Basic WebSphere Application Server V5.0 and V5.1 wsadmin Programmers Guide

Examples for the WebSphere® Application Server V5.x wsadmin tool are included in the information center,
Redbooks and technotes. Many clients want to advance their skills, doing more than making minor modifications to
these examples. A common goal for clients is to use wsadmin to create commands that duplicate the functionality
of the administrative console.

The building blocks in this document help you build the skills necessary to correctly formulate commands that
administer a WebSphere Application Server V5.x environment. This document explains how simple techniques
that use wsadmin commands, and other available documentation, can help you reach your administrative design
goals.

Basic WebSphere Application Server V5.x wsadmin
Programmers Guide

Index

1. Purpose
2. Official Product Documentation
3. Wsadmin Command Overview
3.1. Help
3.2. AdminApp
3.3. AdminConfig
3.4. AdminControl
4. Wsadmin Application Commands, AdminApp
4.1. Options
4.2. Interactive
5. Wsadmin Configuration Commands, AdminConfig
5.1. Basic AdminConfig Subjects
5.1.1. Types
5.1.2. Attributes
5.1.3. Required Attributes
5.1.4. Config IDs
5.2. Techniques for Formulating Administrative Configuration Commands
5.2.1. Scenario 1
5.2.2. Scenario 2
5.2.2.1. Discovering the Type
5.2.2.2. Understanding the Final Command
5.2.2.3. Forming the Final Command
6. Wsadmin Control Commands, AdminControl
7. Conclusion

1. Purpose

Many examples for the WebSphere Application Server V5.x wsadmin tool are provided in the information center,
Redbooks or technotes. Many clients want to advance their skills beyond the making minor enhancements to
examples, without calling IBM® Support.

The final goal for the client is the ability to create commands to mimic the administrative console and beyond. The
Basic WebSphere Application Server V5.x Wsadmin Programmers Guide advances the client skills by pointing out
important documentation that IBM provides, and the simple techniques needed to correctly formulate any command
to administer a WebSphere Application Server V5.x. This document shows how some public documentation and
some simple techniques that use wsadmin commands, can reach the final administrative design goals.

2. Official Product Documentation

WebSphere Application Server V5.x Information Center:

V5.0: http://publib.boulder.ibm.com/infocenter/wasinfo/index.jsp
V5.1: http://publib.boulder.ibm.com/infocenter/ws51help/index.jsp

The WebSphere Application Server Information Center contains many examples for wsadmin commands, the
migration commands from WSCP to wsadmin, and information about WebSphere Application Server MBeans,
JavaDoc.

The recommend starting point for new wsadmin users is the information center’'s Contents view, where you can
expand your WebSphere Application Server editions to find All topics by feature. Inside this view is the System
administration section. Underneath System administration is Scripting, where new users can learn how to use
wsadmin with the information center.

More advance users can employ good search strings to locate information directly.

One example of a generic search string is Example wsadmin; a more specific wsadmin search uses the specific
command, for example, installinteractive. The search results show all the examples and descriptions that IBM
has created. This is a powerful source, which IBM keeps up-to-date with current information.

WebSphere Application Server Support Web site:

http://www.ibm.com/software/webservers/appserv/was/support/

The IBM Redbooks, white papers, technotes and fixes for WebSphere Application Server are located on this Web
site. The WebSphere Application Server Support Web site provides a variety of information to help you use and fix
WebSphere Application Server.

The IBM Redbooks contain cook book examples for wsadmin; for example, the IBM WebSphere Application Server
5.0 System Management and Configuration Redbook contains “Command Line Administration and Scripting” in
Chapter 22.

Technotes document specific examples that many customers run into that are not documented or that correct
documented commands and examples from the Redbooks or other sources.

WebSphere developerWorks :

http://www.ibm.com/developerworks/websphere/

developerWorks is a Web site where advanced technical papers written by the architects and developers of
WebSphere products explain the design and usage of the products.

3. Wsadmin Command Overview

Three major categories, or objects, comprise the WebSphere Application Server administration commands:
AdminApp, AdminConfig and AdminControl. The most helpful command to use when lost in wsadmin is the help
command.

3.1. Help
The help command is useful in learning about how to properly work with the program. The wsadmin help shows
basic information about each command. Wsadmin describes the help command as follows:

wsadm n>$Hel p hel p
WASX70281: The Hel p obj ect has two purposes:

First, provide general help information for the objects supplied by wsadmn for
scripting: Help, Adm nApp, Adm nConfig, and Admi nControl.

Second, provide a neans to obtain interface information about MBeans running in the
system For this purpose, a variety of comands are available to get information
about the operations, attributes, and other interface infornmation about particul ar
MBeans.

The foll owi ng commands are supported by Hel p; nore detailed information about each of
t hese commands is available by using the "hel p* comand of Hel p and supplying the
nane of the command as an argunent.

attributes given an MBean, returns help for attributes

wsadni n returns general help text for the wsadm n script |auncher
nessage given a nessage id, returns explanation and user action nessage
3.2. AdminApp

wsadmin help describes the AdminApp commands as follows:

wsadni n>$Adm nApp hel p

WASX70951 : The Admi nApp object allows application objects to be manipulated -- this
includes installing, uninstalling, editing, and listing. Most of the commands
supported by Adm nApp operate in two nodes: the default node is one in which Adm nApp
conmuni cates with the WbSphere Application Server to acconplish its tasks. A |ocal
node is al so possible, in which no server comuni cation takes place. The |ocal node
of operation is invoked by bringing up the scripting client with no server connected
using the command |ine "-conntype NONE' option or setting the

"comibmws. scripting.connecti onType=NONE" property in the wsadm n. properties.

The foll owi ng comrands are supported by Adm nApp; nore detailed information about
each of these commands is avail able by using the "hel p* comand of Adm nApp and
suppl ying the nane of the command as an argunent.

edi t Edit the properties of an application
editinteractive Edit the properties of an application interactively

updat eAccessl Ds Updates the user/group binding infornmation with accessID
fromuser registry for a given application

del et eUser AndGr oupEnt ri es
Del etes all the user/group information for all
the roles and all the usernane/ password information for RunAs
roles for a given application.

3.3. AdminConfig

The AdminConfig category, or object, is used to manipulate the configuration of WebSphere Application Server.
This modifies the install_root/config/cells directory because this contains the unique model of your WebSphere
Application Server system. Wsadmin help explains AdminConfig as follows:

wsadni n>$Adm nConfi g hel p

WASX70531: The Admi nConfig object comunicates with the Config Service in a WbSphere
Application Server to mani pulate configuration data for a WebSphere Application
Server installation. AdmnConfig has comands to list, create, renove, display, and
nodi fy configuration data, as well as commands to display information about
configuration data types.

Most of the commands supported by Adm nConfig operate in two nodes:

the default node is one in which Adnmi nConfig comuni cates with the WebSphere
Application Server to acconplish its tasks. A local node is al so possible, in which
no server comuni cation takes place. The |ocal node of operation is invoked by
bringing up the scripting client with no server connected using the conmand |ine
conntype NONE" option or setting the "comibmws. scripting.connectionType=NONE"
property in the wsadm n. properties.

The foll owi ng commands are supported by Adm nConfig; nore detailed information about
each of these commands is avail able by using the "hel p* comand of Adm nConfig and
supplying the nane of the command as an argumnent.

attributes Show the attributes for a given type
checkin Check a file into the config repository.
types Show t he possible types for configuration
val i date I nvokes validation

3.4. AdminControl
Wsadmin explains AdminControl as follows:

wsadni n>$Adm nControl hel p

WASX70271: The Admi nControl object enables the nmanipul ati on of MBeans running in a
WebSphere Application Server process. The nunber and type of MBeans available to the
scripting client depends on the server to which the client is connected. |If the
client is connected to a Deploynment Manager, then all the MBeans running in the

Depl oynent Manager are visible, as are all the MBeans running in the Node Agents
connected to this Deployment Manager, and all the MBeans running in the application
servers on those nodes.

The foll owi ng commands are supported by Adm nControl; nore detailed information about
each of these commands is avail able by using the "hel p* command of Admi nControl and
suppl ying the nane of the command as an argunent.

Not e that many of these conmands support two different sets of signatures: one that
accepts and returns strings, and one | ow |l evel set that works with JMX objects |ike
bj ectNane and AttributeList. In nbst situations, the string signatures are likely to
be nore useful, but JMX-object signature versions are supplied as well. Each of

t hese JMX-obj ect signature commands has " _jnx" appended to the comand nane. Hence
there is an "invoke" command, as well as a "invoke jnmx" command.

conpl et ethj ect Nane
Return a String version of an object nanme given a
tenpl ate nane
getAttribute jnx
G ven (bj ect Nane and nanme of attribute, returns val ue of
attribute

test Connection Test the connection to a DataSource object
trace Set the wsadnin trace specification

4. Wsadmin Application Commands, AdminApp

The information center contains an advanced example of installing an EAR file; this example is called "Example:
Migrating - Installing an application." Using simple commands in the wsadmin AdminApp category can customize
the example for your scripts. The Interactive section below explains how IBM Support creates and verifies complex
AdminApp install and edit commands.

4.1. Options
The options command is helpful to use when installing an enterprise application. The command shows all
application options generically or for a specific EAR file. The following is the wsadmin help output for options:

wsadni n>$Adm nApp hel p options
WASX7098I : Met hod: options

Argunment s: none

Description: Displays the general options available for every application.
Met hod: options

Argunents: fil enane

Description: Displays all the options available for installing the application in the
file specified by "filenane."

4.2. Interactive

If you have difficulty creating an install or edit command, first using the installinteractive and editinteractive
commands. These commands walk you through the options showing the default settings and allowing you to
change them.

IBM support uses these commands to help create or verify complex install and edit commands by enabling tracing
on wsadmin and looking for the addToCommandLine trace entry. If wsadmin tracing is enabled, uncommenting
the traceString line in the wsadmin.properties file located in install_root/properties directory gives you the exact
install or edit command to automate this process.

This example demonstrates how to use the preceding technique to create an install command. The sampleApp.ear
needs to be installed where the web modules are mapped to a different virtual host. After enabling wsadmin tracing
and using the installlnteractive command on the sampleApp.ear, we modify specific option settings to match the
problem requirements. The following shows the wsadmin changes:

wsadm n>$Adm nApp installlnteractive
C. / WebSpher e50/ AppSer ver /i nst al | abl eApps/ sanpl eApp. ear

Web Modul e: Default Application

URI: default_app.war, VEB- | NF/ web. xm
Virtual Host: [default_host]: hostl
Setting "Virtual Host" to "host1"
Web Modul e: Exanpl es Application
URI: exanpl es. war, VEEB- | NF/ web. xm
Virtual Host: [default_host]: host2
Setting "Virtual Host" to "host2"

ADVA50131: Application Sanple Application installed successfully.

We do not need to save this configuration change because the goal is to determine the actual install command.
The wsadmin.traceout file, located in install_root/logs directory, is searching for addToCommandLine. The
following is found:

Adm nAppd i en < addToComandLi ne: install

C. / WebSpher e50/ AppSer ver/inst al | abl eApps/ sanpl eApp. ear { - MapWebModToVH {{" Def aul t
Application" default_app.war, VEB-| NF/ web. xml host 1} {"Exanpl es Application”

exanpl es. war, VEB- | NF/ web. xm host 2} }

The important part of the trace is everything starting from install to the end of the line. Start with $AdminApp, then
add the information from the trace, which results in the exact wsadmin install command.

Note: Based on the WebSphere Application Server level running the addition of a closing bracket } to the end of
command might be required for this to correctly work. This is how to create or verify the $AdminApp install or
$AdminApp edit commands quickly, easily and correctly.

5. Wsadmin Configuration Commands, AdminConfig

The AdminConfig category is the command searched for most often. This section helps increase your
understanding and vocabulary for the AdminConfig command. The basic subject areas are explained to make sure
you have a strong foundation before jumping into advance configuration commands. The next section reviews
techniques on how to create or improve your wsadmin commands.

5.1. Basic AdminConfig Subjects
There are four basics for the creation or adaptation of the AdminConfig command: types, attributes, required
attributes, and configuration Ids.

You probably have an idea of which objects you want to configure in wsadmin. Each configuration object, like a
Java object, belongs to a WebSphere Application Server type. The types are abstractions of configuration objects.
A type is defined by its attributes. Configuration objects have the real objects used by WebSphere Application
Server and have the attributes set to some user-defined values. So when you want to create a configuration
object, you must find out the type of the object to find out what attributes you must set.

5.1.1. Types

All objects that are shown in the administrative console or read in documentation about WebSphere Application
Server can be mapped to a WebSphere Application Server type. The AdminConfig command, $AdminConfig
types, outputs all WebSphere Application Server types. To understand how to use this command, refer to this
output from wsadmin:

wsadni n>$Adm nConfi g hel p types
WASX7068I : Met hod: types

Argunments: type
Description: Displays all the possible top-level configuration object types.

The help for this command states that there is a single argument; however, this is not correct. There are no
arguments to execute the types command. To determine all the possible WebSphere Application Server types to
configure in wsadmin, use the $AdminConfig types command. The following is an example output of this command:

wsadni n>$Adm nConfi g types
Admi nServi ce

Agent

Al | Aut henti cat edUser sExt
Application

WebCont ai ner

WebModul eConfi g

WebModul eDepl oyment

Wor kl oadManagenent Ser ver

5.1.2. Attributes

After the WebSphere Application Server type is found, or if more information is needed to better understand the
appropriate type, seeing all attributes can help. There is a command in wsadmin to display all attributes for any
WebSphere Application Server type. From wsadmin help, this output shows how to use the attributes command:

wsadnmi n>$Admi nConfig help attributes
WASX70611 : Met hod: attributes

Argunments: type

Description: Displays all the possible attributes contained by an object of type
"type." The attribute types are al so displayed; when the attribute represents a
reference to another object, the type of the attribute has a suffix of "@" Wen the
attribute represents a collection of objects, the type is listed with a suffix of
"* " |f the type represents a base type, possible subtypes are listed after the base
type in parenthesis. |If the type is an enuneration, it is listed as "ENUM" fol |l owed
by the possible values in parentheses.

Not e when a suffix is added an object it represents inportant information to better
use and configure this type.

5.1.3. Required Attributes
With any object, there are required and optional configuration attributes. To see which attributes are required when
creating a WebSphere Application Server type, use required:

wsadni n>$Adm nConfi g hel p required
WASX73601 : Met hod: required

Argunments: type
Description: Displays the required attributes contained by an object of type "type".

5.1.4. Configuration IDs

A configuration ID is a pointer to the specific object that you want to create, edit or view in the configuration.
Wsadmin represents these IDs with the display name first, followed by the configuration data ID in parenthesis. Not
all types have a display name.

Following is an example of a wsadmin configuration ID:
server1(cells/IBMNetwork/nodes/IBM/servers/server1:server.xml#Server_1).

The exact outline for the config ID is display name(config path:filename#id). This directly correlates to the
configuration xml files in WebSphere Application Server located in the install_root/config directory. The config path
and the filename are the specific location, the exact path based off the config directory, and file where the pointer
associates to the WebSphere Application Server configuration. The id and display name are actually the name=
and xmi:id= xml parameters found inside the referenced file. From the initial config ID example, this represents the
server.xml file for server1 located in install_root/config/cells/IBMNetwork/nodes/IBM/servers/server1 directory
where the following entry is found inside this file:

<process:Server ...Other information... xmi:id="Server_1" name="server1">

There are many commands in wsadmin to retrieve a config ID. The most popular way is the $AdminConfig getid
command. From wsadmin help you find the following information about $AdminConfig getid command:

wsadni n>$Admi nConfi g hel p getid
WASX70851 : Met hod: getid

Argunents: containnment path

Description: Returns the config id for an object described by the given contai nnment
path -- for exanple, /Node: nmyNode/ Server:sl/ JDBCProvider:jdbcl/

Only a containment path argument is needed to accurately issue this command. There are no other arguments for
this command. The containment path is a string describing the type and name of objects to precisely find a config
ID from the configuration directory.

The type is the WebSphere Application Server defined configuration types, learned previously in the Basic
AdminConfig subjects.

The name is the display name that is system specific. The containment path string is formed by the user placing a
colon (:) between each type and name noting to wsadmin when the type ends and the name begins. The forward
slash (/) is used by wsadmin to note when the type:name object begins and ends. If the name is not inputted into
the type:name object, a wildcard search is done, which returns all config IDs with that type. Multiple type:name
objects can be chained together to narrow a search for a config ID allowing less user interaction. A containment
path string can start at any specific type; only the direct child can be the next type:name object. If the next
type:name object in the string is not the direct child, no config ID is ever returned.

On a side note, wsadmin notes a space as an end to an argument and a valid display name can have multiple
spaces. When you use the JACL scripting language, you can use brackets ({) and ('}) around the whole
containment path when spaces are in the string. This stops wsadmin from confusing the containment path as
multiple arguments, especially since the getid command accepts only one argument.

The wsadmin help command for getid showed the following example for a containment object:
/Node:myNode/Server:s1/JDBCProvider:jdbc1/. Reviewing the string, the Node, Server and JDBCProvider show
that they are WebSphere Application Server config types, while the myNode, s1, and jdbc1 are specific to the
WebSphere Application Server system configuration.

Another semi-popular and easy-to-use command returning a config ID is the $AdminConfig list command. The
advantage of using the list command is the knowledge that a direct parent type is not required to retrieve the config
ID; that is, the getid command. The list command does wildcard searching where a scope can be input to narrow
the search, starting at the scope object and looking only at the children below this object. The output from wsadmin
help is shown below:

wsadni n>$Admi nConfig help Ii st
WASX70561 : Met hod: i st

Argunments: type
Description: Lists all the configuration objects of the type named by "type."
Met hod: i st

Argunents: type, scope

Description: Lists all the configuration objects of the type nanmed by "type" within
the scope of the configuration object naned by "scope."

The getid and list commands can return no config ID, a single config ID or multiple config IDs base on the
arguments input. There are a few problems that might be seen when searching for the config IDs. If the command
does not return anything, these are some possible reasons:

The type is not a correct WebSphere Application Server type. Verify the types subsection.

The name or scope is not correctly spelled. WebSphere Application Server is case sensitive.

The object does not exist. Do a wildcard search, replace the last name with nothing on getid command, for
example, /Node:myNode/Server:s1/JDBCProvider:/, or in the list command remove or increase the scope.

If all fails, there might be something wrong with wsadmin. Try other commands to retrieve the config ID for a
workaround on the issue; for example, showAttribute.

5.2. Techniques for Formulating Administrative Configuration Commands

This section walks wsadmin users though techniques to create or expand the number of useful configuration
commands. Below are two scenarios showing step-by-step how you can use the preceding basic commands, and
some creative thinking to create any configuration commands. The first scenario covers an IBM Information Center
configuration example, where each command is analyzed to show how easy the IBM examples are to write.
Formulating a command without any example to help guide you is shown in the second scenario.

5.2.1. Scenario 1

This scenario is an analysis of how IBM created Information Center examples for configuring WebSphere
Application Server titled Example: Configuring the Java virtual machine using wsadmin. Following is the exact
output from the Information Center:

Example: Configuring the Java virtual machine using wsadmin
Document Information: An example modifying the Java virtual machine (JVM) of a server to turn on debug follows:

Identify the server and assign it to the server1 variable.
set serverl [$Admi nConfig getid /Cell:nycell/Node: nynode/ Server: server1/]

Example output:
server1(cell s/ nycell/ nodes/ nynode/ servers/serverl: server.xm #Server 1)

Identify the JVM belonging to this server and assign it to the JVM variable.
set jvm [$Adm nConfig |ist JavaVirtual Machi ne $server1]

Example output:
(cell s/ nycel | / nodes/ nynode/ server s/ server 1: server.xm #JavaVi rt ual Machi ne_1)

Modify the JVM to turn on debug.
$Adm nConfig nodify $j vm {{debugMde true} {debugArgs "-Dj ava.conpil er =NONE - Xdebug -
Xnoagent - Xrunj dwp: transport=dt_socket, server =y, suspend=n, addr ess=7777"}}

Save the changes with the following command:
$Adni nConfi g save

The example is a four-step process to complete the task. The example is interested in changing the JVM
properties on server1. The first two steps are focused on retrieving the config ID to the object that requires
modifications. Instead of using two commands to get the required config ID, this can be done in one step by using
$AdminConfig getid /Server:server1/JavaProcessDef:/JavaVirtualMachine:/.

The single command is advanced for the containment path, because you must understand that the JavaProcessDef
type is the parent of a JavaVirtualMachine type. Therefore, the config IDs can be fetched in several ways; based
on your skill and comfort level, you can decide your initial steps.

The second phase of this example is modifying the JVM debug options. Because the example is modifying only
the JVM debug options, the attributes command executed on this type shows all the parameters possible for a
JavaVirtualMachine type. The output from wsadmin is below:

wsadm n>$Adm nConfi g attri butes JavaVirtual Machi ne
"boot Cl asspath String*"

"classpath String*"

"debugArgs String"

"debugMbde bool ean”

"di sabl eJI T bool ean"

"execut abl eJar Fi |l eNane String"

"generi cJvmArgunents String"

"hpr of Argunents String"

"initial HeapSi ze int"

"maxi nuntHeapSi ze int"

"osNane String"

“runHProf bool ean"

"systenProperties Property(TypedProperty)*"
"ver boseModeC ass bool ean"

"ver boseModeGar bageCol | ecti on bool ean"

"ver boseModeJNI bool ean”

In the example, the interest is only in editing the debugMode and debugArgs options for the JavaVirtualMachine.
Now the command can be properly constructed using the modify command.

wsadni n>$Adm nConfi g hel p nodify
WASX70581 : Met hod: nodify

Argunents: config id, attributes

Description: Changes the attributes specified by "attributes" for the configuration
obj ect naned by "config id."

Preceding is the output from wsadmin where the modify command accepts only two arguments, config ID and
attributes. Remember, wsadmin using the JACL language understands that each argument ends when a space is
found, and the use of brackets around an object that requires a space bypasses the logic. Because each attribute
requires spaces, the use of brackets around the object pair are required, and then around the collection of
attributes to represent the single attributes argument for the modify command.

The last step to all wsadmin configuration commands is a save to the WebSphere Application Server master
configuration.

5.2.2. Scenario 2
Scenario 2 is the creation of wsadmin commands where there is no example showing the exact or similar
commands. The most popular wsadmin commands are administrative configuration done in the administrative

console. When there are no examples to follow, you must use the basic wsadmin commands to collect the
information necessary to formulate the commands, and you must do some educated researching.

The researching requires that you understand how the WebSphere Application Server types map to objects that
need to be created, modified or deleted. Or the research can be as easy as configuring using the administrative
console, and reviewing the configuration changes in the install_root/config directory. This scenario demonstrates
how to use wsadmin to add a console user.

The administrative console can add console users for system administration without difficulty because you can see
where to click, and you can see all the parameters that are required for. Expand System Administration, then
choose Console Users and click Add to create a new user. A new page displays places for the User name and the
Role(s) to map to this user's administration level.

Following is a technique used to determine how to add a Console User with wsadmin. The technique is broken
down to three steps: discovering the type, understanding the final command and forming the final command.

5.2.2.1. Discovering the Type

When we use the $AdminConfig types command, we can make an educated guess at which type will create a new
Console User. There is no type that has the word console in the name, but two types contain the word user:
UserExt and UserRegistry. The $AdminConfig attributes type command displays all the attributes for both types.
Following is the output from wsadmin:

wsadm n>$Adm nConfig attri butes UserRegistry
"i gnoreCase bool ean"

"limt int"

"properties Property(TypedProperty)*"

"realm String"

"serverld String"

"server Password String"

wsadni n>$Adm nConfi g attri butes User Ext
"accessld String"
"nane String"

If you understand that a Console User is a global setting, and if you review all the attributes for each type, you can
determine that the UserExt is the correct type. Why would a global object, Console User, need attributes such as
serverld or serverPassword? Note that the administrative console does not show these attributes.

Use the administrative console to create a Console User, then save the new settings and see what is modified in
the install_root/config directory. This research shows that the admin-authz.xml file, located in
install_root/config/cells/<cell name> directory was modified by adding the following xml tag:

<users xm :id="UserExt_ 1" nanme="I|BM'/>

The xmi:id= shows the type of object that was created: UserExt.

Both educated and direct research points to the same conclusion: UserExt is the type to create a new Console
User in wsadmin.

5.2.2.2. Understanding the Final Command
This section explains how to create a new UserExt in wsadmin. $AdminConfig help has a method called create;
running the help command on this method sheds light on how to operate. Following is example wsadmin output:

wsadni n>$Adm nConfi g hel p create

WASX70541 : Met hod: create
Argunents: type, parent, attributes

Description: Create a configuration object of the type naned by "type," the parent
naned by "parent," using the attributes supplied by "attributes."

Met hod: create
Argunents: type, parent, attributes, parent attribute nane,

Description: Create a configuration object of the type naned by "type," the parent
nanmed by "parent," using the attributes supplied by "attributes" and the attribute
nane in the parent given by "parent attribute nane"

We know the type is UserExt, but we might not know the qualified attributes or direct parent of this type:

The attributes and required commands can help determine the proper attributes for this object. These show all
the possible attributes for UserExt and what is required when creating a new UserExt.

To determine the parent is not as easy. We have to take an educated guess or review the actual configuration
files to determine the parent of the UserExt object. Below is an example of how this can be done:

Review admin-authz.xml. This file contains the Console user information; the following xml tag is located at the
top:

<r ol ebasedaut hz: Aut hori zati onTabl eExt xm : versi on="2. 0"

In the types list, we see that AuthorizationTableExt is a WebSphere Application Server type. Examine the
attributes on this object to determine who is the direct parent of the UserExt object. Below is the attributes
output:

wsadm n>$Adm nConfi g attributes Authorizati onTabl eExt
"aut hori zati ons Rol eAssi gnnent Ext *"

"context String"

"fileNane String"

"rol es SecurityRol eExt*"

The asterisk (*) at the end of an object means that the object is a collection of objects, and contains multiple
attributes to create this object. Following is the RoleAssignmentExt type:

wsadm n>$Admi nConfi g attributes Rol eAssi gnment Ext

"groups G oupkExt*"

"role SecurityRol eExt @

"speci al Subj ects Speci al Subj ect Ext (EveryoneExt, All Aut henti cat edUser sExt,
Server Ext)*"

"users User Ext*"

In the preceding output, the UserExt is an attribute of the RoleAssignmentExt; therefore, the direct parent of
UserExt is RoleAssignmentExt. All the mandatory arguments for create are retrieved.

5.2.2.3. Forming the Final Command
This subsection focuses on assembling the commands to create the new console user in wsadmin.

STEP 1
Getting the parent config ID for the UserExt is done with the following command; a wildcard search on the
RoleAssignmentExt type is used because the display name is unknown:

wsadni n>set ¢ [$Admi nConfig getid /AuthorizationTabl eExt: adm n-
aut hz. xnm / Rol eAssi gnnent Ext : /]

(cel |l s/ | BMNet wor k: admi n- aut hz. xm #Rol eAssi gnnent Ext _1)

(cel | s/ | BMNet wor k: admi n- aut hz. xm #Rol eAssi gnnent Ext _2)

(cel | s/ | BMNet wor k: admi n- aut hz. xm #Rol eAssi gnnent Ext _3)

(cel | s/ | BMNet wor k: admi n- aut hz. xm #Rol eAssi gnnent Ext _4)

STEP 2
Multiple config IDs are returned for this example because the user needs to pick the level of security requested:

administrator - RoleAssignmentExt_1 (index 0)
operator - RoleAssignmentExt_2 (index 1)
configurator - RoleAssignmentExt_3 (index 2)
monitor - RoleAssignmentExt_4 (index 3)

Use a JACL command to select the correct parent config ID and map the security level for the new UserExt.

wsadni n>set d [lindex $c 0]
(cel | s/ Fat her Net wor k: admi n- aut hz. xm #Rol eAssi gnnment Ext _1)

Step two is required because the config IDs do not each have an associated display name that allows a devoted
containment path.

STEP 3
The create command is formed for the new UserExt.

wsadni n>$Admi nConfi g create User Ext $d {{nane Janes}}
Janmes(cel | s/ 1 BVWNet wor k: adm n- aut hz. xm #User Ext _1074722017464)

STEP 4
Save all changes done to the configuration to the master WebSphere Application Server configuration.

wsadni n>$Adm nConfi g save

6. Wsadmin Control Commands, AdminControl

The AdminControl category enables the manipulation of MBeans running in a WebSphere Application Server
process. If the MBean is not reachable to the MBean server to which wsadmin is connected, wsadmin cannot
manipulate that MBean.

Built into wsadmin is a useful command, $Help operation $objectname, where $objectname is the ObjectName of
an mbean. This command provides a list of available operations that the specific mbean provides. The Information
Center describes all the functions that be executed on all MBeans in WebSphere Application Server. Search for
MBean JavaDoc to display the following page:

; Help - Microsoft Internet Explorer _ |D|£|

File Edit Wiew Faworites Tools Help '1'
Q Back - _,)I - \ﬂ \ELI . ;\J /- y Search ME:._{’ Fayotites @ Media @\{ . ; = ¥
Address I:El http: /fpublib, baulder . ibrm . comyinfocenter fwsS 1 helpfindex . jsp j - Go | Links
.@ WebSphere. software Information cen te....,________a:- ~
Search: | | m fidvanced Search
Contents ':_%';. Websphere Application Server Network Deployment <o o E% ,ﬂ
= 03 Reference ;II - =
= 03 commands MBean ‘i 7
15} Scripting inkerl Type e b S phere
2 Files - -
=@ meganmngt || List Application Server
= 03 1avada:
B application REIEEISE 5-0
B Java Man. .
B r'-'E-an AdminOperal .
Bl Server col Public MBean Interfaces
B uoDiElR Lpplication
[uDDI Lkl Thiz documentation provides miormation on
B web serv

Applicationtd the public APIs presented by the WBean
that are part of the management system of

B web serv I -
T _"l_l Apphanager WebSphere Apphcation Server Eelease
Z1| 5.0 These MEean are accessible

] = « | , - 1] I . -
|é:| I_ I_ I_ |ﬂ Inkernet &

There are many examples in the information center and in various white papers that explain this category in detail.

B web servi

7. Conclusion
After reading this information, you should be able to create or research any wsadmin command. [f you have any
problems with a command that is not working, make sure you have the answers to the following questions before
contacting IBM:

a. Did you review the WebSphere Application Server Support Web site to see if a defect or technote discusses
this issue?

b. Is wsadmin running the most current code version? If not, upgrade to the current fix pack and cumulative
fix, then test again to make sure this is not already amended.

c. Follow directions in MustGather: Readme First to capture data for problem determination, then open a PMR.

