
IBM Corporation Not Confidential

 1 25 June 2004

Integrating Jakarta Commons Logging with
IBM WebSphere Application Server V5

D. A. Zavala

Y. C. Lau

Intended audience and scope
WebSphere J2EE application developers have indicated a need to utilize Jakarta Commons-Logging (JCL)
support beyond that supplied by WebSphere Application Server. Typical scenarios include utilizing the
Log4J or JDK1.4 logging implementations provided by JCL, utilizing proprietary JCL logger
implementations, and incorporating different versions of JCL. This article discusses developing
applications and configuring the WebSphere runtime environment towards utilizing application-specific
JCL artifacts. We assume the reader is familiar with or has access to references concerning WebSphere
Application Server [1,2], J2EE application development [3], and the aforementioned logging facilities
[4,5,6,7].

Quick start
Visit section “Building application-specific JCL solutions” to learn procedures for integrating JCL support
into WebSphere J2EE applications.

Contents
WebSphere v5 and Jakarta Commons-Logging ..2

JCL LogFactory specification options and discovery...2
The WebSphere classloader environment...3

Building application-specific JCL solutions..4
Solution - JCL option 3 + EAR ..6
Solution - JCL option 3 + WAR ...8
Solution - JCL option 2 + application-associated shared library ..10
Solution - JCL option 3 + server-associated shared library ..13

Using WebSphere JCL artifacts ..16
Solution - JCL option 2...16
Why this works ...16

Adding JCL artifacts to the JVM classpath ...17
References ...17
Appendices..18

Appendix A1 - WebSphere commons-logging artifacts ...18
Appendix A2 - JCL LogFactory.getFactory() implementation...18
Appendix A3 - The JCL implementation package, commons-logging.jar..20

Acknowledgements
1. Tom Musta, IBM Corporation
2. Don Bourne, IBM Corporation
3. Richard Sitze, IBM Corporation

IBM Corporation Not Confidential

 2 25 June 2004

WebSphere v5 and Jakarta Commons-Logging
Jakarta Commons-Logging (JCL) defines a common programming model for logging and a framework that
enables applications to bind different logger implementations; it provides the application programming
interfaces (APIs), the NoOpLog and SimpleLog implementations, plus thin “wrapper” implementations
over the Apache Log4J, J2SE1.4 and Avalon loggers.

The JCL architecture affords extension by providing a configurable abstract factory facility, LogFactory, to
instantiate specified implementations of the LogFactory class. To bind a particular type of Log
implementation (i.e. logger) an application configures the LogFactory with the name of the concrete
LogFactory implementation class that supports the particular Log implementation. The application invokes
method LogFactory.getFactory() to obtain an instance of this class, say myLogFactory, and then calls
myLogFactory.getLog() to obtain the log implementation.

WebSphere Application Server V5 (WAS5) supplies the JCL v1.2 API package, which is a proper subset of
the JCL implementation package offered by Apache/Jakarta. WebSphere also supplies proprietary JCL
extensions that require the JCL API package to operate. Both artifacts are listed in Appendix A1.
WebSphere J2EE applications that utilize JCL will typically obtain an instance of TrLogFactory upon
invoking the LogFactory.getFactory() method, and subsequent invocations of TrLogFactory.getLog() will
return instances of the WebSphere logging implementation, TrLog.

Applications occasionally must override the WebSphere TrLog logging implementation to bind another,
such as the Log4J or JDK1.4 loggers. Further, these applications may require only the classes of the
standard JCL package supplied with WebSphere, or may require application-specific JCL artifacts, such as
proprietary JCL extensions, different JCL versions, or more comprehensive packages of JCL.

Developers typically realize the requirements above by bundling additional JCL artifacts with their
applications and employing options 1, 2, or 3 for JCL LogFactory discovery, as described below. And
typically, they encounter unexpected behaviors such as class loading errors or JCL solutions that are
mysteriously ineffectual.

Unexpected behaviors concerning JCL integration are due to misunderstanding the JCL LogFactory
discovery algorithm and the deployment of application artifacts within the WebSphere runtime
environment.

JCL LogFactory specification options and discovery
According to the JCL User’s Guide [4], there are three options for specifying the name of the LogFactory
implementation class:

1. Assign the fully-qualified name of the LogFactory implementation class to system property

org.apache.commons.logging.LogFactory.

Do not use option 1 - Setting a JVM system property is ill advised as it affects all applications running
in the JVM, including the application server.

2. Specify the fully-qualified name of the LogFactory implementation class in file
org.apache.commons.logging.LogFactory within the …/META-INF/services directory.

IBM Corporation Not Confidential

 3 25 June 2004

3. Specify a name-value pair assigning the fully-qualified name of the LogFactory implementation class
to property org.apache.commons.logging.LogFactory in file commons-logging.properties, and place
this file in the classpath1.

When an application invokes LogFactory.getFactory(), the method performs a greedy algorithm which
searches the 3 options above, in the order presented, to obtain the name of the LogFactory implementation
class it will attempt to instantiate and return (see Listing 1 in Appendix A2.) Immediately upon finding an
item that specifies a LogFactory implementation class that can be instantiated, the search returns an
instance of that class. If the search fails, getFactory() returns the default JCL LogFactory implementation,
LogFactoryImpl.

Developers can use the files in options 2 and 3 to specify an application-specific LogFactory
implementation class. Results of the discovery algorithm will vary depending where the files deploy into
the WebSphere runtime (classloader) environment, and how the environment is configured.

The WebSphere classloader environment
By default, applications execute within the WebSphere classloader environment depicted in figure 1.

Figure 1 - The default WebSphere classloader environment

The [delegation] mode for each classloader is PARENT_FIRST, the Application classloader policy is
MULTIPLE, and the WAR classloader policy is MODULE. Under the default configuration a unique
Application classloader instance exists for each application EAR. All EJB module artifacts, “utility” JARs,

1 The classpath mentioned here will typically be the local classpath of the WebSphere Application or WAR
classloader and will depend on how the JCL artifacts are packaged within an application.

…

Application1
Classloader

WAR1
Classloader

WARn
Classloader

…

…

WAR1
Classloader

WARn
Classloader

…

Applicationm
Classloader

WAR1
Classloader

WARn
Classloader

WAS Extensions
Classloader

JVM
Classloaders

IBM Corporation Not Confidential

 4 25 June 2004

and resources bundled with the EAR appear in the local classpath of its corresponding Application
classloader. A unique WAR classloader instance exists for each WAR module in the EAR. WAR module
artifacts appear in local classpath of its corresponding WAR classloader, each of which is an immediate
child of the Application classloader. For describing development procedures we make the following
assumption:

The policies and modes of the WebSphere classloaders are configured to their defaults until specified
otherwise.

JCL artifacts supplied with WebSphere appear on the local classpath of the WebSphere Extensions
classloader2, which is the parent of all Application classloaders. When an application requires a JCL class
or resource in the classloader environment, the context classloader3 delegates the load operation to its
parent classloader. This process recurses upward until reaching the root of the hierarchy – the JVM
classloader -- and searches its local classpath for the item. If the search fails, the process “unwinds” to the
next lower classloader and searches its local classpath. The process executes until the item is found, or
until the search of the context classloader’s local classpath fails. In the default classloader environment,
JCL classes and resources will typically load from the local classpath of the WebSphere Extensions
classloader.

Therein lies the problem. If an application intends to exclusively utilize the JCL artifacts supplied with
WebSphere, the scenario above is correct; if an application intends to utilize application-specific JCL
artifacts, then the scenario should never occur -- that is, the WebSphere Extensions classloader should
never load an application-specific JCL class or resource. The assumption below allows us to safely
differentiate the two cases.

Applications are fully dependent on either WebSphere JCL artifacts or their own. Application-
supplied JCL classes have no dependencies on the JCL classes and resources supplied by WebSphere.

A general technique to integrate application-specific JCL solutions is to exercise option 2 or 3 to specify
the application-specific LogFactory; develop JCL artifacts having no dependencies on JCL classes supplied
by WebSphere; deploy these artifacts on the local classpath of a classloader below the WebSphere
Extensions classloader; then configure the [delegation] mode of the artifact classloader to PARENT_LAST
to ensure it loads application-specific JCL artifacts from its local classpath before delegating load
operations upward.

Section “Building application-specific JCL solutions” describes variations on the general technique above.
The discussion offers suggestions towards developing JCL artifacts and illustrates procedures for deploying
JCL artifacts in application EAR (WAR) and shared libraries, complete with directions for configuring the
classloader environment.

In the special case where an application requires only the standard JCL support supplied with WebSphere,
visit section “Using WebSphere JCL artifacts.”

Building application-specific JCL solutions
Applications frequently require JCL support beyond that supplied by WebSphere -- for example, a Web
application that utilizes the JCL Log4J logger. JCL Log4J support is not in the JCL API package supplied
by WebSphere, but can be obtained from Apache/Jakarta. Applications may require proprietary JCL
extensions as well.

2 Section 17.6 of the IBM WebSphere Application Server V5.0 System Management and Configuration
Redbook [1] provides more details about of the WebSphere classloader structure.
3 Just a reminder, the “context classloader” is initially the Application classloader on EJB method
invocations, and the WAR classloader on Servlet/JSP service() method invocations.

IBM Corporation Not Confidential

 5 25 June 2004

In general, to build application-specific JCL solutions:

1. Specify the desired LogFactory implementation within one of the files below.

 org.apache commons.logging.LogFactory (JCL option 2)
 commons-logging.properties. (JCL option 3)

2. Package all JCL classes and resources in a utility JAR, say commons-logging.jar, including the file

created in step 1.

3. Make commons-logging.jar available to the application using one of these techniques:

 Add commons-logging.jar to the application EAR
 Add commons-logging.jar to the application WAR
 Configure commons-logging.jar into an application-associated shared library.
 Configure commons-logging.jar into a server-associated shared library.

4. Set the [delegation] mode of the WebSphere classloader that contains commons-logging.jar in its local

classpath to PARENT_LAST.

Subsequent sections present development solutions that describe when these options are appropriate and
how to successfully execute them.

Regarding the steps above, there is no preference regarding which JCL file to specify the LogFactory
implementation class in step 1. Each works equally well given you follow the solutions.

To avoid potential problems we suggest in step 2 packaging all application-specific JCL classes and
resources in a single utility JAR. Also, we assume application-specific JCL classes and resources support
the application independently of those supplied by WebSphere. These two conditions eliminate potential
versioning issues between the application- and WebSphere-supplied JCL classes. Consider the case where
an application-specific JCL class is dependent on a class supplied by WebSphere, and the two classes are
incompatible. The conditions also ensure the same classloader will load all resources of the JCL solution --
the classloader containing this JAR on its local classpath – which facilitates debugging in the event a
classloader anomaly occurs, such as a JCL class is not found or a class cast exception.

Adding application-specific JCL artifacts to EARs (WARs) using utility JARs is a preferred practice,
because the artifacts are implicitly versioned per application, and because they are automatically deployed
to the server environment during application installation. At runtime the JARs are added to the local
classpath of the specific WebSphere Application (WAR) classloader.

Shared libraries provide a means to introduce application artifacts into the WebSphere runtime environment
without adding these artifacts to EARs, EJB JARs, or WARs. Shared libraries are managed via the Admin
console or wsadmin scripts. Once a shared library is defined, it may be associated to an application or to a
user-defined “server” classloader. The former is called an “application-associated” shared library; the latter
is “server-associated.”

Configuring application artifacts into shared libraries has immediate benefits. Shared libraries containing
different JCL solutions, for instance, can be associated with an application without uninstalling and
reconfiguring the application. Alternately, different applications can be associated with the same JCL
solution, facilitating system management with a single point of maintenance rather than maintaining
various JCL artifacts packaged within each application. By associating a shared library containing JCL
artifacts to a “server” classloader, a single JCL solution is available to all applications hosted by a
particular server, without any configuration to the applications. Thus, employing shared libraries can
facilitate application versioning, maintenance, and development.

IBM Corporation Not Confidential

 6 25 June 2004

Finally, setting classloader delegation mode to PARENT_LAST is always necessary to ensure the
appropriate WebSphere classloader loads all the classes and resources of the JCL solution before delegating
the load operation to its parent, potentially causing integration problems.

Here are some suggested approaches to building application-specific JCL solutions.

Solution - JCL option 3 + EAR
Use this approach if your application contains only EJBs, or EJBs and Servlets/JSPs that require JCL
support.

To provide an application-specific JCL solution using JCL option 3, the commons-logging.properties file,
in an Enterprise Application Archive (EAR):

1. Specify the desired LogFactory implementation within file commons-logging.properties:

a. Create a file named “commons-logging.properties”
b. Enter the following line into the file:

org.apache.commons.logging.LogFactory=<fully_qualified_LogFactory_implementation_class>

For example, to use the Log4J factory, enter the line shown in figure 2:

Figure 2 - Content of file commons-logging.properties

org.apache.commons.logging.LogFactory=org.apache.commons.logging.impl.Log4jFactory

2. Package all JCL classes and resources in a utility JAR, say commons-logging.jar, inserting the

commons-logging.properties file into the root directory of that JAR [figure 3].

Figure 3 - Partial listing, commons-logging.jar file

META-INF
META-INF/LICENSE.txt
META-INF/MANIFEST.MF
commons-logging.properties
org
org/apache
org/apache/commons
org/apache/commons/logging
org/apache/commons/logging/Log.class
…

The general requirement for the commons-logging.properties file to be effective is that the file be
visible on the application classpath. In a multi-classloader environment, this requirement is not
straightforward, since various classloaders may load application artifacts. For simplicity, we suggest
inserting the commons-logging.properties file into the JAR containing application-specific JCL
artifacts. This satisfies the requirement via a standard J2EE application development practice.

3. Make commons-logging.jar available to EJB and Web modules of your application.

a. Add file commons-logging.jar to the root directory of the application EAR [figure 4].

IBM Corporation Not Confidential

 7 25 June 2004

Figure 4 - Partial listing of application EAR containing JCL artifact

META-INF
META-INF/MANIFEST.MF
...
commons-logging.jar
...

b. Add commons-logging.jar to the Class-Path attribute within the MANIFEST.MF file of every EJB

JAR and WAR dependent on the JCL solution. At minimum, the Class-Path attribute should
appear as shown in figure 5.

Figure 5 - Class-Path attribute of EJB module META-INF/MANIFEST.MF

Class-Path: commons-logging.jar

At runtime commons-logging.jar will appear on the local classpath of the Application classloader. For
more information, visit section 17.7.1 of System Management and Configuration Redbook [1] for
directions to package utility JARs into WARs and EARs.

4. Set the [delegation] mode of the Application classloader to PARENT_LAST. Using the Admin

console:

a. Select Applications > Enterprise Applications > “my application” [figure 6.]
b. Select PARENT_LAST from the Classloader Mode drop-down list.
c. Click OK.
d. Select Save and save your changes!

IBM Corporation Not Confidential

 8 25 June 2004

Figure 6 - Setting the Application Classloader Mode

5. Restart the application server for the changes to take effect.

The server configuration changes are now effective, allowing the JCL solution to function as expected.

Solution - JCL option 3 + WAR
Use this approach if your application contains only Servlets/JSPs that require JCL support.

To build an application-specific JCL solution employing JCL option 3, the commons-logging.properties
file, in a Web module (WAR):

1. Specify the desired LogFactory implementation within file commons-logging.properties -- see step 1

of section “JCL option 3 + EAR”

IBM Corporation Not Confidential

 9 25 June 2004

2. Package all JCL classes and resources in a utility JAR, say commons-logging.jar, inserting the
commons-logging.properties file into the root directory of that JAR -- see step 2 of section “JCL option
3 + EAR”

3. Make commons-logging.jar available to the Web modules of your application.

Add file commons-logging.jar to the /WEB-INF/lib directory of each application WAR that requires
JCL support [figure 7.]

Figure 7 - Partial listing of application WAR containing JCL utility jar

...
WEB-INF/lib/commons-logging.jar
...

4. Set the [delegation] mode of the application’s WAR classloader to PARENT_LAST. Using the Admin

console:

a. Select Applications > Enterprise Applications > “my application” > Web Modules > “my WAR

module” [figure 8]
b. Select PARENT_LAST from the Classloader Mode drop-down list.
c. Select Save and save your changes!

Figure 8 - Setting the WAR Classloader Mode

5. Restart the application server.

The server configuration changes are now effective, allowing the JCL solution to function as expected.

IBM Corporation Not Confidential

 10 25 June 2004

Solution - JCL option 2 + application-associated shared library
Use this approach if your application contains only EJBs, or EJBs and Servlets/JSPs that require JCL
support, and you would like to utilize this solution across select applications by modifying the server
configuration rather than just the application (EAR.)

To build an application-specific JCL solution employing JCL option 2, the
org.apache.commons.logging.LogFactory file, in an application-associated shared library:

1. Specify the desired LogFactory implementation within file org.apache.commons.logging.LogFactory.

a. Create a file named “org.apache.commons.logging.LogFactory”.
b. Insert into it the name of the JCL LogFactory implementation class, without quotes!

Figure 9 lists the contents of an org.apache.commons.logging.LogFactory file which specifies the
default JCL LogFactory class, org.apache.commons.logging.impl.LogFactoryImpl.

Figure 9 - The org.apache.commons.logging.LogFactory file

org.apache.commons.logging.impl.LogFactoryImpl

2. Package all JCL classes and resources in a utility JAR, say commons-logging.jar, inserting the

org.apache.commons.logging.LogFactory file into the /META-INF/services directory of that JAR.

Upon completing step 2, a listing of the utility JAR should resemble figure 10. Ensure that the
LogFactory file resides in the META-INF/services directory, which in turn resides at the root level of
the JAR, and that the names are correct.

Figure 10 - Partial listing, commons-logging.jar file

META-INF
META-INF/LICENSE.txt
META-INF/MANIFEST.MF
META-INF/services/ org.apache.commons.logging.LogFactory
org
org/apache
org/apache/commons
org/apache/commons/logging
org/apache/commons/logging/Log.class
…

3. Make commons-logging.jar available to the EJB and Web modules of your application by configuring

it into shared library and associating that library to your application.

a. Install your J2EE application. Do not start the application yet!
b. Copy commons-logging.jar to a directory that is preferably outside the WAS install. For sake of

example we use “d:\tmp\jcl\”.

Create the shared library. Shared libraries can be created using the Admin console or wsadmin
scripting. Using the Admin console:

d. Click “Environment” > “Shared Libraries”. You should see the screen in figure 11.
e. Select scope “ Server”.
f. Click “New”.
g. Enter the name, description, and classpaths for the shared library [figure 12.]

IBM Corporation Not Confidential

 11 25 June 2004

i. Enter “JCL” in the Name field.
ii. [Optional] Enter “JCL shared library” in the Description field.
iii. Enter “d:\tmp\jcl\commons-logging.jar” in the Classpath field.

h. Click OK.
i. Select Save and save your changes.

The shared library is now defined within the WebSphere server configuration.

Figure 11 - Creating a shared library

Associate the shared library to the application that requires the JCL solution. Again this can be
achieved using the Admin console or wsadmin scripting. Using the Admin console:

j. Select Applications > Enterprise Applications > “my application”
k. Select Libraries towards the bottom of the screen. The screen in figure 13 appears.
l. Click Add.
m. Select the name of the shared library containing the JCL solution from the Library Name drop

down list [figure 14.]
n. Click OK

The shared library is now bound to the application.

4. Set the Application classloader [delegation] mode to “PARENT_LAST”. Using the Admin console:

a. Select Applications > Enterprise Applications > “my application”.
b. Select PARENT_LAST from the Classloader Mode drop-down list as shown in figure 6.
c. Click OK.
d. Select Save and save your changes.

The mode of the Application classloader is now PARENT_LAST.

IBM Corporation Not Confidential

 12 25 June 2004

5. Restart the server for the changes to take effect.

The JCL solution is now accessible to the application. The application server adds the shared library’s
classpath to the local classpath of the Application classloader only, which causes the application’s EJB and
Web modules to utilize the JCL solution contained in the shared library.

For more information about configuring shared libraries, visit the IBM WebSphere Application Server V5
InfoCenter [2].

Figure 12 - Configuring the shared library

Figure 13 - Associating the shared library to the application

IBM Corporation Not Confidential

 13 25 June 2004

Figure14 - Selecting the shared library

Solution - JCL option 3 + server-associated shared library
Use this approach if your application contains only EJBs, or EJBs and Servlets/JSPs that require JCL
support, and you would like to utilize this solution across all applications hosted by an application server.

Deploying application artifacts in server-associated shared library does not involve the Application or
WAR classloaders, but rather, introduces a user-defined “server” classloader between the WebSphere
Extensions classloader and the Application classloaders as depicted below. Adding a server-associated
shared library containing JCL artifacts will make the JCL solution visible to all applications hosted by the
server which contains the user-defined classloader. For this reason the solution may be desirable in special
development scenarios.

Figure 15 - The WebSphere classloader environment with a user-defined classloader

To build an application-specific JCL solution employing JCL option 3, the commons-logging.properties
file, in a server-associated shared library:

WAS Extensions
Classloader

JVM
Classloaders

WAS Server
Classloader

WAS Application
Classloaders

IBM Corporation Not Confidential

 14 25 June 2004

1. Specify the desired LogFactory implementation in the commons-logging.properties file -- see step 1 of

section “JCL option 3 + EAR”.

2. Package all JCL classes and resources in a utility JAR, say commons-logging.jar, inserting the
commons-logging.properties file into the root directory of that JAR -- see step 2 of section “JCL option
3 + EAR”.

3. Make commons-logging.jar available to the EJB and Web modules of all applications by configuring it

into shared library and associating that library to a user-defined server classloader.

a. Follow steps 3.a through 3.i presented in section "Solution - JCL option 3 + application-associated
shared library" to install the application and define a shared library.

Create a user-defined “server” classloader configured with PARENT_LAST delegation. This may be
achieved using the Admin console or wsadmin scripting. Using the Admin console:

b. Select Servers > “my server” > Classloader. The screen in figure 16 shows the Classloader link;

the screen in figure 17 appears.
c. Click New.
d. Select PARENT_LAST from the Classloader Mode drop-down menu [figure 18.]
e. Click OK.
f. Select Save and save your change.

Figure 16 - Finding the “server” classloader link

Figure 17 - Creating the “server” classloader

IBM Corporation Not Confidential

 15 25 June 2004

Figure 18 - Selecting classloader mode of the “server” classloader

4. Associate the shared library to the classloader. Again, this can be achieved using the Admin console

or wsadmin scripting. Using the Admin console:

a. Select Servers > “my server” > Classloader.
b. Select the classloader created above. The screen in figure 19 appears.
c. Select Libraries.
d. Click Add.
e. Select the shared library created in step 3 from the Library Name drop-down menu.
f. Click OK.
g. Select Save and save the changes.

 Figure 19 - Associating the shared library to the “server” classloader

6. Restart the server for the changes to take effect.

The JCL solution is now accessible to all applications hosted by the server. The application server adds the
shared library’s classpath to the local classpath of the specified “server” classloader only, which causes the
all applications hosted by the server to potentially utilize the JCL solution contained in the shared library.
For more information about configuring shared libraries, visit the IBM WebSphere Application Server V5
InfoCenter [2].

IBM Corporation Not Confidential

 16 25 June 2004

Using WebSphere JCL artifacts
An application may require only the standard JCL classes and resources supplied by WebSphere [Appendix
A1.1.] Although use of these artifacts is not officially supported, developers have attempted to use them.
So let’s examine this special case. The simplest way to use WebSphere JCL support is to specify the
LogFactory implementation class in file org.apache.commons.logging.LogFactory (see option 2 in section
“JCL LogFactory specification and discovery.”) Typically, such applications obtain the default JCL
LogFactory. There is no need for PARENT_LAST delegation, because there are no application-specific
JCL artifacts to deploy, and because the solution does not utilize file commons-logging.properties (see
option 3, section “JCL LogFactory specification and discovery.”)

Solution - JCL option 2
To utilize JCL classes supplied by WebSphere:

1. Specify the desired LogFactory implementation in the LogFactory file.

a. Create a file named “org.apache.commons.logging.LogFactory”.
b. Insert into it the name of the JCL LogFactory implementation class, without quotes!

Figure 9 lists the contents of an org.apache.commons.logging.LogFactory file which specifies the default
JCL LogFactory class, org.apache.commons.logging.impl.LogFactoryImpl.

2. Add file org.apache.commons.logging.LogFactory to the META-INF/services directory of the EJB or

Web module (i.e., JAR or WAR file) that requires the JCL logger.

Adding the LogFactory file to an EJB JAR ensures the Application classloader loads the file; adding the
file to a WAR does the same for the WAR classloader. The EJB-solution will apply to all EJB and Web
modules; the WAR-solution applies to Web modules only.

Upon completing step 2, a listing of the EJB JAR or WAR contents should be similar to figure 22. Ensure
that the LogFactory files reside in the META-INF/services directory, which in turn resides at the root level
of the EJB or WAR module, and that the names are correct.

Figure 20 - A partial WAR listing containing the org.apache.commons.logging.LogFactory file

META-INF/
META-INF/MANIFEST.MF
META-INF/services/
META-INF/services/org.apache.commons.logging.LogFactory
...

Why this works
Adding the org.apache.commons.logging.LogFactory file to the META-INF/services directory of the EJB
JAR (WAR) effectively appends the file to local classpath of the WebSphere Application (WAR)
classloader, because the Java Extensions/Service Provider facility of the classloaders automatically
searches the META-INF/services directory during load operations. When an application invokes
LogFactory.getFactory(), the LogFactory discovery algorithm attempts to open the
org.apache.commons.logging.LogFactory file. The context classloader searches for the file according to its
[delegation] mode. Under PARENT_FIRST delegation the classloader delegates the search up the
WebSphere classloader tree, but the search ultimately fails, because WebSphere specifies its LogFactory
implementation class in file commons-logging.properties located in file ws-commons-logging.jar
[Appendix A1.2], not org.apache.commons.logging.LogFactory. And thus, the context classloader finds
the file on its own classpath.

IBM Corporation Not Confidential

 17 25 June 2004

If the search for the org.apache.commons.logging.LogFactory file fails, or if the class specified inside the
file cannot be instantiated, then the getFactory() method searches for the commons-logging properties file.
Under PARENT_FIRST delegation, it will find the file provided by WebSphere and thus return an instance
of TrLogFactory. Failure to find the org.apache.commons.logging.LogFactory file or instantiate the class
named within it will likely be caused by typing errors when constructing the file.

Caveat - If future versions of WebSphere employ the LogFactory file to integrate commons-logging
features, this solution will be ineffectual unless PARENT_LAST classloader delegation is configured
for the classloader containing the LogFactory file in its local classpath.

Adding JCL artifacts to the JVM classpath
Finally, adding an application’s JCL artifacts to the server JVM classpath may be ineffectual as the Java
Extensions classloader (the classloader to which this classpath setting applies) resides above the
WebSphere Extensions classloader in the WebSphere runtime environment. Never utilize this approach to
add application artifacts to the WebSphere runtime environment.

References
1. IBM International Technical Support Organization. IBM WebSphere Application Server V5.0 System

Management and Configuration; WebSphere Handbook Series, SG24-6195-00. IBM Corporation.
April 2003.
http://www.redbooks.ibm.com/redbooks/pdfs/sg246195.pdf

2. IBM WebSphere V5.0 InfoCenter.

http://www-306.ibm.com/software/webservers/appserv/infocenter.html.

3. Sun J2EE platform.

http://java.sun.com/j2ee/index.jsp.

4. Apache-Jakarta Commons Logging Users Guide.

http://jakarta.apache.org/commons/logging/userguide.html.

5. Apache-Jakarta Commons Logging Overview.

http://java.sun.com/j2se/1.4.2/docs/guide/logging/overview.html.

6. Sun JDK1.4 Logging API.

http://java.sun.com/j2se/1.4/docs/guide/util/logging/index.html.

7. Apache-Avalon Toolkit.

http://avalon.apache.org/logkit/index.html.

8. Sun J2SE JAR File Specification.

http://java.sun.com/j2se/1.3/docs/guide/jar/jar.html

IBM Corporation Not Confidential

 18 25 June 2004

Appendices

Appendix A1 - WebSphere commons-logging artifacts
WebSphere supplies two JCL artifacts: ws-commons-logging.jar, which contains WebSphere proprietary
JCL extensions, and commons-logging-api.jar, which contains the JCL support required by the extensions.

Figure A1.1 - WebSphere-supplied JCL API package, commons-logging-api.jar

1. META-INF/
2. META-INF/MANIFEST.MF
3. org/
4. org/apache/
5. org/apache/commons/
6. org/apache/commons/logging/
7. org/apache/commons/logging/impl/
8. org/apache/commons/logging/impl/Jdk14Logger.class
9. org/apache/commons/logging/impl/LogFactoryImpl$1.class
10. org/apache/commons/logging/impl/LogFactoryImpl.class
11. org/apache/commons/logging/impl/NoOpLog.class
12. org/apache/commons/logging/impl/SimpleLog$1.class
13. org/apache/commons/logging/impl/SimpleLog.class
14. org/apache/commons/logging/Log.class
15. org/apache/commons/logging/LogFactory$1.class
16. org/apache/commons/logging/LogFactory$2.class
17. org/apache/commons/logging/LogFactory$3.class
18. org/apache/commons/logging/LogFactory.class
19. org/apache/commons/logging/LogConfigurationException.class
20. org/apache/commons/logging/LogSource.class
21. META-INF/LICENSE.txt

Figure A1.2 - WebSphere JCL extensions, ws-commons-logging.jar

1. META-INF/MANIFEST.MF
2. META-INF/
3. com/
4. com/ibm/
5. com/ibm/ws/
6. com/ibm/ws/commons/
7. com/ibm/ws/commons/logging/
8. com/ibm/ws/commons/logging/TrLog.class
9. com/ibm/ws/commons/logging/TrLogFactory.class
10. commons-logging.properties

Appendix A2 - JCL LogFactory.getFactory() implementation
The JCL LogFactory discovery algorithm.

Figure A2.1 - LogFactory.getFactory() listing

1. public static LogFactory getFactory()
2. throws LogConfigurationException {
3.
4. // Identify the classloader we will be using
5. ClassLoader contextClassLoader = (ClassLoader)AccessController.doPrivileged(
6. new PrivilegedAction() {
7. public Object run() {return getContextClassLoader();}
8. });
9.
10. // Return any previously registered factory for this classloader
11. LogFactory factory = getCachedFactory(contextClassLoader);
12. if (factory != null)

Deleted: Page Break

IBM Corporation Not Confidential

 19 25 June 2004

13. return factory;
14.
15. // Load properties file..
16. // will be used one way or another in the end.
17. Properties props=null;
18. try {
19. InputStream stream = getResourceAsStream(contextClassLoader,

FACTORY_PROPERTIES);
20. if (stream != null) {
21. props = new Properties();
22. props.load(stream);
23. stream.close();
24. }
25. } catch (IOException e) {
26. } catch (SecurityException e) {
27. }
28.
29. // First, try the system property
30. try {
31. String factoryClass = System.getProperty(FACTORY_PROPERTY);
32. if (factoryClass != null) {
33. factory = newFactory(factoryClass, contextClassLoader);
34. }
35. } catch (SecurityException e) {
36. ; // ignore
37. }
38.
39. // Second, try to find a service by using the JDK1.3 JAR
40. // discovery mechanism. This will allow users to plug a logger
41. // by just placing it in the lib/ directory of the webapp (or in
42. // CLASSPATH or equivalent). This is similar with the second
43. // step, except that it uses the (standard?) jdk1.3 location in the JAR.
44. if (factory == null) {
45. try {
46. InputStream is = getResourceAsStream(contextClassLoader, SERVICE_ID);
47. if(is != null) {
48. // This code is needed by EBCDIC and other strange systems.
49. // It's a fix for bugs reported in xerces
50. BufferedReader rd;
51. try {
52. rd = new BufferedReader(new InputStreamReader(is, "UTF-8"));
53. } catch (java.io.UnsupportedEncodingException e) {
54. rd = new BufferedReader(new InputStreamReader(is));
55. }
56.
57. String factoryClassName = rd.readLine();
58. rd.close();
59. if (factoryClassName != null &&
60. ! "".equals(factoryClassName)) {
61. factory= newFactory(factoryClassName, contextClassLoader);
62. }
63. }
64. } catch(Exception ex) {
65. ;
66. }
67. }
68.
69. // Third try a properties file.
70. // If the properties file exists, it'll be read and the properties
71. // used. IMHO (costin) System property and JDK1.3 JAR service
72. // should be enough for detecting the class name. The properties
73. // should be used to set the attributes (which may be specific to
74. // the webapp, even if a default logger is set at JVM level by a
75. // system property)
76.
77. if (factory == null && props != null) {
78. String factoryClass = props.getProperty(FACTORY_PROPERTY);
79. if (factoryClass != null) {
80. factory = newFactory(factoryClass, contextClassLoader);
81. }

IBM Corporation Not Confidential

 20 25 June 2004

82. }
83.
84. // Fourth, try the fallback implementation class
85. if (factory == null) {
86. factory = newFactory(FACTORY_DEFAULT, LogFactory.class.getClassLoader());
87. }
88. if (factory != null) {
89. /**
90. Always cache using context classloader..
91. */
92. cacheFactory(contextClassLoader, factory);
93.
94. if(props!=null) {
95. Enumeration names = props.propertyNames();
96. while (names.hasMoreElements()) {
97. String name = (String) names.nextElement();
98. String value = props.getProperty(name);
99. factory.setAttribute(name, value);
100. }
101. ...

Appendix A3 - The JCL implementation package, commons-logging.jar
The commons-logging.jar archive contains the entire set of JCL classes released by Jakarta.

Figure A3.1 - The JCL implementation package, commons-logging.jar

1. META-INF
2. META-INF/LICENSE.txt
3. META-INF/MANIFEST.MF
4. org
5. org/apache
6. org/apache/commons
7. org/apache/commons/logging
8. org/apache/commons/logging/Log.class
9. org/apache/commons/logging/LogConfigurationException.class
10. org/apache/commons/logging/LogFactory$1.class
11. org/apache/commons/logging/LogFactory$2.class
12. org/apache/commons/logging/LogFactory$3.class
13. org/apache/commons/logging/LogFactory.class
14. org/apache/commons/logging/LogSource.class
15. org/apache/commons/logging/package.html
16. org/apache/commons/logging/impl
17. org/apache/commons/logging/impl/Jdk14Logger.class
18. org/apache/commons/logging/impl/Log4JCategoryLog.class
19. org/apache/commons/logging/impl/Log4jFactory.class
20. org/apache/commons/logging/impl/Log4JLogger.class
21. org/apache/commons/logging/impl/LogFactoryImpl$1.class
22. org/apache/commons/logging/impl/LogFactoryImpl.class
23. org/apache/commons/logging/impl/LogKitLogger.class
24. org/apache/commons/logging/impl/NoOpLog.class
25. org/apache/commons/logging/impl/package.html
26. org/apache/commons/logging/impl/SimpleLog$1.class
27. org/apache/commons/logging/impl/SimpleLog.class

