IBM Corporation Not Confidential

I ntegrating Jakarta Commons L ogging with
IBM WebSphere Application Server V5

D.A.Zavala
Y.C.Lau

I ntended audience and scope

WebSphere J2EE application developers have indicated a need to utilize Jakarta Commons-Logging (JCL)
support beyond that supplied by WebSphere Application Server. Typical scenariosinclude utilizing the
Log4J or JIDK1.4 logging implementations provided by JCL, utilizing proprietary JCL logger
implementations, and incorporating different versions of JCL. This article discusses developing
applications and configuring the WebSphere runtime environment towards utilizing application-specific
JCL artifacts. We assume the reader is familiar with or has access to references concerning WebSphere
Application Server [1,2], J2EE application development [3], and the aforementioned logging facilities
[4,5,6,7].

Quick start

Visit section “Building application-specific JCL solutions” to learn procedures for integrating JCL support
into WebSphere J2EE applications.

Contents

WebSphere v5 and Jakarta COmMMmONS-LOGGING -....cveeeerierierieeriesieseeeseseeseesessesieseeessessesseseessessessasessesseseans 2
JCL LogFactory specification options and diSCOVENYcueiiriririniereie e 2
The WebSphere classoader enVironmMeNt............coccriiiciiniiir s 3

Building application-SPeCifiC JCL SOIULIONS..........ccvirieuiriririenerieteresee ettt sesaenens 4
SOIULION - JCL OPLION 3+ EAR ...ttt st et 6
SOIULiON = JCL OPLION 3+ WAR ...ttt st a s e sae s e saene e ssesenenennen 8

Solution - JCL option 2 + application-associated shared library .
Solution - JCL option 3 + server-associated shared library
Using WebSphere JCL artifactS.........cooeeeeereneieneneneneee e
Solution - JCL option 2......
Why thisworks.........cccooriiiciiccnee
Adding JCL artifactsto the VM classpath..

Y o]0 1= 01 =TSSR
Appendix A1 - WebSphere commons-logging artifacts..........
Appendix A2 - JCL LogFactory.getFactory() implementation
Appendix A3 - The JCL implementation package, commONS-10ggiNg.jar........ccceeeereriereeieresesiereneens 20

Acknowledgements

1. Tom Musta, IBM Corporation
2. Don Bourne, IBM Corporation
3. Richard Sitze, IBM Corporation

WebSphere Eb i) 1 25 June 2004

IBM Corporation Not Confidential

WebSphere v5 and Jakarta Commons-L ogging

Jakarta Commons-Logging (JCL) defines acommon programming model for logging and a framework that
enables applications to bind different logger implementations; it provides the application programming
interfaces (APIs), the NoOpLog and SimpleL og implementations, plus thin “wrapper” implementations
over the Apache Log4J, J2SE1.4 and Avalon loggers.

The JCL architecture affords extension by providing a configurable abstract factory facility, LogFactory, to
instanti ate specified implementations of the LogFactory class. To bind a particular type of Log
implementation (i.e. logger) an application configures the L ogFactory with the name of the concrete

L ogFactory implementation class that supports the particular Log implementation. The application invokes
method L ogFactory.getFactory() to obtain an instance of this class, say myLogFactory, and then calls
myLogFactory.getL og() to obtain the log implementation.

WebSphere Application Server V5 (WAS5) suppliesthe JCL v1.2 API package, which is a proper subset of
the JCL implementation package offered by Apache/Jakarta. WebSphere also supplies proprietary JCL
extensions that require the JCL API package to operate. Both artifacts are listed in Appendix Al.
WebSphere J2EE applications that utilize JCL will typically obtain an instance of TrLogFactory upon
invoking the LogFactory.getFactory() method, and subsequent invocations of TrLogFactory.getL og() will
return instances of the WebSphere logging implementation, TrLog.

Applications occasionally must override the WebSphere TrLog logging implementation to bind another,
such asthe Log4J or JDK 1.4 loggers. Further, these applications may require only the classes of the
standard JCL package supplied with WebSphere, or may require application-specific JCL artifacts, such as
proprietary JCL extensions, different JCL versions, or more comprehensive packages of JCL.

Developerstypically realize the requirements above by bundling additional JCL artifacts with their
applications and employing options 1, 2, or 3 for JCL LogFactory discovery, as described below. And
typically, they encounter unexpected behaviors such as class loading errors or JCL solutions that are
mysteriously ineffectual.

Unexpected behaviors concerning JCL integration are due to misunderstanding the JCL LogFactory
discovery agorithm and the deployment of application artifacts within the WebSphere runtime
environment.

JCL LogFactory specification options and discovery

According to the JCL User’s Guide [4], there are three options for specifying the name of the L ogFactory
implementation class:

1. Assign the fully-qualified name of the LogFactory implementation class to system property
org.apache.commons.logging.L ogFactory.

Do not use option 1 - Setting a JVM system property isill advised as it affects all applications running
in the JVM, including the application server.

2. Specify the fully-qualified name of the LogFactory implementation classin file
org.apache.commons.logging.L ogFactory within the .../META-INF/services directory.

WebSphere Ebiyizie! 2 25 June 2004

IBM Corporation Not Confidential

3. Specify aname-value pair assigning the fully-qualified name of the LogFactory implementation class
to property org.apache.commons.logging.L ogFactory in file commons-logging.properties, and place
thisfilein the classpath'.

When an application invokes L ogFactory.getFactory(), the method performs a greedy a gorithm which
searches the 3 options above, in the order presented, to obtain the name of the LogFactory implementation
classit will attempt to instantiate and return (seeListing 1 in Appendix A2.) Immediately upon finding an
item that specifies a LogFactory implementation class that can be instantiated, the search returns an
instance of that class. If the search fails, getFactory() returns the default JCL LogFactory implementation,
LogFactorylmpl.

Developers can use the files in options 2 and 3 to specify an application-specific LogFactory

implementation class. Results of the discovery algorithm will vary depending where the files deploy into
the WebSphere runtime (classloader) environment, and how the environment is configured.

The WebSphere classloader environment
By default, applications execute within the WebSphere classloader environment depicted in figure 1.

Figure 1 - The default WebSphere classloader environment

4 N\
JVM
Classloaders

WAS Extensions

Classloader
Application; Applicationm
Classloader Classloader

A B S s

WAR;

WAR;

WAR;
Classloader Classloader Classloader
WARn WAR, ' WAR,,
Classloader " Classloader ™" Classloader "

The [delegation] mode for each classoader is PARENT_FIRST, the Application classloader policy is
MULTIPLE, and the WAR class oader policy is MODULE. Under the default configuration a unique
Application classloader instance exists for each application EAR. All EJB module artifacts, “utility” JARSs,

! The classpath mentioned here will typically be the local classpath of the WebSphere Application or WAR
classloader and will depend on how the JCL artifacts are packaged within an application.

[WebSphere Sl 3

25 June 2004

IBM Corporation Not Confidential

and resources bundled with the EAR appear in the local classpath of its corresponding Application
classloader. A unique WAR classloader instance exists for each WAR module in the EAR. WAR module
artifacts appear in loca classpath of its corresponding WAR classloader, each of which isan immediate
child of the Application classoader. For describing devel opment procedures we make the following
assumption:

The policies and modes of the WebSphere class oaders are configured to their defaults until specified
otherwise.

JCL artifacts supplied with WebSphere appear on the local classpath of the WebSphere Extensions
classloader?, which is the parent of all Application classloaders. When an application requires a JCL class
or resource in the classloader environment, the context classloader® delegates the load operation to its
parent classloader. This process recurses upward until reaching the root of the hierarchy —the VM
classloader -- and searchesitslocal classpath for theitem. If the search fails, the process “unwinds’ to the
next lower clasdoader and searchesits local classpath. The process executes until the itemis found, or
until the search of the context classloader’ s local classpath fails. In the default classloader environment,
JCL classes and resources will typically load from the local classpath of the WebSphere Extensions
classloader.

Therein lies the problem. If an application intends to exclusively utilize the JCL artifacts supplied with
WebSphere, the scenario above is correct; if an application intends to utilize application-specific JCL
artifacts, then the scenario should never occur -- that is, the WebSphere Extensions classloader should
never load an application-specific JCL class or resource. The assumption below allows usto safely
differentiate the two cases.

Applications are fully dependent on either WebSphere JCL artifacts or their own. Application-
supplied JCL classes have no dependencies on the JCL classes and resources supplied by WebSphere.

A general technique to integrate application-specific JCL solutionsisto exercise option 2 or 3 to specify
the application-specific LogFactory; develop JCL artifacts having no dependencies on JCL classes supplied
by WebSphere; deploy these artifacts on the local classpath of a classloader below the WebSphere
Extensions class oader; then configure the [delegation] mode of the artifact classloader to PARENT_LAST
to ensure it loads application-specific JCL artifacts fromitslocal classpath before delegating load
operations upward.

Section “Building application-specific JCL solutions” describes variations on the general technique above.
The discussion offers suggestions towards developing JCL artifacts and illustrates procedures for deploying
JCL artifactsin application EAR (WAR) and shared libraries, complete with directions for configuring the
classloader environment.

In the specia case where an application requires only the standard JCL support supplied with WebSphere,
visit section “Using WebSphere JCL artifacts.”

Building application-specific JCL solutions

Applications frequently require JCL support beyond that supplied by WebSphere -- for example, aWeb
application that utilizes the JCL Log4Jlogger. JCL Log4J support isnot in the JCL API package supplied
by WebSphere, but can be obtained from Apache/Jakarta. Applications may require proprietary JCL
extensionsas well.

2 Section 17.6 of the IBM WebSphere Application Server V5.0 System Management and Configuration
Redbook [1] provides more details about of the WebSphere classloader structure.

3 Just areminder, the “context classloader” isinitialy the Application classloader on EJB method
invocations, and the WAR classloader on Servlet/JSP service() method invocations.

WebSphere Ebiyizie! 4 25 June 2004

IBM Corporation Not Confidential

In general, to build application-specific JCL solutions:
1. Specify the desired LogFactory implementation within one of the files below.

» org.apache commons.logging.LogFactory (JCL option 2)
» commons-logging.properties. (JCL option 3)

2. Package all JCL classes and resourcesin a utility JAR, say commons-logging.jar, including the file
created in step 1.

3. Make commons-logging.jar available to the application using one of these techniques:

» Add commons-logging.jar to the application EAR

» Add commons-logging.jar to the application WAR

» Configure commons-logging.jar into an application-associated shared library.
» Configure commons-logging.jar into a server-associated shared library.

4. Set the [delegation] mode of the WebSphere class oader that contains commons-logging.jar initslocal
classpath to PARENT_LAST.

Subsequent sections present development solutions that describe when these options are appropriate and
how to successfully execute them.

Regarding the steps above, thereis no preference regarding which JCL file to specify the LogFactory
implementation classin step 1. Each works equally well given you follow the solutions.

To avoid potential problems we suggest in step 2 packaging al application-specific JCL classes and
resourcesin asingle utility JAR. Also, we assume application-specific JCL classes and resources support
the application independently of those supplied by WebSphere. These two conditions eliminate potential
versioning issues between the application- and WebSphere-supplied JCL classes. Consider the case where
an application-specific JCL classis dependent on a class supplied by WebSphere, and the two classes are
incompatible. The conditions also ensure the same classloader will load all resources of the JCL solution --
the classloader containing this JAR on itslocal classpath —which facilitates debugging in the event a
classloader anomaly occurs, such asa JCL classis not found or a class cast exception.

Adding application-specific JCL artifactsto EARs (WARS) using utility JARs is a preferred practice,
because the artifacts areimplicitly versioned per application, and because they are automatically deployed
to the server environment during application installation. At runtime the JARs are added to the loca
classpath of the specific WebSphere Application (WAR) classloader.

Shared libraries provide a means to introduce application artifactsinto the WebSphere runtime environment
without adding these artifactsto EARs, EJB JARs, or WARS. Shared libraries are managed viathe Admin
console or wsadmin scripts. Once a shared library is defined, it may be associated to an application or to a
user-defined “server” classloader. The former is called an “ application-associated” shared library; the latter
is“server-associated.”

Configuring application artifacts into shared libraries has immediate benefits. Shared libraries containing
different JCL solutions, for instance, can be associated with an application without uninstalling and
reconfiguring the application. Alternately, different applications can be associated with the same JCL
solution, facilitating system management with a single point of maintenance rather than maintaining
various JCL artifacts packaged within each application. By associating a shared library containing JCL
artifactsto a“server” classoader, asingle JCL solution is available to al applications hosted by a
particular server, without any configuration to the applications. Thus, employing shared libraries can
facilitate application versioning, maintenance, and devel opment.

VR N software 5 25 June 2004

IBM Corporation Not Confidential

Finally, setting classloader delegation mode to PARENT_LAST is always necessary to ensure the
appropriate WebSphere classloader |oads all the classes and resources of the JCL solution before delegating
the load operation to its parent, potentially causing integration problems.

Here are some suggested approaches to building application-specific JCL solutions.

Solution - JCL option 3 + EAR
Use this approach if your application contains only EJBs, or EJBs and Servlets/JSPs that require JCL
support.

To provide an application-specific JCL solution using JCL option 3, the commons-logging.propertiesfile,
in an Enterprise Application Archive (EAR):

1. Specify the desired LogFactory implementation within file commons-logging.properties:

a Create afile named “commons-logging.properties’
b. Enter the following lineinto the file:

org.apache.commons.logging.L ogFactory=<fully_qualified_L ogFactory_implementation_class>
For example, to use the Log4J factory, enter the line shown in figure 2:

Figure 2 - Content of file commons-logging.properties

org. apache. coomons. | oggi ng. LogFact or y=or g. apache. conmons. | oggi ng. i npl . Log4j Fact ory

2. Packagedl JCL classes and resourcesin a utility JAR, say commons-logging.jar, inserting the
commons-logging.properties file into the root directory of that JAR [figure 3].

Figure 3 - Partial listing, commons-logging.jar file

META- | NF

META- | NF/ LI CENSE. t xt

META- | NF/ MANI FEST. M-

commons- | oggi ng. properties

org

or g/ apache

or g/ apache/ cormons

or g/ apache/ cormons/ | oggi ng

or g/ apache/ commons/ | oggi ng/ Log. cl ass

The general requirement for the commons-logging.propertiesfile to be effective isthat the file be
visible on the application classpath. In amulti-class oader environment, this requirement is not
straightforward, since various classloaders may load application artifacts. For smplicity, we suggest
inserting the commons-logging.properties file into the JAR containing application-specific JCL
artifacts. This satisfies the requirement via a standard J2EE application devel opment practice.

3. Make commons-logging.jar available to EJB and Web modules of your application.

a. Add file commons-logging.jar to the root directory of the application EAR [figure 4].

VR N software 6 25 June 2004

IBM Corporation Not Confidential

Figure4 - Partial listing of application EAR containing JCL artifact

META- | NF
META- | NF/ MANI FEST. MF

E:bﬁrmns—l ogging. jar

b. Add commons-logging.jar to the Class-Path attribute within the MANIFEST.MF file of every EJB
JAR and WAR dependent on the JCL solution. At minimum, the Class-Peath attribute should
appear as shown in figure 5.

Figure 5 - Class-Path attribute of EJB module META-INF/MANIFEST.MF

Cl ass- Path: commons-| oggi ng. j ar

At runtime commons-logging.jar will appear on the local classpath of the Application classoader. For
more information, visit section 17.7.1 of System Management and Configuration Redbook [1] for
directions to package utility JARs into WARs and EARs.

4. Set the [delegation] mode of the Application classloader to PARENT_LAST. Using the Admin
console:

Select Applications > Enterprise Applications > “my application” [figure 6.]
Select PARENT_LAST from the Classloader Mode drop-down list.

Click OK.

Select Save and save your changes!

ap o

VR N software 7 25 June 2004

IBM Corporation Not Confidential

Figure 6 - Setting the Application Class oader Mode
Enterprise Applications >
DemoClsldr

Enterprize Applications [i

Configuration

| Local Topoloay |

General Properties

Name # DemoClzidr [Specifies a logical name for the
application. Application names must be
unigue within a cell.

Starting Weight - |1 [i Specifies the order in which
applications are started. Applications

with lower startup erder are started

before those with higher startup order.

Application Binaries * IS(App_m STALL_ROOTWplutonium/D [i] specifies the full path name of the
enterprize application binary file. The path
name can be an absolute path or can
contain a pathmap variable such as
APP_INSTALL_ROOT.

Use Metadata From Binaries O H| Specifies whether the application
=zerver will use the binding, extensions,
and deployment descriptors located with
the application deployment document, the
deployment.xml file (default), or those
located in the application's ear file.

Enable Distribution Ird [{ Specifies whether the application will
be distributed autematically to other
nodes on the cell The default is for
automatic distribution.

Claszloader Mode |I| Specifies whether classes are loaded
via the parent classloader before this

one.

|I| Defines whether there is a single
clazsloader for all WARs in the
application or a clazsloader per WAR in
the application.

WAR Classloader Policy

Create MBeans For Resources I [i] create MBeans For Resources

Reload Enabled O [{ Specifies if class reloading is enabled

Eociion &l boo ih -y

5. Restart the application server for the changes to take effect.

The server configuration changes are now effective, allowing the JCL solution to function as expected.

Solution - JCL option 3 + WAR
Use this approach if your application contains only Servlets/JSPs that require JCL support.

To build an application-specific JCL solution employing JCL option 3, the commons-logging.properties
file, in aWeb module (WAR):

1. Specify the desired LogFactory implementation within file commons-logging.properties -- see step 1
of section “JCL option 3 + EAR”

VR N software 8 25 June 2004

IBM Corporation Not Confidential

Package all JCL classes and resourcesin a utility JAR, say commons-logging.jar, inserting the
commons-logging.properties file into the root directory of that JAR -- see step 2 of section “JCL option
3+EAR”

Make commons-logging.jar available to the Web modul es of your application.

Add file commons-logging.jar to the /WEB-INF/lib directory of each application WAR that requires
JCL support [figure 7.]

Figure7 - Partial listing of application WAR containing JCL utility jar

V\EB I NF/ I'i b/ cormpns- | oggi ng. j ar

4. Set the [delegation] mode of the application’s WAR classloader to PARENT_LAST. Using the Admin

console:

a Select Applications > Enterprise Applications > “my application” > Web Modules > “my WAR
modul€e” [figure 8]

b. Select PARENT_LAST from the Class oader Mode drop-down list.

c. Select Save and save your changes!

Figure 8 - Setting the WAR Clasdoader Mode
Classloader Mode # f PARENT FIRST | [i] Specifies whether classes are loaded
e via the parent classioader befors this
one.

WAR Clazzloader Policy * I Module vl [i] Defines whether there is a single
claszloader for all WARs in the
application or a classleader per WAR in
the application.

Create MBeans For Resources I~ [il create MBeans For Resources

Reload Enabled - [i Specifies if class reloading is enabled
for application files when they get
updated.

Reload Interval |3 |I|Thetimeperin-d (in seconds) in which
the application’s filesystem wil be
=canned for updated files.

Apply | oK | Reset | Cancel |
Additional Properties
Target Mappings The mapping of thiz deployed object (Application or Module) into a target environment
(zerver, cluster, cluster member)
Libraries A list of library references which specify the uzage of global libraries.

5. Redtart the application server.

The server configuration changes are now effective, allowing the JCL solution to function as expected.

VR N software 9 25 June 2004

IBM Corporation Not Confidential

Solution - JCL option 2 + application-associated shared library

Use this approach if your application contains only EJBs, or EJBs and Servlets/JSPs that require JCL
support, and you would like to utilize this solution across select applications by modifying the server
configuration rather than just the application (EAR.)

To build an application-specific JCL solution employing JCL option 2, the
org.apache.commons.logging.LogFactory file, in an application-associated shared library:

1

Specify the desired L ogFactory implementation within file org.apache.commons.logging.L ogFactory.

a Create afile named “org.apache.commons.logging.L ogFactory”.
b. Insert into it the name of the JCL LogFactory implementation class, without quotes!

Figure 9 lists the contents of an org.apache.commons.logging.L ogFactory file which specifies the
default JCL LogFactory class, org.apache.commons.logging.impl.LogFactorylmpl.

Figure 9 - The org.apache.commons.logging.LogFactory file

or g. apache. cormons. | oggi ng. i npl . LogFact or yl npl

Package all JCL classes and resourcesin a utility JAR, say commons-logging.jar, inserting the
org.apache.commons.logging.L ogFactory file into the /IMETA-INF/services directory of that JAR.

Upon completing step 2, alisting of the utility JAR should resemble figure 10. Ensure that the
LogFactory file residesin the META-INF/services directory, which in turn resides at the root level of
the JAR, and that the names are correct.

Figure 10 - Partial listing, commons-logging.jar file

3.

META- | NF

META- | NF/ LI CENSE. t xt

META- | NF/ MANI FEST. M-

META- | NF/ servi ces/ org. apache. conmons. | oggi ng. LogFact ory
org

or g/ apache

or g/ apache/ cormons

or g/ apache/ commons/ | oggi ng

or g/ apache/ cormons/ | oggi ng/ Log. cl ass

Make commons-logging.jar available to the EJB and Web modules of your application by configuring
it into shared library and associating that library to your application.

a Install your J2EE application. Do not start the application yet!
b. Copy commons-logging.jar to adirectory that is preferably outside the WAS install. For sake of
example we use “d:\tmp\jcl\".

Create the shared library. Shared libraries can be created using the Admin console or wsadmin
scripting. Using the Admin console:

Click “Environment” > “Shared Libraries’. Y ou should see the screenin figure 11.
Select scope “ =2 Server”.

Click “New”.

Enter the name, description, and classpaths for the shared library [figure 12.]

@~oa

[T softwars 10 25 June 2004

IBM Corporation

Not Confidential

i. Enter“JCL” inthe Name field.
ii. [Optional] Enter “JCL shared library” in the Description field.
iii. Enter “d:\tmp\jcl\commons-logging.jar” in the Classpath field.

h. Click OK.

i. Select Save and save your changes.

The shared library is now defined within the WebSphere server configuration.

Figure 11 - Creating a shared library

User ID: admin

plutonium
Servers
B Applications

Enterprise Applications
Inztall New Application
Resources

Security

B Enviranment
Update Web Server Plugin
Virtual Hostz

Ianage WebSphere Variables
Shared Libraries

Naming
System Administration
Troubleshoating

Enterprise Applications >
Shared Libraries

Specifies a container-wide shared library that can be used by deployed applications. |

Totak 0

Bl Scope: Cel=plutonium, Node=plutonium, Server=serverd

' g Dutonum Use scope settings to it the avalabity of resources to a particular c2l, node, or server.
When new items are created in this view, they wil be created within the current scope.
8 Node plutonium

@ o geryer Senver!

Apply

Fiter

Preferences

New | Delete

A A
i Name v Description v

None

Associate the shared library to the application that requires the JCL solution. Again this can be
achieved using the Admin console or wsadmin scripting. Using the Admin console:

j- Select Applications > Enterprise Applications > “my application”
k. Select Librariestowards the bottom of the screen. The screen in figure 13 appears.

I. Click Add.

m. Select the name of the shared library containing the JCL solution from the Library Name drop
down list [figure 14.]

n. Click OK

The shared library is now bound to the application.

4. Set the Application class oader [delegation] modeto “PARENT_LAST”. Using the Admin console:

Click OK.

cooo

Select Applications > Enterprise Applications > “my application”.
Select PARENT_LAST from the Classloader Mode drop-down list as shown in figure 6.

Select Save and save your changes.

The mode of the Application classioader isnow PARENT_LAST.

iebSphere T

11 25 June 2004

IBM Corporation Not Confidential

5. Redtart the server for the changes to take effect.

The JCL solution is now accessible to the application. The application server adds the shared library’s
classpath to the local classpath of the Application classloader only, which causes the application’s EJB and
Web modules to utilize the JCL solution contained in the shared library.

For more information about configuring shared libraries, visit the IBM WebSphere Application Server V5
InfoCenter [2].

Figure 12 - Configuring the shared library
Enterprise Applications > Shared Libraries >
New

Specifiez a container-wide =hared library that can be used by deployed applications. [i

Configuration

General Properties

Name * IJCL [i] The name of the shared library

Description JCL shared library [l An optional description for this shared
lizrary.

Claz=zpath d:\tmp\jchcommens-logging jar [il A classpath containing this library's

jar(z). Clazspath entriez are separated by

using the ENTER key and must not contain

path separator characters (such as " or

""). Claz=paths may contain variable
(zymbolic) names which can be

* substituted using a variable map.

Mative Library Path [[an optional path to any native libraries

(.dIfs, .=0's) required by this shared
library.

Apply | OKl Reset Cancel |

Figure 13 - Associating the shared library to the application
Enterprise Applications > DemoClsidr >

Library Ref

Library References specify one or more shared librariss used by this application. [

Total: 0
Fitter

Preferences

Add Remove
I | Library Name S
None

KIS sortars 12

25 June 2004

IBM Corporation Not Confidential

Figurel4 - Selecting the shared library
Enterprise Applications > DemoClsldr > Library Ref >
New

Library References specify one or mere ghared likraries used by this application. [i

Configuration

[il The name of a shared lizrary that has
been defined in the one of the =hared
lirary configuratien documents.

Likrary Nams

Apply | OK | Reset Cancel |

Solution - JCL option 3 + server-associated shared library

Use this approach if your application contains only EJBs, or EJBs and Servlets/JSPs that require JCL
support, and you would like to utilize this solution across all applications hosted by an application server.

Deploying application artifacts in server-associated shared library does not involve the Application or
WAR classloaders, but rather, introduces a user-defined “ server” classloader between the WebSphere
Extensions class oader and the Application classloaders as depicted below. Adding a server-associated
shared library containing JCL artifacts will make the JCL solution visible to all applications hosted by the
server which contains the user-defined classloader. For this reason the solution may be desirable in special
development scenarios.

Figure 15 - The WebSphere classloader environment with a user-defined classloader

JVM
Classloaders

WAS Extensions

Classloader
WAS Server
Classloader

4 N\

WAS Application
Classloaders

To build an application-specific JCL solution employing JCL option 3, the commons-logging.properties
file, in aserver-associated shared library:

WebSphere Ebijysle] 13 25 June 2004

IBM Corporation

Not Confidential

1. Specify the desired LogFactory implementation in the commons-logging.properties file -- see step 1 of
section “JCL option 3 + EAR".

2. Packagedl JCL classes and resourcesin a utility JAR, say commons-logging.jar, inserting the
commons-logging.properties file into the root directory of that JAR -- see step 2 of section “JCL option
3+EAR".

3. Make commons-logging.jar available to the EJB and Web modules of al applications by configuring it
into shared library and associating that library to a user-defined server clasdoader.

a. Follow steps 3.athrough 3.i presented in section " Solution - JCL option 3 + application-associated

shared library" to install the application and define a shared library.

Create a user-defined “server” classloader configured with PARENT_LAST delegation. This may be
achieved using the Admin console or wsadmin scripting. Using the Admin console:

b.

~oao

Select Servers> “my server” > Classloader. The screen in figure 16 shows the Class oader link;
the screen in figure 17 appears.

Click New.

Select PARENT_LAST from the Classloader M ode drop-down menu [figure 18.]

Click OK.

Select Save and save your change.

Figure 16 - Finding the “ server” clasdoader link

Server Components Additional runtime components which are configurable.

Process Definition A process definition defines the command line information necessary to
startfinitialize a process.

Performance Monitoring Service specify settings for performance menitering, including enabling performance
monitoring, selecting the PMI module and setting monitoring levels.

End Points Configure important TCPAP ports which this server uses for connections.

Classloader Clazsloader configuration

Figure 17 - Creating the “ server” classoader

Enterprise Applications > DemoClsidr > Library Ref > Application Servers > serveri >
Classloader

Claszloader configuration H]

Total: 0
Fitter

Preferences

Mew Delete

r

|Classloaderld3 Classloader Mode

None

WebSphere Ebiyizie! 14 25 June 2004

IBM Corporation Not Confidential

Figure 18 - Selecting class oader mode of the * server” classloader
Enterprise Applications > DemoClsldr > Library Ref > Application Servers > serveri > Classloader >

New

Clazsloader configuration i

Configuration

Claszloader Mode

[Specifies whether classes are loaded via
the parent clazsloader before this one.

PARENT_FRST |

Apply| OK| Reset Cancel

4. Associate the shared library to the classloader. Again, this can be achieved using the Admin console
or wsadmin scripting. Using the Admin console:

a Select Servers>“my server” > Class oader.

b. Select the classloader created above. The screen in figure 19 appears.

c. Select Libraries.

d. Click Add.

e. Select the shared library created in step 3 from the Library Name drop-down menu.
f. Click OK.

g.

Select Save and save the changes.

Figure 19 - Associating the shared library to the “ server” classloader
Enterprise Applications > DemoClsidr > Library Ref > Application Servers > serveri >
Classloader_1080781815931

Claszloader configuration [i

Configuration
General Properties

Classloader d Classloader_1080731815931 [il 1d used to qualify classloader uniquety
Classloader Mode I PARENT_LAST vl [il specifies whether classes are loaded via
- the parent classloader before this one.

Apply | OK | Reset | Cancel |

Libraries A list of library references which specify the usage of global libraries.

6. Redtart the server for the changes to take effect.

The JCL solution is now accessible to al applications hosted by the server. The application server adds the
| shared library’s classpath to the local classpath of the specified “server” classoader only, which causes the
al applications hosted by the server to potentialy utilize the JCL solution contained in the shared library.
For more information about configuring shared libraries, visit the IBM WebSphere Application Server V5

InfoCenter [2].

WebSphere Ebijysle] 15 25 June 2004

IBM Corporation Not Confidential

Using WebSphere JCL artifacts

An application may require only the standard JCL classes and resources supplied by WebSphere [Appendix
A1.1] Although use of these artifactsis not officially supported, developers have attempted to use them.
So let’s examine this special case. The simplest way to use WebSphere JCL support is to specify the

L ogFactory implementation classin file org.apache.commons.logging.L ogFactory (see option 2 in section
“JCL LogFactory specification and discovery.”) Typically, such applications obtain the default JCL
LogFactory. Thereisno need for PARENT_LAST delegation, because there are no application-specific
JCL artifacts to deploy, and because the solution does not utilize file commons-logging.properties (see
option 3, section “JCL LogFactory specification and discovery.”)

Solution - JCL option 2
To utilize JCL classes supplied by WebSphere:

1. Specify the desired LogFactory implementation in the LogFactory file.

a. Create afile named “org.apache.commons.logging.L ogFactory”.
b. Insertinto it the name of the JCL LogFactory implementation class, without quotes!

Figure 9 lists the contents of an org.apache.commons.logging.LogFactory file which specifies the default
JCL LogFactory class, org.apache.commons.logging.impl.LogFactorylmpl.

2. Add file org.apache.commons.logging.L ogFactory to the META-INF/services directory of the EJB or
Web module (i.e., JAR or WAR file) that requires the JCL logger.

Adding the LogFactory file to an EJB JAR ensures the Application classloader loads the file; adding the
fileto a WAR does the same for the WAR classloader. The EJB-solution will apply to all EJB and Web
modules; the WAR-sol ution applies to Web modules only.

Upon completing step 2, alisting of the EJB JAR or WAR contents should be similar to figure 22. Ensure
that the LogFactory filesreside in the META-INF/services directory, which in turn resides at the root level
of the EJB or WAR module, and that the names are correct.

Figure 20 - A partial WAR listing containing the org.apache.commons.logging.LogFactory file

META- | NF/

META- | NF/ MANI FEST. MF

META- | NF/ ser vi ces/

META- | NF/ servi ces/ or g. apache. cormons. | oggi ng. LogFact ory

Why this works

Adding the org.apache.commons.logging.LogFactory file to the META-INF/services directory of the EJB
JAR (WAR) effectively appendsthe file to local classpath of the WebSphere Application (WAR)
classloader, because the Java Extensions/Service Provider facility of the classloaders automatically
searches the META-INF/services directory during load operations. When an application invokes

L ogFactory.getFactory(), the LogFactory discovery algorithm attempts to open the
org.apache.commons.logging.LogFactory file. The context classloader searches for the file according to its
[delegation] mode. Under PARENT_FIRST delegation the classloader delegates the search up the
WebSphere classloader tree, but the search ultimately fails, because WebSphere specifiesits LogFactory
implementation classin file commons-logging.properties located in file ws-commons-logging.jar
[Appendix A1.2], not org.apache.commons.logging.LogFactory. And thus, the context classloader finds
the file on its own classpath.

[T softwars 16 25 June 2004

IBM Corporation Not Confidential

If the search for the org.apache.commons.logging.LogFactory file fails, or if the class specified inside the
file cannot be instantiated, then the getFactory() method searches for the commons-logging propertiesfile.
Under PARENT_FIRST delegation, it will find the file provided by WebSphere and thus return an instance
of TrLogFactory. Failureto find the org.apache.commons.logging.LogFactory file or instantiate the class
named within it will likely be caused by typing errors when constructing the file.

Caveat - If future versions of WebSphere employ the LogFactory file to integrate commons-logging
features, this solution will be ineffectual unless PARENT_LAST classloader delegation is configured
for the classloader containing the LogFactory filein itslocal classpath.

Adding JCL artifactsto the JVM classpath

Finally, adding an application’s JCL artifacts to the server VM classpath may be ineffectual asthe Java
Extensions class oader (the classloader to which this classpath setting applies) resides above the
WebSphere Extensions clasd oader in the WebSphere runtime environment. Never utilize this approach to
add application artifacts to the WebSphere runtime environment.

References

1. IBM International Technical Support Organization. 1BM WebSphere Application Server V5.0 System
Management and Configuration; WebSphere Handbook Series, SG24-6195-00. IBM Corporation.
April 2003.
http://www.redbooks.ibm.com/redbooks/pdfs/'sg246195.pdf

2. IBM WebSphere V5.0 InfoCenter.
http://www-306.ibm.com/software/webservers/appserv/infocenter.html.

3. Sun J2EE platform.
http://java.sun.com/j 2ee/index.jsp.

4. Apache-Jakarta Commons Logging Users Guide.
http://jakarta.apache.org/commons/l ogging/userguide.html .

5. Apache-Jakarta Commons Logging Overview.
http://java.sun.com/j 2se/1.4.2/docs/quide/l ogging/overview.html.

6. SunJDK1.4 Logging API.
http://java.sun.com/j 2se/1.4/docs/quide/util/logging/index.html.

7. Apache-Avaon Toolkit.
http://aval on.apache.org/logkit/index.html.

8. Sun J2SE JAR File Specification.
http://java.sun.com/j 2se/1.3/docs/quide/jar/jar.html

WebSphere Ebiyizie! 17 25 June 2004

IBM Corporation Not Confidential

Appendices

Appendix Al - WebSphere commons-logging artifacts

WebSphere supplies two JCL artifacts: ws-commons-logging.jar, which contains WebSphere proprietary
JCL extensions, and commons-logging-api.jar, which contains the JCL support required by the extensions.

Figure A1.1 - WebSphere-supplied JCL API package, commons-logging-api.jar

N

META- | NF/

META- | NF/ MANI FEST. M-
org/

or g/ apache/

or g/ apache/ commons/

or g/ apache/ commons/ | oggi
or g/ apache/ cormons/ | oggi
or g/ apache/ commons/ | oggi
or g/ apache/ commons/ | oggi
or g/ apache/ cormons/ | oggi

. org/ apache/ commons/ | oggi

or g/ apache/ cormons/ | oggi
or g/ apache/ commons/ | oggi
or g/ apache/ commons/ | oggi
or g/ apache/ conmons/ | oggi
or g/ apache/ cormons/ | oggi
or g/ apache/ commons/ | oggi
or g/ apache/ cormons/ | oggi
or g/ apache/ commons/ | oggi
or g/ apache/ cormons/ | oggi

ng/

ng/i npl/

ng/ i npl / Jdk14Logger. cl ass

ng/ i npl / LogFact oryl npl $1. cl ass
ng/ i npl / LogFact oryl npl . cl ass
ng/ i npl / NoOpLog. cl ass

ng/ i npl / Si npl eLog$1. cl ass

ng/i npl / Si npl eLog. cl ass

ng/ Log. cl ass

ng/ LogFact ory$1. cl ass

ng/ LogFact ory$2. cl ass

ng/ LogFact or y$3. cl ass

ng/ LogFact ory. cl ass

ng/ LogConfi gur ati onExcepti on. cl ass
ng/ LogSour ce. cl ass

21. META-I NF/ LI CENSE. t xt

Figure A1.2 - WebSphere JCL extensions, ws-commons-logging.jar

META- | NF/ MANI FEST. M-

META- | NF/

conl

conl i bm

cont i bm ws/

conl i bm ws/ commons/

cond i bm ws/ commons/ | oggi ng/

conl i bm ws/ cormons/ | oggi ng/ Tr Log. cl ass

conl i bm ws/ commons/ | oggi ng/ Tr LogFact ory. cl ass
0. commons-| oggi ng. properties

5 ©E e o> e =

The JCL LogFactory discovery algorithm.

Figure A2.1 - LogFactory.getFactory() listing

- { Deleted:

Page Break

public static LogFactory getFactory()
throws LogConfi gurationException {

/1 ldentify the classl oader we will be using
Cl assLoader contextCl assLoader = (Cl assLoader) AccessControl | er. doPrivil eged(
new Privil egedAction() {
public Qbject run() {return getContextd assLoader();}
1

10. /1 Return any previously registered factory for this classl oader
11. LogFactory factory = get CachedFact ory(cont extCl assLoader);
12. if (factory !'= null)

©E el >

[WebSphere Sl 18

25 June 2004

IBM Corporation Not Confidential

13. return factory;

14.

15. /'l Load properties file..

16. /1 will be used one way or another in the end.

17. Properties props=null;

18. try {

19. | nput St ream stream = get Resour ceAsSt r ean(cont ext Cl assLoader,
FACTORY_PROPERTI ES) ;

20. if (stream!= null) {

21. props = new Properties();

22. props. | oad(stream ;

23. stream cl ose();

24. }

25. } catch (1 OException e) {
26. } catch (SecurityException e) {

27.

28.

29. I/l First, try the system property

30. try {

31. String factoryC ass = System get Property(FACTORY_PROPERTY) ;
32. if (factoryClass != null) {

33. factory = newFactory(factoryC ass, contextC assLoader);
34. }

35. } catch (SecurityException e) {

36. ;I ignore

37. }

38.

39. /'l Second, try to find a service by using the JDK1.3 JAR

40. /| discovery mechanism This will allow users to plug a | ogger

41. /1 by just placing it in the lib/ directory of the webapp (or in

42. /'l CLASSPATH or equivalent). This is simlar with the second

43. /] step, except that it uses the (standard?) jdkl.3 location in the JAR

44. if (factory == null) {

45, try {

46. I nput Stream i s = get Resour ceAsSt r ean{ cont ext Cl assLoader, SERVICE_ID);
47. if(is!=null) {

48. /'l This code is needed by EBCDI C and ot her strange systens.
49. /1 It's a fix for bugs reported in xerces

50. Buf f er edReader rd;

51. try {

52. rd = new BufferedReader (new | nput St reanReader (i s, "UTF-8"));
53. } catch (java.io. UnsupportedEncodi ngException e) {

54. rd = new BufferedReader (new | nput St reanReader (i s));

55. }

56.

57. String factoryC assName = rd.readLi ne();

58. rd. cl ose();

59. if (factoryCl assNane != null &&

60. I """ equal s(factoryC assNanme)) {

61. factory= newFactory(factoryC assName, contextd assLoader);
62.

63. }

64. } catch(Exception ex) {

65. ;

66. }

67. }

68.

69. /Il Third try a properties file.

70. /1 1f the properties file exists, it'll be read and the properties

71. /'l used. IMHO (costin) System property and JDK1.3 JAR service
72. /'l should be enough for detecting the class name. The properties
73. /1 should be used to set the attributes (which may be specific to
74. /'l the webapp, even if a default logger is set at JVMIlevel by a
75. /] system property)

76.

77. if (factory == null && props != null) {

78. String factoryC ass = props. get Property(FACTORY_PROPERTY) ;
79. if (factoryClass != null) {

80. factory = newFactory(factoryC ass, contextC assLoader);
81. }

[T softwars 19 25 June 2004

IBM Corporation Not Confidential

82. }

83.

84. /'l Fourth, try the fallback inplenentation class
85. if (factory == null) {

86. factory = newFact ory(FACTORY_DEFAULT, LogFactory. class.getC assLoader());
87. }

88. if (factory !'= null) {

89. [**

90. Al ways cache using context classloader..

91. */

92. cacheFact ory(cont ext Cl assLoader, factory);

93.

94. if(props!=null) {

95. Enunerati on nanes = props. propertyNanes();
96. whi | e (nanes. hasMor eEl enents()) {

97. String nane = (String) names.nextEl enent();
98. String val ue = props. get Property(nane);

99. factory.set Attribute(nanme, value);

100. }

101. 50

Appendix A3 - The JCL implementation package, commons-logging.jar
The commons-logging.jar archive contains the entire set of JCL classes released by Jakarta.

Figure A3.1 - The JCL implementation package, commons-logging.jar

©E RG>0 =

META- | NF

META- | NF/ LI CENSE. t xt
META- | NF/ MANI FEST. M-
org

or g/ apache

or g/ apache/ cormons

or g/ apache/ commons/ | oggi
or g/ apache/ commons/ | oggi
or g/ apache/ conmons/ | oggi
or g/ apache/ commons/ | oggi

. org/ apache/ conmons/ | oggi

or g/ apache/ commons/ | oggi
or g/ apache/ commons/ | oggi
or g/ apache/ cormons/ | oggi
or g/ apache/ commons/ | oggi
or g/ apache/ cormons/ | oggi
or g/ apache/ commons/ | oggi
or g/ apache/ commons/ | oggi
or g/ apache/ cormons/ | oggi
or g/ apache/ cormons/ | oggi

. org/ apache/ commons/ | oggi
. org/ apache/ conmons/ | oggi
. org/ apache/ coomons/ | oggi

or g/ apache/ commons/ | oggi

. org/ apache/ conmons/ | oggi

or g/ apache/ commons/ | oggi

. org/ apache/ conmons/ | oggi

ng

ng/ Log. cl ass

ng/ LogConfi gur ati onExcepti on. cl ass
ng/ LogFact or y$1. cl ass

ng/ LogFact ory$2. cl ass

ng/ LogFact or y$3. cl ass

ng/ LogFact ory. cl ass

ng/ LogSour ce. cl ass

ng/ package. ht m

ng/ i npl

ng/ i npl / Jdk14Logger. cl ass

ng/ i npl / Log4JCat egor yLog. cl ass
ng/ i npl / Log4j Factory. cl ass

ng/ i npl / Log4JLogger . cl ass

ng/ i npl / LogFact oryl npl $1. cl ass
ng/ i npl / LogFact oryl npl . cl ass
ng/ i npl / LogKi t Logger . cl ass

ng/ i npl / NoOpLog. cl ass

ng/ i npl / package. ht m

ng/ i npl / Si npl eLog$1. cl ass

ng/ i npl / Si npl eLog. cl ass

V[EIC software

20 25 June 2004

