
WebSphere Application Server for z/OS Version 5.0.2

WSADMIN Scripting Primer
Preliminary Release -- document not yet indexed.

Look for update in future with index.

This document can be found on the web at:
www.ibm.com/support/techdocs

Search for document number WP100421 under the category of "White Papers"

Version Date: May 5, 2004

IBM Washington Systems Center

Donald C. Bagwell
IBM Washington Systems Center

301-240-3016
dbagwell@us.ibm.com

Carl Wohlers
IBM WebSphere for zSeries Sales

1-919-847-1966
carlw@us.ibm.com

Thanks to:
y Mike Cox of the Washington Systems Center
y Jack Brady of WebSphere Development
y Rohith Ashok of WebSphere Development

y Nick Carlin of IBM UK

Suggestions for Future Updates:

If you have some suggestions for how to improve this document --
things that need further clarification, or WSADMIN examples that

need to be included -- please send them to:
dbagwell@us.ibm.com

Table of Contents

30Using Jacl variables to break up long command lines .
30Jacl lists -- an important way of providing options to WSADMIN commands .
28Using If-Else to validate the number of parameters passed in .
27Passing values in as parameters .
27Parsing words out of a string .
26Setting multiple variables .
26What happened in that last exercise? .
25Simple setting of variable and putting variable back to screen .
25Getting ready .
25Lesson 3: Introduction to Jacl scripting .
24Concluding points on this lesson .
23Pointing to an external file from a JCL batch job .
22Copy BBODIAPP job and modify it to do something simpler at this point .
22Question: why no -javaoption in JCL to say commands are in EBCDIC? .
21A look inside the BBODIAPP job .
20WSADMIN commands inside JCL .
20Use -javaoption switch to indicate source is in EBCDIC .
20Intentionally create error where EBCDIC used when WSADMIN expects ASCII .
19Create HFS file and enter commands .
19Important point: WSADMIN by default expects files to be in ASCII .
19WSADMIN commands held in a separate file .
18WSADMIN commands that follow the invocation of the shell script .
18Lesson 2: Invoking WSADMIN in Batch Mode .
17Concluding points on this lesson .
17Exiting the WSADMIN interactive client .
16List the applications installed in this cell .
15Start WSADMIN client interface with -conntype of NONE .
14Invoke "Help" facility of WSADMIN .
14Access command line interface .
14Lesson 1: Starting Client and Exploring Commands .
13Learning challenges .
13Using a scripting language .
12Important: Do NOT use WSADMIN and Admin Console at the same time .
12If we operate in local mode (no connection), what config HFS do we act against? .
11If connecting, which server process should we connect to? .
10When should one use "local mode" versus "remote mode"? .
9Connecting to server process port, or operating in "local mode" .
9Important: run wsadmin.sh under authority of WebSphere Administrator ID .
9A fourth way to invoke WSADMIN -- on another platform .
8Invoking the wsadmin.sh shell script from OMVS, Telnet, or JCL .
7Two ways to use WSADMIN -- interactive and batch .
7The wsadmin.sh shell script .
7If you've configured a WebSphere for z/OS cell, you've used WSADMIN .
6What WSADMIN is not .
6Introduction to WSADMIN .
5Where reference documentation is available .
5The z/OS focus of this document .
5How this document is designed .
5What this document is intended to provide -- and not provide .
5Why this document was written .
5Summary Overview .

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Overview and Introduction
Version Date: Wednesday, May 05, 2004- 1 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

65Changing the name of the virtual host .
65Using the modify method of $AdminConfig to add another alias to the virtual host
64Question: what if virtual host had multiple hostname/port pairs? .
63Jacl script using variables to populate attribute list .
62Jacl script with hard-coded attribute list .
62Understanding all the open and closing braces in create VirtualHost command .
61Creating a new virtual host complete with an HostName/Port alias .
60Using the show and showAttribute methods to display contents of host alias .
59Using the showAttribute method to display a certain kind of attribute .
59Using the show method to display all the attributes held by the configuration object
58Using the getid method to place the config ID of default_host into a Jacl variable .
57Using WSADMIN to determine the values assigned to an existing virtual host
56Listing the existing VirtualHost types (including your new one) .
56Jacl script to get the cell ID, then create no-alias virtual host .
55Determining the ID of the cell to provide as the "parent" for the create method .
55Using WSADMIN to create a simple, no-alias Virtual Host .
55What's the minimum required to construct a VirtualHost configuration type? .
54What's the value in what we just did? .
53What's the structure of the VirtualHost type? .
52How can we know that VirtualHost is a type? .
52Exploring the VirtualHost type .
51Node Agent configuration settings that affect synchronization intervals .
51Programmatically synchronizing with every node in the cell .
50Initiating synchronization using WSADMIN .
49Node synchronization overview .
49Synchronizing changes with nodes .
49Caution: z/OS is different type of environment from distributed .
49Does $AdminConfig require a connection to a server process? .
48How many different "configuration types" exist? .
48What methods are on this object? .
48A little background on $AdminConfig .
48Lesson 5: The $AdminConfig Object .
47Concluding points on this lesson .
45Jacl script that installs or uninstalls based on passed in parameter .
44Using Jacl variables to construct the long command line .
44Uninstall application in preparation for next exercise .
43Installing MyIVT.ear and mapping to a different Virtual Host .
41Finding out more about a particular task option .
41Determining what task options are applicable to MyIVT.ear .
41Uninstall MyIVT .
40Install MyIVT using a simple script file .
37Invoke "help" to understand the $AdminApp object better .
36Preliminary activities to ready your environment for exercise .
36Simple install with minimum options .
36Important note concerning server security if enabled .
36If -conntype none used, does it matter which copy of wsadmin.sh used? .
35Which server process to connect to? .
35To connect to a server process or not ... that is the question .
35Lesson 4: Installing an Application using $AdminApp Object .
34Concluding points on this lesson .
32Nested options -- option lists inside and option list .
31Variable substitution into "list" function .
31Jacl "list" function to the rescue .

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Overview and Introduction
Version Date: Wednesday, May 05, 2004- 2 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

96Lesson 5 Exercises .
95Lesson 4 Exercises .
95Lesson 3 Exercises .
94Lesson 2 Exercises .
94Appendix A: Exercises (available for copy-and-paste) .
93Checking the status of the cluster and cluster members .
93Stopping the members of a cluster .
92Starting the members of a cluster .
91Programmatically synchronizing to just the cluster nodes .
91Programmatically synchronizing every node .
91Manually synchronizing with each known node of the cluster .
91Installing an application into a cluster .
90What nodes are those cluster members configured? .
90What servers are members of that cluster? .
90What clusters are in your environment? .
90Lesson 8: WSADMIN and Clusters .
89Concluding points on this lesson .
89Example Jacl script that installs application and maps resource reference .
88Format of MapResRefToEJB .
87Mapping an application to a data resource .
87Update of application and ignoring bindings in EAR file .
86Simple update .
86Updating an existing application with a new copy .
84Putting it all together -- install application, set JNDI name, map reference to EJB
83Mapping an EJB-ref to JNDI name .
83Constructing $AdminApp install command with change to JNDI name .
82Where are those values to be found in the EAR file itself? .
80Setting the JNDI name for an EJB .
80Installing a second copy of an application into a cell .
80Lesson 7: Digging Deeper into the $AdminApp Object .
79Concluding points on this lesson .
79Checking the status of an application .
78Stopping an Application .
78Starting an Application .
77Checking the status of a server process .
77Stopping a server in a Base Application Server node configuration .
77Starting a server in a Base Application Server node configuration .
76Starting a Network Deployment server using batch JCL .
76Stopping a server in a Network Deployment configuration .
75Starting a server in a Network Deployment configuration .
74Which server process should we connect to? .
74Does requiring a connection to server process limit how I might invoke $AdminControl?
74Lesson 6: The $AdminControl Object .
73Concluding points on this lesson .
72Changing an application server's Cluster Transition Name .
70Changing an application server's short name .
69More automated example with node synchronization .
69Simple example without node synchronization .
68Creating a new server by copying from an existing server .
68Question: is it possible to delete multiple objects with one command invocation .
67Jacl script to delete a virtual host .
67Deleting the test virtual hosts created in this lesson .
66Adding additional aliases to the virtual host .

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Overview and Introduction
Version Date: Wednesday, May 05, 2004- 3 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

106Index .
105Document Change History .
104More Information .
102Lesson 8 Exercises .
100Lesson 7 Exercises .
100Lesson 6 Exercises .

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Overview and Introduction
Version Date: Wednesday, May 05, 2004- 4 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

Summary Overview
WSADMIN is a scripting interface into WebSphere Application Server that permits the automation
of many different tasks. Starting with Version 5 of the product, the scripting interface is now
common across all platforms: zSeries, pSeries, xSeries and iSeries.

Generally speaking, WSADMIN is most powerful when used to automate frequently executed
tasks, such as installing applications. There the objective is often to remove as much potential for
inconsistency from the process as possible. The user-interface for WebSphere Application Server
-- the "Admin Console" -- is a standard point-and-click web interface. It is quite powerful, but the
potential is there to do things differently on environment A as compared to B.

Why this document was written

WSADMIN is a fairly complex scripting interface, and can be difficult to approach for someone
with little or no knowledge of the topic. The WebSphere "InfoCenter" web site is a rich source
of WSADMIN examples, but unless someone has a working knowledge of WSADMIN, those
examples can be quite intimidating.

What this document is intended to provide -- and not provide

The objective of this document is to provide a basic working knowledge of WSADMIN so that
the InfoCenter's examples can be used to greater advantage. This document makes no
attempt to be a complete reference for WSADMIN command syntax; the InfoCenter serves that
function. Also, this exercises in this document are limited to relatively simple tasks. We believe
keeping things simple will allow the primary objective to best be met: a basic working
knowledge of WSADMIN.

How this document is designed

This document is designed to be a "primer." Readers are introduced to important concepts in a
systematic way, and knowledge is built as the reader progresses through the document. The
document provides a series of step-by-step exercises to reinforce the concepts. The document
is intended to be worked through from front to back, though readers with some preliminary
WSADMIN knowledge may skip ahead as they see appropriate.

The exercises are provided as separate text files or, if you don't have the files, inline in this
document under "Appendix A: Exercises (available for copy-and-paste)" starting on page 94.
Use Acrobat's "text selection" function to extract.

Note:

The z/OS focus of this document

As mentioned, WSADMIN is common across all platforms on which WebSphere Application
Server Version 5 runs. The command syntax is essentially the same across all platforms. But
the manner in which the commands are executed may differ slightly. WebSphere Application
Server for z/OS also has certain characteristics unique to the platform, such as: "short name"
values; server processes comprised of controller and servant; the need to coordinate MVS
definitions such as RACF and WLM to the WebSphere structure.

This document maintains a focus on the z/OS platform, though much of the knowledge gained
on z/OS can be carried to other platforms as well.

Where reference documentation is available

The WebSphere Application Server "InfoCenter" is located at:
http://publib.boulder.ibm.com/infocenter/wasinfo/index.jsp

You may then search on specific keywords, or search on "WSADMIN examples" and receive a
long list of common WSADMIN tasks. Or use the navigation panel to go to:

Reference Ö Scripting Interfaces

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Overview and Introduction
Version Date: Wednesday, May 05, 2004- 5 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

Introduction to WSADMIN
What is WSADMIN? The most basic answer to that question is this: WSADMIN is a feature of
WebSphere Application Server that allows a program to do the things a human operator does when
they point-and-click on the Administrative Console. So in that sense, WSADMIN is a feature that
provides a way to automate administrative tasks. It does this by providing a scripting interface into
the administrative function of WebSphere.

It's important to understand at this point what WSADMIN is not. It is not a way to simply record and
playback the mouse movements, mouse clicks and keyboard entry of someone sitting at the Admin
Console of WebSphere. What the scripting interface provides is a way for another program to
"connect to" WebSphere Application Server and accomplish administrative tasks by issuing
commands with keywords, options and parameters. It does this by providing four Java "objects" --
AdminApp, AdminConfig, AdminControl and Help. Each object has a number of "methods"
that may be invoked by your program (called a "script").

Understanding what all the methods are, how to code the syntax for the methods, and knowing what
values to supply for the parameters is the challenge in learning WSADMIN.

Note:

The WSADMIN scripting interface is common across all the platforms on which WebSphere
Application Server Version 5 runs. This is different than in Version 4, where at one point in time the
distributed platforms migrated up to WSADMIN while the z/OS platform continued to use the older
interface.
WSADMIN being universal across the platforms is a good thing: it allows the same script to be
used in different environments. So, for example, a script written for a test environment running on
z/Linux may be reused against a production z/OS server.

WSADMIN
Script

z/Linux

WAS V5

z/OS

WAS V5

Test Environment Production Environment

Administrative task developed and
tested with WebSphere on z/Linux.
Script then used -- unchanged --
against production environment
running on z/OS.

Same script used across different environments

What WSADMIN is not

It's important to understand at this point what WSADMIN is not. It is not a way to simply record
and playback the mouse movements, mouse clicks and keyboard entry of someone sitting at
the Admin Console of WebSphere. What the scripting interface provides is a way for another
program to accomplish administrative tasks by issuing commands with keywords, options and
parameters.

It does this by providing four Java "objects" -- AdminApp, AdminConfig, AdminControl and
Help. Each object has a number of "methods" that may be invoked by your program (called a
"script"):

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Introduction to WSADMIN
Version Date: Wednesday, May 05, 2004- 6 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

AdminApp

AdminConfig

AdminControl

Help

WebSphere
Application

Server for z/OS

HFS

Four Java "objects" provided with WSADMIN; your script operates against methods on the objects

If you look at the table of contents for this document, you'll see that it's organized around the
first three of these objects.

If you've configured a WebSphere for z/OS cell, you've used WSADMIN

Yes, you have: the BBOWIAPP batch job (for a Base Application Server node) and the
BBODIAPP batch job (for a Deployment Manager) both invoked WSADMIN to install the
Administrative application into the server. WSADMIN was invoked out of the JCL, and the
script used to install the application was included in the JCL. We explore this under "A look
inside the BBODIAPP job" on page 21.

The wsadmin.sh shell script

The way in which WSADMIN is invoked is with the wsadmin.sh shell script. In a Network
Deployment configuration, you will have several different copies of that shell script in the HFS:

y in the /bin directory of the Deployment Manager
y in the /bin directory of each Node Agent
y in the /bin directory of each application server

Why three copies? Each of those server types -- Deployment Manager, Node Agent and
application server -- is a "managed process," and WSADMIN may connect to each. By locating a
copy of wsadmin.sh in the /bin directory of each server, it allows WSADMIN to have a default
managed process to act upon. If you invoke wsadmin.sh in the /bin of the Deployment
Manager, for example, and supply no parameters telling it to connect somewhere else, it'll default
and connect to the Deployment Manager. We'll talk about "connecting" a bit later.

???

WebSphere Application Server for z/OS uses a shell script, as do the Unix and Linux products.
The xSeries product uses a batch (*.bat) file. They all accomplish the same thing.

Note:

Two ways to use WSADMIN -- interactive and batch

The difference between the two lies in how the commands are passed to WSADMIN:

y In interactive mode you have a command entry prompt. You enter the WSADMIN
commands at the prompt. WSADMIN accepts the commands, processes them, then
presents the command prompt again:

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Introduction to WSADMIN
Version Date: Wednesday, May 05, 2004- 7 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

wsadmin>

wsadmin>

Output (if any)
comes here

Enter WSADMIN
command here

Ready for more
commands

Entering WSADMIN commands at the wsadmin> command prompt (interactive mode)

y In batch mode you supply the commands to WSADMIN as a block of commands, either in a
separate file or as a block of "inline" commands.

WSADMIN
commands kept

in this file

wsadmin.sh -f /u/user1/commands.jacl wsadmin.sh -c '$AdminApp ...'

WSADMIN
commands

included inline

WSADMIN commands supplied in external file, or strung along "inline" with shell script invocation

The "inline" method is what was used in the BBOWIAPP job to install the Admin application.Note:

Interactive mode is nice when the commands being entered are relatively short, and you're not
looking to save the commands for re-use later. You'll see the use of interactive mode
throughout this document when we're querying the "help" method of WSADMIN, and when
we're doing simple things like listing out installed applications. Batch mode is nice when the
commands being entered are long and complex, and when they'll be used later. An example of
the use of batch mode would be a set of commands that installs an application.

Invoking the wsadmin.sh shell script from OMVS, Telnet, or JCL

Sitting at your computer, you have a few different ways in which you can invoke the
wsadmin.sh shell script:

/<config root>

/DeploymentManager

/bin

wsadmin.sh

HFS

OMVS
Shell Telnet

TSO
(submit JCL)

Three different ways to invoke wsadmin.sh

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Introduction to WSADMIN
Version Date: Wednesday, May 05, 2004- 8 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

Which you use is really a matter of personal preference. In this document we most often
instruct the use of the OMVS shell, but in truth a Telnet terminal would work perfectly well.
Using a JCL job to invoke WSADMIN may also be used, and we illustrate that method in
several places in the document.

A fourth way to invoke WSADMIN -- on another platform

WSADMIN can be instructed to connect to a running server process, and in fact we'll do
that quite a bit in this document. You pass in a -host and -port parameter to accomplish
this. That means that WSADMIN on any server platform can connect to another server:

Deployment
Manager

wsadmin.bat
WSADMIN

client
process

DMGR's
SOAP port

wsadmin -host <host> -port <port>

PC Platform

Invoking WSADMIN on a PC and connecting across the network to WebSphere on z/OS

The key point is that when WSADMIN is told to connect to a server process, that server
process may be on any system on the network. But this method can get complicated,
particularly when SSL will be used: it requires the coordination of keyrings on both systems.
For this document we'll avoid this and rely on OMVS, Telnet or JCL batch submission.

Note:

Important: run wsadmin.sh under authority of WebSphere Administrator ID

The "WebSphere Administrator ID" is one of the RACF IDs created when you created your
WebSphere configuration. It was defined in the "Security Domain" phase of configuration. The
default value is WSADMIN, though your value will likely be something different.

When running the wsadmin.sh shell script, it's important to have the script run under the
authority of this userid. That will give WSADMIN the proper permissions to read, write and
search the configuration HFS directory.

There are two ways to run the shell script under the authority of that ID:

Make sure that the JOB card has the USER= and PASSWORD= values for the
WebSphere Administrator ID.

JCL batch

Before invoking wsadmin.sh, "switch users" (su) to the WebSphere Administrator
ID. Provide the password. Then invoke wsadmin.sh

OMVS or Telnet

Connecting to server process port, or operating in "local mode"

We've alluded to WSADMIN "connecting" across the network to a TCP port of the running
server process. That's known as "remote mode." But there's another way, and it's called "local
mode." When operating in "local mode," no TCP connection to a port is attempted. The
difference is who (or what) makes the changes to the configuration repository:

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Introduction to WSADMIN
Version Date: Wednesday, May 05, 2004- 9 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

DMGR HFSWSADMIN

"Remote mode" -- connection made to TCP port of running server process

Changes to the
configuration repository are

made by server process

HFSWSADMIN

"Local mode" -- no connection made to TCP port

Changes to the configuration
repository are made by WSADMIN

Difference between "remote" and "local" mode invocation of WSADMIN

You control which mode WSADMIN will operate in by the parameters you use when invoking
the shell script:

OMVS,
Telnet or

JCL
./wsadmin.sh -conntype <value>

Parameter Result

-conntype SOAP Connects to server process
(remote mode)

-conntype NONE Works directly against configuration repository
(local mode)

(nothing specified) Connects to server process
(remote mode)

Controlling the mode in which WSADMIN will operate

y If you specify -conntype SOAP, two other parameters (-host and -port) are necessary

y RMI is another option for -conntype, but we'll ignore that and focus on SOAP vs. NONE
only.

Notes:

When should one use "local mode" versus "remote mode"?

Some of the WSADMIN functions only work when connected to a real live server process
(specifically, the $AdminControl object requires a server connection). But the others do
not. For those functions that work either way, you could use either method. But there are
some general guidelines we would recommend:

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Introduction to WSADMIN
Version Date: Wednesday, May 05, 2004- 10 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

y If Admin Application server process is not running, then use -conntype NONE

This makes some sense: if there's nothing running, there's nothing to connect to. Installing
applications when the server is not running is a very common thing to do. The BBOWIAPP
customized job did that when you were configuring WebSphere.

y If Admin Application server process is running, connect to it

This isn't strictly required, but it's a good practice. If the Deployment Manager is running,
connecting to it to drive the changes will help make sure the changes are coordinated. This is
particularly true if someone happens to be on the Admin Console at the same time.

Using WSADMIN concurrent with Admin Console operations is not recommended. See
"Important: Do NOT use WSADMIN and Admin Console at the same time" on page 12.

Note:

Another benefit of connect to the running process if it's available is that it gives you the full range
of WSADMIN functions.

An exception to this rule is when what you're looking to do with WSADMIN involves no changes to
the configuration HFS. Then connecting is not so critical. So for minor things like using the "help"
facility to research a command syntax or using WSADMIN to list the applications installed in a
server, connecting to the running process isn't really that important.

If connecting, which server process should we connect to?

There are three different server processes you could connect to:

y Deployment Manager  we're going to recommend connecting to this
y Node Agents
y Application Servers

The higher up the chain you go, the more function you have available to you. The
Deployment Manager is the king of the WebSphere world; it has all the management
function available to it. If you connect to a node agent you have a subset of the function; if
you connect to an application server you have a still smaller subset.

DMGR

Node
Agent

Appl.
Server

MVS Image

Daemon

WSADMIN
client

Deployment Manager

DMGR NA Server

Node Agent

NA Server

Server

Server

Function Available:

Connection options and the function provided by each

If you connect to a Node Agent, you may affect servers in that node, but not others nodes. If
you connect to an application server, you affect only that server.

Note:

We recommend the following:

Connect to application serverBase Application Server node configuration

Connect to Deployment ManagerNetwork Deployment configuration .

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Introduction to WSADMIN
Version Date: Wednesday, May 05, 2004- 11 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

In a Network Deployment configuration, the DMGR maintains the "master configuration."
It is best to have it make changes to the "master configuration" and then "synchronize"
those changes out to the nodes. Changes made at a lower level will be lost the next
time the "master configuration" is synchronized out. There's no way to "reverse
synchronize." Therefore, it makes sense to use the DMGR to make the changes.

If you think about it, this is exactly what happens when you make changes through the
Admin Console. That is merely a GUI interface that operates against the Deployment
Manager's "managed process."

Note:

We're not sure why one would consider connecting to a Node Agent or an application server
when the Deployment Manager is present. If there's a good reason to do that, we've not
heard it.

If we operate in local mode (no connection), what config HFS do we act against?

It'll work against the configuration HFS related to the copy of wsadmin.sh you invoked.
Recall that we said there were multiple copies of that shell script maintained in the
configuration HFS. If you invoked wsadmin.sh from the Deployment Manager's /bin
directory, it will operate against the Deployment Manager's "master configuration." If you
invoke the copy of wsadmin.sh down in an application server's /bin directory, it'll operate
against that server's configuration.

When using "local mode" in a Network Deployment configuration, it's best to use the copy of
wsadmin.sh located in the Deployment's /bin directory. Make changes against the
"master configuration." When node synchronization occurs at some future point in time,
those changes will be copied out to the nodes.

Note:

Exception: using securityoff command to disable Global Security

The topic of security is way beyond the scope of this document, but there is something
that bears mentioning here. The process of enabling Global Security has some risk
associated with it: do something wrong, and your servers may not start the next time.
Fortunately, there's a WSADMIN command to disable -- or undo -- the Global Security
setting within WebSphere.

That command -- securityoff -- is used in local mode because local mode will work
directly against the configuration HFS when the servers aren't up. If Global Security is
misconfigured and the server's won't come up, being able to change the configuration in
local mode is a very handy thing.

We bring this up because to disable Global Security in a Network Deployment
configuration requires that securityoff be run against your Deployment Manager and
all the nodes and applications servers in the configuration. That implies invoking the
copy of wsadmin.sh in your Deployment Manager's /bin directory and invoking the
copy in your application servers' /bin directory.

For more on enabling and disabling Global Security, see:
http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/TD101150

Important: Do NOT use WSADMIN and Admin Console at the same time

The issue here is that you want to avoid having two different processes modifying the
configuration at the same time. There's a couple different flavors to this issue:

1. WSADMIN connected to server process while someone is working at Admin Console

This works most of the time, but we've seen cases where configuration buffering takes
place and a change to the configuration made by WSADMIN doesn't show up on the Admin

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Introduction to WSADMIN
Version Date: Wednesday, May 05, 2004- 12 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

Console. The same in reverse: a change made in the Admin Console isn't "seen" by
WSADMIN. It can get confusing. The best course of action is to avoid this.

Yes, we recognize this might be hard to avoid. All we ask is that you understand the issue.Note:

2. WSADMIN in local mode while someone is working at Admin Console

This is the worst scenario. Here WSADMIN is making changes directly to the configuration
HFS. The Admin Console process has no knowledge of what's going on until after the fact.
It then sees that the configuration has mysteriously changed under its feet. If someone is in
the middle of making a change in the Admin Console, that change may have to be
discarded. It gets very confusing, very quickly.

This is why we recommend that if the server process that runs the Admin Console is up and
running that you connect to it. It's not strictly required, but in the off-chance someone is
using the Admin Console concurrently, at least things have a reasonable chance of working.

Note:

The key message here is this:

WSADMIN or Admin Console, but not both at the same time.

Using a scripting language

WSADMIN is called a "scripting interface" because it provides a way for a scripting language to
drive the WSADMIN objects. At the time of the writing of this document the most common
scripting language used was "Jacl," a Java version of the older "tcl" language.

WebSphere Application Server for z/OS Version 5.1, when that becomes available, will support
the "Jython" scripting language as well. This document uses Jacl examples simply because
that's what we know is supported right now, and because most of the examples in the InfoCenter
are in Jacl. But more and more Jython examples are showing up in the InfoCenter as well. Be
aware of which type you use.

Note:

Using a scripting language becomes important because it provides some key things:

y The ability to save the script file and re-use it later
y The ability to execute multiple WSADMIN commands in a row automatically
y The ability to put the value of something in a variable, then use that variable in a WSADMIN

command later
y The ability to use scripting language functions such as looping, if-then-else, passed-in

parameters, etc.

What you'll see in this document is a mixture of both simple WSADMIN commands and Jacl
scripts. As we build upon the lessons and make them more complex, you'll see more and more
Jacl scripts.

Learning challenges

The task of learning WSADMIN involves learning two things:
y The syntax of the WSADMIN commands themselves

Every WSADMIN object -- AdminApp, AdminConfig, AdminControl -- has multiple methods, and
each method has parameters and options. Becoming skilled in WSADMIN involves understanding
those, and understanding where to go to learn more about them.

y The syntax of the scripting language used
The Jacl scripting language has many useful functions -- for instance, list, lappend, lindex --
and syntax requirements involving brackets and braces. The script interpreter can be somewhat
finicky about these things.

That is the purpose of this white paper: to help you start the process of learning these things.

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Introduction to WSADMIN
Version Date: Wednesday, May 05, 2004- 13 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

Lesson 1: Starting Client and Exploring Commands

The examples and lessons provided in this document have been tested and are believed
to be functional. But things sometimes change. Also, some of the things in these
lessons may not be the most efficient or most elegant way to accomplish a task. But
they should work. Treat them as what they are: examples used to illustrate key points
about WSADMIN.

Disclaimer:

In this lesson we'll use the scripting interface when it's not connected to any server process. This is
known as local mode. Some functions are not available in this mode (such as the
$AdminControl functions, which requires that the client be connected to a live server process.)
But other functions are available, such as the ability to install an application or delete a server.

In a later lesson we'll invoke the client and connect it to a running process and exercise those
functions as well.

Access command line interface

The wsadmin.sh shell script, like any shell script, may be invoked from a command line
interface or in batch mode. For this lesson we'll use the command line interface because it
provides real-time interaction. For z/OS, two command line interfaces are available:

y The OMVS shell

y A telnet session

Both accomplish the same thing. For the sake of this document we'll assume the OMVS shell.

� Log onto TSO and go into the OMVS shell

� Use the su command to switch users to the WebSphere Administrator ID for your cell.

Or you could su to a superuser, but that's always a bit risky. The WebSphere Administrator
ID will have the authority needed to write to the directories used by the WSADMIN client.

Note:

� Change directories to the /<config root>/DeploymentManager/bin directory

Or the /<config root>/AppServer/bin directory if your configuration is a Base
Application Server node.

Note:

Invoke "Help" facility of WSADMIN

� Issue the following command:
./wsadmin.sh -help

You should see the following:

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Lesson 1 - Starting Client
Version Date: Wednesday, May 05, 2004- 14 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

WASX7001I: wsadmin is the the executable for WebSphere scripting.
Syntax:

wsadmin
 [-h(elp)]
 [-?]
 [-c <command>]
 [-p <properties_file_name>]
 [-profile <profile_script_name>]
 [-f <script_file_name>]
 [-javaoption java_option]
 [-lang language]
 [-wsadmin_classpath classpath]
 [-conntype
 SOAP
 [-host host_name]
 [-port port_number]
 [-user userid]
 [-password password] |
 RMI
 [-host host_name]
 [-port port_number]
 [-user userid]
 [-password password] |
 JMS <jms parms> |
 NONE
]
 [script parameters]

Where...

Note: depending on
your display setup, the
left square bracket and

right square bracket
may appear as different

characters.

Output from the "help" facility of WSADMIN

The square bracket thing is a long-standing issue with character translation between
EBCDIC and ASCII for those characters. If you used Telnet to get to the z/OS system, you'd
see the square brackets properly. In any event, the brackets are not part of the command,
but rather imply the parameter is optional.

Note:

Start WSADMIN client interface with -conntype of NONE

At this point the WSADMIN client is not yet started. The previous step simply produced the
help output from the shell script itself.

� Issue the following command:
./wsadmin.sh -conntype none

WASX7357I: By request, this scripting client is not connected to any server process.
Certain configuration and application operations will be available in local mode.
WASX7029I: For help, enter: "$Help help"
wsadmin>

WSADMIN
prompt

Starting the WSADMIN client and gaining access to command prompt

The WSADMIN client is now started. If you had started the client with no parameters at all,
it would have by default connected tried to connect to the Deployment Manager process.

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Lesson 1 - Starting Client
Version Date: Wednesday, May 05, 2004- 15 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

How would it know what host and port to connect to? The wsadmin.sh shell script is located
in the /bin directory of your Deployment Manager's configuration directory. The shell script
then interrogates the XML files in the Deployment Manager's configuration and figures out the
host and port value of the Deployment Manager, then connects.

???

� Now issue the $Help help command to get a listing of the commands available:

attributes given an MBean, returns help for attributes
operations given an MBean, returns help for operations
constructors given an MBean, returns help for constructors
description given an MBean, returns help for description
notifications given an MBean, returns help for notifications
classname given an MBean, returns help for classname
all given an MBean, returns help for all the above
help returns this help text
AdminControl returns general help text for the AdminControl object
AdminConfig returns general help text for the AdminConfig object
AdminApp returns general help text for the AdminApp object
wsadmin returns general help text for the wsadmin script
 launcher
message given a message id, returns explanation and
 user action message

The three areas where we'll
focus in this document

The results from $Help help at the wsadmin command prompt

� Let's take a look at the help under the AdminApp function. Issue the following command:

$AdminApp help

edit Edit the properties of an application
editInteractive Edit the properties of an application interactively
export Export application to a file
exportDDL Export DDL from application to a directory
help Show help information

install Installs an application, given a file name and an option string.

installInteractive
 Installs an application in interactive mode, given a

list List all installed applications
listModules List the modules in a specified application
options Shows the options available, either for a given file, or in
 general.
publishWSDL Publish WSDL files for a given application
taskInfo Shows detailed information pertaining to a given install task
 for a given file
uninstall Uninstalls an application, given an application name and
 an option string
updateAccessIDs Updates the us
 from user regi
deleteUserAndGroupEntries
 Deletes all the user/group information for all
 the roles and all the username/password information for RunAs
 roles for a given application.

Method you
just invoked to
get this screen

We'll use this in this lesson to list the
applications installed in the cell

Later we'll use this to install an application into
a server without using the Admin Console

Finally, we'll use the uninstall method to
remove an application from the server

Output from the help method of the $AdminApp function

List the applications installed in this cell

The method list on the $AdminApp function will display back all the applications that are
installed in this cell.

� Issue the command $AdminApp list

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Lesson 1 - Starting Client
Version Date: Wednesday, May 05, 2004- 16 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

wsadmin>$AdminApp list
adminconsole
filetransfer
wsadmin>

The command issued

Two applications installed

The prompt returned

Listing the applications installed with the list method

If it's not connected to any running server process, how does it know what applications are
installed? It looked in the XML files of the configuration.

???

Exiting the WSADMIN interactive client

� Issue the command exit. You'll be returned to the OMVS prompt.

Concluding points on this lesson

This was a very simple introduction to the WSADMIN function. In this lesson all we did was to
invoke a few "help" commands and list the applications. It's helpful to understand what we did
not do in this lesson:

y We did not connect to a running server process
y We did not make any configuration changes
y We made virtually no use of Jacl scripting

All that will come later. The importance of this lesson was to understand that the WSADMIN
client is the interface into the scripting function of WebSphere. Commands are entered into the
client, which executes them on your behalf. So far we've entered the commands interactively,
with our own hands. Later we'll put the commands in a file and tell WSADMIN to read and
execute the commands in the file. And we'll do that in batch mode.

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Lesson 1 - Starting Client
Version Date: Wednesday, May 05, 2004- 17 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

Lesson 2: Invoking WSADMIN in Batch Mode
The previous lesson focused on issuing WSADMIN commands in interactive mode. WSADMIN is
perhaps more useful in batch mode. This can be done from an OMVS (or telnet) prompt, or
through JCL. There are three basic ways WSADMIN commands can be "batched up" and fed into
the scripting client:

./wsadmin.sh -conntype none -c '$AdminApp install /u/user1/MyIVT.ear ...

Commands follow
"-c" switch

./wsadmin.sh -conntype none -f /u/user1/my_script.jacl Script
Commands held in
separate script file

//BATCH JOB (ACCTNO,ROOM),'USER1',CLASS=A,REGION=0M
//INST1 EXEC PGM=IKJEFT01,REGION=0M
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
 BPXBATCH SH +
 /<config root>/DeploymentManager/bin/wsadmin.sh +
 -conntype none +
 -c '$AdminApp install +
 /u/user1/MyIVT.ear ...

JCL

Command inline with JCL
-- this is simply variation of

#1 above

1

2

3

- or -

- or -

Three basic ways to invoke WSADMIN in batch mode

In all three the processing is essentially the same:

y WSADMIN client starts
y Commands (or script) read in and executed
y WSADMIN client closes

WSADMIN commands that follow the invocation of the shell script

� From the OMVS prompt, issue the command:
./wsadmin.sh -conntype none -c '$AdminApp help'

You should receive the help display for the $AdminApp command.

The single quotes surrounding $AdminApp help is what allows the command processor to
see help as a parameter to $AdminApp, and not a separate command. If you leave the
single-quotes off, WSADMIN will throw an error saying it doesn't recognize help as a
command. ($Help is a command, but help is not.)

Later we'll see how "braces" -- { and } -- will be used to do something similar: group
parameters and options within a command.

Note:

� Try another:
./wsadmin.sh -conntype none -c '$AdminApp list'

You should receive a listing of whatever applications are installed in your cell.

� Final one in this section: string two commands together:

./wsadmin.sh -conntype none -c '$AdminApp list' -c '$Help help'

You'll see the applications installed and then the general help output.

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Lesson 2 - WSADMIN in Batch Mode
Version Date: Wednesday, May 05, 2004- 18 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

Issuing serial commands like this on the command line does not perform as well as issuing
them from inside a file.

Note:

WSADMIN commands held in a separate file

In this section we'll make use of the -f switch to point WSADMIN off to a separate file.

Important point: WSADMIN by default expects files to be in ASCII

As the heading indicates, by default WSADMIN will expect the file pointed to by the -f
switch to be in ASCII. By default, files you create in the z/OS HFS will be EBCDIC. If
WSADMIN thinks its reading ASCII but really is getting an EBCDIC file, things don't work.

At this point you have two options:

1. Create the input file in ASCII on your workstation, then upload it in binary to the z/OS
system. This will result in the file being in ASCII in the z/OS HFS.

2. Create the file in EBCDIC. Use the -javaoption switch to pass in a parameter that
will tell WSADMIN to expect the file to be in EBCDIC.

Aside from the -javaoption -Dscript.encoding=Cp1037 parameter, there's no
difference between the two. We'll focus on the EBCDIC option.

Create HFS file and enter commands

� Create an HFS file in, for example, /u/user1 and call it lesson2a.jacl

See "Appendix A: Exercises (available for copy-and-paste)" starting on page 94 for a
listing of all the lessons provided in this document.

Note:

� Make sure it has permissions that will allow the "WebSphere Administrator ID" access to
read the file. (Permissions of 777 will guarantee this.)

� Add the following commands:

EDIT /u/user1/lesson2a.jacl
Command ===>
****** *****************************
000001 set list [$AdminApp list]
000002 puts stdout $list
****** ****************************

Note: the square
brackets must be the

following EBCDIC hex:

[= x'AD'

] = x'BD'

EDIT /u/user1/lesson2a.jacl
Command ===>
****** *****************************
000001 set list [$AdminApp list]
000002 puts stdout $list
****** ****************************

lesson2a.jacl - Simple Jacl script

y Depending on how your emulator is configured, the left and right square bracket
characters may not display as brackets. Usually they appear as the following
characters:

Left square bracket: Ý

Right square bracket: ¨
The key is they must be hex x'AD' and x'BD' respectively. If your emulator puts
x'BA' and x'BB' respectively, WSADMIN will fail evaluating the Jacl script.

y If you're having trouble creating the file from your keyboard, create the file on your
PC and FTP it to z/OS using ASCII mode. That will perform an ASCII-to-EBCDIC
translation and the brackets should appear as x'AD' and x'BD' respectively.

y What's all that stuff wrapped around the $AdminApp list command? That's Jacl,
and that's what gets the output back to the screen. We'll go deeper into Jacl
programming in "Lesson 3: Introduction to Jacl scripting" on starting on page 25.

Notes:

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Lesson 2 - WSADMIN in Batch Mode
Version Date: Wednesday, May 05, 2004- 19 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

� Save the file.

Intentionally create error where EBCDIC used when WSADMIN expects ASCII

We're doing this simply to show the error you will see.Note:

� Open an OMVS shell and switch users ("su") to your WebSphere Administrator ID.

� Change directories to /<config root>/DeploymentManager/bin

� Issue the following command:
./wsadmin.sh -conntype none -f /u/user1/lesson2a.jacl

What was your result? You likely saw something like this:

WASX7017E: Exception received while running file "/u/user1/lesson2a.jacl";
exception information: com.ibm.bsf.BSFException: error while
eval'ing Jacl expression: missing close-bracket

Error message received at this point in the lesson

The problem is not a missing close-bracket. The problem is WSADMIN was expecting
certain things, and since the file was in EBCDIC, it didn't see them. We'll fix that next.

Note:

Use -javaoption switch to indicate source is in EBCDIC

� Issue the following command as one input string:
./wsadmin.sh -javaoption -Dscript.encoding=Cp1047

-conntype none -f /u/user1/lesson2a.jacl

Now you should see this:

WASX7357I: By request, this scripting client is not connected to any server process.
Certain configuration and application operations will be available in local mode.
adminconsole
filetransfer

The WASX7357I message is
because -conntype none

was specified

The result of the
$AdminApp list

command

Successful execution of script in external file

That might seem like a lot of keystrokes to achieve the same result you would get if you
simply typed '$AdminApp list' on the command line. That's true ... it was. Bear in
mind that the sample Jacl script we provided was incredibly simple. Normally Jacl
scripts are longer, more complicated, and do many more things. In that case, entering
the command above is a small price to pay for the processing that occurs when the
script is executed.

Note:

WSADMIN commands inside JCL

Having the command inside JCL is, as mentioned earlier, simply a variation on entering the
command after the -c switch on the wsadmin.sh invocation. The difference is, of course, that

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Lesson 2 - WSADMIN in Batch Mode
Version Date: Wednesday, May 05, 2004- 20 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

once you have it coded and working, you can submit it over and over again with a simple SUB
command.

A look inside the BBODIAPP job

To illustrate how this works, we'll explore the BBODIAPP job that was created when you
customized your Deployment Manager. (Or BBOWIAPP if what you have is a Base
Application Server node.) That job installs the administrative application into the server.
That job is nothing more than BPXBATCH running of wsadmin.sh, with a long string of
command input. The $AdminApp install command is executed with a whole bunch of
options. Here's what the job looks like:

//SYSTSIN DD *
 BPXBATCH SH +
 /wasv5config/azcell+
 /DeploymentManager+
 /bin/wsadmin.sh -conntype none +
 -c '$AdminApp install +
 /wasv5config/azcell+
 /DeploymentManager+
 /installableApps/adminconsole.ear +
 {-appname adminconsole +
 -MapRolesToUsers {{"administrator" No No AZADMIN AZCFG} +
 {"monitor" No No AZADMIN AZCFG} +
 {"operator" No No AZADMIN AZCFG} +
 {"configurator" No No AZADMIN AZCFG}} +
 -server dmgr +
 -node azdm +
 -cell azcell +
 -copy.sessionmgr.servername +
 dmgr}' +
 1> /tmp/bbodiapp_40237.out +
 2> /tmp/bbodiapp_40237.err
/*

1
2

3

4

5

6

7

8

A peek inside the BBODIAPP batch job that installs the Admin Console into the DMGR

Finally, the stdout ("1") and stderr ("2") of this shell script is piped to a file in the /tmp
directory. The JCL later copies that file back to the job log.

8

The things that follow the EAR file are the options to the install method of $AdminApp. This
is "graduate level" stuff. We'll cover some of it later under "Lesson 4: Installing an Application
using $AdminApp Object" on page 35 when we walk you through installing of an application.
We'll cover more under "Lesson 7: Digging Deeper into the $AdminApp Object" on page 80.

7

The application being installed was adminconsole.ear, located in the directory shown above6

The WSADMIN command used in this job was $AdminApp install5

The flag -conntype none is used for a very good reason: the Deployment Manager is not yet
up, so there's nothing to connect to. This illustrates an important point: the DMGR does not
need to be running to make updates to the configuration. The configuration is simple XML files
and directories. The shell script can make changes to those even though no server process is
running.

4

The wsadmin.sh shell script is located in the /DeploymentManager/bin directory under the
configuration root for this cell.

3

A plus sign ("+") is used to continue lines when the command is in JCL. But this is not the case
for commands inside Jacl scripts. We cover that later.

2

The JCL simply invokes BPXBATCH SH, which is used to run the wsadmin.sh shell script1

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Lesson 2 - WSADMIN in Batch Mode
Version Date: Wednesday, May 05, 2004- 21 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

If you look at the JCL for BBODIAPP, you see that it actually has three steps in it: the first
installs adminconsole.ear (shown above); the second installs filetransfer.ear; and
the final step copies the stdout and stderr back to the job log.

Note:

Question: why no -javaoption in JCL to say commands are in EBCDIC?

Because the commands are their parameters are not in a separate script file. They're
inline, following the invocation of the wsadmin.sh shell script. The script interpreter
assumes what follows the invocation of the shell script is in the same code page as the
environment.

It's only when an external file is used to contain the commands that we need to tell the
interpreter that the code page of the file is Cp1037 (or EBCDIC).

Copy BBODIAPP job and modify it to do something simpler at this point

� Make a copy of BBODIAPP and call it something else ... LESSON2B for example.

� Remove the INST2 EXEC section ... that's just the same thing as INST1 but with a
different application. Leave the DIAPPC EXEC section.

� Modify the body of the JCL so it looks like this:

//**
//* STEP 1 - Invoke WSADMIN, issue command
//**
//INST1 EXEC PGM=IKJEFT01,REGION=0M
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
 BPXBATCH SH +
 /wasv5config/azcell+
 /DeploymentManager+
 /bin/wsadmin.sh -conntype none +
 -c '$AdminApp list' +
 1> /tmp/lesson2b.out +
 2> /tmp/lesson2b.err
/*
//**************************************
//* STEP Copy - Copy script output back to joblog
//**
//DIAPPC EXEC PGM=IKJEFT01,REGION=0M
//SYSEXEC DD DISP=SHR,DSN=WAS502.WAS.SBBOEXEC
//SYSTSIN DD *
 BBOHFSWR '/tmp/lesson2b.out'
 BBOHFSWR '/tmp/lesson2b.err'
//SYSTSPRT DD SYSOUT=*
//

Point to
your config

root

Change command to
$AdminApp list

Pipe STDOUT and
STDERR to new file,
and make sure that

those files are copied
back to joblog

1

2

3

LESSON2B - Modified BBODIAPP used to execute $AdminApp list command

The name of the file can be anything you like. The key is being consistent between where
you pipe it and what file you copy back to the job log. Also, piping the output to /tmp is a
good idea because the permissions on that directory should allow this process to write to it
without difficulty.

3

Be sure to enclose the command and its parameter with single quotes, as shown. And in this
case the plus sign follows the command with a space. We do not want the next line to
concatenate directly onto this. We want a space between the end of the command and the
1> piping of the STDOUT.

2

Be careful with the plus sign continuation ... that should immediately follow (no space) your
configuration root value. The next line, /DeploymentManager, should concatenate directly
onto your config root.

1

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Lesson 2 - WSADMIN in Batch Mode
Version Date: Wednesday, May 05, 2004- 22 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

� Provide a JOB card. Make sure job runs under identify of "WebSphere Administrator
ID" (or ID connected to the "WebSphere Configuration Group").

� Submit the job. You should get a response back that looks something like this:

 :
READY
 BBOHFSWR '/tmp/lesson2.out'
WASX7357I: By request, this scripting client is not connected to any
server process. Certain configuration and application operations will
be available in local mode.
adminconsole
filetransfer
READY
 BBOHFSWR '/tmp/lesson2b.err'
READY
END

Result we were
looking for

Output from JCL batch submission of $AdminApp list command

Pointing to an external file from a JCL batch job

This is a variation of the two previous lessons: an external file which holds the commands, and
a JCL batch job that invokes WSADMIN and then points to the external file.

� Make a copy of the file /u/user1/lesson2a.jacl and call the new file
/u/user1/lesson2c.jacl

Don't change the contents of the file. We'll run the exact same commands. We'll just invoke
WSADMIN through batch JCL rather than from the OMVS command prompt.

Note:

� Make a copy of your LESSON2B member and call it LESSON2C

� Modify the body of the JCL so it looks like this:

//***
//* STEP 1 - Invoke WSADMIN, point to file
//***
//INST1 EXEC PGM=IKJEFT01,REGION=0M
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
 BPXBATCH SH +
 /wasv5config/azcell+
 /DeploymentManager+
 /bin/wsadmin.sh +
 -javaoption -Dscript.encoding=Cp1047 +
 -conntype none +
 -f /u/user1/lesson2c.jacl +
 1> /tmp/lesson2c.out +
 2> /tmp/lesson2c.err
/*
//***
//* STEP Copy - Copy script output back to joblog
//***
//DIAPPC EXEC PGM=IKJEFT01,REGION=0M
//SYSEXEC DD DISP=SHR,DSN=WAS502.WAS.SBBOEXEC
//SYSTSIN DD *
 BBOHFSWR '/tmp/lesson2c.out'
 BBOHFSWR '/tmp/lesson2c.err'
//SYSTSPRT DD SYSOUT=*
//

Provide -javaoption
to tell interpreter script

file is in EBCDIC

Provide -f switch and
pointer to location of

external file

LESSON2C - Batch JCL that points to external script file which holds WSADMIN commands

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Lesson 2 - WSADMIN in Batch Mode
Version Date: Wednesday, May 05, 2004- 23 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

Concluding points on this lesson

If WSADMIN was a command-line interface only and required the hand-input of long strings of
commands each time, it would quickly become drudgery. Thankfully the process can be done
in batch, which allows you to save and re-use things you've already developed.

The stage is now set for an introduction to Jacl scripting, and then onto the more complex
WSADMIN operations, such as controlling the runtime and installing applications.

The majority of examples in this document will show the Jacl script being invoked from an OMVS
(or Telnet) session. But JCL could be used just as easily. Remember that as you read through
this document: you may use JCL to invoke Jacl scripts.

Note:

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Lesson 2 - WSADMIN in Batch Mode
Version Date: Wednesday, May 05, 2004- 24 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

Lesson 3: Introduction to Jacl scripting
In the previous lesson we illustrated ways to pass in strings of input into WSADMIN. In all cases
what was being passed in was Jacl script, though very simple examples of it. Now we're going to
explore the Jacl scripting language a bit more.

In this lesson we'll explore some basic aspects of the Jacl language. We won't involve any
WSADMIN commands in this lesson. We'll start folding WSADMIN stuff into more complex Jacl in
the next lesson. The method we'll use to invoke the Jacl script will be what we demonstrated in the
previous lesson:

./wsadmin.sh -javaoption -Dscript.encoding=Cp1047
 -conntype none -f /<path>/script_name.jacl

Don't need to connect to a
server process since we won't

be driving any WSADMIN
objects in this lesson

Our Jacl scripts will be held in
the file pointed to by -f

-javaoption used to tell WSADMIN
that script is in EBCDIC

Use -f switch of wsadmin.sh to point to Jacl script to be evaluated and executed

If you prefer to create your script on the PC and upload in binary so it's in ASCII on the host, then you
do not need to code the -Dscript.encoding= option.

Note:

Getting ready

� If you're not already there, go to an OMVS shell and su to your WebSphere Administrator ID.
Go to the /<config root>/DeploymentManager/bin directory.

y Or the /config root>/AppServer/bin directory if Base Application Server node.

y This is a good point to say, "Or, if you prefer, open a telnet session." Both achieve the
same result: access to the z/OS Unix Systems Services command prompt.

Notes:

Simple setting of variable and putting variable back to screen

� Create a file called lesson3a.jacl in your home directory. (For the sake of this
document, we'll assume that directory is /u/user1.)

� Edit the file and add the following:

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Lesson 3 - Introduction to Jacl
Version Date: Wednesday, May 05, 2004- 25 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

Command ===>
****** *********************
000001 set server "Server1"

000002 puts stdout $server
****** *********************

Variable name
"server"

Value placed
into variable,
enclosed in

double quotes

puts is Jacl
command that
writes output

Where output
will be written

Substitute value of variable
"server". Note dollar sign,

which provides substitution

set is Jacl
command

lesson3a.jacl - Single variable set in Jacl script

� Execute the script with the following command (all on one line):
./wsadmin.sh -javaoption -Dscript.encoding=Cp1047 -conntype none

 -f /u/user1/lesson3a.jacl

You should receive Server1 back to your screen.

What happened in that last exercise?

Not much. The script was read into WSADMIN, evaluated, and the output was written back to
the terminal. None of the WSADMIN objects were used:

$AdminApp

$AdminControl

$AdminConfig

$Help

lesson3.jacl

Script Processor

Server1

WSADMIN

WSADMIN
Objects

Script did not make use of any of the WSADMIN objects

But we'll change that in the next lesson. It's no coincidence that the variable we set was "server."Note:

Setting multiple variables

� Now create a file called lesson3b.jacl and set multiple variables:

set cell "mycell"
set node "mynode"
set server "Server1"
set appl "my_appl"
puts stdout "C:$cell N:$node S:$server A:$appl"

lesson3b.jacl - Multiple variables set in script, displayed back

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Lesson 3 - Introduction to Jacl
Version Date: Wednesday, May 05, 2004- 26 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

� Invoke wsadmin.sh with the following command:
./wsadmin.sh -javaoption -Dscript.encoding=Cp1047 -conntype none

 -f /u/user1/lesson3b.jacl

You should receive the following response:
C:mycell N:mynode S:Server1 A:my_appl

Parsing words out of a string

� Create lesson3c.jacl and provide the following:

set string "Four Score and Seven"
set first [lindex $string 0]
set second [lindex $string 1]
set third [lindex $string 2]
set fourth [lindex $string 3]
puts stdout "1st:$first 2nd:$second 3rd:$third 4th:$fourth"

lesson3c.jacl - Using Jacl lindex function to parse out words from a string

For this to work, square brackets must be x'AD' and x'BD' in the file on z/OS.Important:

lindex is a Jacl function that will parse values of a string, starting with a zero offset.???

� Issue the command
./wsadmin.sh -javaoption -Dscript.encoding=Cp1047 -conntype none

 -f /u/user1/lesson3c.jacl

You should see:
1st:Four 2nd:Score 3rd:and 4th:Seven

Pure gee-whiz? Not at all. Please continue.???

Passing values in as parameters

Rather than hard-coding the variable values in the script itself, we'll pass them as parameters
on the invocation of the script itself.

� Now create a file called lesson3d.jacl and provide the following:

set cell [lindex $argv 0]
set node [lindex $argv 1]
set server [lindex $argv 2]
set appl [lindex $argv 3]
puts stdout "C:$cell N:$node S:$server A:$appl"

lesson3d.jacl - Using Jacl lindex against special variable $argv

For this to work, square brackets must be x'AD' and x'BD' in the file on z/OS.Important:

Here again we use the lindex function. $argv is a special Jacl variable that represents the
string of parameters passed into the script.

???

� Now invoke this with the following command (all on one line):

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Lesson 3 - Introduction to Jacl
Version Date: Wednesday, May 05, 2004- 27 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

./wsadmin.sh -javaoption -Dscript.encoding=Cp1047 -conntype none

 -f /u/user1/lesson3d.jacl mycell mynode Server1 my_appl

Beginning part of command is
the same as before

Parameter string passed into
the script

Invocation of Jacl script and passing in of parameters

You should see a response back of:
C:mycell N:mynode S:Server1 A:my_appl

Though that script worked, it has limitations:

y There was no check to insure the minimum number of parameters was supplied, or that the
number of parameters supplied was more than the number of variables in the script.

y If a user entered the parameter string in the wrong sequence, the script would simply assign
the values to the variables in whatever order they were received

We'll address the first issue next. The second issue is more difficult: it requires validation of the
input string against rules designed around a naming convention. That's possible in Jacl, but
beyond the scope of this document.

Note:

Using If-Else to validate the number of parameters passed in

Suppose your script requires that exactly three parameters be passed in. Here's how you can
check that three -- and only three -- were indeed passed in:

� Create a file called lesson3e.jacl and provide the following:

if { !($argc==3) } then {
 puts stdout "You supplied $argc parameters, not three. Try again"
} else {
 set cell [lindex $argv 0]
 set node [lindex $argv 1]
 set server [lindex $argv 2]
 puts stdout "Parameters: cell:$cell node:$node server:$server"
}

[= x'AD'
] = x'BD'

Square brackets in
EBCDIC must be:

Important!

lesson3e.jacl - If-Else used to validate exactly three parameters passed in

There's a lot going on there. Let's explore that in some detail:

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Lesson 3 - Introduction to Jacl
Version Date: Wednesday, May 05, 2004- 28 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

00001 if { !($argc==3) } then {

00002 puts stdout "You supplied $argc parameters, not three. Try again"

00003 } else {

00004 set cell [lindex $argv 0]

00005 set node [lindex $argv 1]

00006 set server [lindex $argv 2]

00007 puts stdout "Parameters: cell:$cell node:$node server:$server"

00008 }

1

2
3

4

5

If-Else structure explored in more detail

If the number of parameters passed in was not 3, then processing skips over the "else" clause
and the script exits. Had we coded the setting of the variables outside the "else" clause, that
stuff would have been processed even if the number of parameters wasn't three. The "if"
evaluation of "not equal to three" would have passed, the "then" processing would have occurred,
and after that the processing would pick up with what follows. But we coded the parameter
processing inside the "else" clause. Therefore, when !($argc==3) was met, the message was
posted and the script ended.

It is possible to force an exit from a script at any point by using the exit function. We could
have coded exit right after the error message and quit the script right there. If that was the
case, then the parameter processing stuff could have been outside the "if-then" structure.

5

The "else" clause begins. The keyword else must follow the close-brace of the if condition; it
must be on the same line, and the open-brace must follow that. This "else" clause simply uses
the lindex function to parse out the parameters and assign them to variables.

4

The "then" clause starts. Note how the open-brace for the "then" clause starts on the same line
as the close-brace for the evaluation. This is a requirement. One or more spaces must separate
the close-brace from the open-brace. The "then" clause is simple: it puts back to the screen a
message indicating the number of parameters entered, and how that number is not three.

3

The "if" condition starts. The evaluation is made against the condition !($argc==3), which is
"variable $argc not equal to 3." (The ! out front provides the "not" aspect of that.) Notice how
the whole condition being evaluated is enclosed in braces.

2

The variable $argc is a special one that supplies the number of elements in the parameter
string.

1

As you can see, Jacl is somewhat sensitive about where things appear relative to others. For
example, the open-braces had to follow the preceding condition and could not be on the next
line. Be careful with that sort of thing.

Note:

� Invoke the script with the following (all on one line):

./wsadmin.sh -javaoption -Dscript.encoding=Cp1047 -conntype none

 -f /u/user1/lesson3e.jacl mycell mynode Server1

Parameter string with exactly
three arguments

Invocation of Jacl script and passing in of parameters

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Lesson 3 - Introduction to Jacl
Version Date: Wednesday, May 05, 2004- 29 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

You should see a response back of:

cell:mycell node:mynode server:Server1

� Invoke the script again, this time with four parameters. You should see a response back of:

You supplied 4 parameters, not three. Try again

Jacl lists -- an important way of providing options to WSADMIN commands

Many of the WSADMIN commands have "options" as one of the arguments (or parameters) to
the task being invoked. Those options are coded inside braces -- " { " and " } " -- to gather up
the options into a single parameter, even though lots of things may be coded inside the braces.
For example, the install task of $AdminApp object has two arguments: the EAR file being
installed and the options to be used. In a Network Deployment configuration the options must
contain at least -node and -server to indicate where the application is to be installed. The
syntax of the command would look something like this:

$AdminApp install /u/user1/MyIVT.ear {-node aznodea -server azsr01a}

Object Method EAR file Option list

Argument #1 Argument #2

Options are second argument to the install method; are enclosed in "braces"

If you failed to code the braces on that command, WSADMIN would interpret -node as the
second argument, aznodea as the third, -server as the fourth and azsr01a as the fifth
argument. The problem with that is that the install method only has two arguments. WSADMIN
would throw an error:

$AdminApp install /u/user1/MyIVT.ear -node aznodea -server azsr01a
1 2 3 4 5

... can't find method "install" with 5 argument(s)

Arguments:

Error message thrown by WSADMIN when braces not coded to enclose options list

You see the importance of the braces. Proper coding of the braces will become a point of some
frustration as you learn this. You'll see later that some options have sub-options, requiring
braces inside of braces, all properly matched up and balanced.

Note:

Using Jacl variables to break up long command lines

These option lists can get quite long, depending on the number of options being coded onto
the task. The previous example showed only two, but if you look at the BBODIAPP job (or
BBOWIAPP if you have a Base Application Server node), you'll see quite a few options. That
gets awkward coding all that one command line entry. And if you're coding the command in
a separate file ("WSADMIN commands held in a separate file" on page 19) you still have to
code it on one line.

Line continuation inside a Jacl script is tricky. The backslash character (" \ ") works in some
cases and not others, depending on where you try to break the line and continue. None of the
WSADMIN sample scripts we've seen show command strings broken up with line continuation
characters. They use variable substitution instead.

???

An example of Jacl variables being used to break up a line might look something like this:

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Lesson 3 - Introduction to Jacl
Version Date: Wednesday, May 05, 2004- 30 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

set ear "/u/user1/MyIVT.ear"

$AdminApp install $ear {-node aznodea -server azsr01a}

Jacl script where command line contains variable substitution

Could the options also be done in the same way? Unfortunately not:

set ear "/u/user1/MyIVT.ear"
set opt "{-node aznodea -server azsr01a}"
$AdminApp install $ear $opt

WASX7122E: Expected "-" not found.
{-node aznodea -server azsr01a}
^

Throws error:

Option string with braces
enclosed in standard
variable named "opt"

Can't enclose braces in a string variable -- throws error

Jacl "list" function to the rescue

The Jacl language provides a function called list that allows a set of arguments or
parameters to be held in a variable and passed into a WSADMIN command. To fix the
problem in the previous picture all we need do is use the list function:

set ear "/u/user1/MyIVT.ear"
set opt [list -node aznodea -server azsr01a]
$AdminApp install $ear $opt

Option string
without braces

added to list
variable "opt"

Value:
/u/user1/MyIVT.ear

Value:
{-node aznodea -server azsr01a}

Jacl "list" function solves the option string issue

Notice how the list function is enclosed in square brackets.Note:

So the list function provides a set of implied braces around the option list and allows the
install method to accept the options as a single argument.

The Jacl list function is a widely used and critically important component for WSADMIN
coding. It's important to understand how this thing works.

Note:

Variable substitution into "list" function

Now we'll do a few more exercises.

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Lesson 3 - Introduction to Jacl
Version Date: Wednesday, May 05, 2004- 31 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

� Create a file called lesson3f.jacl and provide the following:

set node "aznodea"
set server "azsr01a"
set ear "/u/user1/MyIVT.ear"
set opt [list -node $node -server $server]
puts stdout "AdminApp install $ear $opt"

lesson3f.jacl - Using Jacl list function to put argument list into variable

y Square brackets must be x'AD' and x'BD' EBCDIC for this to work.

y Do not code a dollar sign on the front of "AdminApp." Jacl will think that's a variable
and try to substitute something into the variable. For now we're just playing around
with Jacl and not trying to actually invoke $AdminApp.

Notes:

� Invoke that with the following command (all on one line):
./wsadmin.sh -javaoption -Dscript.encoding=Cp1047 -conntype none

 -f /u/user1/lesson3f.jacl

You should receive back:

AdminApp install /u/user1/MyIVT.ear -node aznodea -server azsr01a

Don't let the absence of braces around the option list concern you. If we were actually
invoking $AdminApp install the $opt variable would imply them ... because we
used [list] to create the variable.

Note:

Nested options -- option lists inside and option list

Back in "A look inside the BBODIAPP job" on page 21 we saw the WSADMIN command
that installed the Admin Console application into the Deployment Manager. If you look
closely at the option list that followed the $AdminApp install command, you'd see there
was three levels of option lists at work:

{-appname adminconsole

 -MapRolesToUsers {

 {"administrator" No No AZADMIN AZCFG}

 {"monitor" No No AZADMIN AZCFG}

 {"operator" No No AZADMIN AZCFG}

 {"configurator" No No AZADMIN AZCFG}

 }

 -server dmgr

 -node azdm

 -cell azcell

}

Outer
option

list

Innermost
option lists

Middle
option

list

BBODIAPP job's installation of adminconsole.ear employed nested options

Relax. The -MapRolesToUsers task is a complex one and way beyond what we're
trying to get across here. Don't worry if you don't yet understand that task or its
options. That's not the point of this exercise. We're simply using this as an example
of nested options in a "real world" setting.

Please read:

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Lesson 3 - Introduction to Jacl
Version Date: Wednesday, May 05, 2004- 32 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

Simplified, we see the following structure:
$AdminApp install <ear> {-outer {-middle {inner1} {inner2}}}

Even that's a bit complex for us at the moment. Let's focus on a simple nested option:
task {-opt1 {opt1a opt1b opt1c}}

Let's construct that using the [list] function and variable substitution:

� Create a file called lesson3g.jacl and provide the following:

set inner [list opt1a opt1b opt1c]
set outer [list -opt1 $inner]
puts stdout "task $outer"

lesson3g.jacl - Putting a "list" inside another "list"

y Square brackets must be x'AD' and x'BD' EBCDIC for this to work.

y The variable "inner" is being populated with a list of three elements. Braces will be
put around these three because the [list] function is being used.

y The variable "outer" is being populated with -opt1 and then the contents of the
"inner" list variable.

y Some examples show the list function being nested inside another list function:
set outer [list -opt1 [list opt1a opt1b opt1c]]

This reduces the number of lines in your Jacl script. But it can tend to be a bit
confusing. Throughout this document we'll avoid this. Rather, we'll construct
separate variables and build our argument lists step-by-step.

Notes:

� Invoke that script with the following command:
./wsadmin.sh -javaoption -Dscript.encoding=Cp1047 -conntype none

 -f /u/user1/lesson3g.jacl

You should get a response back of this:

task -opt1 {opt1a opt1b opt1c}

Outer-most braces not shown
in "puts" command, but

they're implied and this will
work with WSADMIN

Result: option list nested inside another option list

Let's say your objective was something like this:
task {-opt1 {opt1a opt1b} -opt2 {opt2a opt2b}}

� Create a file called lesson3h.jacl and provide the following:

set inopt1 [list opt1a opt1b]
set inopt2 [list opt2a opt2b]
set outer [list -opt1 $inopt1 -opt2 $inopt2]
puts stdout "task $outer"

lesson3h.jacl - Multiple nested lists

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Lesson 3 - Introduction to Jacl
Version Date: Wednesday, May 05, 2004- 33 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

� Invoke that script with the following command:
./wsadmin.sh -javaoption -Dscript.encoding=Cp1047 -conntype none

 -f /u/user1/lesson3h.jacl

You should get a response back of this:

Outer-most braces not shown
in "puts" command, but

they're implied and this will
work with WSADMIN

task -opt1 {opt1a opt1b} -opt2 {opt2a opt2b}

Result: two option lists nested inside another outer option list

Concluding points on this lesson

We now have some of the basics of Jacl in place. Please understand there's a considerable
amount of functionality in the Jacl scripting language, and what we've shown you here is but a
small fraction of it. But we have some of the key things that will now allow us to fold the
WSADMIN objects into the Jacl and start to affect the state of the WebSphere for z/OS runtime.

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Lesson 3 - Introduction to Jacl
Version Date: Wednesday, May 05, 2004- 34 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

Lesson 4: Installing an Application using $AdminApp Object
We're now ready to explore using the $AdminApp object to install an application into a server.
We'll start with a few relatively simple examples, then build on that.

For this exercise we're supply a packaged EAR file called MyIVT.ear. That EAR file is relatively
simple to install because all its JNDI naming and mapping is done, and there's no data resources to
connect to.

What that really means is there isn't a lot of WSADMIN task options to specify to get this application
installed. Therefore, it's a great application to use to illustrate the $AdminApp install option.
You'll see the fundamental things first, then we'll expand on it later.

Note:

To connect to a server process or not ... that is the question

Up to this point we've specified -conntype none on the wsadmin.sh invocation. We did that
because it kept things simple. Now we're getting ready to install an application using the
$AdminApp install function.

Is it now required to connect to a server process to make this work? No. If you look at the
BBODIAPP job (see "A look inside the BBODIAPP job" on page 21) you'll see that the job uses
$AdminApp install with a -conntype of none. But don't think it doesn't make any
difference, because it does. Here's the simple rule of thumb:

use -conntype noneIf the Deployment Manager is stopped

use -conntype SOAP -host <host> -port <port>If the Deployment Manager is running

y If your cell is a Base Application Server node, then substitute word "server" for "Deployment
Manager." Or think of it this way: "If the server in which the Admin Application is installed..."

y You may omit the -conntype, -host and -port parameters altogether. It'll default to a
protocol of SOAP, and it'll connect to the SOAP port of the Deployment Manager defined in
the directory structure from which you invoked the wsadmin.sh shell script.

Notes:

This was discussed back under 'When should one use "local mode" versus "remote mode"?' on
page 10.

Which server process to connect to?

The $AdminApp install function is only applicable to that server process in which the
Admin Application is running:

Base Application ServerBase Application Server node configuration

Deployment ManagerNetwork Deployment configuration .

If you connect to any other server process, you'll receive this message:

WASX7206W: The application management service is not running.
Application management commands will not run.

Caution: does not mean that server is not running ... means that server
is not enabled to support the "Application management" commands.

Error received when attempting $AdminApp install against improper server

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Lesson 4 - $AdminApp Object
Version Date: Wednesday, May 05, 2004- 35 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

If -conntype none used, does it matter which copy of wsadmin.sh used?

There is a copy of wsadmin.sh located in the /bin directory of the DeploymentManager
and the /bin directory of each application server node in your configuration. If you plan on
using the -conntype none option, it does matter which copy of wsadmin.sh you invoke.
This is because the copy of wsadmin.sh invoked determines what management services
are available, even when -conntype none is specified.

In a Network Deployment configuration, if you invoke wsadmin.sh from the
/AppServer/bin directory with -conntype none specified and you attempt to invoke
$AdminApp install, you'll see:

WASX7206W: The application management service is not running.
Application management commands will not run.

This is because the /AppServer directory is an application server node, and in a Network
Deployment configuration only the Deployment Manager copy of wsadmin.sh has the
ability to accept the $AdminApp install command.

y We're talking about the $AdminApp install command only at this point. Other
commands may be run against the Node Agent and the application server. But the
$AdminApp install command is intended to be executed against the server process
where the Admin Application is installed. For a Network Deployment configuration,
that's the Deployment Manager.

y If your configuration is a Base Application Server node, then the Admin Application will
be installed in the application server, and the only copy of wsadmin.sh will be under
the /AppServer directory. $AdminApp install will work. WSADMIN will
understand that the server is not part of a Network Deployment configuration.

Notes:

Important note concerning server security if enabled

Up to this point we've not worried about the question of authenticating the user invoking the
WSADMIN process. That's because we've used -conntype none for all the exercises to this
point. That option does not require authentication.

Now we're going to start using -conntype SOAP, and that option permits a userid and
password to be passed in. But that's only necessary if you have global security enabled for the
server.

The exercises in this document were prepared as if global security was not enabled. Therefore,
none of the examples here have the -user and -password parameter specified. But if global
security is enabled on your system, then simply do the following:

./wsadmin.sh -conntype SOAP -host <host> -port <port>

./wsadmin.sh -conntype SOAP -host <host> -port <port> -user <userid> -password <password>

If no security enabled:

If security enabled:

Supplying -user and -password when global security is enabled

Simple install with minimum options

Preliminary activities to ready your environment for exercise

First we'll take care of a few items of business.

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Lesson 4 - $AdminApp Object
Version Date: Wednesday, May 05, 2004- 36 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

Determine the SOAP port of your Deployment Manager (or BaseApp server)

As we mentioned earlier, you could simply invoke the wsadmin.sh shell script with no
connection parameters. That'll default to a SOAP connection and it'll rummage around
in the XML file and find the host and port to connect to. For this exercise we'll show an
explicit connection.

� From the Admin Console, drill down and obtain the actual SOAP port being used:

Admin Console Navigation
System Administration

Deployment Manager
End Points

SOAP Connector Address

Location in the Admin Console navigation where SOAP port is displayed

For a Base Application Server node, that would be: Servers, Application Server,
<server>, End Points, SOAP Connector Address.

Note:

Make sure Deployment Manager (or BaseApp server) is up and running

� To connect to the server process it must be up and bound to the TCP port. If you
can log onto the Admin Console, it's up.

Open OMVS shell (or telnet)

� Use the su command to switch to the "WebSphere Administrator ID."

The purpose for doing this is so you'll have the authority to write files into various
directories. This is not the same thing as the issue of "global security" covered in
"Important note concerning server security if enabled" on page 36.

Note:

� Navigate to the /<config root>/DeploymentManager/bin directory.

Or /<config root>/AppServer/bin if Base Application Server nodeNote:

Place MyIVT.ear in the HFS

� FTP the MyIVT.ear file in binary mode and place it in the /u/user1 directory

Invoke "help" to understand the $AdminApp object better

� At the OMVS command prompt, issue the command:
./wsadmin.sh -conntype none

This will take invoke WSADMIN and produce a WSADMIN prompt.

� At the WSADMIN prompt, issue the following command:
$AdminApp help

You should get a listing that looks like this:

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Lesson 4 - $AdminApp Object
Version Date: Wednesday, May 05, 2004- 37 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

edit Edit the properties of an application
editInteractive Edit the properties of an application interactively
export Export application to a file
exportDDL Export DDL from application to a directory
help Show help information
install Installs an application, given a file name and an option string.
installInteractive
 Installs an application in interactive mode, given a
 file name and an option string.
list List all installed applications
listModules List the modules in a specified application
options Shows the options available, either for a given file, or in
 general.
publishWSDL Publish WSDL files for a given application
taskInfo Shows detailed information pertaining to a given install task
 for a given file
uninstall Uninstalls an application, given an application name and
 an option string
updateAccessIDs Updates the user/group binding information with accessID
 from user registry for a given application
deleteUserAndGroupEntries
 Deletes all the user/group information for all
 the roles and all the username/password information for RunAs
 roles for a given application.

Methods on the $AdminApp object

At this point we're
interested in the
install method

Output from the "help" method on the $AdminApp object

� To get help on the install method, issue the following command:
$AdminApp help install

You will see:

WASX7096I: Method: install

 Arguments: filename, options

 Description: Installs the application in the file specified by
 "filename" using the options specified by "options." All required
 information must be supplied in the options string; no prompting is
 performed.

 The AdminApp "options" command may be used to get a list of all
 possible options for a given ear file. The AdminApp "help" command
 may be used to get more information about each particular option.

A bit misleading ... arguments
are not separated by a comma,

but rather by a space

Note

Help output for the install method of $AdminApp object

So this is saying that the install method takes a pointer to the EAR file to be installed,
and "options." What are those options? There are two answers to that:

1. Options applicable to all EAR files, regardless of what's inside the EAR
2. Options applicable to a given EAR file based on what's inside that EAR file

� To get a listing of the options applicable to all EAR files (the first answer in the two listed
above), issue the following command:
$AdminApp options

You'll see a listing that looks like this:

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Lesson 4 - $AdminApp Object
Version Date: Wednesday, May 05, 2004- 38 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

WASX7105I: The following options are valid for any ear file:

server
cluster
cell
node
installdir
was.install.root
configroot
appname
verbose
contextroot
update
update.ignore.old
update.ignore.new
depl.extension.reg
defaultbinding.datasource.jndi
defaultbinding.datasource.username
defaultbinding.datasource.password
defaultbinding.cf.jndi
defaultbinding.cf.resauth
defaultbinding.ejbjndi.prefix
defaultbinding.virtual.host
defaultbinding.force
defaultbinding.strategy.file

Please note ... this does NOT
mean all these options must

be specified to install an
application. For this set of
exercises we'll specify only

server and node

General options for the install method of $AdminApp object

y The help output doesn't specify this, but each option has a dash on the front end.
So the "server" option is specified: -server followed by its arguments.

y But that is not a complete listing of all the possible options. Rather than spit out all
the options, the $AdminApp object has a facility to tell you what objects relate to a
particular EAR file. It will interrogate the EAR file's deployment descriptors and then
return the install method options that could apply. The format of that command is:

$AdminApp options /<path>/<file_name>.ear

Again, the listing that comes back does not mean all those options must be used to
install the application. Some (or perhaps most) of that information is already
specified in the EAR file's deployment descriptors. But if you want to override a
particular value -- say, for example, a servlet's reference to an EJB, or the virtual
host to which a web module is mapped -- then you may specify those options to
accomplish the override.

Notes:

� Issue the command exit to quit the WSADMIN prompt. That'll put you back at the
OMVS prompt, which is where the next set of instructions assumes you'll be.

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Lesson 4 - $AdminApp Object
Version Date: Wednesday, May 05, 2004- 39 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

Install MyIVT using a simple script file

� Create a file in the /u/user1 directory called lesson4a.jacl

� Edit the file and code the following:

$AdminApp install /u/user1/MyIVT.ear {-node aznodea -server azsr01a}
$AdminConfig save

Supply your node long name
and server long nane, exactly as

specified in WebSphere

Enclose these options
in braces as shown$AdminConfig save

is what commits this
to the repository.

lesson4a.jacl - Two simple commands used to install and commit MyIVT to configuration

What's the purpose of the braces? It groups up the -node and -server options as a
single argument as input to the install method. That method -- install -- calls for
two arguments only: EAR file name and "options." By enclosing the options in braces, it
becomes a single argument for method install. See "Jacl lists -- an important way of
providing options to WSADMIN commands" on page 30 for more on this.

???

� Invoke the script using the following command (all on one line):
./wsadmin.sh -javaoption -Dscript.encoding=Cp1047

-conntype SOAP -host <host> -port <port> -f /u/user1/lesson4a.jacl

y The host and port values would not be enclosed in a brackets. Those are there
simply to show where you supply your values. An example of how it might look in
real life is:
-host wsc3.washington.ibm.com -port 15510

y Add -user <userid> and -password <password> if the server has global
security enabled.

Notes:

Two things will indicate success:
y ADMA5013I: Application My_IVT_Application installed successfully.
y A return to the command prompt

If you have a Network Deployment configuration, do not try to start your
application. It is installed into the "master configuration" but it is not yet
synchronized to the node. We will cover synchronizing to nodes under
"Synchronizing changes with nodes" on page 49. For now, we're only
focusing on the task of installing the application, not synchronizing and using
it.

Important

� Go to the Admin Console and see My_IVT_Application under "Applications"

If you were already logged onto the Admin Console when you invoked WSADMIN, you'll
have to log out and log back in to see the application.

Note:

� Log out of the Admin Console. (See "Important: Do NOT use WSADMIN and Admin
Console at the same time" on page 12.)

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Lesson 4 - $AdminApp Object
Version Date: Wednesday, May 05, 2004- 40 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

Uninstall MyIVT

Now let's turn around and uninstall that application. This is a far easier process.

� Create a file in the /u/user1 directory called lesson4b.jacl

� Edit the file and add two lines:

$AdminApp uninstall My_IVT_Application
$AdminConfig save

lesson4b.jacl - Uninstalling the application

The $AdminConfig save does not appear to be strictly required. It appears to save
okay without it. But adding it doesn't seem to hurt, and it keeps you in practice when
installing applications, where it does appear to be required.

Note:

When uninstalling an application, you must use the "Application Name" as known by
WebSphere. The EAR file name is meaningless.

???

� Invoke the script using the following command (all on one line):
./wsadmin.sh -javaoption -Dscript.encoding=Cp1047

-conntype SOAP -host <host> -port <port> -f /u/user1/lesson4b.jacl

Two things will indicate success:
y ADMA5106I: Application My_IVT_Application uninstalled successfully.

y A return to the command prompt

Determining what task options are applicable to MyIVT.ear

In that last exercise the only options we used were -node and -server. We mentioned that
one of the reasons we used the MyIVT.ear application was the relative simplicity of it. But
"real" applications will require other mappings to things like data resources and virtual hosts.
What options apply to the MyIVT.ear application, based on the deployment descriptors? Let's
find out.

� Issue the following command:
./wsadmin.sh -conntype none

That will take you to the WSADMIN prompt.

� Issue the following command:
$AdminApp options /u/user1/MyIVT.ear

You'll get back a long list of options applicable to MyIVT.ear. This list will include all the
general options (as illustrated in the figure labeled "General options for the install
method of $AdminApp object" on page 39) as well as other options implied by the contents
of the deployment descriptors.

How can we tell what the syntax is for any one of those given options? That's next.???

Finding out more about a particular task option

� To get help on a given option -- say, MapWebModToVH -- issue the following command:

$AdminApp taskInfo /u/user1/MyIVT.ear MapWebModToVH

You'll get the following:

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Lesson 4 - $AdminApp Object
Version Date: Wednesday, May 05, 2004- 41 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

MapWebModToVH: Selecting Virtual Hosts for Web Modules

Specify the virtual host where you want to install the Web modules
contained in your application. Web modules can be installed on the
same virtual host or dispersed among several hosts.

WASX7348I: Each element of the MapWebModToVH task consists of the
following 3 fields: "webModule", "uri", "virtualHost".
Of these fields, the following may be assigned values: "virtualHost"
and the following are required: "virtualHost"

The current contents of the task after running default bindings are:
webModule: My_IVT_Webapp_Display_Name
uri: MyIVTWebApp.war,WEB-INF/web.xml
virtualHost: default_host

Provides feedback
on what value is

found in the EAR file
for this option

$AdminApp taskInfo method will return information about a particular task option

Unfortunately, that's not for all the options, only the following:
MapRolesToUsers, MapRunAsRolesToUsers, CorrectUseSystemIdentity,
BindJndiForEJBNonMessageBinding, BindJndiForEJBMessageBinding,
MapEJBRefToEJB, MapResRefToEJB, MapResEnvRefToRes,
DataSourceFor10EJBModules, DataSourceFor20EJBModules,
DataSourceFor10CMPBeans, DataSourceFor20CMPBeans, MapWebModToVH,
MapModulesToServers, EnsureMethodProtectionFor10EJB,
EnsureMethodProtectionFor20EJB, CorrectOracleIsolationLevel,
BackendIdSelection, AppDeploymentOptions, EJBDeployOptions,
GetServerName, WSDeployOptions

Note:

That doesn't really tell us what the syntax is, does it? Continue on ...???

� Go the InfoCenter, do a search on "MapWebModToVH" and you'll get the following:

InfoCenter information on MapWebModToVH task option syntax (in Jacl)

The InfoCenter is at URL:
http://publib.boulder.ibm.com/infocenter/wasinfo/index.jsp

Note:

Using the information about the MyIVT.ear file derived from the previous command, here's
what each field in the InfoCenter example stands for:

Option
(with dash) "webModule" "uri" "virtualHost"

blank space

What each field in the -MapWebModToVH option syntax relates to

So for the MyIVT.ear application the -MapWebModToVH option string would be:

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Lesson 4 - $AdminApp Object
Version Date: Wednesday, May 05, 2004- 42 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

{{"My_IVT_Webapp_Display_Name" MyIVTWebApp.war,WEB-INF/web.xml default_host}}

y Your eyes are not deceiving you ... two braces to open the string, two braces to close the
string. The outer braces enclose the entire argument list, the inner braces the three
components shown. If MapWebModToVH had other arguments, they'd be enclosed in a
separate set of "inner braces," inside the "outer braces."

y That process -- using taskInfo on the EAR to determine the applicable options, then
using the InfoCenter to determine the syntax -- can be used for any of the options.

Notes:

� Enter the command exit to return to the OMVS command prompt.

Installing MyIVT.ear and mapping to a different Virtual Host

In this exercise we will use the -MapWebModToVH option to map the web application inside
MyIVT.ear to something other than the default virtual host.

� Go into the Admin Console and create a new virtual host. Call it something like WSC_host.

Or any value you wish. It cannot contain blank spaces.Note:

Admin Console Navigation
Environment

Virtual Hosts
New button

Location in the Admin Console navigation where new virtual host is created

� Before saving to the "Master Configuration," create a host alias for this virtual host.

y Click on the link that represents your new virtual host
y Click on "Host aliases"
y Click on "New" button
y Provide a "Host name" of a single asterisk (*)
y Provide a port value equal to the HTTP port of your application server
y Click on "OK"

� Save to the Master Configuration

If you want to actually use this new virtual host -- as opposed to simply mapping an
application to it -- then you will have to stop and restart your application server.

Note:

� Log out of the Admin Console. (See "Important: Do NOT use WSADMIN and Admin
Console at the same time" on page 12.)

� Create a file /u/user1/lesson4c.jacl

� Code the following (see notes below):

$AdminApp install /u/user1/MyIVT.ear {-node <node> -server <server> -MapWebModToVH

 {{"My_IVT_Webapp_Display_Name" MyIVTWebApp.war,WEB-INF/web.xml WSC_host}}}

$AdminConfig save

lesson4c.jacl - Uninstalling the application

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Lesson 4 - $AdminApp Object
Version Date: Wednesday, May 05, 2004- 43 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

y The entire $AdminApp line must be coded on one line in the Jacl script. In the example
above, that's both the first and second lines ... all on one line in lesson4c.jacl

y There's one blank space between -MapWebModToVH and the opening {{"My_IVT... of
the option string.

y Supply your node and server values for <node> and <server>
y If the virtual host you created earlier is anything other than WSC_host, then supply that

value at the very end of the option string.
y We'll show you a way to manage the length of those lines in the next exercise, after we

uninstall MyIVT.

Notes:

� Invoke the script using the following command (all on one line):
./wsadmin.sh -javaoption -Dscript.encoding=Cp1047

-conntype SOAP -host <host> -port <port> -f /u/user1/lesson4c.jacl

� If you coded lesson4c.jacl correctly, it should result in the application being installed
and mapped to the virtual host.

� Log back into the Admin Console and verify that the application is indeed mapped to the
new virtual host:

Admin Console Navigation
Applications

Enterprise Applications
<My_IVT_Application> link

Map virtual host for web modules

Where you can validate (and change) the virtual host to which a web module is mapped

You should see that it's mapped to WSC_host (or your value, if you used a different virtual
host name)

If you have a Network Deployment configuration, do not try to start your application. It
is not yet synchronized to the node. We will cover synchronizing to nodes under
"Synchronizing changes with nodes" on page 49.

Important

Uninstall application in preparation for next exercise

� Re-use lesson4b.jacl, which uninstalled the application earlier.
./wsadmin.sh -javaoption -Dscript.encoding=Cp1047

-conntype SOAP -host <host> -port <port> -f /u/user1/lesson4b.jacl

Using Jacl variables to construct the long command line

� Create a file /u/user1/lesson4d.jacl

� Code the following:

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Lesson 4 - $AdminApp Object
Version Date: Wednesday, May 05, 2004- 44 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

set ear "/u/user1/MyIVT.ear"
set node "<node>"
set server "<server>"
set WebMod "\"My_IVT_Webapp_Display_Name\""
set uri "MyIVTWebApp.war,WEB-INF/web.xml"
set VH "WSC_host"

set VHlist "$WebMod $uri $VH"
set VHopts [list $VHlist]
set options [list -node $node -server $server -MapWebModToVH $VHopts]

$AdminApp install $ear $options
$AdminConfig save

1
2

3
4

5

[= x'AD' EBCDIC
] = x'BD' EBCDIC

lesson4d.jacl - Construction of long command line using Jacl

Here we create the variable options which will be a list (enclosed in braces). We're placing into
this list the variable $VHopts, itself a list. An interesting thing happens: Jacl wraps the contents
of $VHopts -- which at this point is {"webmod" uri vh} -- in another set of braces, creating
the necessary {{"webmode" uri vh}} string of characters.

5

Here we pace the variable $VHlist into a set of single braces using the Jacl list function. A
new variable is created: VHopts.

4

Why are we putting the three variables into a single variable? It turns out Jacl does an odd thing
if a variable included on a list string contains double-quotes: it encloses that variable in its own
set of braces. If we were to code [list $WebMod $uri $VH] that would result in

{("webmod"} uri vh}
when what we really want is:

{"webmod" uri vh}

By placing the three components first into a regular string variable and then using list, we can
then use the list function to enclose the three in a single set of braces.

3

The sequence \" is a way to get double-quote marks into the actual variable. Recall that the
web module portion of the MapWebModToVH option string was enclosed in double quotes.

2

Code your node and server long names in place of <node> and <server>1

� Issue the following command:
./wsadmin.sh -javaoption -Dscript.encoding=Cp1047

-conntype SOAP -host <host> -port <port> -f /u/user1/lesson4d.jacl

If you have a Network Deployment configuration, do not try to start your application. It
is not yet synchronized to the node. We will cover synchronizing to nodes under
"Synchronizing changes with nodes" on page 49.

Important

Jacl script that installs or uninstalls based on passed in parameter

� Create a file /u/user1/lesson4e.jacl

� Code the following:

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Lesson 4 - $AdminApp Object
Version Date: Wednesday, May 05, 2004- 45 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

set parm [lindex $argv 0]
if { !($parm == 1 || $parm == 2) } then {
 puts stdout "Must supply either 1 for install or 2 for uninstall"
 exit
}
EAR FILE, OPTIONS --
set ear "/u/user1/MyIVT.ear"
set name "My_IVT_Application"
set node "<node>"
set server "<server>"
set opts [list -node $node -server $server]
INSTALL/UNINSTALL --
if { ($parm == 1) } then {
 puts stdout "Installing $name"
 $AdminApp install $ear $opts
 $AdminConfig save
} else {
 puts stdout "Uninstalling $name"
 $AdminApp uninstall $name
 $AdminConfig save
}
--
puts stdout "All done."

1

2

4

3

[= x'AD' EBCDIC
] = x'BD' EBCDIC

lesson4e.jacl - Construction of long command line using Jacl

Otherwise the application is uninstalled.4

If the parameter was 1 then the application is installed.3

Set <node> and <server> equal to the long name values for your environment.2

Variable parm set to the first parameter passed in. (If more than one passed in, others ignored.)
Check made to see if value is either 1 or 2. Anything else results in warning message and exit
from script.

1

You may wonder what would happen if a parameter of 1 was passed in when the application
was already installed in the environment. WSADMIN would simply kick the installation back
with warning message about application already being in the environment. This Jacl script
does no checking to see if that's the case, though it could.

Note:

� For the first test, see what happens when no parameters are passed in. Issue the following
command:
./wsadmin.sh -javaoption -Dscript.encoding=Cp1047

-conntype SOAP -host <host> -port <port> -f /u/user1/lesson4e.jacl

You should get back the warning message with information about what parameters are
valid.

The same thing would happen if you passed in 3, or 5, or "Fred," or any parameter other than
1 or 2.

???

� The application should still be in your environment from the previous lesson. So use
parameter 2 to uninstall the application. Issue the following command:
./wsadmin.sh -javaoption -Dscript.encoding=Cp1047

-conntype SOAP -host <host> -port <port> -f /u/user1/lesson4e.jacl 2

You should see the "All done" message.

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Lesson 4 - $AdminApp Object
Version Date: Wednesday, May 05, 2004- 46 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

Concluding points on this lesson

We explored a little of the $AdminApp object. As you saw when you issued the $AdminApp
help command, there was quite a few methods on that object. And under just one of those
methods -- install -- there was 20 or more options. There are three levels of complexity to
all of this that simply takes time to get used to:

1. The methods, tasks and options -- we saw how to drive down and get the syntax for the
-MapWebModToVH task under the install method. You can use that to get the syntax for
any of the methods.

2. When to use what task for what purpose -- let's say you have an EAR file and you know that
you want to remap the JNDI name of a session bean. Which task on the install method
do you use? (The answer is BindJndiForEJBNonMessageBinding, but determining
that was a matter of taking a few educated guesses and exploring.)

3. Sorting out the exact syntax of the task -- and for this there are two levels of complexity:

y What values to code for the various task arguments -- for example, the value for the
web module's "uri" value in the -MapWebModToVH option was:

MyIVTWebApp.war,WEB-INF/web.xml

But you'd only know that if you already knew it, or you used the taskInfo mechanism
to have WSADMIN tell you what the present value already is (see "Finding out more
about a particular task option" on page 21).

y Opening and closing braces, dashes, etc. -- getting comfortable enough with the syntax
to know when a dash is required and when braces are necessary. The help function of
WSADMIN is a bit weak in this area. The InfoCenter provides much better examples.

And this is made more complex when you fold the WSADMIN commands into more
complex Jacl scripting. There it becomes necessary to nest list functions. It can get
very confusing very quickly.

Note:

The good news is this: simple EAR files are relatively simple to install. And by doing that you
can gain enough practice to then branch into more complex things.

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Lesson 4 - $AdminApp Object
Version Date: Wednesday, May 05, 2004- 47 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

Lesson 5: The $AdminConfig Object

WSADMIN is most useful for repetitive tasks where consistency of operation is the objective. Things
done just once and not again and again -- as is the case with configuration changes -- might more
easily be done through the Admin Console. Nevertheless, we'll cover $AdminConfig here so you
can see how it works.

Note:

The $AdminConfig object is used to create, remove or modify "configuration objects," such as
servers, virtual hosts, clusters, etc.

While an application is part of the configuration, they're handled by the $AdminApp object, as we just
looked at in the "Lesson 4: Installing an Application using $AdminApp Object" section, starting on
page 35.

Note:

A little background on $AdminConfig

Before jumping into the exercises, let's look at a few things first:

What methods are on this object?

Quite a few. You can get a listing of the methods by invoking the help method of the
$AdminConfig object:

./wsadmin.sh -conntype none -c '$AdminConfig help'

You get a listing that looks like this:

attributes
checkin
convertToCluster
create
createClusterMember
createDocument
installResourceAdapter
createUsingTemplate
defaults
deleteDocument
existsDocument
extract
getCrossDocumentValidationEnabled
getid
getObjectName
getSaveMode
getValidationLevel
getValidationSeverityResult
hasChanges

help
list
listTemplates
modify
parents
queryChanges
remove
required
reset
save
setCrossDocumentValidationEnabled
setSaveMode
setValidationLevel
show
showall
showAttribute
types
validate

Methods on the $AdminConfig object, as listed by the help method

How many different "configuration types" exist?

"Types" are things like Web Containers, HTTP Transport, Java Virtual Machine, Resource
Adapter -- in other words, pieces of the overall configuration puzzle. There are many
"types." You can get a listing of all the "types" supported by the $AdminConfig object by
issuing the command:
./wsadmin.sh -conntype none -c '$AdminConfig types'

You'll get a list of "types" 225 items long.

What's the message? The message is there's a whole bunch of things the $AdminConfig
object can operate upon. The objective of this document is to merely familiarize you with the
process so you can then explore on your own. In other words, we won't go over all 225 types
here.

???

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Lesson 5 - $AdminConfig Object
Version Date: Wednesday, May 05, 2004- 48 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

Does $AdminConfig require a connection to a server process?

Not necessarily. The $AdminConfig option can work against the repository without being
connected to a server process. But the general rule of thumb mentioned back in the
$AdminApp section is still appropriate here:

use -conntype noneIf the Administrative Appl is stopped

use -conntype SOAP -host <host> -port <port>If the Administrative Appl is running

An exception to this is if you're using $AdminConfig to simply list out what's in the
configuration repository. Then -conntype none is fine. But if you're looking to change the
repository, then use the rule of thumb above.

Note:

Caution: z/OS is different type of environment from distributed

The $AdminConfig object can be used to do things like create a new server. In the z/OS
world, however, more work may be required to permit that server to actually operate. For
example, any required RACF work is outside the scope of WSADMIN. The examples in the
InfoCenter show the creation of servers and the starting of those servers all within the same
Jacl script. That works on the distributed systems, but not z/OS. Be aware of this
distinction when WSADMIN is operating against WebSphere Application Server running on
a z/OS system.

It is possible to create a batch job that invoked WSADMIN to create a server, then invoked a
series of RACF commands for the new server, then invoked WSADMIN again to start the
server. So it's not impossible to automate the process. But it will involve things outside
WSADMIN.

Note:

Synchronizing changes with nodes

We saw in the previous lesson that in a Network Deployment configuration, changes made with
WSADMIN through the Deployment Manager server process are saved only to the "master
configuration." Just because you used $AdminConfig save does not mean the changes are
synchronized to the nodes.

When are changes synchronized? It depends:

Each node agent has configuration settings that determine how
frequently it will contact the Deployment Manager and request changes.
Those configuration settings are documented under "Node Agent
configuration settings that affect synchronization intervals" on page 51.

Initiated by Node Agent

WSADMIN has a facility that prompts a Node Agent to come and get the
changes that have just been made to the "master configuration." That
process is under "Initiating synchronization using WSADMIN" on page
50.

Initiated by WSADMIN script

Synchronization does not apply to a Base Application Server node. By definition that has
no Deployment Manager, no Node Agents, and only one node.

Important:

Node synchronization overview

In a Network Deployment configuration the Deployment Manager is where the
administrative application runs. The administrative application maintains the "master
configuration" in the HFS of the Deployment Manager. Each application server node has a
Node Agent, which acts on the Deployment Manager's behalf in that node. Each node
maintains a copy of the configuration in its HFS:

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Lesson 5 - $AdminConfig Object
Version Date: Wednesday, May 05, 2004- 49 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

Node
Agent

Appl.
Server

MVS Image

DaemonDMGR

Appl.
Server

Node
Agent

Appl.
Server

MVS Image

Daemon

Appl.
Server

Master
Configuration

Node's
configuration

Node's
configuration

Role of Node Agent in acting on DMGR's behalf in the node

This picture shows three HFS symbols, but that's not to say three different HFS files systems
is required. One single HFS file system can be used (if shared HFS is available), or separate
HFS file systems can be employed. The point is really that the DMGR's has a separate
directory structure from the nodes, and each node has its own directory structure. Where
the directory structure resides is irrelevant to this discussion.

Note:

Synchronization occurs on a node-by-node basis. That means that if you have two nodes
(as pictured above), then "synchronization" implies two actions: synchronization to the first
node, then synchronization to the other. Why that's important becomes clear in the next
section where we show the WSADMIN command used to initiate synchronization. Here's a
clue: the command is specific to a node. If you have four nodes, and you wish to
synchronize the entire cell, it implies issuing four WSADMIN commands.

Initiating synchronization using WSADMIN

It's important to introduce at this point in the document the mechanism used to initiate
synchronization through WSADMIN. But the mechanism is fairly complex. So for now, you
will simply have to trust that is how it is done:

Long name
of the node

set var [$AdminControl completeObjectName type=NodeSync,node=g5nodec,*]
$AdminControl invoke $var sync

WebSphere:platform=common,cell=g5cell,version=5.0,name=nodeSync,
 mbeanIdentifier=nodeSync,type=NodeSync,node=g5nodec,process=nodeagent

Value returned by $AdminControl completeObjectName command

Commands used to invoke synchronization for a node

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Lesson 5 - $AdminConfig Object
Version Date: Wednesday, May 05, 2004- 50 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

What this is doing is retrieving the unique object name of the NodeSync Mbean of the Node
Agent, then using that unique name to invoke the sync method of it.

y Initiating synchronization involves issuing two commands: one to get the unique
name, one to invoke the synchronization

y This must be done for each node you wish to synchronize

Key Points:

Programmatically synchronizing with every node in the cell

What we just showed is a way to initiate synchronization with just one node. Let's say you
want to synchronize your changes with all the nodes. How is that accomplished? By
querying for a list of the nodes in the cell, then looping through the list and synchronizing
each node:

set node_ids [$AdminConfig list Node]

foreach node $node_ids {

 set node_name [$AdminConfig showAttribute $node name]

 set nodeSync [$AdminControl completeObjectName type=NodeSync,node=$node_name,*]

 if { !($nodeSync=="") } then {

 $AdminControl invoke $nodeSync sync

 }

}

1

2

3

4
5

6

Synchronizing all the nodes in a configuration cell

That script is provided in the sample file synch_all.jacl, in the "Lesson 5" section.???

Finally, we synch to that node.6

A check is made to see if the value of $nodeSync is a null string. This is done to catch the
Deployment Manager's node, which will return a null value for $nodeSync. If this check wasn't in
place, the script would throw an error when the next line is invoked when the variable $nodeSync
was null.

5
The "complete object name" of the node synchronization Mbean is extracted for that node.4
Here the node long name is extracted out of the config ID.3

The foreach function loops through all the elements of the list variable $node_ids. On each
iteration it places the element into another variable; in this example the variable node.

2

Using the list function, all the nodes in the configuration are placed into a list variable called
node_ids. This would include all the application server nodes and the Deployment Manager
node. The value placed into the variable is the "config ID" of the node, which includes more than
just the node name.

1

Node Agent configuration settings that affect synchronization intervals

Through the Admin Console you may change the settings that affect how frequently the
Node Agents initiate synchronization:

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Lesson 5 - $AdminConfig Object
Version Date: Wednesday, May 05, 2004- 51 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

System Administration Ö
Node Agents Ö

<your node agent> Ö
File Synchronization Services

Related to one another:
If "Automatic

synchronization" checked,
then "Synchronization

Interval" is the period of time
Node Agent waits before

synchronizing again

Node Agent will initate
synchronization when the

Node Agent is started

If checked, Node Agent will initiate synchronization
every time an application server in the node is

started from the Admin Console

A Node Agent's "File Synchronization Services" settings

So by default (the settings shown in the picture above), the following would occur:

y Every time the Node Agent starts up it will contact the Deployment Manager and request
the updates to the master configuration.

y Every 10 minutes the Node Agent will "wake up" and request from the Deployment
Manager the updates to the master configuration

y No synchronization will take place when individual servers are started up.

Would it be possible to avoid kicking off synchronization in WSADMIN and use this aspect of
WebSphere? Yes, you could set these values lower and simply wait until synchronization
occurs. But invoking synchronization at the time of update insures real-time access to the
changes.

???

Exploring the VirtualHost type

We'll start with VirtualHost because it's something most of us know something about, and
because it's something we can create and delete without impacting other things in our
WebSphere environment.

How can we know that VirtualHost is a type?

By driving the types method of the $AdminConfig object. Do the following:

� Open an OMVS prompt. "su" to the WebSphere Administrator ID and change directories
to the /<config_root>/DeploymentManager/bin directory.

� Invoke the following command:
./wsadmin.sh -conntype none -c '$AdminConfig types'

What you'll get back is a long listing, which includes:

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Lesson 5 - $AdminConfig Object
Version Date: Wednesday, May 05, 2004- 52 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

 :
VariableMap
VariableSubstitutionEntry
VirtualHost
WAS40ConnectionPool
WAS40DataSource
 :

Near the bottom of the long
list is VirtualHost ... one

of the "types"

One of the configuration "types" is VirtualHost

What's the structure of the VirtualHost type?

Another method on the $AdminConfig object called attributes will give us a hint. Do
the following:

� From the OMVS prompt (or telnet session), invoke the following command:
./wsadmin.sh -conntype none -c '$AdminConfig attributes VirtualHost'

What you'll get back is this:

"aliases HostAlias*"

"mimeTypes MimeEntry*"

"name String"

The type
has three
attributes

These are keywords ... when we
create a virtual host we'll use these

exact words in the Jacl script

These are also types, and we need
to dig deeper to find out the

structure of them

"String" is just that ... a
string of characters

$AdminConfig attributes VirtualHost

The attributes of the VirtualHost type

If you map this to what you see in the Admin Console, this makes some sense:

Attribute: Name
Type: String
Value: default_host

Attribute: aliases
Type: HostAlias*
Value: A list of host/port pairs

Attribute: mimeTypes
Type: MimeEntry*
Value: A list of mime/extensions

Attributes on VirtualHost type map to Virtual Host options in the Admin Console

We'll ignore the MimeEntry attribute and focus on the HostAlias attribute.

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Lesson 5 - $AdminConfig Object
Version Date: Wednesday, May 05, 2004- 53 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

MimeEntry is nearly identical in concept to HostAlias. Different keywords used, but
same notion of two name/value pairs used to construct an entry. Few people think about
mime types, but everyone has to worry about HostAlias to make things work.

???

What's the structure of the HostAlias type?

� We just discovered that HostAlias is itself a configuration type. (In fact, if you look at
the output from the $AdminConfig types command, you'll see HostAlias listed
there.) That means we can run the attributes method against the type HostAlias:
./wsadmin.sh -conntype none -c '$AdminConfig attributes HostAlias'

And what we get back is the following:

"hostname String"

"port String"

The type
has two

attributes

These are keywords ... when we
create a virtual host we'll use these

exact words in the Jacl script

"String" is just that ... a
string of characters

Attributes on the HostAlias configuration type

What's the value in what we just did?

All that was in preparation for understanding how to construct the command to create a
virtual host using WSADMIN. What we will eventually see is that the command string looks
something like this:

$AdminConfig create VirtualHost <parent>

{{name New_VH} {aliases {{{port 8080} {hostname *}}}}}

Object Method Type

Attributes of the
VirtualHost

type

Attributes of the
aliases type

Strings

We've not yet
covered this

"parent" thing

Note: command on one line

Peek at what command looks like to create a new virtual host with one alias

By drilling down with the attributes method, we discovered what things are expected when
creating the VirtualHost configuration type.

Understanding what's expected on a command is half the battle. With that in your mind you'll
be better prepared to make sense of the samples provided in the InfoCenter. Without this
knowledge of "types" and "attributes" it would be difficult to discern what the samples were
trying to do.

Note:

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Lesson 5 - $AdminConfig Object
Version Date: Wednesday, May 05, 2004- 54 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

What's the minimum required to construct a VirtualHost configuration type?

As you've noticed, these configuration types may have many different attributes. Some of
those attributes are themselves types which have their own attributes. Clearly there'll be a
desire at times to understand what is the least complex way to create a configuration type.

Thankfully, the $AdminConfig object has a method called required. That method will
tell you the required attributes of a given type.

� Issue the following command:
./wsadmin.sh -conntype none -c '$AdminConfig required VirtualHost'

You'll get back the following:
Attribute Type
name String

What this is telling you is that the minimum you can get away with when creating a
VirtualHost type is the name attribute. The attributes HostAlias and MimeEntry
are optional at the time of creation.

A virtual host with no host alias can be created, but an application mapped to that virtual
host won't work. This highlights an important point: the required method is simply
telling you the minimum to create the configuration type, not necessarily to use it.

Note:

Using WSADMIN to create a simple, no-alias Virtual Host

In this exercise we'll create a virtual host using the create method of $AdminConfig. We'll
create it using only the name attribute. This is to keep things simple for now, and to introduce
the notion of a type's "parent."

The help method of $AdminConfig will provide the following syntax for the create method:

Command Issued: $AdminConfig help create

Result Received: Arguments: type, parent, attributes

Determining the ID of the cell to provide as the "parent" for the create method

We know that in WebSphere Application Server for z/OS the cell name takes two forms: a
long name and a short name. For the purpose of supplying the cell as a "parent" on the
create method, we need something else: we need the "ID" of the cell.

We can use the getid method of $AdminConfig to fetch the ID of the cell from the
configuration repository. Do the following:

� Create a file called /u/user1/lesson5a.jacl

� Code the following in the file:

set cellid [$AdminConfig getid /Cell:g5cell/]
puts stdout $cellid

Provide your cell
long name here

[= x'AD' EBCDIC
] = x'BD' EBCDIC

lesson5a.jacl - Using getid method to determine ID of the cell

The string /Cell:g5cell/ is know as the "containment path" for the object. The
containment path is delimited by slashes as shown.

Note:

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Lesson 5 - $AdminConfig Object
Version Date: Wednesday, May 05, 2004- 55 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

� Issue the following command (all on one line):
./wsadmin.sh -javaoption -Dscript.encoding=Cp1047

-conntype SOAP -host <host> -port <port> -f /u/user1/lesson5a.jacl

What you'll get back will look like this:

The cell long name

The "ID" of the cell

g5cell(cells/g5cell:cell.xml#Cell_1)

What comes back from the getid method when the cell ID is what we were after

Now we know the ID of the cell, which will serve as the "parent" when we create the Virtual
Host:

g5cell(cells/g5cell:cell.xml#Cell_1)

We could code that on the command itself, or pass it in as a variable. We'll pass it in as a
variable.

Jacl script to get the cell ID, then create no-alias virtual host

� Create a file called /u/user1/lesson5b.jacl

� Code the following in the file:

Provide your cell
long name here

[= x'AD' EBCDIC
] = x'BD' EBCDIC

set cellid [$AdminConfig getid /Cell:g5cell/]
$AdminConfig create VirtualHost $cellid {{name Test_VH}}
$AdminConfig save
set var [$AdminControl completeObjectName type=NodeSync,node=g5nodec,*]
$AdminControl invoke $var sync

Provide your node
long name here

lesson5b.jacl - Creating a virtual host and providing cell ID as parent

y If you have a Base Application Server node, then delete the last two lines. Those
invoke synchronization, which does not apply to a BaseApp node.

y If you have multiple nodes in a Network Deployment configuration, see
"Programmatically synchronizing with every node in the cell" on page 51.

Notes:

� Issue the following command (all on one line):
./wsadmin.sh -javaoption -Dscript.encoding=Cp1047

-conntype SOAP -host <host> -port <port> -f /u/user1/lesson5b.jacl

If the script was without errors, it'll finish by returning you to the command prompt.

Listing the existing VirtualHost types (including your new one)

The list method on the $AdminConfig object will list out all the instances of a given
type. Do the following:

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Lesson 5 - $AdminConfig Object
Version Date: Wednesday, May 05, 2004- 56 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

� Issue the following command:

./wsadmin.sh -conntype none -c '$AdminConfig list VirtualHost'

This will list all the configuration objects in the repository of type VirtualHost. You
will see in return a list from 1 to n items long, depending on how many different virtual
hosts you have configured in your repository. The listing will look something like this:

The "display name" of the virtual host. This is also the
value of the name attribute of the VirtualHost type.

The "ID" of the virtual host

Test_VH(cells/g5cell:virtualhosts.xml#VirtualHost_1079129639585)
default_host(cells/g5cell:virtualhosts.xml#VirtualHost_1)

The virtual host created in
the previous exercise

Output from list method when the type being listed is VirtualHost

The notion of the "ID" becomes very important later when we modify existing configuration
objects. $AdminConfig will require the ID to uniquely identify the exact thing you're
looking to modify. Typically what you'll see is a sequence of things in a Jacl script: 1) use
WSADMIN functions to extract the ID value, 2) put the results in a variable, then 3) use
the variable when constructing the command to modify the object.

???

Using WSADMIN to determine the values assigned to an existing virtual host

Now let's look at how methods on the $AdminConfig object can tell you about existing virtual
hosts. This will set the stage for the creation of configuration elements programmatically; that
is, querying the environment to get some information, storing that information into a variable,
then using that variable to create something else in the repository.

Here's what we know about the VirtualHost configuration type:

VirtualHost

$AdminConfig attributes VirtualHost

"aliases HostAlias*"

"mimeTypes MimeEntry*"

"name String"

$AdminConfig attributes HostAlias

$AdminConfig attributes MimeEntry

"extensions String*"

"type String"

Result

"hostname String"

"port String"

Result

Result

Using the attributes method to drill down to the lowest-level attributes of VirtualHost

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Lesson 5 - $AdminConfig Object
Version Date: Wednesday, May 05, 2004- 57 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

From our use of the $AdminConfig list VirtualHost command, we know that we have a
virtual host with a name of default_host. Can we use $AdminConfig to tell us what the
attribute values are for default_host? Yes.

Using the getid method to place the config ID of default_host into a Jacl variable

The getid method of $AdminConfig will return the unique "config ID" of a configuration
object. In this case we're interested in the config ID of the default_host virtual host.
The getid method takes as an argument the "containment path" of the configuration object
in question. The containment path for a virtual host looks like this:

/VirtualHost:default_host/

Keyword

The name of the
virtual host

Note beginning and
ending slashes

Format of the "containment path" for the VirtualHost configuration object

� Create a file called /u/user1/lesson5c.jacl

� Code the following in the file

set vh_id [$AdminConfig getid /VirtualHost:default_host/]

puts stdout "ID of VirtualHost is $vh_id"

"Containment Path" for the
VirtualHost type. This is what allows

the getid method to uniquely
identify the requested object

Remember: EBCDIC
square brackets are

x'AD' and x'BD'

Variable vh_id populated with result of getid,
then simply echoed back to your terminal

[= x'AD' EBCDIC
] = x'BD' EBCDIC

lesson5c.jacl - Extracting the ID of the virtual host default_host

� Issue the following command (all on one line):
./wsadmin.sh -javaoption -Dscript.encoding=Cp1047

-conntype SOAP -host <host> -port <port> -f /u/user1/lesson5c.jacl

You should get a response that looks something like this:
ID of VirtualHost is

default_host(cells/g5cell:virtualhosts.xml#VirtualHost_1)

We now have the ID of the virtual host default_host in a Jacl variable. Now we can
work with it.

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Lesson 5 - $AdminConfig Object
Version Date: Wednesday, May 05, 2004- 58 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

Using the show method to display all the attributes held by the configuration object

The show method has a single argument: the "config ID" of the object. In the last exercise
we captured the config ID for the virtual host default_host in the variable vh_id. Let's
now use that with the show method.

� Copy the file /u/user1/lesson5c.jacl to file /u/user1/lesson5d.jacl

� Edit the file lesson5d.jacl and provide the following:

set vh_id [$AdminConfig getid /VirtualHost:default_host/]

set show_out [$AdminConfig show $vh_id]

puts stdout "Attributes are $show_out"

Exact same
first line

Use show method and
pass in argument of

config ID set in first line

Put results
in variable
show_out

Display
results to
terminal

[= x'AD' EBCDIC
] = x'BD' EBCDIC

lesson5d.jacl - Using show method of $AdminConfig to show all attributes of VH

� Issue the following command (all on one line):
./wsadmin.sh -javaoption -Dscript.encoding=Cp1047

-conntype SOAP -host <host> -port <port> -f /u/user1/lesson5d.jacl

Brace yourself ... you should see an output that looks like this:

Attributes are {aliases {(cells/g5cell:virtualhosts.xml#HostAlias_1)
(cells/g5cell:virtualhosts.xml#HostAlias_2) (cells/g5cell:virtualhosts.xml#HostAlias_3)
(cells/g5cell:virtualhosts.xml#HostAlias_4)
(cells/g5cell:virtualhosts.xml#HostAlias_1078935918161)}}
{mimeTypes {(cells/g5cell:virtualhosts.xml#MimeEntry_1)
(cells/g5cell:virtualhosts.xml#MimeEntry_2)
(cells/g5cell:virtualhosts.xml#MimeEntry_3) (cells/g5cell:virtualhosts.xml#MimeEntry_4)
(cells/g5cell:virtualhosts.xml#MimeEntry_5) (cells/g5cell:virtualhosts.xml#MimeEntry_6)
 :
 :
(cells/g5cell:virtualhosts.xml#MimeEntry_89) (cells/g5cell:virtualhosts.xml#MimeEntry_90)}}
{name default_host}

Many lines removed to save space in document

Output of show on default_host

The default_host virtual host has a very long list of MimeEntry types. 90 of them in
total. That's a lot of output. So in the next exercise we'll show you how to trim that back
by showing just the HostAlias type.

???

Using the showAttribute method to display a certain kind of attribute

Let's say you didn't want to see all that MimeEntry stuff. Let's say all you were interested
in was the "hostname/port" aliases contained in the virtual host. Would it be possible to list
just those? The answer is yes. The showAttribute method does exactly that.

� Copy the file /u/user1/lesson5d.jacl to file /u/user1/lesson5e.jacl

� Edit the file lesson5e.jacl and add provide the following:

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Lesson 5 - $AdminConfig Object
Version Date: Wednesday, May 05, 2004- 59 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

set vh_id [$AdminConfig getid /VirtualHost:default_host/]

set show_out [$AdminConfig showAttribute $vh_id aliases]

puts stdout "Attributes are $show_out"
Changes to

file are
highlighted

[= x'AD' EBCDIC
] = x'BD' EBCDIC

lesson5e.jacl - Using showAttribute method to display just aliases

� Issue the following command (all on one line):
./wsadmin.sh -javaoption -Dscript.encoding=Cp1047

-conntype SOAP -host <host> -port <port> -f /u/user1/lesson5e.jacl

What you'll get back is something far more manageable:

Attributes are
{(cells/g5cell:virtualhosts.xml#HostAlias_1)
 (cells/g5cell:virtualhosts.xml#HostAlias_2)
 (cells/g5cell:virtualhosts.xml#HostAlias_3)
 (cells/g5cell:virtualhosts.xml#HostAlias_4)
 (cells/g5cell:virtualhosts.xml#HostAlias_1078935918161)}

Five aliases
held in

default_host

This is the
"config ID" for
this particular

host alias

Output to showAttribute on just aliases attribute for default_host virtual host

Your output may be more or less, depending on how many aliases are contained in your
copy of default_host. Also, the layout of the aliases shown above -- all nicely lined
up one over the next -- was artificially produced. In reality the aliases were strung
together in one long line.

Note:

Using the show and showAttribute methods to display contents of host alias

We've drilled down to the point where we've displayed a list of the aliases contained within
the default_host virtual host. Now let's see how we can show the contents of one of
those aliases.

Using show method to display contents

In the last exercise you displayed the config IDs of all the aliases. We're going to now
use the config ID of one of those aliases to demonstrate how the $AdminConfig object
can be used to extract the value of that alias.

� Pick one of the aliases listed in the previous exercise and write the config ID here:

__

The config ID starts and ends with parenthesis -- (and) -- you may, if you wish,
simply copy the config ID to the clipboard and then paste it into the Jacl script.

Note:

� Copy the file /u/user1/lesson5e.jacl to file /u/user1/lesson5f.jacl

� Edit the file lesson5f.jacl and add provide the following:

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Lesson 5 - $AdminConfig Object
Version Date: Wednesday, May 05, 2004- 60 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

set alias_id "(cells/g5cell:virtualhosts.xml#HostAlias_1)"

puts stdout [$AdminConfig show $alias_id]

Provide your alias config ID here.
Enclose it in double-quotes so it's set

into the variable as a string

[= x'AD' EBCDIC
] = x'BD' EBCDIC

lesson5f.jacl - Using show method of to display contents of a particular host alias

� Issue the following command (all on one line):
./wsadmin.sh -javaoption -Dscript.encoding=Cp1047

-conntype SOAP -host <host> -port <port> -f /u/user1/lesson5f.jacl

You should get back something that looks like this:
{hostname *}
{port 15518}

What this is saying is this: two attributes exist in this alias: hostname and port.
The value for hostname is a single asterisk and the value for port is 15518.

???

Using showAttributes to display hostname attribute or port attribute individually

� Copy the file /u/user1/lesson5f.jacl to file /u/user1/lesson5g.jacl

� Edit the file lesson5g.jacl and add provide the following:

set alias_id "(cells/g5cell:virtualhosts.xml#HostAlias_1)"

puts stdout [$AdminConfig showAttribute $alias_id port]

Provide your alias config ID here.
Enclose it in double-quotes so it's set

into the variable as a string

Things added for this exercise

[= x'AD' EBCDIC
] = x'BD' EBCDIC

lesson5g.jacl - Using showAttribute method to display value of port attribute

� Issue the following command (all on one line):
./wsadmin.sh -javaoption -Dscript.encoding=Cp1047

-conntype SOAP -host <host> -port <port> -f /u/user1/lesson5g.jacl

You should get back something that looks like this:
15518

That is just the value of port in a particular alias inside the default_host virtual
host.

???

Creating a new virtual host complete with an HostName/Port alias

We're now ready to construct a Jacl script that will add a new virtual host to an environment,
and populate that with an alias, complete with a hostname attribute and a port attribute.

Earlier we showed this picture of what the create method command would look like to create a
virtual host:

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Lesson 5 - $AdminConfig Object
Version Date: Wednesday, May 05, 2004- 61 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

$AdminConfig create VirtualHost <parent>

{{name New_VH} {aliases {{{port 8080} {hostname *}}}}}

Object Method Type

Attributes of the
VirtualHost

type

Attributes of the
aliases type

Strings

Revisit command to create a virtual host with alias

Understanding all the open and closing braces in create VirtualHost command

It's worth the time to pause and understand the braces in the attribute list for the command
shown in the previous diagram.

{{name New_VH} {aliases {{{port 7777} {hostname *}}}}}

2 3

4

5

6

1

7

Matching up the open and close braces in the attribute list

Encloses all the attributes that follow the VirtualHost type.7

Encloses the aliases keyword attribute and its attribute list.6

Marks the start and end of all the aliases that will be added to this new virtual host. This example
shows only one port/hostname pair, but in reality you may add as many as you like. If you had
another port/hostname pair, it would be another {{port}{hostname}} string inside the #5
braces but following the #4 braces.

5

Marks the start and end of this alias, which contains port 7777 and hostname *4

Encloses the hostname value for this particular alias3

Encloses the port value for this particular alias2

Encloses the name attribute, one of three attributes for the VirtualHost type1

Jacl script with hard-coded attribute list

� Create a file called /u/user1/lesson5h.jacl

� Code the following in the file:

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Lesson 5 - $AdminConfig Object
Version Date: Wednesday, May 05, 2004- 62 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

set cell_id [$AdminConfig getid /Cell:g5cell/]
$AdminConfig create VirtualHost $cell_id

 {{name New_VH} {aliases {{{port 7777} {hostname *}}}}}
$AdminConfig save
set var [$AdminControl completeObjectName type=NodeSync,node=g5nodec,*]
$AdminControl invoke $var sync
puts stdout [$AdminConfig list VirtualHost]

Provide your cell
long name here

One line; blank space
between $cell_id and

start of attribute list

[= x'AD' EBCDIC
] = x'BD' EBCDIC

Provide your node
long name here

lesson5h.jacl - Jacl script to create new virtual host with one alias

� Issue the following command (all on one line):
./wsadmin.sh -javaoption -Dscript.encoding=Cp1047

-conntype SOAP -host <host> -port <port> -f /u/user1/lesson5h.jacl

You should get back a listing of the virtual hosts that are in your configuration repository.
One of those virtual hosts should be New_VH created in this exercise.

Jacl script using variables to populate attribute list

You could use the lesson5h.jacl script for another virtual host by simply changing some
of the values. Of your could code the script so the command string was populated with
variables.

Or passed in as parameters. Here we'll show the variables being set at the top of the script.
See "Passing values in as parameters" on page 27 for an example of how parameters can
be passed in and parsed into variables.

Note:

� Create a file called /u/user1/lesson5i.jacl

� Code the following in the file:

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Lesson 5 - $AdminConfig Object
Version Date: Wednesday, May 05, 2004- 63 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

set cell "g5cell"
set vh_name "New_VH2"
set host1 "*"
set port1 "8888"

set cell_id [$AdminConfig getid /Cell:$cell/]

set name [list "name" $vh_name]
set p1 [list port $port1]
set h1 [list hostname $host1]
set pair1 [list $p1 $h1]
set alias_attrs [list $pair1]
set aliases [list aliases $alias_attrs]
set VH_attrs [list $name $aliases]

$AdminConfig create VirtualHost $cell_id $VH_attrs
$AdminConfig save

set var [$AdminControl completeObjectName type=NodeSync,node=g5nodec,*]
$AdminControl invoke $var sync

puts stdout [$AdminConfig list VirtualHost]

Set basic
variables here

Put cell config ID
into variable

Progressively build up
lists to construct the
nested attribute list

Invoke "create"
method with
attributes as

variables, then
save changes

List out virtual hosts
in configuration

[= x'AD' EBCDIC
] = x'BD' EBCDIC

Node long
name here

lesson5i.jacl - Putting information into variables and using Jacl list to construct attribute list

If the use of the Jacl list function as shown above is confusing, do the following:
y Understand that the variable set with this list function has an implied set of braces

around it -- set x [list a b c] would result in x being equal to {a b c}
y Print out a copy of the picture shown under "Understanding all the open and closing

braces in create VirtualHost command" on page 62
y Walk through the section of the code where all the list functions are used, and watch

how the braces are built up, one after another.

Note:

� Issue the following command (all on one line):
./wsadmin.sh -javaoption -Dscript.encoding=Cp1047

-conntype SOAP -host <host> -port <port> -f /u/user1/lesson5i.jacl

You should get back a listing of the virtual hosts in your environment.

Question: what if virtual host had multiple hostname/port pairs?

The example provided in lesson5i.jacl could easily be expanded to handle multiple
aliases:

This example is offered as lesson5i-2.jaclNote:

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Lesson 5 - $AdminConfig Object
Version Date: Wednesday, May 05, 2004- 64 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

set cell "g5cell"
set vh_name "New_VH3"
set host1 "*"
set port1 "8888"
set host2 "www.myhost.com"
set port2 "9999"

set cell_id [$AdminConfig getid /Cell:$cell/]

set name [list "name" $vh_name]
set p1 [list port $port1]
set h1 [list hostname $host1]
set pair1 [list $p1 $h1]
set p2 [list port $port2]
set h2 [list hostname $host2]
set pair2 [list $p2 $h2]
set alias_attrs [list $pair1 $pair2]
set aliases [list aliases $alias_attrs]
set VH_attrs [list $name $aliases]

$AdminConfig create VirtualHost $cell_id $VH_attrs
$AdminConfig save

set var [$AdminControl completeObjectName type=NodeSync,node=g5nodec,*]
$AdminControl invoke $var sync

puts stdout [$AdminConfig list VirtualHost]

Gray highlighting
indicates added script

[= x'AD' EBCDIC
] = x'BD' EBCDIC

Modifying lesson5i.jacl so new virtual host had multiple aliases

Would it be possible to create a Jacl script that was even more dynamic than this? Yes, a
looping structure could be built. But that won't be illustrated in this document. Here the
objective was demonstrating how to build up nested lists to accomplish the goal of
creating the new virtual host.

???

Using the modify method of $AdminConfig to add another alias to the virtual host

At this point you should have several new virtual hosts in your environment. Now what we'll do
is use the modify method to change some aspect of one of those virtual hosts.

If you use the help method of $AdminConfig to see what it says about the method modify, it
tells you the method takes two arguments: the config ID and "attributes." Here again we find
ourselves relying on what we've learned elsewhere to know what "attributes" means in this
context.

From earlier exercises we know the attributes of the VirtualHost configuration object: name,
aliases (under which two sub-attributes exist: hostname and port), and mimeTypes (under
which exists: extensions and type).

We'll start by modifying the name attribute of one of your virtual hosts:

Changing the name of the virtual host

� Create a file called /u/user1/lesson5j.jacl

� Code the following in the file:

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Lesson 5 - $AdminConfig Object
Version Date: Wednesday, May 05, 2004- 65 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

set exist_name "New_VH2"
set new_name "Mod_VH2"
--
set vh_id [$AdminConfig getid /VirtualHost:$exist_name/]
--
set name_list [list name $new_name]
set attr_list [list $name_list]
--
$AdminConfig modify $vh_id $attr_list
$AdminConfig save
--
set var [$AdminControl completeObjectName type=NodeSync,node=g5nodec,*]
$AdminControl invoke $var sync
--
puts stdout [$AdminConfig list VirtualHost]

Construction of the
{{name Mod_VH2}}

attribute list to
modify method

[= x'AD' EBCDIC
] = x'BD' EBCDIC

lesson5j.jacl - Jacl script that changes virtual host name from "exist_name" to "new_name"

� Issue the following command (all on one line):
./wsadmin.sh -javaoption -Dscript.encoding=Cp1047

-conntype SOAP -host <host> -port <port> -f /u/user1/lesson5j.jacl

You should get back a listing of the virtual hosts in your environment, including the
modified one.

What happened there? The command passed in was:
$AdminConfig modify <config ID of VH> {{name Mod_VH2}}

It read the value name as an attribute type and simply replaced the same attribute for the
object with the config ID given -- name in this case -- with the one supplied on the attribute
list.

???

Adding additional aliases to the virtual host

It's a very similar process to that illustrated in the previous exercise. Rather than pass in
the attribute list {{name Mod_VH2}}, we'll pass in:

{{aliases {{{port 5555} {hostname *}} {{port 6666} {hostname *}}}}}

Do the following:

� Create a file called /u/user1/lesson5k.jacl

� Code the following in the file:

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Lesson 5 - $AdminConfig Object
Version Date: Wednesday, May 05, 2004- 66 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

set vh_name "New_VH2"
set port1 "5555"
set host1 "*"
set port2 "6666"
set host2 "*"
--
set vh_id [$AdminConfig getid /VirtualHost:$vh_name/]
--
set p1 [list port $port1]
set h1 [list hostname $host1]
set pair1 [list $p1 $h1]
set p2 [list port $port2]
set h2 [list hostname $host2]
set pair2 [list $p2 $h2]
set pair_list [list $pair1 $pair2]
set alias_list [list aliases $pair_list]
set attr_list [list $alias_list]
--
$AdminConfig modify $vh_id $attr_list
$AdminConfig save
--
set var [$AdminControl completeObjectName type=NodeSync,node=g5nodec,*]
$AdminControl invoke $var sync
--
puts stdout [$AdminConfig list VirtualHost]

Construction of the
attribute list to
modify method

[= x'AD' EBCDIC
] = x'BD' EBCDIC

lesson5k.jacl - Jacl script that adds two more hostname/port aliases to the virtual host

Notice how the list function is used to build the attribute lists from the inside working
out? That's the easiest way to keep track of all the open and close braces.

Note:

� Issue the following command (all on one line):
./wsadmin.sh -javaoption -Dscript.encoding=Cp1047

-conntype SOAP -host <host> -port <port> -f /u/user1/lesson5k.jacl

You should get back a listing of the virtual hosts in your environment, including the
modified one. Go into the Admin Console to look at the aliases added to that virtual
host.

Could WSADMIN be used to list out the aliases? Sure. But we've already done that, so
going into the Admin Console is simply easier at this point.

???

Deleting the test virtual hosts created in this lesson

To delete a virtual host requires the use of the remove method of $AdminConfig. The
method has a very simple syntax:
$AdminConfig remove <config ID of object being removed>

You can get the config ID for any object in the repository by using the $AdminConfig getid
method. For a virtual host, the command would look like this:
$AdminConfig getid /VirtualHost:VH_name/

The resulting config ID will look something like this:
New_VH(cells/g5cell:virtualhosts.xml#VirtualHost_1079548227779)

Note:

Jacl script to delete a virtual host

Do the following:

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Lesson 5 - $AdminConfig Object
Version Date: Wednesday, May 05, 2004- 67 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

� Create a file called /u/user1/lesson5l.jacl

� Code the following in the file:

Put the display name of
the virtual host here

set vh_name "New_VH2"
set vh_id [$AdminConfig getid /VirtualHost:$vh_name/]
--
$AdminConfig remove $vh_id
$AdminConfig save

set var [$AdminControl completeObjectName type=NodeSync,node=g5nodec,*]
$AdminControl invoke $var sync
--
puts stdout [$AdminConfig list VirtualHost]

[= x'AD' EBCDIC
] = x'BD' EBCDIC

lesson5l.jacl - Jacl script that deletes virtual host from configuration

� Issue the following command (all on one line):
./wsadmin.sh -javaoption -Dscript.encoding=Cp1047

-conntype SOAP -host <host> -port <port> -f /u/user1/lesson5l.jacl

The specified virtual host will be deleted and the remaining virtual hosts will be
displayed.

Question: is it possible to delete multiple objects with one command invocation

Apparently not. It looks as though the remove method is capable of processing only one
argument per invocation. If you pass two or more config IDs on the remove method, only
the first is handled. The others are ignored.

You could use the lesson5l.jacl script and simply copy the lines to form a bigger script
that deletes the multiple objects. It would require multiple $AdminConfig remove lines in
the script, but at least it would be an automated removal of multiple objects.

Note:

Creating a new server by copying from an existing server

In this exercise we will create a new application server by modeling it after an existing server.
To do this we'll use the createUsingTemplate method. That method has the following
arguments:

type, parent, attributes, template

where:

The "config ID" of the configuration object on which this new object will be modeled.template

The attributes of the new server are provided here. For a server you must supply at
a minimum the long name. The other attributes of the server will either default
(such as short name: BBOS001) or be modeled after the template server's settings.

attributes

Is the configuration object to which this new object will belong. Servers have nodes
as their parents. This argument requires that the "config ID" of the node be given
as the parent.

parent

Is the type of configuration object being created. In this lesson it will be Server.type

WSADMIN can't be used to do any of the MVS-related things like create RACF profiles,
copy JCL procedures, or create "static" WLM application environments. You can create a
server in WSADMIN but you may have to do other things to get the server to actually start.

Note:

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Lesson 5 - $AdminConfig Object
Version Date: Wednesday, May 05, 2004- 68 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

Simple example without node synchronization

� Create a file called /u/user1/lesson5m.jacl

� Code the following in the file:

Put the new server's
long name here

[= x'AD' EBCDIC
] = x'BD' EBCDIC

set model_serv [$AdminConfig getid /Server:g5sr01c/]
set parent_node [$AdminConfig getid /Node:g5nodec/]
$AdminConfig createUsingTemplate Server $parent_node {{name g5sr02c}} $model_serv
$AdminConfig save

Put your existing server
and node long names here

lesson5m.jacl -- simple creation of a new server, based on a model template

The first two lines are simply creating variables into which the "config ID" of the template
server and parent node will be held. The third line is what creates the server.

???

� Issue the following command (all on one line):
./wsadmin.sh -javaoption -Dscript.encoding=Cp1047

-conntype SOAP -host <host> -port <port> -f /u/user1/lesson5m.jacl

You will see nothing back but the command prompt. If you go into the Admin Console
and look under "Application Servers," you'll see this new server.

Your new server is very rough at this point in time:

y It is not yet synchronized with the node; it is merely defined in the "Master
Configuration" of the Deployment Manager

y The server's short name is set to the default value of BB0S001
y The server's "cluster transition name" is set to the default value of BBOC001
y The server's HTTP and End Point port values are defaulted

Message: what you did in the Jacl script was little more than what's accomplished by
clicking the "New" button in the Admin Console to create a server.

Note:

� Go into the Admin Console and delete this newly created server. Be sure to save to the
"Master Configuration".

We're about to make the script more powerful. We want that server removed from the
configuration so we can re-use the same server name.

???

More automated example with node synchronization

We saw in "Initiating synchronization using WSADMIN" on page 50 how to invoke node
synchronization. Let's now include that in a script to synchronize the change out to the
node.

� Create a file called /u/user1/lesson5n.jacl

� Code the following in the file:

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Lesson 5 - $AdminConfig Object
Version Date: Wednesday, May 05, 2004- 69 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

[= x'AD' EBCDIC
] = x'BD' EBCDIC

Provide values here

set model_serv "g5sr01c"
set new_serv_name "g5sr02c"
set parent "g5nodec"
--
set m_ID [$AdminConfig getid /Server:$model_serv/]
set p_ID [$AdminConfig getid /Node:$parent/]
--
set name_pair [list name $new_serv_name]
set attr_list [list $name_pair]
--
$AdminConfig createUsingTemplate Server $p_ID $attr_list $m_ID
$AdminConfig save
--
set var [$AdminControl completeObjectName type=NodeSync,node=$parent,*]
$AdminControl invoke $var sync

2

1

3

4

lesson5n.jacl -- more automated server creation with node synchronization

Derives "complete name" of NodeSync mBean in the parent node, then drives
synchronization of the changes to the node

4

Drives createUsingTemplate method and saves changes3

Creates attribute list: {{name g5sr02c}} (in this example)2

Puts config IDs of model server and parent node into variables1

Your new server is still a bit rough at this point in time: the short name, cluster transition
name and port values are defaulting.

Note:

Changing an application server's short name

An application server's short name value can be changed using WSADMIN, but you have to
understand where that value resides in the configuration heirarchy. In this exercise we'll show
you how to determine where it is, then show you how to change it.

� Create a file called /u/user1/lesson5o.jacl

� Code the following in the file (see "note" regarding supplied sample file name):

Put the server long
name here

[= x'AD' EBCDIC
] = x'BD' EBCDIC

set server_long "g5sr02c"
set server_id [$AdminConfig getid /Server:$server_long/]
--
puts stdout [$AdminConfig show $server_id]

lesson5o.jacl - Using the show method to display the configuration attributes

Sample file supplied as lesson5o-pre.jacl. We'll be modifying lesson5o.jacl in a
moment, and the modified version is supplied as lesson5o.jacl.

Note:

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Lesson 5 - $AdminConfig Object
Version Date: Wednesday, May 05, 2004- 70 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

� Issue the following command (all on one line):
./wsadmin.sh -javaoption -Dscript.encoding=Cp1047

-conntype SOAP -host <host> -port <port> -f /u/user1/lesson5o.jacl

What you'll see is something like this:

{components
 {(cells/g5cell/nodes/g5nodec/servers/g5sr02c:server.xml#NameServer_1080661509735)
 (cells/g5cell/nodes/g5nodec/servers/g5sr02c:server.xml#ApplicationServer_1080661509735)}}
{customServices {}}
{name g5sr02c}
{processDefinitions
 {(cells/g5cell/nodes/g5nodec/servers/g5sr02c:server.xml#JavaProcessDef_1080661509737)
 (cells/g5cell/nodes/g5nodec/servers/g5sr02c:server.xml#JavaProcessDef_1080661509738)}}
{serverInstance
 (cells/g5cell/nodes/g5nodec/servers/g5sr02c:server.xml#ServerInstance_1080661509737)}
{serverType APPLICATION_SERVER}
{services
 {(cells/g5cell/nodes/g5nodec/servers/g5sr02c:server.xml#PMIService_1080661509722)
 (cells/g5cell/nodes/g5nodec/servers/g5sr02c:server.xml#AdminService_1080661509722)
 (cells/g5cell/nodes/g5nodec/servers/g5sr02c:server.xml#ObjectRequestBroker_1080661509722)
 (cells/g5cell/nodes/g5nodec/servers/g5sr02c:server.xml#TraceService_1080661509725)}}
{shortName BBOS001}
{stateManagement
 (cells/g5cell/nodes/g5nodec/servers/g5sr02c:server.xml#StateManageable_1080661509722)}
{statisticsProvider
 (cells/g5cell/nodes/g5nodec/servers/g5sr02c:server.xml#StatisticsProvider_1080661509722)}
{uniqueId BAFEB6625BB8E1DE000002740000000109521847}

Output of the show command against an application server

The layout of the actual output won't look as lined-up and neat as what's shown above. That
was modified to help illustrate the different configuration attributes under the server.

Note:

From this we know that to change the server's short name, we need to modify the
shortName attribute.

� Now modify the lesson5o.jacl file and include the following:

set server_long "g5sr02c"
set new_short "G5SR02C"
set parent "g5nodec"
set server_id [$AdminConfig getid /Server:$server_long/]
--
set name_list [list shortName $new_short]
set attr_list [list $name_list]
--
$AdminConfig modify $server_id $attr_list
$AdminConfig save
--
set var [$AdminControl completeObjectName type=NodeSync,node=$parent,*]
$AdminControl invoke $var sync

[= x'AD' EBCDIC
] = x'BD' EBCDIC

lesson5o.jacl - (modified) - changes server short name

� Issue the following command (all on one line):
./wsadmin.sh -javaoption -Dscript.encoding=Cp1047

-conntype SOAP -host <host> -port <port> -f /u/user1/lesson5o.jacl

If successful, you should simply receive back the command prompt. To validate that the
change was made, go into the Admin Console and display the "General Properties" of this
server.

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Lesson 5 - $AdminConfig Object
Version Date: Wednesday, May 05, 2004- 71 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

Changing an application server's Cluster Transition Name

This is a slightly more complicated task. A server's Cluster Transition Name is a property under
the ApplicationServer type. In order to modify that property, we must first secure the
config ID of that property. The process of drilling down to that config ID is a bit long:
y Get the config ID of the server
y Get the config ID of the ApplicationServer type under the server (there is only one)
y Get a listing of the config IDs of all the properties under the ApplicationServer type (there are

several properties there, one of which is ClusterTransitionName)
y Parse out the first property, which by default should be the ClusterTransitionName property

� Create a file called /u/user1/lesson5p.jacl

� Code the following in the file:

set server_long "g5sr02c"
set parent "g5nodec"
set new_CTN "G5SR02"
--
set server_ID [$AdminConfig getid /Server:$server_long/]
set appl_serv_ID [$AdminConfig list ApplicationServer $server_ID]
set prop_list [$AdminConfig list Property $appl_serv_ID]
set ctn_prop [lindex $prop_list 0]
set first_seven [string range $ctn_prop 0 6]
--
if { !($first_seven=="Cluster") } then {
 puts stdout "Got wrong property!"
 exit
}
--
set value_pair [list value $new_CTN]
set attr_list [list $value_pair]
$AdminConfig modify $ctn_prop $attr_list
$AdminConfig save
--
set var [$AdminControl completeObjectName type=NodeSync,node=$parent,*]
$AdminControl invoke $var sync

1

[= x'AD' EBCDIC
] = x'BD' EBCDIC

2

3

4

5

Set these values
manually

lesson5p.jacl - Changing a server's ClusterTransitionName property

Lastly, we synchronize the changes to the node.5

We build the attribute list: {{value G5SR02}}, then modify the property based on the config ID
of the property derived earlier.

4

We check to see if the first seven characters of the property name is not equal to "Cluster". If it's
not, then we got the wrong property and we exit. (Note: it would be possible to loop through the
list and find the ClusterTransitionName property. That's simply more advanced Jacl. Our
objective here is to show the fundamentals.)

3

Drill down, capturing config IDs: first the server's, then the ApplicationServer type under the
server, then get a listing of the Property types under the ApplicationServer. That list will
contain more than one entry, so we use the Jacl lindex function to extract out the first. (Jacl
lists are zero-offset, so the first item in the list is referenced with a 0.) Then we sub-string out the
first seven character so we can sanity-check and make sure we got the right property. (We can't
necessarily assume ClusterTransitionName will always be the first property.)

2

Set variables specifying the server's long name, the parent node long name and the desired new
"Cluster Transition Name" (CTN).

1

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Lesson 5 - $AdminConfig Object
Version Date: Wednesday, May 05, 2004- 72 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

� Issue the following command (all on one line):
./wsadmin.sh -javaoption -Dscript.encoding=Cp1047

-conntype SOAP -host <host> -port <port> -f /u/user1/lesson5p.jacl

Concluding points on this lesson

As we stated at the beginning of this lesson, the use of $AdminConfig may not be of much
value when the operation undertaken is a once-only thing. The time spent coding up the Jacl
script might better be spent simply going through the Admin Console and creating the
configuration object there.

But there are some $AdminConfig methods you will want to take advantage of: the save
method and the mechanism shown earlier to synchronize changes with the nodes.

Perhaps the most important lesson derived from these exercises is the method you use to find
where things are kept in the configuration heirarchy. We showed how the show method and
the showAttribute method can be particularly useful for this purpose. And we discovered
how critical the getid method is, because that's then used to make changes to specific objects
in the configuration.

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Lesson 5 - $AdminConfig Object
Version Date: Wednesday, May 05, 2004- 73 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

Lesson 6: The $AdminControl Object
The $AdminControl object is used to do things like start and stop servers, invoke node
synchronization, and start/stop applications.

Unlike $AdminApp and $AdminConfig, with $AdminControl you must be connected to a server
process. If you use -conntype none and attempt to use $AdminControl, it'll tell you it can't
process your request.

Note:

Does requiring a connection to server process limit how I might invoke $AdminControl?

Just because $AdminControl requires that you be connected to a server process, you still
have available to you all the ways to invoke the object:

y Starting WSADMIN with a connection to the server process, then issuing the command
directly on the wsadmin> command prompt. This is great for simply commands, like that
used to start a server.

y Invoking WSADMIN with a connection to the server process and passing in a pointer to a
Jacl script in a file. Better for more complex commands that require capturing a config ID
into a variable and then using that variable in another command.

y Submitting a batch JCL job that invokes BPXBATCH, which then invokes WSADMIN with a
connection to a server process. The command may then be "inline" in the JCL, with the -c
switch used to tell WSADMIN the commands follow, or in a separate file and pointed to with
the -f switch. You may wish to use this when you don't have access to a OMVS or Telnet
prompt.

This is really no different from what we've been doing already. We connected to the
Deployment Manager's server process to use the $AdminConfig object in the previous
lesson. The only difference is that with $AdminConfig you had a choice; with
$AdminControl you must connect to the server process.

Message:

Which server process should we connect to?

The following picture illustrates the options. Notes follow:

Daemon DMGR

Node
Agent

Appl.
Server

Node

MVSA

Daemon

Node
Agent

Appl.
Server

Node

MVSB
1

2 3 4 5

Daemon
Appl.

Server

Node

MVSA

6

Network Deployment Configuration

Base Application Server node Configuration

Different server processes available for connection

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Lesson 6 - $AdminControl Object
Version Date: Wednesday, May 05, 2004- 74 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

In a Base Application Server node configuration, the only server process available is an application
server. (Daemons do not have SOAP or RMI ports to which WSADMIN might connect; they are not
eligible for WSADMIN connection.) $AdminControl methods are limited. For example,
stopServer is available, but startServer is not. (You have to be connected to issue
$AdminControl commands; if the server is not up you can't connect to it; if it's up you don't need to
issue the startServer command; you can't start another server when connected to an application
server process.)

6

Another individual application server. See note #3.5

A different node's Node Agent. See note #2.4

An individual application server. Even fewer $AdminControl methods are available.3

The Node Agent for a particular node. Not all the $AdminControl methods will be available here.
Control is limited to only the node in which the Node Agent resides.

2

The Deployment Manager. Generally speaking, this is the recommended connection point,
particularly if the Deployment Manager is up. It has the understanding of the complete cell, and is
capable of executing the command to any point in the configuration. All $AdminControl methods
are available when connected to the Deployment Manager.

1

General rule of thumb: if you have a Deployment Manager up and running, use it. For the rest
of this lesson we'll assume a connection to the Deployment Manager process, unless a different
server process is explicitly stated.

Note:

Starting a server in a Network Deployment configuration

We'll start with a relatively easy method: startServer. The syntax of
$AdminControl startServer <server long> <node long> <wait time>

Where:

The time, in milliseconds, WSADMIN will wait before issuing the start command. If you
omit this operand the start command is issued immediately.

wait time

Is the node long name in which that server resides. If you're connected to the Node
Agent you do not need this because it's assumed the server is in that Node Agent's
node. But the Deployment Manager needs that because it may have several nodes.
An example of a node long name would be g5nodec.

node long

Is the server's long name, such as g5sr01c.server long

Do the following:

� From an OMVS or Telnet prompt, issue the command:
./wsadmin.sh -conntype SOAP -host <host> -port <port>

Where <port> is the SOAP port of your Deployment Manager server.

� Issue the command:
$AdminControl startServer <server long> <node long>

� Go over to MVS and watch the server come up.

It takes some time for a controller and its servant to come up. WSADMIN will wait until it
sees the server up. If you're coming in on a Telnet session, it may time out before this
happens.

Note:

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Lesson 6 - $AdminControl Object
Version Date: Wednesday, May 05, 2004- 75 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

Stopping a server in a Network Deployment configuration

Now stop the very server you just started:

� Issue the command:
$AdminControl stopServer <server long> <node long>

� Go over to MVS and watch the server come down.

Coming down is a much quicker process than coming up.Note:

Starting a Network Deployment server using batch JCL

Just to illustrate how this would be done, do the following:

� Create a batch JCL job with the following content:

//**
//* STEP 1 - Start Server
//**
//INST1 EXEC PGM=IKJEFT01,REGION=0M
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
 BPXBATCH SH +
 /wasv5config/g5cell+
 /DeploymentManager+
 /bin/wsadmin.sh +
 -conntype SOAP +
 -host wsc3.washington.ibm.com +
 -port 15510 +
 -c '$AdminControl startServer g5sr01c g5nodec' +
 1> /tmp/lesson6a.out +
 2> /tmp/lesson6a.err
/*
//**
//* STEP Copy - Copy script output back to joblog
//**
//DIAPPC EXEC PGM=IKJEFT01,REGION=0M
//SYSEXEC DD DISP=SHR,DSN=WAS502.WAS.SBBOEXEC
//SYSTSIN DD *
 BBOHFSWR '/tmp/lesson6a.out'
 BBOHFSWR '/tmp/lesson6a.err'
//SYSTSPRT DD SYSOUT=*
//

1

2

3

lesson6a.jcl - Starting of server from batch JCL

The command string as used before. Note the single quotes surrounding that command string.3

The specification of the connection type, host and port. Make this the DMGR's SOAP port.2

The directory path to the copy of wsadmin.sh being invoked. In truth, this does not have to be
the Deployment Manager's directory. It could be any copy of wsadmin.sh -- even one on
another platform. But if you use an off-platform copy and you have security turned on, then there
needs to be a coordination of certificates. Easier to simply invoke wsadmin.sh on the MVS
image.

1

Again, the time it takes for a server to come up may be longer than the default timeout
periods. When we ran this, we saw a RC=12 even though the server did come up. The
error message was: "Exception: Read timed out." But the server did come up.

Note:

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Lesson 6 - $AdminControl Object
Version Date: Wednesday, May 05, 2004- 76 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

Starting a server in a Base Application Server node configuration

Can't be done. For startServer to work, you must be connected to some server process. In
a Base Application Server node there is only the application server. (The Daemon is not
eligible for WSADMIN connection.) Even if you have two application servers defined within one
Base Application Server node (something we do not recommend), issuing startServer in
one will not result in the starting of another.

This is true from the Admin Console as well. In a Base Application Server node, the Admin
Console running in one application server has limited ability to affect other servers. It can install
an application into the other server, but it can't start or stop the other server, and it can't start or
stop applications in that other server. Further reason why we don't recommend more than one
application server in a Base Application Server node configuration.

Note:

Stopping a server in a Base Application Server node configuration

This is possible. The stopServer method can be used in a Base Application Server node
configuration to stop the server to which WSADMIN is connected. The command is simply:
$AdminControl stopServer <server long name>

The server will come down rather quickly. If you invoked that command at an OMVS or Telnet
prompt, you'll be returned to the prompt. But you'll no longer be connected to a running server
process.

Checking the status of a server process

This is a two-step process: first the "complete object name" of the Mbean needs to be queried
and put into a variable, then that variable is used in a second command to get the server's
status.

Do the following:

� Create a file called /u/user1/lesson6b.jacl

� Code the following in the file:

Provide your
configuration
values here

[= x'AD' EBCDIC
] = x'BD' EBCDIC

set server [$AdminControl completeObjectName

 cell=g5cell,node=g5nodec,name=g5sr01c,type=Server,*]

puts stdout [$AdminControl getAttribute $server state]

One line

lesson6b.jacl - Getting the status of a server

� Issue the following command (all on one line):
./wsadmin.sh -javaoption -Dscript.encoding=Cp1047

-conntype SOAP -host <host> -port <port> -f /u/user1/lesson6b.jacl

You'll get back the status of the named server: either STARTED or STOPPED.

You could, of course, put the output from this into a variable, and then test against the
variable to see whether issuing a startServer command is necessary. It all depends on
how fancy you want your Jacl scripts to be.

Note:

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Lesson 6 - $AdminControl Object
Version Date: Wednesday, May 05, 2004- 77 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

Starting an Application

This is another two-step process: get the Mbean name, then drive one of the methods on the
Mbean to start the application.

� Create a file called /u/user1/lesson6c.jacl

� Code the following in the file:

Provide your
configuration
values here

[= x'AD' EBCDIC
] = x'BD' EBCDIC

set appManager [$AdminControl queryNames

 cell=g5cell,node=g5nodec,type=ApplicationManager,process=g5sr01c,*]

$AdminControl invoke $appManager startApplication My_IVT_Application

lesson6c.jacl - Starting an application in a server

� Issue the following command (all on one line):
./wsadmin.sh -javaoption -Dscript.encoding=Cp1047

-conntype SOAP -host <host> -port <port> -f /u/user1/lesson6c.jacl

You don't get anything back; the application simply starts.

You could immediately check the status of the application to insure it was up. See
"Checking the status of an application" on page 79.

Note:

Stopping an Application

This is more or less the reverse of the previous lesson.

� Copy the lesson6c.jacl file into a file called /u/user1/lesson6d.jacl

� Modify the file slightly:

This is what
changes

[= x'AD' EBCDIC
] = x'BD' EBCDICset appManager [$AdminControl queryNames

 cell=g5cell,node=g5nodec,type=ApplicationManager,process=g5sr01c,*]

$AdminControl invoke $appManager stopApplication My_IVT_Application

set appManager [$AdminControl queryNames

 cell=g5cell,node=g5nodec,type=ApplicationManager,process=g5sr01c,*]

$AdminControl invoke $appManager stopApplication My_IVT_Application

lesson6d.jacl - Stopping an application in a server

� Issue the following command (all on one line):
./wsadmin.sh -javaoption -Dscript.encoding=Cp1047

-conntype SOAP -host <host> -port <port> -f /u/user1/lesson6d.jacl

Again, you don't get anything back; the application simply stops.

You could immediately check the status of the application to insure it was down. See
"Checking the status of an application" on page 79.

Note:

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Lesson 6 - $AdminControl Object
Version Date: Wednesday, May 05, 2004- 78 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

Checking the status of an application

The process here is rather simple: attempt to get the "complete object name" of the
application. If the $AdminControl object returns a value, the application is started. But if
$AdminControl returns null, then the application is down:

$AdminControl completeObjectName type=Application,name=My_IVT_Application,*

WebSphere:name=My_IVT_Application,
process=g5sr01c,platform=dynamicproxy,
node=g5nodec,J2EEName=My_IVT_Application,
Server=g5sr01c,version=5.0,type=Application,
mbeanIdentifier=cells/g5cell/applications
 /My_IVT_Application.ear
 /deployments/My_IVT_Application
 /deployment.xml#ApplicationDeployment_1080758425210,cell=g5cell

A bunch of output indicates
application is running

No output means
application is stopped

Checking the status of an application using completeObjectName method

We can use this knowledge and test the length of the output. Do the following:

� Create a file called /u/user1/lesson6e.jacl

� Code the following into the file:

[= x'AD' EBCDIC
] = x'BD' EBCDIC

set app_name "My_IVT_Application"
--
set status [$AdminControl completeObjectName type=Application,name=$app_name,*]
--
set length [string length $status]
if { ($length==0) } then {
 puts stdout "Application is STOPPED"
} else {
 puts stdout "Application is STARTED"
}

lesson6e.jacl - Simple checking of length of output to test for application start/stop status

� Issue the following command (all on one line):
./wsadmin.sh -javaoption -Dscript.encoding=Cp1047

-conntype SOAP -host <host> -port <port> -f /u/user1/lesson6e.jacl

And the output will be either STOPPED or STARTED based on the status of the application.

Concluding points on this lesson

The $AdminControl object may prove quite useful when developers and testers don't have
access to the MVS console or the Admin Console, but wish to do simple things like start and
stop servers, or start and stop applications. Things like the creation of servers will probably be
done outside of WSADMIN simply because MVS requires other things -- RACF profiles, JCL
procedures -- along with the server definition inside of WebSphere.

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Lesson 6 - $AdminControl Object
Version Date: Wednesday, May 05, 2004- 79 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

Lesson 7: Digging Deeper into the $AdminApp Object
Back in "Lesson 4: Installing an Application using $AdminApp Object" on page 35 we explored the
$AdminApp object to do some very simple application installations. Here we'll expand on that and
do a bit more.

At this point we'll stop offering some of the explicit instructions on the creation of Jacl script
files and the invocation of WSADMIN to process the script.

Please Read:

Installing a second copy of an application into a cell

WebSphere permits the same application to be installed multiple times into the same cell. The
only requirement is that the "appname" be unique. The appname for the MyIVT.ear
application is My_IVT_Application, a value that's defined in the application.xml file
inside the EAR. You may override that value when installing an application:

$AdminApp install /u/user1/MyIVT.ear

 {-node g5nodec -server g5sr01c -appname My_IVT_Application2}

$AdminConfig save
set var [$AdminControl completeObjectName type=NodeSync,node=g5nodec,*]
$AdminControl invoke $var sync

New appname to be
used when installing this
copy of the application

Changes synchronized
out to node

lesson7a.jacl - Providing a different "appname" from what's defined in EAR file

Any time an application is installed into a Network Deployment configuration through the
Deployment Manager, be sure to synchronize to the nodes. See "Synchronizing changes with
nodes" on page 49.

Note:

Setting the JNDI name for an EJB

The $AdminApp install option that is used to map a JNDI name to an EJB is:

BindJndiForEJBNonMessageBinding

As the name implies, this is for an EJB that is not a message driven bean. If the EJB is an MDB,
the option is BindJndiForEJBMessageBinding.

Note:

The MyIVT.ear sample application has within it a stateless session bean. We can use
WSADMIN to determine if BindJndiForEJBNonMessageBinding applies to the EAR file by
using the options method to query against the EAR:
$AdminApp options /u/user1/MyIVT.ear

What we receive back is a somewhat lengthy listing of the applicable options:

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Lesson 7 - More on $AdminApp Object
Version Date: Wednesday, May 05, 2004- 80 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

WASX7112I: The following tasks are valid for "/u/user1/MyIVT.ear"
BindJndiForEJBNonMessageBinding
MapEJBRefToEJB
MapWebModToVH
MapModulesToServers
EnsureMethodProtectionFor10EJB
preCompileJSPs
nopreCompileJSPs

defaultbinding.ejbjndi.prefix
defaultbinding.virtual.host
defaultbinding.force
defaultbinding.strategy.file

(lines removed to save space in the document)

The option related to the
binding of the JNDI name to
the stateless session bean

Output of options method for MyIVT.ear, and display of BindJndiForEjbNonMessageBinding

What's the syntax of the BindJndiForEJBNonMessageBinding option? Here the
InfoCenter offers some help. A search on that option key word yielded:

BindJndiForEJBNonMessageBinding

Binds enterprise beans to Java Naming and Directory Interface (JNDI) names.
Ensure each non message-driven enterprise bean in your application or module is bound to a JNDI
name. Use this option to provide missing data or update a task.

Example usage:

Using Jacl:

$AdminApp install myapp.ear {-BindJndiForEJBNonMessageBinding
{{"Increment Bean Jar" Inc Increment.jar,META-INF/ejb-jar.xml IncBean}}}

Use the taskInfo command of the AdminApp object to obtain information about the data needed for
your application. You only need to provide data for rows or entries that are missing information, or
those where you want to update the existing data.

InfoCenter listing for BindJndiForEJBNonMessageBinding option

As the InfoCenter write-up suggests, the taskInfo method of $AdminApp can be used to
provide information about the present settings in the EAR file. Here's what comes back:

$AdminApp taskInfo /u/user1/MyIVT.ear BindJndiForEJBNonMessageBinding
 :
WASX7348I: Each element of the BindJndiForEJBNonMessageBinding task
consists of the following 4 fields:
 :
"EJBModule", "EJB", "uri", "JNDI".
 :
The current contents of the task after running default bindings are:
EJBModule: My IVT EJB Module Display Name
EJB: My_IVT_EJB_Name
uri: MyIVTStatelessSession.jar,META-INF/ejb-jar.xml
JNDI: ejb/My_IVT_Session_Bean_JNDI_Name

Contents of MyIVT.ear and its BindJndiForEJBNonMessageBinding value

Only the JNDI value can be assigned a value. The other three are used to identify the EJB to
which the JNDI name will be bound. Those must be set equal to the actual values of the bean
for which the JNDI name is being provided.

Note:

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Lesson 7 - More on $AdminApp Object
Version Date: Wednesday, May 05, 2004- 81 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

Where are those values to be found in the EAR file itself?

Those four values -- EJBModule, EJB, uri and JNDI -- are all contained within the EAR
file itself. That's why the taskInfo method is able to go directly against the EAR file and
get the information.

The first two values -- EJBModule and EJB -- are found in the ejb-jar.xml file, which is
in EJB's JAR file, which is inside the EAR file:

EAR

WAR

JAR
ejb-jar.xml

 <ejb-jar id="ejb-jar_ID">
 <description>IVT Stateful Session EJB</description>
 <display-name>My IVT EJB Module Display Name</display-name>
 <enterprise-beans>
 <session id="Session_1">
 <description>Verify Stateful Session EJB</description>
 <display-name>My_IVT_Session_Bean_Display_Name</display-name>
 <ejb-name>My_IVT_EJB_Name</ejb-name>
 :
 </session>
 </enterprise-beans>

"EJBModule"

"EJB"

Where taskInfo got EJBModule and EJB information

You can see that the "EJBModule" value has blank spaces in its value. That's why that
needs be coded inside double-quotes on the BindJndiForEJBNonMessageBinding
option.

Note:

The uri value is simply a pointer to the JAR file found in the EAR file, with directions to the
ejb-jar.xml file:

MyIVTStatelessSession.jar,META-INF/ejb-jar.xml

JAR file name which
holds the EJB. An
EAR file may have

dozens (or more) JAR
files inside of it.

Pointer to the /META-INF
directory inside the JAR file,

and the ejb-jar.xml
deployment descriptor file

Value uri is pointer to the ejb-jar.xml file inside the JAR file

If the MyIVT.ear file had more than one EJB inside it, the taskInfo function would
provide more than one set of values for BindJndiForEJBNonMessageBinding. But
MyIVT.ear has only one EJB, so it returned only one set of information.

Note:

Finally, the value for JNDI was found in the ibm-ejb-jar-bnd.xmi file:
<ejbBindings xmi:id="Session_1_Bnd" jndiName="ejb/My_IVT_Session_Bean_JNDI_Name">

This is the JNDI value set by the developer when the EAR file was exported from WSAD.
This is what we're seeking to change during the installation of this application.

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Lesson 7 - More on $AdminApp Object
Version Date: Wednesday, May 05, 2004- 82 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

Constructing $AdminApp install command with change to JNDI name

Now we're prepared to construct the command to install MyIVT.ear with a different JNDI
name:

$AdminApp install /u/user1/MyIVT.ear

 {-node g5nodec -server g5sr01c

 -BindJndiForEJBNonMessageBinding

 {{"My IVT EJB Module Display Name"

 My_IVT_EJB_Name

 MyIVTStatelessSession.jar,META-INF/ejb-jar.xml

 ejb/New_JNDI}}}

set var [$AdminControl completeObjectName type=NodeSync,node=g5nodec,*]

$AdminControl invoke $var sync

New JNDI name for the
EJB identified with the
first three parameters

Whole thing
on one line

lesson7b.jacl - Installing MyIVT.ear with a different JNDI name for the EJB

This application has a servlet that references the EJB. The bindings inside the EAR
should correctly map the servlet to the EJB. If you change the EJB's JNDI name
without changing the servlet's mapping, the application will install okay but the
application won't work. That's why the next topic -- mapping an EJB-ref to a JNDI
name -- is provided.

Important:

Delete the application and synchronize the nodes.Before Proceeding:

Mapping an EJB-ref to JNDI name

We know from our running of the options method against the MyIVT.ear file that there's an
mapping to the EJB:

WASX7112I: The following tasks are valid for "/u/user1/MyIVT.ear"
BindJndiForEJBNonMessageBinding
MapEJBRefToEJB
MapWebModToVH
 :
defaultbinding.strategy.file

(lines removed) It saw an <ejb-ref>
tag in the web.xml file:

<ejb-ref id="EjbRef_1">
 <ejb-ref-name>ejb/ivtEJBObject</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <home>com.ibm.websphere.ivt.ivtEJB.ivtEJBHome</home>
 <remote>com.ibm.websphere.ivt.ivtEJB.ivtEJBObject</remote>
 <ejb-link>My_IVT_EJB_Name</ejb-link>
</ejb-ref>

This is what provides
the connection to the

EJB. This is the "EJB"
value we saw in the

last exercise

How the options method knew that MapEJBRefToEJB was a valid option

We can use the taskInfo method to see what the present values for MapEJBRefToEJB are
for the MyIVT.ear application file:

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Lesson 7 - More on $AdminApp Object
Version Date: Wednesday, May 05, 2004- 83 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

$AdminApp taskInfo /u/user1/MyIVT.ear MapEJBRefToEJB
 :
The current contents of the task after running default bindings are:
module: My_IVT_Webapp_Display_Name
EJB:
uri: MyIVTWebApp.war,WEB-INF/web.xml
referenceBinding: ejb/ivtEJBObject
class: com.ibm.websphere.ivt.ivtEJB.ivtEJBObject
JNDI: ejb/My_IVT_Session_Bean_JNDI_Name

Six values to be coded in the
MapEJBRefToEJB option. First

five need to match what's found in
EAR file ... the last you may

change as needed.

Using taskInfo to determine present value of MapEJBRefToEJB in MyIVT.ear

Where did it get all that information? Again, it's all buried in the deployment descriptors of the
EAR file. Hence the value of taskInfo to extract it relatively easily.

???

The InfoCenter offers an example of how to construct an $AdminApp install command that
used the -MapEJBRefToEJB option. It looked like this:

New EJB reference. Here we're
setting it to the same value we

used earlier when we changed the
JNDI name for the EJB itself.

Whole thing
on one line

$AdminApp install /u/user1/MyIVT.ear

 {-node g5nodec -server g5sr01c

 -MapEJBRefToEJB

 {{"My_IVT_Webapp_Display_Name"

 ""

 MyIVTWebApp.war,WEB-INF/web.xml

 ejb/ivtEJBObject

 com.ibm.websphere.ivt.ivtEJB.ivtEJBObject

 ejb/New_JNDI}}}

set var [$AdminControl completeObjectName type=NodeSync,node=g5nodec,*]

$AdminControl invoke $var sync

1

2

3

lesson7c.jacl - Installing MyIVT.ear with and changing the MapEJBRefToEJB value

If you want this application to actually work -- rather than simply install properly -- then make sure this
value accurately maps to an actual JNDI name bound to the EJB you hope to drive.

3

This is the value coded on the "java:comp" inside the web application. This is the "symbolic"
reference to the EJB. What we're doing here is mapping this symbolic to the actual JNDI name.

2

The double-quotes with nothing inside act as a place holder. This option expects and requires six
values. They are position sensitive. When we ran determined the settings for MapEJBRefToEJB for
MyIVT.ear, we saw that the option "EJB" had no value. So here we're holding the place with a null.

1

Delete the application and synchronize the nodes.Before Proceeding:

Putting it all together -- install application, set JNDI name, map reference to EJB

Let's now construct a single Jacl script that's does multiple things. We're going to rely on the
Jacl variables to hold all the information, then we'll construct the command to install the
application into the server and provide a new JNDI name for the EJB and provide a remapping
of the webapp so it points to the newly-named EJB.

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Lesson 7 - More on $AdminApp Object
Version Date: Wednesday, May 05, 2004- 84 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

Application and Target settings

set ear_file "/u/user1/MyIVT.ear"
set server "g5sr01c"
set node "g5nodec"

BindJndiForEJBNonMessageBinding settings

set b_option "-BindJndiForEJBNonMessageBinding"
set b_mod "\"My IVT EJB Module Display Name\""
set b_ejb "My_IVT_EJB_Name"
set b_uri "MyIVTStatelessSession.jar,META-INF/ejb-jar.xml"
set b_jndi "ejb/New_JNDI"

MapEJBRefToEJB settings

set m_option "-MapEJBRefToEJB"
set m_mod "\"My_IVT_Webapp_Display_Name\""
set m_ejb "\"\""
set m_uri "MyIVTWebApp.war,WEB-INF/web.xml"
set m_ref "ejb/ivtEJBObject"
set m_class "com.ibm.websphere.ivt.ivtEJB.ivtEJBObject"
set m_jndi $b_jndi

Construct BindJndiForEJBNonMessageBinding option list

set b_string "$b_mod $b_ejb $b_uri $b_jndi"
set b_list [list $b_string]

Construct MapEJBRefToEJB option list

set m_string "$m_mod $m_ejb $m_uri $m_ref $m_class $m_jndi"
set m_list [list $m_string]

Construct $AdminApp command

set cmd_opt_list [list -node $node -server $server]
lappend cmd_opt_list $b_option
lappend cmd_opt_list $b_list
lappend cmd_opt_list $m_option
lappend cmd_opt_list $m_list
$AdminApp install $ear_file $cmd_opt_list
$AdminConfig save

Invoke node synchronization

set var [$AdminControl completeObjectName type=NodeSync,node=$node,*]
$AdminControl invoke $var sync

1

2

3

4

5

6

7

8

lesson7d.jacl - Jacl script that installs, sets JNDI, maps reference

To insure the JNDI name bound to the EJB is the same value used in the servlet's reference, we use
the JNDI name variable in the reference.

4

The values used to map the servlet to the EJB are set here. The $m_mod variable is like the $b_mod
variable -- it has double-quotes as part of the variable itself.

3

The JNDI values are set. These variables will be used later to construct what will be a very long
command. Using variables here making changing the values for a different application much easier.
Coding the values in the long command string makes modifying that string challenging. The $b_mod
variable has backslashes to "force" the double-quotes into the actual variable itself.

2

The server and node long names are set, along with the EAR file path and name.1

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Lesson 7 - More on $AdminApp Object
Version Date: Wednesday, May 05, 2004- 85 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

The node is synchronized. The $node variable is used to insure the node into which the application
was installed in the node synchronized.

8

Here we constructed the $AdminApp command itself. We needed to insure all the option lists were
properly nested and the proper number of braces were present and balanced. The command we
were seeking to construct was this (all on one line):
$AdminApp install /u/user1/MyIVT.ear {-node g5nodec -server g5sr01c
-BindJndiForEJBNonMessageBinding {{"My IVT EJB Module Display Name"
My_IVT_EJB_Name MyIVTStatelessSession.jar,META-INF/ejb-jar.xml
ejb/New_JNDI}} -MapEJBRefToEJB {{"My_IVT_Webapp_Display_Name" ""
MyIVTWebApp.war,WEB-INF/web.xml ejb/ivtEJBObject
com.ibm.websphere.ivt.ivtEJB.ivtEJBObject ejb/New_JNDI}}}

Notice how there's an option list that follows the EAR file name, and then two sets of nested option
lists inside: the -BindJndiForEJBNonMessageBinding list and the -MapEJBRefToEJB list. We
used the lappend Jacl function to add items to an already existing list. This wasn't strictly necessary
... we could have simply built a really long line that went well beyond the right side of the screen. This
illustrates how to keep everything within an 80-column format if that's what you desire.

7

The same thing as #5, except for the option list for the EJB reference.6

Here we're building the options list for the JNDI name binding. The $b_mod variable presents a
challenge: it has double-quotes in its value. If a="a" and b=b, then [list $a $b] results in:
{{"a"} b}. In other words, the variable with double-quotes is placed inside its own list. What we
want is {"a" b}. We get around this by placing the values in a string variable first, then into a list.

5

When developing a complex script like that it's good to do plenty of testing ahead of time. Rather
than actually issuing the command when you first try your script, use puts stdout to echo back
the command you built. That way you may inspect it visually to make sure you have all the
appropriate braces and such.

Hint:

Updating an existing application with a new copy

Suppose you have an application installed and you wish to update it with a new version of the
application. You have two choices: you may manually uninstall and reinstall the application, or
you may update the application.

Simple update

Here we used the -update option of the install method. The command looked like this:

$AdminApp install /u/user1/MyIVT.ear

 {-node g5nodec -server g5sr01c -update -appname My_IVT_Application}

$AdminConfig save

set var [$AdminControl completeObjectName type=NodeSync,node=g5nodec,*]

$AdminControl invoke $var sync

-update an option of
install method, so it is

contained inside braces

-appname required
if -update used

1 2 3

4

lesson7e.jacl - Simple update of application

Be sure to specify -node and -server. If this is omitted, it will attempt to install the application
into the server process to which WSADMIN is connected. In this example we're connected to the
Deployment Manager. That is an application server, but not one in which any application other
than the Admin Console should be running

1

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Lesson 7 - More on $AdminApp Object
Version Date: Wednesday, May 05, 2004- 86 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

Be sure to specify the proper node on the synchronization command.4

The option -appname is required if -update is used. This tells WebSphere what application to
update. You may have multiple copies of the MyIVT.ear application installed, even in the same
application server (that's uncommon, but possible).

3

-update is an option of the install method of $AdminApp. Therefore, it goes inside the
braces like the other options.

2

Does it matter if the application is started or not? No. If the application is started when the
node synchronization takes place, the application will be stopped and restarted automatically.

???

Update of application and ignoring bindings in EAR file

The -update option will, by default, take whatever bindings are in the EAR file and replace
the bindings found in the WebSphere configuration repository. Is it possible to maintain the
bindings in the configuration repository and ignore the bindings in the EAR file? Yes.
That's done with the -update.ignore.new option.

$AdminApp install /u/user1/MyIVT.ear

 {-node g5nodec -server g5sr01c

 -update -update.ignore.new -appname My_IVT_Application}

$AdminConfig save

set var [$AdminControl completeObjectName type=NodeSync,node=g5nodec,*]

$AdminControl invoke $var sync

lesson7f.jacl - Update of application where bindings in EAR file ignored in favor if existing

The -update.ignore.new option must be used in conjunction with the -update option.
If you forget to include -update, the -update.ignore.new option will be ignored.

Note:

Mapping an application to a data resource

Applications that are designed to map to a data resource such as CICS will have within the EAR
file a <resource-ref> tag in an XML deployment descriptor. If you were installing that
application using the Admin Console, you would be presented with something like this:

Resource Adapter
"connection factory"

JNDI names provided in
this pull-down list

Module in EAR file that has
the <resource-ref> tag Selecting the JNDI name and

clicking "Apply" maps the
module to the data resource

WSADMIN function to accomplish the same thing: MapResRefToEJB

What Admin Console will present when an application has a <resource-ref> in deployment descriptor

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Lesson 7 - More on $AdminApp Object
Version Date: Wednesday, May 05, 2004- 87 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

Format of MapResRefToEJB

This option of the $AdminApp install method has six arguments. This was determined by
running issuing the following command against the EAR file:
$AdminApp taskInfo /u/user1/BeCashAc.ear MapResRefToEJB

We are not supplying the BeCashAc.ear file with this white paper. Consider what follows
merely an illustration.

Note:

WASX7348I: Each element of the MapResRefToEJB task consists of the
following 6 fields:

"module", "EJB", "uri", "referenceBinding", "resRef.type", "JNDI".

Of these fields, the following may be assigned values: "JNDI"
and the following are required: "JNDI"

The current contents of the task after running default bindings are:
module: BeCashAcEJB
EJB: BeCashAcSession
uri: BeCashAcEJB.jar,META-INF/ejb-jar.xml
referenceBinding: CICSConnectionFactory
resRef.type: javax.resource.cci.ConnectionFactory
JNDI: CICSConnectionFactory

Six arguments
for the

MapResRefToEJB
option

What the
deployment

descriptor of the
EAR file

presently has
assigned for
those values

The six argument fields for the MapResRefToEJB option of install

You'll find taskInfo to be a valuable tool to figure out what's going on inside an EAR file.Note:

The first five fields are used to identify the module and the resource reference. Only the
sixth field -- "JNDI" -- may be assigned a value. And the value you assign it is the JNDI
name of the connection factory to which you wish to map this module. So, for example, if
the JNDI name of the CICS adapter connection factory is eis/My_CICS_CF, then the
command to install this application would be:

Command would be
on one line in a Jacl

script. Broken
across lines here to

illustrate more
clearly the six fields

$AdminApp install /u/user1/BeCashAc.ear
 {-node g5nodec -server g5sr01c
 -MapResRefToEJB
 {{BeCashAcEJB
 BeCashAcSession
 BeCashAcEJB.jar,META-INF/ejb-jar.xml
 CICSConnectionFactory
 javax.resource.cci.ConnectionFactory
 eis/My_CICS_CF
 }}
 }

Example $AdminApp install command that maps a resource reference to a CICS conn. factory

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Lesson 7 - More on $AdminApp Object
Version Date: Wednesday, May 05, 2004- 88 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

Example Jacl script that installs application and maps resource reference

Since we are not supplying the BeCashAc.ear file, this is given to you simply as an
example to use when creating your own Jacl script. Don't run this Jacl script unless you
have a resource adapter installed and a connection factory defined.

Note:

Use
taskInfo to
determine

values
from your
EAR file.

Application and Target settings

set ear_file "/u/user1/BeCashAc.ear"
set server "<server>"
set node "<node>"

MapResRefToEJB settings

set r_option "-MapResRefToEJB"
set r_mod "\"BeCashAcEJB\""
set r_ejb "\"BeCashAcSession\""
set r_uri "BeCashAcEJB.jar,META-INF/ejb-jar.xml"
set r_ref "CICSConnectionFactory "
set r_class "javax.resource.cci.ConnectionFactory"
set r_jndi "eis/My_CICS_CF"

Construct MapResRefToEJB option list

set r_string "$r_mod $r_ejb $r_uri $r_ref $r_class $r_jndi"
set r_list [list $r_string]

Construct $AdminApp command

set cmd_opt_list [list -node $node -server $server]
lappend cmd_opt_list $r_option
lappend cmd_opt_list $r_list
$AdminApp install $ear_file $cmd_opt_list
$AdminConfig save

Invoke node synchronization

set var [$AdminControl completeObjectName type=NodeSync,node=$node,*]
$AdminControl invoke $var sync

lesson7g.jacl - Mapping resource reference

Concluding points on this lesson

The $AdminApp install command will likely be the one you'll use most productively at first.
As you have seen, the options that may be employed with the install method can be
somewhat complex. But two other methods help in this process:

y The options method may be run against an EAR file to determine what options are
applicable to the EAR.

y The taskInfo method may be run against an EAR to determine the values presently set
within the EAR for a particular task, such as MapResRefToEJB, for example.

Every one of the exercises in this section could be invoked from batch JCL. We didn't illustrate
that here because we were trying to focus on the commands themselves. Always remember: if
you have a Jacl script, it can be invoked from a batch JCL.

Note:

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Lesson 7 - More on $AdminApp Object
Version Date: Wednesday, May 05, 2004- 89 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

Lesson 8: WSADMIN and Clusters
To WebSphere, a cluster is in many ways not that unique a thing. For the purposes of installing an
application, for example, a cluster is considered a "target" just like a server is a target. Clusters
have long names and short names, just like servers do. That said, clusters do have unique
characteristics: a cluster may have members on different MVS images in a cell; a cluster may be in
a state somewhere between "started" and "stopped" -- if one cluster member us up but another is
down, the cluster is in a "partial start" status.

In this lesson we'll make use of all the objects -- $AdminApp, $AdminConfig, $AdminControl --
as we do a survey of things WSADMIN can do with clusters.

What clusters are in your environment?

The following command will list out the clusters found in the configuration repository:

Lists all the clusters found in the
configuration repository

$AdminConfig list ServerCluster

g5sr02cluster(cells/g5cell/clusters/g5sr02cluster:cluster.xml#g5sr02cluster)

The "config ID" of the cluster

Listing the clusters in a configuration

What servers are members of that cluster?

There are quite a few different ways you can display the members of a cluster, once you know
the name of the cluster. Perhaps the most useful is this:

The long names of the
members in this cluster

set cluster_id [$AdminConfig getid /ServerCluster:g5sr02cluster/]

$AdminConfig list ClusterMember $cluster_id

g5sr02c(cells/g5cell/clusters/g5sr02cluster:cluster.xml#ClusterMember_1081342348205)
g5sr02d(cells/g5cell/clusters/g5sr02cluster:cluster.xml#ClusterMember_1081365182924)

Listing the members of a cluster, once you've captured the "config ID" of the cluster

What nodes are those cluster members configured?

Here we dig a little deeper and display the attributes of each cluster member:

The node in which that
cluster member resides

set cluster_id [$AdminConfig getid /ServerCluster:g5sr02cluster/]
set mem_one [lindex $cluster_id 0]
$AdminConfig show $mem_one

{cluster g5sr02cluster(cells/g5cell/clusters/g5sr02cluster:cluster.xml#g5sr02cluster)}
{memberName g5sr02c}
{nodeName g5nodec}
{uniqueId BB07FDFD4E35D455000001380000000109521847}
{weight 2}

Using "show" to display the attributes of a cluster member

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Lesson 8 - WSADMIN and Clusters
Version Date: Wednesday, May 05, 2004- 90 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

Installing an application into a cluster

This is really no different from what we've shown in the past, except the "target" of the
installation is no longer {-node <node> -server <server>}, but rather simply a pointer to
the cluster:

$AdminApp install /u/user1/MyIVT.ear {-cluster <cluster>}
$AdminConfig save

lesson8a.jacl - Installing an application into a cluster

We've not "synched" to the nodes in that Jacl script. The synchronization command we've
used so far in this document was good for only one node. If your entire cluster is contained
within one node, what we've shown before will work here as well:
set var [$AdminControl completeObjectName type=NodeSync,node=<node>,*]
$AdminControl invoke $var sync

But if your cluster spans nodes (the more likely case), then you have to synch to each node
individually.

Caution:

Manually synchronizing with each known node of the cluster

This method is the most simple: duplicate the two command lines that synchronize to a
node and change the node name in the second set of commands. That way the
synchronization process occurs twice:

$AdminApp install /u/user1/MyIVT.ear {-cluster g5sr02cluster}
$AdminConfig save
set var [$AdminControl completeObjectName type=NodeSync,node=g5nodec,*]
$AdminControl invoke $var sync
set var [$AdminControl completeObjectName type=NodeSync,node=g5noded,*]
$AdminControl invoke $var sync

Synch once to node
"g5nodec," then synch
again but to the second

node: "g5noded"

lesson8b.jacl - Manually synchronizing to the two known nodes in which the cluster is configured

That's not very elegant, but it is effective. Would it be possible to programmatically extract a
list of the nodes and iterate through the list to complete a cluster-wide synchronization?
Yes. That's coming up .

Note:

Programmatically synchronizing every node

We saw how to do this back in "Programmatically synchronizing with every node in the cell"
on page 51.

Programmatically synchronizing to just the cluster nodes

This is a variation on the cell-wide synchronization example shown on page 51. In this Jacl
script, the cluster's long name is used to get the ID of the cluster, then each cluster member
is queried for the nodeName attribute:

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Lesson 8 - WSADMIN and Clusters
Version Date: Wednesday, May 05, 2004- 91 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

set c_id [$AdminConfig getid /ServerCluster:g5sr02cluster/]

set c_membs [$AdminConfig list ClusterMember $c_id]

foreach m_id $c_membs {

 set node_name [$AdminConfig showAttribute $m_id nodeName]

 set nodeSync [$AdminControl completeObjectName type=NodeSync,node=$node_name,*]

 set work [$AdminControl invoke $nodeSync sync]

}

1

2

3

4

5

Synchronizing only those nodes in which cluster members reside

That script is provided in the sample file synch_cluster.jacl???

The node is synchronized.5

The nodeName attribute of that cluster member is extracted and placed into variable
$node_name.

4

The foreach loop then processes through the cluster members in the variable $c_membs. Each
iteration places that iteration's cluster member ID into the variable $m_id.

3

A list variable ($c_membs) is populated with the config IDs of each cluster member in the cluster2

The "config ID" of the named cluster is put into the variable $c_id.1

This Jacl example has its own shortcomings: if you have a vertical cluster with all cluster
members in the same node -- a not very practical use of clusters, but something you may do
in a test cell -- this Jacl script will synchronize the same node over and over again. That
won't hurt anything other than burning extra cycles.

Note:

Starting the members of a cluster

Back in "Starting a server in a Network Deployment configuration" on page 75 we saw how to
start an individual server using the $AdminControl object. You may start the members of a
cluster individually by using the mechanism described on page 75. There's nothing about being
a member of a cluster that prevents you from starting or stopping the members individually.

But what we really want to do is issue a "start" against the cluster as a whole, like what's
possible from the Admin Console:

Objective: code up
WSADMIN script that
has same effect as

clicking on this button

Admin Console has button that permits starting cluster as a whole. Objective: get WSADMIN to do same

This is accomplished in a way similar to the synchronizing of nodes. The script to accomplish
this would look like this:

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Lesson 8 - WSADMIN and Clusters
Version Date: Wednesday, May 05, 2004- 92 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

set cluster [$AdminControl completeObjectName type=Cluster,name=g5sr02cluster,*]
$AdminControl invoke $cluster start

The long name of the
cluster you wish to start

lesson8c.jacl - Starting a cluster

Stopping the members of a cluster

The stop operation is invoked:

set cluster [$AdminControl completeObjectName type=Cluster,name=g5sr02cluster,*]
$AdminControl invoke $cluster stop

The long name of the
cluster you wish to stop

set cluster [$AdminControl completeObjectName type=Cluster,name=g5sr02cluster,*]
$AdminControl invoke $cluster stop

lesson8d.jacl - Starting a cluster

Checking the status of the cluster and cluster members

To check the status of the cluster as a whole, use the $AdminControl getAttribute
method and check the state:

set cluster [$AdminControl completeObjectName type=Cluster,name=g5sr02cluster,*]
$AdminControl getAttribute $cluster state

The long name of the
cluster you wish to query

websphere.cluster.partial.start
websphere.cluster.running
websphere.cluster.stopping
websphere.cluster.stopped

States of the server

lesson8e.jacl - Checking the state of a cluster

To check the status of individual members of the cluster, you may simply query the state of the
individual server, as illustrated back in "Checking the status of a server process" on page 77.

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Lesson 8 - WSADMIN and Clusters
Version Date: Wednesday, May 05, 2004- 93 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

Appendix A: Exercises (available for copy-and-paste)
Lesson 2 Exercises

lesson2a.jacl

set list [$AdminApp list]
puts stdout $list

LESSON2B.JCL

//**
//* STEP 1 - Invoke WSADMIN, issue command
//**
//INST1 EXEC PGM=IKJEFT01,REGION=0M
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
 BPXBATCH SH +
 /wasv5config/azcell+
 /DeploymentManager+
 /bin/wsadmin.sh -conntype none +
 -c '$AdminApp list' +
 1> /tmp/lesson2b.out +
 2> /tmp/lesson2b.err
/*
//**************************************
//* STEP Copy - Copy script output back to joblog
//**
//DIAPPC EXEC PGM=IKJEFT01,REGION=0M
//SYSEXEC DD DISP=SHR,DSN=WAS502.WAS.SBBOEXEC
//SYSTSIN DD *
 BBOHFSWR '/tmp/lesson2b.out'
 BBOHFSWR '/tmp/lesson2b.err'
//SYSTSPRT DD SYSOUT=*
//

lesson2c.jacl

set list [$AdminApp list]
puts stdout $list

LESSON2C.JCL

//***
//* STEP 1 - Invoke WSADMIN, point to file
//***
//INST1 EXEC PGM=IKJEFT01,REGION=0M
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
 BPXBATCH SH +
 /wasv5config/azcell+
 /DeploymentManager+
 /bin/wsadmin.sh +
 -javaoption -Dscript.encoding=Cp1047 +
 -conntype none +
 -f /u/user1/lesson2c.jacl +
 1> /tmp/lesson2c.out +
 2> /tmp/lesson2c.err
/*
//***
//* STEP Copy - Copy script output back to joblog
//***
//DIAPPC EXEC PGM=IKJEFT01,REGION=0M
//SYSEXEC DD DISP=SHR,DSN=WAS502.WAS.SBBOEXEC
//SYSTSIN DD *
 BBOHFSWR '/tmp/lesson2c.out'
 BBOHFSWR '/tmp/lesson2c.err'
//SYSTSPRT DD SYSOUT=*
//

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Appendix A - Exercises
Version Date: Wednesday, May 05, 2004- 94 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

Lesson 3 Exercises

lesson3a.jacl

set server "Server1"
puts stdout $server

lesson3b.jacl

set cell "mycell"
set node "mynode"
set server "Server1"
set appl "my_appl"
puts stdout "C:$cell N:$node S:$server A:$appl"

lesson3c.jacl

set string "Four Score and Seven"
set first [lindex $string 0]
set second [lindex $string 1]
set third [lindex $string 2]
set fourth [lindex $string 3]
puts stdout "1st:$first 2nd:$second 3rd:$third 4th:$fourth"

lesson3d.jacl

set cell [lindex $argv 0]
set node [lindex $argv 1]
set server [lindex $argv 2]
set appl [lindex $argv 3]
puts stdout "C:$cell N:$node S:$server A:$appl"

lesson3e.jacl

if { !($argc==3) } then {
 puts stdout "You supplied $argc parameters, not three. Try again"
} else {
 set cell [lindex $argv 0]
 set node [lindex $argv 1]
 set server [lindex $argv 2]
 puts stdout "Parameters: cell:$cell node:$node server:$server"
}

lesson3f.jacl

set node "<node>"
set server "<server>"
set ear "/u/user1/MyIVT.ear"
set opt [list -node $node -server $server]
puts stdout "AdminApp install $ear $opt"

lesson3g.jacl

set inner [list opt1a opt1b opt1c]
set outer [list -opt1 $inner]
puts stdout "task $outer"

lesson3h.jacl

set inopt1 [list opt1a opt1b]
set inopt2 [list opt2a opt2b]
set outer [list -opt1 $inopt1 -opt2 $inopt2]
puts stdout "task $outer"

Lesson 4 Exercises

lesson4a.jacl

$AdminApp install /u/user1/MyIVT.ear {-node <node> -server <server>}
$AdminConfig save

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Appendix A - Exercises
Version Date: Wednesday, May 05, 2004- 95 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

lesson4b.jacl

$AdminApp uninstall My_IVT_Application
$AdminConfig save

lesson4c.jacl

$AdminApp install /u/user1/MyIVT.ear {-node <node> -server <server> -MapWebModToVH
{{"My_IVT_Webapp_Display_Name" MyIVTWebApp.war,WEB-INF/web.xml WSC_host}}}
$AdminConfig save

lesson4d.jacl

set ear "/u/user1/MyIVT.ear"
set node "<node>"
set server "<server>"
set WebMod "\"My_IVT_Webapp_Display_Name\""
set uri "MyIVTWebApp.war,WEB-INF/web.xml"
set VH "WSC_host"

set VHlist "$WebMod $uri $VH"
set VHopts [list $VHlist]
set options [list -node $node -server $server -MapWebModToVH $VHopts]

$AdminApp install $ear $options
$AdminConfig save

lesson4e.jacl

set parm [lindex $argv 0]
if { !($parm == 1 || $parm == 2) } then {
 puts stdout "Must supply either 1 for install or 2 for uninstall"
 exit
}
EAR FILE, OPTIONS --
set ear "/u/user1/MyIVT.ear"
set name "My_IVT_Application"
set node "<node>"
set server "<server>"
set opts [list -node $node -server $server]
INSTALL/UNINSTALL --
if { ($parm == 1) } then {
 puts stdout "Installing $name"
 $AdminApp install $ear $opts
 $AdminConfig save
} else {
 puts stdout "Uninstalling $name"
 $AdminApp uninstall $name
 $AdminConfig save
}
--
puts stdout "All done."

Lesson 5 Exercises

synch_all.jacl

set node_ids [$AdminConfig list Node]
foreach node $node_ids {
 set node_name [$AdminConfig showAttribute $node name]
 set nodeSync [$AdminControl completeObjectName type=NodeSync,node=$node_name,*]
 if { !($nodeSync=="") } then {
 $AdminControl invoke $nodeSync sync
 }
}

lesson5a.jacl

set cellid [$AdminConfig getid /Cell:<cell>/]
puts stdout $cellid

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Appendix A - Exercises
Version Date: Wednesday, May 05, 2004- 96 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

lesson5b.jacl

set cellid [$AdminConfig getid /Cell:<cell>/]
$AdminConfig create VirtualHost $cellid {{name Test_VH}}
$AdminConfig save

lesson5c.jacl

set vh_id [$AdminConfig getid /VirtualHost:default_host/]
puts stdout "ID of VirtualHost is $vh_id"

lesson5d.jacl

set vh_id [$AdminConfig getid /VirtualHost:default_host/]
set show_out [$AdminConfig show $vh_id]
puts stdout "Attributes are $show_out"

lesson5e.jacl

set vh_id [$AdminConfig getid /VirtualHost:default_host/]
set show_out [$AdminConfig showAttribute $vh_id aliases]
puts stdout "Attributes are $show_out"

lesson5f.jacl

set alias_id "(cells/<cell>:virtualhosts.xml#HostAlias_1)"
puts stdout [$AdminConfig show $alias_id]

lesson5g.jacl

set alias_id "(cells/<cell>:virtualhosts.xml#HostAlias_1)"
puts stdout [$AdminConfig showAttribute $alias_id port]

lesson5h.jacl

set cell_id [$AdminConfig getid /Cell:<cell>/]
$AdminConfig create VirtualHost $cell_id {{name New_VH} {aliases {{{port 7777} {hostname *}}}}}
$AdminConfig save
puts stdout [$AdminConfig list VirtualHost]

lesson5i.jacl

set cell "<cell>"
set vh_name "New_VH2"
set host1 "*"
set port1 "8888"

set cell_id [$AdminConfig getid /Cell:$cell/]

set name [list "name" $vh_name]
set p1 [list port $port1]
set h1 [list hostname $host1]
set pair1 [list $p1 $h1]
set alias_attrs [list $pair1]
set aliases [list aliases $alias_attrs]
set VH_attrs [list $name $aliases]

$AdminConfig create VirtualHost $cell_id $VH_attrs
$AdminConfig save

puts stdout [$AdminConfig list VirtualHost]

lesson5i-2.jacl

set cell "<cell>"
set vh_name "New_VH3"
set host1 "*"
set port1 "8888"
set host2 "www.myhost.com"
set port2 "9999"

set cell_id [$AdminConfig getid /Cell:$cell/]

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Appendix A - Exercises
Version Date: Wednesday, May 05, 2004- 97 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

set name [list "name" $vh_name]
set p1 [list port $port1]
set h1 [list hostname $host1]
set pair1 [list $p1 $h1]
set p2 [list port $port2]
set h2 [list hostname $host2]
set pair2 [list $p2 $h2]
set alias_attrs [list $pair1 $pair2]
set aliases [list aliases $alias_attrs]
set VH_attrs [list $name $aliases]

$AdminConfig create VirtualHost $cell_id $VH_attrs
$AdminConfig save

puts stdout [$AdminConfig list VirtualHost]

lesson5j.jacl

set exist_name "New_VH2"
set new_name "Mod_VH2"
--
set vh_id [$AdminConfig getid /VirtualHost:$exist_name/]
--
set name_list [list name $new_name]
set attr_list [list $name_list]
--
$AdminConfig modify $vh_id $attr_list
$AdminConfig save
--
puts stdout [$AdminConfig list VirtualHost]

lesson5k.jacl

set vh_name "New_VH2"
set port1 "5555"
set host1 "*"
set port2 "6666"
set host2 "*"
--
set vh_id [$AdminConfig getid /VirtualHost:$vh_name/]
--
set p1 [list port $port1]
set h1 [list hostname $host1]
set pair1 [list $p1 $h1]
set p2 [list port $port2]
set h2 [list hostname $host2]
set pair2 [list $p2 $h2]
set pair_list [list $pair1 $pair2]
set alias_list [list aliases $pair_list]
set attr_list [list $alias_list]
--
$AdminConfig modify $vh_id $attr_list
$AdminConfig save
--
puts stdout [$AdminConfig list VirtualHost]

lesson5l.jacl

set vh_name "New_VH2"
set vh_id [$AdminConfig getid /VirtualHost:$vh_name/]
--
$AdminConfig remove $vh_id
$AdminConfig save
--
puts stdout [$AdminConfig list VirtualHost]

lesson5m.jacl

set model_serv [$AdminConfig getid /Server:<serve_long>/]
set parent_node [$AdminConfig getid /Node:<node_long>/]
$AdminConfig createUsingTemplate Server $parent_node {{name <serve_long>}} $model_serv
$AdminConfig save

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Appendix A - Exercises
Version Date: Wednesday, May 05, 2004- 98 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

lesson5n.jacl

set model_serv "<model_server_long>"
set new_serv_name "<new_server_long>"
set parent "<node_long>"
--
set m_ID [$AdminConfig getid /Server:$model_serv/]
set p_ID [$AdminConfig getid /Node:$parent/]
--
set name_pair [list name $new_serv_name]
set attr_list [list $name_pair]
--
$AdminConfig createUsingTemplate Server $p_ID $attr_list $m_ID
$AdminConfig save
--
set var [$AdminControl completeObjectName type=NodeSync,node=$parent,*]
$AdminControl invoke $var sync

lesson5o-pre.jacl

set server_long "<new_server_long>"
set server_id [$AdminConfig getid /Server:$server_long/]
--
puts stdout [$AdminConfig show $server_id]

lesson5o.jacl

set server_long "<server_long>"
set new_short "<server_short>"
set parent "<node_long>"
set server_id [$AdminConfig getid /Server:$server_long/]
--
set name_list [list shortName $new_short]
set attr_list [list $name_list]
--
$AdminConfig modify $server_id $attr_list
$AdminConfig save
--
set var [$AdminControl completeObjectName type=NodeSync,node=$parent,*]
$AdminControl invoke $var sync

lesson5p.jacl

set server_long "<server_long>"
set parent "<node_long>"
set new_CTN "<NEW_CLUSTER_TRAN>"
--
set server_ID [$AdminConfig getid /Server:$server_long/]
set appl_serv_ID [$AdminConfig list ApplicationServer $server_ID]
set prop_list [$AdminConfig list Property $appl_serv_ID]
set ctn_prop [lindex $prop_list 0]
set first_seven [string range $ctn_prop 0 6]
--
if { !($first_seven=="Cluster") } then {
 puts stdout "Got wrong property!"
 exit
}
--
set value_pair [list value $new_CTN]
set attr_list [list $value_pair]
$AdminConfig modify $ctn_prop $attr_list
$AdminConfig save
--
set var [$AdminControl completeObjectName type=NodeSync,node=$parent,*]
$AdminControl invoke $var sync

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Appendix A - Exercises
Version Date: Wednesday, May 05, 2004- 99 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

Lesson 6 Exercises

LESSON6A.JCL

//**
//* STEP 1 - Start Server
//**
//INST1 EXEC PGM=IKJEFT01,REGION=0M
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
 BPXBATCH SH +
 /<config root>+
 /DeploymentManager+
 /bin/wsadmin.sh +
 -conntype SOAP +
 -host <host> +
 -port <port> +
 -c '$AdminControl startServer <server> <node>' +
 1> /tmp/lesson6a.out +
 2> /tmp/lesson6a.err
/*
//**
//* STEP Copy - Copy script output back to joblog
//**
//DIAPPC EXEC PGM=IKJEFT01,REGION=0M
//SYSEXEC DD DISP=SHR,DSN=WAS502.WAS.SBBOEXEC
//SYSTSIN DD *
 BBOHFSWR '/tmp/lesson6a.out'
 BBOHFSWR '/tmp/lesson6a.err'
//SYSTSPRT DD SYSOUT=*
//

lesson6b.jacl

set server [$AdminControl completeObjectName
 cell=<cell>,node=<node>,name=<server>,type=Server,*]
puts stdout [$AdminControl getAttribute $server state]

lesson6c.jacl

set appManager [$AdminControl queryNames
 cell=<cell>,node=<node>,type=ApplicationManager,process=<server>,*]
$AdminControl invoke $appManager startApplication My_IVT_Application

lesson6d.jacl

set appManager [$AdminControl queryNames
 cell=<cell>,node=<node>,type=ApplicationManager,process=<server>,*]
$AdminControl invoke $appManager stopApplication My_IVT_Application

lesson6e.jacl

set app_name "My_IVT_Application"
--
set status [$AdminControl completeObjectName type=Application,name=$app_name,*]
--
set length [string length $status]
if { ($length==0) } then {
 puts stdout "Application is STOPPED"
} else {
 puts stdout "Application is STARTED"
}

Lesson 7 Exercises

lesson7a.jacl

$AdminApp install /u/user1/MyIVT.ear {-node <node> -server <server>
 -appname My_IVT_Application2}
$AdminConfig save
set var [$AdminControl completeObjectName type=NodeSync,node=<node>,*]
$AdminControl invoke $var sync

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Appendix A - Exercises
Version Date: Wednesday, May 05, 2004- 100 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

lesson7b.jacl

$AdminApp install /u/user1/MyIVT.ear {-node <node> -server <server>
 -BindJndiForEJBNonMessageBinding {{"My IVT EJB Module Display Name" My_IVT_EJB_Name
 MyIVTStatelessSession.jar,META-INF/ejb-jar.xml ejb/New_JNDI}}}
set var [$AdminControl completeObjectName type=NodeSync,node=<node>,*]
$AdminControl invoke $var sync

lesson7c.jacl

$AdminApp install /u/user1/MyIVT.ear {-node <node> -server <server>
 -MapEJBRefToEJB {{"My_IVT_Webapp_Display_Name" "" MyIVTWebApp.war,WEB-INF/web.xml
 ejb/ivtEJBObject com.ibm.websphere.ivt.ivtEJB.ivtEJBObject ejb/New_JNDI}}}
set var [$AdminControl completeObjectName type=NodeSync,node=<node>,*]
$AdminControl invoke $var sync

lesson7d.jacl

Application and Target settings

set ear_file "/u/user1/MyIVT.ear"
set server "<server>"
set node "<node>"

BindJndiForEJBNonMessageBinding settings

set b_option "-BindJndiForEJBNonMessageBinding"
set b_mod "\"My IVT EJB Module Display Name\""
set b_ejb "My_IVT_EJB_Name"
set b_uri "MyIVTStatelessSession.jar,META-INF/ejb-jar.xml"
set b_jndi "ejb/New_JNDI"

MapEJBRefToEJB settings

set m_option "-MapEJBRefToEJB"
set m_mod "\"My_IVT_Webapp_Display_Name\""
set m_ejb "\"\""
set m_uri "MyIVTWebApp.war,WEB-INF/web.xml"
set m_ref "ejb/ivtEJBObject"
set m_class "com.ibm.websphere.ivt.ivtEJB.ivtEJBObject"
set m_jndi $b_jndi

Construct BindJndiForEJBNonMessageBinding option list

set b_string "$b_mod $b_ejb $b_uri $b_jndi"
set b_list [list $b_string]

Construct MapEJBRefToEJB option list

set m_string "$m_mod $m_ejb $m_uri $m_ref $m_class $m_jndi"
set m_list [list $m_string]

Construct $AdminApp command

set cmd_opt_list [list -node $node -server $server]
lappend cmd_opt_list $b_option
lappend cmd_opt_list $b_list
lappend cmd_opt_list $m_option
lappend cmd_opt_list $m_list
$AdminApp install $ear_file $cmd_opt_list
$AdminConfig save

Invoke node synchronization

set var [$AdminControl completeObjectName type=NodeSync,node=$node,*]
$AdminControl invoke $var sync

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Appendix A - Exercises
Version Date: Wednesday, May 05, 2004- 101 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

lesson7e.jacl

$AdminApp install /u/user1/MyIVT.ear {-node <node> -server <server>
 -update -appname My_IVT_Application}
$AdminConfig save
set var [$AdminControl completeObjectName type=NodeSync,node=<node>,*]
$AdminControl invoke $var sync

lesson7f.jacl

$AdminApp install /u/user1/MyIVT.ear {-node <node> -server <server>
 -update -update.ignore.new -appname My_IVT_Application}
$AdminConfig save
set var [$AdminControl completeObjectName type=NodeSync,node=<node>,*]
$AdminControl invoke $var sync

lesson7g.jacl

Application and Target settings

set ear_file "/u/user1/BeCashAc.ear"
set server "<server>"
set node "<node>"

MapResRefToEJB settings

set r_option "-MapResRefToEJB"
set r_mod "\"BeCashAcEJB\""
set r_ejb "\"BeCashAcSession\""
set r_uri "BeCashAcEJB.jar,META-INF/ejb-jar.xml"
set r_ref "CICSConnectionFactory "
set r_class "javax.resource.cci.ConnectionFactory"
set r_jndi "eis/My_CICS_CF"

Construct MapResRefToEJB option list

set r_string "$r_mod $r_ejb $r_uri $r_ref $r_class $r_jndi"
set r_list [list $r_string]

Construct $AdminApp command

set cmd_opt_list [list -node $node -server $server]
lappend cmd_opt_list $r_option
lappend cmd_opt_list $r_list
$AdminApp install $ear_file $cmd_opt_list
$AdminConfig save

Invoke node synchronization

set var [$AdminControl completeObjectName type=NodeSync,node=$node,*]
$AdminControl invoke $var sync

Lesson 8 Exercises

lesson8a.jacl

$AdminApp install /u/user1/MyIVT.ear {-cluster <cluster>}
$AdminConfig save

lesson8b.jacl

$AdminApp install /u/user1/MyIVT.ear {-cluster <cluster>}
$AdminConfig save
set var [$AdminControl completeObjectName type=NodeSync,node=<node_1>,*]
$AdminControl invoke $var sync
set var [$AdminControl completeObjectName type=NodeSync,node=<node_2>,*]
$AdminControl invoke $var sync

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Appendix A - Exercises
Version Date: Wednesday, May 05, 2004- 102 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

synch_cluster.jacl

set c_id [$AdminConfig getid /ServerCluster:<cluster_long>/]
set c_membs [$AdminConfig list ClusterMember $c_id]
foreach m_id $c_membs {
 set node_name [$AdminConfig showAttribute $m_id nodeName]
 set nodeSync [$AdminControl completeObjectName type=NodeSync,node=$node_name,*]
 set work [$AdminControl invoke $nodeSync sync]
}

lesson8c.jacl

set cluster [$AdminControl completeObjectName type=Cluster,name=<cluster_long>,*]
$AdminControl invoke $cluster start

lesson8d.jacl

set cluster [$AdminControl completeObjectName type=Cluster,name=<cluster_long>,*]
$AdminControl invoke $cluster stop

lesson8e.jacl

set cluster [$AdminControl completeObjectName type=Cluster,name=<cluster_long>,*]
$AdminControl getAttribute $cluster state

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Appendix A - Exercises
Version Date: Wednesday, May 05, 2004- 103 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

More Information
(under construction)

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: More Information
Version Date: Wednesday, May 05, 2004- 104 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

Document Change History

Original preliminary draft documentMay 5, 2004

Document Change History

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Document Change History
Version Date: Wednesday, May 05, 2004- 105 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

Index

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: Index
Version Date: Wednesday, May 05, 2004- 106 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

End of Document WP100421

WP100421 - WebSphere for z/OS Version 5 WSADMIN Scripting Primer

Section: End of Document
Version Date: Wednesday, May 05, 2004- 107 -© 2004, IBM Americas Advanced Technical Support

Washington Systems Center, Gaithersburg, MD

