperated by

commas, for

example:

host:port:chain

(String,

optional)

connectionProximity

the proximity

of acceptable

messaging

engines. Valid

values include:

Bus, Host,

Cluster and

Server (String,

optional)

tempQueueNamePrefix

 temporary

queue name

prefix (String,

optional)

tempTopicNamePrefix

temporary

topic name

prefix (String,

optional)

470 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

shareDataSourceWithCMP

used to control

how data

sources are

shared

(Boolean,

optional)

shareDurableSubscriptions

used to control

how durable

subscriptions

are shared.

Legal values

are

″AsCluster″,

″AlwaysShared″

and

″NeverShared″

(String,

optional,

default =

AsCluster)

v Returns: A new

SIB JMS

connection

factory.

Chapter 6. Using scripting (wsadmin) 471

create

SIB JMS

Queue

SIB JMS

AdminCommands

Use the

create

SIB JMS

Queue

command

to create

a SIB

JMS

queue.

Scope of

the SIB

JMS

resource

adapter

to which

the SIB

JMS

queue

will be

added.

v Parameters:

name

The name of

the SIB JMS

queue.

(String,

required)

jndiName

The JNDI

name of the

SIB JMS

queue.

(String,

required)

description

A

description

of the SIB

JMS queue

(String,

optional)

queueName

The name of

the

underlying

SIB queue

to which the

queue

points

(String,

required)

deliveryMode

The delivery

mode for

messages.

Legal values

are

″Application″,

″NonPersistent″

and

″Persistent″

(String,

optional)

Batch mode example

usage:

v Using Jacl:

$AdminTask createSIB

JMSQueue $ra {-name

queue_name

-jndiName

jndi_name

-queueName queue_

name}

v Using Jython:

AdminTask.createSIB

JMSQueue(ra, ’[-name

queue_name

-jndiName jndi_

name -queueName

queue_name]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask createSIB

JMSQueue

{-interactive}

v Using Jython:

AdminTask.createSIB

JMSQueue

(’[-interactive]’)

472 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

timeToLive

the time in

milliseconds to

be used for

message

expiration

(Long,

optional)

priority

the priority for

messages.

Whole number

in the range 0

to 9 (Integer,

optional)

readAhead

read-ahead

value. Legal

values are

″AsConnection″,

″AlwaysOn″

and

″AlwaysOff″

(String,

optional)

busName

the name of

the bus on

which the

queue resides

(String,

optional)

v Returns: A new

SIB JMS queue.

Chapter 6. Using scripting (wsadmin) 473

create

SIB JMS

Topic

SIB JMS

Admin

Comm

ands

Use this

command

to create

a SIB

JMS

topic.

Scope of

the SIB

JMS

resource

adapter

to which

the SIB

JMS topic

will be

added.

v Parameters:

name

The name of

the SIB JMS

topic

(String,

required)

jndiName

the SIB JMS

topic’s JNDI

name

(String,

required)

description

a

description

of the SIB

JMS queue

(String,

optional)

topicSpace

the name of

the

underlying

SIB topic

space to

which the

topic points

(String,

required)

*topicName

the topic to

be used

inside the

topic space

(for

example,

stock/IBM)

(String,

required)

Batch mode example

usage:

v Using Jacl:

$AdminTask createSIB

JMSTopic $ra {-name

topic_name

-jndiName jndi_

name -topicName

topic_name

-topicSpace

topicspace_name}

v Using Jython:

AdminTask.createSIB

JMSTopic(ra, ’[-name

topic_name

-jndiName jndi_

name -topicName

topic_name

-topicSpace topic

space_name]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask createSIBJ

MSTopic {-interactive}

v Using Jython:

AdminTask.createSIBJ

MSTopic

(’[-interactive]’)

474 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

deliveryMode

the delivery

mode for

messages.

Legal values

are

″Application″,

″NonPersistent″

and

″Persistent″

(String,

optional)

timeToLive

the time in

milliseconds to

be used for

message

expiration

(Long,

optional)

priority

the priority for

messages.

Whole number

in the range 0

to 9 (Integer,

optional)

readAhead

read-ahead

value. Legal

values are

″AsConnection″,

″AlwaysOn″

and

″AlwaysOff″

(String,

optional)

busName

the name of

the bus on

which the

topic resides

(String,

optional)

v Returns: A new

SIB JMS topic.

Chapter 6. Using scripting (wsadmin) 475

create

SIB

Mediation

SIB

Admin

Comm

ands

Use this

command

to create

a SIB

mediation.

None v Parameters:

bus

name of the

bus where

the

mediation is

to be

created

(String,

required)

mediationName

name to be

given to the

mediation

(String,

required)

description

description

of the

mediation

(String,

optional)

handlerListName

name of the

handler list

that was

defined

when the

mediation

was

deployed

(String,

required)

globalTransaction

whether or

not a global

transaction

is started for

each

message

processed

(Boolean,

optional,

default =

False)

Batch mode example

usage:

v Using Jacl:

$AdminTask createSIB

Mediation {-bus

bus_name

-mediationName

mediation_name

-handlerListName

handlerList_name}

v Using Jython:

AdminTask.createSIB

Mediation(’[-bus

bus_name

-mediationName

mediation_name

-handlerListName

handlerList_name

]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask createSIB

Mediation

{-interactive}

v Using Jython:

AdminTask.createSIB

Mediation

(’[-interactive]’)

476 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

allowConcurrentMediation

whether or not

to apply the

mediation to

multiple

messages

concurrently,

and preserve

message

ordering

(Boolean,

optional,

default =

False)

selector

the text string

that must be

present in a

message for

the mediation

to process the

message

(String,

optional)

discriminator

the text string

that must not

be present in a

message for

the mediation

to process the

message

(String,

optional)

v Returns: A new

SIB mediation.

Chapter 6. Using scripting (wsadmin) 477

create

SIBWS

Endpoint

Listener

SIB Web

Services

group

The

create

SIB WS

Endpoint

Listener

command

creates

an end

point

listener

object

with no

SIBWS

bus

connection

property

objects.

Object

name of

the

server

where

the end

point

listener

will be

created.

v Parameters:

name

The name of

the end

point

listener

within the

server.

(required)

urlRoot

The root of

the end

point

address

URL for

Web

services that

you access

through the

end point

listener.

(required)

wsdlUrlRoot

The root of

the HTTP

URL where

you can

retrieve the

WSDL

associated

with this

end point

listener.

(required)

v Returns: The

SIBWS end point

object.

Batch mode example

usage:

v Using Jacl:

set epl [$AdminTask

createSIBWSEndpoint

Listener $server

{-name "soaphttp1

" -urlRoot "http://

myserver.com/wsgwsoap

http1" -wsdlUrlRoot

"http://myserver.

com/wsgwsoaphttp1"}]

v Using Jython:

epl = AdminTask.create

SIBWSEndpointListener

(server, ’[-name

soaphttp1

-urlRoot http://my

server.com/wsgwsoapht

tp1 -wsdlUrlRoot

http://myserver.com

/wsgwsoaphttp1]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask createSIBW

SEndpointListener

{-interactive}

v Using Jython:

AdminTask.createSIBW

SEndpointListener

(’[-interactive]’)

478 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

create

SIBWS

Inbound

Service

SIB Web

Services

group

The

create

SIBWS

Inbound

Service

command

creates a

new

inbound

service

object

that

represents

a

protocol

attachment

that

service

requesters

will use.

If you

specify

the

UDDIReference

option,

the

wsdlLocation

option is

assumed

to be a

UDDI

service

key in

the

following

format

where

each n is

a hex

digit:

nnnnnn

nnnnnn

-nnnn-

nnnn-nn

nn-nnn

nnnnn.

The

object

name of

the

messaging

bus

within

which

the

service

will be

created.

v Parameters:

name

The

administrative

name of the

inbound

service.

(required)

destination

The name of

the

underlying

WPM

destination.

(required)

wsdlLocation

The location

of the

template

WSDL. The

value of this

parameter

can be a

URL or a

UDDI

service key

(UUID).

(required)

wsdlServiceName

The name of

the service

in the

WSDL. You

must specify

this

parameter

or the

wsdlServiceNamespace

parameter.

(conditional)

wsdlServiceNamespace

The

namespace

of the

service in

the WSDL.

You must

specify this

parameter

or the

wsdlServiceName

parameter.

(conditional)

Batch mode example

usage:

v Using Jacl:

set inService [$Admin

Task createSIBWSIn

boundService $bus

{-name "MyServi

ce" -destination

$destName -wsdlLoca

tion "http://myse

rver.com/MyService.

wsdl"}]

v Using Jython:

inService = AdminTask

.createSIBWSInbound

Service(bus, ’[-name

MyService -dest

ination destName

-wsdlLocation

http://myserver.com

/MyService.wsdl]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask createSIBW

SInboundService

{-interactive}

v Using Jython:

AdminTask.createSIBWS

InboundService

(’[-interactive]’)

Chapter 6. Using scripting (wsadmin) 479

uddiReference

The reference

of the UDDI

registry for the

WSDL.

(optional)

userId

The user ID to

use to retrieve

the WSDL.

(optional)

password

The password

to use to

retrieve the

WSDL.

(optional)

v Returns: The

object name of

the created

inbound service

object.

480 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

create

SIBWS

Outbound

Service

SIBWeb

Services

group

The

create

SIBWS

Outbound

Service

command

creates a

new

outbound

service

object

that

represents

a

protocol

attachment

to a

service

provider.

This

command

requires

the

identification

of a

single

service

element

within a

WSDL

document.

The

object

name of

the

messaging

bus

within

which

the

service is

created.

v Parameters:

name

The

administrative

name of the

outbound

service.

(required)

wsdlLocation

The location

of the

WSDL of

the service

provider. It

can be a

URL or a

UDDI

service key

(UUID).

(required)

wsdlServiceName

The name of

the service

in the

WSDL. You

must specify

the

wsdlServiceName

parameter

or the

wsdlServiceNamespsace

parameter.

(conditional)

wsdlServiceNamespace

The

namespace

of the

service in

the WSDL.

You must

specify the

wsdlServiceName

parameter

or the

wsdlServiceNamespsace

parameter.

(conditional)

Batch mode example

usage:

v Using Jacl:

set outService [$Admin

Task createSIBWSOut

boundService $bus

{-name "MyServi

ce" -wsdlLocation

"http://myserver.co

m/MyService.wsdl"}]

v Using Jython:

outService = Admin

Task.createSIBWSOut

boundService(bus,

’[-name MyServi

ce -wsdlLocation

http://myserver.co

m/MyService.wsdl]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask createSIBW

SOutboundService

{-interactive}

v Using Jython:

AdminTask.createSIBW

SOutboundService

(’[-interactive]’)

Chapter 6. Using scripting (wsadmin) 481

uddiReference

The reference

of the UDDI

registry for the

WSDL.

(optional)

destination

The name of

the service

destination.

(optional)

userId

The user ID to

use to retrieve

the WSDL.

(optional)

password

The password

to use to

retrieve the

WSDL.

(optional)

v Returns: The

object name of

the outbound

service object

that was created.

482 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

create

SIBus

SIB

Admin

Comm

ands

Use this

command

to create

a new

bus on

the

current

node.

None v Parameters:

bus

name of bus

to create,

which must

be unique in

the cell

(String,

required)

description

descriptive

information

about the

bus (String,

required)

secure

enable or

disable bus

security

(Boolean,

optional,

default =

False)

interEngineAuthAlias

name of the

authentication

alias used to

authorize

communication

between

messaging

engines on

the bus

(String,

optional)

mediationsAuthAlias

name of the

authentication

alias used to

authorize

mediations

to access the

bus (String,

optional)

Batch mode example

usage:

v Using Jacl:

$AdminTask createSIBus

{-bus busname

-description text

-secure True -mediat

ionsAuthAlias name

-protocol protocol

-discardOnDelete

False}

v Using Jython:

AdminTask.createSIBus

(’[-bus busname

-description "text

" -secure True -media

tionsAuthAlias

name -protocol

protocol -disca

rdOnDelete False]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask createSIBus

{-interactive}

v Using Jython:

AdminTask.createSIBus

(’[-interactive]’)

Chapter 6. Using scripting (wsadmin) 483

protocol

the protocol

used to send

and receive

messages

between

messaging

engines, and

between API

clients and

messaging

engines

(String,

optional)

discardOnDelete

indicate

whether or not

any messages

left in the data

store of a

queue should

be discarded

when the

queue is

deleted

(Boolean,

optional,

default =

False)

destinationHighMsgs

the maximum

number of

messages that

any queue on

the bus can

hold (Long,

optional)

configurationReloadEnabled

indicate

whether

configuration

files should be

dynamically

reloaded for

this bus

(Boolean,

optional,

default = True)

v Returns: A new

SIB bus.

484 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

create

Server

Type

None Use the

create

Server

Type

command

to define

a server

type.

None v Parameters:

-version

(String,

required)

-serverType

(String,

required)

-createTemplate

Command

(String,

required)

-createCommand

(String,

required)

-default

Template Name

The default

value is:

default.

(String,

optional)

-defaultOS

Template Name

The default

value is:

default_zOS.

(String,

optional)

-configValidator

(String,

optional)

v Returns: The

identification of

the server type

that you created,

javax.management.

ObjectName

.

Batch mode example

usage:

v Using Jacl:

$AdminTask createSer

verType {-version

version -server

Type serverType

-createTemplateCom

mand name

-createCommand

name}

v Using Jython:

AdminTask.createServ

erType(’[-version

version -server

Type serverType

-createTemplateCo

mmand name

-createCommand

name]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask createSer

verType {-interactive}

v Using Jython:

AdminTask.createSer

verType (’[-inter

active]’)

Chapter 6. Using scripting (wsadmin) 485

createTCP

EndPoint

None The

createTCP

EndPoint

command

creates a

new

named

end point

you can

associate

with a

TCP

inbound

channel.

Parent

instance

of the

Transport

Channel

Service

that

contains

the TCP

Inbound

Channel.

(ObjectName,

required)

v Parameters:

-name

Name for

the new

NamedEndPoint.

(String,

required)

- host

Host for the

new

NamedEndPoint.

(String,

required)

- port

Port for the

new

NamedEndPoint.

(String,

required)

v Returns: Object

name of the

created

NamedEndPoint.

Batch mode example

usage:

v Using Jacl:

$AdminTask createTCP

EndPoint (cells/rohit

buildCell01/nodes/

rohitbuildCellManag

er01/servers/dmgr|

server.xml#Transpor

tChannelService_1)

{-name Sample_End_

Pt_Name -host

rohitbuild.ralei

gh.ibm.com -port

8978}

v Using Jython:

AdminTask.createTCPEnd

Point(’cells/rohitbui

ldCell01/nodes/rohit

buildCellManager01/

servers/dmgr|server.

xml#TransportChannel

Service_1’, ’[-name

Sample_End_Pt_Name

-host rohitbuild.

raleigh.ibm.com

-port 8978]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask createTCPE

ndPoint {-interactive}

v Using Jython:

AdminTask.createTCPE

ndPoint (’[-interac

tive]’)

486 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

create

Unman

aged

Node

Unman

aged

Node

Comm

ands

group

Use the

create

Unman

aged

Node

command

to create

a new

unmanaged

node in

the

configuration.

An

unmanaged

node is a

node that

does not

have a

node

agent nor

a

deployment

manager.

Unmanaged

nodes

may

contain

Web

servers,

such as

IBM IHS

server.

None v Parameters:

- nodeName

The name

that will

represent

the node in

the

configuration

repository.

(String,

required)

- hostName

The host

name of the

system

associated

with this

node.

(String,

required)

- nodeOperating

System

The

operating

system in

use on the

system

associated

with this

node. Valid

entries

include the

following:

os400, aix,

hpux, linux,

solaris,

windows,

and

os390.(String

required)

v Returns: null

Batch mode example

usage:

v Using Jacl:

$AdminTask createUnma

nagedNode {-nodeName

myNode-hostName myHost

-nodeOperatingSystem

linux}

v Using Jython:

AdminTask.createUnman

agedNode(’[-nodeName

jjNode -hostName

jjHost -nodeOperating

System linux]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask createUnma

nagedNode

{-interactive}

v Using Jython:

AdminTask.createUnma

nagedNode (’[-inte

ractive]’)

Chapter 6. Using scripting (wsadmin) 487

create

WSGW

Gateway

Service

WS

Gateway

group

The

create

WSGW

Gateway

Service

command

creates a

new

Gateway

Service

with

associated

InboundService

and

TargetService

object.

Configuration

of the

InboundPort

and

Outbound

Service/Port

associated

with

these is

done

using

separate

commands.

ObjectName

of the

gateway

instance

which

the

gateway

service is

created

v Parameters:

-name

Administrative

name of the

Gateway

Service.

(required)

-wsdlLocation

Location of

the template

WSDL. May

be a URL or

a UDDI

business key

(UUID).

(conditional)

-wsdlServiceName

The name of

the service

in the

WSDL.

(conditional)

-wsdlServiceNamespace

The

namespace

of the

service in

the WSDL.

(conditional)

-targetDestination

The name of

the target

destination.

(conditional)

-targetService

The name of

the target

outbound

service.

(conditional)

Batch mode example

usage:

v Using Jacl:

set gwService [$Admin

Task createWSGWGatew

ayService $wsgw

{-name MyGateway

Service -targetSer

vice MyService}]

v Using Jython:

gwService = AdminTask

.createWSGWGateway

Service(wsgw, ’[-name

MyGatewayService

-targetService

MyService]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask createWSGW

GatewayService

{-interactive}

v Using Jython:

$AdminTask createWSGW

GatewayService

(’[-interactive]’)

488 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

-requestDestination

The name of

the gateway

destination.

(optional)

-replyDestination

The name of

the gateway

reply

destination.

(optional)

-targetBus

The name of

the WPM bus

containing the

target.

(optional)

-uddiReference

The reference

of the UDDI

registry for the

WSDL.

(optional)

-userId

The user id to

use to retrieve

the WSDL.

(optional)

-password

The password

to use to

retrieve the

WSDL.

(optional)

v Returns:

ObjectName of

the created

GatewayService

object

Chapter 6. Using scripting (wsadmin) 489

create

WSGW

Proxy

Service

WS

Gateway

group

The

create

WSGW

Proxy

Service

command

creates a

new

proxy

service

with an

associated

inbound

service,

and a

target

service

object

with an

associated

outbound

service.

Configuration

of the

inbound

port

objects

associated

with the

inbound

service is

done

using

separate

commands.

The

object

name of

the

gateway

instance

within

which

the proxy

service is

created.

v Parameters:

name

The

administrative

name of the

proxy

service.

(required)

node

The node

where the

destinations

will be

localized.

(conditional)

server

The server

where the

destinations

will be

localized.

(conditional)

cluster

Cluster

where the

destinations

will be

localized.

(conditional)

-requestDestination

The name of

the proxy

request

destination.

(optional)

-replyDestination

The name of

the proxy

reply

destination.

(optional)

-wsdlLocation

The location

of the proxy

WSDL

(URL).

(optional)

v Returns: The

object name of

the proxy

service object

that you created.

Batch mode example

usage:

v Using Jacl:

set proxyService

[$AdminTask createWSG

WProxyService $wsgw

{-name MyProxySer

vice -node My

Node -server

server1}]

v Using Jython:

proxyService = Admin

Task.createWSGWProxy

Service(wsgw, ’[-name

MyProxyService

-node MyNode

-server server1

]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask createWSGW

ProxyService

{-interactive}

v Using Jython:

AdminTask.createWSGW

ProxyService

(’[-interactive]’)

490 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

create

Web

Server

Server

Manage

ment

group

Use the

create

Web

Server

command

to create

a Web

server

definition.

This

command

is a two

step

process.

The first

step

creates a

Web

server

definition

using a

template.

The

parameters

of the

second

step

configure

the Web

server

definition

properties.

Web

server

definitions

generate

and

propagate

the

plugin-
config.xml

file for

each Web

server.

For IHS

only, the

Web

server

definitions

allow

you to

administer

and

configure

IHS Web

servers

using the

administrative

console.

None v Parameters for

step one:

nodeName

The name of

the node.

(String,

required)

name

The name of

the server.

(String,

required)

templateName

The name of

the template

that you

want to use.

Templates

include the

following:

IHS,

iPlanet,

IIS, DOMINO,

APACHE. The

default

template is

IHS. (String,

required)

genUniquePorts

Indicates

that you

want to

generate

unique

ports.

(optional)

Batch mode example

usage:

v Using Jacl:

$AdminTask createWeb

Server {-name

web1

-serverConfig {{

webPort

WebserverInstall

Root PluginInsta

llRoot Configura

tion_file_name

Windows_Server_

Name errorLog

Path accessLog

Path WebProto

col}} -remoteServer

Config {{AdminPort

UserID

Password

AdminProtocol}}

v Using Jython:

AdminTask.createWebSe

rver(’[-name web1

-serverConfig [[web

Port Webserver

InstallRoot Plugin

InstallRoot Con

figuration_file_name

Windows_Server_Name

errorLogPath access

LogPath WebProtocol]]

-remoteServerConfig

[[AdminPort UserID

Password AdminProt

ocol]]]’)

where -serverConfig is

second step of the

command.

– WebPort - is the port

for the Webserver

(required for all

webservers)

– WebserverInstallRoot

- is the install path

(directory) for

webserver. necessary

for IHS Admin

Function.

– Plugin Install Root - is

install root where the

plugin for the

webserver is installed.

Necessary for all

webservers.

Chapter 6. Using scripting (wsadmin) 491

These

functions

include

the

following:

Start,

Stop,

View

logs,

View and

Edit

configuration

file.

v Parameters for

step two:

serverConfig

Create the

Web server.

(String,

required)

webPort

The port for

the Web

server.

(String,

required)

configurationFile

The

configuration

file. The

default is

the path

relative to

the

installation

root, for

example,

conf/httpd

.conf.

(String,

optional)

webInstallRoot

The

installation

path for the

Web server.

(String,

required)

pluginInstallRoot

The plug-in

installation

path.

(String,

required)

v Configuration file name

- is the file path for the

IBM HTTP Server. This

is necessary for View

and edit of the IHS

Configuration file only.

v Windows Service Name

- The windows service

name on which IHS is to

be started. This is

necessary for Start and

stop of the IHS

webserver only.

v ErrorLogPath - This is

the path for the IHS

error log (error.log)

v AccessLogPath - This is

the path for the IHS

access log (access.log)

v WebServerProtocol -

HTTP or HTTPS

where -remoteServerConfig

is 3rd step of the command

These parameters are only

necessary if the IHS

webserver is installed on a

machine remote from

WebSphere.

v Admin Server Port -

This is the port for the

ADministration server.

The administration

server is installed on the

same machine as the

IBM HTTP Server. The

admin server handles

admin request to the

IHS webserver.

v UserID - This is the

userID for

authentication, if

authentication is

activated on the

Administration server in

the admin configuration

file (admin.conf).

v Passwd - This is the

password for the

specified authentication

UserID. The password is

generated by htpasswd

utility in the

admin.passwd file.

v Admin ServerProtocol -

HTTP or HTTPS

492 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

serviceName

The service

name. (String,

optional)

errorLogfile

The error log

for viewing.

The default is

the path

relative to the

installation

root, for

example,

logs/error_log.

(String,

optional)

accessLogfile

The access log

for viewing.

The default is

the path

relative to the

installation

root, for

example,

logs/access_log.

(String,

optional)

webProtocol

Parameters for

the IHS

administration

server running

with an

unmanaged or

remote Web

server. Options

include HTTP

or HTTPS. The

default is HTTP.

(String,

required)

Interactive mode example

usage:

v Using Jacl:

$AdminTask createWeb

Server -interactive

v Using Jython:

AdminTask.createWeb

Server (’[-intera

ctive]’)

Chapter 6. Using scripting (wsadmin) 493

adminPort

The port of

the IHS

administrative

server. (String,

required)

adminUserID

The user ID.

This value

should match

the one for

authentication

in the

admin.conf.

(String,

required)

adminPasswrd

The

administrative

password.

(String,

required)

adminProtocol

The

administrative

protocol title.

Options

include HTTP

or HTTPS. The

default is HTTP.

(String,

required)

494 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

v Parameters for

step three:

Parameters for

IHS

administration

server running

with an

unmanaged or

remote Web

server (installed

on machine

different from

WebSphere

Application

Server)

adminPortTitle

(adminPort)

Port of IHS

administration

adminUserIDTitle

(adminUserID)

The user ID.

This value

should

match the

authentication

in the

admin.conf

file.

adminPasswdTitle

(adminPasswd)

password

AdminProtocolTitle

(adminProtocol)

This

parameter is

required.

The value is

either HTTP

or HTTPS.

The default

value is

HTTP.

v Returns: None

Chapter 6. Using scripting (wsadmin) 495

delete

Chain

Channel

Frame

work

Manag

ement

group

The

delete

Chain

command

deletes

an

existing

chain

and,

optionally,

the

transport

channels

in the

chain.

The chain

to be

deleted.

(ObjectName

,required)

v Parameters:

-

deleteChannels

If the value

of this

attribute is

true,

non-shared

transport

channels

used by the

specified

chain will

be deleted.

(Boolean,

optional)

v Returns: None

Batch mode example

usage:

v Using Jacl:

$AdminTask deleteChain

trialChain1(cells/roh

itbuildCell01/nodes/

rohitbuildCellManager

01/servers/dmgr|server

.xml#Chain_109355446

2922)

$AdminTask deleteChain

trialChain(cells/rohit

buildCell01/nodes/rohi

tbuildCellManager01/

servers/dmgr|server.

xml#Chain_1093554378

078) {-deleteChannels

true}

v Using Jython:

 AdminTask.deleteCha

in(’trialChain1(cells

/rohitbuildCell01/nod

es/rohitbuildCellMana

ger01/servers/dmgr|

server.xml#Transport

ChannelService_1)’)

AdminTask.deleteChain

(’trialChain1(cells/

rohitbuildCell01/nod

es/rohitbuildCellMan

ager01/servers/dmgr|

server.xml#Transport

ChannelService_1)’,

’[-deleteChannels

true]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask deleteChain

{-interactive}

v Using Jython:

AdminTask.deleteChain

(’[-interactive]’)

496 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

delete

Cluster

Cluster

Config

Comma

nds

The

delete

Cluster

command

deletes

the

configuration

of a

server

cluster. A

server

cluster

consists

of a

group of

application

servers

which are

referred

to as

cluster

members.

When a

server

cluster is

deleted,

all of its

members

are

deleted.

Use the

delete

Cluster

Member

command

to delete

the

configuration

of an

individual

cluster

member.

cluster

ObjectID

- The

configuration

object ID

of the

cluster to

be

deleted.

If the

cluster‘s

object ID

is not

specified,

then the

cluster

Name

parameter

must be

specified.

The

object

name can

be

obtained

programmatically

via Java

using the

WebSphere

Config

Service

API, or

via

wsadmin

scripting

using the

AdminConfig

command.

v Parameters:

-clusterName

The name of

the cluster

to be

deleted. If

this

parameter is

not

specified,

then the

cluster

object ID

must be

specified in

the

command

target.

v Parameters for

step one:

-replicationDomain

Specifies the

removal of

the

replication

domain for

this cluster.

This

command

step is

optional.

The

following

parameters

can be

specified for

this step:

Batch mode example

usage:

v Using Jacl:

$AdminTask deleteClus

ter { -clusterName

cluster1 }

$AdminTask deleteClu

ster { -clusterName

cluster1 -replicati

onDomain {{true}}}

v Using Jython:

AdminTask.deleteClust

er(’[-clusterName

cluster1]’)

AdminTask.deleteClus

ter(’[-clusterName

cluster1 -replicatio

nDomain [[true]]]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask deleteClus

ter -interactive

v Using Jython:

AdminTask.deleteClus

ter (’[-interactive]’)

Chapter 6. Using scripting (wsadmin) 497

deleteDomain

Deletes the

replication

domain for

this cluster.

This parameter

is optional.

The value is

true or false

which

indicates

whether the

domain will

be deleted.

The default

value is false. .

Deleting the

replication

domain

deletes all

replicator

entries defined

in the domain.

v Returns: None

498 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

delete

Cluster

Member

Cluster

Config

Comm

ands

The

delete

Cluster

Member

command

deletes

the

configuration

of a

cluster

member.

A cluster

member

is an

application

server

that

belongs

to a

server

cluster.

Use the

delete

Cluster

command

to delete

the

configu

ration of

a cluster.

member

ObjectID

- The

configuration

object ID

of the

cluster

member

to be

deleted.

If this is

not

specified,

then the

cluster

Name,

member

Node

and

member

Name

parameters

must be

specified.

The

object

name can

be

obtained

program

matically

via Java

using the

WebSphere

Config

Service

API, or

via

wsadmin

scripting

using the

Admin

Config

command.

v Parameters:

-clusterName

The name of

the cluster

which the

member to

be deleted

belongs to.

If this

parameter is

specified,

then the

memberName

and

memberNode

parameters

must also be

specified. If

this is not

specified,

then the

member

object ID

must be

specified in

the

command

target.

-memberName

The server

name of the

member to

be deleted

from the

cluster. If

this

parameter is

specified,

then the

clusterName

and

memberNode

parameters

must also be

specified. If

this is not

specified,

then the

member

object ID

must be

specified in

the

command

target.

Batch mode example

usage:

v Using Jacl:

$AdminTask deleteClus

terMember {-cluster

Name cluster1 -member

Node node1 -member

Name member1}

$AdminTask deleteClus

terMember {-cluster

Name cluster1 -member

Node node1 -member

Name member2 -rep

licationEntry

{{true}}}

v Using Jython:

AdminTask.deleteClus

terMember(’[-cluster

Name cluster1 -mem

berNode node1 -mem

berName member1]’)

AdminTask.deleteClu

sterMember(’[-cluster

Name cluster1 -member

Node node1 -member

Name member2 -repl

icationEntry

[[true]]]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask deleteClust

erMember -interactive

v Using Jython:

AdminTask.delete

ClusterMember

(’[-interactive]’)

Chapter 6. Using scripting (wsadmin) 499

-memberNode

The name of

the node

having the

cluster

member to be

deleted. If this

parameter is

specified, then

the

memberName

and

clusterName

parameters

must also be

specified. If

this is not

specified, then

the cluster

member object

ID must be

specified in

the command

target.

v Parameters for

step one:

-replicatorEntry

Specifies the

removal of a

replicator

entry for

this cluster

member.

This

command

step is

optional.

The

following

parameters

can be

specified for

this step:

500 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

deleteEntry

Delete the

replicator

entry having

this cluster

member‘s

name from the

cluster‘s

replication

domain. This

parameter is

optional. The

value is true

or false which

indicates

whether to

delete the

replicator

entry. The

default value

is false.

v Returns: None

delete

Core

Group

Core

Group

Manage

ment

group

The

delete

Core

Group

command

deletes

an

existing

core

group.

The core

group

that you

specify

must not

contain

any

members.

You

cannot

delete the

default

core

group.

None v Parameters:

-

coreGroupName

The name of

the existing

core group

that will be

deleted.

(String

required)

v Returns: None

Batch mode example

usage:

v Using Jacl:

$AdminTask deleteCore

Group {-coreGroupName

MyCoreGroup}

v Using Jython:

AdminTask.deleteCore

Group(’[-coreGroup

Name MyCoreGroup

]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask deleteCore

Group {-interactive}

v Using Jython:

AdminTask.deleteCore

Group (’[-interactive

]’)

Chapter 6. Using scripting (wsadmin) 501

delete

Core

Group

Access

Points

Core

Group

Bridge

Manage

ment

group

The

delete

Core

Group

Access

Points

command

deletes

all the

core

group

access

points

associated

with a

group

that you

specify.

Core

group

bridge

settings

object for

the cell.

(ObjectName,

required)

v Parameters:

-

coreGroupName

The name of

the core

group

whose core

group

access

points will

be deleted.

(String

required)

v Returns: None

Batch mode example

usage:

v Using Jacl:

$AdminTask deleteCore

GroupAccessPoints

(cells/rohitbuildCell

01|coregroupbridge.

xml#CoreGroupBridge

Settings_1) "-core

GroupName Default

CoreGroup"

v Using Jython:

AdminTask.deleteCore

GroupAccessPoints(’

(cells/rohitbuildCell

01|coregroupbridge.

xml#CoreGroupBridge

Settings_1)’, ’[-core

GroupName Default

CoreGroup]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask deleteCore

GroupAccessPoints

{-interactive}

v Using Jython:

AdminTask.deleteCore

GroupAccessPoints

(’[-interactive]’)

delete

SIB

Destin

ation

SIB

Admin

Comm

ands

Use the

delete

SIB

Destination

command

to delete

a bus

destination.

This

command

deletes

the

named

destination

of the

named

bus and

deletes

all

related

message

points.

None v Parameters:

bus

name of the

bus on

which the

destination

to be

deleted

exists

(String,

required)

name

name of the

destination

to be

deleted

(String,

required)

v Returns: None

Batch mode example

usage:

v Using Jacl:

$AdminTask deleteSIB

Destination {-bus

busname -name

destname}

v Using Jython:

AdminTask.deleteSIB

Destination(’[-bus

busname -name

destname]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask deleteSIB

Destination

{-interactive}

v Using Jython:

AdminTask.deleteSIB

Destination (’[-int

eractive]’)

502 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

delete

SIB

Engine

SIB

Admin

Comm

ands

Use the

delete

SIB

Engine

command

to delete

the

default or

named

bus

messaging

engine

from the

named

SIB bus.

A server

can only

have one

messaging

engine,

so when

using this

command

to delete

a

messaging

engine

from a

server

there is

no need

to supply

the

engine

name. A

cluster

can have

more

than one

messaging

engine so

the name

of the

engine

must be

supplied.

None v Parameters:

*bus

name of the

bus to

which the

messaging

engine to be

deleted

belongs

(String,

required)

node

to delete a

messaging

engine on a

server,

supply node

and server

name, but

not cluster

name

(String,

optional)

server

to delete a

messaging

engine on a

server,

supply node

and server

name, but

not cluster

name

(String,

optional)

cluster

to delete a

messaging

engine on a

cluster,

supply

cluster

name, but

not node

and server

name

(String,

optional)

Batch mode example

usage:

v Using Jacl:

$AdminTask deleteSIB

Engine {-bus bus

name -node node

Name -server

severname}

v Using Jython:

AdminTask.deleteSIB

Engine(’[-bus bus

name -node node

Name -server

severname]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask deleteSIB

Engine {-interactive}

v Using Jython:

AdminTask.deleteSIB

Engine (’[-interac

tive]’)

Chapter 6. Using scripting (wsadmin) 503

engine

name of the

messaging

engine to

delete. This is

optional, and

is only

required when

deleting a

messaging

engine from a

cluster (String,

optional)

v Returns: None

delete

SIB JMS

Activation

Spec

SIB JMS

Admin

Comm

ands

Use the

delete

SIB JMS

Activation

Spec

command

to delete

an

activation

specifica

tion.

None v Parameters:

name

The name of

the

activation

specification

that you

want to

delete.

(String,

(required)

v Returns: None

Batch mode example

usage:

v Using Jacl:

$AdminTask deleteSIBJ

MSActivationSpec

{-name specname}

v Using Jython:

AdminTask.deleteSIBJ

MSActivationSpec(’[

-name specname]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask deleteSIBJ

MSActivationSpec

{-interactive}

v Using Jython:

AdminTask.deleteSIBJ

MSActivationSpec

(’[-interactive]’)

504 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

delete

SIB JMS

Connec

tion

Factory

SIB JMS

Admin

Comm

ands

Use the

delete

SIB JMS

Connection

Factory

command

to

None v Parameters:

name

The name of

the SIB JMS

connection

factory

(String,

required)

v Returns: None

Batch mode example

usage:

v Using Jacl:

$AdminTask deleteSIBJ

MSConnectionFactory

{-name factory_

name}

v Using Jython:

AdminTask.deleteSIBJM

SConnectionFactory(’[

-name factory_

name]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask deleteSIBJ

MSConnectionFactory

{-interactive}

v Using Jython:

AdminTask.deleteSIBJ

MSConnectionFactory

(’[-interactive]’)

delete

SIB JMS

Queue

SIB JMS

Admin

Comm

ands

Use the

delete

SIB JMS

Queue

command

to delete

a JMS

queue.

None v Parameters:

name

The name of

the SIB JMS

queue.

(String,

required)

v Returns: None

Batch mode example

usage:

v Using Jacl:

$AdminTask deleteSIBJ

MSQueue {-name

queue_name}

v Using Jython:

AdminTask.deleteSIBJM

SQueue(’[-name

queue_name]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask deleteSIBJ

MSQueue {-interactive}

v Using Jython:

AdminTask.deleteSIBJ

MSQueue (’[-interac

tive]’)

Chapter 6. Using scripting (wsadmin) 505

delete

SIB JMS

Topic

SIB JMS

Admin

Comm

ands

Use the

delete

SIB JMS

Topic

command

to delete

a JMS

topic.

None v Parameters:

name

The name of

the SIB JMS

topic

(String,

required)

v Returns: None

Batch mode example

usage:

v Using Jacl:

$AdminTask deleteSIBJ

MSTopic {-name

topic_name}

v Using Jython:

AdminTask.deleteSIBJM

STopic(’[-name

topic_name]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask deleteSIBJ

MSTopic {-interactive}

v Using Jython:

AdminTask.deleteSIBJ

MSTopic (’[-interac

tive]’)

delete

SIB

Mediation

SIB

Admin

Comm

ands

Use this

command

to delete

the

named

mediation

from the

named

bus.

None v Parameters:

bus

name of the

bus that

owns the

mediation

(String,

required)

mediationName

name of the

mediation to

be deleted

(String,

required)

v Returns: None

Interactive mode example

usage:

v Using Jacl:

$AdminTask deleteSIB

Mediation {-inter

active}

v Using Jython:

AdminTask.deleteSIBM

ediation (’[-inter

active]’)

506 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

delete

SIB WS

Endpoint

Listener

SIB Web

Services

group

The

delete

SIB WS

Endpoint

Listener

command

deletes

the

configuration

oa an

end point

listener.

This

command

fails if

there are

inbound

port

objects

associated

with the

end point

listener.

Object

name of

the end

point

listener

that you

want to

delete.

v Parameters:

None

v Returns: None

Batch mode example

usage:

v Using Jacl:

$AdminTask deleteSIBW

SEndpointListener $epl

v Using Jython:

AdminTask.deleteSIBWS

EndpointListener(epl)

Interactive mode example

usage:

v Using Jacl:

$AdminTask deleteSIBW

SEndpointListener

{-interactive}

v Using Jython:

AdminTask.deleteSIBW

SEndpointListener

(’[-interactive]’)

delete

SIBWS

Inbound

Service

SIBWeb

Services

group

The

delete

SIBWS

Inbound

Service

command

deletes

an

inbound

service

object

and any

inbound

port

objects

that are

associated.

The

object

name of

the

inbound

service

object

that you

want to

delete.

v Parameters:

userId

The user ID

to use to

interact with

UDDI

registries.

(optional)

password

The

password to

use to

interact with

UDDI

registries.

(optional)

v Returns: None

Batch mode example

usage:

v Using Jacl:

$AdminTask deleteSIBW

SInboundService

$inService

v Using Jython:

AdminTask.deleteSIBWS

InboundService(in

Service)

Interactive mode example

usage:

v Using Jacl:

$AdminTask deleteSIBW

SInboundService

{-interactive}

v Using Jython:

AdminTask.deleteSIBWS

InboundService

(’[-interactive]’)

Chapter 6. Using scripting (wsadmin) 507

delete

SIBWS

Outbound

Service

SIBWeb

Services

group

The

delete

SIBWS

Outbound

Service

command

deletes

an

outbound

service

object

and any

outbound

port

objects

that are

associated.

Resources

that are

associated

with the

outbound

service or

outbound

ports, for

example,

WS-Security

configuration,

are

disassociated

from the

outbound

service

and the

outbound

ports but

are not

deleted.

Object

name of

the

outbound

service

object

that you

want to

delete.

v Parameters:

None

v Returns: None

Batch mode example

usage:

v Using Jacl:

$AdminTask deleteSIBW

SOutboundService

$outService

v Using Jython:

AdminTask.deleteSIBWS

OutboundService

(outService)

Interactive mode example

usage:

v Using Jacl:

$AdminTask deleteSIBW

SOutboundService

{-interactive}

v Using Jython:

AdminTask.deleteSIBW

SOutboundService

(’[-interactive]’)

508 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

delete

SIBus

SIB

Admin

Comm

ands

Use this

command

to delete

the

named

SIB bus.

Also

deletes

all SIB

mediations

and SIB

destinations

owned

by the

bus.

None v Parameters:

bus

name of bus

to be

deleted

from the

current cell

(String,

required)

v Returns: None

Batch mode example

usage:

v Using Jacl:

$AdminTask deleteSI

Bus {-bus bus_

name}

v Using Jython:

AdminTask.deleteSI

Bus(’[-bus bus_

name]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask deleteSIBus

{-interactive}

v Using Jython:

AdminTask.deleteSIBus

(’[-interactive]’)

delete

Server

None Use the

delete

Server

command

to delete

the

server

scope

configuration

and the

server

entry that

corresponds

to it in

the

serverindex.xml

file. You

can also

use this

command

to delete

a Web

server.

None v Parameters:

-nodeName

(String,

required)

-serverName

(String,

required)

v Returns: None

Batch mode example

usage:

v Using Jacl:

$AdminTask deleteSer

ver {-nodeName node

_name -serverName

server_name}

v Using Jython:

AdminTask.deleteServer

(’[-nodeName node_

name -serverName

server_name]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask deleteSer

ver {-interactive}

v Using Jython:

AdminTask.deleteSer

ver (’[-interactive

]’)

Chapter 6. Using scripting (wsadmin) 509

delete

Server

Template

None Use the

delete

Server

Template

command

to delete

server

templates.

You

cannot

delete

templates

defined

by the

system.

You can

only

delete

server

templates

that you

created.

This

command

deletes

the

directory

that hosts

the

server

template.

A server

template

identification,

javax.

management.

ObjectName.

This

target

object is

required.

v Returns: Void

Interactive mode example

usage:

v Using Jacl:

$AdminTask deleteSer

verTemplate {-inter

active}

v Using Jython:

AdminTask.deleteServ

erTemplate (’[-inte

ractive]’)

510 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

delete

WSGW

Gateway

Service

WS

Gateway

group

The

delete

WSGW

Gateway

Service

command

deletes a

gateway

service. It

deletes

the

gateway

destination

the

corresponding

reply

destination,

inbound

service,

and

inbound

port

enablement

objects,

and all of

the target

service

objects

that are

associated.

This

command

does not

delete the

destinations

that are

associated

with the

target

services.

Object

name of

the

gateway

service

object

v Parameters:

None

v Returns: None

Batch mode example

usage:

v Using Jacl:

$AdminTask deleteWSG

WGatewayService

$gwService

v Using Jython:

AdminTask.deleteWSG

WGatewayService

(gwService)

Interactive mode example

usage:

v Using Jacl:

$AdminTask deleteWSGW

GatewayService

{-interactive}

v Using Jython:

AdminTask.deleteWSG

WGatewayService

(’[-interactive]’)

Chapter 6. Using scripting (wsadmin) 511

delete

WSGW

Proxy

Service

WS

Gateway

group

The

delete

WSGW

Proxy

Service

command

deletes a

proxy

service

including

the proxy

destinations,

outbound

service,

outbound

ports,

inbound

service,

and

inbound

port

enablement

objects.

Object

name of

the Proxy

Service

object

v Parameters:

None

v Returns: None

Batch mode example

usage:

v Using Jacl:

$AdminTask deleteWSGW

ProxyService $proxy

Service

v Using Jython:

AdminTask.deleteWSGW

ProxyService(proxy

Service)

Interactive mode example

usage:

v Using Jacl:

$AdminTask deleteWSGW

ProxyService

{-interactive}

v Using Jython:

AdminTask.deleteWSGW

ProxyService

(’[-interactive]’)

disconn

ect

SIBWS

Endpoint

Listener

SIBWeb

Services

group

The

disconnect

SIBWS

Endpoint

Listener

command

disconne

cts an

end point

listener

from a

bus.

Object

name of

the end

point

listener

to be

disconn

ected.

v Parameters:

bus

The name of

the bus

from which

to be

disconnected.

(required)

v Returns: None

Batch mode example

usage:

v Using Jacl:

$AdminTask disconnect

SIBWSEndpointListener

$epl {-bus

"MyBus"}

v Using Jython:

AdminTask.disconnectS

IBWSEndpointListener

(epl,’[-bus MyBus

]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask disconnect

SIBWSEndpointListener

{-interactive}

v Using Jython:

AdminTask.disconnect

SIBWSEndpointListener

(’[-interactive]’)

512 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

doesCore

Group

Exist

Core

Group

Manage

ment

group

The does

Core

Group

Exist

command

returns a

boolean

value

that

indicates

if the

core

group

that you

specify

exists.

None v Parameters:

coreGroupName

The name of

the core

group.

(String,

required)

v Returns: A

boolean value.

Batch mode example

usage:

v Using Jacl:

$AdminTask doesCore

GroupExist {-coreGroup

Name MyCoreGroup}

v Using Jython:

AdminTask.doesCore

GroupExist(’[-core

GroupName MyCore

Group]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask doesCore

GroupExist {-inter

active}

v Using Jython:

AdminTask.doesCore

GroupExist (’[-inter

active]’)

Chapter 6. Using scripting (wsadmin) 513

export

Server

Configur

ation

archive

Oper

ations

group

Use the

export

Server

command

to export

the

server

configuration

to a node

defined

in the

configuration

archive.

The

export

Server

command

virtualizes

the

server

configuration

and

exports a

server to

a

configuration

archive.

This

process

breaks

any

existing

associations

between

the

server

configurations

in the

configuration

archive

and the

configurations

in the

system.

None v Parameters:

-archive

The fully

qualified

path of the

exported

configuration

archive.

(String,

required)

-nodeName

The node

name of the

server. This

parameter is

only

required

when the

server name

is not

unique

across the

cell. (String,

optional)

-serverName

The server

name.

(String,

required)

v Returns: None

Batch mode example

usage:

v Using Jacl:

$AdminTask export

Server {-archive

c:\myServer.ear

-nodeName node1

-serverName

server1}

v Using Jython:

AdminTask.exportServ

er(’[-archive c:\

myServer.ear -node

Name node1

-serverName

server1]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask export

Server {-interactive}

v Using Jython:

AdminTask.export

Server (’[-inter

active]’)

514 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

This

process

also

removes

applications

from the

server

that you

specify,

breaks

the

relationship

between

the

server

that you

specify

and the

core

group of

the

server,

cluster, or

SIBus

membership.

The

export

Server

command

exports

the

metadata

file of the

node

where

the

server

resides.

You can

use this

information

later

when

you

import

the

configuration

archive

in order

to verify

that the

target

node is

compatible

to the

node

from

which

you are

exporting

the

server.

Chapter 6. Using scripting (wsadmin) 515

export

Was

profile

configur

ation

archive

Opera

tions

group

Use the

export

Was

profile

command

to export

the entire

cell

configuration

to a

configuration

archive.

None v Parameters:

archive

The fully

qualified file

path of the

exported

configuration

archive.

(String,

required)

v Returns: None

Batch mode example

usage:

v Using Jacl:

$AdminTask exportWas

profile {-archive

c:\myCell.ear}

v Using Jython:

AdminTask.exportWas

profile(’[-archive

c:\myCell.ear]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask exportWas

profile {-interactive}

v Using Jython:

AdminTask.exportWas

profile (’[-intera

ctive]’)

getAll

Core

Group

Names

Core

Group

Manage

ment

group

The

getAll

Core

Group

Names

command

returns a

string

that

contains

the

names of

all of the

existing

core

groups

None v Parameters:

None

v Returns: String

array (String[])

Batch mode example

usage:

v Using Jacl:

$AdminTask getAllCore

GroupNames

v Using Jython:

AdminTask.getAllCore

GroupNames()

Interactive mode example

usage:

v Using Jacl:

$AdminTask getAllCore

GroupNames {-inter

active}

v Using Jython:

AdminTask.getAllCore

GroupNames (’[-inter

active]’)

516 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

getCore

Group

Name

For

Server

Core

Group

Manag

ement

group

The

getCore

Group

Name

For

Server

command

returns

the name

of the

core

group for

which

the

server

you

specify is

currently

a

member.

None v Parameters:

- nodeName

The name of

the node

that

contains the

server.

(String,

required)

- serverName

The name of

the server.

(String,

required)

v Returns: The

name of the core

group that

currently

contains the

server that you

specified.

(String)

Batch mode example

usage:

v Using Jacl:

$AdminTask getCore

GroupNameForServer

{-nodeName myNode

-serverName

myServer}

v Using Jython:

AdminTask.getCoreGroup

NameForServer(’[-node

Name myNode

-serverName my

Server]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask getCore

GroupNameForServer

{-interactive}

v Using Jython:

AdminTask.getCore

GroupNameForServer

(’[-interactive]’)

get

Default

Core

Group

Name

Core

Group

Manage

ment

group

The get

Default

Core

Group

Name

command

returns

the name

of the

default

core

group.

None v Parameters:

None

v Returns: String

Batch mode example

usage:

v Using Jacl:

$AdminTask getDefault

CoreGroupName

v Using Jython:

AdminTask.getDefault

CoreGroupName()

Interactive mode example

usage:

v Using Jacl:

$AdminTask getDefault

CoreGroupName

{-interactive}

v Using Jython:

AdminTask.getDefault

CoreGroupName

(’[-interactive]’)

Chapter 6. Using scripting (wsadmin) 517

get

Metadata

Properties

Managed

Object

Metadata

group

The get

Metadata

Properties

command

obtains

all

metadata

for the

node that

you

specify.

None v Parameters:

- nodeName

The name of

the node

associated

with the

metadata

you want

this

command to

return.

v Returns: The list

of metadata

properties.

Batch mode example

usage:

v Using Jacl:

$AdminTask getMeta

dataProperties {-node

Name node1}

v Using Jython:

AdminTask.getMeta

dataProperties(’

[-nodeName node1

]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask getMetadata

Properties {-inter

active}

v Using Jython:

AdminTask.getMetadata

Properties (’[-inter

active]’)

get

Metadata

Property

Managed

Object

Metadata

group

The get

Metadata

Property

command

obtains

metadata

with the

specified

key for

the node

that you

specify.

None v Parameters:

- nodeName

The name of

the node

associated

with the

metadata

you want

this

command to

return.

- propertyName

Metadata

property

key.

v Returns: The

requested

property for the

node that you

specified.

Batch mode example

usage:

v Using Jacl:

$AdminTask getMetadata

Property {-nodeName

node1 -property

Name com.ibm.webs

phere.baseProduct

Version}

v Using Jython:

AdminTask.getMetadata

Property (’[-nodeName

node1 -property

Name com.ibm.web

sphere.baseProduct

Version]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask getMeta

dataProperty {-inter

active}

v Using Jython:

AdminTask.getMetadata

Property (’[-inter

active]’)

518 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

get

Named

TCP End

Point

Core

Group

Bridge

Manage

ment

group

The get

Named

TCP End

Point

command

returns

the port

associated

with the

bridge

interface

that you

specify.

The port

that is

returned

is the one

that is

specified

on the

TCP

inbound

channel

of the

transport

channel

chain for

bridge

interface

that you

specify.

The

bridge

interface

object for

which

the port

will be

listed.

(ObjectName,

required)

v Parameters:

None

v Returns: The

port (named end

point) object

name of the TCP

inbound channel

instance which

resides on the

DCS transport

channel chain of

the bridge

interface.

Batch mode example

usage:

v Using Jacl:

$AdminTask getNamedTC

PEndPoint (cells/

rohitbuildCell01|

coregroupbridge.xml#

BridgeInterface_2)

v Using Jython:

AdminTask.getNamedTCP

EndPoint(’(cells/rohit

buildCell01|coregroup

bridge.xml#Bridge

Interface_2)’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask getNamedTC

PEndPoint {-intera

ctive}

v Using Jython:

AdminTask.getNamedTCP

EndPoint (’[-inter

active]’)

get Node

Base

Product

Version

Managed

Object

Metadata

group

The get

Node

Base

Product

Version

command

returns

the

version

of the

WebSphere

Application

Server

for a

node that

you

specify.

This

command

only

returns

the

version

for a

distributed

installation

of the

product.

None v Parameters:

- nodeName

The name of

the node

associated

with the

metadata

you want

this

command to

return.

v Returns:

WebSphere

Application

Server version

for the node that

you specify.

Batch mode example

usage:

v Using Jacl:

$AdminTask getNodeBase

ProductVersion {-node

Name node1}

v Using Jython:

AdminTask.getNodeBase

ProductVersion(’[-node

Name node1]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask getNodeBase

ProductVersion

{-interactive}

v Using Jython:

AdminTask.getNodeBase

ProductVersion

(’[-interactive]’)

Chapter 6. Using scripting (wsadmin) 519

getNode

Major

Version

Managed

Object

Metadata

group

The get

Node

Major

Version

command

returns

the major

version

of the

WebSphere

Application

Server

for a

node that

you

specify. It

only

returns

the

version

for a

distributed

installation

of the

product.

None v Parameters:

nodeName

The name of

the node

associated

with the

metadata

you want

this

command to

return.

v Returns:

WebSphere

Application

Server major

version for the

node that you

specified.

Batch mode example

usage:

v Using Jacl:

$AdminTask getNodeMa

jorVersion {-nodeName

node1}

v Using Jython:

AdminTask.getNodeMa

jorVersion(’[-node

Name node1]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask getNodeMa

jorVersion {-inter

active}

v Using Jython:

AdminTask.getNodeMaj

orVersion (’[-inter

active]’)

getNode

Minor

Version

Managed

Object

Metadata

group

The

getNode

Minor

Versioncommand

returns

the minor

version

of the

WebSphere

Application

Server

for a

node that

you

specify. It

only

returns

the

version

for a

distributed

installation

of the

product.

None v Parameters:

- nodeName

The name of

the node

associated

with the

metadata

you want

this

command to

return.

v Returns:

WebSphere

Application

Server minor

version for the

node that you

specified.

Batch mode example

usage:

v Using Jacl:

$AdminTask getNode

MinorVersion {-node

Name node1}

v Using Jython:

AdminTask.getNodeMi

norVersion(’[-node

Name node1]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask getNode

MinorVersion {-inter

active}

v Using Jython:

AdminTask.getNodeMi

norVersion (’[-inter

active]’)

520 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

getNode

Platform

OS

Managed

Object

Metadata

group

The

getNode

Platform

OS

command

returns

the

operating

system

name for

a node

that you

specify.

None v Parameters:

- nodeName

The name of

the node

associated

with the

metadata

you want

this

command to

return.

v Returns: The

operating system

name of the

node that you

specified.

Batch mode example

usage:

v Using Jacl:

$AdminTask getNode

PlatformOS {-node

Name node1}

v Using Jython:

AdminTask.getNodePlat

formOS(’[-nodeName

node1]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask getNode

PlatformOS {-inter

active}

v Using Jython:

AdminTask.getNodePlat

formOS (’[-interactive

]’)

getNode

Sysplex

Name

Managed

Object

Metadata

group

The

getNode

Sysplex

Name

command

returns

the

sysplex

name for

a node

that you

specify.

None v Parameters:

- nodeName

The name of

the node

associated

with the

metadata

you want

this

command to

return.

v Returns: The

sysplex name of

the given node.

Batch mode example

usage:

v Using Jacl:

$AdminTask getNodeSys

plexName {-nodeName

node1}

v Using Jython:

AdminTask.getNodeSys

plexName(’[-nodeName

node1]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask getNodeSys

plexName {-interac

tive}

v Using Jython:

AdminTask.getNodeSys

plexName (’[-intera

ctive]’)

Chapter 6. Using scripting (wsadmin) 521

getServer

Type

Server

Management

group

The

getServerType

command

returns

the type

of the

server

that you

specify.

None v Parameters:

- serverName

The name of

the server.

(String)

- nodeName

The name of

the node.

(String)

v Returns: The

type of the

server.

Batch mode example

usage:

v Using Jacl:

$AdminTask getServerType

{-serverName test2

-nodeName ndnode1}

v Using Jython:

AdminTask.getServerType

(’[-serverName test2

-nodeName ndnode1]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask getServerType

{-interactive}

v Using Jython:

AdminTask.getServerType

(’[-interactive]’)

522 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

getTCP

EndPoint

None The

getTCP

EndPoint

command

obtains

the

named

end point

associated

with

either a

TCP

inbound

channel

or a

chain

that

contains

a TCP

inbound

channel.

TCPInbound

Channel,

or

containing

chain,

instance

that is

associated

with a

NamedEnd

Point.

(ObjectName,

required)

v Parameters:

None

v Returns: Object

name of an

existing named

end point that is

associated with

the TCP

inbound channel

instance or a

channel chain.

Batch mode example

usage:

v Using Jacl:

$AdminTask getTCPEnd

Point TCP_1(cells/

rohitbuildCell01/

nodes/rohitbuildCell

Manager01/servers/

dmgr|server.xml#TCP

InboundChannel_1)

$AdminTask getTCPEnd

Point DCS(cells/rohit

buildCell01/nodes/

rohitbuildCellManager

01/servers/dmgr|serv

er.xml#Chain_3)

v Using Jython:

AdminTask.getTCPEnd

Point(’TCP_1(cells/

rohitbuildCell01/

nodes/rohitbuildCell

Manager01/servers/

dmgr|server.xml#TCP

InboundChannel_1)’)

AdminTask.getTCPEnd

Point(’DCS(cells/

rohitbuildCell01/

nodes/rohitbuildCell

Manager01/servers/

dmgr|server.xml#

Chain_3)’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask getTCPEnd

Point {-interactive}

v Using Jython:

AdminTask.getTCPEnd

Point (’[-inter

active]’)

Chapter 6. Using scripting (wsadmin) 523

import

Server

Configu

ration

archive

Oper

ations

group

Use the

import

Server

command

to import

a server

that

resides in

a

configuration

archive

to the

system.

This

command

imports

all the

server

scope

configurations

defined

in the

configuration

archive

to system

configuration.

None v Parameters:

-archive

The fully

qualified

path of the

configuration

archive.

(String,

required)

-nodeInArchive

The node

name of the

server

defined in

the

configuration

archive.

(String,

optional if

there is only

one node

defined in

the

configuration

archive,

required if

there are

multiple

nodes

defined in

the

configuration

archive)

-serverInArchive

The name of

the server

defined in

the

configuration

archive.

(String,

optional if

there is only

one server

defined on

the specified

nodeInConfiguration

archive,

required if

there are

multiple

servers

defined

under the

specified

nodeInConfiguration

archive)

Batch mode example

usage:

v Using Jacl:

$AdminTask importSer

ver {-archive c:\

myServer.ear -node

InArchive node1

-serverInArchive

server1}

v Using Jython:

AdminTask.importServ

er(’[-archive c:\

myServer.ear -node

InArchive node1

-serverInArchive

server1]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask import

Server {-interactive}

v Using Jython:

AdminTask.import

Server (’[-inter

active]’)

524 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

-nodeName

The node

name where

the server is

imported.

(String,

optional if

there is only

one node)

-serverName

The server

name where

the server is

imported. If

the server

name that you

specify

matches an

existing server

name under

the node, an

exception is

thrown.

(String,

optional,

default:serverInArchive)

-coreGroup

The core

group name to

which the

server should

belong.

(String,

optional)

v Returns: None

help None The help

command

provides

a

summary

of the

help

commands

and ways

to invoke

an

administrative

command.

None v Parameters:

None

v Returns: A

general help

description

v Using Jacl:

$AdminTask help

v Using Jython:

print AdminTask.help()

Chapter 6. Using scripting (wsadmin) 525

help None The help

command

provides

a list of

available

administrative

commands

if the

option

string is

-commands

or

administrative

command

groups if

the

option

string is

-commandGroups.

Valid

options

include

-commands

and

-commandGroups.

None v Parameters:

- options

v Returns: A

summary of all

available

administrative

commands.

v Using Jacl:

$AdminTask help

-commands

v Using Jython:

AdminTask.help

(’-commands’)

help None If you

provide

the step

name,

this

command

provides

help

information

for a

given

step of

an

administrative

command.

Otherwise,

it

provides

help

information

for a

given

admin

command

or

administrative

command

group.

The

stepName

parameter

is

optional.

None v Parameters:

-

commandName

- stepName

v Returns: A

summary of the

specified

command group,

administrative

command, or

step.

v Using Jacl:

$AdminTask help

createJ2CConnec

tionFactory

v Using Jython:

AdminTask.help(’create

J2CConnectionFactory’)

526 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

import

Was

profile

configur

ation

archive

Opera

tions

group

Use the

import

Was

profile

command

to import

a cell

configur

ation in

the

configuration

archive

to the

system.

Only a

base

single

server

configuration

is

supported

for this

command.

None v Parameters:

archive

The fully

qualified file

path of the

configuration

archive.

(String,

required)

v Returns: Void

Batch mode example

usage:

v Using Jacl:

$AdminTask importWas

profile {-archive

c:\myCell.ear}

v Using Jython:

AdminTask.importWas

profile(’[-archive

c:\myCell.ear]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask importWas

profile {-interactive}

v Using Jython:

AdminTask.importWas

profile (’[-inter

active]’)

isNode

ZOS

Manged

Object

Metadata

group

The

isNode

ZOS

command

tests if a

node that

you

specify is

running

on the

z/OS

platform.

This

command

does not

apply to

distributed

platforms

or

WebSphere

Application

Server-
Express.

None v Parameters:

- nodeName

The name of

the node

associated

with the

metadata

you want

this

command to

return.

v Returns: A true

value if the node

operating system

is z/OS. A false

value if the node

operating system

is not z/OS.

Batch mode example

usage:

v Using Jacl:

$AdminTask isNodeZOS

{-nodeName node1}

v Using Jython:

AdminTask.isNodeZOS

(’[-nodeName

node1]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask isNodeZOS

{-interactive}

v Using Jython:

AdminTask.isNodeZOS

(’[-interactive]’)

Chapter 6. Using scripting (wsadmin) 527

list

Admin

Object

Interfaces

JCA

manage

ment

group

Use the

list

Admin

Object

Interfaces

command

to list the

administrative

object

interfaces

defined

under the

resource

adapter

that you

specify.

J2CResouce

adapter

object ID

v Parameters:

None

v Returns: A list of

administrative

object interfaces.

Batch mode example

usage:

v Using Jacl:

$AdminTask listAdmin

ObjectInterfaces $ra

v Using Jython:

AdminTask.listAdmin

ObjectInterfaces(ra)

listChain

Templates

Channel

Frame

work

Manage

ment

group

The list

Chain

Templates

command

displays

a list of

templates

that you

can use

to create

chains in

this

configuration.

All

templates

have a

certain

type of

transport

channel

as the

last

transport

channel

in the

chain.

None v Parameters:

- acceptorFilter

The

templates

returned by

this method

all have a

transport

channel

instance of

the specified

type as the

last

transport

channel in

the chain.

(String,

optional)

v Returns: A list of

all the chain

template object

names. If you

specify the

acceptorFilter

parameter, the

list that returns

is filtered to

match the filter

that you

specified.

Batch mode example

usage:

v Using Jacl:

$AdminTask listChain

Templates {}

$AdminTask listChain

Templates "-acceptor

Filter WebContainer

InboundChannel"

v Using Jython:

AdminTask.listChain

Templates()

AdminTask.listChain

Templates(’[-acceptor

Filter WebContainer

InboundChannel]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask listChain

Templates {-inter

active}

v Using Jython:

AdminTask.listChain

Templates (’[-inter

active]’)

528 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

list

Chains

Channel

Framework

Management

group

The list

Chains

command

lists all

the

chains

configured

under a

particular

instance

of the

transport

channel

service.

The

instance

of the

transport

channel

service

under

which

the the

chains

are

configured.

(ObjectName,

required)

v Parameters:

- acceptorFilter

The chains

that are

returned by

this

parameter

will have a

transport

channel

instance of

the type

that you

specify as

the last

transport

channel in

the chain.

(String,

optional)

-

endPointFilter:

The chains

returned by

this

parameter

will have a

TCP

inbound

channel

using an

end point

with the

name that

you

specify.(String,

optional)

v Returns: A list of

all the channel

chain object

names that

match the

specified filters.

If no you do not

specify any

parameters, all

of the channel

chains that are

configured

under the

particular

instance of

transport

channel service

are returned.

Batch mode example

usage:

v Using Jacl:

$AdminTask listChains

(cells/rohitbuildCell

01/nodes/rohitbuild

Node01/servers/server

2|server.xml#Transport

ChannelService_1093

445762328)

$AdminTask listChains

(cells/rohitbuildCell

01/nodes/rohitbuild

Node01/servers/server2

|server.xml#Transport

ChannelService_10934

45762328) {-acceptor

Filter WebContain

erInboundChannel}

$AdminTask listChains

(cells/rohitbuildCell

01/nodes/rohitbuild

Node01/servers/server

2|server.xml#Transpo

rtChannelService_109

3445762328) {-end

PointFilter WC_

adminhost}

v Using Jython:

AdminTask.listChains

(’(cells/rohitbuild

Cell01/nodes/rohit

buildNode01/servers/

server2|server.xml#

TransportChannelSer

vice_1093445762328)’)

AdminTask.listChains

(’(cells/rohitbuild

Cell01/nodes/rohit

buildNode01/servers/

server2|server.xml#

TransportChannel

Service_109344576232

8)’, ’[-acceptorFi

lter WebContainerIn

boundChannel]’)

AdminTask.listChains

(’(cells/rohitbuild

Cell01/nodes/rohit

buildNode01/servers/

server2|server.xml#

TransportChannelSer

vice_1093445762328)

’, ’[-endPointFilter

WC_adminhost]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask listChains

{-interactive}

v Using Jython:

AdminTask.listChains

(’[-interactive]’)

Chapter 6. Using scripting (wsadmin) 529

list

Conne

ction

Factory

Interfaces

JCA

manage

ment

group

Use the

list

Connection

Factory

Interfaces

command

to list all

of the

connection

factory

interfaces

defined

under the

Java 2

resource

adapter

that you

specify.

J2C

Resource

Adapter

object ID

v Parameters:

None

v Returns: A list of

connection

factory

interfaces.

Batch mode example

usage:

v Using Jacl:

$AdminTask listConnec

tionFactoryInterfaces

$ra

v Using Jython:

AdminTask.listConnec

tionFactoryInterfaces

(ra)

listCore

Groups

Core

Group

Bridge

Manag

ement

group

The

listCore

Groups

command

returns a

collection

of core

groups

that are

related to

the core

group

that you

specify.

The

name of

the core

group for

which

the

related

core

groups

will be

listed.

(String,

required)

v Parameters:

-

cgBridgeSettings

The group

bridge

settings

object for

the cell.

(ObjectName,

required)

v Returns: A set of

core group

names.

Batch mode example

usage:

v Using Jacl:

$AdminTask listCoreGr

oups DefaultCoreGroup

"-cgBridgeSettings

 (cells/rohitbuild

Cell01|coregroupbri

dge.xml#CoreGroupBr

idgeSettings_1)"

v Using Jython:

AdminTask.listCoreGro

ups(’DefaultCoreGroup’,

’[-cgBridgeSetting

(cells/rohitbuildCell

01|coregroupbridge.

xml#CoreGroupBridge

Settings_1)]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask listCore

Groups {-interactive}

v Using Jython:

AdminTask.listCore

Groups (’[-intera

ctive]’)

530 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

list

Eligible

Bridge

Interfaces

Core

Group

Bridge

Manage

ment

group

The list

Eligible

Bridge

Interfaces

command

returns a

collection

of node,

server

and

transport

channel

chain

combinations

that are

eligible to

become

bridge

interfaces

for the

specified

core

group

access

point.

The core

group

access

point

object for

which

bridge

interfaces

will be

listed.

(ObjectName,

required)

v Parameters:

None

v Returns: A set of

bridge interfaces.

(Set of String)

Each bridge

interface is

represented by a

combination of a

node, a server

and a DCS

channel chain:

<node name>,

<server name>,

<DCS Channel

Chain

objectName. For

example, an

element of the

set returned by

this command

may look like

the following:

rohitbuild dmgr

DCS-
Secure(cells/

rohitbuildCell/

nodes/rohitbuild/

servers/dmgr|

server.xml#

Chain_4)

Batch mode example

usage:

v Using Jacl:

$AdminTask listEligib

leBridgeInterfaces

CGAP_DCG_2(cells/

rohitbuildCell01|

coregroupbridge.xml#

CoreGroupAccessPoint

_1089636614062)

v Using Jython:

AdminTask.listEligib

leBridgeInterfaces

(’CGAP_DCG_2(cells/

rohitbuildCell01|

coregroupbridge.xml#

CoreGroupAccessPoint_

1089636614062)’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask listEligib

leBridgeInterfaces

{-interactive}

v Using Jython:

AdminTask.listEligib

leBridgeInterfaces

(’[-interactive]’)

list J2C

Activation

Specs

JCA

manage

ment

group

Use the

list J2c

Activation

Specs

command

to list the

activation

specs

contained

under the

resource

adapter

and

message

listener

type that

you

specify.

J2C

Resource

Adapter

object ID

v Parameters:

-messageListener

Type

Specifies the

message

listener type

for the

resource

adapter for

which you

are making

a list. This

parameter is

required.

v Returns: A list of

activation specs

that has

specified

messageListener

type.

Batch mode example

usage:

v Using Jacl:

$AdminTask listJ2CAct

ivationSpecs $ra

{-messageListenerType

javax.jms.Message

Listener}

v Using Jython:

AdminTask.listJ2CAct

ivationSpecs(ra,

’[-messageListener

Type javax.jms.

MessageListener]’)

Chapter 6. Using scripting (wsadmin) 531

list J2C

Admin

Objects

JCA

Manage

ment

group

Use the

list J2C

Admin

Objects

command

to list

administrative

objects

that

contains

the

administrative

object

interface

that you

specify.

J2C

Resource

Adapter

object ID

v Parameters:

-adminObject

Interface

Specifies the

administrative

object

interface for

which you

want to list.

This

parameter is

required.

v Returns: A list of

administrative

objects that has

specified

adminObjectInterface.

Batch mode example

usage:

v Using Jacl:

$AdminTask listJ2C

AdminObjects $ra

{-adminObjectInter

face fvt.adaptor.

message.FVTMessage

Provider}

v Using Jython:

AdminTask.listJ2C

AdminObjects(ra,

’[-adminObjectInter

face fvt.adaptor.

message.FVTMessage

Provider]’)

list J2C

Conne

ction

Factories

JCA

manage

ment

group

Use the

list J2C

Connection

Factories

command

to list the

Java 2

connection

factories

under the

resource

adapter

and

connection

factory

interface

that you

specify

J2C

Resource

Adapter

object ID

v Parameters:

-connectionFactory

Interface

Indicates the

name of the

connection

factory that

you want to

list. This

parameter is

required.

v Returns: A list of

J2C

connectionFactory

that has the

specified

connectionFactoryInterface.

Batch mode example

usage:

v Using Jacl:

$AdminTask listJ2C

ConnectionFactories

$ra {-connectionFact

oryInterface javax

.sql.DataSource}

v Using Jython:

AdminTask.listJ2CConn

ectionFactories(ra,

’[-connectionFactory

Interface javax.

sql.DataSource]’)

list

Managed

Nodes

Unmana

ged

Node

Comm

ands

group

Use the

list

Managed

Nodes

command

to list the

managed

nodes

(nodes

that have

a node

agent

defined)

in a

configuration.

None v Parameters:

None

v Returns: List

Batch mode example

usage:

v Using Jacl:

$AdminTask

listManagedNodes

v Using Jython:

AdminTask.list

ManagedNodes()

532 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

list

Message

Listener

Types

JCA

Manage

ment

group

Use the

list

Message

Listener

Types

command

to list the

message

listener

types

defined

under the

resource

adapter

that you

specify.

J2C

Resource

Adapter

object ID

v Parameters:

None

v Returns: A list of

message listener

types.

Batch mode example

usage:

v Using Jacl:

$AdminTask listMessage

ListenerTypes $ra

v Using Jython:

AdminTask.listMessage

ListenerTypes(ra)

listNode

Group

Properties

Node

Group

Comma

nds

group

The

listNode

Group

Properties

command

displays

all of the

custom

properties

of a node

group.

The

target

object is

name of

the node

group.

This

target

object is

required.

v Parameters:

None

v Returns: A list of

all of the custom

properties of a

node group.

Batch mode example

usage:

v Using Jacl:

$AdminTask listNode

GroupProperties

WBINodeGroup

v Using Jython:

AdminTask.listNode

GroupProperties

(’WBINodeGroup’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask listNode

GroupProperties

{-interactive}

v Using Jython:

AdminTask.listNode

GroupProperties

(’[-interactive]’)

Chapter 6. Using scripting (wsadmin) 533

listNode

Groups

Node

Group

Comm

ands

group

The

listNode

Groups

command

returns

the list of

node

groups

from the

configuration

repository.

You can

pass an

optional

node

name to

the

command

that

returns

the list of

node

groups

where

the node

resides.

The

target

object is

name of

the node.

This

target

object is

optional.

v Parameters:

None

v Returns: A list of

the node groups

in the cell.

Batch mode example

usage:

v Using Jacl:

$AdminTask listNode

Groups

$AdminTask listNode

Groups nodeName

v Using Jython:

AdminTask.listNode

Groups

AdminTask.listNodeGro

ups(’nodeName’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask listNode

Groups {-interactive}

v Using Jython:

AdminTask.listNode

Groups (’[-inter

active]’)

list

Nodes

Node

Group

Comm

ands

group

The list

Nodes

command

displays

all of the

nodes in

the cell.

The

target

object is

name of

the node

group.

This

target

object is

optional.

v Parameters:

None

v Returns: A list of

all the nodes in

the cell

Batch mode example

usage:

v Using Jacl:

$AdminTask listNodes

v Using Jython:

AdminTask.listNodes()

Interactive mode example

usage:

v Using Jacl:

$AdminTask listNodes

{-interactive}

v Using Jython:

AdminTask.listNodes

(’[-interactive]’)

534 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

list SIB

Destin

ations

SIBAdmin

Comm

ands

Use this

command

to get a

list of SIB

destinations

of the

named

type

owned

by a

named

SIB bus.

If no type

is named,

all

destinations

owned

by the

named

bus are

listed.

None v Parameters:

bus

Bus name

(String,

required)

name

Destination

name

(String,

required)

type

type of

destination

to list -

Queue,

TopicSpace,

WebService

or Port

(String,

optional)

v Returns: List of

SIB destinations.

Batch mode example

usage:

v Using Jacl:

$AdminTask listSIB

Destinations {-bus

busname -name

destname -type

Queue}

v Using Jython:

AdminTask.listSIB

Destinations(’[-bus

busname -name

destname -type

Queue]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask listSIB

Destinations

{-interactive}

v Using Jython:

AdminTask.listSIB

Destinations (’[

-interactive]’)

Chapter 6. Using scripting (wsadmin) 535

listSIB

Engines

SIB

Admin

Comma

nds

Use the

listSIB

Engines

command

to get a

list of

bus

messaging

engines.

Supplying

only the

bus

parameter

will

result in

a list of

all

engines

associated

with the

named

bus.

Supplying

only the

node and

server

parameters

will

result in

a list of

all

engines

owned

by the

named

node/server.

Supplying

only the

cluster

parameter

will

result in

a list of

all

engines

owned

by the

named

cluster.

All other

parameter

combinations

are

illegal.

None v Parameters:

bus

name of the

bus whose

engines are

to be listed

(String,

optional)

node

node name.

To list

messaging

engines on a

server,

supply node

and server

name, but

not cluster

name

(String,

optional)

server

server

name. To

list

messaging

engines on a

server,

supply node

and server

name, but

not cluster

name

(String,

optional)

cluster

cluster

name. To

list

messaging

engines on a

cluster,

supply

cluster

name, but

not node

and server

name

(String,

optional)

v Returns: A list of

SIB messaging

engines.

Batch mode example

usage:

v Using Jacl:

$AdminTask listSIB

Engines {-bus

busname -node

nodeName -server

severname}

v Using Jython:

AdminTask.listSIB

Engines(’[-bus bus

name -node node

Name -server

severname]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask listSIB

Engines {-interactive}

v Using Jython:

AdminTask.listSIBEngi

nes (’[-interactive]’)

536 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

list SIB

JMS

Activation

Specs

SIB JMS

Admin

Commands

Interactive mode example

usage:

v Using Jacl:

$AdminTask listSIBJMS

ActivationSpecs

{-interactive}

v Using Jython:

AdminTask.listSIBJMS

ActivationSpecs

(’[-interactive]’)

Chapter 6. Using scripting (wsadmin) 537

list SIB

JMS

Connec

tion

Factories

SIB JMS

Admin

Comm

ands

Use the

list SIB

JMS

Connection

Factories

command

to list all

of the

JMS

connection

factories

for the

default

messaging

provider

at the

scope

that you

specify.

None v Parameters:

type

Filters the

list of

connection

factories.

Valid values

include:

– all - Lists

all the

JMS

connection

factories

(unified,

queue,

and

topic) at

the scope

that you

specify.

– queue -

Lists all

of the

JMS

queue

connection

factories

at the

scope

that you

specify.

– topic -

Lists all

of the

JMS topic

connection

factories

at the

scope

that you

specify.

If you do no

specify the

type option,

this

command

will return

only the

unified JMS

connection

factories at

the scope

that you

specified.

v Returns: A list of

connection

factories at the

scope that you

specified.

Batch mode example

usage:

v Using Jacl:

$AdminTask listSIBJMS

ConnectionFactories

{-type queue}

v Using Jython:

AdminTask.listSIBJMS

ConnectionFactories

(’[-type queue]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask listSIBJMS

ConnectionFactories

{-interactive}

v Using Jython:

AdminTask.listSIBJMS

ConnectionFactories

(’[-interactive]’)

538 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

list SIB

JMS

Queues

SIB JMS

Admin

Comm

ands

Use the

list SIB

JMS

Queues

command

to list all

the JMS

queues

for the

default

messaging

provider

at the

specified

scope.

None v Parameters:

None

v Returns: None

Batch mode example

usage:

v Using Jacl:

$AdminTask listSIBJM

SQueues

v Using Jython:

AdminTask.listSIBJM

SQueues()

list SIB

JMS

Topics

SIB JMS

Admin

Comm

ands

Lists all

JMS

topics for

the

default

messaging

provider

at the

specified

scope.

None v Parameters:

None

v Returns: A list of

JMS topics.

Batch mode example

usage:

v Using Jacl:

$AdminTask listSIBJM

STopics

v Using Jython:

AdminTask.listSIBJM

STopics()

list SIB

Media

tions

SIB

Admin

Comm

ands

Use this

command

to list the

mediations

on a

named

SIB bus.

None v Parameters:

bus

name of the

SIB bus

where the

mediations

to be listed

are to be

found

(String,

required)

v Returns: A list of

SIB mediations.

Batch mode example

usage:

v Using Jacl:

$AdminTask listSIBMe

diations {-bus

bus_name}

v Using Jython:

AdminTask.listSIBMed

iations(’[-bus bus_name]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask listSIBMedi

ations {-interactive}

v Using Jython:

AdminTask.listSIBMedi

ations (’[-interac

tive]’)

Chapter 6. Using scripting (wsadmin) 539

list SIBus

Members

SIB

Admin

Comm

ands

Use this

command

to list all

servers

and

clusters

which are

members

of the

named

SIB bus.

None v Parameters:

bus

name of the

SIB bus

whose

members

are to be

listed

(String,

required)

v Returns: List

containing the

IDs of bus

members –

servers and

clusters.

Batch mode example

usage:

v Using Jacl:

$AdminTask listSIBus

Members {-bus

bus_name}

v Using Jython:

AdminTask.listSIBus

Members(’[-bus

bus_name]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask listSIBus

Members {-interactive}

v Using Jython:

AdminTask.listSIBus

Members (’[-inter

active]’)

list

Servers

Server

Manage

ment

group

The list

Servers

command

returns a

list of

servers.

None v Parameters:

serverType

The type of

the server.

Used to

filter the

results.

(String)

nodeName

The name of

the node.

Used to

filter the

results.

(String)

v Returns: A list of

configuration

IDs for the

servers that

match the

criteria that you

specified.

Batch mode example

usage:

v Using Jacl:

$AdminTask listServers

{-serverType APPLICATION_

SERVER -nodeName ndnode1}

v Using Jython:

AdminTask.listServers

(’[-serverType APPLICATION

_SERVER -nodeName

ndnode1]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask listServers

{-interactive}

v Using Jython:

AdminTask.listServers

(’[-interactive]’)

540 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

listServer

Templates

Server

Management

group

Use the

listServer

Templates

command

to list

server

templates.

None v Parameters:

- version

The version

of the

template

that you

want to list.

(String,

optional)

- serverType

Specify this

option if

you want to

list

templates

for a

specific

server type.

(String,

optional)

- name

Specify this

option to

look for a

specific

template.

(String,

optional)

- queryExp

A key/value

pair that

you can use

to find

templates

by

properties.

For

example,

com.ibm.websphere.

nodeOperatingSystem

=os390.

(String[],

optional)

Batch mode example

usage:

v Using Jacl:

$AdminTask listServer

Templates {-version

6.0.0.0 -serverType

APPLICATION_SERVER}

v Using Jython:

AdminTask.listServer

Templates(’[-version

6.0.0.0 -serverType

APPLICATION_SERVER]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask list

ServerTemplates

{-interactive}

v Using Jython:

AdminTask.list

ServerTemplates

(’[-interactive]’)

v Returns: A list of

server template

identifications

that match with

the criteria that

you specify with

the command

parameters. If

you do no

specify any

parameters, all

server templates

are returned.

Chapter 6. Using scripting (wsadmin) 541

listServer

Types

Server

Manage

ment

group

Use the

listServer

Types

command

to

display

all the

current

server

types.

For

example,

APPLIC

ATION_

SERVER

,WEB_ S

ERVER,

GENERI

C_SERV

ER.

The node

name for

which

you want

to list the

valid

types.

For

example,

the types

that are

only

valid on

z/OS

will

appear

on a

z/OS

node.

(String,

optional)

v Parameters:

None

v Returns: A list of

server types that

you can define

on a node. If

you do not

specify the

target object, this

command

returns all of the

server types

defined in the

entire cell.

Batch mode example

usage:

v Using Jacl:

$AdminTask listServer

Types ndnode1

v Using Jython:

AdminTask.listServer

Types(ndnode1)

Interactive mode example

usage:

v Using Jacl:

$AdminTask list

ServerTypes

{-interactive}

v Using Jython:

AdminTask.list

ServerTypes

(’[-interactive]’)

listSI

Buses

SIB

Admin

Comm

ands

Use this

command

to list all

SIB buses

in the

cell.

None v Parameters:

None

v Returns: None

Batch mode example

usage:

v Using Jacl:

$AdminTask listSIBuses

v Using Jython:

AdminTask.

listSIBuses()

542 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

listSSL

Repert

oires

None The

listSSL

Repert

oires

command

lists all of

the

Secure

Sockets

Layer

(SSL)

configuration

instances

you can

associate

with an

SSL

inbound

channel.

SSL

Inbound

Channel

instance

for which

the

SSLConfig

candidates

are listed.

v Parameters:

None

v Returns: A list of

eligible SSL

configuration

object names.

Batch mode example

usage:

v Using Jacl:

$AdminTask listSSL

Repertoires SSL_3

(cells/rohitbuild

Cell01/nodes/rohit

buildNode01/servers/

server2|server.xml#

SSLInboundChannel_

1093445762330)

v Using Jython:

AdminTask.listSSLRep

ertoires(’SSL_3(

cells/rohitbuild

Cell01/nodes/rohit

buildNode01/servers

/server2|server.xml

#SSLInboundChannel_

1093445762330)’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask listSSL

Repertoires

{-interactive}

v Using Jython:

AdminTask.listSSL

Repertoires (’

[-interactive]’)

listServer

Templates

None Use the

listServer

Templates

command

to query

available

server

templates

based on

server

type,

platform,

or release

level.

None v Parameters:

-serverType

(String,

optional)

-platform

(String,

optional)

-releaseVersion

(String,

optional)

v Returns: A list of

server template

identifications

that match with

the criteria that

you specify with

the command

parameters. If

you do no

specify any

parameters, all

server templates

are returned.

Batch mode example

usage:

v Using Jacl:

$AdminTask listServer

Templates {-serverType

server_Type}

v Using Jython:

AdminTask.listServer

Templates(’[-server

Type server_Type]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask listServer

Templates {-inter

active}

v Using Jython:

AdminTask.listServer

Templates (’[-inter

active]’)

Chapter 6. Using scripting (wsadmin) 543

listServer

Types

None Use the

listServer

Types

command

to query

defined

server

types on

a node.

The

identification

of a node

in the

cell,

javax.

management.

ObjectName.

This

target

object is

optional.

v Returns: A list of

server types that

you can define

on a node. If

you do not

specify the

target object, this

command

returns all of the

server types

defined in the

entire cell.

Interactive mode example

usage:

v Using Jacl:

$AdminTask listServ

erTypes {-intera

ctive}

v Using Jython:

AdminTask.listServ

erTypes (’[-inter

active]’)

list

Servers

Interactive mode example

usage:

v Using Jacl:

$AdminTask listServers

{-interactive}

v Using Jython:

AdminTask.listServers

(’[-interactive]’)

listTAM

Settings

Interactive mode example

usage:

v Using Jacl:

$AdminTask listTAMS

ettings {-interactive}

v Using Jython:

AdminTask.listTAMSe

ttings (’[-inter

active]’)

544 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

listTCP

EndPoints

None The

listTCP

EndPoints

command

lists all

named

end

points

that can

be

associated

with a

TCP

inbound

channel.

TCPInbound

Channel

instance

for which

named

end

points

candidates

are listed.

(ObjectName,

required)

v Parameters:

- exclude

Distinguished

Shows only

non-
distinguished

named end

points. This

parameter

does not

require a

value.

(Boolean,

optional)

- unusedOnly

Shows the

named end

points not

in use by

other TCP

inbound

channel

instances.

This

parameter

does not

require a

value.

(Boolean,

optional)

v Returns: A list of

object names for

the eligible

named end

points.

Batch mode example

usage:

v Using Jacl:

$AdminTask listTCPEnd

Points TCP_1(cells/

rohitbuildCell01/

nodes/rohitbuildCel

lManager01/servers/

dmgr|server.xml#

TCPInboundChannel_1)

$AdminTask listTCPEnd

Points TCP_1(cells/

rohitbuildCell01/

nodes/rohitbuildCell

Manager01/servers/

dmgr|server.xml#

TCPInboundChannel

_1) {-excludeDis

tinguished}

$AdminTask listTCPEnd

Points TCP_1(cells/

rohitbuildCell01/

nodes/rohitbuildCell

Manager01/servers/

dmgr|server.xml#TCP

InboundChannel_1)

{-excludeDistingui

shed -unusedOnly}

v Using Jython:

AdminTask.listTCPEnd

Points(’TCP_1(cells/

rohitbuildCell01/

nodes/rohitbuildCell

Manager01/servers/

dmgr|server.xml#TCP

InboundChannel_1)’,

’[-excludeDistin

guished]’)

AdminTask.listTCPEnd

Points(’TCP_1(cells/

rohitbuildCell01/

nodes/rohitbuildCell

Manager01/servers/

dmgr|server.xml#

TCPInboundChannel_1)

’, ’[-excludeDisti

nguished]’)

AdminTask.listTCPEnd

Points(’TCP_1(cells/

rohitbuildCell01/nod

es/rohitbuildCellMan

ager01/servers/dmgr|

server.xml#TCPInbound

Channel_1)’, ’[-exc

ludeDistinguished

-unusedOnly]’)

Chapter 6. Using scripting (wsadmin) 545

Interactive mode example

usage:

v Using Jacl:

$AdminTask listTCPEnd

Points {-interactive}

v Using Jython:

AdminTask.listTCPEnd

Points (’[-inter

active]’)

listTCP

Thread

Pools

None The

listTCP

Thread

Pools

command

lists all of

the

thread

pools

that can

be

associated

with a

TCP

inbound

channel

or TCP

outbound

channel.

TCP

Inbound

Channel

or TCP

Outbound

Channel

instance

for which

Thread

Pool

candidates

are listed.

(Object

Name,

required)

v Parameters:

None

v Returns: A list of

eligible thread

pool object

names.

Batch mode example

usage:

v Using Jacl:

$AdminTask listTCPThr

eadPools TCP_1(cells

/rohitbuildCell01/

nodes/rohitbuildCell

Manager01/servers/

dmgr|server.xml#

TCPInboundChannel_1)

v Using Jython:

AdminTask.listTCPThr

eadPools(’TCP_1(cells

/rohitbuildCell01/

nodes/rohitbuildCell

Manager01/servers/

dmgr|server.xml#

TCPInboundChannel_1)’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask listTCPThre

adPools {-interactive}

v Using Jython:

AdminTask.listTCPThre

adPools (’[-inter

active]’)

546 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

list

Unman

aged

Nodes

Unman

aged

Node

Comm

ands

group

Use the

list

Unmanaged

Nodes

command

to list the

unmanaged

nodes in

a

configura

tion.

None v Parameters:

None

v Returns: List

Batch mode example

usage:

v Using Jacl:

$AdminTask listUnm

anagedNodes

v Using Jython:

AdminTask.listUnma

nagedNodes()

Interactive mode example

usage:

v Using Jacl:

$AdminTask listUnmana

gedNodes {-intera

ctive}

v Using Jython:

AdminTask.listUnmana

gedNodes (’[-inter

active]’)

Chapter 6. Using scripting (wsadmin) 547

mediate

SIB

Destina

tion

SIB

Admin

Comm

ands

Use the

mediate

SIB

Destination

command

to

mediate a

bus

destination.

The bus,

destination,

and

mediation

definitions

must

exist

prior to

using this

command.

The

destination

must not

be

mediated

already.

None v Parameters:

bus

the name of

the bus

where the

destination

is to be

mediated

(String,

required)

destinationName

the name of

the

destination

to be

mediated

(String,

required)

mediationName

the name to

be given to

the

mediation

(String,

required)

node

if mediating

a

destination

to a server,

specify the

node and

server

name, but

not the

cluster

name

(String,

optional)

server

if mediating

a

destination

to a server,

specify the

node and

server

name, but

not the

cluster

name

(String,

optional)

Batch mode example

usage:

v Using Jacl:

$AdminTask mediateSIB

Destination {-bus

busname -name

destname -med

iationName

mediationName}

v Using Jython:

AdminTask.mediateSIB

Destination(’[-bus

busname -name

destname -medi

ationName

mediationName]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask mediateSIB

Destination {-int

eractive}

v Using Jython:

AdminTask.mediateSIB

Destination (

’[-interactive]’)

548 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

cluster

if mediating a

destination to

a cluster,

specify the

cluster name,

but not the

node or server

name (String,

optional)

v Returns: None

modify

Node

Group

Node

Group

Comm

ands

group

The

modify

Node

Group

command

modifies

the

configur

ation of a

node

group.

The node

group

name can

not be

changed.

However,

its short

name

and

description

are

allowed.

Also, its

node

membership

can be

modified.

The

target

object is

the node

group

name.

This

target

object is

required.

v Parameters:

- shortName

The short

name of the

node group.

This

parameter is

optional.

- description

The

description

of the node

group. This

parameter is

optional.

v Returns: Node

group object ID.

Batch mode example

usage:

v Using Jacl:

$AdminTask modifyNode

Group WBINodeGroup

{-shortName WBIGroup

-description "Def

ault node group"}

v Using Jython:

AdminTask.modifyNode

Group WBINodeGroup

(’[-shortName WBI

Group -description

"WBI" node

group]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask modifyNode

Group {-interactive}

v Using Jython:

AdminTask.modifyNode

Group (’[-inter

active]’)

Chapter 6. Using scripting (wsadmin) 549

modify

Node

Group

Property

Node

Group

Comma

nds

group

The

modify

Node

Group

Property

command

modifies

custom

properties

for a

node

group

The

name of

the node

group.

This

target

object is

required.

v Parameters:

- name

The name of

the custom

property to

modify. This

parameter is

required.

- value

The value of

the custom

property.

This

parameter is

optional.

- description

The

description

of the

custom

property.

This

parameter is

optional.

v Returns:

Properties object

ID

Batch mode example

usage:

v Using Jacl:

$AdminTask modifyNode

GroupProperty WBINode

Group {-name Channel

-value "channel1"}

v Using Jython:

AdminTask.modifyNode

GroupProperty(’WBINode

Group’, ’[-name

Channel -value

channel1]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask modifyNode

GroupProperty

{-interactive}

v Using Jython:

AdminTask.modifyNode

GroupProperty (’[-

interactive]’)

550 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

modify

SIB

Destin

ation

SIB

Admin

Commands

Use the

modify

SIB

Destination

command

to modify

the

attributes

of a SIB

destination.

The bus

and

name

parameters

are used

to

identify

the SIB

destination

and

cannot be

modified.

None v Parameters:

bus

bus name

(String,

required)

name

destination

name

(String,

required)

description

description

(String,

optional)

reliability

the

reliability

quality of

service for

message

flows

through this

destination,

from

BEST_EFFORT_

NON-
PERSISTENT

to

ASSURED_PERSISTENT,

in order of

increasing

reliability.

Higher

levels of

reliability

have higher

impacts on

the

performance

(String,

optional)

maxReliability

the

maximum

reliability

quality of

service that

is accepted

for values

specified by

producers

(String,

optional)

Batch mode example

usage:

v Using Jacl:

$AdminTask modifySIB

Destination {-bus

busname -name

destname}

v Using Jython:

AdminTask.modifySIB

Destination(’[-bus

busname -name

destname]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask modifySIB

Destination

{-interactive}

v Using Jython:

AdminTask.modifySIB

Destination (

’[-interactive]’)

Chapter 6. Using scripting (wsadmin) 551

overrideOfQOS

ByProducerAllowed

controls the

quality of

service for

message flows

between

producers and

the

destination.

Select this

option to use

the quality of

service

specified by

producers

instead of the

quality

defined for the

destination

(String,

optional)

defaultPriority

the default

priority for

message flows

through this

destination, in

the range 0

(lowest)

through 9

(highest). This

default

priority is

used for

messages that

do not contain

a priority

value (Integer,

optional)

maxFailedDeliveries

the maximum

number of

times that

service tries to

deliver a

message to the

destination

before

forwarding it

to the

exception

destination

(Integer,

optional)

552 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

exceptionDestination

the name of

another

destination to

which the

system sends a

message that

cannot be

delivered to

this

destination

within the

specified

maximum

number of

failed

deliveries

(String,

optional)

sendAllowed

clear this

option (setting

it to false) to

stop producers

from being

able to send

messages to

this

destination

(String,

optional)

receiveAllowed

clear this

option (setting

it to false) to

prevent

consumers

from being

able to receive

messages from

this

destination

(String,

optional)

Chapter 6. Using scripting (wsadmin) 553

quiesceMode

select this

option (setting

it to true) to

indicate that

the destination

is quiescing. In

quiesce mode,

new messages

for the

destination

cannot be

added to the

bus, but any

messages

already in the

bus can still be

sent to, and

processed by,

the destination

(Boolean,

optional)

554 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

receiveExclusive

select this

option (setting

it to true) to

allow only one

consumer to

attach to a

destination

(Boolean,

optional)

topicAccessCheckRequired

topic access

check required

(Boolean,

optional)

replyDestination

clear this

option (setting

it to false) to

stop producers

from being

able to send

messages to

this

destination

(String,

optional)

replyDestinationBus

clear this

option (setting

it to false) to

prevent

consumers

from being

able to receive

messages from

this

destination

(String,

optional)

delegateAuthorization

CheckToTarget

indicates

whether the

authorization

check should

be delegated

to the alias or

target

destination

(Boolean,

optional)

Chapter 6. Using scripting (wsadmin) 555

v Parameters for

step one:

defaultForwardRoutingPath

bus

bus name

(String,

optional)

destination

destination

name

(String,

required)

v Returns: None

556 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

modify

SIB

Engine

SIB

Admin

Comm

ands

Use the

modify

SIB

Engine

command

to modify

the

attributes

of a bus

messaging

engine.

The bus,

node,

server,

cluster

and

engine

parameters

are used

to

identify

the

engine

and

cannot be

modified.

A server

can only

have one

messaging

engine,

so when

using this

command

to modify

a

messaging

engine

from a

server

there‘s no

need to

supply

the

engine

name.

However,

since a

cluster

can have

more

than one

messaging

engine,

the

engine‘s

name

must be

supplied.

None v Parameters:

bus

the name of

the bus to

which the

messaging

engine is to

belong

(String,

required)

node

to modify a

messaging

engine on a

server,

supply node

and server

name, but

not cluster

name

(String,

optional)

server

to modify a

messaging

engine on a

server,

supply node

and server

name, but

not cluster

name

(String,

optional)

cluster

to modify a

messaging

engine on a

cluster,

supply

cluster

name, but

not node

and server

name

(String,

optional)

engine

the name of

the engine

to be

modified.

This is only

required if

the engine

belongs to a

cluster

(String,

optional)

Batch mode example

usage:

v Using Jacl:

$AdminTask modifySIB

Engine {-bus bus

name -node node

Name -server

severname}

v Using Jython:

AdminTask.modifySIB

Engine(’[-bus

busname -node

nodeName -ser

ver severname]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask modifySIB

Engine {-interactive}

v Using Jython:

AdminTask.modifySIB

Engine (’[-inter

active]’)

Chapter 6. Using scripting (wsadmin) 557

description

description of

the messaging

engine (String,

optional)

initialState

whether the

messaging

engine is

started or

stopped when

the associated

application

server is first

started. Until

started, the

messaging

engine is

unavailable.

(Stopped |

Started)

(String,

optional)

destinationHighMsgs

the maximum

total number

of messages

that the

messaging

engine can

place on its

message

points (Long,

optional)

v Returns: None

558 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

modify

SIB JMS

Activation

Spec

SIB JMS

Admin

Comm

ands

Use the

modify

SIB JMS

Activation

Spec

command

to modify

the

properties

of an

activation

specification.

None v Parameters:

name

The name of

the

activation

specification

that you

want to

modify.

(String,

(required)

propertyList

A list of

name-value

pairs.

(required)

v Returns: None

Batch mode example

usage:

v Using Jacl:

$AdminTask modifySIB

JMSActivationSpec

{-name specname

-propertyList propertyList}

v Using Jython:

AdminTask.modifySIBJ

MSActivationSpec(’

[-name specname

-propertyList

propertyList]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask modifySIB

JMSActivationSpec

{-interactive}

v Using Jython:

AdminTask.modifySIB

JMSActivationSpec

(’[-interactive]’)

Chapter 6. Using scripting (wsadmin) 559

modify

SIB JMS

Conne

ction

Factory

SIB JMS

Admin

Comm

ands

Use the

modify

SIB JMS

Connection

Factory

command

to modify

a unified

JMS

connection

factory at

the

current

scope.

None v Parameters:

name

The name of

the SIB JMS

connection

factory.

(String,

required)

jndiName

The JNDI

name of the

SIB JMS

connection

factory.

(String,

required)

type

The type of

connection

factory to

modify. To

modify a

queue

connection

factory, set

the value to

Queue. To

modify a

topic

connection

factory, set

the value to

Topic. If you

want to

create a

generic

connection

factory, do

not specify

this option.

(String,

optional)

busName

the SIB bus

name

(String,

optional)

category

Classifies or

groups the

connection

factory.

(String,

optional)

Batch mode example

usage:

v Using Jacl:

$AdminTask modifySIB

JMSConnectionFactory

{-name factory_

name -jndiName

jndi_name}

v Using Jython:

AdminTask.modifySIB

JMSConnectionFactory

(’[-name factory_

name -jndiName

jndi_name]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask modifySIB

JMSConnectionFactory

{-interactive}

v Using Jython:

AdminTask.modifySIB

JMSConnectionFactory

(’[-interactive]’)

560 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

clientID

A user-defined

string. Only

required for

durable

subscriptions.

(String,

optional)

connectionProximity

The proximity

of acceptable

messaging

engines. Valid

values include:

Bus, Host,

Cluster and

Server. (String,

optional)

description

The

description of

the connection

factory.

(String,

optional)

durableSubscriptionHome

The durable

subscription

home value.

(String,

optional)

Chapter 6. Using scripting (wsadmin) 561

nonPersistentMapping

The

non-persistent

mapping

value. Valid

values are

BestEffortNonPersistent,

ExpressNonPersistent,

ReliableNonPersistent,

ReliablePersistent,

AssuredPersistent,

AsSIBDestination

and None.

(String,

optional)

password

The password

that is used to

modify

connections

from the

connection

factory.

(String,

optional)

providerEndPoints

A list of

endpoint

triplets

separated by

commas. For

example:

host:port:chain

(String,

optional)

readAhead

The read

ahead value.

Valid values

include:

Default,

AlwaysOn,

and

AlwaysOff.

(String,

optional)

562 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

remoteProtocol

The name of

the protocol

used to

connect to a

remote

messaging

engine.

(String,

optional)

remoteTargetGroup

(String,

optional)

remoteTargetType

(String,

optional)

tempQueueModelName

Temporary

queue model

name. (String,

optional)

tempTopicModelName

Temporary

topic model

name. (String,

optional)

userName

The user name

that is used to

modify

connections

from the

connection

factory.

(String,

optional)

v Returns: None

Chapter 6. Using scripting (wsadmin) 563

modify

SIB JMS

Queue

SIB JMS

Admin

Comm

ands

Use the

modify

SIB JMS

Queue

command

to modify

a unified

JMS

queue at

the

current

scope.

None v Parameters:

name

The name of

the SIB JMS

queue.

(String,

required)

jndiName

The JNDI

name of the

SIB JMS

queue.

(String,

required)

description

A

description

of the SIB

JMS queue

(String,

optional)

queueName

The name of

the

underlying

SIB queue

to which the

queue

points

(String,

required)

deliveryMode

The delivery

mode for

messages.

Legal values

are

″Application″,

″NonPersistent″

and

″Persistent″

(String,

optional)

Batch mode example

usage:

v Using Jacl:

$AdminTask modifySIB

JMSQueue {-name

queue_name

-jndiName jndi_

name -queueName

queue_name}

v Using Jython:

AdminTask.modifySIB

JMSQueue(’[-name

queue_name -jndi

Name jndi_name

-queueName queue

_name]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask modifySIBJ

MSQueue {-interactive}

v Using Jython:

AdminTask.modifySIBJM

SQueue (’[-inter

active]’)

564 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

timeToLive

the time in

milliseconds to

be used for

message

expiration

(Long,

optional)

priority

the priority for

messages.

Whole number

in the range 0

to 9 (Integer,

optional)

readAhead

read-ahead

value. Legal

values are

″AsConnection″,

″AlwaysOn″

and

″AlwaysOff″

(String,

optional)

timeToLive

(optional)

v Returns: None

Chapter 6. Using scripting (wsadmin) 565

modify

SIB JMS

Topic

SIB JMS

Admin

Comm

ands

Use the

modify

SIB JMS

Topic

command

to modify

the JMS

topic at

the

current

scope.

None v Parameters:

name

The name of

the SIB JMS

topic

(String,

required)

jndiName

the SIB JMS

topic’s JNDI

name

(String,

required)

description

a

description

of the SIB

JMS queue

(String,

optional)

topicSpace

the name of

the

underlying

SIB topic

space to

which the

topic points

(String,

required)

*topicName

the topic to

be used

inside the

topic space

(for

example,

stock/IBM)

(String,

required)

Batch mode example

usage:

v Using Jacl:

$AdminTask modifySIB

JMSTopic {-name

topic_name -jndi

Name jndi_name

-topicName topic_

name -topicSpace

topicspace_name}

v Using Jython:

AdminTask.modifySIBJ

MSTopic(’[-name topic_name -jndi

Name jndi_name

-topicName topic_

name -topicSpace

topicspace_

name]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask modifySIB

JMSTopic {-inter

active}

v Using Jython:

AdminTask.modifySIB

JMSTopic (’[-inter

active]’)

566 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

deliveryMode

the delivery

mode for

messages.

Legal values

are

″Application″,

″NonPersistent″

and

″Persistent″

(String,

optional)

timeToLive

the time in

milliseconds to

be used for

message

expiration

(Long,

optional)

priority

the priority for

messages.

Whole number

in the range 0

to 9 (Integer,

optional)

readAhead

read-ahead

value. Legal

values are

″AsConnection″,

″AlwaysOn″

and

″AlwaysOff″

(String,

optional)

busName

the name of

the bus on

which the

topic resides

(String,

optional)

v Returns: None

Chapter 6. Using scripting (wsadmin) 567

modify

SIB

Mediation

SIB

Admin

Comm

ands

Use this

command

to modify

the

attributes

of a SIB

mediation.

The bus

and

mediation

Name

parameters

identify

the

mediation

and

cannot be

modified.

None v Parameters:

bus

the name of

the bus that

owns the

mediation

(String,

required)

mediationName

name of the

mediation to

be modified

(String,

required)

description

description

of the

mediation

(String,

optional)

handlerListName

the name of

the handler

list that was

defined

when the

mediation

was

deployed

(String,

optional)

globalTransaction

whether or

not a global

transaction

is started for

each

message

processed

(Boolean,

optional)

Batch mode example

usage:

v Using Jacl:

$AdminTask modifySIB

Mediation {-bus

bus_name -jndi

Name jndi_name}

v Using Jython:

AdminTask.modifySIB

Mediation(’[-bus

bus_name -media

tionName media

tion_name]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask modifySIBM

ediation {-inter

active}

v Using Jython:

AdminTask.modifySIB

Mediation (’[-inter

active]’)

568 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

allowConcurrentMediation

whether or not

to apply the

mediation to

multiple

messages

concurrently,

and preserve

message

ordering

(Boolean,

optional)

selector

the text string

that must be

present in a

message for

the mediation

to process the

message

(String,

optional)

discriminator

the text string

that must not

be present in a

message for

the mediation

to process the

message

(String,

optional)

v Returns: None

Chapter 6. Using scripting (wsadmin) 569

modify

SIBus

SIB

Admin

Comma

nds

Use this

command

to modify

the

attributes

of the

named

bus.He

“bus”

parameter

identifies

the bus

to be

modified,

and is

not used

to change

the name

of the

bus.

None v Parameters:

bus

name of bus

to modify

(String,

required)

description

description

of bus

modify

(String,

optional)

secure

enable or

disable bus

security

(Boolean,

optional)

interEngineAuthAlias

 name of the

authentication

alias used to

authorize

communication

between

messaging

engines on

the bus.

mediationsAuthAlias

name of the

authentication

alias used to

authorize

mediations

to access the

bus (String,

optional)

Batch mode example

usage:

v Using Jacl:

$AdminTask modifySI

Bus {-bus busname

-description text

-secure True -mediat

ionsAuthAlias

name -protocol

protocol -disca

rdOnDelete False}

v Using Jython:

AdminTask.modifySIBus

(’[-busbusname

-description

"text" -secure

True -mediationsAuth

Alias name

-protocol proto

col -discardOn

Delete False]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask modifySI

Bus {-interactive}

v Using Jython:

AdminTask.modifySI

Bus (’[-inter

active]’)

570 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

protocol

the protocol

used to send

and receive

messages

between

messaging

engines, and

between API

clients and

messaging

engines

(String,

optional)

discardOnDelete

indicate

whether or not

any messages

left in a

queue’s data

store should

be discarded

when the

queue is

deleted

(Boolean,

optional)

destinationHighMsgs

the maximum

number of

messages that

any queue on

the bus can

hold (Long,

optional)

configurationReloadEnabled

indicate

whether

configuration

files should be

dynamically

reloaded for

this bus

(Boolean,

optional)

v Returns: None

Chapter 6. Using scripting (wsadmin) 571

modify

SIBus

Member

SIB

Admin

Comm

ands

Use this

command

to modify

the

attributes

of the

bus

member

identified

by the

bus,

node,

server

and

cluster

parameters.

None v Parameters:

bus

name of bus

to which the

member

belongs(String,

required)

node

to specify a

server bus

member,

supply node

and server

name, but

not cluster

name

(String,

optional)

server

to specify a

server bus

member,

supply node

and server

name, but

not cluster

name

(String,

optional)

cluster

to specify a

cluster bus

member,

supply

cluster

name but

not node

and server

name

(String,

optional)

v Returns: None

Batch mode example

usage:

v Using Jacl:

$AdminTask modifySIB

usMember {-bus

busname -node

nodename -ser

ver servername

-description

text}

v Using Jython:

AdminTask.modifySI

BusMember(’[-bus

busname -node

nodename -ser

ver servername

-description

"text"]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask modifySI

BusMember {-inter

active}

v Using Jython:

AdminTask.modifySIB

usMember (’[-inter

active]’)

572 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

move

Cluster

ToCore

Group

Core

Group

Manage

ment

group

The

move

Cluster

ToCore

Group

command

moves all

of servers

in a

cluster

that you

specify

from a

core

group to

another

core

group.

All of the

servers in

cluster

must be

members

of the

same

core

group.

None v Parameters:

- source

The name of

the core

group that

contains the

cluster that

you want to

move. The

core group

must exist

prior to

running this

command.

The cluster

that you

specify must

be a

member of

this core

group.

(String,

required)

- target

The name of

the core

group

where you

want to

move the

cluster.

(String,

required)

- clusterName

The name of

the cluster

that you

want to

move.

(String,

required)

v Returns: None

Batch mode example

usage:

v Using Jacl:

$AdminTask moveClus

terToCoreGroup

{-source OldCore

Group -target

NewCoreGroup

-clusterName

ClusterOne}

v Using Jython:

AdminTask.moveClus

terToCoreGroup(’

[-source OldCore

Group -target

NewCoreGroup

-clusterName

ClusterOne]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask moveClu

sterToCoreGroup

{-interactive}

v Using Jython:

AdminTask.moveClus

terToCoreGroup

(’[-interactive]’)

Chapter 6. Using scripting (wsadmin) 573

move

Server

ToCore

Group

Core

Group

Manag

ement

group

The

move

Server

ToCore

Group

command

moves a

server to

a core

group

that you

specify.

When the

server is

added to

the core

group

that you

specify, it

will be

removed

from the

core

group

where it

originally

resided.

None v Parameters:

- source

The name of

the core

group that

contains the

server that

you want to

move. The

core group

must

already exist

with the

server that

you specify

being a

member of

the core

group.

(String,

required)

- target

The name of

the core

group

where you

want to

move the

server. The

core group

that you

specify must

exist prior

to running

the

command.

(String,

required)

- nodeName

The name of

the node

that

contains the

server that

you want to

move.

(String,

required)

- serverName

The name of

the server

that you

want to

move.

(String,

required)

v Returns: None

Batch mode example

usage:

v Using Jacl:

$AdminTask moveServ

erToCoreGroup

{-source OldCore

Group -target

NewCoreGroup

-nodeName myNode

-serverName

myServer}

v Using Jython:

AdminTask.moveServer

ToCoreGroup(’[-source

OldCoreGroup

-target NewCore

Group -nodeName

myNode -server

Name myServer]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask moveServer

ToCoreGroup {-inter

active}

v Using Jython:

AdminTask.moveServer

ToCoreGroup (’[-inter

active]’)

574 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

publish

SIBWS

Inbound

Service

SIB Web

Services

group

The

publish

SIBWS

Inbound

Service

command

publishes

the

WSDL

document

for the

inbound

service

and the

associated

ports to

the

registry

and

business

defined

by the

UDDIPublication

object.

The

object

name of

the

inbound

service

object.

v Parameters:

uddiPublication

The name of

the UDDI

publication

for the

service.

(required)

userId

The user ID

to use to

retrieve the

WSDL.

(optional)

password

The

password to

use to

retrieve the

WSDL.

(optional)

v Returns: None

Batch mode example

usage:

v Using Jacl:

$AdminTask publishSIB

WSInboundService

$inService {-uddi

Publication

"MyUddi"}

v Using Jython:

AdminTask.publishSIB

WSInboundService(in

Service, ’[-uddiPub

lication MyUddi

]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask publishSI

BWSInboundService

{-interactive}

v Using Jython:

AdminTask.publishSIB

WSInboundService

(’[-interactive]’)

reconfigure

TAM

Interactive mode example

usage:

v Using Jacl:

$AdminTask reconfigur

eTAM {-interactive}

v Using Jython:

AdminTask.reconfigur

eTAM (’[-intera

ctive]’)

Chapter 6. Using scripting (wsadmin) 575

refresh

SIBWS

Inbound

Service

WSDL

SIB Web

Services

group

The

refresh

SIBWS

InboundService

WSDL

command

loads the

WSDL

document

from the

WSDL

Location

parameters

of the

inbound

service

and

locates

the

WSDL

Location-

specified

service

element.

If the

service

element

is not

present,

this

command

fails. If

the

outbound

ports are

not a

subset of

the ports

in the

loaded

WSDL

document,

this

command

fails.

The

object

name of

the

inbound

service

object.

v Parameters:

userId

The user ID

to use to

retrieve the

WSDL.

(optional)

password

The

password to

use to

retrieve the

WSDL.

(optional)

v Returns: None

Batch mode example

usage:

v Using Jacl:

$AdminTask refreshSIB

WSInboundServiceWSDL

$inService

v Using Jython:

AdminTask.refreshSI

BWSInboundService

WSDL(inService)

Interactive mode example

usage:

v Using Jacl:

$AdminTask refreshSIB

WSInboundServiceWSDL

{-interactive}

v Using Jython:

AdminTask.refreshSIB

WSInboundServiceWSDL

(’[-interactive]’)

576 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

If the

WSDL

will be

retrieved

through a

proxy,

the

server on

which

the

command

is

running

must

have the

system

properties

that

identify

the proxy

server set

correctly.

Chapter 6. Using scripting (wsadmin) 577

refresh

SIBWS

Outbound

Service

WSDL

SIB Web

Services

group

The

refresh

SIBWS

Outbound

Service

WSDL

command

loads the

WSDL

document

from the

WSDLLocation

parameters

of the

outbound

service

and

locates

the

WSDLLocation

specified

service

element.

If the

service

element

is not

present,

this

command

fails. If

the

outbound

ports are

not a

subset of

the ports

in the

loaded

WSDL

document,

this

command

fails.

The

object

name of

the

outbound

service

object.

v Parameters:

userId

The user ID

to use to

retrieve the

WSDL.

(optional)

password

The

password to

use to

retrieve the

WSDL.

(optional)

v Returns: None

Batch mode example

usage:

v Using Jacl:

$AdminTask refreshSIB

WSOutboundServiceWS

DL $outService

v Using Jython:

AdminTask.refreshSIB

WSOutboundServiceWS

DL(outService)

Interactive mode example

usage:

v Using Jacl:

$AdminTask refreshSI

BWSOutboundService

WSDL {-interactive}

v Using Jython:

AdminTask.refreshSIB

WSOutboundServiceWSDL

(’[-interactive]’)

578 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

If the

WSDL

will be

retrieved

through a

proxy,

the

server on

which

the

command

is

running

must

have the

system

properties

that

identify

the proxy

server set

correctly.

remove

Node

Group

Node

Group

Comm

ands

group

The

remove

Node

Group

command

removes

the

configu

ration of

a node

group.

You can

remove a

node

group if

it does

not

contain

any

members.

Also, the

default

node

group

can not

be

removed.

The

name of

the node

group to

be

removed.

This

target

object is

required.

v Parameters:

None

v Returns: Node

group object ID.

Batch mode example

usage:

v Using Jacl:

$AdminTask removeNode

Group WBINodeGroup

v Using Jython:

AdminTask.removeNode

Group(’WBINodeGroup’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask removeNode

Group {-interactive}

v Using Jython:

AdminTask.removeNode

Group (’[-inter

active]’)

Chapter 6. Using scripting (wsadmin) 579

remove

Node

Group

Member

Node

Group

Comm

ands

group

The

remove

Node

Group

Member

command

removes

the

configuration

of a node

group

member.

v A node

must

always

be a

member

of at

least

one

node

group.

v You

cannot

remove

a node

from a

node

group

that is

part of

a

cluster

in that

node

group.

v For the

z/OS

platform,

you

cannot

remove

nodes

from

sysplex

node

groups.

The

target

object is

the node

group

containing

the

member

to be

removed.

This

target

object is

required.

v Parameters:

- nodeName

The name of

the node to

be removed

from a node

group. This

parameter is

required.

v Returns: Node

group member

object ID.

Batch mode example

usage:

v Using Jacl:

$AdminTask remove

NodeGroupMember WBI

NodeGroup {-node

Name WBINode}

v Using Jython:

AdminTask.removeNode

GroupMember(’WBINode

Group’, ’[-nodeName

WBINode]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask removeNode

GroupMember {-inter

active}

v Using Jython:

AdminTask.removeNode

GroupMember (’[-in

teractive]’)

580 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

remove

Node

Group

Property

Node

Group

Comm

ands

group

The

remove

Node

Group

Property

command

removes

custom

properties

of a node

group.

The

name of

the node

group.

This

target

object is

required.

v Parameters:

- name

The name of

the custom

property to

remove.

This

parameter is

required.

v Returns:

Properties object

ID

Batch mode example

usage:

v Using Jacl:

$AdminTask removeNode

GroupProperty WBINode

Group {-name

Channel}

v Using Jython:

AdminTask.removeNode

GroupProperty(’WBI

NodeGroup’, ’[-name

Channel]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask removeNode

GroupProperty

{-interactive}

v Using Jython:

AdminTask.removeNode

GroupProperty

(’[-interactive]’)

remove

SIBWS

Inbound

Port

SIBWeb

Services

group

The

remove

SIBWS

Inbound

Port

command

removes

the

configura

tion of an

inbound

port.

The

object

name of

the

inbound

port

object

that you

want to

remove.

v Parameters:

None

v Returns: None

Batch mode example

usage:

v Using Jacl:

$AdminTask removeSIB

WSInboundPort $inPort

v Using Jython:

AdminTask.removeSIBW

SInboundPort(inPort)

Interactive mode example

usage:

v Using Jacl:

$AdminTask removeSIBW

SInboundPort {-inte

ractive}

v Using Jython:

AdminTask.removeSIB

WSInboundPort (’[

-interactive]’)

Chapter 6. Using scripting (wsadmin) 581

remove

SIBWS

Outbound

Port

SIB Web

Services

group

The

remove

SIBWS

Outbound

Port

command

removes

the

configur

ation of

an

outbound

port. If

the port

that you

delete is

the

default

port for

the

outbound

service,

one of

the

remaining

ports, if

any, will

be chosen

as the

new

default.

Resources

that are

associated

with the

outbound

port, for

example,

WS-Security

configuration,

are

disassociated

from the

outbound

port but

not

deleted.

Object

name of

the

outbound

port

object

that you

want to

remove.

v Parameters:

None

v Returns: None

Batch mode example

usage:

v Using Jacl:

$AdminTask removeSIB

WSOutboundPort

$outPort

v Using Jython:

AdminTask.removeSIB

WSOutboundPort

(outPort)

Interactive mode example

usage:

v Using Jacl:

$AdminTask removeSIB

WSOutboundPort

{-interactive}

v Using Jython:

AdminTask.removeSIBW

SOutboundPort (’

[-interactive]’)

582 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

remove

SIBus

Member

SIB

Admin

Comm

ands

Use this

command

to

remove a

server or

a cluster

from a

SIB bus.

As well

as

removing

the

server or

cluster

from the

SIB bus,

this

command

also

deletes

all SIB

messaging

engines

associated

with the

bus, all

queue

points

and

publication

points

owned

by those

engines,

and all

queue

point

references

and

publication

point

references

which

refer to

the

deleted

queue

points

and

publication

points.

None v Parameters:

bus

name of SIB

bus to

remove

member

from

(String,

required)

node

to specify a

server bus

member,

supply node

and server

name, but

not cluster

name

(String,

optional)

server

to specify a

server bus

member,

supply node

and server

name, but

not cluster

name

(String,

optional)

cluster

to specify a

cluster bus

member,

supply

cluster

name but

not node

and server

name

(String,

optional)

v Returns:

Batch mode example

usage:

v Using Jacl:

$AdminTask removeSI

BusMember {-bus

busname -node

nodename -serv

er servername}

v Using Jython:

AdminTask.removeSI

BusMember(’[-bus

busname -node

nodename -ser

ver servername

]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask removeSI

BusMember {-intera

ctive}

v Using Jython:

AdminTask.removeSIBu

sMember (’[-inter

active]’)

Chapter 6. Using scripting (wsadmin) 583

remove

Unmana

ged

Node

Unman

aged

Node

Comm

ands

group

Use the

remove

Unman

aged

Node

command

to

remove

an

unmanaged

node

from the

configuation.

None v Parameters:

- nodeName

The name of

the

unmanaged

node.

(String,

required)

v Returns: null

Batch mode example

usage:

v Using Jacl:

$AdminTask removeUn

managedNode {-node

Name myNode }

v Using Jython:

AdminTask.removeUnma

nagedNode(’[-nodeName

myNode]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask removeUnm

anagedNode {-inter

active}

v Using Jython:

AdminTask.createUnm

anagedNode (’[

-interactive]’)

584 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

remove

WSGW

Target

Service

WS

Gateway

group

The

remove

WSGW

Target

Service

command

removes

a target

service

from the

gateway

service.

The

destinations

that are

associated

with the

target

service

are not

deleted.

If the

target

service

that you

remove is

the

default

target

service,

the

default is

set to the

first

target

service in

the set or

cleared if

there are

none left.

object

name of

the

Target

Service

object

v Parameters:

None

v Returns: None

Batch mode example

usage:

v Using Jacl:

$AdminTask removeWSGW

TargetService

$gwTarget

v Using Jython:

AdminTask.removeWSGW

TargetService

(gwTarget)

Interactive mode example

usage:

v Using Jacl:

$AdminTask removeWSGW

TargetService

{-interactive}

v Using Jython:

AdminTask.removeWSGW

TargetService (’

[-interactive]’)

Chapter 6. Using scripting (wsadmin) 585

set

Default

SIBWS

Outbound

Port

SIB Web

Services

group

The set

Default

SIBWS

Outbound

Port

command

updates

the

default

outbound

port for

an

outbound

service.

The

object

name of

the

outbound

service

whose

default

port you

want to

update.

v Parameters:

name

The name of

the port that

you want to

set as the

default.

(required)

v Returns: None

Batch mode example

usage:

v Using Jacl:

$AdminTask setDefaul

tSIBWSOutboundPort

$outService {-name

"MyServiceSoap"}

v Using Jython:

AdminTask.setDefault

SIBWSOutboundPort

(outService, ’[-name

MyServiceSoap]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask setDefault

SIBWSOutboundPort

{-interactive}

v Using Jython:

AdminTask.setDefault

SIBWSOutboundPort

(’[-interactive]’)

show SIB

Destina

tion

SIB

Admin

Comm

ands

Use the

show

SIB

Destin

ation

command

to get the

attribute

names/

values of

a SIB

destination.

The bus

and

name

parameter

identify

the SIB

destination

whose

attributes

are

required.

None v Parameters:

bus

bus name

(String,

required)

name

destination

name

(String,

required)

v Returns: The

attribute names

and values of

the named SIB

destination on

the named bus.

Batch mode example

usage:

v Using Jacl:

$AdminTask showSIB

Destination {-bus

busname -name

destname}

v Using Jython:

AdminTask.showSIBDes

tination(’[-bus

busname -name

destname]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask showSIBDes

tination {-inter

active}

v Using Jython:

AdminTask.showSIBDes

tination (’[-inter

active]’)

586 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

showSIB

Engine

SIB

Admin

Commands

Use the

showSIB

Engine

command

to get the

attribute

names/values

of a SIB

messaging

engine

belonging

to a

given bus

member.

If the bus

member

is a

server,

only the

bus, node

and

server

parameters

need be

supplied.

A server

only has

1 engine,

so the

engine

parameter

is not

necessary.

If the bus

member

is a

cluster,

the bus,

cluster

and

engine

parameters

must be

supplied,

since a

cluster

can have

more

than one

engine.

None v Parameters:

bus

the name of

the bus to

which the

messaging

engine to be

shown

belongs

(String,

required)

node

to show a

messaging

engine that

belongs to a

server,

supply node

and server

name, but

not cluster

name

(String,

optional)

server

to show a

messaging

engine that

belongs to a

server,

supply node

and server

name, but

not cluster

name

(String,

optional)

cluster

to show a

messaging

engine that

belongs to a

cluster,

supply

cluster

name, but

not node

and server

name

(String,

optional)

Batch mode example

usage:

v Using Jacl:

$AdminTask showSIBEng

ine {-bus busname

-node nodeName

-server

severname}

v Using Jython:

AdminTask.showSIBEng

ine(’[-bus busname

-node nodeName

-server severname

]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask showSIBEn

gine {-interactive}

v Using Jython:

AdminTask.showSIBEn

gine (’[-interac

tive]’)

Chapter 6. Using scripting (wsadmin) 587

engine

The name of

the engine to

show. If the

bus member

has only one

messaging

engine, you do

not need to

specify the

engine option.

If the bus

member has

several

messaging

engines, you

must specify

the name of

the engine for

which you

want to

display details.

(String,

optional)

v Returns: The

attribute names

and values of

the identified

SIB messaging

engine.

show SIB

JMS

Activation

Spec

SIB

Admin

Comm

ands

The

showSIB

JMS

Activation

Spec

command

shows

details

about a

JMS

activation

specification.

None v Parameters:

bus

The name of

the bus that

owns the

mediation

(String,

required)

mediationName

The name of

the

mediation to

be shown

(String,

required)

v Returns: A list

Batch mode example

usage:

v Using Jacl:

$AdminTask showSIBJMS

ActivationSpec {-bus

bus_name -med

iationName medi

ation_name}

v Using Jython:

AdminTask.showSIBJMS

ActivationSpec(’[-bus

bus_name -medi

ationName mediat

ion_name]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask showSIBJMS

ActivationSpec {-int

eractive}

v Using Jython:

AdminTask.showSIBJMS

ActivationSpec (’[

-interactive]’)

588 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

show

SIBJMS

Connec

tion

Factory

SIBJMS

Admin

Comm

ands

The

show

SIBJMS

Conne

ction

Factory

command

shows

details

about a

JMS

connection

factory.

None v Parameters:

name

The name of

the SIB JMS

connection

factory

(String,

required)

v Returns: A set of

property value

pairs for the JMS

connection

factory that you

specified.

Batch mode example

usage:

v Using Jacl:

$AdminTask showSIBJMS

ConnectionFactory

{-name factory_

name}

v Using Jython:

AdminTask.showSIBJMS

ConnectionFactory(’

[-name factory_

name]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask showSIBJMS

ConnectionFactory

{-interactive}

v Using Jython:

AdminTask.showSIBJMS

ConnectionFactory

(’[-interactive]’)

show

SIBJMS

Queue

SIB JMS

Admin

Comm

ands

Use the

show

SIBJMS

Queue

command

to show

the

details

about a

JMS

queue.

None v Parameters:

name

The name of

the SIB JMS

queue.

(String,

required)

v Returns: A set of

property value

pairs for the JMS

queue that you

specified.

Batch mode example

usage:

v Using Jacl:

$AdminTask showSIBJMS

Queue {-name queue

_name}

v Using Jython:

AdminTask.showSIBJMS

Queue(’[-name

queue_name]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask showSIBJMS

Queue {-interactive}

v Using Jython:

AdminTask.showSIBJMS

Queue (’[-intera

ctive]’)

Chapter 6. Using scripting (wsadmin) 589

show

SIBJMS

Topic

SIBJMS

Admin

Comm

ands

Use this

command

to show

the

details

for a JMS

topic.

None v Parameters:

- name

The name of

the SIB JMS

topic

(String,

required)

v Returns: A set of

property value

pairs for the JMS

topic that you

specified.

Batch mode example

usage:

v Using Jacl:

$AdminTask showSIBJM

STopic {-name

topic_name}

v Using Jython:

AdminTask.showSIBJMS

Topic(’[-name

topic_name]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask showSIBJM

STopic {-interactive}

v Using Jython:

AdminTask.showSIBJMS

Topic (’[-intera

ctive]’)

show SIB

Mediation

SIB

Admin

Comm

ands

Use this

command

to get the

attribute

names/

values of

a SIB

mediation.

None v Parameters:

bus

the name of

the bus that

owns the

mediation

(String,

required)

mediationName

the name of

the

mediation to

be shown

(String,

required)

v Returns: The

attribute names

and values of

the identified

SIB mediation.

Batch mode example

usage:

v Using Jacl:

$AdminTask showSIBMe

diation {-bus bus

_name -mediation

Name mediation_

name}

v Using Jython:

AdminTask.showSIBMed

iation(’[-bus bus_

name -mediation

Name mediation_

name]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask showSIBMed

iation {-interactive}

v Using Jython:

AdminTask.showSIBMedi

ation (’[-intera

ctive]’)

590 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

show

SIBus

SIB

Admin

Commands

Use this

command

to get the

attribute

names/

values of

a SIB

bus.

None v Parameters:

bus

bus name

(String,

required)

v Returns: The

attribute names

and values of

the identified

SIB bus.

Batch mode example

usage:

v Using Jacl:

$AdminTask showSIBus

{-bus bus_name}

v Using Jython:

AdminTask.showSIBus

(’[-bus bus_name

]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask showSIBus

{-interactive}

v Using Jython:

AdminTask.showSIBus

(’[-interactive]’)

Chapter 6. Using scripting (wsadmin) 591

show

SIBus

Member

SIB

Admin

Comm

ands

Use this

command

to get the

attribute

names/

values of

a SIB bus

member.

None v Parameters:

bus

name of bus

to show

member

from

(String,

required)

node

to specify a

server bus

member,

supply node

and server

name, but

not cluster

name

(String,

optional)

server

to specify a

server bus

member,

supply node

and server

name, but

not cluster

name

(String,

optional)

cluster

to specify a

cluster bus

member,

supply

cluster

name but

not node

and server

name

(String,

optional)

v Returns: The

attribute names

and values of

the identified

SIB bus member.

Batch mode example

usage:

v Using Jacl:

$AdminTask showSIBus

Member {-bus busn

ame -node noden

ame -server

servername}

v Using Jython:

AdminTask.showSIBus

Member(’[-bus busn

ame -node noden

ame -server

servername]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask showSIBus

Member {-interactive}

v Using Jython:

AdminTask.showSIBus

Member (’[-inter

active]’)

592 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

show

Server

Info

ServerManagement

group

The

show

Server

Info

command

returns

the

information

for a

server

that you

specify.

The

configuration

ID of the

server.

(required)

v Parameters:

None

v Returns: A list of

metadata.

Batch mode example

usage:

v Using Jacl:

$AdminTask showServerInfo

server1(cells/WAS00Network/

nodes/ndnode1/servers/

server1|server.xml)

v Using Jython:

AdminTask.showServerInfo

(server1(cells/WAS00Network/

nodes/ndnode1/servers/

server1|server.xml))

Interactive mode example

usage:

v Using Jacl:

$AdminTask showServerInfo

{-interactive}

v Using Jython:

AdminTask.showServerInfo

(’[-interactive]’)

Chapter 6. Using scripting (wsadmin) 593

show

Server

Type

Info

Server

Manage

ment

group

The

show

Server

Type

Info

command

displays

information

about a

specific

server

type.

A server

type. For

example,

APPLICA

TION

_SERVER.

(String,

required)

v Parameters:

- version

Specify the

version of

the

templates

that you

want to list.

For

example,

6.0.0.0.

(String,

optional)

- serverType

Specify this

option if

you want to

list

templates

for a

specific

server type.

(String,

optional)

- name

Specify this

option to

look for a

specific

template.

(String,

optional)

- queryExp

A key and

value pair

that you can

use to find

templates

by

properties.

For

example,

com.ibm.

websphere.

nodeOperating

System=os390.

(String[],

optional)

v Returns: A list of

information

about the server

type.

Interactive mode example

usage:

v Using Jacl:

$AdminTask showServer

TypeInfo {-intera

ctive}

v Using Jython:

AdminTask.showServer

TypeInfo (’[-intera

ctive]’)

594 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

show

Template

Info

Server

Manage

ment

group

Use the

show

Template

Info

command

to query

metadata

informa

tion for a

specific

template.

This

command

will only

work for

server

templates.

The

identification

of a

server

template,

javax.

management.

ObjectName.

This

target

object is

required.

v Returns: A

property object

that holds the

metadata

information

regarding a

specific

template.

Interactive mode example

usage:

v Using Jacl:

$AdminTask showTempl

ateInfo {-interactive}

v Using Jython:

AdminTask.showTempl

ateInfo (’[-intera

ctive]’)

unconfigure

TAM

Interactive mode example

usage:

v Using Jacl:

$AdminTask unconfigur

eTAM {-interactive}

v Using Jython:

AdminTask.unconfigur

eTAM (’[-interact

ive]’)

unmedi

ate SIB

Desti

nation

SIB

Admin

Comm

ands

Use this

command

to

unmediated

the

named

destination

on the

named

bus.

Unmediating

a

destination

simply

removes

the

association

between

a SIB

destination

and a SIB

mediation.

None v Parameters:

bus

the name of

the bus

where the

destination

is currently

mediated

(String,

required)

destinationName

the name of

the

destination

to be

unmediated

(String,

required)

v Returns: None

Batch mode example

usage:

v Using Jacl:

$AdminTask unmediate

SIBDestination {-bus

bus_name -dest

inationName desti

nation_name}

v Using Jython:

AdminTask.unmediateSI

BDestination(’[-bus

bus_name -dest

inationName desti

nation_name]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask unmediate

SIBDestination

{-interactive}

v Using Jython:

AdminTask.unmediateS

IBDestination (’[-in

teractive]’)

Chapter 6. Using scripting (wsadmin) 595

unpublish

SIBWS

Inbound

Service

SIBWeb

Services

group

The

unpublish

SIBWS

Inbound

Service

command

removes

the

WSDL

document

for the

inbound

service,

including

the ports,

from the

registry

and

business

defined

by the

UDDI

publication

object.

The

object

name of

the

inbound

service

object.

v Parameters:

uddiPublication

The name of

the UDDI

publication

for the

service.

(required)

userId

The user ID

to use to

retrieve the

WSDL.

(optional)

password

The

password to

use to

retrieve the

WSDL.

(optional)

v Returns: None

Batch mode example

usage:

v Using Jacl:

$AdminTask unpublish

SIBWSInboundService

$inService {-uddiPubl

ication "MyUddi"}

v Using Jython:

AdminTask.unpublishSI

BWSInboundService(in

Service, ’[-uddiPubl

ication MyUddi]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask unpublish

SIBWSInboundService

{-interactive}

v Using Jython:

AdminTask.unpublishS

IBWSInboundService

(’[-interactive]’)

596 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

update

App On

Cluster

None The

update

AppOn

Cluster

command

can be

used to

synchronize

nodes

and

restart

cluster

members

for an

application

update

deployed

to a

cluster.

After

application

update,

this

command

can be

used to

synchronize

the nodes

without

stopping

all the

cluster

members

on all the

nodes at

one time.

None v Parameters:

-Application

Names

The names

of the

applications

that are

updated.

-timeout

The timeout

value in

seconds for

each node

synchronization.

The default

is 300

seconds.

v Returns: None

Batch mode example

usage:

v Using Jacl:

$AdminTask updateApp

OnCluster {-Applica

tionNames app1}

$AdminTask updateApp

OnCluster { -Applic

ationNames app1

-timeout 600}

v Using Jython:

AdminTask.updateApp

OnCluster(’[-Applica

tionNames app1]’)

AdminTask.updateApp

OnCluster(’[-Applic

ationNames app1

-timeout 600]’)

Interactive mode example

usage:

v Using Jacl:

$AdminTask updateApp

OnCluster -interactive

v Using Jython:

AdminTask.updateApp

OnCluster (’[-inte

ractive]’)

Chapter 6. Using scripting (wsadmin) 597

This

command

synchronizes

one node

at a time.

Each

node is

synchronized

by first

stopping

the

cluster

members

on which

the

application

is

targetted

and then

performing

nodesync

operation

and then

restarting

the

cluster

members.

598 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

This

command

may take

more

than the

default

connector

timeout

period

depending

on the

number

of nodes

that the

target

cluster

spans. Be

sure to

set

proper

timeout

values in

the

soap.client.props

file,

when a

SOAP

connector

is used,

and in

the

sas.client.props

file,

when a

RMI

connector

is used.

This

command

is not

supported

in local

mode.

Administrative command invocation syntax

You can use an administrative command in batch mode or in interactive mode.

The following syntax is used for an administrative command:

Using Jacl:

$AdminTask cmdName [targetObject] [options]

where options include:

Chapter 6. Using scripting (wsadmin) 599

{

 [-paramName paramValue] [-paramName] ...

 [-stepName {{stepParamValue ...} ...} ...]

 [-delete {-stepName {{stepKeyParamValue ...} ...} ...} ...]

 [-interactive]

}

Using Jython:

AdminTask.cmdName([’targetObject‘], [options])

where options include:

’[

[-paramName paramValue] [-paramName ...]

[-stepName [[stepParamValue ...] ...] ...]

[-delete [-collectionStepName [[stepKeyParamValue ...] ...] ...] ...]

[-interactive]

]‘

where:

 cmdName represents the name of an administrative command to run.

targetObject represents the target object on which the command operates.

Depending on the administrative command, this input can be

required, optional, or nonexistent. This input corresponds to

the Target object that is displayed in the command-specific

help.

paramName represents the parameter name of the command that was run.

Depending on the administrative command, this input can be

required, optional, or nonexistent. Each parameter name

corresponds to an argument name that is displayed in the

Arguments area of the command-specific help.

paramValue represents the parameter value to set for the preceding

parameter name. Parameters are specified as name-value

pairs. The parameter value is not required if a parameter has

Boolean as its value type. If you specify the parameter name

only, without specifying a value for a Boolean type parameter,

the value is set to true.

stepName represents the step name of the command. This input

corresponds to a step name that is displayed in the Steps area

of the command-specific help.

stepParamValue ... represents the values of the parameters for a step. Provide all

the parameter values of a step in the correct order, as

displayed in the step-specific help. For any optional

parameters that you do not want to specify a value, put ″″

instead of the value. If a command step is a collection type,

for example, it contains multiple objects where each object has

the same set of parameters. You can specify multiple objects

with each object enclosed by a pair of braces. For collection

type steps, each step parameter is a key or a non-key. Key

parameters in a step are used to uniquely identify an object in

the collection. If data exists in the step, key parameter values

that are provided in the input are compared with key

parameter values in the existing data. If a match is found, the

existing data is updated. Otherwise, if the specified step

supports the addition of new objects, the input values are

added.

delete represents the option to delete existing data from a specified

step that supports collection.

600 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

collectionStepName represents the collection step name.

stepKeyParamValue ... represents the values of key parameters to uniquely identify

an object to delete from a collection step. You must provide

the key parameter values of an object in the order that they

are displayed in the step specific help.

interactive represents the option to enter interactive mode.

[] represents a Jython list bracket.

[] indicates that the parameters or options inside the brackets are

optional. Do not type these brackets as part of the syntax.

Properties used by scripted administration

This article explains the Java properties that are used by scripted administration.

Three levels of default property files load before any property file that is specified

on the command line. The first level represents an installation default, located in

the properties directory for each WebSphere Application Server profile called

wsadmin.properties. The second level represents a user default, and is located in

the Java user.home property. This properties file is also called wsadmin.properties.

The third level is a properties file that is pointed to by the WSADMIN_PROPERTIES

environment variable. This environment variable is defined in the environment

where the wsadmin tool starts. If one or more of these property files is present,

they are interpreted before any properties file that is present on the command line.

These three levels of property files load in the order that they are specified. The

properties file that is loaded last overrides the ones loaded earlier.

The following Java properties are used by scripting:

com.ibm.ws.scripting.classpath

Searches for classes and resources, and is appended to the list of paths.

com.ibm.ws.scripting.connectionType

Determines the connector to use. This value can either be SOAP, RMI, or NONE. The

wsadmin.properties file specifies SOAP as the connector.

com.ibm.ws.scripting.host

Determines the host to use when attempting a connection. If not specified, the

default is the local machine.

com.ibm.ws.scripting.port

Specifies the port to use when attempting a connection. The wsadmin.properties

file specifies 8879 as the SOAP port for a single server installation.

com.ibm.ws.scripting.defaultLang

Indicates the language to use when running scripts. The wsadmin.properties file

specifies Jacl as the scripting language.

The supported scripting languages are Jacl and Jython.

com.ibm.ws.scripting.traceString

Turns on tracing for the scripting process. The default has tracing turned off.

com.ibm.ws.scripting.traceFile

Determines where trace and log output is directed. The wsadmin.properties file

specifies the wsadmin.traceout file that is located in the logs directory of each

WebSphere Application Server profile as the value of this property.

Chapter 6. Using scripting (wsadmin) 601

If multiple users work with the wsadmin tool simultaneously, set different traceFile

properties in the user properties files. If the file name contains double-byte

character set (DBCS) characters, use a unicode format, such as \uxxxx, where xxxx

is a number.

com.ibm.ws.scripting.validationOutput

Determines where the validation reports are directed. The default file is

wsadmin.valout which is located in the logs directory of each WebSphere

Application Server profile.

If multiple users work with the wsadmin tool simultaneously, set different

validationOutput properties in the user properties files. If the file name contains

double-byte character set (DBCS) characters, use unicode format, such as \uxxxx,

where xxxx is a number.

com.ibm.ws.scripting.emitWarningForCustomSecurityPolicy

Controls whether the WASX7207W message is emitted when custom permissions

are found.

The possible values are true and false. The default value is true.

com.ibm.ws.scripting.tempdir

Determines the directory to use for temporary files when installing applications.

The Java virtual machine API uses java.io.temp as the default value.

com.ibm.ws.scripting.validationLevel

Determines the level of validation to use when configuration changes are made

from the scripting interface.

Possible values are: NONE, LOW, MEDIUM, HIGH, HIGHEST. The default is HIGHEST.

com.ibm.ws.scripting.crossDocumentValidationEnabled

Determines whether the validation mechanism examines other documents when

changes are made to one document.

Possible values are true and false. The default value is true.

com.ibm.ws.scripting.profiles

Specifies a list of profile scripts to run automatically before running user

commands, scripts, or an interactive shell.

The wsadmin.properties file specifies securityProcs.jacl and

LTPA_LDAPSecurityProcs.jacl as the values of this property. If Jython is specified

with the wsadmin -lang option, the wsadmin tool performs a conversion to change

the profile script names that are specified in this property to use the file extension

that matches the language specified. Use the provided script procedures with the

default settings to make security configuration easier.

602 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

Chapter 7. Using Ant to automate tasks

To support using Apache Ant with Java 2 Platform, Enterprise Edition (J2EE)

applications running on the application server, the product provides a copy of the

Ant tool and a set of Ant tasks that extend the capabilities of Ant to include

product-specific functions. Ant has become a very popular tool among Java

programmers.

Apache Ant is a Java-based build tool. In theory, it is similar to Make, but Ant is

different. Instead of a model in which it is extended with shell-based commands,

Ant is extended using Java classes. Instead of writing shell commands, XML-based

configuration files are used. These files reference a target tree in which various

tasks are run. Each task is run by an object that implements a particular Task

interface.

By combining the following tasks with those provided by Ant, you can create build

scripts that compile, package, install, and test your application on the application

server:

v Install and uninstall applications

v Start and stop servers in a base configuration

v Run administrative scripts or commands

v Run the Enterprise JavaBeans (EJB) deployment tool

v Run the JavaServer Pages (JSP) file precompilation tool

For more detailed information about Ant, refer to the Apache organization Web

site.

v To run Ant and have it automatically see the WebSphere classes, use the “ws_ant

command.”

v Use “Ant tasks for deployment and server operation” on page 604.

This topic describes where to find the API documentation for the Apache Ant

tasks for deploying applications and operating application servers.

v Use “Ant tasks for building application code” on page 604.

This topic describes where to find the API documentation for the Apache Ant

tasks for building applications.

ws_ant command

This topic describes where to find information about the ws_ant command, which

is provided for using with Apache Ant, a Java-based build tool that is popular

among Java programmers.

In theory, Ant is similar to Make, but Ant is different. Instead of a model in which

it is extended with shell-based commands, Ant is extended using Java classes.

Instead of writing shell commands, XML-based configuration files are used. These

files reference a target tree in which various tasks are run. Each task is run by an

object that implements a particular Task interface.

For the Apache Ant tool that is provided by this product, see the following file:

install_root/bin/ws_ant.bat|sh

© Copyright IBM Corp. 2005 603

http://ant.apache.org/index.html
http://ant.apache.org/index.html

Ant tasks for deployment and server operation

This topic describes where to find the API documentation for the Apache Ant tasks

for deploying applications and operating application servers.

The Apache Ant tasks for the product reside in the Java package:

com.ibm.websphere.ant.tasks. The API documentation for this package contains

detailed information about all of the Ant tasks that are provided and how to use

them. The API documentation is available in the Reference section of the

information center.

Ant tasks for building application code

This topic describes where to find the documentation for the Ant tasks provided

for building application code using the Application Server Toolkit (which is a CD

included with WebSphere Application Server as a separately installable toolkit).

Note that this toolkit includes an Automated Deployment example ″Example:

Automated Deploy″ for JACL scripted deployment of multiple application updates

to multiple servers and clusters in a WebSphere Network Deployment cell.

Within the Application Server Toolkit product documentation, open the section

Working with Ant. You can locate the topic by searching for Working with Ant, or

from the navigation view, select Help > Help Contents > Developing Java

Applications > Developing enterprise applications > J2EE applications >

Working with Ant.

604 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

Chapter 8. Using administrative programs (JMX)

This topic describes how to use Java application programming interfaces (APIs) to

administer WebSphere Application Server and to manage your applications.

You can administer WebSphere Application Server and your applications through

tools that come with the product or through programming with the Java APIs.

The wsadmin scripting tool, the administrative console, and the administrative

command-line tools come with the product. These administrative tools provide

most of the functions that you need to manage the product and the applications

that run in WebSphere Application Server. You can use the command-line tools

from automation scripts to control the servers. Scripts that are written for the

wsadmin scripting tool offer a wide range of possible custom solutions that you

can develop quickly.

Investigate these tools with the Java APIs to determine the best ways to administer

WebSphere Application Server and your applications. For information on the Java

APIs, view Java Management Extensions (JMX) API documentation

WebSphere Application Server supports access to the administrative functions

through a set of Java classes and methods. You can write a Java program that

performs any of the administrative features of the WebSphere Application Server

administrative tools. You can also extend the basic WebSphere Application Server

administrative system to include your own managed resources.

You can prepare, install, uninstall, edit, and update applications through

programming. Preparing an application for installation involves collecting various

types of WebSphere Application Server-specific binding information to resolve

references that are defined in the application deployment descriptors. This

information can also be modified after installation by editing a deployed

application. Updating consists of adding, removing or replacing a single file or a

single module in an installed application, or supplying a partial application that

manipulates an arbitrary set of files and modules in the deployed application.

Updating the entire application uninstalls the old application and installs the new

one. Uninstalling an application removes it entirely from the WebSphere

Application Server configuration.

Perform any or all of the following tasks to manage WebSphere Application Server

and your Java 2 Platform, Enterprise Edition (J2EE) applications through

programming.

v Create a custom Java administrative client program using the Java

administrative APIs.

This topic describes how to develop a Java program that uses the WebSphere

Application Server administrative APIs to access the administrative system of

WebSphere Application Server.

v Extend the WebSphere Application Server administrative system with custom

MBeans.

This topic describes how to extend the WebSphere Application Server

administration system by supplying and registering new JMX MBeans in one of

the Application Server processes. In this case, you can use the administrative

classes and methods to add newly managed objects to the administrative system.

© Copyright IBM Corp. 2005 605

v Deploy and manage a custom Java administrative client program for use with

multiple Java 2 Platform, Enterprise Edition application servers.

This topic describes how to connect to a J2EE server, and how to manage

multiple vendor servers.

v Manage applications through programming

This topic describes how, through Java MBean programming, to install, update,

and delete a J2EE application on WebSphere Application Server.

Depending on which tasks you complete, you have created your own

administrative program, extended the WebSphere Application Server

administrative console, connected and managed vendor servers, or managed your

applications through programming.

You can continue to administer WebSphere Application Server and your

applications through programming or in combination with the tools that come

with the WebSphere Application Server.

Java Management Extensions

This topic gives an overview of Java Management Extensions (JMX) in general and

how this standard applies to WebSphere Application Server.

Java Management Extensions overview

Java Management Extensions (JMX) is the Java standard for managing application

resources. The management architecture that is defined by JMX is divided into

three levels:

v The bottom level is management instrumentation. Each manageable resource is

described by an interface that specifies the attributes it has, the operations it

supports, and the notifications it sends. This resource is a managed bean

(MBean).

v The middle level is the management agent. Each managed process contains a

JMX agent that includes an MBean server, which provides a registry and access

point for MBeans. Management clients must use the MBean server to access the

registered MBeans.

v The top level of the architecture is identified, but undefined in the current level

of the JMX specification. It is the distributed services level, and its role is to

facilitate remote access to JMX agents. This task is accomplished through

connectors, which provide a protocol-independent, location-transparent,

client-side interface to the MBean server (for example, a Remote Method

Invocation (RMI) connector), or protocol adapters, which provide

protocol-specific, server-side access to the MBean server (for example, an HTTP

adapter).

Java Management Extensions in WebSphere Application Server

Java Management Extensions (JMX) is at the core of Application Server

administration capabilities. The application server contains a JMX agent. All of the

system components are defined as MBeans. The JMX agent in Application Server

supports three types of connectors, Remote Method Invocation/Internet Inter-ORB

Protocol (RMI/IIOP), Simple Object Access Protocol/Hypertext Transfer Protocol

(SOAP/HTTP), and Simple Object Access Protocol/Hypertext Transfer Protocol

606 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

Secure (SOAP/HTTPS), which provides remote access to the server resources. All

of the administration tools included with Application Server use these JMX

facilities to accomplish their functions.

In a stand-alone Application Server installation, servers exist and are administered

individually. An administrative client connects directly to the Application Server in

this environment. In a Network Deployment installation, a hierarchical topology

groups application servers within nodes and groups nodes within a cell.

Administrative servers exist at the node level (node agents) and at the cell level

(the deployment manager), and act as aggregation points for the administrative

services in the subordinate servers.

MBeans in all servers on a node are visible through that node agent, and MBeans

in all nodes are visible through the deployment manager. Therefore, by connecting

to the deployment manager, you can invoke operations, can get and set attributes,

and can receive notifications for any MBean in the cell. Application Server provides

an AdminService class that reflects the standard JMX MBeanServer interface, and

wraps the MBeanServer interface so that it takes part in implementing this

distributed management functionality.

Creating a custom Java administrative client program using

WebSphere Application Server administrative Java APIs

This section describes how to develop a Java program for accessing the WebSphere

Application Server administrative system by using the WebSphere Application

Server administrative application programming interfaces (APIs).

This task assumes a basic familiarity with Java Management Extensions (JMX) API

programming. See the JMX API documentation for information.

When you develop and run administrative clients that use various JMX connectors

and that have security enabled, use the following guidelines. When you follow

these guidelines, you guarantee the behavior among different implementations of

JMX connectors. Any programming model that strays from these guidelines is

unsupported.

1. Create and use a single administrative client before you create and use another

administrative client.

2. Create and use an administrative client on the same thread.

3. Use one of the following ways to specify a user ID and password to create a

new administrative client:

v Specify a default user ID and password in the property file.

v Specify a user ID and password other than the default. Once you create an

administrative client with a nondefault user ID and password, specify the

nondefault user ID and password when you create subsequent

administrative clients.
1. Develop an administrative client program.

2. If your administrative client uses Simple Object Access Protocol (SOAP) as its

Connector, you must configure Java Secure Socket Extension (JSSE) as your

transport layer. WebSphere Application Server uses supports Secure Sockets

Layer (SSL) and Transport Layer Security (TLS) with the Java Secure Sockets

Extension (JSSE) and System SSL packages. Create digital certificates for the

user ID used to run your administrative client. If you want to use System

Chapter 8. Using administrative programs (JMX) 607

Authorization Facility (SAF) to create digital certificates and store them in a

SAF keyring, refer to Defining SSL Security for Client Outbound Requests. (You

can save the name of the keyring you create for use in the next step.)

3. Update the soap.client.props file being used by your administrative client

with the name of the SAF keyring. Refer to the second step in Using System

Authorization Facility keyrings with Java Secure Sockets Extension for directions on

updating the soap.client.props file.

4. Build the administrative client program.

Compile it with javac and provide the location of the necessary JAR files in the

classpath argument.

For example, if your installation directory is /DeploymentManager a typical

command would look like the following example:

javac -extdirs "$JAVA_HOME/lib/ext;

/DeploymentManager/classes;/DeploymentManager/lib;

/DeploymentManager/lib/ext" MyAdminClient.java

(The previous command is split on multiple lines for publication.)

5. Run the administrative client program.

Run the administrative client program by setting up the run-time environment

so that the program can find all of the prerequisites. Many of the batch or

script files in the bin directory under the installation root perform a similar

function. The following is an example of a batch file that runs an

administrative client program named MyAdminClient follows:

@echo off

binDir=`dirname "$0"`

. "$binDir/setupCmdLine.sh"

"$JAVA_HOME/bin/java" "$CLIENTSOAP" "-Dwas.install.root=$WAS_HOME"

"-Dwas.repository.root=$CONFIG_ROOT"

-Dcom.ibm.CORBA.BootstrapHost=$COMPUTERNAME

 "-Djava.ext.dirs=$JAVA_HOME/lib/ext;$WAS_HOME/classes;

$WAS_HOME/lib;$WAS_HOME/lib/ext" MyAdminClient $@

(The contents of the previous batch file is split on multiple lines for

publication.)

Developing an administrative client program

This topic describes how to develop an administrative client program that utilizes

WebSphere Application Server administrative APIs and Java Management

Extensions (JMX).

WebSphere Application Server administrative APIs provide control of the

operational aspects of your distributed system as well as the ability to update your

configuration. This topic also demonstrates examples of MBean operations. For

information, view the Administrative API documentation, the JMX API

documentation, or the MBean API documentation.

1. Create an AdminClient instance. An administrative client program needs to

invoke methods on the AdminService object that is running in the deployment

manager or the application server in the base installation. The AdminClient

class provides a proxy to the remote AdminService object through one of the

supported Java Management Extensions (JMX) connectors. The following

example shows how to create an AdminClient instance:

608 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

Properties connectProps = new Properties();

connectProps.setProperty(

AdminClient.CONNECTOR_TYPE, AdminClient.CONNECTOR_TYPE_SOAP);

connectProps.setProperty(AdminClient.CONNECTOR_HOST, "localhost");

connectProps.setProperty(AdminClient.CONNECTOR_PORT, "8879");

AdminClient adminClient = null;

try

{

 adminClient = AdminClientFactory.createAdminClient(connectProps);

}

catch (ConnectorException e)

{

 System.out.println("Exception creating admin client: " + e);

}

a. Set up a Properties object.

The example sets up a Properties object with the properties that are

required to get to your server. In this case, you use the Simple Object

Access Protocol (SOAP) connector to reach the server; for the connector

type, use the value: AdminClient.CONNECTOR_TYPE_SOAP.

b. Set the port number on which the server SOAP connector is listening.

In a single server installation, the default port number for the application

server SOAP connector is 8880. In a Network Deployment installation, the

default port number for the deployment manager SOAP connector is 8879.

c. After the connection properties are set, use the AdminClientFactory class

and the Properties object to create an AdminClient object that is connected

to your chosen server.

Depending on factors such as your desired protocol and security

environment, you might need to set other properties. For more detailed

information about the AdminClient interface and additional creation

examples, refer to the AdminClient interface in the Java Management

Extensions (JMX) API documentation.
2. Find an MBean. When you obtain an AdminClient instance, you can use it to

access managed resources in the administration servers and application servers.

Each managed resource registers an MBean with the AdminService through

which you can access the resource. The MBean is represented by an

ObjectName instance that identifies the MBean. An ObjectName instance

consists of a domain name followed by an unordered set of one or more key

properties. The syntax for the domain name follows:

[domainName]:property=value[,property=value]*

For WebSphere Application Server, the domain name is WebSphere and the key

properties defined for administration are as follows:

 type The type of MBean. For example: Server,

TraceService, Java virtual machine (JVM).

name The name identifier for the individual

instance of the MBean.

cell The name of the cell that the MBean is

running.

node The name of the node that the MBean is

running.

process The name of the process that the MBean is

running.

Chapter 8. Using administrative programs (JMX) 609

Some MBeans in WebSphere Application Server use additional key properties.

An MBean without key properties can be registered with the MBean server in a

WebSphere Application Server process. However, such an MBean cannot

participate in the distributed enhancements that WebSphere Application Server

adds, for example, request routing, distributed event notification, and so on.

If you know the complete set of key properties for an ObjectName instance,

you can use it to find the MBean it identifies. However, finding MBeans

without having to know all of their key properties is usually more practical and

convenient. Use the wildcard character asterisk (*) for any key properties that

you do not need to match. The following table provides some examples of

object names with wildcard key properties that match single or multiple

MBeans.

 :type=Server, All MBeans of type Server

:node=Node1,type=Server, All MBeans of type Server on Node1

:type=JVM,process=server1,node=Node1, The JVM MBean in the server named

server1 node Node1

:process=server1, All MBeans in all servers named server1

:process=server1,node=Node1, All MBeans in the server named server1 on

Node1

You can locate an MBean by querying for it with object names that match key

properties. The following example shows how to find the MBean for the node

agent of node, MyNode:

String nodeName = "MyNode";

String query = "WebSphere:type=NodeAgent,node=" + nodeName + ",*";

ObjectName queryName = new ObjectName(query);

ObjectName nodeAgent = null;

Set s = adminClient.queryNames(queryName, null);

if (!s.isEmpty())

 nodeAgent = (ObjectName)s.iterator().next();

else

 System.out.println("Node agent MBean was not found");

a. Build an ObjectName instance with a query string that specifies the key

properties of type and node.

By using a wildcard for the remaining key properties, this pattern matches

the object names for all MBeans of the type NodeAgent on the node

MyNode. Because only one node agent per node exists, this information is

sufficient to identify the MBean that you want.

b. Give this ObjectName instance to the queryNames method of the

AdminClient interface.

The AdminClient interface performs the remote call to the AdminService

interface to obtain the set of MBean object names that match the query. The

null second parameter to this method is a query expression (QueryExp)

object that you can use as an additional query over the MBeans that match

the ObjectName pattern in the first parameter.

c. Use the set iterator to get the first and, in this case, only element.

The element is the MBean ObjectName instance of the node agent.
3. Use the MBean. What a particular MBean can do depends on the management

interface of that MBean. An MBean can declare:

v Attributes that you can obtain or set

v Operations that you can invoke

v Notifications for which you can register listeners

v

610 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

For the MBeans provided by WebSphere Application Server, you can find

information about the interfaces they support in the MBean API

documentation. The following example invokes one of the operations available

on the NodeAgent MBean that you located previously. The following example

starts the MyServer application server:

String opName = "launchProcess";

String signature[] = { "java.lang.String" };

String params[] = { "MyServer" };

try

{

 adminClient.invoke(nodeAgent, opName, params, signature);

}

catch (Exception e)

{

 System.out.println("Exception invoking launchProcess: " + e);

}

The AdminClient.invoke method is a generic means of invoking any operation

on any MBean. The parameters are:

v The object name of the target MBean, nodeAgent

v The name of the operation, opName

v An object array that contains the operation parameters, params

v A string array that contains the operation signature, signature

The launchProcess operation in the example has a single parameter which is a

string that identifies the server to start.

The invoke method returns an object instance, which the calling code can use

to cast to the correct return type for the invoked operation. The launchProcess

operation is declared void so that you can ignore the return value in this

example.

4. Register for events. In addition to managing resources, the JMX API also

supports application monitoring for specific administrative events. Certain

events produce notifications, for example, when a server starts. Administrative

applications can register as listeners for these notifications. The WebSphere

Application Server provides a full implementation of the JMX notification

model, and provides additional function so you can receive notifications in a

distributed environment. For a complete list of the notifications emitted from

WebSphere Application Server MBeans, refer to the

com.ibm.websphere.management.NotificationConstants class in the MBean API

documentation. The following example shows how an object can register for

event notifications that are emitted from an MBean using the ObjectName node

agent:

adminClient.addNotificationListener(nodeAgent, this, null, null);

In this example, the first parameter is the ObjectName for the node agent

MBean. The second parameter identifies the listener object, which must

implement the NotificationListener interface. In this case, the calling object is

the listener. The third parameter is a filter that you can use to indicate which

notifications you want to receive. When you leave this value as null, you

receive all notifications from this MBean. The final parameter is a handback

object that you can use to set the JMX API to return to you when it emits a

notification.

If your MBean is located on another server in the cell, you can receive its

notifications even though your administrative client program might be

connected to the deployment manager server. All notifications flow to the

upstream server. For example, a notification from an application server first

flows to the local node agent and then to the deployment manager.

Chapter 8. Using administrative programs (JMX) 611

Another enhanced feature that Application Server provides is the ability to

register as a notification listener of multiple MBeans with one call. This

registration is done through the addNotificationListenerExtended method of the

AdminClient interface, an extension of the standard JMX

addNotificationListener method. This extension method even lets you register

for MBeans that are not currently active. This registration is important in

situations where you want to monitor events from resources that can be

stopped and restarted during the lifetime of your administrative client

program.

5. Handle the events. Objects receive JMX event notifications through the

handleNotification method, which is defined by the NotificationListener

interface and which any event receiver must implement. The following example

is an implementation of the handleNotification method that reports the

notifications that it receives:

public void handleNotification(Notification n, Object handback)

{

 System.out.println("***");

 System.out.println("* Notification received at " + new Date().toString());

 System.out.println("* type = " + ntfyObj.getType());

 System.out.println("* message = " + ntfyObj.getMessage());

 System.out.println("* source = " + ntfyObj.getSource());

 System.out.println(

 "* seqNum = " + Long.toString(ntfyObj.getSequenceNumber()));

 System.out.println("* timeStamp = " + new Date(ntfyObj.getTimeStamp()));

 System.out.println("* userData = " + ntfyObj.getUserData());

 System.out.println("***");

}

Administrative client program example

The following example is a complete administrative client program. Copy the

contents to a file named MyAdminClient.java. After changing the node name and

server name to the appropriate values for your configuration, you can compile and

run it using the instructions from Creating a custom Java administrative client

program using WebSphere Application Server administrative Java APIs

import java.util.Date;

import java.util.Properties;

import java.util.Set;

import javax.management.InstanceNotFoundException;

import javax.management.MalformedObjectNameException;

import javax.management.Notification;

import javax.management.NotificationListener;

import javax.management.ObjectName;

import com.ibm.websphere.management.AdminClient;

import com.ibm.websphere.management.AdminClientFactory;

import com.ibm.websphere.management.exception.ConnectorException;

public class AdminClientExample implements NotificationListener

{

 private AdminClient adminClient;

 private ObjectName nodeAgent;

 private long ntfyCount = 0;

 public static void main(String[] args)

 {

 AdminClientExample ace = new AdminClientExample();

 // Create an AdminClient

 ace.createAdminClient();

612 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

// Find a NodeAgent MBean

 ace.getNodeAgentMBean("ellington");

 // Invoke launchProcess

 ace.invokeLaunchProcess("server1");

 // Register for NodeAgent events

 ace.registerNotificationListener();

 // Run until interrupted

 ace.countNotifications();

 }

 private void createAdminClient()

 {

 // Set up a Properties object for the JMX connector attributes

 Properties connectProps = new Properties();

 connectProps.setProperty(

 AdminClient.CONNECTOR_TYPE, AdminClient.CONNECTOR_TYPE_SOAP);

 connectProps.setProperty(AdminClient.CONNECTOR_HOST, "localhost");

 connectProps.setProperty(AdminClient.CONNECTOR_PORT, "8879");

 // Get an AdminClient based on the connector properties

 try

 {

 adminClient = AdminClientFactory.createAdminClient(connectProps);

 }

 catch (ConnectorException e)

 {

 System.out.println("Exception creating admin client: " + e);

 System.exit(-1);

 }

 System.out.println("Connected to DeploymentManager");

 }

 private void getNodeAgentMBean(String nodeName)

 {

 // Query for the ObjectName of the NodeAgent MBean on the given node

 try

 {

 String query = "WebSphere:type=NodeAgent,node=" + nodeName + ",*";

 ObjectName queryName = new ObjectName(query);

 Set s = adminClient.queryNames(queryName, null);

 if (!s.isEmpty())

 nodeAgent = (ObjectName)s.iterator().next();

 else

 {

 System.out.println("Node agent MBean was not found");

 System.exit(-1);

 }

 }

 catch (MalformedObjectNameException e)

 {

 System.out.println(e);

 System.exit(-1);

 }

 catch (ConnectorException e)

 {

 System.out.println(e);

 System.exit(-1);

 }

 System.out.println("Found NodeAgent MBean for node " + nodeName);

 }

Chapter 8. Using administrative programs (JMX) 613

private void invokeLaunchProcess(String serverName)

 {

 // Use the launchProcess operation on the NodeAgent MBean to start

 // the given server

 String opName = "launchProcess";

 String signature[] = { "java.lang.String" };

 String params[] = { serverName };

 boolean launched = false;

 try

 {

 Boolean b = (Boolean)adminClient.invoke(

nodeAgent, opName, params, signature);

 launched = b.booleanValue();

 if (launched)

 System.out.println(serverName + " was launched");

 else

 System.out.println(serverName + " was not launched");

 }

 catch (Exception e)

 {

 System.out.println("Exception invoking launchProcess: " + e);

 }

 }

 private void registerNotificationListener()

 {

 // Register this object as a listener for notifications from the

 // NodeAgent MBean. Don’t use a filter and don’t use a handback

 // object.

 try

 {

 adminClient.addNotificationListener(nodeAgent, this, null, null);

 System.out.println("Registered for event notifications");

 }

 catch (InstanceNotFoundException e)

 {

 System.out.println(e);

 }

 catch (ConnectorException e)

 {

 System.out.println(e);

 }

 }

 public void handleNotification(Notification ntfyObj, Object handback)

 {

 // Each notification that the NodeAgent MBean generates will result in

 // this method being called

 ntfyCount++;

 System.out.println("***");

 System.out.println("* Notification received at " + new Date().toString());

 System.out.println("* type = " + ntfyObj.getType());

 System.out.println("* message = " + ntfyObj.getMessage());

 System.out.println("* source = " + ntfyObj.getSource());

 System.out.println(

 "* seqNum = " + Long.toString(ntfyObj.getSequenceNumber()));

 System.out.println("* timeStamp = " + new Date(ntfyObj.getTimeStamp()));

 System.out.println("* userData = " + ntfyObj.getUserData());

 System.out.println("***");

 }

 private void countNotifications()

 {

 // Run until killed

614 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

try

 {

 while (true)

 {

 Thread.currentThread().sleep(60000);

 System.out.println(ntfyCount + " notification have been received");

 }

 }

 catch (InterruptedException e)

 {

 }

 }

}

Extending the WebSphere Application Server administrative system

with custom MBeans

You can extend the WebSphere Application Server administration system by

supplying and registering new Java Management Extensions (JMX) MBeans (see

JMX 1.0 Specification for details) in one of the WebSphere processes. JMX MBeans

represent the management interface for a particular piece of logic. All of the

managed resources within the standard WebSphere infrastructure are represented

as JMX MBeans. There are a variety of ways in which you can create your own

MBeans and register them with the JMX MBeanServer running in any WebSphere

process. For more information, view the MBean API documentation.

1. Create custom JMX MBeans.

You have some alternatives to select from, when creating MBeans to extend the

WebSphere administrative system. You can use any existing JMX MBean from

another application. You can register any MBean that you tested in a JMX

MBean server outside of the WebSphere Application Server environment in a

WebSphere Application Server process, including standard MBeans, dynamic

MBeans, open MBeans, and model MBeans.

In addition to any existing JMX MBeans, and ones that were written and tested

outside of the WebSphere Application Server environment, you can use the

special distributed extensions provided by WebSphere and create a WebSphere

ExtensionMBean provider. This alternative provides better integration with all

of the distributed functions of the WebSphere administrative system. An

ExtensionMBean provider implies that you supply an XML file that contains an

MBean Descriptor based on the DTD shipped with the WebSphere Application

Server. This descriptor tells the WebSphere system all of the attributes,

operations, and notifications that your MBean supports. With this information,

the WebSphere system can route remote requests to your MBean and register

remote Listeners to receive your MBean event notifications.

All of the internal WebSphere MBeans follow the Model MBean pattern. Pure

Java classes supply the real logic for management functions, and the

WebSphere MBeanFactory class reads the description of these functions from

the XML MBean Descriptor and creates an instance of a ModelMBean that

matches the descriptor. This ModelMBean instance is bound to your Java

classes and registered with the MBeanServer running in the same process as

your classes. Your Java code now becomes callable from any WebSphere

Application Server administrative client through the ModelMBean created and

registered to represent it.

User MBeans that run on both the WebSphere Application Server distributed

platforms and the WebSphere Application Server for z/OS platform may

require special coding to function properly in the z/OS multiprocess model. On

Chapter 8. Using administrative programs (JMX) 615

WebSphere Application Server distributed platforms where each application

server runs in a single JavaTM Virtual Machine (JVM), there is only one MBean

server. The MBean server controls all MBeans that are registered within that

application server. On the WebSphere Application Server for z/OS platform,

there is a control process and a federation of servant processes, each with their

own MBean server. The control process has its own MBean proxy server to

distribute requests among the servant processes. See the detailed discussion of

the JMX MBean multiprocess model request flow.

2. Optionally define an explicit MBean security policy.

If you do not define an MBean security policy, WebSphere Application Server

uses the default security policy.

3. Register the new MBeans. There are various ways to register your MBean.

You can register your MBean with the WebSphere Application Server

administrative service.

You can register your MBean with the MBeanServer in a WebSphere

Application Server process. The following list describes the available options in

order of preference:

v Go through the MBeanFactory class. If you want the greatest possible

integration with the WebSphere Application Server system, then use the

MBeanFactory class to manage the life cycle of your MBean through the

activateMBean and deactivateMBean methods of the MBeanFactory class. Use

these methods, by supplying a subclass of the RuntimeCollaborator abstract

superclass and an XML MBean descriptor file. Using this approach, you

supply a pure Java class that implements the management interface defined

in the MBean descriptor. The MBeanFactory class creates the actual

ModelMBean and registers it with the WebSphere Application Server

administrative system on your behalf.

This option is recommended for registering model MBeans.

v Use the JMXManageable and CustomService interface. You can make the

process of integrating with WebSphere administration even easier by

implementing a CustomService interface that also implements the

JMXManageable interface. Using this approach, you can avoid supplying the

RuntimeCollaborator. When your CustomService interface is initialized, the

WebSphere MBeanFactory class reads your XML MBean descriptor file and

creates, binds, and registers an MBean to your CustomService interface

automatically. After the shutdown method of your CustomService is called,

the WebSphere Application Server system automatically deactivates your

MBean.

v Go through the AdminService interface. You can call the registerMBean()

method on the AdminService interface and the invocation is delegated to the

underlying MBeanServer for the process, after appropriate security checks.

You can obtain a reference to the AdminService using the getAdminService()

method of the AdminServiceFactory class.

This option is recommended for registering standard, dynamic, and open

MBeans. Implement the UserCollaborator class to use the MBeans and to

provide a consistent level of support for them across distributed and z/OS

platforms.

For the z/OS platform, an MBean registered through the registerMBean()

method on the AdminService interface is not visible from outside the server

and can only be invoked from within the servant process in which it was

registered.

v Get MBeanServer instances directly. You can get a direct reference to the JMX

MBeanServer instance running in any WebSphere Application Server process,

by calling the getMBeanServer() method of the MBeanFactory class. You get a

616 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

reference to the MBeanFactory class by calling the getMBeanFactory()

method of the AdminService interface. Registering the MBean directly with

the MBeanServer instance can result in that MBean not participating fully in

the distributed features of the WebSphere Application Server administrative

system.

Regardless of the approach used to create and register your MBean, you must set

up proper Java 2 security permissions for your new MBean code. The WebSphere

AdminService and MBeanServer are tightly protected using Java 2 security

permissions and if you do not explicitly grant your code base permissions, security

exceptions are thrown when you attempt to invoke methods of these classes. If you

are supplying your MBean as part of your application, you can set the permissions

in the was.policy file that you supply as part of your application metadata. If you

are using a CustomService interface or other code that is not delivered as an

application, you can edit the library.policy file in the node configuration, or even

the server.policy file in the properties directory for a specific installation.

Best practices for standard, dynamic, and open MBeans

This article discusses recommended guidelines for standard, dynamic, and open

MBeans.

The underlying interface for the WebSphere Application Server administrative

service is AdminService. Remote access occurs through the AdminControl scripting

object.

For WebSphere Application Server Version 5, the MBean registration and

capabilities are as follows:

 MBean type Registered with: Capabilities

Model WebSphere Application

Server administrative service

Local access is through the

WebSphere Application

Server administrative service

or the MBean server. Remote

access is through the

WebSphere Application

Server administrative service,

and WebSphere Application

Server security. For z/OS

systems, remote access is

also through z/OS system

extensions.

Standard, dynamic, or open MBean server Local access is through the

WebSphere Application

Server administrative service

or the MBean server on the

distributed platform. On the

z/OS system, local access is

only through the MBean

server.

For V6, you can optionally register standard, dynamic, and open custom MBeans

with the WebSphere Application Server administrative service to take advantage of

the capabilities that in V5 are available only to model MBeans.

V6 introduces a special run-time collaborator that you use with standard, dynamic

or open custom MBeans to register the custom MBeans with the WebSphere

Chapter 8. Using administrative programs (JMX) 617

Application Server administrative service. The standard, dynamic, and open

MBeans display in the administrative service as model MBeans. The administrative

service uses the capabilities available to MBeans that are registered with the

administrative service.

For WebSphere Application Server Version 6, the MBean registration and

capabilities are as follows:

 MBean type Registered with: Capabilities

Model, and optionally

standard, dynamic, or open

WebSphere Application

Server administrative service

Local access is through the

WebSphere Application

Server administrative service

or the MBean server. Remote

access is through the

WebSphere Application

Server administrative service,

and WebSphere Application

Server security. For z/OS

systems, remote access is

also through z/OS system

extensions.

Standard, dynamic, or open MBean server Local access is through the

WebSphere Application

Server administrative service

or the MBean server on the

distributed platform. On the

z/OS system, local access is

only through the MBean

server.

Creating and registering standard, dynamic, and open custom

MBeans

You can create standard, dynamic, and open custom MBeans and register them

with the WebSphere Application Server administrative service.

This task assumes a basic familiarity with MBean programming. For information

on MBean programming see MBean Java application programming interface (API)

documentation.

Perform the following tasks to create and register a standard, dynamic, or open

custom MBean.

1. Create your particular MBean class or classes.

2. Write an MBean descriptor in the XML language for your MBean.

3. Register your MBean by inserting code that uses the WebSphere Application

Server run-time com.ibm.websphere.management.UserMBeanCollaborator

collaborator class into your application code.

4. Package the class files for your MBean interface and implementation, the

descriptor XML file, and your application Java archive (JAR) file.

After you successfully complete the steps, you have a standard, dynamic, or open

custom MBean that is registered and activated with the WebSphere Application

Server administrative service.

618 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

The following example shows how to create and register a standard MBean with

the WebSphere Application Server administrative service. Some lines are split for

printing purposes.

SnoopMBean.java:

/**

 * Use the SnoopMBean MBean, which has a standard mbean interface.

 */

public interface SnoopMBean {

 public String getIdentification();

 public void snoopy(String parm1);

}

SnoopMBeanImpl.java:

/**

 * SnoopMBeanImpl - SnoopMBean implementation

 */

public class SnoopMBeanImpl implements SnoopMBean {

 public String getIdentification() {

 System.out.println(">>> getIdentification() called...");

 return "snoopy!";

 }

 public void snoopy(String parm1) {

 System.out.println(">>> snoopy(" + parm1 + ") called...");

 }

}

Define the following MBean descriptor for your MBean in an .xml file. The

getIdentification method is set to run with the unicall option and the snoopy

method is set to use the multicall option. These options are used only for z/OS

platform applications. The WebSphere Application Server for z/OS options are not

applicable to the distributed platforms, but they do not need to be removed. The

options are ignored on the distributed platforms. . Some statements are split on

multiple lines for printing purposes.

SnoopMBean.xml:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE MBean SYSTEM "MbeanDescriptor.dtd">

<MBean type="SnoopMBean"

 version="5.0"

 platform="dynamicproxy"

 description="Sample SnoopMBean to be initialized inside an EJB.">

 <attribute name="identification" getMethod="getIdentification"

type="java.lang.String" proxyInvokeType="unicall"/>

 <operation name="snoopy" role="operation" type="void" targetObjectType="objectReference"

 impact="ACTION" proxyInvokeType="multicall">

 <signature>

 <parameter name="parm1" description="test parameter" type="java.lang.String"/>

 </signature>

 </operation>

</MBean>

Assume that your MBean is used in an enterprise bean. Register your MBean in

the enterprise bean ejbCreate method and unregister it in the ejbRemove method.

//The method MBeanFactory.activateMBean() requires four parameters:

//String type: The type value that you put in this MBean’s descriptor. For this example

//the string type is SnoopMBean.

Chapter 8. Using administrative programs (JMX) 619

//RuntimeCollaborator co: The UserMBeanCollaborator user MBean collaborator instance

//that you create

//String id: Unique name that you pick

//String desciptor: The MBean descriptor file name

import com.ibm.websphere.management.UserMBeanCollaborator;

//Import other classes here.

.

.

.

static private ObjectName snoopyON = null;

static private Object lockObj = "this is a lock";

.

.

.

/**

 * ejbCreate method: Register your Mbean.

 */

public void ejbCreate() throws javax.ejb.CreateException {

 synchronized (lockObj) {

 System.out.println(">>> SnoopMBean activating for --|" + this + "|--");

 if (snoopyON != null) {

 return;

 }

 try {

 System.out.println(">>> SnoopMBean activating...");

 MBeanFactory mbfactory = AdminServiceFactory.getMBeanFactory();

 RuntimeCollaborator snoop = new UserMBeanCollaborator(new SnoopMBeanImpl());

 snoopyON = mbfactory.activateMBean("SnoopMBean", snoop, "snoopMBeanId",

"SnoopMBean.xml");

 System.out.println(">>> SnoopMBean activation COMPLETED! --|" + snoopyON + "|--");

 } catch (Exception e) {

 System.out.println(">>> SnoopMBean activation FAILED:");

 e.printStackTrace();

 }

 }

}

.

.

.

/**

 * ejbRemove method: Unregister your MBean.

 */

public void ejbRemove() {

 synchronized (lockObj) {

 System.out.println(">>> SnoopMBean Deactivating for --|" + this + "|--");

 if (snoopyON == null) {

 return;

 }

 try {

 System.out.println(">>> SnoopMBean Deactivating ==|" + snoopyON + "|== for --|"

+ this + "|--");

 MBeanFactory mbfactory = AdminServiceFactory.getMBeanFactory();

 mbfactory.deactivateMBean(snoopyON);

 System.out.println(">>> SnoopMBean Deactivation COMPLETED!");

 } catch (Exception e) {

 System.out.println(">>> SnoopMBean Deactivation FAILED:");

 e.printStackTrace();

 }

 }

}

Compile the MBean Java files and package the resulting class files with the

descriptor .xml file, into the enterprise bean JAR file.

620 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

Java 2 security permissions

When you enable Java 2 security, you must grant Java 2 security permissions to

application-specific code for Java Management Extensions (JMX) and WebSphere

Application Server administrative privileges. With these permissions, your

application code can call WebSphere Application Server administrative methods

and JMX methods.

Use the following permission to invoke all the JMX class methods and interface

methods:

permission javax.management.MBeanPermission "*", "*";

Consult the Java Management Extensions (JMX) API documentation for specific

actions under the MBeanPermission class.

Use the following permission for WebSphere Application Server administrative

application programming interfaces (APIs):

permission com.ibm.websphere.security.WebSphereRuntimePermission "AdminPermission";

Java Management Extensions MBean multiprocess model

request flow for WebSphere Application Server for z/OS

Using the Java Management Extensions (JMX) dynamic proxy capability,

applications that depend on JMX operations can exhibit consistent behavior

whether the server architecture uses a single process model or a multiprocess

model.

All the MBeans that the WebSphere Application Server runtime provides are

capable of running under the single process model employed by WebSphere

Application Server on distributed platforms, or the multiprocess model employed

by WebSphere Application Server for z/OS. User MBean providers might need to

modify their MBeans so that they work on both the WebSphere Application Server

distributed platforms and the WebSphere Application Server for z/OS. For more

information, view the Application Server application programing interface (API)

documentation.

The simplified dynamic proxy model presented here discusses the two general

request flows that exist in the multiprocess model. Operation requests on an

MBean can be initiated from one of two places:

v Within an application component running under the same servant process as the

MBean.

v Outside the server through one of the JMX connectors (SOAP, Remote Method

Invocation (RMI), HTTP, and so on).

Requests that come from an application component generally follow this flow. The

application component sends its request to the servant components. The servant

components redirect the request to the control process where the dynamic proxy

for the MBean runs. WebSphere Application Server automatically generates the

MBean dynamic proxy during runtime. If the request calls a method that the

MBean provider defined with a unicall option, the dynamic proxy in the control

process randomly dispatches the work, with MVS workload management (WLM),

to one servant process. If the request calls a method that the MBean provider

defined with a multicall option, the dynamic proxy in the control process, in

Chapter 8. Using administrative programs (JMX) 621

conjunction with WLM, distributes the work to all the servant processes.

Control server

components

Control process

Servant server

components

Application

components

Workload

distribution

Workload

distribution

Servant process 1

Servant process n

Application

components

Servant server

components

Request

redirection Request

Each servant process that completes the work optionally sends a response back to

the control process. If the MBean was defined with a unicall option, and the return

type is anything but void, the control process returns the response to the servant

that made the request. The servant server components then return the response to

the application component. If the MBean was defined with a multicall option, the

MBean inside each servant process runs separately and finishes processing the

request at different times. After all the requests are processed, you might need a

result aggregation and an event aggregation to properly return a result to the

622 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

application component.

Control server

components

Servant server

components

Application

components

Control

process

Servant process 1

Servant server

components

Application

components

Servant process n

Request

Servant

response

to work

Request Response

Response

to application

component

workload

distribution

Servant

response

to work

workload

distribution

Requests that come from a remote location outside the server generally follow this

flow. The remote location sends its request to the control process where the

dynamic proxy for the MBean runs. WebSphere Application Server automatically

generates the MBean dynamic proxy during run time. The next part of the request

process behaves the same as a request that originates from an application

component. If the request calls a method that the MBean provider defined with a

unicall option the dynamic proxy in the control process randomly dispatches the

work, with MVS workload management (WLM), to one servant process. If the

request calls a method that the MBean provider defined with a multicall option,

the dynamic proxy in the control process, in conjunction with WLM, distributes the

work to all the servant process.

Control process

Servant server

components

Application

components

Servant process 1

Servant process n

Application

components

Servant server

components

Control server

components
Remote

request

workload

distribution

workload

distribution

Chapter 8. Using administrative programs (JMX) 623

The flow of the response back to the remote location is similar to the response back

to the application component. Each servant process that completes the work

optionally sends a response back to the control process. If the MBean was defined

with a unicall option, and the return type is anything but void, the control process

returns the response to the remote location. If the MBean was defined with a

multicall option, the MBean that runs inside each servant process runs separately

and finishes processing the request at different times. After all the requests nare

processed, you might need a result aggregation and an event aggregation to

properly return a result to the remote location.

Control server

components

Control process

Servant server

components

Application

components

Remote

request

Workload

distribution

Workload

distribution

Response

Servant

response

Servant

response

Servant process 1

Servant process n

Application

components

Servant server

components

Java Management Extensions dynamic proxy concepts

A Java Management Extensions (JMX) dynamic proxy coordinates MBean requests

among multiprocess servers. This section discusses the main terms associated with

a JMX dynamic proxy.

Control process

Receives requests and distributes them to servant processes so that the

application server can do work for the requests.

Servant process

Receives work from the control process and carries out the work.

Unicall option versus the multicall option

Use the unicall option on the proxyInvocationType method when a request

invokes an arbitrary servant process or servant processes. Use the multicall

option on the proxyInvocationType method when a request goes to multiple

servant processes and the servant processes return different results.

 The following example shows an MBean descriptor that was developed for a

single process model (before) and modified for a multiprocess model (after).

 Before

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE MBean SYSTEM "MbeanDescriptor.dtd">

<MBean type="SampleStateMBean"

 version="6.0"

 description="Sample State MBean for the documentation example.">

 <attribute description="The name of the MBean."

 getMethod="getMBeanName" name="mbeanName" type="java.lang.String"/>

624 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

<attribute description="The state of the MBean."name="state"

 getMethod="getState" setMethod="setState" type="java.lang.String"/>

 <operation

 description="Initialize the State MBean."

 impact="ACTION" name="initializeState" role="operation"

 targetObjectType="objectReference" type="void">

 <signature>

 <parameter description="The name of the MBean."

 name="mbeanName" type="java.lang.String"/>

 <parameter description="The initial state of the MBean."

 name="mbeanName" type="java.lang.String"/>

 </signature>

 </operation>

</MBean>

After

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE MBean SYSTEM "MbeanDescriptor.dtd">

<MBean type="SampleStateMBean"

 version="6.0"

 platform="dynamicproxy"

 description="Sample State MBean for the documentation example.">

 <attribute description="The name of the MBean."

 getMethod="getMBeanName" name="mbeanName" type="java.lang.String"/>

 <attribute description="The state of the MBean."name="state"

 getMethod="getState" setMethod="setState" type="java.lang.String"/>

 proxyInvokeType="unicall" proxySetterInvokeType="multicall"/>

 <operation

 description="Initialize the State MBean."

 impact="ACTION" name="initializeState" role="operation"

 targetObjectType="objectReference" type="void" proxyInvokeType="multicall">

 <signature>

 <parameter description="The name of the MBean."

 name="mbeanName" type="java.lang.String"/>

 <parameter description="The initial state of the MBean."

 name="mbeanName" type="java.lang.String"/>

 </signature>

 </operation>

</MBean>

Make the user MBean run in dynamic proxy mode by specifying dynamicproxy

on the platform attribute. If no platform attribute exists on the MBean

descriptor, the user MBean deployed on WebSphere Application Server for

z/OS automatically uses the dynamic proxy mode.

 Update the attribute XML tag or the operation XML tag, as shown in the After

example, to specify the unicall behavior or the multicall behavior in the

multiprocess environment. If no proxyInvokeType option or

proxySetterInvokeType option exists, the behavior defaults to unicall. In the

After example, the getMBeanName method and the getState method run with

unicall behavior. The setState method and the initializeState method run with

multicall behavior.

Single process model

The single process application server has one server run time. The MBean

generally acts on one instance of each major run time component: one

Enterprise Java Beans (EJB) container, one Web container, one Java 2 Platform,

Enterprise Edition (J2EE) connection manager, and so on. This model assumes

that each MBean invocation on the server runs in the same process and the

same Java Virtual Machine (JVM).

Chapter 8. Using administrative programs (JMX) 625

Multiprocess model

The multiprocess model asserts that a single server instance is a federation of

Java virtual machines (JVMs), that run in a separate operating process. The

control process is responsible for such server functions as communication

endpoints, authorization, resource recovery, and workload management. All

other JVMs are worker JVMs, in which application requests run. These JVMs

take direction from, and interact only with the control process.

 All inbound and outbound requests go through the control process. Client

requests arrive at the control process. The control process, with assistance from

the MVS workload manager (WLM), dispatches the work to the servant

processes.

 The number of servant processes is managed by WLM and varies based on

demand. The demand is measured against installation-specific performance

goals, expressed as WLM policy. Each servant process is identical and hosts the

necessary application server components to enable the J2EE application

programming model. The servant processes rely on the control process for

numerous services, such as communication, security, and transaction control.

 The multiprocess model imposes additional demands on the Java Management

Extension (JMX) infrastructure over the single process model. Administrative

requests to a multiprocess server often require coordination among the

processes that comprise the application server. The JMX infrastructure includes

additional facilities to enable this coordination.

Control process

Servant process 1

Servant process 2

WLM Queue

Servant process n

WebSphere Application Server for z/OS

Native components

JVM Java components

Native components

Native components

JVM Java components

Native components

JVM Java components

JVM
J2EE containers

J2C connectors

HTTP, IIOP, etc.

Workload Manager

Resource Recovery

State object support for dynamic proxy MBean

com.ibm.websphere.management.dynamicproxy.StateObject class: The MBean

provider extends the StateObject abstract class. Specify the subclass of the

StateObject class so that the JMX run time can instantiate it before the dynamic

proxy MBean completes its initialization. The JMX run time attaches

StateObject class to the dynamic proxy Invocation Handler interface to keep

track of the current state of the dynamic proxy before and after the MBean

method runs. The JMX run time also attaches the StateObject class to the

Result Aggregation interface class as well as the Event Handler interface class

to support appropriate aggregation application.

626 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

Result aggregation handler support interface

com.ibm.websphere.management.dynamicproxy.AggregationHandler class:

The result aggregation handler support interface defines the method that an

MBean provider uses to handle result aggregation in a dynamic proxy-enabled

WebSphere Application Server for z/OS MBean. Specify the

aggregationHandlerClass attribute on the MBeanDescriptor MBean XML tag.

Implement the interface for MBean methods that use the multicall

proxyInvokeType option and that return a value. The interface determines the

method for which this aggregation is processed. It then properly aggregates all

servant MBean results that the servant processes pass back to the control

process, and then compiles a single result to return to the caller.

Event aggregation handler support interface

com.ibm.websphere.management.dynamicproxy.EventHandler interface class:

The event aggregation handler support interface defines the method that an

MBean provider uses to handle event aggregation in a dynamic proxy-enabled

WebSphere Application Server for z/OS MBean. Specify the eventHandlerClass

attribute on the MBeanDescriptor MBean XML tag. The interface handles all

incoming servant MBean events and aggregates them to filter out duplicate

events from multiple servant MBeans. It sends one event back to the listener of

the dynamic proxy MBean. The interface adjusts the current dynamic proxy

MBean state according to the MBean provider requirements.

Invocation handler support interface

com.ibm.websphere.management.dynamicproxy.InvocationHandler class: The

invocation handler support interface defines the preInvoke and postInvoke

methods that a WebSphere Application Server for z/OS dynamic proxy MBean

implements when it requires state management information. The MBean uses

the information to coordinate with the servant MBeans in cases where the

multicall invocation type is required. Specify the invocationHandlerClass

attribute on the MBeanDescriptor MBean XML tag. Use the interface for

dynamic proxy MBeans that require state management before and after

invoking a method that changes its state.

User MBean

The user MBean resides in the servant process and handles requests through

its dynamically created proxy MBean, which runs inside the control process.

An MBean provider can package handlers with the user MBean so that the

provider hooks in his own specialized processing for the following situations:

v Result aggregation

v Event aggregation

v Invocation handling

v State management of objects

Example: The SampleStateMBean MBean

Use this example to guide you in developing user MBeans that work for the

WebSphere Application Server on both the distributed platforms and the z/OS

platform. The example uses all the special handlers to show its dynamic proxy

MBean responsibilities and capabilities. The SampleStateMBean example keeps

track of its state and generates state change events when it invokes setter methods.

MBeanDescriptor

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE MBean SYSTEM "MbeanDescriptor.dtd">

<MBean type="SampleStateMBean"

 aggregationHandlerClass="com.ibm.ws390.sample.SampleStateAggregationHandler"

 eventHandlerClass="com.ibm.ws390.sample.SampleStateEventHandler"

Chapter 8. Using administrative programs (JMX) 627

invocationHandlerClass="com.ibm.ws390.sample.SampleStateInvocationHandler"

 stateObjectClass="com.ibm.ws390.sample.SampleState"

 version="6.0"

 platform="dynamicproxy"

 description="Sample State MBean for the documentation example.">

 <attribute description="The name of the MBean."

 getMethod="getMBeanName" name="mbeanName" type="java.lang.String"

 proxyInvokeType="unicall"/>

 <attribute description="The state of the MBean." name="state"

 getMethod="getState" setMethod="setState" type="java.lang.String"

 proxyInvokeType="multicall" proxySetterInvokeType="multicall"/>

 <operation

 description="Initialize the State MBean."

 impact="ACTION" name="initializeState" role="operation"

 targetObjectType="objectReference" type="void" proxyInvokeType="multicall">

 <signature>

 <parameter description="The name of the MBean."

 name="mbeanName" type="java.lang.String"/>

 <parameter description="The initial state of the MBean."

 name="mbeanName" type="java.lang.String"/>

 </signature>

 </operation>

 <notification name="j2ee.state.starting" severity="6" log="false"

 description="This sample state MBean is in starting state.">

 <notificationType>j2ee.state.starting</notificationType>

 </notification>

 <notification name="j2ee.state.running" severity="6" log="false"

 description="This sample state MBean is in running state.">

 <notificationType>j2ee.state.running</notificationType>

 </notification>

 <notification name="j2ee.state.stopping" severity="6" log="false"

 description="This sample state MBean is in stopping state.">

 <notificationType>j2ee.state.stopping</notificationType>

 </notification>

 <notification name="j2ee.state.stopped" severity="6" log="false"

 description="This sample state MBean is in stopped state.">

 <notificationType>j2ee.state.stopped</notificationType>

 </notification>

</MBean>

SampleState implementation

package com.ibm.ws390.sample;

import com.ibm.ejs.ras.Tr;

import com.ibm.ejs.ras.TraceComponent;

import java.io.Serializable;

import com.ibm.websphere.management.dynamicproxy.StateObject;

public class SampleState extends StateObject {

 private static TraceComponent tc =

 Tr.register(SampleState.class,"SampleState",null);

 // Package protected STATE constants.

 static final String STATE_STARTING = "j2ee.state.starting";

 static final String STATE_RUNNING = "j2ee.state.running";

 static final String STATE_STOPPING = "j2ee.state.stopping";

 static final String STATE_STOPPED = "j2ee.state.stopped";

 // Dynamicproxy State is initialized with STOPPED state.

 private String state = STATE_STOPPED;

 public SampleState() {

 if (tc.isEntryEnabled()) Tr.entry(tc,"<init>");

628 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

// State is initialized during "state" initialization above,

 // but can also be initialized here in the constructor as well.

 /*

 state = "WebSphere Application Server for z/OS ready for e-business";

 */

 if (tc.isEntryEnabled()) Tr.exit(tc,"<init>");

 }

 public synchronized String getState() {

 if (tc.isEntryEnabled()) Tr.entry(tc,"getState");

 if (tc.isEntryEnabled()) Tr.exit(tc,"getState",state);

 return state;

 }

 public synchronized void setState(String state) {

 if (tc.isEntryEnabled()) Tr.entry(tc,"setState",state);

 this.state = state;

 if (tc.isEntryEnabled()) Tr.exit(tc,"setState");

 }

 public synchronized String getStateObjectInfo() {

 return state;

 }

}

SampleStateAggregationHandler implementation

package com.ibm.ws390.sample;

import com.ibm.websphere.management.dynamicproxy.AggregationHandler;

import com.ibm.websphere.management.dynamicproxy.StateObject;

import com.ibm.ejs.ras.Tr;

import com.ibm.ejs.ras.TraceComponent;

public class SampleStateAggregationHandler implements AggregationHandler {

 private static TraceComponent tc =

 Tr.register(SampleStateAggregationHandler.class,"SampleState",null);

 /**

 * Return an aggregated result from a multicall Mbean operation which

 * compiles through all servant MBeans’ results and returns a respective

 * single return value for an invoked method.

 *

 * @param methodName MBean method name

 * @param params MBean method parameters

 * @param signatures MBean method signatures

 * @param servantMBeanResults Result of each servant MBean instances

 * invoked by the dynamicproxy multicast

 * invocation.

 * Note: this value can be "null" OR can be

 * an array of "null"s in case return value

 * of the method is "void." Implementation

 * of this method MUST handle this case to

 * avoid a <code>NullPointerException</code>.

 * @param stateObject

 * MBean provider provided <code>StateObject</code> used by

 * dynamicproxy MBean in CR to manage its state. Note: this object

 * MAY BE null if "stateObjectClass" was not specified OR internal

 * error occurred during initialization of this dynamicproxy MBean.

 * Implmentation MUST properly handle "null" input.

 *

 * @return aggregated result as defined by MBean xml for specified

 * MBean operation.

Chapter 8. Using administrative programs (JMX) 629

*/

 public Object aggregateResults(String methodName,

 Object[] params,

 String[] signatures,

 Object[] servantMBeanResults,

 StateObject stateObject) {

 if (tc.isEntryEnabled()) Tr.entry(tc,"aggregateResults",methodName);

 // As you can see from the MBeanDescriptor of SampleStateMBean,

 // it declares the following four methods:

 // 1. String getMBeanName() [proxyInvokeType == unicall]

 // 2. String getState() [proxyInvokeType == multicall]

 // 3. void setState(String) [proxyInvokeType == multicall]

 // 4. void initializeState() [proxyInvokeType == multicall]

 //

 // Looking at the above methods, only method that requires aggregation

 // is #2 getState method which is a multicall MBean operation AND

 // it returns a value that can be aggregated.

 //

 // In this example, we simply take each servants’ getState MBean

 // request result and concatenate them into one long String that

 // displays each servants’ state.

 if (methodName.equals("getState")) {

 StringBuffer stateBuf = new StringBuffer();

 for (int i=0; i<servantMBeanResults.length; i++) {

 stateBuf.append("SERVANT #" + i + " state ==|" +

 servantMBeanResults[i] + "|== ");

 }

 return stateBuf.toString();

 }

 // If we also had an example method which returns say an int,

 // getNumberOfMBeans(), it can take the similar approach

 // and to add each servants’ getNumberOfMBeans() result together here.

 /* example added for non-existent method: int getNumberOfMBeans()

 else if (methodName.equals("getNumberOfMBeans")) {

 int aggregatedResult = 0;

 for (int i=0; i<servantMBeanResults.length; i++) {

 aggregatedResult += (int) servantMBeanResults[i];

 }

 return aggregatedResult;

 }

 */

 return methodName + " is NOT handled by " + getClass().getName() + "!";

 }

}

Administrative Security

Access to the Java Management Extension (JMX) administrative subsystem requires

role-based access control when administrative security is enabled.

Administrative security is also referred to as global security. A client, which can be a

user or an administrative client program, can access an MBean method only if at

least one of the required roles is granted to the client. WebSphere Application

Server uses the declarative security approach to specify the security policy on the

JMX MBean. This approach has the advantage of not requiring MBean developers

to add security code. Moreover, WebSphere Application Server provides a default

security policy for an MBean so in most case MBean developers do not need to

630 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

specify a security policy at all. With WebSphere Application Server, you can define

explicit security policy for your MBeans if the default security policy does not

meet your specific security requirements.

Default MBean security policy

This article discusses the default MBean security policy. In most cases, MBean

developers do not need to specify a security policy.

Two types of MBeans exist for the default MBean security policy. One is a

configuration type and the other is a run-time type. An optional attribute in the

MBean descriptor XML file defines the type of MBean.

The ConfigRepository MBean is an example of one of a few configuration types. In

the configRepository.xml descriptor file, the configureMBean = ″true″ attribute

indicates that the MBean is a configuration type.

<MBean type="ConfigRepository"

 version="5.0"

 platform="common"

 description="Management interface for the configuration repository."

 configureMBean="true">

WebSphere Application Server extended role-based access control supports role

inheritance. Four administrative roles of administrator, configurator, operator, and

monitor exist. The monitor role is the least privileged administrative role. Users

that are granted the monitor role are allowed to view the WebSphere Application

Server configuration and the run-time status, but cannot make any changes. The

other three administrative roles each have their own unique set of privileges as

well as the same privileges as the monitor role.

The configurator role has permission to modify WebSphere Application Server

configuration data. The operator role has permission to change run-time state, such

as the start and stop of administrative resources. A configurator role cannot change

the run-time status and conversely an operator role cannot change the WebSphere

Application Server configuration. The administrator role includes configurator and

operators roles but has more permissions than the union of configurator role and

operator role. The administrator role can additionally change the global security

configuration. A simple picture shows the administrative role inheritance

relationship.

Each MBean method or operation is assigned an impact attribute with a value of

either INFO or ACTION. Here are some examples:

v A get method has an impact value of INFO and a write method has an impact

value of ACTION.

v In the ConfigRepository MBean, the extract method does not change the

configuration data and has an impact value of INFO, while the modify method

has an impact value of ACTION.

v In the NodeAgent MBean, which is an operator type of MBean, the terminate

method has an impact value of ACTION.

A configuration MBean that has an impact value of INFO requires the monitor role.

A configuration MBean method that has an impact value of ACTION requires the

configurator role. Because all administrative roles are monitor roles, any

administrative role can access configuration MBean methods that have an impact

Chapter 8. Using administrative programs (JMX) 631

value of INFO. The administrator role is a configurator role and has access to the

configuration MBean methods that have an impact value of ACTION.

The default security policy for configuration MBean is summarized in the

following table:

Method impact Monitor role Operator role

Configurator

role

Administrator

role

INFO X X X X

ACTION X X

The default security policy for operation MBean is summarized in the following

table:

Method impact Monitor role Operator role

Configurator

role

Administrator

role

INFO X X X X

ACTION X X

Defining an explicit MBean security policy

You can explicitly define an MBean security policy for a particular MBean. Use this

example to define an MBean security policy.

This task assumes a basic familiarity with MBean programming. For information

on MBean programming, see MBean Java application programming interface (API)

documentation.

Perform the following tasks to define an explicit security policy.

1. Assume that you have an MBean defined by the MBean sample.xml descriptor

file.

2. Specify the explicit security policy for that MBean in the sampleSecurity.xml

file. The naming convention is that you must append ″Security″ to the MBean

descriptor file name as the name of the MBean security descriptor file.

3. Place the security policy descriptor file at the same directory where the MBean

security descriptor file is so that the MBean loader can find it. This directory is

the typical location for the security policy descriptor file. If no MBean security

descriptor file is present, the default MBean security policy is used.

4. Specify the MBean name of sample in the resource element resource-name field

of the sampleSecurity.xml file so that the MBean policy loader can associate

the MBean security policy with the MBean. The MBean security descriptor

definition is very similar to the security policy that is defined by the Java 2

Platform, Enterprise Edition (J2EE) deployment descriptor.

You now have an explicitly defined MBean security policy that you can run with

an MBean.

The following example describes the MBean security descriptor file format for the

sampleSecurity.xml file.

Line 2 specifies that an MBean security descriptor schema is defined by the

RolePermissionDescriptor.dtd file, which is a document type definition (DTD) in

WebSphere Application Server.

632 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

As shown on line 3, each MBean descriptor file contains a single role-permission

element. The administrative security role hierarchy is defined in the security-role

elements between line 9 and line 37. The administrative security role has an

inheritance relationship.

As defined on line 14 through 21, the operator security role implies the monitor

security role, which means that a user with the operator role has all the

permissions of the monitor role. As defined between line 30 and line 38, an

administrator security role implies both the configurator and operator security role.

Every MBean security descriptor file typically has the same role relationship

definition so that you can cut and paste this section to your MBean security

descriptor file.

One or more method-permission elements are defined after the security-role

element. Each method-permission element defines the required roles for one or

more methods. Specify method parameters to avoid method name collision in case

multiple methods have the same name.

1. <?xml version="1.0" encoding="UTF-8"?>

2. <!DOCTYPE role-permission SYSTEM "RolePermissionDescriptor.dtd" >

3. <role-permission>

4. <resource>

5. <resource-name>sample</resource-name>

6. <class-name>com.ibm.ws.security.descriptor.sample</class-name>

7. <description>This is a sample for testing role permission descriptor.</description>

8. </resource>

9. <security-role>

10. <role>

11. <role-name>monitor</role-name>

12. </role>

13. </security-role>

14. <security-role>

15. <role>

16. <role-name>operator</role-name>

17. <imply>

18. <role-name>monitor</role-name>

19. </imply>

20. </role>

21. </security-role>

22. <security-role>

23. <role>

24. <role-name>configurator</role-name>

25. <imply>

26. <role-name>monitor</role-name>

27. </imply>

28. </role>

29. </security-role>

30. <security-role>

31. <role>

32. <role-name>administrator</role-name>

33. <imply>

34. <role-name>operator</role-name>

35. <role-name>configurator</role-name>

36. </imply>

37. </role>

38. </security-role>

39. <method-permission>

40. <description>Sample method permission table</description>

41. <role-name>operator</role-name>

42. <method>

43. <description>Sample operation</description>

44. <resource-name>sample</resource-name>

45. <method-name>stop</method-name>

46. </method>

Chapter 8. Using administrative programs (JMX) 633

47. </method-permission>

48. <method-permission>

49. <description>Sample method permission table</description>

50. <role-name>operator</role-name>

51. <method>

52. <description>Sample operation</description>

53. <resource-name>sample</resource-name>

54. <method-name>start</method-name>

55. <method-params>

56. <method-param>java.lang.String</method-param>

57. <method-param>java.lang.String</method-param>

58. </method-params>

59. </method>

60. </method-permission>

61. <method-permission>

62. <description>Sample method permission table</description>

63. <role-name>operator</role-name>

64. <method>

65. <description>Sample operation</description>

66. <resource-name>sample</resource-name>

67. <method-name>monitor</method-name>

68. <method-params>

69. </method-params>

70. </method>

71. </method-permission>

72. <method-permission>

73. <description>Sample method permission table</description>

74. <role-name>configurator</role-name>

75. <method>

76. <description>Sample operation</description>

77. <resource-name>sample</resource-name>

78. <method-name>setValue</method-name>

79. <method-params>

80. <method-param>java.lang.Boolean</method-param>

81. </method-params>

82. </method>

83. </method-permission>

84. <method-permission>

85. <description>Sample method permission table</description>

86. <role-name>monitor</role-name>

87. <method>

88. <description>Sample operation</description>

89. <resource-name>sample</resource-name>

90. <method-name>getValue</method-name>

91. </method>

92. </method-permission>

93. </role-permission>

Developing administrative programs for multiple Java 2 Platform,

Enterprise Edition application servers

You can develop an administrative client to manage multiple vendor application

servers through existing MBean support in the WebSphere Application Server.

Existence of MBeans for stopped components

The WebSphere Application Server completely implements the Java 2 Platform,

Enterprise Edition (J2EE) Management specification. However, some differences in

details between the J2EE specification and the WebSphere Application Server

implementation are important for you to understand when you access WebSphere

Application Server components. These differences are important to you when you

access application MBeans because you can use either the WebSphere Application

Server programming model or the J2EE programming model.

634 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

In the WebSphere Application Server programming model, if an MBean exists, you

can assume that it is running. If an MBean does not exist, you can assume that it is

stopped. Transient states between the started state and the stopped state are the

same as the stopped state, which means that no MBean exists.

In the J2EE programming model, the MBean always exists regardless of the state of

the component.

You can determine the state of a component by querying the state attribute.

However, the state attribute only exists for MBeans that are state manageable,

meaning that they implement the StateManageable interface. State manageable

MBeans have start(), startRecursive(), and stop() operations whether these MBeans

are J2EE MBeans or WebSphere Application Server MBeans. Additionally, the

WebSphere Application Server defines the stateful interface. The stateful interface

means that the component has a state and emits the j2ee.state.notifications method,

but that the component cannot directly manage the state. For example, a Web

module cannot stop itself. However, the application that contains the Web module

can stop it.

Not all MBeans that have a state are state-manageable. Servlets, J2EE modules and

enterprise beans, for example, are all stateful, but are not state manageable. The

J2EE server is not state-manageable because no start() operation is available on a

server.

The J2EEApplication MBean is an example of a state manageable MBean. When the

WebSphere Application Server starts, each application activates a J2EEApplication

MBean for itself. A J2EEApplication MBean has a J2EE type of J2EEApplication (for

example, ObjectName *:*,j2eeType=J2EEApplication). If the application starts, it

also activates an Application MBean with a type of Application (for example,

:,type=Application). When the application changes state, the Application

MBean is activated or deactivated. However, the J2EEApplication MBean is always

activated. You can retrieve the application state changes by getting the state

attribute.

The modules attribute on the J2EEApplication component returns an array of

object names, one for every module in the application. The Application Server

activates an MBean for each of these modules only after the Application Server

starts the application. The managed enterprise bean isRegistered(ObjectName)

method returns false if the application, and therefore the module, is not running.

All of the attributes that are defined in the J2EE management specification return

valid values when the managed object stops. Other attributes and operations, for

example those that are specifically defined for the Application Server, use the

com.ibm.websphere.management.exception.ObjectNotRunningException exception

if they are accessed when the object is stopped.

If you install the application while the server runs, the application installs the

J2EEApplication MBean when the installation completes. Conversely, when the

application uninstalls the J2EEApplication MBean, the application deactivates the

MBean.

Mapping key properties

The following table lists the mapping from the J2EE management-defined j2eeType

key property to the WebSphere Application Server type key property. You can use

either key property to access MBeans. However, only use the j2eeType key

Chapter 8. Using administrative programs (JMX) 635

property if you want to connect to application servers other than WebSphere

Application Server.

 j2eeType key property type key property

J2EEDomain J2EEDomain [new]

J2EEServer Server

JVM JVM

J2EEApplication Application [separate MBean from j2eeType

WebModule WebModule

ResourceAdapterModule ResourceAdapterModule

EJBModule EJBModule

EJB and subtypes / Servlet /

ResourceAdapter

EJB and subtypes / Servlet /

ResourceAdapter

JavaMailResource MailProvider

JNDIResource NameServer

JMSResource JMSProvider

JTAResource TransactionService

RMI_IIOPResource ORB

URLResource URLProvider

JDBCResource JDBCProvider

JDBCDataSource DataSource

JDBCDriver JDBCDriver [new]

JCAResource J2CResourceAdapter

JCAConnectionFactory J2CConnectionFactory

JCAManagedConnectionFactory J2CManagedConnectionFactory [new]

Optional WebSphere Application Server interfaces

The following table shows the optional J2EE management interfaces that

WebSphere Application Server provides. Some j2eeType key properties are split on

multiples lines for printing purproses.

 j2eeType key

property

EventProvider

interface

StateManageable

interface

StatisticsProvider

interface

J2EEDomain No No No

J2EEServer Yes Stateful No

JVM No No Yes

J2EEApplication Yes Yes No

WebModule Yes Stateful No

ResourceAdapterModule Yes Stateful No

EJBModule Yes Stateful No

AppClientModule Yes Stateful No

EJB and subtypes /

Servlet /

ResourceAdapter

No No Yes

636 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

JavaMailResource No No No

JNDIResource No No No

JMSResource No No No

JTAResource Yes No Yes

RMI_IIOPResource No No Yes

URLResource No No No

JDBCResource No No Yes

JDBCDataSource No No No

JDBCDriver No No No

JCAResource Yes No Yes

JCAConnectionFactory No No No

JCAManagedConnection

Factory

No No No

Deploying and managing a custom Java administrative client program

with multiple Java 2 Platform, Enterprise Edition application servers

This section describes how to connect to a Java 2 Platform, Enterprise Edition

(J2EE) server, and how to manage multiple vendor servers.

The WebSphere Application Server completely implements the J2EE Management

specification, also known as JSR-77 (Java Specification Requests 77). However,

some differences in details between the J2EE specification and the WebSphere

Application Server implementation are important for you to understand when you

develop a Java administrative client program to manage multiple vendor servers.

For information, see the Java Platform, Enterprise Edition (J2EE) Management

Specification and the MBean application programming interface (API)

documentation.

When your administrative client program accesses WebSphere Application Servers

exclusively, you can use the Java APIs and WebSphere Application Server-defined

MBeans to manage them. If your program needs to access both WebSphere

Application Servers and other J2EE servers, use the API defined in the J2EE

Management specification.

1. Connect to a J2EE server.

Connect to a server by looking up the Management enterprise bean from the

Java Naming and Directory Interface (JNDI). The Management enterprise bean

supplies a remote interface to the MBean server that runs in the application

server. The Management enterprise bean works almost exactly like the

WebSphere Application Server administrative client, except that it does not

provide WebSphere Application Server specific functionality. The following

example shows how to look up the Management enterprise bean.

import javax.management.j2ee.ManagementHome;

import javax.management.j2ee.Management;

Properties props = new Properties();

props.setProperty(Context.PROVIDER_URL, "iiop://myhost:2809");

Context ic = new InitialContext(props);

Chapter 8. Using administrative programs (JMX) 637

http://java.sun.com
http://java.sun.com

Object obj = ic.lookup("ejb/mgmt/MEJB");

ManagementHome mejbHome = (ManagementHome)

 PortableRemoteObject.narrow(obj, ManagementHome.class);

Management mejb = mejbHome.create();

The example gets an initial context to an application server by passing the host

and port of the Remote Method Invocation (RMI) connector. You must

explicitly code the RMI port, in this case 2809. The lookup method looks up the

ejb/mgmt/MEJB path, which is the location of the Management enterprise bean

home. The example then creates the mejb stateless session bean, which you use

in the next step.

2. Manage multiple vendor application servers.

After you create the mejb stateless session bean, you can use it to manage your

application servers. Components from the application servers appear as

MBeans, which the specification defines. These MBeans all have the j2eeType

key property. This key property is one of a set of types that the specification

defines. All of these types have a set of exposed attributes.

Use the following example to guide you in managing multiple vendor

application servers. The example uses the Java virtual machine (JVM) MBean to

determine what the current heap size is for the application server.

ObjectName jvmQuery = new ObjectName("*:j2eeType=JVM,*");

Set s = mejb.queryNames(jvmQuery, null);

ObjectName jvmMBean = (ObjectName) s.iterator().next();

boolean hasStats = ((Boolean) mejb.getAttribute(jvmMBean,

 "statisticsProvider")).booleanValue();

if (hasStats) {

 JVMStats stats = (JVMStats) mejb.getAttribute(jvmMBean,

 "stats");

 String[] statisticNames = stats.getStatisticNames();

 if (Arrays.asList(statisticNames).contains("heapSize")) {

 System.out.println("Heap size: " + stats.getHeapSize());

 }

}

The queryNames() method first queries the JVM MBean. The getAttribute

method gets the statisticsProvider attribute and determine if this MBean

provides statistics. If the MBean does, the example accesses the stats attribute,

and then invokes the getHeapSize() method to get the heap size.

The strength of this example is that the example can run on any vendor

application server. It demonstrates that an MBean can optionally implement

defined interfaces, in this case the StatisticsProvider interface. If an MBean

implements the StatisticsProvider interface, you can see if an application server

supports a particular statistic, in this case the heap size. The specification defines

the heap size, although this value is optional. If the application server supports the

heap size, you can display the heap size for the JVM.

Migrating Java Management Extensions V1.0 to Java Management

Extensions V1.2

Each Java Virtual Machine (JVM) in WebSphere Application Server includes an

embedded implementation of Java Management Extensions (JMX). In Application

Server, Version 5, the JVMs contain an implementation of the JMX 1.0 specification.

In Application Server, Version 6, the JVMs contain an implementation of the JMX

1.2 specification. The JMX 1.0 implementation used in Version 5 is the TMX4J

package that IBM Tivoli products supply. The JMX 1.2 specification used in Version

6 is the open source mx4j package. The JMX implementation change across the

releases does not affect the behavior of the JMX MBeans in the Application Server.

638 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

No Application Server administrative application programming interfaces (APIs)

are altered due to the change from the JMX V1.0 specification to the JMX V1.2

specification.

The JMX V1.2 specification is backward compatible with the JMX 1.0 specification.

However, you might need to migrate custom MBeans that are supplied by

products other than the Application Server from Version 5 to Version 6. The

primary concern for these custom MBeans is related to the values that are used in

key properties of the JMX ObjectName class for the MBean. The open source mx4j

implementation more stringently enforces property validation according to the JMX

1.2 specification. Test the custom MBeans that you deployed in Version 5 in Version

6, to ensure compatibility. Full details of the JMX V1.2 specification changes from

the JMX V1.0 specification are available in the JMX 1.2 specification.

Java Management Extensions interoperability

WebSphere Application Server Version 6 implements Java Management Extensions

(JMX) Version 1.2, while WebSphere Application Server Version 5 implements JMX

Version 1.0.

Due to the evolution of the JMX specification, the serialization format for JMX

objects, such as the javax.management.ObjectName object, differs between the V5

implementation and the V6 implementation. The V6 JMX run time is enhanced to

be aware of the version of the client with which it is communicating. The V6 run

time makes appropriate transformations on these incompatible serialized formats

to support communication between the different version run times. A V5 wsadmin

script or a V5 administrative client can call a V6 deployment manager, node, or

server. A V6 wsadmin script or a V6 administrative client can call a V5 node or

server.

When a V5 wsadmin script or a V5 administrative client calls a V6 MBean, the

instances of classes that are new in V6 cannot be passed back to V5 because these

classes are not present in the V5 environment. The problem occurs infrequently.

However, it usually occurs when an exception embeds a nested exception that is

new in V6. The symptom is usually a serialization exception or a

NoClassDefFoundException exception.

Due to changes in the JMX implementation from V5 to V6, different exceptions are

created when a method on an MBean is invoked for V5 than when a method on an

MBean is invoked for V6. For example, when a method gets or sets an unknown

attribute for V5, the MBeanRuntimeException exception is created. When a method

gets or sets an unknown attribute for V6, the MBeanException exception that

wraps a ServiceNotFoundException exception is created.

An instance of a user-defined class that implements the Serializable interface that is

passed as a parameter or return value during MBean invocation, or sent as part of

a notification, cannot contain a non-transient instance variable that is in the

javax.management.package package. If the instance does, it cannot be properly

deserialized when passed between V5 and V6 run times.

Due to changes in the supported format for the ObjectName class from V5 to V6,

the configuration ID in V6 contains a vertical bar (|), whereas in V5, the ID

contains a colon (:). This change is reflected in the output for wsadmin clients. For

example, for a V5 client, the output is:

wsadmin> $AdminConfig list Cell

 DefaultCellNetwork(cells/DefaultCellNetwork:cell.xml#Cell_1)

Chapter 8. Using administrative programs (JMX) 639

whereas for a V6 client, the output is:

wsadmin> $AdminConfig list Cell

 DefaultCellNetwork(cells/DefaultCellNetwork|cell.xml#Cell_1)

The change to the configuration ID generally is not a problem because

configuration IDs are generated dynamically. When a V5 client passes a

configuration ID that contains a colon, the JMX run time, for upward compatibility,

automatically transforms the configuration ID that contains a colon into a

configuration ID that contains a vertical bar. Similarly, a reverse transformation is

performed for backward compatibility.

Do not save the configuration ID and then try to use it later. Only query the ID

and use it.

Managed object metadata

Information about a node, such as operating system platform and product features,

is maintained in the configuration repository in the form of properties. As product

features are installed on a node, new property settings are added.

WebSphere Application Server system management uses the managed object

metadata properties as follows:

v To display the node version in the administrative console

v To ensure that new configuration types or attributes are not created or set on

older release nodes

v To ensure that new resource types are not created on old release nodes

v To ensure that new applications are not installed on old release nodes because

the old run time cannot support the new applications

Base properties

The following base property keys are defined for WebSphere Application Server:

com.ibm.websphere.baseProductVersion: The version of WebSphere Application

Server that is installed.

com.ibm.websphere.nodeOperatingSystem: The operating system platform on

which the node runs.

com.ibm.websphere.nodeSysplexName: The sysplex name on a z/OS operating

system. This property applies to the z/OS operating system only.

com.ibm.websphere.deployed.features: A list of features that extends a profile. An

example of a feature is an administrative console plug-in.

Here are examples of metadata property values. The last item is split on multiple

lines for printing purposes.

com.ibm.websphere.baseProductVersion=6.0.0.0

com.ibm.websphere.nodeOperatingSystem=os390

com.ibm.websphere.nodeSysplexName=PLEX1

com.ibm.websphere.deployed.features=

 com.ibm.ws.base_6.0.0.0,com.ibm.ws.j2ee_6.0.0.0,

 com.ibm.ws.uddi_6.0.0.0,com.ibm.ws.wsgateway_6.0.0.0

For detailed information on metadata properties, view the

ManagedObjectMetadataHelper class in the Application Server API documentation.

640 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

Accessing managed object metadata properties

An administrator can query managed object metadata through the wsadmin tool or

Application Server APIs. They can additionally be viewed on the Node Installation

properties administrative console panel. This article provides details on the

Application Server API method.

An accessor class is used to obtain the managed object metadata properties. An

accessor instance is created through its factory. A helper class, which uses the

accessor instance, makes it easy to query the base metadata properties. These

classes are all part of the com.ibm.websphere.management.metadata package in the

Application Server API documentation. The specific names of these classes are:

v com.ibm.websphere.management.metadata.ManagedObjectMetadataHelper

v com.ibm.websphere.management.metadata.ManagedObjectMetadataAccessor

v

 com.ibm.websphere.management.metadata.ManagedObjectMetadataAccessorFactory

Managing applications through programming

This topic describes how, through Java MBean programming, to install, update,

and delete a Java 2 Platform, Enterprise Edition (J2EE) application on WebSphere

Application Server.

This task assumes a basic familiarity with MBean programming. For information

on MBean programming see MBean Java application programming interface (API)

documentation.

Before you can install or change an application on WebSphere Application Server,

you must first create or update your application and assemble it using an assembly

tool.

Besides installing, uninstalling, and updating applications through programming,

you can additionally install, uninstall, and update J2EE applications through the

administrative console or the wsadmin tool. All three ways provide identical

updating capabilities.

1. Perform any or all of the following tasks to manage your J2EE applications

through programming.

a. Install an application.

This article provides an example for initially installing an application on

WebSphere Application Server.

b. Uninstall an application.

This article provides an example for uninstalling an application that resides

on WebSphere Application Server.

c. Update an application.

This article provides an example for updating the installed application on

WebSphere Application Server with a new application. When you

completely update an application, the deployed application is uninstalled

and the new enterprise archive (EAR) file is installed.

d. Add to, update, or delete part of an application.

This article provides an example that you can use to add to, update, or

delete part of an application on WebSphere Application Server.

e. Add a module.

Chapter 8. Using administrative programs (JMX) 641

This article provides an example for adding a module to an application that

resides on WebSphere Application Server.

f. Update a module.

This article provides an example for updating a module that resides on

WebSphere Application Server. When you update a module, the deployed

module is uninstalled and the updated module is installed.

g. Delete a module.

This article provides an example for deleting a module that resides on

WebSphere Application Server. When you delete a module, the deployed

module is uninstalled.

h. Add a file.

This article provides an example for adding a file to an application that

resides on WebSphere Application Server.

i. Update a file.

This article provides an example for updating a file on WebSphere

Application Server. When you update a file, the deployed file is uninstalled

and the updated file is installed.

j. Delete a file.

This article provides an example for deleting a file on WebSphere

Application Server. When you delete a file, the deployed file is uninstalled.
2. Save your changes to the master configuration repository.

3. Synchronize changes to the master configuration across the nodes for the

changes to take effect.

If you have further application updates, you can do the updates through

programming, the administrative console, or the wsadmin tool.

Installing an application through programming

You can install an application through the administrative console, the wsadmin

tool, or programming. Use this example to install an application through

programming.

This task assumes a basic familiarity with MBean programming. For information

on MBean programming see MBean Java application programming interface (API)

documentation.

Before you can install an application on WebSphere Application Server, you must

first create or update your application and assemble it using an assembly tool.

Perform the following tasks to install an application through programming.

 1. Populate the enterprise archive (EAR) file with WebSphere Application

Server-specific binding information.

a. Create the controller and populate the EAR file with appropriate options.

b. Optionally run the default binding generator.

c. Save and close the EAR file.

d. Retrieve the saved options table that will be passed to the

installApplication MBean (API).
 2. Connect to WebSphere Application Server.

 3. Create the application management proxy.

642 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

4. If the preparation phase (population of the EAR file) is not performed, the do

the following actions:

a. Create an options table to be passed to the installApplication MBean API.

b. Create a table for module to server relations and add the table to the

options table.

Refer to the com.ibm.websphere.management.application.AppManagement

class in the Application Server API documentation to understand various

options that can be passed to the installApplication MBean API.
 5. Create the notification filter for listening to installation events.

 6. Add the listener.

 7. Install the application.

 8. Wait for some timeout so that the program does not end.

 9. Listen to Java Management Extensions (JMX) notifications to understand

completion of the operation.

10. When the installation is done, remove the listener and quit.

After you successfully run the code, the application is installed.

The following example shows how to install an application based on the previous

steps. Some statements are split on multiple lines for printing purposes.

import java.lang.*;

import java.io.*;

import java.util.*;

import java.lang.reflect.*;

import com.ibm.websphere.management.application.*;

import com.ibm.websphere.management.application.client.*;

import com.ibm.websphere.management.*;

import javax.management.*;

public class Install {

 public static void main (String [] args) {

 try {

 String earFile = "C:/test/test.ear";

 String appName = "MyApp";

// Preparation phase: Begin

// Through the preparation phase you populate the enterprise archive (EAR) file with

// WebSphere Application Server-specific binding information. For example, you can specify

// Java Naming and Directory Interface (JNDI) names for enterprise beans, or virtual hosts

// for Web modules, and so on.

// First, create the controller and populate the EAR file with the appropriate options.

 Hashtable prefs = new Hashtable();

 prefs.put(AppConstants.APPDEPL_LOCALE, Locale.getDefault());

// You can optionally run the default binding generator by using the following options.

// Refer to Java documentation for the AppDeploymentController class to see all the

// options that you can set.

 Properties defaultBnd = new Properties();

 prefs.put (AppConstants.APPDEPL_DFLTBNDG, defaultBnd);

 defaultBnd.put (AppConstants.APPDEPL_DFLTBNDG_VHOST, "default_host");

// Create the controller.

 AppDeploymentController controller = AppDeploymentController

 .readArchive(earFile, prefs);

 AppDeploymentTask task = controller.getFirstTask();

 while (task != null)

Chapter 8. Using administrative programs (JMX) 643

{

// Populate the task data.

 String[][] data = task.getTaskData();

// Manipulate task data which is a table of stringtask.

 setTaskData (data);

 task = controller.getNextTask();

 }

 controller.saveAndClose();

 Hashtable options = controller.getAppDeploymentSavedResults();

// The previous options table contains the module-to-server relationship if it was set by

// using tasks.

//Preparation phase: End

// Get a connection to WebSphere Application Server.

 String host = "localhost";

 String port = "8880";

 String target = "WebSphere:cell=cellName,node=nodeName,server=server1";

 Properties config = new Properties();

 config.put (AdminClient.CONNECTOR_HOST, host);

 config.put (AdminClient.CONNECTOR_PORT, port);

 config.put (AdminClient.CONNECTOR_TYPE, AdminClient.CONNECTOR_TYPE_SOAP);

 System.out.println ("Config: " + config);

 AdminClient _soapClient = AdminClientFactory.createAdminClient(config);

// Create the application management proxy, AppManagement.

 AppManagement proxy = AppManagementProxy. getJMXProxyForClient (_soapClient);

// If code for the preparation phase has been run, then you already have the options table.

// If not, create a new table and add the module-to-server relationship to it by uncommenting

// the next statement.

//Hashtable options = new Hashtable();

 options.put (AppConstants.APPDEPL_LOCALE, Locale.getDefault());

// Uncomment the following statements to add the module to the server relationship table if

// the preparation phase does not collect it.

//Hashtable module2server = new Hashtable();

//module2server.put ("*", target);

//options.put (AppConstants.APPDEPL_MODULE_TO_SERVER, module2server);

//Create the notification filter for listening to installation events.

 NotificationFilterSupport myFilter = new NotificationFilterSupport();

 myFilter.enableType (AppConstants.NotificationType);

//Add the listener.

 NotificationListener listener = new AListener(_soapClient,

myFilter, "Install: " + appName, AppNotification.INSTALL);

// Install the application.

 proxy.installApplication (earFile, appName, options, null);

 System.out.println ("After install App is called..");

// Wait for some timeout. The installation application programming interface (API) is

// asynchronous and so returns immediately.

// If the program does not wait here, the program ends.

 Thread.sleep(300000); // Wait so that the program does not end.

 }

 catch (Exception e) {

 e.printStackTrace();

 }

 }

}

644 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

// Specify the Java Management Extensions (JMX) notification listener for JMX events.

class AListener implements NotificationListener

{

 AdminClient _soapClient;

 NotificationFilterSupport myFilter;

 Object handback;

 ObjectName on;

 String eventTypeToCheck;

 public AListener(AdminClient cl, NotificationFilterSupport fl,

Object h, String eType) throws Exception

 {

 _soapClient = cl;

 myFilter = fl;

 handback = h;

 eventTypeToCheck = eType;

 Iterator iter = _soapClient.queryNames (new ObjectName(

"WebSphere:type=AppManagement,*"), null).iterator();

 on = (ObjectName)iter.next();

 System.out.println ("ObjectName: " + on);

 _soapClient.addNotificationListener (on, this, myFilter, handback);

 }

 public void handleNotification (Notification notf, Object handback)

 {

 AppNotification ev = (AppNotification) notf.getUserData();

 System.out.println ("!! JMX event Recd: (handback obj= " + handback+ "): " + ev);

 //When the installation is done, remove the listener and quit.

 if (ev.taskName.equals (eventTypeToCheck) &&

 (ev.taskStatus.equals (AppNotification.STATUS_COMPLETED) ||

 ev.taskStatus.equals (AppNotification.STATUS_FAILED)))

 {

 try

 {

 _soapClient.removeNotificationListener (on, this);

 }

 catch (Throwable th)

 {

 System.out.println ("Error removing listener: " + th);

 }

 System.exit (0);

 }

 }

}

Once you install the application, you must explicitly start the application or restart

the server.

Starting an application through programming

You can start an application through the administrative console, the wsadmin tool,

or programming. Use this example to start an application through programming.

This task assumes a basic familiarity with MBean programming. For information

on MBean programming see MBean Java application programming interface (API)

documentation.

Before you can start an application on WebSphere Application Server, you must

first install your application.

Chapter 8. Using administrative programs (JMX) 645

Perform the following tasks to start an application through programming.

1. Connect the administrative client to WebSphere Application Server.

2. Create the application management proxy.

3. Call the startApplication method on the proxy by passing the application name

and optionally the list of targets on which to start the application.

After you successfully run the code, the application is started.

The following example shows how to start an application following the previously

listed steps. Some statements are split on multiple lines for printing purposes.

//Do a get of the administrative client to connect to

//WebSphere Application Server.

AdminClient client = ...;

String appName = "myApp";

Hashtable prefs = new Hashtable();

// Use the AppManagement MBean to start and stop applications on all or some targets.

// The AppManagement MBean is on the deployment manager in the Network Deployment product

// or on server1 in WebSphere Application Server.

// Query and get the AppManagement MBean.

ObjectName on = new ObjectName ("WebSphere:type=AppManagement,process=dmgr,*");

Iterator iter = client.queryNames (on, null).iterator();

ObjectName appmgmtON = (ObjectName)iter.next();

//Start the application on all targets.

AppManagement proxy = AppManagementProxy.getJMXProxyForClient(client);

String started = proxy.startApplication(appName, prefs, null);

System.out.println("Application started on folloing servers: " + started);

//Start the application on some targets.

//String targets = "WebSphere:cell=cellname,node=nodename,

server=servername+WebSphere:cell=cellname,cluster=clusterName";

//String started1 = proxy.startApplication(appName, targets, prefs, null);

//System.out.println("Application started on following servers: " + started1)

Uninstalling an application through programming

You can uninstall an application through the administrative console, the wsadmin

tool, or programming. Use this example to uninstall an application through

programming.

This task assumes a basic familiarity with MBean programming. For information

on MBean programming see MBean Java application programming interface (API)

documentation.

Before you can uninstall an application on WebSphere Application Server, you

must first install it.

Perform the following tasks to uninstall an application through programming.

1. Get a connection to WebSphere Application Server.

2. Get the application management proxy.

3. Create the notification filter for listening to uninstallation events.

4. Add the listener.

5. Uninstall the application.

6. Wait for some timeout so that the program does not end.

7. Listen to Java Management Extensions (JMX) notifications to understand

completion of the operation.

646 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

8. When the uninstallation is done, remove the listener and quit.

After you successfully run the code, the application is uninstalled.

The following example shows how to uninstall an application based on the

previous steps. Some statements are split on multiple lines for printing purposes.

import java.lang.*;

import java.io.*;

import java.util.*;

import java.lang.reflect.*;

import com.ibm.websphere.management.application.*;

import com.ibm.websphere.management.application.client.*;

import com.ibm.websphere.management.*;

import javax.management.*;

public class Uninstall {

 public static void main (String [] args) {

 try {

// Get a connection to the server.

 String host = "localhost";

 String port = "8880";

 String target = "WebSphere:cell=cellName,node=nodeName,server=server1";

 Properties config = new Properties();

 config.put (AdminClient.CONNECTOR_HOST, host);

 config.put (AdminClient.CONNECTOR_PORT, port);

 config.put (AdminClient.CONNECTOR_TYPE, AdminClient.CONNECTOR_TYPE_SOAP);

 System.out.println ("Config: " + config);

 AdminClient _soapClient = AdminClientFactory.createAdminClient(config);

 // Get the application management proxy.

 AppManagement proxy = AppManagementProxy. getJMXProxyForClient (_soapClient);

 String appName = "MyApp";

 Hashtable options = new Hashtable();

 options.put (AppConstants.APPDEPL_LOCALE, Locale.getDefault());

 //Create the notification filter.

 NotificationFilterSupport myFilter = new NotificationFilterSupport();

 myFilter.enableType (AppConstants.NotificationType);

 //Add the listener.

 NotificationListener listener = new AListener(_soapClient,

myFilter, "Install: " + appName, AppNotification.UNINSTALL);

 // Uninstall the application.

 proxy.uninstallApplication (appName, options, null);

 System.out.println ("After uninstall App is called..");

// Wait for some timeout. The installation application programming interface (API) is

// asynchronous and so returns immediately.

// If the program does not wait here, the program ends.

 Thread.sleep(300000); // Wait so that the program does not end.

 }

 catch (Exception e) {

 e.printStackTrace();

 }

 }

Chapter 8. Using administrative programs (JMX) 647

}

// Specify the Java Management Extensions (JMX) notification listener for JMX events.

class AListener implements NotificationListener

{

 AdminClient _soapClient;

 NotificationFilterSupport myFilter;

 Object handback;

 ObjectName on;

 String eventTypeToCheck;

 public AListener(AdminClient cl, NotificationFilterSupport fl,

Object h, String eType) throws Exception

 {

 _soapClient = cl;

 myFilter = fl;

 handback = h;

 eventTypeToCheck = eType;

 Iterator iter = _soapClient.queryNames (new ObjectName(

"WebSphere:type=AppManagement,*"), null).iterator();

 on = (ObjectName)iter.next();

 System.out.println ("ObjectName: " + on);

 _soapClient.addNotificationListener (on, this, myFilter, handback);

 }

 public void handleNotification (Notification notf, Object handback)

 {

 AppNotification ev = (AppNotification) notf.getUserData();

 System.out.println ("!! JMX event Recd: (handback obj= " + handback+ "): " + ev);

 //When the unistallation is done, remove the listener and quit

 if (ev.taskName.equals (eventTypeToCheck) &&

 (ev.taskStatus.equals (AppNotification.STATUS_COMPLETED) ||

 ev.taskStatus.equals (AppNotification.STATUS_FAILED)))

 {

 try

 {

 _soapClient.removeNotificationListener (on, this);

 }

 catch (Throwable th)

 {

 System.out.println ("Error removing listener: " + th);

 }

 System.exit (0);

 }

 }

}

Updating an application through programming

You can update an existing application through the administrative console, the

wsadmin tool, or programming. Use this example to completely update an

application through programming.

This task assumes a basic familiarity with MBean programming. For information

on MBean programming see MBean Java application programming interface (API)

documentation.

Before you can update an application on WebSphere Application Server, you must

first install your application.

648 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

Perform the following tasks to completely update an application through

programming.

1. Connect to WebSphere Application Server.

2. Create the application management proxy.

3. Create the notification filter for listening to events.

4. Add the listener.

5. Prepare the enterprise archive (EAR) file by populating it with binding

information.

6. Update the application.

7. Wait for some timeout so that the program does not end.

8. Listen to Java Management Extensions (JMX) notifications to understand

completion of the operation.

9. When the update is done, remove the listener and quit.

After you successfully run the code, the application is updated.

The following example shows how to update an application based on the previous

steps. Some statements are split on multiple lines for printing purposes.

import java.lang.*;

import java.io.*;

import java.util.*;

import java.lang.reflect.*;

import com.ibm.websphere.management.application.*;

import com.ibm.websphere.management.application.client.*;

import com.ibm.websphere.management.*;

import javax.management.*;

public class aa {

 public static void main (String [] args) {

 try {

 // Connect to WebSphere Application Server.

 String host = "localhost";

 String port = "8880";

 String target = "WebSphere:cell=cellName,node=nodeName,server=server1";

 Properties config = new Properties();

 config.put (AdminClient.CONNECTOR_HOST, host);

 config.put (AdminClient.CONNECTOR_PORT, port);

 config.put (AdminClient.CONNECTOR_TYPE, AdminClient.CONNECTOR_TYPE_SOAP);

 System.out.println ("Config: " + config);

 AdminClient _soapClient = AdminClientFactory.createAdminClient(config);

 // Create the application management proxy, AppManagement.

 AppManagement proxy = AppManagementProxy. getJMXProxyForClient (_soapClient);

 String appName = "MyApp";

 String fileContents = "C:/test/test.ear";

 // Create the notification filter.

 NotificationFilterSupport myFilter = new NotificationFilterSupport();

 myFilter.enableType (NotificationConstants.TYPE_APPMANAGEMENT);

 //Add the listener.

 NotificationListener listener = new AListener(_soapClient, myFilter,

"Install: " + appName, AppNotification.INSTALL);

// Refer to the installation example to see how you can prepare the enterprise archive (EAR)

// file by populating it with binding information.

Chapter 8. Using administrative programs (JMX) 649

// If code for the preparation phase has started, then you already have the options table.

// If not, create a new table and add the module-to-server relationship to it by uncommenting

// the next statement.

//Hashtable options = new Hashtable();

 options.put (AppConstants.APPDEPL_LOCALE, Locale.getDefault());

 options.put ((AppConstants.APPUPDATE_CONTENTTYPE, AppConstants.APPUPDATE_CONTENT_APP);

// Uncomment the following statements to add the module to the server relationship table if

// the preparation phase does not collect it

//Hashtable module2server = new Hashtable();

//module2server.put ("*", target);

//options.put (AppConstants.APPDEPL_MODULE_TO_SERVER, module2server);

// Update the application.

 proxy.updateApplication (appName,

 null,

 fileContents,

 AppConstants.APPUPDATE_UPDATE,

 options,

 null);

// Wait for some timeout. The installation application programming interface (API) is

// asynchronous and so returns immediately.

// If the program does not wait here, the program ends.

 Thread.sleep(300000); // Wait so that the program does not end.

 }

 catch (Exception e) {

 e.printStackTrace();

 }

 }

}

// Specify the Java Management Extensions (JMX) notification listener for JMX events.

class AListener implements NotificationListener

{

 AdminClient _soapClient;

 NotificationFilterSupport myFilter;

 Object handback;

 ObjectName on;

 String eventTypeToCheck;

 public AListener(AdminClient cl, NotificationFilterSupport fl,

Object h, String eType) throws Exception

 {

 _soapClient = cl;

 myFilter = fl;

 handback = h;

 eventTypeToCheck = eType;

 Iterator iter = _soapClient.queryNames (new ObjectName(

"WebSphere:type=AppManagement,*"), null).iterator();

 on = (ObjectName)iter.next();

 System.out.println ("ObjectName: " + on);

 _soapClient.addNotificationListener (on, this, myFilter, handback);

 }

 public void handleNotification (Notification notf, Object handback)

 {

 AppNotification ev = (AppNotification) notf.getUserData();

 System.out.println ("!! JMX event Recd: (handback obj= " + handback+ "): " + ev);

 //When the installation is done, remove the listener and quit

 if (ev.taskName.equals (eventTypeToCheck) &&

650 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

(ev.taskStatus.equals (AppNotification.STATUS_COMPLETED) ||

 ev.taskStatus.equals (AppNotification.STATUS_FAILED)))

 {

 try

 {

 _soapClient.removeNotificationListener (on, this);

 }

 catch (Throwable th)

 {

 System.out.println ("Error removing listener: " + th);

 }

 System.exit (0);

 }

 }

}

Adding to, updating, or deleting part of an application through

programming

You can add to, update, or delete part of an existing application through the

administrative console, the wsadmin tool, or programming. This example changes

part of an application through programming. You can use this example whether

you add to, update, or delete part of an existing application. Multiple changes to

an application can be packaged in a single .zip file.

To learn about the structure of the .zip file, see updating applications through the

administrative console.

This task assumes a basic familiarity with MBean programming. For information

on MBean programming see MBean Java application programming interface (API)

documentation.

Before you can add to, update, or delete part of an application on WebSphere

Application Server, you must first install your application.

Perform the following tasks to add to, update, or delete part of an application

through programming.

1. Connect to WebSphere Application Server.

2. Create the application management proxy.

3. Create the notification filter.

4. Add the listener.

5. Partially change the existing application.

6. Wait for some timeout so that the program does not end.

7. Listen to Java Management Extensions (JMX) notifications to understand

completion of the operation.

8. When the update is done, remove the listener and quit.

After you successfully run the code, you have changed the application.

The following example shows how to add to, update, or delete part of an

application based on the previous steps. Some statements are split on multiple

lines for printing purposes.

//Inputs:

//partialApp specifies the location of the partial application.

//appName specifies the name of the application.

String partialApp = "C:/apps/partial.zip";

Chapter 8. Using administrative programs (JMX) 651

String appName = "MyApp";

//Do a get of the administrative client to connect to

//WebSphere Application Server.

AdminClient client = ...;

//Create the application management proxy.

AppManagement proxy = AppManagementProxy. getJMXProxyForClient (client);

// Create the notification filter.

NotificationFilterSupport myFilter = new NotificationFilterSupport();

myFilter.enableType (NotificationConstants.TYPE_APPMANAGEMENT);

//Add the listener.

NotificationListener listener = new AListener(_soapClient, myFilter,

"Install: " + appName, AppNotification.UPDATE);

//Partially change the existing application, MyApp.

Hashtable options = new Hashtable();

options.put (AppConstants.APPDEPL_LOCALE, Locale.getDefault());

options.put (AppConstants.APPUPDATE_CONTENTTYPE, AppConstants.APPUPDATE_CONTENT_PARTIALAPP);

proxy.updateApplication (appName,

 null,

 partialApp,

 null,

 options,

 null);

// Wait for some timeout. The installation application programming interface (API) is

// asynchronous and so returns immediately.

// If the program does not wait here, the program ends.

 Thread.sleep(300000); // Wait so that the program does not end.

 }

 catch (Exception e) {

 e.printStackTrace();

 }

 }

}

// Specify the Java Management Extensions (JMX) notification listener for JMX events.

class AListener implements NotificationListener

{

 AdminClient _soapClient;

 NotificationFilterSupport myFilter;

 Object handback;

 ObjectName on;

 String eventTypeToCheck;

 public AListener(AdminClient cl, NotificationFilterSupport fl,

Object h, String eType) throws Exception

 {

 _soapClient = cl;

 myFilter = fl;

 handback = h;

 eventTypeToCheck = eType;

 Iterator iter = _soapClient.queryNames (new ObjectName(

"WebSphere:type=AppManagement,*"), null).iterator();

 on = (ObjectName)iter.next();

 System.out.println ("ObjectName: " + on);

 _soapClient.addNotificationListener (on, this, myFilter, handback);

 }

 public void handleNotification (Notification notf, Object handback)

 {

652 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

AppNotification ev = (AppNotification) notf.getUserData();

 System.out.println ("!! JMX event Recd: (handback obj= " + handback+ "): " + ev);

 //When the installation is done, remove the listener and quit

 if (ev.taskName.equals (eventTypeToCheck) &&

 (ev.taskStatus.equals (AppNotification.STATUS_COMPLETED) ||

 ev.taskStatus.equals (AppNotification.STATUS_FAILED)))

 {

 try

 {

 _soapClient.removeNotificationListener (on, this);

 }

 catch (Throwable th)

 {

 System.out.println ("Error removing listener: " + th);

 }

 System.exit (0);

 }

 }

}

Preparing a module and adding it to an existing application

through programming

You can add a module to an existing application through the administrative

console, the wsadmin tool, or programming. Use this example to add a module

through programming.

This task assumes a basic familiarity with MBean programming. For information

on MBean programming see MBean Java application programming interface (API)

documentation.

Before you can add a module to an application on WebSphere Application Server,

you must install the application.

Perform the following tasks to add a module to an application through

programming.

 1. Create an application deployment controller instance to populate the module

file with binding information.

 2. Save the binding information in the module.

 3. Get the installation options.

 4. If the preparation phase (population of the EAR file) is not performed, the do

the following actions:

a. Create an options table to be passed to the updateApplication MBean API.

b. Create a table for module to server relations and add the table to the

options table.
 5. Connect to WebSphere Application Server.

 6. Create the application management proxy.

 7. Create the notification filter.

 8. Add the listener.

 9. Add the module to the application.

10. Specify the target for the new module.

11. Wait for some timeout so that the program does not end.

Chapter 8. Using administrative programs (JMX) 653

12. Listen to Java Management Extensions (JMX) notifications to understand

completion of the operation.

13. When the module addition is done, remove the listener and quit.

After you successfully run the code, the module is added to the application.

The following example shows how to add a module to an application based on the

previous steps. Some statements are split on multiple lines for printing purposes.

//Inputs:

//moduleName specifies the name of the module that you add to the application.

//moduleURI specifies a URI that gives the target location of the module

// archive contents on a file system. The URI provides the location of the new

// module after installation. The URI is relative to the application URL.

//uniquemoduleURI specfies the URI that gives the target location of the

// deployment descriptor file. The URI is relative to the application URL.

//target specifies the cell, node, and server on which the module is installed.

String moduleName = "C:/apps/foo,jar";

String moduleURI = "Increment.jar";

String uniquemoduleURI = "Increment.jar+META-INF/ejb-jar.xml";

String target = "WebSphere:cell=cellname,node=nodename,server=servername";

//Create an application deployment controller instance, AppDeploymentController,

//to populate the Java aArchive (JAR) file with binding information.

//The binding information is WebSphere Application Server-specific deployment information.

Hashtable preferences = new Hashtable();

preferences.put (AppConstants.APPDEPL_LOCALE, Locale.getDefault());

preferences.put (AppConstants.APPUPDATE_CONTENTTYPE, AppConstants.APPUPDATE_CONTENT_MODULEFILE);

AppDeploymentController controller = AppManagementFactory.readArchiveForUpdate(

 moduleName,

 moduleURI,

 AppConstants.APPUPDATE_ADD,

 preferences,

 null);

If the module that you add to the application lacks any bindings, add the bindings

so that the module addition works. Collect and add the bindings by using the

public APIs provided with WebSphere Application Server. Refer to Java

documentation for the

com.ibm.websphere.management.application.client.AppDeploymentController

instance to learn more about how to collect and populate tasks with WebSphere

Application Server specific-binding information.

//After you collect all the binding information, save it in the module.

controller.saveAndClose();

//Get the installation options.

Hashtable options = controller. getAppDeploymentSavedResults();

//Connect the administrative client, AdminClient, to WebSphere Application Server.

AdminClient client = ...;

//Create the application management proxy.

AppManagement proxy = AppManagementProxy. getJMXProxyForClient (client);

//Update the existing application, MyApp, by adding the module.

String appName = "MyApp";

options.put (AppConstants.APPUPDATE_CONTENTTYPE,

 AppConstants. APPUPDATE_CONTENT_MODULEFILE);

//Create the notification filter.

 NotificationFilterSupport myFilter = new NotificationFilterSupport();

654 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

myFilter.enableType (NotificationConstants.TYPE_APPMANAGEMENT);

 //Add the listener.

 NotificationListener listener = new AListener(_soapClient, myFilter,

"Install: " + appName, AppNotification.UPDATE);

//Specify the target for the new module.

Hashtable mod2svr = new Hashtable();

options.put (AppConstants.APPDEPL_MODULE_TO_SERVER, mod2svr);

mod2svr.put (uniquemoduleURI, target);

proxy.updateApplication (appName,

 moduleURI,

 moduleName,

 AppConstants.APPUPDATE_ADD,

 options,

 null);

// Wait for some timeout. The installation application programming interface (API) is

// asynchronous and so returns immediately.

// If the program does not wait here, the program ends.

 Thread.sleep(300000); // Wait so that the program does not end.

 }

 catch (Exception e) {

 e.printStackTrace();

 }

 }

}

// Specify the Java Management Extensions (JMX) notification listener for JMX events.

class AListener implements NotificationListener

{

 AdminClient _soapClient;

 NotificationFilterSupport myFilter;

 Object handback;

 ObjectName on;

 String eventTypeToCheck;

 public AListener(AdminClient cl, NotificationFilterSupport fl,

Object h, String eType) throws Exception

 {

 _soapClient = cl;

 myFilter = fl;

 handback = h;

 eventTypeToCheck = eType;

 Iterator iter = _soapClient.queryNames (new ObjectName(

"WebSphere:type=AppManagement,*"), null).iterator();

 on = (ObjectName)iter.next();

 System.out.println ("ObjectName: " + on);

 _soapClient.addNotificationListener (on, this, myFilter, handback);

 }

 public void handleNotification (Notification notf, Object handback)

 {

 AppNotification ev = (AppNotification) notf.getUserData();

 System.out.println ("!! JMX event Recd: (handback obj= " + handback+ "): " + ev);

 //When the installation is done, remove the listener and quit

 if (ev.taskName.equals (eventTypeToCheck) &&

 (ev.taskStatus.equals (AppNotification.STATUS_COMPLETED) ||

 ev.taskStatus.equals (AppNotification.STATUS_FAILED)))

 {

 try

Chapter 8. Using administrative programs (JMX) 655

{

 _soapClient.removeNotificationListener (on, this);

 }

 catch (Throwable th)

 {

 System.out.println ("Error removing listener: " + th);

 }

 System.exit (0);

 }

 }

}

Preparing and updating a module through programming

You can update a module for an existing application through the administrative

console, the wsadmin tool, or programming. When you update a module, you

replace the existing module with a new version. Use this example to update a

module through programming.

This task assumes a basic familiarity with MBean programming. For information

on MBean programming see MBean Java application programming interface (API)

documentation.

Before you can update a module on WebSphere Application Server, you must first

install the application.

Perform the following tasks to update a module through programming.

 1. Create an application deployment controller instance to populate the Java

archive file with binding information.

 2. Save the binding information in the module.

 3. Get the installation options.

 4. If the preparation phase (population of the EAR file) is not performed, the do

the following actions:

a. Create an options table to be passed to the updateApplication MBean API.

b. Create a table for module to server relations and add the table to the

options table.
 5. Connect to WebSphere Application Server.

 6. Create the application management proxy.

 7. Create the notification filter.

 8. Add the listener.

 9. Replace the module in the application.

10. Specify the target for the new module.

11. Wait for some timeout so that the program does not end.

12. Listen to Java Management Extensions (JMX) notifications to understand

completion of the operation.

13. When the module addition is done, remove the listener and quit.

After you successfully run the code, the existing module is replaced with the new

one.

The following example shows how to add a module to an application based on the

previous steps. Some statements are split on multiple lines for printing purposes.

//Inputs:

//moduleName specifies the name of the module that you add to the application.

//moduleURI specifies a URI that gives the target location of the module

656 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

// archive contents on a file system. The URI provides the location of the new

// module after installation. The URI is relative to the application URL.

//uniquemoduleURI specfies the URI that gives the target location of the

// deployment descriptor file. The URI is relative to the application URL.

//target specifies the cell, node, and server on which the module is installed.

//appName specifies the name of the application to update.

String moduleName = "C:/apps/foo,jar";

String moduleURI = "Increment.jar";

String uniquemoduleURI = "Increment.jar+META-INF/ejb-jar.xml";

String target = "WebSphere:cell=cellname,node=nodename,server=servername";

String appName = "MyApp";

//Get the administrative client to connect to

//WebSphere Application Server.

AdminClient client = ...;

AppManagement proxy = AppManagementProxy. getJMXProxyForClient (client);

Vector tasks = proxy.getApplicationInfo (appName, new Hashtable(), null);

//Create an application deployment controller instance, AppDeploymentController,

//to populate the Java archive (JAR) file with binding information.

//The binding information is WebSphere Application Server-specific deployment information.

Hashtable preferences = new Hashtable();

preferences.put (AppConstants.APPDEPL_LOCALE, Locale.getDefault());

preferences.put (AppConstants.APPUPDATE_CONTENTTYPE, AppConstants.APPUPDATE_CONTENT_MODULEFILE);

AppDeploymentController controller = AppManagementFactory.readArchiveForUpdate(

 moduleName,

 moduleURI,

 AppConstants.APPUPDATE_UPDATE,

 preferences,

 tasks);

If the module that you update for the application lacks any bindings, add the

bindings so that the module update works. Collect and add the bindings by using

the public APIs that are provided with WebSphere Application Server. Refer to

Java documentation for the AppDeploymentController instance to learn more

about how to collect and populate tasks with WebSphere Application

Server-specific binding information.

//After you collect all the binding information, save it in the module.

controller.saveAndClose();

//Create the notification filter.

 NotificationFilterSupport myFilter = new NotificationFilterSupport();

 myFilter.enableType (NotificationConstants.TYPE_APPMANAGEMENT);

 //Add the listener.

 NotificationListener listener = new AListener(_soapClient, myFilter,

"Install: " + appName, AppNotification.UPDATE);

//Get the installation options.

Hashtable options = controller. getAppDeploymentSavedResults();

//Update the existing application by adding the module.

options.put (AppConstants.APPUPDATE_CONTENTTYPE,

 AppConstants. APPUPDATE_CONTENT_MODULEFILE);

//Specify the target for the new module

Hashtable mod2svr = new Hashtable();

options.put (AppConstants.APPDEPL_MODULE_TO_SERVER, mod2svr);

mod2svr.put (uniquemoduleURI, target);

proxy.updateApplication (appName,

 moduleURI,

Chapter 8. Using administrative programs (JMX) 657

moduleName,

 AppConstants.APPUPDATE_UPDATE,

 options,

 null);

// Wait; the installation application programming interface (API) is

// asynchronous and so returns immediately.

// If the program does not wait here, the program ends.

 Thread.sleep(300000); // Wait so that the program does not end.

 }

 catch (Exception e) {

 e.printStackTrace();

 }

 }

}

// Specify the Java Management Extensions (JMX) notification listener for JMX events.

class AListener implements NotificationListener

{

 AdminClient _soapClient;

 NotificationFilterSupport myFilter;

 Object handback;

 ObjectName on;

 String eventTypeToCheck;

 public AListener(AdminClient cl, NotificationFilterSupport fl,

Object h, String eType) throws Exception

 {

 _soapClient = cl;

 myFilter = fl;

 handback = h;

 eventTypeToCheck = eType;

 Iterator iter = _soapClient.queryNames (new ObjectName(

"WebSphere:type=AppManagement,*"), null).iterator();

 on = (ObjectName)iter.next();

 System.out.println ("ObjectName: " + on);

 _soapClient.addNotificationListener (on, this, myFilter, handback);

 }

 public void handleNotification (Notification notf, Object handback)

 {

 AppNotification ev = (AppNotification) notf.getUserData();

 System.out.println ("!! JMX event Recd: (handback obj= " + handback+ "): " + ev);

 //When the installation is done, remove the listener and quit

 if (ev.taskName.equals (eventTypeToCheck) &&

 (ev.taskStatus.equals (AppNotification.STATUS_COMPLETED) ||

 ev.taskStatus.equals (AppNotification.STATUS_FAILED)))

 {

 try

 {

 _soapClient.removeNotificationListener (on, this);

 }

 catch (Throwable th)

 {

 System.out.println ("Error removing listener: " + th);

 }

 System.exit (0);

 }

 }

}

658 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

Deleting a module through programming

You can delete a module from an existing application through the administrative

console, the wsadmin tool, or programming. Use this example to delete a module

through programming.

This task assumes a basic familiarity with MBean programming. For information

on MBean programming see MBean Java application programming interface (API)

documentation.

Before you can delete a module from an application on WebSphere Application

Server, you must first install the application.

Perform the following tasks to delete a module through programming.

1. Connect to WebSphere Application Server.

2. Create the application management proxy.

3. Create the notification filter for listening to events.

4. Add the listener.

5. Delete the module.

6. Wait for some timeout so that the program does not end.

7. Listen to Java Management Extensions (JMX) notifications to understand

completion of the operation.

8. When the module is deleted, remove the listener and quit.

After you successfully run the code, the existing module is deleted from the

application.

The following example shows how to delete a module from an application based

on the previous steps. Some statements are split on multiple lines for printing

purposes.

//moduleURI specifies a URI that gives the target location of the module.

//appName specifies the name of the application to update.

String moduleURI = "Increment.jar";

String appName = "MyApp";

//Get the administrative client to connect to

//WebSphere Application Server.

AdminClient client = ...;

//Create the application management proxy.

AppManagement proxy = AppManagementProxy. getJMXProxyForClient (client);

//Create the notification filter.

 NotificationFilterSupport myFilter = new NotificationFilterSupport();

 myFilter.enableType (NotificationConstants.TYPE_APPMANAGEMENT);

 //Add the listener.

 NotificationListener listener = new AListener(_soapClient, myFilter,

"Install: " + appName, AppNotification.UPDATE);

//Update the existing application, MyApp, by deleting the module.

Hashtable options = new Hashtable();

options.put (AppConstants.APPDEPL_LOCALE, Locale.getDefault());

options.put (AppConstants.APPUPDATE_CONTENTTYPE, AppConstants.APPUPDATE_CONTENT_MODULEFILE);

proxy.updateApplication (appName,

 moduleURI,

 null,

 AppConstants.APPUPDATE_DELETE,

Chapter 8. Using administrative programs (JMX) 659

options,

 null);

// Wait; the installation application programming interface (API) is

// asynchronous and so returns immediately.

// If the program does not wait here, the program ends.

 Thread.sleep(300000); // Wait so that the program does not end.

 }

 catch (Exception e) {

 e.printStackTrace();

 }

 }

}

// Specify the Java Management Extensions (JMX) notification listener for JMX events.

class AListener implements NotificationListener

{

 AdminClient _soapClient;

 NotificationFilterSupport myFilter;

 Object handback;

 ObjectName on;

 String eventTypeToCheck;

 public AListener(AdminClient cl, NotificationFilterSupport fl,

Object h, String eType) throws Exception

 {

 _soapClient = cl;

 myFilter = fl;

 handback = h;

 eventTypeToCheck = eType;

 Iterator iter = _soapClient.queryNames (new ObjectName(

"WebSphere:type=AppManagement,*"), null).iterator();

 on = (ObjectName)iter.next();

 System.out.println ("ObjectName: " + on);

 _soapClient.addNotificationListener (on, this, myFilter, handback);

 }

 public void handleNotification (Notification notf, Object handback)

 {

 AppNotification ev = (AppNotification) notf.getUserData();

 System.out.println ("!! JMX event Recd: (handback obj= " + handback+ "): " + ev);

 //When the installation is done, remove the listener and quit

 if (ev.taskName.equals (eventTypeToCheck) &&

 (ev.taskStatus.equals (AppNotification.STATUS_COMPLETED) ||

 ev.taskStatus.equals (AppNotification.STATUS_FAILED)))

 {

 try

 {

 _soapClient.removeNotificationListener (on, this);

 }

 catch (Throwable th)

 {

 System.out.println ("Error removing listener: " + th);

 }

 System.exit (0);

 }

 }

}

660 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

Adding a file through programming

You can add a file to an existing application through the administrative console,

the wsadmin tool, or programming. This example describes how to add a file

through programming.

This task assumes a basic familiarity with MBean programming. For information

on MBean programming see MBean Java application programming interface (API)

documentation.

Before you can add a file to an application on WebSphere Application Server, you

must first install the application.

Perform the following tasks to add a file to an application through programming.

1. Connect to WebSphere Application Server.

2. Create the application management proxy.

3. Create the notification filter for listening to events.

4. Add the listener.

5. Add the file to the application.

6. Wait for some timeout so that the program does not end.

7. Listen to Java Management Extensions (JMX) notifications to understand

completion of the operation.

8. When the file is added to the application, remove the listener and quit.

After you successfully run the code, the file is added to the application.

The following example shows how to add a file to an application based on the

previous steps. Some statements are split on multiple lines for printing purposes.

import java.lang.*;

import java.io.*;

import java.util.*;

import java.lang.reflect.*;

import com.ibm.websphere.management.application.*;

import com.ibm.websphere.management.application.client.*;

import com.ibm.websphere.management.*;

import javax.management.*;

public class FileAdd {

 public static void main (String [] args) {

 try {

// Get a connection to WebSphere Application Server.

 String host = "localhost";

 String port = "8880";

 String target = "WebSphere:cell=cellName,node=nodeName,server=server1";

 Properties config = new Properties();

 config.put (AdminClient.CONNECTOR_HOST, host);

 config.put (AdminClient.CONNECTOR_PORT, port);

 config.put (AdminClient.CONNECTOR_TYPE, AdminClient.CONNECTOR_TYPE_SOAP);

 System.out.println ("Config: " + config);

 AdminClient _soapClient = AdminClientFactory.createAdminClient(config);

 // Create the application management proxy, AppManagement.

 AppManagement proxy = AppManagementProxy. getJMXProxyForClient (_soapClient);

Chapter 8. Using administrative programs (JMX) 661

String appName = "MyApp";

 String fileURI = "test.war/com/acme/abc.jsp";

 String fileContents = "C:/temp/abc.jsp";

 //Create the notification filter.

 NotificationFilterSupport myFilter = new NotificationFilterSupport();

 myFilter.enableType (NotificationConstants.TYPE_APPMANAGEMENT);

 //Add the listener.

 NotificationListener listener = new AListener(_soapClient, myFilter,

"Install: " + appName, AppNotification.UPDATE);

 Hashtable options = new Hashtable();

 options.put (AppConstants.APPDEPL_LOCALE, Locale.getDefault());

 options.put (AppConstants.APPUPDATE_CONTENTTYPE, AppConstants.APPUPDATE_CONTENT_FILE);

 // Update the application

 proxy.updateApplication (appName,

 fileURI,

 fileContents,

 AppConstants.APPUPDATE_ADD,

 options,

 null);

// Wait; the installation Application Programming Interface (API) is

// asynchronous and so returns immediately.

// If the program does not wait here, the program ends.

 Thread.sleep(90000); // Wait so that the program does not end.

 }

 catch (Exception e) {

 e.printStackTrace();

 }

 }

}

// Specify the Java Management Extensions (JMX) notification listener for JMX events.

class AListener implements NotificationListener

{

 AdminClient _soapClient;

 NotificationFilterSupport myFilter;

 Object handback;

 ObjectName on;

 String eventTypeToCheck;

 public AListener(AdminClient cl, NotificationFilterSupport fl,

Object h, String eType) throws Exception

 {

 _soapClient = cl;

 myFilter = fl;

 handback = h;

 eventTypeToCheck = eType;

 Iterator iter = _soapClient.queryNames (new ObjectName(

"WebSphere:type=AppManagement,*"), null).iterator();

 on = (ObjectName)iter.next();

 System.out.println ("ObjectName: " + on);

 _soapClient.addNotificationListener (on, this, myFilter, handback);

 }

 public void handleNotification (Notification notf, Object handback)

 {

 AppNotification ev = (AppNotification) notf.getUserData();

 System.out.println ("!! JMX event Recd: (handback obj= " + handback+ "): " + ev);

662 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

//When the installation is done, remove the listener and quit

 if (ev.taskName.equals (eventTypeToCheck) &&

 (ev.taskStatus.equals (AppNotification.STATUS_COMPLETED) ||

 ev.taskStatus.equals (AppNotification.STATUS_FAILED)))

 {

 try

 {

 _soapClient.removeNotificationListener (on, this);

 }

 catch (Throwable th)

 {

 System.out.println ("Error removing listener: " + th);

 }

 System.exit (0);

 }

 }

}

Updating a file through programming

You can update a file for an existing application through the administrative

console, the wsadmin tool, or programming. This example describes how to update

a file through programming.

This task assumes a basic familiarity with MBean programming. For information

on MBean programming see MBean Java application programming interface (API)

documentation.

Before you can update a file for an application on WebSphere Application Server,

you must first install the application.

Perform the following tasks to update a file through programming.

1. Connect to WebSphere Application Server.

2. Create the application management proxy.

3. Create the notification filter for listening to events.

4. Add the listener.

5. Update the file in the application.

6. Wait for some timeout so that the program does not end.

7. Listen to Java Management Extensions (JMX) notifications to understand

completion of the operation.

8. When the installation is done, remove the listener and quit.

After you successfully run the code, the file is updated for the application.

The following example shows how to add a file to an application based on the

previous steps. Some statements are split on multiple lines for printing purposes.

//Inputs:

//fileContents specifies the name of the file that you add to the application.

//appName specifies the name of the application.

//fileURI specifies a URI that gives the target location of the file. The URI

// provides the location of the new module after installation. The URI is

// relative to the application URL.

String fileContents = "C:/apps/test.jsp";

String appName = "MyApp";

String fileURI = "SomeWebMod.war/com/foo/abc.jsp";

Chapter 8. Using administrative programs (JMX) 663

//Get the administrative client to connect to

//WebSphere Application Server.

AdminClient client = ...;

//Create the application management proxy.

AppManagement proxy = AppManagementProxy. getJMXProxyForClient (client);

//Create the notification filter.

 NotificationFilterSupport myFilter = new NotificationFilterSupport();

 myFilter.enableType (NotificationConstants.TYPE_APPMANAGEMENT);

 //Add the listener.

 NotificationListener listener = new AListener(_soapClient, myFilter,

"Install: " + appName, AppNotification.UPDATE);

Hashtable options = new Hashtable();

options.put (AppConstants.APPDEPL_LOCALE, Locale.getDefault());

options.put (AppConstants.APPUPDATE_CONTENTTYPE, AppConstants.APPUPDATE_CONTENT_FILE);

proxy.updateApplication (appName,

 fileURI,

 fileContents,

 AppConstants.APPUPDATE_UPDATE,

 options,

 null);

// Wait; the installation application programming interface (API) is

// asynchronous and so returns immediately.

// If the program does not wait here, the program ends.

 Thread.sleep(300000); // Wait so that the program does not end.

 }

 catch (Exception e) {

 e.printStackTrace();

 }

 }

}

// Specify the Java Management Extensions (JMX) notification listener for JMX events.

class AListener implements NotificationListener

{

 AdminClient _soapClient;

 NotificationFilterSupport myFilter;

 Object handback;

 ObjectName on;

 String eventTypeToCheck;

 public AListener(AdminClient cl, NotificationFilterSupport fl,

Object h, String eType) throws Exception

 {

 _soapClient = cl;

 myFilter = fl;

 handback = h;

 eventTypeToCheck = eType;

 Iterator iter = _soapClient.queryNames (new ObjectName(

"WebSphere:type=AppManagement,*"), null).iterator();

 on = (ObjectName)iter.next();

 System.out.println ("ObjectName: " + on);

 _soapClient.addNotificationListener (on, this, myFilter, handback);

 }

 public void handleNotification (Notification notf, Object handback)

 {

 AppNotification ev = (AppNotification) notf.getUserData();

 System.out.println ("!! JMX event Recd: (handback obj= " + handback+ "): " + ev);

664 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

//When the installation is done, remove the listener and quit.

 if (ev.taskName.equals (eventTypeToCheck) &&

 (ev.taskStatus.equals (AppNotification.STATUS_COMPLETED) ||

 ev.taskStatus.equals (AppNotification.STATUS_FAILED)))

 {

 try

 {

 _soapClient.removeNotificationListener (on, this);

 }

 catch (Throwable th)

 {

 System.out.println ("Error removing listener: " + th);

 }

 System.exit (0);

 }

 }

}

Deleting a file through programming

You can delete a file from an existing application through the administrative

console, the wsadmin tool, or programming. Use this example to delete a file

through programming.

This task assumes a basic familiarity with MBean programming. For information

on MBean programming see MBean Java application programming interface (API)

documentation.

Before you can delete a file from an application on WebSphere Application Server,

you must first install the application.

Perform the following tasks to delete a file through programming.

1. Connect to WebSphere Application Server.

2. Create the application management proxy.

3. Create the notification filter for listening to events.

4. Add the listener.

5. Delete the file from the application.

6. Wait for some timeout so that the program does not end.

7. Listen to Java Management Extensions (JMX) notifications to understand

completion of the operation.

8. When the file is deleted from the application, remove the listener and quit.

After you successfully run the code, the file is deleted from the application.

The following example shows how to delete a file based on the previous steps.

Some statements are split on multiple lines for printing purposes.

//Inputs:

//fileURI specifies a URI that gives the target location of the file. The URI

// provides the location of the new module after installation. The URI is

// relative to the application URL.

//appName specifies the name of the application.

String fileURI = "Increment.jar/com/acme/Foo.class";

String appName = "MyApp";

//Get the administrative client to connect to

//WebSphere Application Server.

Chapter 8. Using administrative programs (JMX) 665

AdminClient client = ...;

//Create the application management proxy.

AppManagement proxy = AppManagementProxy. getJMXProxyForClient (client);

//Create the notification filter.

 NotificationFilterSupport myFilter = new NotificationFilterSupport();

 myFilter.enableType (NotificationConstants.TYPE_APPMANAGEMENT);

 //Add the listener.

 NotificationListener listener = new AListener(_soapClient, myFilter,

"Install: " + appName, AppNotification.UPDATE);

//Update the existing application, MyApp, by deleting the file.

Hashtable options = new Hashtable();

options.put (AppConstants.APPDEPL_LOCALE, Locale.getDefault());

options.put (AppConstants.APPUPDATE_CONTENTTYPE, AppConstants.APPUPDATE_CONTENT_FILE);

proxy.updateApplication (appName,

 fileURI,

 null,

 AppConstants.APPUPDATE_DELETE,

 options,

 null);

// Wait for some timeout. The installation Application Programming Interface (API) is

// asynchronous and so returns immediately.

// If the program does not wait here, the program ends.

 Thread.sleep(300000); // Wait so that the program does not end.

 }

 catch (Exception e) {

 e.printStackTrace();

 }

 }

}

// Specify the Java Management Extensions (JMX) notification listener for JMX events.

class AListener implements NotificationListener

{

 AdminClient _soapClient;

 NotificationFilterSupport myFilter;

 Object handback;

 ObjectName on;

 String eventTypeToCheck;

 public AListener(AdminClient cl, NotificationFilterSupport fl,

Object h, String eType) throws Exception

 {

 _soapClient = cl;

 myFilter = fl;

 handback = h;

 eventTypeToCheck = eType;

 Iterator iter = _soapClient.queryNames (new ObjectName(

"WebSphere:type=AppManagement,*"), null).iterator();

 on = (ObjectName)iter.next();

 System.out.println ("ObjectName: " + on);

 _soapClient.addNotificationListener (on, this, myFilter, handback);

 }

 public void handleNotification (Notification notf, Object handback)

 {

 AppNotification ev = (AppNotification) notf.getUserData();

 System.out.println ("!! JMX event Recd: (handback obj= " + handback+ "): " + ev);

 //Once the installation is done, remove the listener and quit

666 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

if (ev.taskName.equals (eventTypeToCheck) &&

 (ev.taskStatus.equals (AppNotification.STATUS_COMPLETED) ||

 ev.taskStatus.equals (AppNotification.STATUS_FAILED)))

 {

 try

 {

 _soapClient.removeNotificationListener (on, this);

 }

 catch (Throwable th)

 {

 System.out.println ("Error removing listener: " + th);

 }

 System.exit (0);

 }

 }

}

Chapter 8. Using administrative programs (JMX) 667

668 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

Chapter 9. Using command line tools

There are several command line tools that you can use to start, stop, and monitor

WebSphere server processes and nodes. These tools only work on local servers and

nodes. They cannot operate on a remote server or node. To administer a remote

server, you can use the wsadmin scripting program connected to the deployment

manager for the cell in which the target server or node is configured. See

Deploying and managing using scripting for more information about using the

wsadmin scripting program. You can also use the V5 administrative console which

runs in the deployment manager for the cell. For more information about using the

administrative console, see Deploying and managing with the GUI.

All command line tools function relative to a particular profile. If you run a

command from a install_root/WebSphere/AppServer/bin directory, the command

will run within the default profile. If you want to specify a different profile,

perform one of the following:

v Specify the -profileName option. The profile that you specify with this option

will be used instead of the default profile. For example:

1. Change to the install_root/WebSphere/AppServer/bin directory.

2. Type the following command: startServer server1 -profileName

AppServerProfile

In this example, the command will function inside the AppServerProfile profile.

v Run the command from the bin directory of a specific profile. For example:

1. Change to the install_root/WebSphere/AppServer/profiles/MyProfile/bin

directory.

2. Type the following command: startServer server1

In this example, the command will function inside the MyProfile profile.

To use the command line tools, perform the following steps:

1. Open a system command prompt.

2. Change to the bin directory.

3. Run the command.

Example: Security and the command line tools

If you want to enable WebSphere Application Server security, you need to provide

the command line tools with authentication information. Without authentication

information, the command line tools receive an AccessDenied exception when you

attempt to use them with security enabled. There are multiple ways to provide

authentication data:

v Most command line tools support a -username and -password option for

providing basic authentication data. Specify the user ID and password for an

administrative user. For example, you can use a member of the administrative

console users with operator or administrator privileges, or the administrative

user ID configured in the user registry. The following example demonstrates the

stopNode command, which specifies command line parameters:

stopNode -username adminuser -password adminpw

v You can place the authentication data in a properties file that the command line

tools read. The default file for this data is the sas.client.props file in the

properties directory for the WebSphere Application Server.

© Copyright IBM Corp. 2005 669

startServer command

The startServer command reads the configuration file for the specified application

server and starts the server. Depending on the options you specify, you can launch

a new Java virtual machine (JVM) API to run the server process, or write the

launch command data to a file. For more information about where to run this

command, see the Using command tools article.

If you are using the Windows platform and the you have the application server

running as a Windows service, the startServer command will start the associated

Windows service and it will be responsible for starting the application server.

Syntax

The command syntax is as follows:

startServer <server> [options]

where server is the name of the application server you want to start. This

argument is required.

Parameters

The following options are available for the startServer command:

-quiet

Suppresses the progress information that the startServer command prints in

normal mode.

-logfile <fileName>

Specifies the location of the log file to which information is written.

-profileName

Defines the profile of the Application Server process in a multi-profile

installation. The -profileName option is not required for running in a single

profile environment. The default for this option is the default profile.

-replacelog

Replaces the log file instead of appending to the current log.

-trace

Generates trace information to the log file for debugging purposes.

-timeout <seconds>

Specifies the waiting time before server initialization times out and returns an

error.

-statusport <portNumber>

Specifies that an administrator can set the port number for server status

callback.

-script [<script fileName>] -background

Generates a launch script with the startServer command instead of launching

the server process directly. The launch script name is an optional argument. If

you do not supply the launch script name, the default script file name is

start_<server> based on the <server> name passed as the first argument to

the startServer command. The -background parameter is an optional parameter

that specifies that the generated script will run in the background when you

execute it.

670 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

-J <java_option>

Specifies options to pass through to the Java interpreter.

-help

Prints a usage statement.

-? Prints a usage statement.

Usage scenario

The following examples demonstrate correct syntax:

startServer server1

startServer server1 -script (produces the start_server1.sh file)

startServer server1 -trace (produces the startserver.log file)

stopServer command

The stopServer command reads the configuration file for the specified server

process. This command sends a Java Management Extensions (JMX) command to

the server telling it to shut down. By default, the stopServer command does not

return control to the command line until the server completes the shut down

process. There is a -nowait option to return immediately, as well as other options

to control the behavior of the stopServer command. For more information about

where to run this command, see the Using command tools article.

If you are using the Windows platform and the you have the application server

running as a Windows service, the stopServer command will start the associated

Windows service and it will be responsible for starting the application server.

Syntax

The command syntax is as follows:

stopServer <server> [options]

where server is the name of the configuration directory of the server you want to

stop. This argument is required.

Parameters

The following options are available for the stopServer command:

-nowait

Tells the stopServer command not to wait for successful shutdown of the

server process.

-quiet

Suppresses the progress information that the stopServer command prints in

normal mode.

-logfile <fileName>

Specifies the location of the log file to which information is written.

-profileName

Defines the profile of the Application Server process in a multi-profile

installation. The -profileName option is not required for running in a single

profile environment. The default for this option is the default profile.

Chapter 9. Using command line tools 671

-replacelog

Replaces the log file instead of appending to the current log.

-trace

Generates trace information into a file for debugging purposes.

-timeout <seconds>

Specifies the time to wait for server shutdown before timing out and returning

an error.

-statusport <portNumber>

Supports an administrator in setting the port number for server status callback.

-conntype <type>

Specifies the Java Management Extensions (JMX) connector type to use for

connecting to the deployment manager. Valid types are Simple Object Access

Protocol (SOAP), or Remote Method Invocation (RMI).

-port <portNumber>

Specifies the server Java Management Extensions (JMX) port to use explicitly,

so that you can avoid reading the configuration files to obtain the information.

-username <name>

Specifies the user name for authentication if security is enabled in the server.

Acts the same as the -user option.

-user <name>

Specifies the user name for authentication if security is enabled in the server.

Acts the same as the -username option.

-password <password>

Specifies the password for authentication if security is enabled in the server.

Note: If you are running in a secure environment but have not provided a

user ID and password, you will receive the following error message:

ADMN0022E: Access denied for the stop operation on Server MBean due

to insufficient or empty credentials.

To solve this problem, provide the user ID and password information.

-help

Prints a usage statement.

-? Prints a usage statement.

Usage scenario

The following examples demonstrate correct syntax:

stopServer server1

stopServer server1 -nowait

stopServer server1 -trace (produces the stopserver.log file)

startManager command

The startManager command reads the configuration file for the Network

Deployment manager process and constructs a launch command. Depending on

the options you specify, the startManager command launches a new Java virtual

machine (JVM) API to run the manager process, or writes the launch command

672 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

data to a file. You must run this command from the

install_root/WebSphere/AppServer/profiles/standalone/bin directory of a

Network Deployment installation.

If you are using the Windows platform and the you have the deployment manager

running as a Windows service, the startManager command will start the associated

Windows service and it will be responsible for starting the deployment manager.

Syntax

The command syntax is as follows:

startManager [options]

Parameters

The following options are available for the startManager command:

-quiet

Suppresses the progress information that the startManager command prints in

normal mode.

-logfile <fileName>

Specifies the location of the log file to which information gets written.

-profileName

Defines the profile of the Application Server process in a multi-profile

installation. The -profileName option is not required for running in a single

profile environment. The default for this option is the default profile.

-replacelog

Replaces the log file instead of appending to the current log.

-trace

Generates trace information into a file using the startManager command for

debugging purposes.

-timeout <seconds>

Specifies the waiting time before deployment manager initialization times out

and returns an error.

-statusport <portNumber>

Specifies that an administrator can set the port number for deployment

manager status callback.

-script [<script fileName>] -background

Generates a launch script with the startManager command instead of

launching the deployment manager process directly. The launch script name is

an optional argument. If you do not provide the launch script name, the

default script file name is <start_dmgr>. The -background parameter is an

optional parameter that specifies that the generated script will run in the

background when you execute it.

-J-<java_option>

Specifies options to pass through to the Java interpreter.

-help

Prints a usage statement.

-? Prints a usage statement.

Chapter 9. Using command line tools 673

Usage scenario

The following examples demonstrate correct syntax:

startManager

startManager -script (produces the start_dmgr.sh file)

startManager -trace (produces the startmanager.log file)

stopManager command

The stopManager command reads the configuration file for the Network

Deployment manager process. It sends a Java Management Extensions (JMX)

command to the manager telling it to shut down. By default, the stopManager

command waits for the manager to complete the shutdown process before it

returns control to the command line. There is a -nowait option to return

immediately, as well as other options to control the behavior of the stopManager

command. For more information about where to run this command, see the Using

command tools article.

If you are using the Windows platform and the you have the deployment manager

running as a Windows service, the stopManager command will start the associated

Windows service and it will be responsible for starting the deployment manager.

Syntax

The command syntax is as follows:

stopManager [options]

Parameters

The following options are available for the stopManager command:

-nowait

Tells the stopManager command not to wait for successful shutdown of the

deployment manager process.

-quiet

Suppresses the progress information that the stopManager command prints in

normal mode.

-logfile <fileName>

Specifies the location of the log file to which information is written.

-profileName

Defines the profile of the Application Server process in a multi-profile

installation. The -profileName option is not required for running in a single

profile environment. The default for this option is the default profile.

-replacelog

Replaces the log file instead of appending to the current log.

-trace

Generates trace information to a file for debugging purposes.

-timeout <seconds>

Specifies the waiting time for the manager to complete shutdown before timing

out and returning an error.

674 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

-statusport <portNumber>

Specifies that an administrator can set the port number for server status

callback.

-conntype <type>

Specifies the Java Management Extensions (JMX) connector type to use for

connecting to the deployment manager. Valid types are Simple Object Access

Protocol (SOAP) or Remote Method Invocation (RMI).

-port <portNumber>

Specifies the deployment manager JMX port to use explicitly, so that you can

avoid reading the configuration files to obtain information.

-username <name>

Specifies the user name for authentication if security is enabled in the

deployment manager. Acts the same as the -user option.

-user <name>

Specifies the user name for authentication if security is enabled in the

deployment manager. Acts the same as the -username option.

-password <password>

Specifies the password for authentication if security is enabled in the

deployment manager.

Note: If you are running in a secure environment but have not provided a

user ID and password, you receive the following error message:

ADMN0022E: Access denied for the stop operation on Server MBean due

to insufficient or empty credentials.

To solve this problem, provide the user ID and password information.

-help

Prints a usage statement.

-? Prints a usage statement.

Usage scenario

The following examples demonstrate correct syntax:

stopManager

stopManager -nowait

stopManager -trace (produces the stopmanager.log file)

stopNode command

The stopNode command reads the configuration file for the Network Deployment

node agent process and sends a Java Management Extensions (JMX) command

telling the node agent to shut down. By default, the stopNode command waits for

the node agent to complete shutdown before it returns control to the command

line. There is a -nowait option to return immediately, as well as other options to

control the behavior of the stopNode command. For more information about

where to run this command, see the Using command tools article.

If you are using the Windows platform and the you have the node agent running

as a Windows service, the stopNode command will start the associated Windows

service and it will be responsible for starting the node agent.

Chapter 9. Using command line tools 675

If you stop the server before stopping the node agent using the stopserver -servers

command, the server will not restart when you issue a startserver command.

Syntax

The command syntax is as follows:

stopNode [options]

Parameters

The following options are available for the stopNode command:

-nowait

Tells the stopNode command not to wait for successful shutdown of the node

agent process.

-quiet

Suppresses the progress information that the stopNode command prints in

normal mode.

-logfile <fileNname>

Specifies the location of the log file to which information gets written.

-profileName

Defines the profile of the Application Server process in a multi-profile

installation. The -profileName option is not required for running in a single

profile environment. The default for this option is the default profile.

-replacelog

Replaces the log file instead of appending to the current log.

-trace

Generates trace information into a file for debugging purposes.

-timeout <seconds>

Specifies the waiting time for the agent to shut down before timing out and

returning an error.

-statusport <portNumber>

Specifies that an administrator can set the port number for server status

callback.

-stopservers

Stops all application servers on the node before stopping the node agent.

-conntype <type>

Specifies the Java Management Extensions (JMX) connector type to use for

connecting to the deployment manager. Valid types are Simple Object Access

Protocol (SOAP) or Remote Method Invocation (RMI).

-port <portNumber>

Specifies the node agent JMX port to use explicitly, so that you can avoid

reading configuration files to obtain the information.

-username <name>

Specifies the user name for authentication if security is enabled in the node

agent. Acts the same as the -user option.

-user <name>

Specifies the user name for authentication if security is enabled in the node

agent. Acts the same as the -username option.

676 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

-password <password>

Specifies the password for authentication if security is enabled in the node

agent.

Note: If you are running in a secure environment but have not provided a

user ID and password, you receive the following error message:

ADMN0022E: Access denied for the stop operation on Server MBean due

to insufficient or empty credentials.

To solve this problem, provide the user ID and password information.

-help

Prints a usage statement.

Note: When requesting help for the usage statement for the stopNode

command, a reference to the stopServer command displays. All of the

options displayed for this usage statement apply to the stopNode

command.

-? Prints a usage statement.

Note: When requesting help for the usage statement for the stopNode

command, a reference to the stopServer command displays. All of the

options displayed for this usage statement apply to the stopNode

command.

Usage scenario

The following examples demonstrate correct syntax:

stopNode

stopNode -nowait

stopNode -trace (produces the stopnode.log file)

START appserver_proc_name command

The START appserver_proc_name command reads the configuration file for the

specified server process and starts the server. Depending on the options you

specify, you can launch a new Java Virtual Machine (JVM) API to run the server

process, or write the launch command data to a file. You can run this command

from the MVS console of a WebSphere Application Server installation, or a network

deployment installation.

START appserver_proc_name parameters

Parameters

The parameters for the START appserver_proc_name command follow:

<appserver_proc_name>

Is the name of your start procedure for WebSphere Application Server for

z/OS.

<server_short_name>

Is the short name of the J2EE server you are starting.

<cell_short_name>

Is the short name of the cell containing this J2EE server.

Chapter 9. Using command line tools 677

<node_short_name>

Is the short name of the of the node containing this J2EE server.

The following example demonstrates correct syntax:

START appserver_proc_name,JOBNAME=server_short_name,

 ENV=cell_short_name.node_short_name.server_short_name

Note: This command must be entered on a single line. It is split here for display

purposes.

STOP appserver_proc_name command

The STOP appserver_proc_name command reads the configuration file for the

specified server process. This command sends a Java Management Extensions

(JMX) command to the server telling it to shut down. By default, the stopServer

utility does not return control to the command line until the server completes

shutting down. You can run this command from the MVS console of a WebSphere

Application Server installation or a network deployment installation.

STOP appserver_proc_name parameters

Parameters

The parameters for the STOP appserver_proc_name command follow:

<appserver_proc_name>

Is the name of your WebSphere Application Server for z/OS stop procedure.

<server_short_name>

Is the short name of the J2EE server you are stopping.

<cell_short_name>

Is the short name of the cell containing this J2EE server.

<node_short_name>

Is the short name of the of the node containing this J2EE server.

The following example demonstrates correct syntax:

STOP appserver_proc_name,JOBNAME=server_short_name,

 ENV=cell_short_name.node_short_name.server_short_name

Note: This command must be entered on a single line. It is split here for display

purposes.

START dmgr_proc_name command

The START dmgr_proc_name command reads the configuration file for the

network deployment manager process and constructs a launch command.

Depending on the options you specify, the START dmgr_proc_name command

launches a new Java Virtual Machine (JVM) API to run the manager process, or

writes the launch command data to a file. You must run this command from the

MVS console of a network deployment installation.

START <dmgr_proc_name> parameters

Parameters

The parameters for the START dmgr_proc_name command follow:

678 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

<dmgr_proc_name>

Is the name of your WebSphere Application Server for z/OS deployment

manager start procedure.

<server_short_name>

Is the short name of the J2EE server the deployment manager will be

managing.

<cell_short_name>

Is the short name of the cell containing this J2EE server.

<node_short_name>

Is the short name of the of the node containing this J2EE server.

The following example demonstrates correct syntax:

START dmgr_proc_name,JOBNAME=server_short_name,

 ENV=cell_short_name.node_short_name.server_short_name

Note: This command must be entered on a single line. It is split here for display

purposes.

STOP dmgr_proc_name command

The STOP dmgr_proc_name command reads the configuration file for the network

deployment manager process. It sends a Java Management Extensions (JMX)

command to the manager telling it to shut down. By default, the stopManager

utility waits for the manager to complete shutdown before it returns control to the

command line. You must run this command from the MVS console.

STOP dmgr_proc_name parameters

Parameters

The parameters for the STOP dmgr_proc_name command follow:

<dmgr_proc_name>

Is the name of your WebSphere Application Server for z/OS deployment

manager stop procedure.

<server_short_name>

Is the short name of the J2EE server the deployment manager is managing.

<cell_short_name>

Is the short name of the cell containing this J2EE server.

<node_short_name>

Is the short name of the of the node containing this J2EE server.

The following example demonstrates correct syntax:

STOP dmgr_proc_name,JOBNAME=server_short_name,

 ENV=cell_short_name.node_short_name.server_short_name

Note: This command must be entered on a single line. It is split here for display

purposes.

Chapter 9. Using command line tools 679

START nodeagent_proc_name command

The START nodeagent_proc_name command reads the configuration file for the

node agent process, and constructs a launch command. Depending on the options

that you specify, the START nodeagent_proc_name command creates a new Java

Virtual Machine (JVM) API to run the agent process, or writes the launch

command data to a file. You must run this command from the MVS console of a

WebSphere Application Server installation.

START nodeagent_proc_name parameters

Parameters

The parameters for the START nodeagent_proc_name command follow:

<nodeagent_proc_name>

Is the name of your WebSphere Application Server for z/OS node agent start

procedure.

<server_short_name>

Is the short name of the J2EE server you want this node agent to manage.

<cell_short_name>

Is the short name of the cell containing this J2EE server.

<node_short_name>

Is the short name of the of the node containing this J2EE server.

The following example demonstrates correct syntax:

START nodeagent_proc_name,JOBNAME=server_short_name,

 ENV=cell_short_name.node_short_name.server_short_name

Note: This command must be entered on a single line. It is split here for display

purposes.

STOP nodeagent_proc_name command

The STOP nodeagent_proc_name command reads the configuration file for the

network deployment node agent process. It sends a Java Management Extensions

(JMX) command to the node agent telling it to shut down. By default, the

stopNode utility waits for the node agent to complete shutdown before it returns

control to the command line. You must run this command from the MVS console

of a WebSphere Application Server installation.

STOP nodeagent_proc_name parameters

Parameters

The parameters for the STOP nodeagent_proc_name command follow:

<nodeagent_proc_name>

Is the name of your WebSphere Application Server for z/OS node agent stop

procedure.

<server_short_name>

Is the short name of the J2EE server this node agent is managing.

<cell_short_name>

Is the short name of the cell containing this J2EE server.

680 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

<node_short_name>

Is the short name of the of the node containing this J2EE server.

The following example demonstrates correct syntax:

STOP nodeagent_proc_name,JOBNAME=server_short_name,

 ENV=cell_short_name.node_short_name.server_short_name

Note: This command must be entered on a single line. It is split here for display

purposes.

addNode command

The addNode command incorporates a WebSphere Application Server installation

into a cell. For more information about where to run this command, see the Using

command tools article. Depending on the size and location of the new node you

incorporate into the cell, this command can take a few minutes to complete.

The node agent server is automatically started as part of the addNode command

unless you specify the -noagent option. If you recycle the system that hosts an

application server node, and did not set up the node agent to act as an operating

system daemon, you must issue a startNode command to start the node agent

before starting any application servers.

The following items are new in V6:

v Ports generated for the node agent are unique for all the profiles in the

installation. For development purposes, you can create multiple profiles on the

same installation and add them to one or more cells without worrying about

ports conflicts.

v If you want to specify the ports that the node agent uses, specify it is a file with

the file name passed with the -portprops option. The format of the file is

key=value pairs, one on each line, with the key being the same as the port name

in the serverindex.xml file.

v If you want to use a number of sequential ports, the -startingport option works

the same as it does in V5.x. This means that port conflicts with other profiles

will not be detected.

Syntax

The command syntax is as follows:

addNode dmgr_host [dmgr_port] [-conntype type] [-includeapps]

[-startingport portnumber] [-portprops qualified_filename]

[-nodeagentshortname name] [-nodegroupname name] [-includebuses name]

[-registerservice] [-servicename name] [-servicepassword password]

[-coregroupname name] [-noagent] [-statusport port] [-quiet] [-nowait]

[-logfile filename] [-replacelog] [-trace] [-username uid]

[-password pwd] [-help]

The dmgr_host argument is required. All of the other arguments are optional. The

default port number is 8879 for the default Simple Object Access Protocol (SOAP)

port of the deployment manager. SOAP is the default Java Management Extensions

(JMX) connector type for the command. If you have multiple WebSphere

Application Server installations or multiple profiles, the SOAP port may be

different than 8879. Examine the deployment manager SystemOut.log to see the

current ports in use.

Chapter 9. Using command line tools 681

Parameters

The following options are available for the addNode command:

-conntype <type>

Specifies the JMX connector type to use for connecting to the deployment

manager. Valid types are SOAP or RMI, which stands for Remote Method

Invocation.

-includeapps

By default the addNode command does not carry over applications from the

stand-alone servers on the new node to the cell. In general, you should install

applications using the deployment manager. The -includeapps option tells the

addNode command to carry over the applications from a node. If the

application already exists in the cell, a warning is printed and the application

does not install in the cell.

 The applications will be mapped to the server that you federated using the

addNode command. When the addNode command operation completes, the

applications will run on that server when the server is started. Since these

applications are part of the network deployment cell, you can map them to

other servers and clusters in the cell using the administrative console. See the

Mapping modules to servers article for more information.

 By default, during application installation, application binaries are extracted in

the install_root/installedApps/cellName directory. After the addNode

command, the cell name of the configuration on the node that you added

changes from the base cell name to the deployment manager cell name. The

application binaries are located where they were before the addNode

command ran, for example, install_root/installedApps/old_cellName.

 If the application was installed by explicitly specifying the location for binaries

as the following example:

${INSTALL_ROOT}/${CELL}

where the variable ${CELL}, specifies the current cell name, then when the

addNode command runs, the binaries are moved to the following directory:

${INSTALL_ROOT}/currentCellName

Federating the node to a cell using the addNode command does not merge

any cell level configuration, including virtual host information. If the virtual

host and aliases for the new cell do not match WebSphere Application Server,

you cannot access the applications running on the servers. You have to

manually add all the virtual host and host aliases to the new cell, using the

administrative console running on the deployment manager.

Note: When the -includeapps parameter is specified, an OutOfMemoryError

might occur if the Java Virtual Machine heap size isn’t large enough.

When this error ocurs, the following error message is issued:

ADMU0111E: Program exiting with error: java.lang.OutOfMemoryError

This error can occur when large applications are processed, or when

there is a large number of applications in the Base Application Server.

To recover from this error and successfully federate the Base Application

Server, you must:

1. Issue the cleanupNode.sh command on your deployment manager

server. See for more information about this command.

682 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

2. Increase the JVM heap size for the addNode script. When you issue

the addNode.sh command, the JVM heap size is set to -Xms128m

-Xmx512m. To increase these values, edit the

JVM_EXTRA_CMD_ARGS variable in the

config_root/bin/setupCmdLine.sh file of the Base Application Server

being federated. For example, you might specify the following (all on

one line):

JVM_EXTRA_CMD_ARGS= -Djava.security.properties=$WAS_HOME/java/jre/lib/security/

 java.security -Xms256m -Xmx1024m

3. Reissue the addNode.sh command.

-profileName

Defines the profile of the Application Server process in a multi-profile

installation. The -profileName option is not required for running in a single

profile environment. The default for this option is the default profile.

-user <name> or -username <name>

Specifies the user name for authentication if security is enabled. Acts the same

as the -user option. The user name that you choose must be a pre-existing user

name.

-nowait

Tells the addNode command not to wait for successful initialization of the

launched node agent process.

-quiet

Suppresses the progress information that the addNode command prints in

normal mode.

-logfile <filename>

Specifies the location of the log file to which information gets written. By

default, the log file is called addNode.log and is created in the logs directory

of the profile for the node being added.

-trace

Generates additional trace information in the log file for debugging purposes.

-replacelog

Replaces the log file instead of appending to the current log. By default, the

addNode command appends to the existing trace file. This option causes the

addNode command to overwrite the trace file.

-noagent

Tells the addNode command not to launch the node agent process for the new

node.

-password <password>

Specifies the password for authentication if security is enabled. The password

that you choose must be one that is associated with a pre-existing user name.

-startingport <portNumber>

Supports the specification of a port number to use as the base port number for

all node agent ports created during the addNode command. With this support

you can control which ports are defined for these servers, rather than using the

default port values. The starting port number is incremented to calculate the

port number for every node agent port configured during the addNode

command.

-registerservice

(Windows only) Registers the node agent as a Windows service.

Chapter 9. Using command line tools 683

-servicename <user>

(Windows only) Use the given user name as the Windows service user.

-servicepassword <password>

(Windows password) Use the given password as the Windows service

password.

-portprops <filename>

Passes the name of the file that contains key-value pairs of explicit ports that

you want the new node agent to use. For example, to set your SOAP and RMI

ports to 3000 and 3001, create a file with the following two lines and pass it as

the parameter:

SOAP_CONNECTOR_ADDRESS=3000

BOOTSTRAP_ADDRESS=3001

-coregroupname <name>

The name of the core group in which to add this node. If you do not specify

this option, the node will be added to the DefaultCoreGroup.

-nodegroupname <name>

The name of the node group in which to add this node. If you do not specify,

the node is added to the DefaultNodeGroup.

-includebuses

Copies the buses from the node to be federated to the cell.

-nodeagentshortname <name>

The shortname to use for the new node agent.

-help

Prints a usage statement.

-? Prints a usage statement.

Usage scenario

The following examples demonstrate correct syntax:

addNode testhost 8879 (adds an Application Server to the deployment manager)

addNode deploymgr 8879 -trace (produces the addNode.log file)

addNode host25 8879 -nowait (does not wait for a node agent process)

where 8879 is the default port.

Best practices for adding nodes using command line tools

Use the addNode command to add a standalone node into a cell. The addNode

command does the following:

v Copies the base WebSphere Application Server cell configuration to a new cell

structure. This new cell structure matches the structure of deployment manager.

v Creates a new node agent definition for the node that the cell incorporates.

v Sends commands to the deployment manager to add the documents from the

new node to the cell repository.

v Performs the first configuration synchronization for the new node, and verifies

that this node is synchronized with the cell.

v Launches the node agent process for the new node.

v Updates the setupCmdLine.bat or setupCmdline.sh files and the

wsadmin.properties file to point to the new cell.

684 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

v After federating the node, the addNode command backs up the plugin-cfg.xml

file from the <install_root>/config/cells directory to the

config/backup/base/cells directory. The addNode command regenerates a new

plugin-cfg.xml file at the Deployment Manger and the nodeSync operation

copies the files to the node level.

Tips for using the addNode command:

v Do not put WebSphere Application Server Jar files on the generic CLASSPATH

variable (default class path) for the overall system.

v By default, applications that are installed on the node will not copy to the cell. If

you install an application after using the addNode command, the application

will install on the cell. By specifying the -includeapps option, you force the

addNode command to copy applications from the node to the cell. Applications

with duplicate names will not copy to the cell.

v Cell-level documents are not merged. Any changes that you make to the

standalone cell-level documents before using the addNode command must be

repeated on the new cell. For example, virtual hosts.

serverStatus command

Use the serverStatus command to obtain the status of one or all of the servers

configured on a node. For more information about where to run this command, see

the Using command tools article.

Syntax

The command syntax is as follows:

serverStatus <server>|-all [options]

The first argument is required. The argument is either the name of the server for

which status is desired, or the -all keyword which requests status for all servers

defined on the node.

Parameters

The following options are available for the serverStatus command:

-quiet

Suppresses the progress information that the serverStatus command prints in

normal mode.

-logfile <fileName>

Specifies the location of the log file to which information gets written.

-profileName

Defines the profile of the Application Server process in a multi-profile

installation. The -profileName option is not required for running in a single

profile environment. The default for this option is the default profile.

-replacelog

Replaces the log file instead of appending to the current log.

-trace

Generates trace information into a file for debugging purposes.

-username <name>

Specifies the user name for authentication if security is enabled. Acts the same

as the -user option.

Chapter 9. Using command line tools 685

-user <name>

Specifies the user name for authentication if security is enabled. Acts the same

as the -username option.

-password <password>

Specifies the password for authentication if security is enabled.

-help

Prints a usage statement.

-? Prints a usage statement.

Usage scenario

The following examples demonstrate correct syntax:

serverStatus server1

serverStatus -all (returns status for all defined servers)

serverStatus -trace (produces the serverStatus.log file)

removeNode command

The removeNode command returns a node from a Network Deployment

distributed administration cell to a base WebSphere Application Server installation.

For more information about where to run this command, see the Using command

tools article.

The removeNode command only removes the node-specific configuration from the

cell. This command does not uninstall any applications that were installed as the

result of executing an addNode command. Such applications can subsequently

deploy on additional servers in the Network Deployment cell. As a consequence,

an addNode command with the -includeapps option executed after a removeNode

command does not move the applications into the cell because they already exist

from the first addNode command. The resulting application servers added on the

node do not contain any applications. To deal with this situation, add the node

and use the deployment manager to manage the applications. Add the applications

to the servers on the node after it is incorporated into the cell.

The removeNode command does the following:

v Stops all of the running server processes in the node, including the node agent

process.

v Removes the configuration documents for the node from the cell repository by

sending commands to the deployment manager.

v Copies the original application server cell configuration into the active

configuration.

Depending on the size and location of the new node you remove from the cell, this

command can take a few minutes to complete.

Syntax

The command syntax is as follows:

removeNode [options]

All arguments are optional.

686 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

Parameters

The following options are available for the removeNode command:

-quiet

Suppresses the progress information that the removeNode command prints in

normal mode.

-logfile <fileName>

Specifies the location of the log file to which information is written.

-profileName

Defines the profile of the Application Server process in a multi-profile

installation. The -profileName option is not required for running in a single

profile environment. The default for this option is the default profile.

-replacelog

Replaces the log file instead of appending to the current log.

-trace

Generates trace information into a file for debugging purposes.

-statusport <portNumber>

Specifies that an administrator can set the port number for the node agent

status callback.

-username <name>

Specifies the user name for authentication if security is enabled. Acts the same

as the -user option.

-user <name>

Specifies the user name for authentication if security is enabled. Acts the same

as the -username option.

-password <password>

Specifies the password for authentication if security is enabled.

-force

Cleans up the local node configuration regardless of whether you can reach the

deployment manager for cell repository cleanup. After using the -force

parameter, you may need to use the cleanupNode command on the

deployment manager.

 -help

Prints a usage statement.

-? Prints a usage statement.

Usage scenario

The following examples demonstrate correct syntax:

removeNode -quiet

removeNode -trace (produces the removeNode.log file)

cleanupNode command

The cleanupNode command cleans up a node configuration from the cell

repository. Only use this command to clean up a node if you have a node defined

in the cell configuration, but the node no longer exists. For more information about

where to run this command, see the Using command tools article.

Chapter 9. Using command line tools 687

Syntax

The command syntax is as follows:

cleanupNode <node name> <deploymgr host> <deploymgr port> [options]

where the first argument is required.

Parameters

The following options are available for the cleanupNode command:

-quiet

Suppresses the progress information that the cleanupNode command prints in

normal mode.

-trace

Generates trace information into a file for debugging purposes.

-profileName

Defines the profile of the Application Server process in a multi-profile

installation. The -profileName option is not required for running in a single

profile environment. The default for this option is the default profile.

Usage scenario

The following examples demonstrate correct syntax:

cleanupNode myNode

cleanupNode myNode -trace

syncNode command

The syncNode command forces a configuration synchronization to occur between

the node and the deployment manager for the cell in which the node is configured.

The node agent server runs a configuration synchronization service that keeps the

node configuration synchronized with the master cell configuration. If the node

agent is unable to run because of a problem in the node configuration, you can use

the syncNode command to perform a synchronization when the deployment

manager is not running in order to force the node configuration back in sync with

the cell configuration.

For more information about where to run this command, see the Using command

tools article.

Syntax

The command syntax is as follows:

syncNode <deploymgr host> <deploymgr port> [options]

where the <deploymgr host> argument is required.

Parameters

The following options are available for the syncNode command:

-stopservers

Tells the syncNode command to stop all servers on the node, including the

node agent, before performing configuration synchronization with the cell.

688 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

-restart

Tells the syncNode command to launch the node agent process after

configuration synchronization completes.

-nowait

Tells the syncNode command not to wait for successful initialization of the

launched node agent process.

-quiet

Suppresses the progress information that the syncNode command prints in

normal mode.

-logfile <fileName>

Specifies the location of the log file to which information gets written.

-profileName

Defines the profile of the Application Server process in a multi-profile

installation. The -profileName option is not required for running in a single

profile environment. The default for this option is the default profile.

-replacelog

Replaces the log file instead of appending to the current log.

-trace

Generates trace information into a file for debugging purposes.

-timeout <seconds>

Specifies the waiting time before node agent initialization times out and

returns an error.

-statusport <portnumber>

Specifies that an administrator can set the port number for node agent status

callback.

-username <name>

Specifies the user name for authentication if security is enabled. Acts the same

as the -user option.

-user <name>

Specifies the user name for authentication if security is enabled. Acts the same

as the -username option.

-password <password>

Specifies the password for authentication if security is enabled.

-conntype <type>

Specifies the Java Management Extensions (JMX) connector type to use for

connecting to the deployment manager. Valid types are Simple Object Access

Protocol (SOAP) or Remote Method Invocation (RMI).

-help

Prints a usage statement.

-? Prints a usage statement.

Usage scenario

The following examples demonstrate correct syntax:

syncNode testhost 8879

syncNode deploymgr 8879 -trace (produces the syncNode.log file)

syncNode host25 4444 -stopservers -restart (assumes that the deployment manager JMX port is 4444)

Chapter 9. Using command line tools 689

backupConfig command

The backupConfig command is a simple utility to back up the configuration of

your node to a file. By default, all servers on the node stop before the backup is

made so that partially synchronized information is not saved. For more

information about where to run this command, see the Using command line tools

article. If you do not have root authority, you must specify a path for the backup

file in a location where you have write permission. The backup file will be in zip

format and a .zip extension is recommended.

In a UNIX or Linux environment, the backupConfig command does not save file

permissions or ownership information. The restoreConfig command uses the

current umask and effective user ID (EUID) to set the permissions and ownership

when restoring a file. If it is required that the restored files have the original

permissions and ownership, use the tar command (available on all UNIX or Linux

systems) to back up and restore the configuration.

Syntax

The command syntax is as follows:

backupConfig <backup_file> [options]

where backup_file specifies the file to which the backup is written. If you do not

specify one, a unique name is generated.

Parameters

The following options are available for the backupConfig command:

-nostop

Tells the backupConfig command not to stop the servers before backing up the

configuration.

-quiet

Suppresses the progress information that the backupConfig command prints in

normal mode.

-logfile <fileName>

Specifies the location of the log file to which information gets written.

-profileName <profileName>

Defines the profile of the Application Server process in a multi-profile

installation. The -profileName option is not required for running in a single

profile environment. The default for this option is the default profile.

-replacelog

Replaces the log file instead of appending to the current log.

-trace

Generates trace information into the log file for debugging purposes.

-username <name>

Specifies the user name for authentication if security is enabled in the server.

Acts the same as the -user option.

-user <name>

Specifies the user name for authentication if security is enabled in the server.

Acts the same as the -username option.

690 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

-password <password>

Specifies the password for authentication if security is enabled in the server.

-help

Prints a usage statement.

-? Prints a usage statement.

Usage scenario

The following example demonstrates correct syntax:

backupConfig

This example creates a new file that includes the current date. For example:

WebSphereConfig_2003-04-22.zip

backupConfig myBackup.zip -nostop

This example creates a file called myBackup.zip, and does not stop any servers

before beginning the backup process.

restoreConfig command

The restoreConfig command is a simple utility to restore the configuration of your

node after backing up the configuration using the backupConfig command. By

default, all servers on the node stop before the configuration restores so that a

node synchronization does not occur during the restoration. If the configuration

directory already exists, it is renamed before the restoration occurs. For more

information about where to run this command, see the Using command tools

article.

For AIX only, if you are using a logical directory for was_install/config, the

restoreConfig command will not work.

Syntax

The command syntax is as follows:

restoreConfig <backup_file> [options]

where backup_file specifies the file to be restored. If you do not specify one, the

command will not run.

Parameters

The following options are available for the restoreConfig command:

-nowait

Tells the restoreConfig command not to stop the servers before restoring the

configuration.

-quiet

Suppresses the progress information that the restoreConfig command prints in

normal mode.

-location <directory_name>

Specifies the directory where the backup file is restored. The location defaults

to the install_root/config directory.

Chapter 9. Using command line tools 691

-logfile <fileName>

Specifies the location of the log file to which information gets written.

-profileName

Defines the profile of the Application Server process in a multi-profile

installation. The -profileName option is not required for running in a single

profile environment. The default for this option is the default profile.

-replacelog

Replaces the log file instead of appending to the current log.

-trace

Generates trace information into the log file for debugging purposes.

-username <name>

Specifies the user name for authentication if security is enabled in the server.

Acts the same as the -user option.

-user <name>

Specifies the user name for authentication if security is enabled in the server.

Acts the same as the -username option.

-password <password>

Specifies the password for authentication if security is enabled in the server.

-help

Prints a usage statement.

-? Prints a usage statement.

Usage scenario

The following example demonstrates correct syntax:

restoreConfig.sh WebSphereConfig_2003-04-22.zip

The following example restores the given file to the /tmp directory and does not

stop any servers before beginning the restoration:

restoreConfig.sh WebSphereConfig_2003-04-22.zip -location /tmp -nostop

Be aware that if you restore the configuration to a directory that is different from

the directory that was backed up when you performed the backupConfig

command, you may need to manually update some of the paths in the

configuration directory.

EARExpander command

Use the EARExpander command to expand an enterprise archive file (EAR) into a

directory to run the application in that EAR file. You can collapse a directory

containing application files into a single EAR file. You can type EARExpander with

no arguments to learn more about its options. For more information about where

to run this command, see the Using command tools article.

Syntax

The command syntax is as follows:

EarExpander -ear earName -operationDir dirName -operation

<expand | collapse> [-expansionFlags <all|war>]

692 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

Parameters

The following options are available for the EARExpander command:

-ear

Specifies the name of the input EAR file for the expand operation or the name

of the output EAR file for the collapse operation.

-operationDir

Specifies the directory where the EAR file is expanded or specifies the

directory from where files are collapsed.

-operation <expand | collapse>

The expand value expands an EAR file into a directory structure required by

the WebSphere Application Server run time. The collapse value creates an

EAR file from an expanded directory structure.

-expansionFlags <all | war>

(Optional) The all value expands all files from all of the modules. The war

value only expands the files from Web archive file (WAR) modules.

-profileName

Defines the profile of the Application Server process in a multi-profile

installation. The -profileName option is not required for running in a single

profile environment. The default for this option is the default profile.

Usage scenario

The following examples demonstrate correct syntax:

EARExpander -ear C:\WebSphere\AppServer\installableApps\DefaultApplication.ear

-operationDir C:\MyApps -operation expand -expansionFlags war

EARExpander -ear C:\backup\DefaultApplication.ear

-operationDir C:\MyAppsDefaultApplication.ear -operation collapse

GenPluginCfg command

This topic describes the command-line syntax for the GenPluginCfg command.

This command is used to regenerate the WebSphere Web server plug-in

configuration file, plugin-cfg.xml. For more information about where to run this

command, see the Using command tools article.

 CAUTION:

Regenerating the plug-in configuration can overwrite manual configuration

changes that you might want to preserve. Before performing this task,

understand its implications as described in the Communicating with Web

servers article.

To regenerate the plug-in configuration, you can either click on Servers > Web

Servers in the administrative console, select a Web server and then click Generate

Plug-in, or you can issue the following command:

WAS_HOME/AppServer/GenPluginCfg.sh

WAS_HOME is the root directory for your installation of IBM WebSphere

Application Server.

Both methods for regenerating the plug-in configuration create a plugin-cfg.xml

file in EBCDIC format, which is the proper format for execution in a z/OS

environment.

Chapter 9. Using command line tools 693

You can use the -profileName option to define the profile of the Application Server

process in a multi-profile installation. The -profileName option is not required for

running in a single profile environment. The default for this option is the default

profile.

Syntax

The command syntax is as follows:

GenPluginCfg [[-option.name optionValue]...]

When the GenPluginCfg command is issued with the option -webserver.name

webservrName, wsadmin generates a plug-in configuration file for the Web server.

This settings in this generated configuration file are based on the list of

applications that are deployed on the Web server. When this command is issued

without the option -webserver.name webservrName, the plug-in configuration file

is generated based on topology.

Parameters

The following options are available for the GenPluginCfg command:

-config.root configroot_dir

Defaults to environment variable CONFIG_ROOT.

-profileName

Defines the profile of the Application Server process in a multi-profile

installation. The -profileName option is not required for running in a single

profile environment. The default for this option is the default profile.

-cell.name cell

Defaults to environment variable WAS_CELL.

-node.name node

Defaults to environment variable WAS_NODE.

-webserver.name webserver1

Required for creating plug-in configuration file for a given Web server.

-propagate yes/no

Applicable only when the option webserver.name is specified. Defaults to no.

-cluster.name cluster1,cluster2 | ALL

Optional list of clusters. Ignored when the option webserver.name is specified.

-server.name server1,server2

Optional list of servers. Required for single server plug-in generation. Ignored

when the option webserver.name is specified.

-output.file.name file_name

Defaults to the configroot_dir/plugin-cfg.xml file. Ignored when the option

webserver.name is specified.

-destination.root root

Installation root of the machine configuration is used on. Ignored when the

option webserver.name is specified.

-destination.operating.system windows/unix

Operating system of the machine configuration is used on. Ignored when the

option webserver.name is specified.

-debug yes/no

Defaults to no.

694 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

-help

Prints a usage statement.

-? Prints a usage statement.

Usage scenario

To generate a plug-in configuration for all of the clusters in a cell:

GenPluginCfg -cell.name NetworkDeploymentCell

To generate a plug-in configuration for a single server:

GenPluginCfg -cell.name BaseApplicationServerCell -node.name

appServerNode -server.name appServerName

To generate a plug-in configuration file for a Web server:

GenPluginCfg -cell.name BaseApplicationServerCell -node.name

webserverNode -webserver.name webserverName

Chapter 9. Using command line tools 695

696 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

Chapter 10. Using mvs command line tools

See the z/OS Internet Library (http://www-
ibm.com/servers/eserver/zseries/zos/bkserv) for information on how to use MVS

operator commands.

Modify command

Use the modify command from the MVS console to dynamically modify

WebSphere for z/OS operations.

You can use the modify command to display status of various server components

and activities, including:

v Active controllers

v Trace settings

v Servants

v Sessions

v JVM Heap

v Java trace
f <server>, options

The first argument is required. The argument is either the name of the

configuration directory of the server for which status is desired, or the -all

keyword which requests status for all servers defined on the node.

Parameters

The options for the modify command follow:

CANCEL

Used to cancel a server. server refers to the server short name.

 You can specify the following options:

ARMRESTART

Specify if you are using ARM and want ARM to restart the server after

it terminates. If you don’t specify the ARMRESTART option on the

CANCEL parameter, ARM will not restart the server.

HELP Get help for the CANCEL syntax.

Note: You cannot use the CANCEL parameter to cancel a cluster from the MVS

console. Instead, you must cancel each of the servers that make up the cluster.

TRACEALL=n

Use TRACEALL to establish a general trace level for the server.

 Valid trace levels are 0 (none), 1 (exception), 2 (basic), and 3 (detailed tracing).

Under normal conditions and in production, use 1 (exception).

Note: Be careful when using a level of 3 (detailed for all components) because

it can potentially yield more data than can be handled reasonably.

TRACEBASIC=n

Specify the WebSphere for z/OS components for which you want to switch on

a basic level of tracing.

© Copyright IBM Corp. 2005 697

http://www-ibm.com/servers/eserver/zseries/zos/bkserv

This command has the ability to override a different tracing level established

by TRACEALL for those components.

Note: Do not change this variable unless directed by IBM service personnel.

 You can specify one or more of the following options for either TRACEBASIC

or TRACEDETAIL:

0 RAS

1 Common Utilities

3 COMM

4 ORB

6 OTS

7 Shasta

9 OS/390 Wrappers

A Daemon

E Security

F Externalization

J JRAS (internal tracing-via direction from IBM support)

L J2EE

TRACEDETAIL=n

Specify the WebSphere for z/OS components for which you want to switch on

a detailed level of tracing.

 This command activates the most detailed tracing for the specified WebSphere

for z/OS components and overrides different settings inTRACEALL. The

selected components (n,...) are identified by their component-ID (valid values

are the same as for TRACEBASIC above. Subcomponents, specified by

numbers, receive detailed traces. Other parts of WebSphere for z/OS receive

tracing as specified on the TRACEALL variable.

Note: Do not change this variable unless directed by IBM service personnel.

TRACESPECIFIC=xxyyyzzz

Specifies tracing overrides for specific WebSphere for z/OS trace points.

 Trace points are specified by 8-digit, hexadecimal numbers. To specify more

than one trace point, use parentheses and separate the numbers with commas.

You can also specify an environment variable name by enclosing the name in

single quotes. The value of the environment variable will be handled as if you

had specified that value on TRACESPECIFIC.

Note: Do not use TRACESPECIFIC unless directed by IBM service personnel.

TRACE_EXCLUDE_SPECIFIC=xxyyyzzz

Specifies trace points to exclude.

 Trace points to exclude are specified by 8-digit, hexadecimal numbers. To

specify more than one trace point, use parentheses and separate the numbers

with commas. You can also specify an environment variable name by enclosing

the name in single quotes. The value of the environment variable will be

handled as if you had specified that value on TRACE_EXCLUDE_SPECIFIC.

You can use TRACE_EXCLUDE_SPECIFIC as a mask to turn off otherwise-on

698 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

traces. For example, use the TRACESPECIFIC command to turn on tracing for

a whole part and then use TRACE_EXCLUDE_SPECIFIC to turn off one trace

within that part.

Note: Do not use TRACE_EXCLUDE_SPECIFIC unless directed by IBM service

personnel.

TRACEINIT

Reset to the initial trace settings.

TRACENONE

Turns off all trace settings.

TRACETOSYSPRINT={YES|NO}

Select whether or not to send the trace to sysprint.

 YES specifies to send the trace to sysprint and NO stops sending the trace to

sysprint.

TRACETOTRCFILE={YES|NO}

Select whether or not to direct the trace to the TRCFILE DD card.

 YES specifies to send the trace to the TRCFILE DD card and NO stops sending

the trace to the TRCFILE DD card.

TRACEJAVA

Modify the Java trace string.

 The java trace specification is used to control java tracing and conforms to the

java trace specification rules. *=all=enabled means to enable all types of tracing

for all registered trace components.

HELP

Display a list of all the keywords you may use with the modify command.

 You can also use the HELP parameter after the CANCEL, and DISPLAY

parameters to display lists of all the keywords you can use with either of these

parameters.

DISPLAY | DISPLAY,

Displays the server’s name, the system name where it is running, and the

current code level.

 You can specify the following options:

SERVERS

This command is directed to a server and displays the name, system

name, and code level for each active server in the sysplex that is in the

same cell.

SERVANTS

Displays a list of ASIDs of servants attached to the server against

which you issued the display command.

TRACE

Display trace information for a server controller.

 You can further modify this command with one of the following

options:

SRS Display trace information for all servants, one at a time.

ALL Display trace information for the controller and all servants

one at a time.

Chapter 10. Using mvs command line tools 699

JAVA Display the Java trace string settings for a server controller.You

can further modify this command with one of the following

options:

SRS Display Java trace information for all servants, one at a

time.

ALL Display Java trace information for the controller and all

servants one at a time.

HELP Display a list of all the keywords you may use with

the modify display trace java command.

HELP Display a list of all the keywords you may use with the modify

display trace command.

JVMHEAP

Display the JVM heap information for a server controller.

 You can further modify this command with one of the following

options:

SRS Display the JVM heap information for all servants, one at a

time.

ALL Display the JVM heap information for the controller and all

servants, one at a time.

HELP Display a list of all the keywords you may use with the modify

display javaheap command.

SESSIONS

Display session information for the server.

 You can further modify this command with one of the following

options:

LISTENERS

Display the listening port numbers for each protocol. This is

actually the default, so the f server,sessions and the f

server,sessions,listeners commands would have the same

outcome.

SERVER

Display the number of sessions in use for each protocol on the

server.

 You can further modify this command with one of the

following options:

TCPIIOP

Display the number of TCP/IP IIOP sessions active on

the server.

 You can further modify this command with one of the

following options:

LIST List the server session information for the

TCP/IP IIOP protocol.

HELP Display a list of all the keywords you may use

with the modify display session server

tcpipiiop command.

700 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

Note: The LIST and HELP parameters are also

available with the other session protocol display

commands.

LOCALIIOP

Display the number of LOCALIIOP sessions active on

the server.

SSLIIOP

Display the number of SSLIIOP sessions active on the

server.

HTTP Display the number of HTTP sessions active on the

server.

HTTPS

Display the number of HTTPS sessions active on the

server.

HELP Display a list of all the keywords you may use with

the modify display session server command.

HELP Display help for the modify display sessions command.

HELP Display a list of all the keywords you may use with the modify

command.

Example: Canceling application clusters and servers with the

modify command

Before you begin: You cannot cancel a cluster from the MVS console. Instead, you

must cancel each of the servers that make up the cluster.

Example 1: The following command will cancel the bbo5acr server:

f bbo5acr,cancel

Example 2: The following command will cancel the bbo5acr server and instruct

ARM to restart it after it terminates:

f bbo5acr,cancel,armrestart

Example: Establishing a general level of trace

To establish a general trace level for the server, use the following command:

f server,traceall=n

Valid trace levels are 0 (none), 1 (exception), 2 (basic), and 3 (detailed tracing).

Under normal conditions and in production, use 1 (exception).

Example: The following command will turn on exception level tracing for the

bbo5acr server:

f bbo5acr,traceall=1

Here is a sample display:

F BBO5ACR,TRACEALL=1

BBOO0211I MODIFY COMMAND TRACEALL=1 COMPLETED SUCCESSFULLY

Chapter 10. Using mvs command line tools 701

Example: Setting basic and detailed trace levels

To specify the WebSphere for z/OS components for which you want to switch on a

basic level of tracing, use the following command:

f server,tracebasic=(n,...)

Example 1: The following command will turn on a basic level of tracing for the

Daemon component on server bbo5acr:

f bbo5acr,tracebasic=a

Here is a sample display:

F BBO5ACR,TRACEBASIC=A

BBOO0211I MODIFY COMMAND TRACEBASIC=A COMPLETED SUCCESSFULLY

To specify the WebSphere for z/OS components for which you want to switch on a

detailed level of tracing use the following command:

f server,tracedetail=(n,...)

Example 2: The following command will turn on a detailed level of tracing for

security on server bbo5acr:

f bbo5acr,tracedetail=e

Here is a sample display:

F BBO5ACR,TRACEDETAIL=E

BBOO0211I MODIFY COMMAND TRACEDETAIL=E COMPLETED SUCCESSFULLY

Example: Setting specific trace points

To set specific trace points, use the following command:

f server,tracespecific=n | (n,...)

Example 1: The following command will turn on the specific trace point 04006001:

f bbo5acr,tracespecific=04006001

Example 2: The following command will turn on the specific trace points 04006001

and 04006027:

f bbo5acr,tracespecific=(04006001,04006027)

Example 3: The following command will turn on the specific trace points set in the

environment variable tracepoints:

f bbo5acr,tracespecific=’tracepoints’

Example: Excluding specific trace points

To exclude specific trace points, use the following command:

f server,trace_exclude_specific=n | (n,...)

Example: The tracespecific command below turns on tracing for a whole part and

then the trace_exclude_specific turns off tracing for the point 04006031 within that

part.:

f bbo5acr,tracespecific=04006000

f bbo5acr,trace_exclude_specific=04006031

702 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

Example: Resetting to the initial trace settings

To reset to the initial trace settings use the following command:

f server,traceinit

Example: Turning off tracing

To turn off tracing, use the following command:

f server,tracenone

Example: Sending the trace to sysprint

To send the trace to sysprint, use the following command:

f server,tracetosysprint=yes

To stop sending the trace to sysprint, use the following command:

f server,tracetosysprint=no

Example: Displaying servants

To display servants, use the following command:

f server,display,servants

Example: The following command will display servants for the bbo5acr server:

f bbo5acr,display,servants

Here is a sample display:

F BBO5ACR,DISPLAY,SERVANTS

BBOO0185I SERVER BBO5SR4/BBOASR4A HAS 1 SERVANT PROCESS (ASID: 0038x)

BBOO0188I END OF OUTPUT FOR COMMAND DISPLAY,SERVANTS

Example: Displaying trace settings and Java string trace

settings

To display the trace settings for a server instance, use the following command:

f server,display,trace

Example 1: The following command will display trace settings for the bbo5acr

server:

f bbo5acr,display,trace

Here is a sample display:

F BBO5ACR,DISPLAY,TRACE

BBOO0224I TRACE INFORMATION FOR SERVER BBO5SR4/BBOASR4A/STC00047

BBOO0197I LOCATION = SYSPRINT BUFFER

BBOO0197I AGGREGATE TRACE LEVEL = 1

BBOO0197I EXCEPTION TRACING = RAS(0), Common Utilities(1), COMM(3),

ORB(4), OTS(6), Shasta(7), OS/390 Wrappers(9), Daemon(A), Security(E),

Externalization(F), JRAS(J), J2EE(L)

BBOO0197I BASIC TRACING =

BBOO0197I DETAILED TRACING =

BBOO0197I TRACE SPECIFIC = NONE SPECIFIED

BBOO0197I TRACE EXCLUDE SPECIFIC = NONE SPECIFIED

BBOO0225I TRACE INFORMATION FOR SERVER BBO5SR4/BBOASR4A/STC00047 COMPLETE

BBOO0188I END OF OUTPUT FOR COMMAND DISPLAY,TRACE

To display the Java trace string settings for a server, use the following command:

f server,display,trace,java

Chapter 10. Using mvs command line tools 703

Example 2: The following command will display Java trace settings for the bbo5acr

server:

f bbo5acr,display,trace,java

Here is a sample display:

F BBO5ACR,DISPLAY,TRACE,JAVA

BBOO0196I TRACE INFORMATION FOR SERVER BBO5SR4/BBOASR4A

BBOJ0050I CTL(STC00047):*=all=disabled

BBOO0188I END OF OUTPUT FOR COMMAND DISPLAY,TRACE,JAVA

To display the Java trace information for all servants, one at a time.

f server,display,trace,java.srs

Example 3: The following command will display Java trace settings for the bbo5acr

server:

f bbo5acr,display,trace,java,srs

Here is a sample display:

F BBO5ACR,DISPLAY,TRACE,JAVA,SRS

BBOO0196I TRACE INFORMATION FOR SERVER BBO5SR4/BBOASR4A

BBOJ0050I SR(STC00048):*=all=disabled

BBOO0188I END OF OUTPUT FOR COMMAND DISPLAY,TRACE,JAVA,SRS

To display the Java trace information for the controller and all servants, one at a

time.

f server,display,trace,java.all

Example 4: The following command will display Java trace settings for the

controller and all servants:

f bbo5acr,display,trace,java,all

Here is a sample display:

F BBO5ACR,DISPLAY,TRACE,JAVA,ALL

BBOO0196I TRACE INFORMATION FOR SERVER BBO5SR4/BBOASR4A

BBOJ0050I CTL(STC00047):*=all=disabled

BBOJ0050I SR(STC00048):*=all=disabled

BBOO0188I END OF OUTPUT FOR COMMAND DISPLAY,TRACE,JAVA,ALL

Example: Displaying JVM heap information

To display the JVM heap information for a server controller, use the following

command:

f server,display,jvmheap

Example 1: The following command will display JVM heap information for the

bbo5acr server:

f bbo5acr,display,jvmheap

Here is a sample display:

F BBO5ACR,DISPLAY,JVMHEAP

BBOO0201I JVM HEAP INFORMATION FOR SERVER BBO5SR4/BBOASR4A/STC00047

BBOO0202I (STC00047) HEAP(MIDDLEWARE), COUNT(00000000), FREE STORAGE(

396FA70), TOTAL STORAGE(7FFFA00)

BBOO0204I JVM HEAP INFORMATION FOR SERVER BBO5SR4/BBOASR4A/STC00047 COMPLETE

BBOO0188I END OF OUTPUT FOR COMMAND DISPLAY,JVMHEAP

704 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

To display the JVM heap information for all servants one at a time, use the

following command:

f server,display,jvmheap,srs

Example 2: The following command will display JVM heap information for all

servants in the bbo5acr server:

f bbo5acr,display,jvmheap,srs

Here is a sample display:

F BBO5ACR,DISPLAY,JVMHEAP,SRS

+BBOO0201I JVM HEAP INFORMATION FOR SERVER BBO5SR4/BBOASR4A/STC00048

+BBOO0202I (STC00048) HEAP(MIDDLEWARE), COUNT(00000001), FREE STORAGE(

 25F4030), TOTAL STORAGE(7FFFA00)

+BBOO0204I JVM HEAP INFORMATION FOR SERVER BBO5SR4/BBOASR4A/STC00048 COMPLETE

BBOO0188I END OF OUTPUT FOR COMMAND DISPLAY,JVMHEAP,SRS

To display the JVM heap information for the controller and all servants of a server

one at a time, use the following command:

f server,display,jvmheap,all

Example 3: The following command will display JVM heap information for the

controller and all servants in the bbo5acr server:

f bbo5acr,display,jvmheap,all

Here is a sample display:

F BBO5ACR,DISPLAY,JVMHEAP,ALL

BBOO0201I JVM HEAP INFORMATION FOR SERVER BBO5SR4/BBOASR4A/STC00047

BBOO0202I (STC00047) HEAP(MIDDLEWARE), COUNT(00000000), FREE STORAGE(

396FA70), TOTAL STORAGE(7FFFA00)

BBOO0204I JVM HEAP INFORMATION FOR SERVER BBO5SR4/BBOASR4A/STC00047 COMPLETE

+BBOO0201I JVM HEAP INFORMATION FOR SERVER BBO5SR4/BBOASR4A/STC00048

+BBOO0202I (STC00048) HEAP(MIDDLEWARE), COUNT(00000001), FREE STORAGE(

 25F4030), TOTAL STORAGE(7FFFA00)

+BBOO0204I JVM HEAP INFORMATION FOR SERVER BBO5SR4/BBOASR4A/STC00048 COMPLETE

BBOO0188I END OF OUTPUT FOR COMMAND DISPLAY,JVMHEAP,ALL

Example: Displaying sessions

To display sessions, use the following command:

f server,

display,sessions

Example 1: Since ″listeners″ is the default, either of the following command will

display session listeners for the bbo5acr server:

f bbo5acr,display,sessions

or

f bbo5acr,display,sessions,listeners

Here is a sample display:

F BBO5ACR,DISPLAY,SESSIONS,LISTENERS

BBOO0189I PROTOCOLS AND LISTENING PORTS FOR SERVER BBO5SR4/BBOASR4A

BBOO0190I TCPIIOP 2809

BBOO0190I SSLIIOP 6000

BBOO0190I HTTP 9088

BBOO0190I HTTPS 443

BBOO0188I END OF OUTPUT FOR COMMAND DISPLAY,SESSIONS,LISTENERS

Chapter 10. Using mvs command line tools 705

To display server sessions counts, use the following command:

f server,

display,sessions,server

Example 2: The following command will display the server session counts for all

protocols used by the bbo5acr server:

f bbo5acr,display,sessions,server

Here is a sample display:

F BBO5ACR,DISPLAY,SESSIONS,SERVER

BBOO0191I SERVER SESSION COUNTS FOR PROTOCOLS USED BY SERVER

BBO5SR4/BBOASR4A

BBOO0192I TCPIIOP 2

BBOO0192I LOCALIIOP 0

BBOO0192I SSLIIOP 0

BBOO0192I HTTP 0

BBOO0192I HTTPS 0

BBOO0188I END OF OUTPUT FOR COMMAND DISPLAY,SESSIONS,SERVER

You can further refine the modify command to display, or list, the number of

sessions used by a specific protocol. The available options are:

v tcpiiop

v localiiop

v ssliiop

v http

v https

In addition, you can also specify to display the results or list the results by leaving

off the list modifer or including the list modifier, respectively.

Example 1: The following command will display the number of sessions using the

TCP/IP IIOP protocol on the bbo5acr server:

f bbo5acr,display,sessions,server,tcpiiop

Here is a sample display:

F BBO5ACR,DISPLAY,SESSIONS,SERVER,TCPIIOP

BBOO0193I SERVER BBO5SR4/BBOASR4A HAS 2 TCPIIOP SERVER SESSIONS

BBOO0188I END OF OUTPUT FOR COMMAND DISPLAY,SESSIONS,SERVER,TCPIIOP

Example: Displaying status of a server

To display the status of a server, use the following command:

f server,display

Example: The following command will display status for the bbo5acr server:

f bbo5acr,display

Here is a sample display:

F BBO5ACR,DISPLAY

BBOO0173I SERVER BBO5SR4/BBOASR4A ACTIVE ON SY1 AT LEVEL wd5xo03.

BBOO0188I END OF OUTPUT FOR COMMAND DISPLAY

Example: Displaying status of clusters

To display the status of clusters in the active controller, use the following

command:

f server,display,servers

706 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

Example: The following command will display status for the bbo5acr server:

f bbo5acr,display,servers

Here is a sample display:

F BBO5ACR,DISPLAY,SERVERS

BBOO0182I SERVER ASID SYSTEM LEVEL

BBOO0183I CBDAEMON/DAEMON01 31x SY1 wd5xo03

BBOO0183I BBO5SR4 /BBOASR4A 1F6x SY1 wd5xo03

BBOO0188I END OF OUTPUT FOR COMMAND DISPLAY,SERVERS

Example: Getting help for the modify command

You can get syntax help for the various levels of the modify command.

Example 1: The following command will display a list of all the keywords you

may use with the modify command:

f bbo5acr,help

Here is a sample display:

F BBO5ACR,HELP

BBOO0178I THE COMMAND MODIFY MAY BE FOLLOWED BY ONE OF THE FOLLOWING KEYWORDS:

BBOO0179I CANCEL - CANCEL THIS CONTROL REGION

BBOO0179I TRACEALL - SET OVERALL TRACE LEVEL

BBOO0179I TRACEBASIC - SET BASIC TRACE COMPONENTS

BBOO0179I TRACEDETAIL - SET DETAILED TRACE COMPONENTS

BBOO0179I TRACESPECIFIC - SET SPECIFIC TRACE POINTS

BBOO0179I TRACEINIT - RESET TO INITIAL TRACE SETTINGS

BBOO0179I TRACENONE - TURN OFF ALL TRACING

BBOO0179I TRACETOSYSPRINT - SEND TRACE OUTPUT TO SYSPRINT (YES/NO)

BBOO0179I TRACETOTRCFILE - SEND TRACE OUTPUT TO TRCFILE DD CARD (YES/NO)

BBOO0179I DISPLAY - DISPLAY STATUS

BBOO0179I TRACE_EXCLUDE_SPECIFIC - EXCLUDE SPECIFIC TRACE POINTS

BBOO0179I TRACEJAVA - SET JAVA TRACE OPTIONS

Example 2: The following command will display a list of all the keywords you

may use with the modify display command:

f bbo5acr,display,help

Here is a sample display:

F BBO5ACR,DISPLAY,HELP

BBOO0178I THE COMMAND DISPLAY, MAY BE FOLLOWED BY ONE OF THE FOLLOWING KEYWORDS:

BBOO0179I SERVERS - DISPLAY ACTIVE CONTROL REGIONS

BBOO0179I SERVANTS - DISPLAY SERVANT PROCESSES OWNED BY THIS CONTROL PROCESS

BBOO0179I SESSIONS - DISPLAY INFORMATION ABOUT COMMUNICATIONS SESSIONS

BBOO0179I TRACE - DISPLAY INFORMATION ABOUT TRACE SETTINGS

BBOO0179I JVMHEAP - DISPLAY JVM HEAP STATISTICS

BBOO0188I END OF OUTPUT FOR COMMAND DISPLAY,HELP

Example 3: The following command will display a list of all the keywords you

may use with the modify display sessions command:

f bbo5acr,display,sessions,help

Here is a sample display:

F BBO5ACR,DISPLAY,SESSIONS,HELP

BBOO0178I THE COMMAND DISPLAY,SESSIONS, MAY BE FOLLOWED BY ONE OF THE

FOLLOWING KEYWORDS:

BBOO0179I LISTENERS - DISPLAY LISTENER INFORMATION

BBOO0179I SERVER - DISPLAY SERVER SESSION INFORMATION

BBOO0188I END OF OUTPUT FOR COMMAND DISPLAY,SESSIONS,HELP

Chapter 10. Using mvs command line tools 707

Example: Modifying the Java trace string

To modify the Java trace string, use the following command:

f server, tracejava=’trace specification’

Example: The following command enables all types of tracing for all registered

trace components:

f bbo5acr,tracejava=’*=all=enabled’

Note: The single quotes are a required part of the syntax.

Display command

Examples

Use the following display command examples to monitor your WebSphere

Application Server.

v Display active replies

v Display active address spaces

v Display the status of address spaces registered for automatic restart management

v Display units of work (transactions) for the Information Management System

Example: Displaying active replies

Displaying active replies from the MVS console allows you to observe system

activity and determine if the system requires an operator response.

Issue the following command to display (list) all active replies:

d r,r

Example: Displaying active address spaces

Use the display command to display active address spaces. For example, use the

display command to determine if the location service daemon is up:

 d a,l Displays a list of all address spaces.

d a,a Displays a list of all active address spaces.

d a,address-space-name Displays only the address space in which

you are interested. This command is

recommended over the first two because it

does not yield such a lengthy list on a

production system. Of course, you need to

know the name of the address space for

which you are looking.

Example: d a,bboasr1

d a,bbo* Displays a list of all active address spaces

that start with BBO.

708 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

Example: Displaying the status of address spaces registered

for automatic restart management

Perform the following steps to use automatic restart management (ARM) to display

the status of ARM registered address spaces (including the address spaces of server

instances) in the WebSphere for z/OS environment:

1. Initialize all servers.

2. Issue one or both of the following commands:

v To display all registered address spaces (including the address spaces of

server instances), issue the command:

d xcf,armstatus,detail

v To display the status of a particular server instance, use the display

command and identify the job name. For example, to display the status of

the Daemon server instance (job BBODMN), issue the following command:

d xcf,armstatus,jobname=bbodmn,detail

Example: Displaying units of work (transactions) for the

Information Management System

You can display units of work (transactions) for Information Management System

(IMS):

1. To display the status of a specific transaction, issue the command:

/dis tran trans-name

2. To display the status of a specific program, issue the command:

/dis prog program-name

3. To display the number of Message Processing Regions (MPRs) that are

currently active, issue the command:

/display active region

For more information about IMS commands, see the IMS/ESA Summary of

Operator Commands manual on the IBM Publications Center Web site.

Chapter 10. Using mvs command line tools 709

http://www.ehone.ibm.com/public/applications/publications/cgibin/pbi.cgi

710 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

Notices

References in this publication to IBM products, programs, or services do not imply

that IBM intends to make these available in all countries in which IBM operates.

Any reference to an IBM product, program, or service is not intended to state or

imply that only IBM’s product, program, or service may be used. Any functionally

equivalent product, program, or service that does not infringe any of IBM’s

intellectual property rights may be used instead of the IBM product, program, or

service. Evaluation and verification of operation in conjunction with other

products, except those expressly designated by IBM, is the user’s responsibility.

IBM may have patents or pending patent applications covering subject matter in

this document. The furnishing of this document does not give you any license to

these patents. You can send license inquiries, in writing, to:

 IBM Director of Intellectual Property & Licensing

 IBM Corporation

 North Castle Drive

 Armonk, NY 10504-1785

 USA

 Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

 IBM Corporation

 Mail Station P300

 2455 South Road

 Poughkeepsie, NY 12601-5400

 USA

 Attention: Information Requests

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

© Copyright IBM Corp. 2005 711

712 IBM WebSphere Application Server for z/OS, Version 6.0.1: Using the administrative clients

Trademarks and service marks

For trademark attribution, visit the IBM Terms of Use Web site

(http://www.ibm.com/legal/us/).

© Copyright IBM Corp. 2005 713

http://www.ibm.com/legal/us/

	Contents
	How to send your comments
	Chapter 1. Overview and new features for administering applications and their environments
	Contents of this section: Administering applications and their environments
	Getting started with WebSphere Application Server
	Security considerations for WebSphere Application Server for z/OS
	Introduction: System administration
	Introduction: Administrative console
	Identifying where to perform WebSphere Application Server operations

	Introduction: Administrative scripting (wsadmin)
	Introduction: Administrative commands
	Introduction: Administrative programs
	Introduction: Administrative configuration data
	Welcome to basic administrative architecture

	Introduction: Servers
	Introduction: Application servers
	Introduction: Web servers
	Introduction: Clusters

	Introduction: Environment
	Introduction: Cell-wide settings

	Introduction: Variables

	Chapter 2. How do I administer applications and their environments?
	Chapter 3. Using the administrative clients
	Chapter 4. Using the administrative console
	Starting and logging off the administrative console
	Login settings
	Logging into the administrative console
	Resolving conflicts during login
	Recovering prior changes
	Resolving login failures

	Save changes to the master configuration
	Total changed documents
	Synchronize changes with nodes

	Setting the session timeout for the administrative console
	Administrative console areas
	Taskbar
	Navigation tree
	Workspace
	Administrative console buttons
	Administrative console page features
	Administrative console navigation tree actions
	Servers
	Applications
	Resources
	Security
	Environment
	System Administration
	Troubleshooting
	Monitoring and Tuning
	Service Integration
	UDDI

	Administrative console taskbar actions
	Logout
	Help
	Support

	Specifying console preferences
	Preferences settings
	Turn on workSpace auto-refresh
	No confirmation on workspace discard
	Use default scope (administrative console node)
	Show banner
	Show Descriptions

	Administrative console preference settings
	Maximum rows
	Filter history
	Show confirmation for stop command
	Show confirmation for immediate stop command
	Show confirmation for terminate command

	Administrative console scope settings

	Accessing help and product information from the administrative console
	Administrative console: Resources for learning

	Chapter 5. Using the MVS console
	Chapter 6. Using scripting (wsadmin)
	Getting started with scripting
	Java Management Extensions (JMX)
	WebSphere Application Server configuration model
	Jacl
	Jython
	Scripting objects
	Help object for scripted administration
	AdminApp object for scripted administration
	AdminControl object for scripted administration
	AdminConfig object for scripted administration
	AdminTask object for scripted administration

	Starting the wsadmin scripting client
	Scripting: Resources for learning

	Deploying applications using scripting
	Installing applications with the wsadmin tool
	Uninstalling applications with the wsadmin tool

	Managing deployed applications using scripting
	Starting applications with scripting
	Updating installed applications with the wsadmin tool
	Stopping applications with scripting
	Listing the modules in an installed application with scripting
	Example: Listing the modules in an application server

	Querying the application state using scripting
	Configuring applications for session management using scripting
	Configuring applications for session management in Web modules using scripting
	Exporting applications using scripting
	Configuring a shared library using scripting
	Configuring a shared library for an application using scripting
	Setting background applications using scripting

	Configuring servers with scripting
	Creating a server using scripting
	Configuring the Java virtual machine using scripting
	Configuring enterprise bean containers using scripting
	Configuring a Performance Manager Infrastructure service using scripting
	Configuring an ORB service using scripting
	Configuring processes using scripting
	Configuring transaction properties for a server using scripting
	Setting port numbers kept in the serverindex.xml file using scripting
	Disabling components using scripting
	Disabling services using scripting
	Dynamic caching with scripting

	Configuring connections to Webservers with scripting
	Regenerating the node plug-in configuration using scripting
	Creating new virtual hosts using templates with scripting

	Managing servers with scripting
	Stopping a node using scripting
	Starting servers using scripting
	Stopping servers using scripting
	Querying server state using scripting
	Listing running applications on running servers using scripting
	Starting listener ports using scripting
	Managing generic servers using scripting
	Setting development mode for server objects using scripting
	Disabling parallel startup using scripting
	Removing multicast endpoints using scripting
	Obtaining server version information with scripting

	Clustering servers with scripting
	Creating clusters using scripting
	Creating cluster members using scripting
	Creating clusters without cluster members using scripting
	Starting a cluster using scripting
	Querying cluster state using scripting
	Stopping clusters using scripting

	Configuring security with scripting
	Enabling and disabling global security using scripting
	Enabling and disabling Java 2 security using scripting

	Configuring data access with scripting
	Configuring a JDBC provider using scripting
	Configuring new data sources using scripting
	Configuring new connection pools using scripting
	Configuring new data source custom properties using scripting
	Configuring new J2CAuthentication data entries using scripting
	Configuring new WAS40 data sources using scripting
	Configuring new WAS40 connection pools using scripting
	Configuring new WAS40 custom properties using scripting
	Configuring new J2C resource adapters using scripting
	Configuring custom properties for J2C resource adapters using scripting
	Configuring new J2C connection factories using scripting
	Configuring new J2C authentication data entries using scripting
	Configuring new J2C activation specs using scripting
	Configuring new J2C administrative objects using scripting
	Testing data source connections using scripting

	Configuring messaging with scripting
	Configuring the message listener service using scripting
	Configuring new JMS providers using scripting
	Configuring new JMS destinations using scripting
	Configuring new JMS connections using scripting
	Configuring new WebSphere queue connection factories using scripting
	Configuring new WebSphere topic connection factories using scripting
	Configuring new WebSphere queues using scripting
	Configuring new WebSphere topics using scripting
	Configuring new MQ queue connection factories using scripting
	Configuring new MQ topic connection factories using scripting
	Configuring new MQ queues using scripting
	Configuring new MQ topics using scripting

	Configuring mail, URLs, and resource environment entries with scripting
	Configuring new mail providers using scripting
	Configuring new mail sessions using scripting
	Configuring new protocols using scripting
	Configuring new custom properties using scripting
	Configuring new resource environment providers using scripting
	Configuring custom properties for resource environment providers using scripting
	Configuring new referenceables using scripting
	Configuring new resource environment entries using scripting
	Configuring custom properties for resource environment entries using scripting
	Configuring new URL providers using scripting
	Configuring custom properties for URL providers using scripting
	Configuring new URLs using scripting
	Configuring custom properties for URLs using scripting

	Troubleshooting with scripting
	Tracing operations with the wsadmin tool
	Configuring traces using scripting
	Turning traces on and off in servers processes using scripting
	Dumping threads in server processes using scripting
	Setting up profile scripts to make tracing easier using scripting
	Enabling the Runtime Performance Advisor tool using scripting

	Scripting reference material
	Wsadmin tool
	wsadmin tool performance tips

	Commands for the Help object
	Commands for the AdminConfig object
	Commands for the AdminControl object
	Commands for the AdminApp object
	Options for the AdminApp object install, installInteractive, edit, editInteractive, update, and updateInteractive commands
	Example: Obtaining option information for AdminApp object commands

	Commands for the AdminTask object
	Administrative command invocation syntax
	Properties used by scripted administration
	com.ibm.ws.scripting.classpath
	com.ibm.ws.scripting.connectionType
	com.ibm.ws.scripting.host
	com.ibm.ws.scripting.port
	com.ibm.ws.scripting.defaultLang
	com.ibm.ws.scripting.traceString
	com.ibm.ws.scripting.traceFile
	com.ibm.ws.scripting.validationOutput
	com.ibm.ws.scripting.emitWarningForCustomSecurityPolicy
	com.ibm.ws.scripting.tempdir
	com.ibm.ws.scripting.validationLevel
	com.ibm.ws.scripting.crossDocumentValidationEnabled
	com.ibm.ws.scripting.profiles

	Chapter 7. Using Ant to automate tasks
	ws_ant command
	Ant tasks for deployment and server operation
	Ant tasks for building application code

	Chapter 8. Using administrative programs (JMX)
	Java Management Extensions
	Creating a custom Java administrative client program using WebSphere Application Server administrative Java APIs
	Developing an administrative client program
	Administrative client program example

	Extending the WebSphere Application Server administrative system with custom MBeans
	Best practices for standard, dynamic, and open MBeans
	Creating and registering standard, dynamic, and open custom MBeans
	Java 2 security permissions
	Java Management Extensions MBean multiprocess model request flow for WebSphere Application Server for z/OS
	Java Management Extensions dynamic proxy concepts
	Example: The SampleStateMBean MBean

	Administrative Security
	Default MBean security policy
	Defining an explicit MBean security policy

	Developing administrative programs for multiple Java 2 Platform, Enterprise Edition application servers
	Deploying and managing a custom Java administrative client program with multiple Java 2 Platform, Enterprise Edition application servers
	Migrating Java Management Extensions V1.0 to Java Management Extensions V1.2
	Java Management Extensions interoperability
	Managed object metadata
	Managing applications through programming
	Installing an application through programming
	Starting an application through programming

	Uninstalling an application through programming
	Updating an application through programming
	Adding to, updating, or deleting part of an application through programming
	Preparing a module and adding it to an existing application through programming
	Preparing and updating a module through programming
	Deleting a module through programming
	Adding a file through programming
	Updating a file through programming
	Deleting a file through programming

	Chapter 9. Using command line tools
	Example: Security and the command line tools
	startServer command
	stopServer command
	startManager command
	stopManager command
	stopNode command
	START appserver_proc_name command
	STOP appserver_proc_name command
	START dmgr_proc_name command
	STOP dmgr_proc_name command
	START nodeagent_proc_name command
	STOP nodeagent_proc_name command
	addNode command
	Best practices for adding nodes using command line tools

	serverStatus command
	removeNode command
	cleanupNode command
	syncNode command
	backupConfig command
	restoreConfig command
	EARExpander command
	GenPluginCfg command

	Chapter 10. Using mvs command line tools
	Modify command
	Example: Canceling application clusters and servers with the modify command
	Example: Establishing a general level of trace
	Example: Setting basic and detailed trace levels
	Example: Setting specific trace points
	Example: Excluding specific trace points
	Example: Resetting to the initial trace settings
	Example: Turning off tracing
	Example: Sending the trace to sysprint
	Example: Displaying servants
	Example: Displaying trace settings and Java string trace settings
	Example: Displaying JVM heap information
	Example: Displaying sessions
	Example: Displaying status of a server
	Example: Displaying status of clusters
	Example: Getting help for the modify command
	Example: Modifying the Java trace string

	Display command
	Example: Displaying active replies
	Example: Displaying active address spaces
	Example: Displaying the status of address spaces registered for automatic restart management
	Example: Displaying units of work (transactions) for the Information Management System

	Notices
	Trademarks and service marks

