

Whitepaper

IBM WebSphere Application Servers

CORBA Interoperability

IBM WebSphere
Document Version 4

27-Jan-04 WebSphere CORBA Interoperability

IBM WebSphere Page 2 of 44

Table Of Contents

Notices 5

Trademarks and Service Marks .. 5

Preface 7

Terms.. 7

Audience... 7

Organization.. 7

Summary of Major Changes.. 8

Related Documents ... 8

Disclaimer... 8

Introduction 11

Definition of WebSphere CORBA Interoperability 11
Definition of a CORBA Application..11
Definition of an EJB Component ..12
Definition of a WebSphere EJB Component ..13

Importance of WebSphere CORBA Interoperability............................... 13

Issues with WebSphere CORBA Interoperability.................................... 13

Examples of WebSphere CORBA Interoperability 14

Understanding Programming Models 17

Overview CORBA and EJB Programming Models.................................. 17

CORBA Programming Model.. 18
Object definition language...18
Object Invocation..18
Communications Protocol...18

27-Jan-04 WebSphere CORBA Interoperability

IBM WebSphere Page 3 of 44

Security Protocol ..19
Object References..19
Naming Service ..19
Transaction Service ...19

EJB Programming Model .. 19
Object Definitions ...19
Object Invocation..20
Communications Protocol...20
Security Service..21
Object References..21
Naming Service ..21
Transaction Service ...21

Summary of the CORBA and EJB Programming Models....................... 21

Configuring WebSphere CORBA Interoperability 23

Configuring Interoperability with CORBA Client Applications 23
Procedures to Perform Using WebSphere Tools ...23
Procedures to Perform Using CORBA Tools..24

Configuring Interoperability with CORBA Server Applications 26

Co-existence .. 29

Problems and Workarounds 31

Unsupported Data Types .. 31
Explanation..31
Workarounds...32

Too Many Valuetypes .. 34
Explanation..34
Workarounds...34

Unsuccessful negotiation of wchar codeset .. 35
Explanation..35
Workarounds...36

Problem Locating a Name Service... 37
Explanation..37
Workarounds...37

27-Jan-04 WebSphere CORBA Interoperability

IBM WebSphere Page 4 of 44

Samples 41

Description of the Samples... 41

Design of the Samples.. 43

How to Run the Samples... 44

27-Jan-04 WebSphere CORBA Interoperability

IBM WebSphere Page 5 of 44

Notices

Trademarks and Service Marks
IBM, WebSphere and zOS are trademarks of IBM Corporation in the United States,
other countries, or both.
Java. and all Java-based trademarks are trademarks of Sun Microsystems,Inc. in
the United States, other countries, or both.
Other company, product, and service names may be trademarks or service marks
of others.
© Copyright International Business Machines Corp. 2001. All Rights Reserved.

27-Jan-04 WebSphere CORBA Interoperability

IBM WebSphere Page 6 of 44

27-Jan-04 WebSphere CORBA Interoperability

IBM WebSphere Page 7 of 44

Preface

This document describes WebSphere CORBA interoperability for the version 5
IBM® WebSphere® Application products. These products are:
o IBM WebSphere Application Server Version 5
o IBM WebSphere Application Server Enterprise Version 5
o IBM WebSphere Application Server Version 5 for z/OS

For a description of WebSphere CORBA interoperability for previous versions of
IBM WebSphere Application Server products, refer to WebSphere Application
Servers CORBA Interoperability, document version 2.3.

Terms
This document uses the generic term version 5 IBM WebSphere Application
Server products to refer to any of the version 5 IBM WebSphere Application Server
products. This document uses the name of an IBM WebSphere Application Server
product to refer to the specific product.

Audience
This document is intended for customers of version 5 IBM WebSphere Application
Server products who have deployed or plan to deploy solutions that require
interoperation with CORBA clients, CORBA servers, or both.

Organization
This document is organized as follows:
o Section 1 provides an introduction to WebSphere CORBA interoperability.
o Section 2 discusses the similarities and differences between the WebSphere

EJB and CORBA programming models.
o Section 3 describes how to configure WebSphere CORBA interoperability.
o Section 4 discusses some interoperability problems that might occur and

suggests workarounds for these problems.
o Section 5 describes samples that demonstrate and test WebSphere CORBA

interoperability.

27-Jan-04 WebSphere CORBA Interoperability

IBM WebSphere Page 8 of 44

Summary of Major Changes
The following is a summary of major changes affecting WebSphere CORBA
interoperability between version 5 and prior versions of the WebSphere Application
Server products:
o In version 5, full support has been added for the CORBA Interoperability Name

Service (INS) specification.
o In version 5, full support has been added for version 1.2 of the General Inter-ORB

(GIOP) protocol.
o In version 5, co-existence is no longer supported.

Related Documents
Java™ Developer Connection, Writing Advanced Applications, CORBA

http://developer.java.sun.com/developer/onlineTraining/Pro
gramming/ JDCBook/corba.html

The Common Object Request Broker: Architecture and Specification, version 2.3
(earlier versions are also helpful)

ftp://ftp.omg.org/pub/docs/formal/99-10-07.pdf

Java Language to IDL Mapping Specification
ftp://ftp.omg.org/pub/docs/formal/99-07-59.pdf

IDL to Java Language Mapping Specification
ftp://ftp.omg.org/pub/docs/formal/99-07-59.pdf

C++ Language Mapping Specification
 ftp://ftp.omg.org/pub/docs/formal/99-07-41.pdf

Disclaimer
This document provides general technical information concerning the ability of IBM
WebSphere Object Request Brokers (“ORBs”), and non-IBM ORBs to operate
together. Any sample software code that may be provided in conjunction with this
document provides more detailed technical information concerning the ability of IBM
ORBs and certain non-IBM ORBs to operate together within a specific environment,
and is provided for internal, demonstration purposes relating to the interoperability
of IBM and non-IBM ORBs only.

IBM may, at its sole discretion, provide technical support services with respect to
the operation of IBM ORBs in conjunction with non-IBM ORBs, or with respect to any
sample software code provided herewith. IBM reserves the right to limit the scope

27-Jan-04 WebSphere CORBA Interoperability

IBM WebSphere Page 9 of 44

of such services in any manner it chooses, to refuse to provide such services, or to
terminate such services at any time, without notice.

The level of interoperability experienced between IBM ORBs and another non-IBM
ORB depends upon the particular ORB, the distributed programming model(s) at
the client and server, and the environment in which the two are running. This
includes the operating platform and the client/server roles given to WebSphere and
the ORB. IBM does not warrant or make any representation as to the suitability or
interoperability capabilities between WebSphere and any non-IBM, third-party ORB.

Any sample software code or other information provided by IBM that demonstrates
the operation of a non-IBM ORB does not reflect endorsement of that particular
ORB, or best practice use of that ORB. For further information concerning the use
and operation of a non-IBM ORB, please consult the documentation provided by the
vendor of such ORB.

THE INFORMATION CONTAINED IN THIS DOCUMENT, INCLUDING, WITHOUT
LIMITATION ANY SAMPLE SOFTWARE CODE PROVIDED IN CONJUNCTION
WITH THIS DOCUMENT, IS PROVIDED BY IBM AND ITS AFFILIATES “AS IS.”
IBM AND ITS AFFILIATES MAKE NO WARRANTIES, REPRESENTATIONS OR
CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS
FOR A PARTICULAR PURPOSE WITH RESPECT TO THE INFORMATION
CONTAINED HEREIN, OR THE SAMPLE SOFTWARE CODE PROVIDED IN
CONJUNCTION WITH THIS DOCUMENT. UNDER NO CIRCUMSTANCES
SHALL IBM OR ITS AFFILIATES BE LIABLE FOR LOST SALES, LOST PROFITS,
LOST SAVINGS, LOST DATA OR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL OR CONSEQUENTIAL DAMAGES OF ANY KIND, EVEN IF INFORMED
OF THE POSSIBILITY FOR SUCH DAMAGES, THAT ARE IN ANY WAY
RELATED TO THE USE, OR INABILITY TO USE, THE INFORMATION
CONTAINED IN THIS DOCUMENT, OR THE SAMPLE SOFTWARE CODE
PROVIDED IN CONJUNCTION WITH THIS DOCUMENT.

Any party using the sample software code provided in connection with this
document agrees to observe all applicable laws relating to its use, including export
regulations.

27-Jan-04 WebSphere CORBA Interoperability

IBM WebSphere Page 10 of 44

27-Jan-04 WebSphere CORBA Interoperability

IBM WebSphere Page 11 of 44

Introduction

This section provides an introduction to WebSphere CORBA interoperability. The
following topics are covered:
o Definition of WebSphere CORBA interoperability
o Importance of WebSphere CORBA interoperability
o Issues with WebSphere CORBA interoperability
o Examples of WebSphere CORBA interoperability

Definition of WebSphere CORBA Interoperability
In this document, the term WebSphere CORBA interoperability refers to the ability
for a WebSphere EJB component to interact as a client or server with a CORBA
application. The interaction occurs in a way that supports the CORBA programming
model. Other types of WebSphere components, such as Java servlets, also can
interact with a CORBA application. However, this document describes only the
interoperability between a WebSphere EJB component and a CORBA application.

Definition of a CORBA Application
A CORBA application is a distributed client or server application that adheres to
the CORBA programming model as defined by the Open Management Group
(OMG) in CORBA specifications. A CORBA application can interact with other
CORBA applications. The following figure illustrates a CORBA client and server
application:

A CORBA application is run with a CORBA Object Request Broker (ORB). The
CORBA ORB handles the protocols required for client and server interaction. A
CORBA application could be run on any platform supported by the CORBA ORB. A
CORBA application could be coded in any programming language that is covered
in the CORBA specifications and supported by the CORBA ORB.

CORBA
client
application

ORB CORBA
server
application

ORB

27-Jan-04 WebSphere CORBA Interoperability

IBM WebSphere Page 12 of 44

The following products provide a CORBA ORB and development environment:
o All of the version 5 IBM WebSphere Application Server products provide a

CORBA ORB and a client development environment supporting the Java
programming language.

o The IBM WebSphere Application Server Enterprise Version 5 product provides
a CORBA ORB and a client and server development environment supporting the
C++ programming language.

o Third party vendor products provide CORBA ORB and client and server
development environments supporting various programming languages.

Definition of an EJB Component
An EJB component, as defined in this document, is a distributed Java application
that adheres to the EJB programming model as specified by Sun Microsystems in
Java 2 Extended Edition (J2EE) Version 1.3 or higher. A J2EE component can
interact with other J2EE components including J2EE client applications, Java
servlets, Java server pages (JSPs), and other EJB components. Also, an EJB
component can interact with CORBA applications.

The following figure illustrates an EJB component and the J2EE components and
CORBA applications with which it can interact:

An EJB component is run in a container. The container handles system functions for
the EJB component and uses an underlying CORBA ORB to handle the protocols
required for client and server interaction. The EJB component can directly access
the CORBA ORB, if required for communicating with CORBA applications. An EJB
component could be run on any platform supported by the container. An EJB
component is coded in the Java programming language.

container and ORB

EJB
component

CORBA
server
application

ORB

container and ORB

EJB
component

servlet or
JSP

J2EE client

CORBA
client
application

ORB

27-Jan-04 WebSphere CORBA Interoperability

IBM WebSphere Page 13 of 44

The following products provide an EJB container and development environment
supporting the J2EE V1.3 specifications:
o All the version 5 IBM WebSphere Application Server products
o Third party vendor products

Definition of a WebSphere EJB Component
A WebSphere EJB component, as defined in this document, is an EJB component
that uses the container and development environment of a version 5 WebSphere
Application Server product. All the version 5 WebSphere Application Server
products are fully compliant with version 1.3 of the J2EE specifications. Therefore,
a WebSphere EJB component can interact with any of the following:
o Other EJB components
o Other types of J2EE components, including J2EE client applications, Java

servlets, and JSPs)
o CORBA applications

Importance of WebSphere CORBA Interoperability
WebSphere CORBA interoperability provides an integration layer between all
WebSphere components and existing, legacy CORBA applications. Using this
integration layer, it is possible to integrate existing, legacy CORBA applications into
a WebSphere environment without making any changes to the applications. The
ability to do this provides the many benefits of code reuse, including code stability
and savings in the cost of developing new applications.

Issues with WebSphere CORBA Interoperability
In theory, a WebSphere EJB component should be able to fully interact with any
CORBA application. In practice, however, interaction with some CORBA
applications is limited. This is because CORBA applications using different ORB
implementations are not always able to fully interact with each other.

The following factors restrict or limit full interaction between CORBA applications
using different ORB implementations:

o Proprietary extensions--Some ORB implementations have added proprietary

extensions to the CORBA specifications.

27-Jan-04 WebSphere CORBA Interoperability

IBM WebSphere Page 14 of 44

o Specification levels—Some ORB implementations conform to different levels of
the CORBA specifications and these different levels are not always compatible
with each other.

o Ambiguities--Some ORB implementations differ in the way they implement parts
of the CORBA specifications because of ambiguities in the specifications.

o Bugs--Some CORBA ORBs simply have bugs.

Over the long term, the CORBA specifications and ORB implementations are
expected to evolve to the point where interoperability is adequate for most, if not all,
scenarios. Meanwhile, it is essential to understand what interoperates as expected,
what does not interoperate, and what options are available for resolving the
interoperability issues.

Examples of WebSphere CORBA Interoperability
The following figure illustrates an example of WebSphere CORBA interoperability.
In this example, a CORBA C++ client application invokes methods on objects
residing in a WebSphere EJB component. The CORBA C++ client application is
run with an ORB provided by WebSphere Application Server Enterprise Version 5.
The WebSphere EJB component is run in a container provided by a version 5
WebSphere Application Server product.

WebSphere
container and ORB

WebSphere
EJB
component

CORBA C++
client
application

ORB

27-Jan-04 WebSphere CORBA Interoperability

IBM WebSphere Page 15 of 44

The following is another example of WebSphere CORBA interoperability. In this
example, a web browser uses WebSphere Java servlet and EJB components to
indirectly access methods in objects residing in a CORBA Java server application.
The WebSphere servlet and EJB components are run in containers provided by a
version 5 WebSphere Application Server. The CORBA Java server application is
run with an ORB provided by a third party vendor.

WS ORB CORBA Java
server
application

ORB
web
browser

WS container

WS servlet
component

WS container

WS EJB
component

27-Jan-04 WebSphere CORBA Interoperability

IBM WebSphere Page 16 of 44

27-Jan-04 WebSphere CORBA Interoperability

IBM WebSphere Page 17 of 44

Understanding Programming Models

Before attempting to configure WebSphere CORBA interoperability, it is helpful to
understand the similarities and differences between the CORBA and EJB
programming models. This section provides a comparison of these programming
models. The following topics are covered:
o Overview of the CORBA and EJB programming models
o CORBA programming model
o EJB programming model
o Summary of the CORBA and EJB programming models

Overview CORBA and EJB Programming Models
The CORBA and EJB programming models both make it possible for distributed
clients and servers to interact with each other by agreeing on a common set of
specifications. The following table lists the types of specifications that each
programming model uses and the purpose of each specification type.

Specification type Purpose
Object definition
language

to specify a common language for defining
interfaces to server objects.

Object invocation to specify a common mechanism for invoking
methods on server objects.

Communications protocol to specify a common protocol for the client
and server code to use in transmitting data
over the network.

Security protocol to specify a common protocol for securing
data transmitted over the network.

Object reference syntax to specify a common syntax for referencing
server objects.

Naming service to specify a common interface to a
namespace directory.

Naming service bootstrap to specify a common interface for
bootstrapping (obtaining access to) the
namespace directory.

Transaction service to specify a common interface for requesting
transactions.

27-Jan-04 WebSphere CORBA Interoperability

IBM WebSphere Page 18 of 44

CORBA Programming Model
The following describes the specifications that the CORBA programming model
uses.

Object definition language
The CORBA programming model uses the CORBA Interface Definition Language
(IDL) specification as a common language for defining interfaces to server objects.
Typically, the developer of the server application codes the IDL definitions.

Object Invocation
The CORBA programming model uses the CORBA IDL stub and skeleton code
specifications as a common mechanism for invoking methods on server objects.

Typically, the developer of the server application runs the IDL definitions through an
IDL compiler to generate IDL skeleton code, in the programming language of the
server application, and uses this code with the server application. Likewise, the
developer of the client application runs the IDL definitions through an IDL compiler
to generate IDL stub code, in the programming language of the client application,
and uses this code with the client application.

The CORBA programming model also supports the specification for CORBA
dynamic invocation method as an alternate mechanism for invoking methods on
server objects.

Communications Protocol
The CORBA programming model uses the CORBA Interoperable Inter-ORB (IIOP)
specification as a common protocol for transmitting data between IDL stub and
skeleton code over a TCP/IP network. The IIOP specification is based on the
CORBA General Inter-ORB (GIOP) protocol.

27-Jan-04 WebSphere CORBA Interoperability

IBM WebSphere Page 19 of 44

Security Protocol
The CORBA programming model uses the CORBA CSIv2 specification as a
common protocol for transmitting data over the IIOP protocol. Typically, CSIv2 is
implemented by the CORBA ORBs used by the client and server applications. The
CORBA programming model also uses other security specifications, but the CSIv2
specification is the most common.

Object References
The CORBA programming model uses the CORBA Interoperable Object Reference
(IOR) specification as a standard syntax for locating server objects.

Naming Service
The CORBA programming model uses the CORBA CosNaming specification as a
common directory interface for storing and retrieving the locations of server objects.

The CORBA programming model uses one of two interface specifications as a
common method to bootstrap the directory pointed to by the CosNaming interface.
One method is for the client to configure the location of the directory as specified in
the CORBA Interoperable Name Service (INS) specification and then call the
CORBA resolve_initial_references API. The other method is for the client to call the
string_to_object API passing in an object URL in the format specified by the
CORBA INS specification.

Transaction Service
The CORBA programming model uses the CORBA OTS specification as a
common interface for clients to use in requesting server transactions.

EJB Programming Model
The following describes the specifications that the EJB programming model uses.

Object Definitions
The EJB programming model uses the J2EE specifications for the EJB home and
remote interface definitions, which are coded in Java, as a common language for
defining interfaces to server objects. Typically, the developer of the WebSphere
EJB component codes or generates these definitions.

27-Jan-04 WebSphere CORBA Interoperability

IBM WebSphere Page 20 of 44

To support CORBA interoperability, the EJB programming model also can use the
specification for CORBA IDL as a common language for defining interfaces to
server objects. The IDL definitions could be obtained in any of the following ways:
o The developer could code IDL definitions of the EJB home and remote

interfaces
o The developer could use the WebSphere rmic compiler to generate IDL

definitions from the definitions of the Java EJB home and remote interfaces
o The developer could acquire IDL definitions from the developer of a CORBA

server application

Object Invocation
The EJB programming model uses the specification for RMI stub and tie code as
the standard for invoking methods on server objects.

Typically, when the EJB component is deployed, the EJB home and remote
definitions are run through an rmic compiler to generate RMI stub and tie code, both
in the Java programming language. The RMI stub and tie code are packaged along
with the EJB code in an EJB jar file. The EJB jar file is made available to the client
by creating a dependency to the EJB jar file in the MANIFEST.MF file of the client
JAR file.

To support CORBA interoperability, the EJB programming model also supports the
CORBA specification for IDL stub code as an alternate common method for
invoking methods on server objects. The developer could generate IDL stub files in
Java by running IDL definitions through a Java IDL compiler (idlj).

Communications Protocol
The EJB programming model uses a combination of two specifications to transmit
data between the client and server. The first specification is the CORBA IIOP
version 1.2 specification, which is based on the CORBA GIOP version 1.2
specification. This specification is used to transmit data over the network. The
second specification is the CORBA Java to IDL mapping specification. This
specification is used to translate between Java RMI data and the data types
supported by the CORBA IIOP version 1.2 specification. The second specification
is not used if the client and server are using IDL code, rather than Java RMI code,
as the object invocation method.

27-Jan-04 WebSphere CORBA Interoperability

IBM WebSphere Page 21 of 44

Security Service
The EJB programming model uses the CORBA specification for CSIv2 as the
common protocol for securing data transmitted over the IIOP protocol.

Object References
The EJB programming model uses the CORBA specification for IOR as the
common syntax for locating home references of EJB objects.

Naming Service
The EJB programming model uses the J2EE specification for the Java Naming and
Directory Interface (JNDI) as the common directory interface for storing and
retrieving the locations to EJB home references of EJB objects. JNDI is a front-end
to the CORBA CosNaming specification. The EJB programming model uses the
InitialContext interface to bootstrap the JNDI directory.

To support the CORBA programming model, the EJB programming model also
supports the CosNaming directory interface and supports either
resolve_initial_references with the location configured as specified by INS or
string_to_object passing in an object URL in the INS format as a way to bootstrap to
the CosNaming directory.

Transaction Service
The WebSphere EJB programming model uses the J2EE Java Transaction Service
(JTS) specification as a standard for clients to use in requesting server
transactions. The JTS specification is a Java implementation of the CORBA OTS
specification, so the WebSphere EJB programming model supports the OTS
interfaces.

Summary of the CORBA and EJB Programming Models
The following table summarizes the specifications that the CORBA and WebSphere
EJB programming models use.

Specification Type CORBA Programming

Model
EJB Programming
Model

Object definition
language

IDL Java EJB home and
remote interfaces
or
IDL

Object invocation IDL code RMI code

27-Jan-04 WebSphere CORBA Interoperability

IBM WebSphere Page 22 of 44

or
dynamic method invocation

or
IDL code

Communications
protocol

IIOP/GIOP IIOP/GIOP V1.2
and
RMI to IDL Mapping, if
required

Security protocol CSIv2 CSIv2

Object reference IOR IOR
Naming service CosNaming, using

resolve_initial_references
or string_to_object with an
INS URL to bootstrap

JNDI, using InitialContext
to bootstrap
or
CosNaming, using
resolve_initial_reference
s or string_to_object with
an INS URL to bootstrap

Transaction service OTS JTS/OTS

27-Jan-04 WebSphere CORBA Interoperability

IBM WebSphere Page 23 of 44

Configuring WebSphere CORBA Interoperability

This section describes the general procedures for configuring interoperability
between WebSphere EJB components and CORBA applications. The following
topics are covered:
o Configuring interoperability with CORBA client applications
o Configuring interoperability with CORBA server applications

Configuring Interoperability with CORBA Client Applications
In general, you can configure interoperability between a CORBA client application
and a WebSphere EJB component by generating IDL definitions and stub code
from the WebSphere EJB home and remote interfaces and then calling these
interfaces from the CORBA client application. The following procedures describe
how to do this.

Before doing these procedures, ensure that the ORB used by the CORBA client
application conforms to specifications supported by the WebSphere EJB
programming model. These specifications are described in the previous section of
this document. If the ORB is using interfaces or protocols that do not conform to
these specifications, interoperability might not be possible.

The procedures are divided into two groups:
o Procedures to perform using WebSphere tools
o Procedures to perform using CORBA tools

Procedures to Perform Using WebSphere Tools
Perform the following procedures using the tools provided by the version 5
WebSphere Application Server product:

1. Develop and configure the WebSphere EJB component.

With one exception, do this in the normal way. The exception is that if security is
required, be sure to configure an inbound security protocol that is supported by the
ORB of the CORBA client application.

For example, assume the CORBA client application is using the C++ ORB provided
by WebSphere Application Server Enterprise Version 5. This ORB supports the
CSIv2 protocol with the restriction that only transport layer authentication is

27-Jan-04 WebSphere CORBA Interoperability

IBM WebSphere Page 24 of 44

supported. Therefore, the WebSphere EJB component needs to be configured to
accept inbound requests using the CSIv2 protocol with transport layer
authentication. (Transport layer authentication is SSL using public certificates.)

2. Locate the WebSphere rmic compiler.

The rmic compiler is installed with the IBM Developer Kit in the directory
<installation_root>/java/ibm_bin.

3. Locate the WebSphere EJB JAR file.

The WebSphere EJB JAR file is on the system classpath (unless the developer
changed this classpath). Ensure that the WebSphere EJB JAR file contains
classes that can be accessed by the WebSphere rmic compiler.

4. Generate IDL definitions for WebSphere EJB interfaces.

You need to generate IDL definitions for the WebSphere EJB home and remote
interface interfaces, as well as any other interfaces that are visible to the client
application. Do this by running the WebSphere rmic –idl command against the
classes in the WebSphere EJB JAR file that define its home and remote interfaces,
and any other necessary classes.

For example, the following command generates IDL files named Hello.idl and
HelloHome.idl:

rmic –idl com.ibm.ejb.samples.Hello com.ibm.ejb.samples.hello.HelloHome

5. Check the IDL definitions for valuetype problems.

When rmic generates the IDL definitions, it maps all the Java serializable data types
to CORBA valuetypes. The CORBA client application must provide
implementations for all these valuetypes. If this will be a problem, you might want to
consider a strategy that will reduce the number of valuetype definitions in the IDL
file. See the section “Valuetypes” in this document for more information.

Procedures to Perform Using CORBA Tools
Perform the following procedures using the tools provided by the CORBA ORB and
development environment that the CORBA client application is using:

1. Generate IDL stub code from the IDL definitions.

Do this by running the WebSphere IDL files against the IDL compiler supplied by the
ORB that the CORBA client application is using.

27-Jan-04 WebSphere CORBA Interoperability

IBM WebSphere Page 25 of 44

2. Implement any valuetype definitions.

You need to add code to the CORBA client application that implements all
valuetypes defined in the WebSphere IDL files.

The CORBA C++ development environment provided by IBM WebSphere
Application Server Enterprise Version 5 provides a valuetype library containing C++
implementations of some commonly used Java classes, such as Integer, Float,
Vector, and Exception. Therefore, if you are using this development environment,
you can use the valuetype implementations defined in this library.

3. Implement client calls to the WebSphere EJB interfaces.

The code needs to do the following:

o Bootstrap the CosNaming service used by the WebSphere EJB component.

This can be done using one of two methods:

o Method 1: Call the CosNaming resolve_initial_references interface. This
method requires the developer to configure the location of the WebSphere
CosNaming service as specified by the CORBA INS specification.

o Method 2: Call the CosNaming string_to_object interface with a parameter

that uses the CORBA INS format to specify the object URL location of the
WebSphere EJB CosNaming service.

Note that the WebSphere JNDI service is a front-end to the WebSphere
CosNaming service. Therefore, the location of the WebSphere CosNaming
service is the same as the location of the WebSphere JNDI service.

o Get references to WebSphere EJB objects. This can be done using the
CosNaming API interfaces.

o Call WebSphere EJB interfaces. This can be done using the interfaces defined

in the IDL stub code.

4. Build the client application.

Do this in the normal way, making sure that you link or package the IDL stub files
and the value type definitions with the client application.

5. Configure the client application.

Do this in the normal manner, noting the following:

27-Jan-04 WebSphere CORBA Interoperability

IBM WebSphere Page 26 of 44

o If the WebSphere EJB component requires security, be sure to configure the
client application to use a security protocol in a manner that is consistent with the
requirements of the WebSphere EJB component.

o If you used the resolve_initial_references interface to bootstrap the CosNaming

service, it probably is necessary to configure the location of the CosNaming
directory. The way this is done is specific to the ORB used by the CORBA client
application.

Configuring Interoperability with CORBA Server
Applications

In general, you can configure interoperability between a WebSphere EJB
component and a CORBA server application by obtaining IDL definitions of the
interfaces used by the CORBA server application, generating IDL stub code for
these interfaces, and then calling the interfaces from the WebSphere EJB
component. The following procedures describe how to do this.

Before doing these procedures, ensure that the ORB used by the CORBA server
application conforms to CORBA specifications supported by the WebSphere EJB
programming model. These specifications are described in the previous section of
this document. If the ORB is using interfaces or protocols that do not conform to
these specifications, interoperability might not be possible.

The following are the procedures. Perform all of these procedures using the tools
and development environment provided by the version 5 WebSphere Application
product.

1. Develop the server side of the WebSphere EJB component.

Do this in the normal manner. For example, assume you plan for the WebSphere
EJB component to act as a server to a Java servlet. You need to code the EJB
objects and interfaces that will be available for the servlet in the normal manner.

2. Obtain the IDL definitions of the CORBA server interfaces.

Normally, you obtain IDL definitions from the developer of the CORBA server
application.

3. Locate an idlj compiler.

You can use any idlj compiler that conforms to the CORBA IDL to Java Mapping
specifications. The idlj compiler provided by WebSphere Application Server

27-Jan-04 WebSphere CORBA Interoperability

IBM WebSphere Page 27 of 44

Version 5 and WebSphere Application Server Enterprise Version 5 is installed with
the IBM Developer Kit in the directory <installation_root>/java/ibm_bin. The idlj
compiler provided by IBM WebSphere Application Server Version 5 for z/OS is
installed with the JDK SDK and, therefore, is accessible under the home directory
of the JDK.

4. Generate IDL stub code from the IDL definitions.

Do this by running the IDL definitions of the CORBA application server against the
idlj compiler.

5. Implement client calls to the CORBA server interfaces.

In the WebSphere EJB component, add code that implements client calls to the
CORBA server interfaces. You can do this using the Java CORBA client APIs.
Your implementation needs to do the following:

o Get an instance of the WebSphere ORB.

It is strongly recommended that you use WebSphere ORB instance (the ORB
instance that the WebSphere EJB container is using). This is important for two
reasons. First, you will avoid the unintended inconsistencies that might occur
when using different ORB instances. Second, you will ensure that the ORB
instance will use the parameters that you have configured using the WebSphere
administrative tool (for example, CSIv2 parameters).

To get the WebSphere ORB instance, create a JNDI InitialContext object and
look up the ORB under the name java:comp/ORB, as follows:

javax.naming.Context ctx = new javax.naming.InitialContext();
org.omg.CORBA.ORB orb =
(org.omg.CORBA.ORB)javax.rmi.PortableRemoteObject.narrow(ctx.looku
p("java:comp/ORB"),
org.omg.CORBA.ORB.class);

The WebSphere ORB instance is a singleton object, shared by all J2EE
components running in the same Java virtual machine process.

o Bootstrap the CosNaming service used by the CORBA application server. You

can do this using the Java implementation of resolve_initial_references, which is
supported by most ORBs. The following is an example:

...

27-Jan-04 WebSphere CORBA Interoperability

IBM WebSphere Page 28 of 44

 import org.omg.CORBA.ORB;
 import org.omg.CosNaming.NamingContext;
 import org.omg.CosNaming.NamingContextHelper;
 ...
 // Obtain ORB reference as shown in examples earlier in this
section
 ...
 org.omg.CORBA.Object obj =
_orb.resolve_initial_references("NameService");
 NamingContext initCtx = NamingContextHelper.narrow(obj);
 ...

Alternately, if the ORB used by the CORBA server application supports the
CORBA INS specification, you can bootstrap using the Java implementation of
the string_to_object interface, passing in an object URL location in the INS
format, which specifies the location of the CosNaming directory. The following is
an example:
 ...
 import org.omg.CORBA.ORB;
 import org.omg.CosNaming.NamingContext;
 import org.omg.CosNaming.NamingContextHelper;
 ...
 // Obtain ORB reference as shown in examples earlier in this
section
 ...
 org.omg.CORBA.Object obj =
orb.string_to_object("corbaloc:iiop:myhost.mycompany.com:2809/NameSer
vice");
 NamingContext initCtx = NamingContextHelper.narrow(obj);
 ...

o Get references to objects of the CORBA application server. You can do this

using the Java implementation of the CosNaming interfaces.

o Call interfaces to objects implemented by the CORBA application server. You

can do this using the interfaces defined in the IDL stub file.

6. Deploy and configure the WebSphere EJB component.

Do this in the normal manner, noting the following:

o If the CORBA server application requires security, be sure to configure the

outbound CSIv2 security protocol in a manner that is consistent with the
requirements of the CORBA server application.

27-Jan-04 WebSphere CORBA Interoperability

IBM WebSphere Page 29 of 44

o If you used the resolve_initial_references interface to bootstrap the CosNaming
service, it is necessary to configure the location of the CosNaming directory.

 Co-existence
Another possible way of configuring interoperability is to co-exist with another ORB;
for example, to configure a WebSphere EJB component to co-exist with a third-
party ORB. Co-existence is not supported because of the many problems that it
creates.

27-Jan-04 WebSphere CORBA Interoperability

IBM WebSphere Page 30 of 44

27-Jan-04 WebSphere CORBA Interoperability

IBM WebSphere Page 31 of 44

Problems and Workarounds

This section discusses problems you might experience when attempting
WebSphere CORBA interoperability and suggests workarounds for these
problems. The following topics are covered:
o Unsupported data types
o Too many valuetypes
o Unsuccessful negotiation of wide character set
o Cannot bootstrap to name service

Unsupported Data Types
This problem occurs when one ORB implementation does not support a data type
that another ORB implementation is using. Normally, you notice this problem during
transmission. You might also notice this problem during the compilation of IDL
definitions.

Explanation
This problem could occur for several reasons. The first reason is that the two ORBs
are using different versions of the CORBA GIOP specification. The second reason
is that one ORB is incorrectly implementing a data type defined in the GIOP
specification.

The GIOP specification, on which the IIOP specification is based, defines all
supported data types. However, the GIOP specification has been revised several
times and each revision has added support for new data types. Most notably,
version 1.2 of the GIOP specification added support for the valuetype data type,
which the Java programming language requires. In addition, the there are
differences between version 1.1 and version 1.2 in the wchar/wstring encoding.

Table 1 lists the data types defined in each version of GIOP. The ORBs of the
version 5 WebSphere Application Server products conform to version 1.2 of the
GIOP specification unless otherwise noted.

27-Jan-04 WebSphere CORBA Interoperability

IBM WebSphere Page 32 of 44

GIOP GIOP Data Types

1.0 1.1 1.2

octet
char
short
unsigned short
long
unsigned long
float
double
boolean
string

4 4 4

long long,
unsigned long long

4 4 4

long double, 4 4 4
fixed 4 4 4
wchar,
wstring

 4 4

simple
data types

enum 4 4 4
struct, union
array, sequence

4 4 4

valuetype 4
CORBA::Object 4 4 4
any 4 4 4
context 4 4 4

compound
data types

exception 4 4 4
Request, Reply,
CancelRequest,
LocateRequest,
LocateReply,
CloseConnection,
MessageError

4 4 4 message
formats

Fragment 4 4

Bi-
Directional

4
(WAS 5.0 does not

support Bi-Directional
GIOP)

Table 1 – Supported Data Types

Workarounds
o The following are possible workarounds to this problem:
o Remove unsupported data types from IDL definitions
o Use a wrapper
o Use the Dynamic Invocation Interface

27-Jan-04 WebSphere CORBA Interoperability

IBM WebSphere Page 33 of 44

Remove Unsupported Data Types from IDL

In some cases, the IDL file provided by a server application might contain IDL
definitions of interfaces and data that the client will never use. If any of these
definitions contain data types that are not supported by the ORB of the client
application, the developer of the client application can simply remove these
definitions from the IDL file. After doing this, the developer needs to re-compile the
IDL files to generate new IDL stub code and re-link the client application with the
new IDL stub code.

Use a Wrapper

A wrapper is a thin intermediate server object that provides an alternative interface
to an original server object’s interface. A wrapper typically delegates its
implementation to the original object. A wrapper could be a CORBA object or
another Session Bean.

A wrapper can provide access to a server object, such as an EJB, whose interface
contains data types not supported by the client ORB. If the issue is an ORB that
does not support value types, then a wrapper might be designed and implemented
as a CORBA object, using supported data types, to avoid the various extraneous
valuetypes generated by Java-to-IDL compilers.

The wrapper might be the only way to get client access working for some third party
ORBs.

If using a wrapper, be aware of the following:
o Management: The wrappers must be installed and managed in a CORBA

server.
o Lifecycle: the container manages the target EJB’s lifecycle automatically. If the

wrapper is a CORBA object in the same server as the EJB, the wrapper’s
lifecycle must be explicitly managed in your code1. In this situation, it is better to
put CORBA wrappers in a CORBA server and EJBs in a different server, and
manage the wrapper’s lifecycle at the CORBA server.

o Data type swizzling: The wrappers must convert between EJB types and IDL
types, unless the client uses only primitive types. For example, EJB object
references need to be converted into IDL object references. Java Serializables
have to be converted into IDL equivalents as well.

1 For Session Beans, this can be done by unexporting and destroying the wrapper when
the bean is removed. Since not all beans are eventually removed, like entity beans, the
unexporting and destruction of the wrapper might have to be explicitly exposed to the
client's programming model.

27-Jan-04 WebSphere CORBA Interoperability

IBM WebSphere Page 34 of 44

o Hand coding: both the wrapper interface design and the wrapper object itself
must be hand-coded. This means increased software design and maintenance
costs.

o Security: If security is used, the security context must be manually propagated to
and from the wrapper.

o Transactions: If transactions are used, the transaction must be manually
propagated to and from the wrapper.

Dynamic Invocation Interface

As a last resort, the CORBA Dynamic Invocation Interface (DII) allows a client to
make a call to a server without using IDL. Instead, the client makes a call by
constructing the method parameters dynamically, storing them as CORBA::Any data
types.

Too Many Valuetypes
This problem occurs when the IDL files generated from a WebSphere EJB
component contain a high number of different valuetypes. This is a problem only
from the perspective of the CORBA application developer. The developer
becomes aware of this problem when viewing the number of different valuetypes in
the IDL definitions and sizing the work required to implement these valuetypes.

Explanation
The WebSphere EJB interfaces are coded in the Java programming language,
which supports serializable data. Serializable data is not supported by the CORBA
specifications. Instead, the CORBA specifications dictate that all Java serializable
data must be mapped to CORBA valuetypes, which were defined as part of the
GIOP specifications. Therefore, when you use the rmic compiler to generate IDL
definitions, the rmic compiler maps all the Java serializable data to valuetypes.

Therefore, the more complex or serializable data types that the EJB interfaces use,
the more valuetypes are generated in the IDL definitions. This is especially
problematic with entity beans, because entity beans are more likely to use complex
types.

Workarounds
The workarounds for this problem is to do one of the following, as described
previously in the section "Unsupported Data Types":
o Remove unused valuetypes from the IDL
o Use a wrapper

27-Jan-04 WebSphere CORBA Interoperability

IBM WebSphere Page 35 of 44

o Use dynamic invocation method

Unsuccessful negotiation of wchar codeset
This problem occurs when two ORBs are not successful in negotiating a common
transmission code set for wide characters. When this problem occurs, the client or
server application receives invalid wchar or wstring data or one of the following
exceptions:

CODESET_INCOMPATIBLE
DATA_CONVERSION
INV_OBJREF
BAD_PARAM

Explanation
The CORBA specification imposes requirements on client and server ORBs to
negotiate a common code set for transmitting wide characters (wchar and wstring).
The client and server ORBs negotiate this code set by means of the following
algorithm, which is documented in The Common Object Request Broker:
Architecture and Specification, 2.3.1, October 1999.

CNCS = Client Native Code Set
CCCS = Client Conversion Code Sets
SNCS = Server Native Code Set, in IOR
SCCS = Server Conversion Code Sets, in IOR
TCS = Transmission Code Set

if (CNCS == SNCS)

TCS = CNCS;
else
{

if (elementOf(SNCS, CCCS))
TCS = SNCS; // client converts to server’s

else if (elementOf(CNCS, SCCS))
TCS = CNCS; // server converts to client’s

else if (intersection(CCCS, SCCS) != emptySet)
// client/server both convert to/from TCS
TCS = oneOf(intersection(CCCS, SCCS));

else if (compatible(CNCS, SNCS)
TCS = UTF-16; // fallback code set

else
raise CODESET_INCOMPATIBLE exception;

}

If the client and server ORBs are properly adhering to this algorithm but unable to
negotiate a common codeset, the two ORBs raise a CODESET_INCOMPATIBLE

27-Jan-04 WebSphere CORBA Interoperability

IBM WebSphere Page 36 of 44

or DATA_CONVERSION exception. If one of the ORBs is not properly adhering to
this algorithm, the ORB that is adhering to the algorithm raises an INV_OBJREF or
BAD_PARAM exception or an invalid wchar/wstring is received.

Workarounds
If the two ORBs are properly adhering to the algorithm but unable to negotiate a
common codeset, there are no known workarounds. The only possible suggestion
is to review the documentation for both ORBs to determine whether any special
configuration could be used to help with this problem.

If the one of the ORBs is not adhering to the algorithm, one possible workaround is
to set WebSphere to use a default wide character codeset. If this does not solve
the problem, some other workarounds are suggested.

Setting WebSphere to Use a Default wchar transmission codeset

By default, the ORB will generate INVOBJ_REF and BAD_PARAM exceptions as
directed by the CORBA specification. However, the ORB allows a default wchar
transmission code set (TCS-W) to be specified. For objects providing wchar data
in their interfaces the ORB will fall back on the default TCS-W value if a code set is
not otherwise provided in an IOR code set component (client role) or incoming
service context (server role).

The system property com.ibm.CORBA.ORBWCharDefault specifies the Java
ORB’s default TCS-W for the application server’s JVM. By default this property is
not set. It can be set to the either UCS2 or UTF16, which are the only values
supported by WebSphere. Any other value will be ignored and the ORB will behave
as though the property were not set.

Other Possible Workarounds

The following are some other possible workarounds. These workarounds are not
CORBA-compliant and, therefore, these workarounds are not supported:
o Set the client and server native wide character code set to a common code set.

This in itself may be sufficient to allow proper exchange of wchar information.
o Configure client ORB to accept IORs without wchar code set components. In

this case the client might assume that the TCS-W is the same as it’s native code
set, or allow a default TCS-W to be specified.

o Configure server ORB to accept requests without wchar code set service
contexts. In this case the server might assume that the TCS-W is the same as
it’s native code set, or allow a default TCS-W to be specified.

27-Jan-04 WebSphere CORBA Interoperability

IBM WebSphere Page 37 of 44

Problem Locating a Name Service
This problem occurs when a WebSphere EJB component cannot bootstrap the
CosNaming directory of a CORBA server application. It also could occur when a
CORBA client application cannot bootstrap the CosNaming directory of the
WebSphere EJB component.

Explanation
WebSphere supports the CORBA INS specification as a standard way of specifying
the object URL location of a CosNaming directory. When bootstrapping the
CosNaming directory using resolve_initial_references, the object URL location of
the directory is configured as specified in the INS specification. When
bootstrapping to the CosNaming directory using string_to_object, the object URL
location of the directory is specified as defined in the INS specifications.

The INS specification clearly specifies how to configure or specify the location of a
naming service. However, the INS specification is new, so some ORBs do not yet
support this specification.

Workarounds
The following are possible workarounds to this problem:
o Use a federated name space
o Obtain an IOR from a file
o Use coexistence (not supported)
o Bypass the name service

Use a Federated Name Space

A Federated Name Space is a group of Name Services bound together by
references between Name Services (it is not necessary that every Name Service
references every other Name Service, only that the paths necessary to facilitate
object discovery are present, presumably according to an overall architecture and
design).

A NamingContext of one Name Service would therefore contain a binding to a
NamingContext of a remote Name Service. The NamingContext in the remote
Name Service appears as a sub-context to the NamingContext in the first Name
Service. Therefore, after bootstrapping into the first Name Service, normal
CosNaming NamingContext interface methods can be used to traverse the
federated name space to obtain a reference to a NamingContext from the remote
Name Service. This will work provided the ORBs that support each Name Service
are otherwise interoperable.

27-Jan-04 WebSphere CORBA Interoperability

IBM WebSphere Page 38 of 44

In order to initially set up a Federated Name Space, an application has to have
references to NamingContexts from other Name Services. It can then bind each
NameContext into the others. See the following two sections for how this might be
accomplished.

Obtain IOR from a File

An IOR can be obtained by an application that already has access to a
NamingContext in a remote Name Service. The application can use the
ORB.object_to_string() method to generate the IOR from the NamingContext,
and the IOR can then be stored in a file. The file is then made available to the client
that is to access the remote Name Service. The client program can read the IOR
from the file and use the ORB.string_to_object() to obtain the reference to the
NamingContext. This needs to only be done once during initialization of the client,
and from that point the NamingContext can be used to lookup whatever objects are
needed that are bound into that Name Service.

This mechanism will work provided the ORBs for the remote Name Service and the
client application are otherwise interoperable.
In general, an IOR to a NamingContext in a remote Name Service is typically fairly
static. Therefore, the code that generates the file containing the IOR typically only
has to be run once, thus making this a relatively simple mechanism to manage in a
distributed environment. In addition, the file containing the IOR could be used to
configure an ORB’s initial service references. Finally, an application that initializes
a Federated Name Space could use this technique to obtain the references to the
NamingContexts of the Name Services it was federating.

Bypass the Naming Service

The following are some additional possible workarounds for obtaining a reference
to a remote object:
o Obtain IOR to remote object and pass the server object reference directly to a

client.

It is important that an indirect IOR, as opposed to a direct IOR, is used to
reference remote objects. An indirect IOR does not contain any references that
are specific to the configuration of any server in the network, allowing dynamic
resolution of object references to enable replica servers or network
reconfiguration. Rather, an indirect IOR references an object through a Location
Service Daemon (LSD), which locates the object and returns a direct IOR to the
client ORB using a locate-forward message (user code is not involved, the client
ORB handles the locate-forward message internally).

27-Jan-04 WebSphere CORBA Interoperability

IBM WebSphere Page 39 of 44

o Bind remote object reference into local name space: look-up an entry in the
name server of a remote ORB, and rebind the reference in the name server of a
local ORB. For example, one can write a utility to look-up an EJB component's
home in the WebSphere name service, and bind that reference in the naming
directory of a third party ORB.

27-Jan-04 WebSphere CORBA Interoperability

IBM WebSphere Page 40 of 44

27-Jan-04 WebSphere CORBA Interoperability

IBM WebSphere Page 41 of 44

Samples

This section describes the IBM CORBA Interoperability Samples. The following
topics are covered:
o Description of the samples
o Design of the samples
o How to run the samples

Description of the Samples

The IBM CORBA Interoperability Samples demonstrate general principles by which
WebSphere EJB components can interact with CORBA applications. They also
demonstrate typical uses of the CORBA and EJB programming models, and they
test various interoperability scenarios. The samples can be downloaded from the
following location:

 http://www.software.ibm.com/wsdd/library/samples/WASV501/corba.html

The samples include server and client code, which are run together in different
scenarios. Each scenario tests the interaction between WebSphere EJB
component and a CORBA application. In some scenarios, the WebSphere EJB
component is the client and the CORBA application is the server. In other
scenarios, the CORBA application is the client and the WebSphere EJB
component is the server.

The samples test the sending and receiving of many different CORBA IDL data
types over the IIOP protocol between the WebSphere EJB component and the
CORBA application. The samples also test the use of a common CosNaming
service. The samples do not test the use of security or transactions.

27-Jan-04 WebSphere CORBA Interoperability

IBM WebSphere Page 42 of 44

The following table lists the scenarios that the samples have tested:

Scenario Platforms Tested

Client Server Windows(R
) 2000

AIX(R)
4.3.3

AIX(R)
5.1

Solaris(R)
2.8

WebSphere Corba
SDK V5 (C++)

Yes Yes Yes Yes

VisiBroker 4.0 (Java) Yes Yes Yes Yes

VisiBroker 4.1 (C++) Yes Yes No Yes

VisiBroker 4.5.1
(Java)

Yes Yes Yes Yes

VisiBroker 4.5 (C++) Yes Yes Yes Yes

VisiBroker 5.2.1
(Java)

Yes Yes Yes Yes

VisiBroker 5.2.1
(C++)

Yes Yes Yes Yes

OrbixE2A 5.1 (Java) Yes No Yes Yes

WebSphere
Application Server

V5 (Java)

OrbixE2A 5.1 (C++) Yes No Yes Yes

WebSphere Corba
SDK V5 (C++)

Yes Yes Yes Yes

VisiBroker 4.1
(C++)

Yes Yes No Yes

VisiBroker 4.5
(C++)

Yes Yes Yes Yes

VisiBroker 5.2.1
(C++)

WebSphere
Application Server

V5 (Java)

Yes Yes Yes Yes

27-Jan-04 WebSphere CORBA Interoperability

IBM WebSphere Page 43 of 44

Design of the Samples

The samples consist of the following:
o A WebSphere EJB component, which can be used either as a client to a

CORBA server application or as a server to a CORBA client application.
o A WebSphere J2EE client application. This is used only to launch the

WebSphere EJB component when it is being used as a client to a CORBA
application.

o A WebSphere thin client application. This is used only as an alternative way of
launching the WebSphere EJB component when it is being used as a client to a
CORBA application.

o CORBA C++ client applications. These are applications coded in C++ that use
C++ CORBA client interfaces.

o CORBA Java client applications. These are applications coded in Java that use
C++ CORBA Java interfaces.

o CORBA C++ server applications. These are applications coded in C++ that use
the C++ CORBA server interfaces.

o CORBA Java server applications. These are applications coded in Java that
use the CORBA Java interfaces.

The following figure illustrates the program flow when the WebSphere EJB
component is the client and the CORBA application is the server. As shown in the
figure, either the WebSphere J2EE client or the WebSphere thin client can be used
to launch the WebSphere EJB component:

J2EE
client

Thin
client

WebSphere
EJB component

CORBA C++ or
Java server

27-Jan-04 WebSphere CORBA Interoperability

IBM WebSphere Page 44 of 44

The following figure illustrates the program flow when the CORBA application is the
client and the WebSphere EJB component is the server:

How to Run the Samples
To run the samples:

1. Download the samples from the URL location specified at the beginning of this

section.

2. Unzip the samples.

3. Open the main web page for the samples (index.html). At the bottom of this web

page, select a platform for running a scenario.

4. A second web page appears with a prompt to select the ORB for the client side

of the scenario. You can select WebSphere Application Server (Java), which is
the ORB of the WebSphere EJB component, or one of the CORBA applications.

5. If you select the WebSphere Application Server (Java) for the client side of the

scenario, another web page appears in which you are prompted to select a
CORBA ORB for the server side of the scenario. (If you select a CORBA ORB
for the client side of the scenario, the server side of the scenario will be the
WebSphere Application Server (Java)).

6. Another web page appears containing links to the test results for this scenario

and then links for the client and server zip files.

7. Unzip the client zip file to obtain the client code and a readme file. The readme

file describes how to run the client side of the scenario.

8. Unzip the server zip file to obtain the server code and a readme file. The

readme file describes how to run the server side of the scenario.

WebSphere
EJB component

CORBA C++ or
Java client

