
IBM Software Group

®

WebSphere® Support Technical Exchange

WebSphere Application Server
Classloader Best Practices

Andrew D. Hans
WebSphere Application Support Team Lead

IBM Software Group

WebSphere® Support Technical Exchange 2

Agenda

Background: What is a Classloader?
WebSphere Classloader Hierarchy
J2EE structure and why it’s important
WebSphere’s Application Classloader settings
Where NOT to put your common application files
Pitfalls and how to avoid them
Useful links

IBM Software Group

WebSphere® Support Technical Exchange 3

Background: What is a Classloader?

In short – A classloader is an object responsible for loading classes
and resources
Important to note

A class (resource) is loaded exactly once per classloader
instance

Once a class is successfully loaded the JVM caches it in a table
that associates it with the classloader that loaded it
When loading a dependent class, the JVM invokes the
classloader that originally loaded the previous class definition

IBM Software Group

WebSphere® Support Technical Exchange 4

What is Classloader Delegation?

Every classloader has a delegation mode
Parent_First - the classloader delegates the loading of
classes to its parent classloader before attempting to
load the class from its local classpath

Parent_Last - classloader attempts to load classes
from its local classpath before delegating the class
loading to its parent

• Allows overriding of higher level classes by
searching locally first

IBM Software Group

WebSphere® Support Technical Exchange 5

Class Loader Hierarchy – At a Glance
•BootStrap: loaded from by jre/lib
•Extensions: Defined by java.ext.dirs
•JVM Classpath

WebSphere Ext.: Defined by ws.ext.dirs
•%WAS_ROOT% classes, lib and ext
directories
•Resource classes (explained in detail later)

Application Class loader – loads application
artifacts - Various combinations possible
based on ClassLoading Policies (discussed
in details presentation)

Cl
as

s
Se

ar
ch

 O
rd

er

JVM Class loader
JVM Bootstrap, JVM extensions, Classpath

WebSphere Extensions Classloader
Loads WebSphere Runtime and Resource classes

Application Module Class loader
EJBs,, RARs, Utility JARs, Application Shared libraries
Optional: Web Module based on Web Module class-

loader Policy

Web Module Class loader (OPTIONAL)
For Web Modules only

WebSphere lib/app Class loader
For compatibility with V4, loads classes in “lib/app” dir.

WebSphere “Server” Class loader
Loads Server-scoped Shared Libraries

User-defined one or more class loaders within
a server configuration to specify server-
scoped Shared Libraries

Load application artifacts from the
<WAS_HOME>/lib/app path - NOT
RECOMMENDED

IBM Software Group

WebSphere® Support Technical Exchange 6

WebSphere Application Classloaders

Loads J2EE application artifacts packaged in an EAR
EJB Jars

WARs

Dependency Jars

Application-scoped shared libraries

Embedded RARs

A WAS Application classloader consists of
A single Application module classloader at the root

Zero or more WAR module classloaders having the application module
classloader as its parent

IBM Software Group

WebSphere® Support Technical Exchange 7

J2EE Structure

Java 2 Enterprise Extension (J2EE) - an application
server framework from Sun Microsystems for the
development of distributed applications
WebSphere Application Server implements the J2EE
framework

WebSphere 4.0x supports J2EE 1.2

WebSphere 5.x supports J2EE 1.3

WebSphere 6.0x has been certified on J2EE 1.4

IBM Software Group

WebSphere® Support Technical Exchange 8

J2EE 1.3 Application Packaging

Enterprise
Bean

Client
Class

Web
DD Client

DDServlet

EJB
Module
.JAR file

Web
Module

.WAR file

Client
Module
.JAR file

J2EE
Application

.EAR file

IBM IBM
BindingsBindings

IBM IBM
ExtensionsExtensions

IBM IBM
BindingsBindings

IBM IBM
BindingsBindings

IBMIBM
ExtensionsExtensions

Schema Schema
MapMap

Schema Schema
AttributesAttributes

Application
DD

JSP HTML,
GIF, etc.

Table Table
CreationCreation

DD = Deployment Descriptor

IBM IBM
BindingsBindings

IBMIBM
ExtensionsExtensions

EJB
DD

Installed
RAR

IBM Software Group

WebSphere® Support Technical Exchange 9

Why is the J2EE structure important

The J2EE structure is important to understand as it is the
basis of the application classloaders structure

There are multiple ways to alter the number and
functioning of application classloaders but these are
dependent on the J2EE application structure

IBM Software Group

WebSphere® Support Technical Exchange 10

Configuring Application Classloaders

Application Classloader policy - applies to how the applications
share classloaders or not

At the Application Server level - choose SINGLE or MULTIPLE
• SINGLE means the EJB, embedded RAR modules and

dependent JARs for all the EARs are loaded by one
classloader called the Application classloader

• MULTIPLE means the EJB, embedded RAR modules and
dependent JARs for each EAR are loaded by its own
classloader
− Default setting

• Whether the WAR is loaded by this Application classloader is
dictated by the WAR classloader policy

IBM Software Group

WebSphere® Support Technical Exchange 11

Configuring Application Classloaders (2)

WAR classloader policy - can choose how the WAR modules are
loaded per Application

At the Enterprise Application level - choose APPLICATION or
MODULE

• APPLICATION: all the Web modules in the application EAR
use the Application classloader (dictated by the Application
Classloader Policy)

• MODULE: every WAR uses its own classloader, different than
the Application Classloader
− Default setting

• Selection can be made at application install time

IBM Software Group

WebSphere® Support Technical Exchange 12

Configuring Application Classloaders (3)

Classloader Mode – can be set for Application Classloader and WAR
classloader

PARENT_FIRST - default
• Search the immediate parent first and then its policy would

determine if that was successful, if not its parent
PARENT_LAST

• Tries to find and load the class from its own classloader and if
the class was not found, it delegates to its immediate parent
classloader and then the immediate parent classloader's
policy would take control

IBM Software Group

WebSphere® Support Technical Exchange 13

Application Classloader Policy - SINGLE
Application Classloader policy of SINGLE and WAR classloader policy of APPLICATION or
MODULE

Pros: Each Application EJBs, embedded RARs, Dep. JARs can reference other classes in
other Applications

Cons: Cannot start and stop individual Applications without affecting others and not
considered to be J2EE compliant

 Application Classloader
EJBS, RARs, Dependent JARs for ALL EARs in the App.
Server
Web Module for Appl ications that have Ent. App. level
setting to APPLICATION

System Classloaders

WebSphere Extensions Classloader

 WAR Classloader
Web Module for Appl ications
that have Ent. App. level
setting to MODULE

 WAR Classloader
Web Module for Applications
that have Ent. App. level
setting to MODULE

....

PA
R

E
N

T FIR
S

T

P
A

R
EN

T FIR
ST

PA
R

E
N

T
LA

S
T

P
A

R
EN

T
LA

S
T

IBM Software Group

WebSphere® Support Technical Exchange 14

Application Classloader Policy - MULTIPLE
Application Classloader policy of MULTIPLE and WAR classloader policy of
APPLICATION or MODULE
Pros:

Can restart each application without affecting others
Classes within each EAR can reference all the classes with the same EAR even if
in different modules of the EAR

Cons: Classes within one EAR cannot reference classes in another EAR

System Classloaders

WebSphere Extensions Classloader

Application Classloader
EAR N

(EJBs, RARs, Dep.
JARs)

Application Classloader
EAR 1

(EJBs, RARs, Dep. JARs,
WARs)

....

...WAR Classloader
WAR 1 of EAR N

WAR Classloader
WAR N of EAR N

WAR Classloader Policy: APPLICATION

WAR Classloader Policy: MODULE

P
A

R
EN

T FIR
ST

P
A

R
EN

T FIR
ST

P
A

R
E

N
T

LA
ST

PA
R

E
N

T
LA

ST

IBM Software Group

WebSphere® Support Technical Exchange 15

Example 1

Application classloader policy: SINGLE

Application 1
Module: EJB1.jar
Module: WAR1.war
 MANIFEST Class-Path: Dependency1.jar

WAR Classloader Policy = APPLICATION
Application 2

Module: EJB2.jar
MANIFEST Class-Path: Dependency2.jar

Module: WAR2.war
WAR Classloader Policy = MODULE

System Classloaders

WebSphere Extensions Classloader

Application Classloader
EJB1.jar

Dependency1.jar
EJB2.jar

Dependency2.jar
WAR1.war

WAR Classloader
WAR2.jar

IBM Software Group

WebSphere® Support Technical Exchange 16

Example 2

Application classloader policy: MULTIPLE

Application 1
Module: EJB1.jar
Module: WAR1.war
 MANIFEST Class-Path: Dependency1.jar

WAR Classloader Policy
= APPLICATION

Application 2
Module: EJB2.jar

MANIFEST Class-Path: Dependency2.jar
Module: WAR2.war

WAR Classloader Policy = MODULE

System Classloaders

WebSphere Extensions Classloader

Application Classloader
EJB2.jar

Dependency2.jar

WAR Classloader
WAR2.jar

Application Classloader
EJB1.jar

Dependency1.jar
WAR1.war

IBM Software Group

WebSphere® Support Technical Exchange 17

Where NOT to put files

Do NOT put files that are needed by your application in
the following directories

JVM classpath (including <Java_Home>/jre/*)

Why?
The JVM classloader is the parent of all other
classloaders and will have visibility from all
classloaders at a lower level and will override any
WebSphere supplied files by the same name

If you place a file here it cannot find any files that are
in a lower classloader

IBM Software Group

WebSphere® Support Technical Exchange 18

Where NOT to put files (continued)

Do NOT put files that are needed by your application in the following
directories as any files placed here can interfere with the WebSphere
runtime

<WAS_HOME>/lib

<WAS_HOME>/lib/ext

• Custom user registry implementation should go here as they
are required by the WSAS runtime at startup

<WAS_HOME>/classes

• Should only be used for test patches supplied by WAS
support

IBM Software Group

WebSphere® Support Technical Exchange 19

Pitfalls – Too much visibility

This occurs when a class or jar is visible to more files than intended
Example: A file named Ex1.jar is located in a shared library that is
associated with multiple application servers but is only needed by
one WAR file running on one server
Dangers: With this jar visible to so many applications on more than
one server, an application added at some later point may
accidentally pick it up
Recommendations: Place the jar only as high in the hierarchy as
needed and move higher or associate more only when needed

This will reduce the risk of causing problems when more
applications are added or configuration changes made in the
environment

IBM Software Group

WebSphere® Support Technical Exchange 20

Pitfalls – Too little visibility
This occurs when a class or jar is too low in the hierarchy to be visible to all
the application code that will need access to it
Example: A file named Ex2.jar is located within the root of an EAR file
(Ex2_A.ear) however a WAR file in another EAR (Ex2_B.ear) also needs to
use this jar
Dangers: The Ex2.jar will need to be visible to both Ex2_A.ear and
Ex2_B.ear

Placing it into both EAR files is not recommended as the jar will now be
in both locations and multiple instances loaded several classloaders

Placing it in a shared library associated to the servers these run on also
is not recommended as it can cause the pitfall of too much scope just
discussed

Recommendations: Creating a shared library to hold the Ex2.jar and
associating it to the two applications that need it will eliminate the problem
and avoid the pitfall of too much visibility as well

IBM Software Group

WebSphere® Support Technical Exchange 21

Pitfalls – Duplicated files

This occurs when a file is in more than one location in a
configuration
Example: Multiple EAR files contain a jar Ex3.jar
Dangers: This will cause the Ex3.jar to be in the environment many
times and if large enough can cause memory, file space, or
maintenance issues

This is a classic cause of a ClassCastException

Recommendations: Pull the Ex3.jar from each EAR file and place it
into a shared library to associate with the applications or servers they
run on

IBM Software Group

WebSphere® Support Technical Exchange 22

Pitfalls – Chained dependencies

This occurs when one jar needs visibility to a second jar which in
turn depends on a third jar
Example: A.jar is located within a WAR file and depends on B.jar
located at the root of the EAR file which depends on C.jar which is
also in the WAR file
Dangers: This will fail since the searching for C.jar will begin with
the classloader from which B.jar was loaded

Classic cause of ClassNotFound and NoClassDefFoundError
messages

Recommendations: Keep these dependencies in mind and try to
place dependent jars in the same classloader unless needed higher
in the hierarchy

IBM Software Group

WebSphere® Support Technical Exchange 23

Pitfalls – Picking up the wrong version of a file

This occurs when multiple versions of the same jar are within the
configuration and mistakenly the wrong one is being used
Example: Jar ex5.jar is within an EAR file and different versions of the same
class files reside in ex5_A.jar within a shared library associated to the
application server
Dangers: With the default delegation the ex5_A.jar will be picked up first

Classic cause of Linkage errors

Recommendations:
Carefully set the delegation modes to pick up the appropriate version of
the jar (normally by switching to Parent_Last)

Limit versioning as much as possible

Do NOT override a WebSphere provided jar by placing another version
in the JVM classpath

IBM Software Group

WebSphere® Support Technical Exchange 24

How to resolve a ClassNotFound problem

Ask yourself the following questions
1. What file cannot be found?

2. Where is the file that cannot be found?

3. Where is the file that is looking for it?

4. Does it have visibility to the file it is trying to load?

5. Which classloader is attempting to load the class?

If you answer these questions you should be able to correct a
ClassNotFound problem by enabling visibility to class that cannot
be found

IBM Software Group

WebSphere® Support Technical Exchange 25

Useful Classloader Links

Best Practices for Using Common Application Files
http://www-1.ibm.com/support/docview.wss?uid=swg27006159

Gives step by step instructions and a decision tree to help you decide which setting is best for
your configuration

IBM Education Assistant: WebSphere Application Server
Classloader

http://www-1.ibm.com/support/docview.wss?uid=swg27005457

Gives multiple presentations on the WAS classloader

TroubleShooting Classloader Issues
http://www-1.ibm.com/support/docview.wss?uid=swg21219358

Must gather information for Support
http://www-1.ibm.com/support/docview.wss?uid=swg21137435

IBM Software Group

WebSphere® Support Technical Exchange 26

Additional WebSphere Product Resources

Discover the latest trends in WebSphere Technology and implementation,
participate in technically-focused briefings, webcasts and podcasts at:
www.ibm.com/developerworks/websphere/community/
Learn about other upcoming webcasts, conferences and events:
www.ibm.com/software/websphere/events_1.html
Join the Global WebSphere User Group Community: www.websphere.org
Access key product show-me demos and tutorials by visiting IBM Education
Assistant: www.ibm.com/software/info/education/assistant
Learn about the Electronic Service Request (ESR) tool for submitting
problems electronically:
www.ibm.com/software/support/viewlet/probsub/ESR_Overview_viewlet_swf
.html
Sign up to receive weekly technical My support emails:
www.ibm.com/software/support/einfo.html

IBM Software Group

WebSphere® Support Technical Exchange 27

Questions and Answers

